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Abstract

Pattern mining is a knowledge discovery task which is useful for finding interesting data

characteristics. Existing mining techniques sometimes suffer from limited performance

in challenging situations, such as when finding patterns in high-dimensional datasets.

Binary Decision Diagrams and their variants are a compact and efficient graph data

structure for representing and manipulating boolean functions and they are potentially

attractive for solving many problems in pattern mining. This thesis explores techniques

for the use of binary decision diagrams for mining both simple and complex types of

patterns.

Firstly, we investigate the use of Binary Decision Diagrams for mining the fun-

damental types of patterns. These include frequent patterns, also known as frequent

itemsets. We introduce a structure called the Weighted Zero-suppressed Binary De-

cision Diagram and evaluate its use on high dimensional data. This type of Decision

Diagram is extremely useful for re-using intermediate patterns during computation.

Secondly, we study the problem of mining patterns in sequential databases. Here,

we introduce a new structure called the Sequence Binary Decision Diagram, which can

be used for mining frequent subsequences. We show that our technique is competitive

with the state of the art and identify situations where it is superior.

Thirdly, we show how Weighted Zero-suppressed Binary Decision Diagrams can

be used for discovering new and complex types of patterns. We introduce new types

of highly expressive patterns for capturing contrasts, which express disjunctions of

attribute values. Moreover, to investigate the usefulness of disjunctive patterns for

knowledge discovery, we employ a statistical methodology for testing their significance,

and study their use for solving classification problems. Our findings show that classifiers

based on significant disjunctive patterns can be more robust than those which are only

based on simple patterns.
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Finally, we introduce patterns for capturing second-order differences between two

groups of classes, which can provide useful insights for human experts. Again, we show

how binary decision diagrams can be deployed for efficiently discovering this type of

knowledge.

In summary, we demonstrate that Binary Decision Diagrams, are a powerful and

scalable tool in pattern mining. We believe their use is very promising for a range of

current and future tasks in the data mining context.
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Preface

This dissertation contains nine chapters. The first three chapters provide an introduc-

tory description of the background and related work. The last chapter summarises the

thesis and proposes some future research issues. The remaining chapters cover the core

research topics. No part of the thesis has been submitted for any degree; or ever been
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SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD),
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Elsa Loekito and James Bailey. Fast Mining of High Dimensional Expres-

sive Contrast Patterns Using Zero-suppressed Binary Decision Diagrams.

In Proceedings of the Twelfth ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (KDD), pages 307-316, Philadel-

phia, PA, USA, in August 20-23, 2006.

A part of Chapter 7 was published in the Proceedings of the Thirteenth Pacific-

Asia Conference on Knowledge Discovery and Data Mining (PAKDD), in April 2009:

Elsa Loekito and James Bailey. Using Highly Expressive Contrast Pat-

terns for Classification - Is It Worthwhile? In Proceedings of the Thir-
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(PAKDD), pages 483-490, Bangkok, Thailand, in April 27-30, 2009.

A part of Chapter 8 was published in the Proceedings of the Seventeenth Inter-

national Conference on Information and Knowledge Management (CIKM), in October

2008:

Elsa Loekito and James Bailey. Mining Influential Attributes That Cap-

ture Class and Group Contrast Behaviour. In Proceedings of the Seven-

teenth International Conference on Information and Knowledge Manage-

ment (CIKM), pages 971-980, Napa Valley, California, USA, in October

26-30, 2008.

A part of Chapter 5 is to appear in the Knowledge and Information Systems

Journal (KAIS):

Elsa Loekito, James Bailey, and Jian Pei. A Binary Decision Diagram Based

Approach for Mining Frequent Subsequences. To appear in Knowledge and

Information Systems Journal (KAIS).

This dissertation was prepared by LATEX. The algorithms included were writted

in C/C++, compiled by GNU gcc compiler and run on the Solaris 9/x86.
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Chapter 1

Introduction

Recent advances in information technology have made possible the collection of enor-

mous amounts of data. Manual analysis of such data is impractical. Data mining

technology enables the extraction of patterns from data, and presentation of knowledge

for users. The usefulness of a data mining technique is determined by a number of

factors, including the expressiveness and interpretability of the patterns. Expressive

patterns are more complex, harder to mine than the simpler patterns, and they can

also be harder to interpret. Mining expressive patterns is desirable for extracting useful

knowledge, but they have not been able to be found using previous techniques. The

increasing growth of database sizes, moreover, urgently calls for new mining methods

which are efficient and highly scalable. Binary decision diagrams have proven to be a

compact and efficient graph data structure for manipulating large scale boolean func-

tions. Having been widely used in the area of VLSI/CAD, they are attractive for solving

pattern mining problems. This thesis explores techniques for mining simple as well as

complex patterns, based on the use of binary decision diagrams and their variants.

1.1 What is Data Mining?

Data mining [56] is a component of knowledge discovery, which is a process of extracting

information from databases, defined as follows.

Definition 1. [56, 53] Knowledge Discovery in Databases is the non-trivial

process of identifying valid, novel, potentially useful, and ultimately understandable

patterns in data.
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Knowledge discovery can be divided into seven steps: data cleaning, data in-

tegration, data selection, data transformation, data mining, pattern evaluation, and

knowledge presentation. Data mining can be defined as follows.

Definition 2. [67] Data Mining is the process where intelligent methods are applied

in order to extract patterns or information that satisfy a certain objective or interest-

ingness measure.

In technical terms, intelligent methods mean efficient algorithms, and the objec-

tive or interestingness measure determines the quality of the patterns. The patterns

can either be predictive or descriptive, which are distinguished as follows: predictive

patterns predict the unknown value of some data items; descriptive patterns extract

salient features from the data. The typical predictive methods include classification (i.e.

predicting the class label of unseen data) and regression (i.e. predicting the value of an

unknown part of the data). Descriptive methods include association rule mining (i.e.

identifying associations between data items), and pattern discovery (i.e. discovering

patterns or trends within the data).

To be interesting and useful, it is of high importance that patterns satisfy the

following criteria: interpretability, non redundancy, expressiveness, and tractability of

computation. The quality of the patterns is also important, which can be measured

by statistical significance. In our research, we focus on efficient methods for pattern

discovery, and study expressive, interpretable, and statistically significant patterns.

1.2 Different Data Types

There exist different types of data, and the definition of data mining assumes the data

to be of a certain type.

A first categorisation of data types can be made according to the nature of

the database, which may be transactional, sequential, or relational. A transactional

database consists of transactions where each transaction is described by a set of data

items. A relational database also consists of transactions, but they are defined over a

set of data attributes, and each attribute is defined over a set of domain values. Such

transactions, in either a transactional or relational database, are referred to as itemsets.

An itemset contains distinct and unordered items. On the other hand, in a sequential

database, a sequence may contain duplicate items, and the items are ordered.
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Example 1. {a, b, c, d} is an itemset. It may be a set of purchased items in a trans-

action in market basket data. Alternatively, each item may also represent an attribute

value in a relational database. Itemsets {a, b, c, d} and {b, c, d, a} are equivalent, since

an itemset contains unordered items.

{a, a, c, a, b, b, d} is a sequence. In a DNA or protein sequence, each item may

represent a nucleotide or an amino acid. {a, a, c, a, b, b, d} and {a, c, a, a, d, b, b} are two

different sequences, since the items are ordered differently.

In a relational database, the domain values of an attribute can be categorised into:

continuous, and discrete or categorical. Continuous data can take values from an infinite

set, such as the set of real numbers. Discrete data, on the other hand, can only take

values from a finite set. Many data mining methods, such as those for mining patterns,

assume discrete data. In the presence of continuous valued data, such methods can be

used by applying a data discretisation method, which transforms continuous data to

discrete data. For some methods, the data discretisation can have a great influence on

the existence of the patterns, since through this data transformation, some information

may be lost [52].

In our research, we study pattern mining techniques in the context of itemsets

as well as sequences. We also address some of the problems which occur due to data

discretisation.

1.3 Pattern-based Data Mining Methods and Their Ap-

plications

The most fundamental type of patterns are called frequent itemsets [4, 5], which capture

data characteristics within a set of objects, e.g. transactions. Frequent patterns for

sequence databases are called frequent subsequences [6, 3].

A frequent itemset is a combination of items which appears with frequency greater

than or equal to a user-specified threshold. For example, the itemset {cereal,milk},

which is purchased in 90% of the transactions, is a frequent itemset for any frequency

threshold of 90% or less. Frequent itemset mining is a well studied problem and very

useful for other data mining tasks. It was first introduced for finding associations

between items, called association rules [4].

There exist other types of frequent patterns, such as frequent subgraphs in a graph
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database, or frequent subtrees in a tree database, but in this thesis we will focus on

the fundamental types, which include frequent itemsets and frequent subsequences.

Various extensions of frequent patterns have also considered a variety of con-

straints, other than minimum frequency, such as total average, minimum/maximum

total value, or minimum length of patterns, which are useful for different domain ap-

plications. The use of such constraint-specific techniques is often called constrained

pattern mining [68, 69, 28, 21].

Contrast patterns [37, 17, 139] are a useful class of constrained patterns for cap-

turing contrasts, or differences, between two sets of data. The differentiation may be

made between data across classes, or across time periods. A simple type of contrast

patterns is called emerging patterns [37], and a variety of highly accurate classifiers

based on emerging patterns have been proposed [42, 82, 50, 51]. Applications of con-

trast mining have been studied in many domains, such as the bioinformatics domain

(a survey is presented in [12]), which employs efficient techniques to discover patterns

in high dimensional biological data.

Trees are one of the most popular data structures used in existing pattern min-

ing techniques [70, 61, 158, 21, 14]. Moreover, graph data structures, such as Zero-

suppressed Binary Decision Diagrams (ZBDDs) [111], have also been used by several

techniques, particularly for mining frequent itemsets [108, 109, 80, 112, 117]. Binary

decision diagrams highly promote node re-use, which is not possible using trees. This

sophistication motivates our research to investigate the advantages and disadvantages

of using binary decision diagrams, instead of trees, for pattern mining.

1.4 Simple and Complex Patterns

Existing types of patterns, such as frequent patterns, frequent subsequences, and con-

trast patterns, may be limited in terms of the kind of knowledge they can discover and

express.

Our research addresses two problems in contrast mining: i) finding expressive

contrasts, ii) capturing contrasts between classes and across groups of classes. These

types of contrasts have a higher complexity to compute than the existing patterns,

which are considered simple patterns. An example of each of these patterns, which we

refer to as complex patterns, follows shortly.

Example 2. An expressive contrast may occur in a census data [71], where the com-
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bination [’aged between 40 and 60’ and ’worked in a telecommunication industry or

a transportation industry’] strongly differentiates males from females. Current defini-

tion of contrast patterns can only express conjunctions, such as [’aged between 40 and

60’ and ’worked in a telecommunication industry’], but cannot express a disjunction

between the telecommunication and transportation industries.

Revisiting the previous contrast example from the census data, an expert may be

interested to compare differences between males and females across two categories of

individuals. None of the existing contrast pattern definitions is able to identify such

high-level contrasts, which we call second-order contrasts. These complex patterns are

novel types of patterns. No techniques have been proposed for mining them.

In this thesis, we will propose new definitions of these complex patterns, and show

that binary decision diagrams can serve as a powerful tool for mining them efficiently.

1.5 Research Aim and Challenges

To summarise, the aim of our research is to study the mining of simple, as well as

complex types of patterns, using graph-based data structures based on Binary Decision

Diagrams [25]. We address the following questions:

• To what extent can existing pattern mining techniques, such as frequent itemset

mining and frequent subsequence mining, be improved by using graph-based data

structures?

• How can these new data structures allow data mining techniques for the discov-

ery of complex knowledge, such as highly expressive contrasts and second-order

contrasts, which existing techniques have not been able to discover?

When mining simple patterns, we focus on the challenging high dimensional data,

in which a large volume of patterns exist. By allowing disjunctions, expressive contrasts

are computationally expensive to mine, since more combinations need to be explored.

Furthermore, their use for improving classification accuracy remains an open question,

which we will investigate in our research. In second-order contrast mining, existing

types of contrast patterns do not readily allow second order differentiation, and an

overwhelming volume of output patterns is often returned to the user.
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Binary Decision Diagrams are attractive for solving large-scale data mining prob-

lems. They have been used in many VLSI/CAD [103] applications, but their effective-

ness for data mining purposes remains an open question. Despite having attractive

properties which are potentially useful for performing efficient pattern mining, not all

of the existing optimisations in current pattern mining techniques are suitable for be-

ing adopted into a graph data structure. Moreover, different techniques may be more

suitable for different circumstances, which may be influenced by the characteristics of

the patterns and the input data.

1.6 Research Contributions and Organisation of the The-

sis

Listed below are our contributions and the organisation of this thesis:

• Chapter 2 provides background on pattern mining and gives a review on the

existing pattern mining techniques.

• Chapter 3 provides background on Binary Decision Diagrams (BDDs), as well as

some of the variants which are related to the data structures used in our work.

• Our first contribution is to investigate whether employing Binary Decision Dia-

grams can improve existing pattern mining techniques. We study the problem of

mining high-dimensional patterns in different types of databases, transactional,

relational, and sequential, which includes frequent itemset mining and frequent

subsequence mining.

In Chapter 4, we propose a new and original variant of BDDs, called Weighted

Zero-suppressed Binary Decision Diagrams (Weighted ZBDD), which are pow-

erful for mining frequent patterns with high scalability. In Chapter 5, we also

propose a new data structure for mining sequential patterns, called Sequence

Binary Decision Diagrams.

Our results show that the BDD-based techniques can outperform the tree-based

techniques, particularly when a large volume of patterns exists. The BDD’s ability

to re-use intermediate computation results helps to avoid redundant computation,

which is a novel feature in pattern mining.

• In Chapter 6, we study the use of Zero-suppressed Binary Decision Diagrams (ZB-

DDs) for mining contrasts. We define novel types of expressive contrasts, called
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disjunctive emerging patterns. These patterns generalise the previous definition

of contrast patterns, such as emerging patterns, which can only express simple

combinations (i.e. conjunctions) of data items.

Being more expressive, many more disjunctive patterns may exist than the simple

emerging patterns. We propose algorithms for mining both the simple emerging

patterns as well as expressive patterns, based on the use of ZBDDs or weighted

ZBDDs. Our results show that ZBDDs allow the large search space of disjunctive

patterns to be explored efficiently, and are able to substantially improve the

scalability and time efficiency of previous techniques.

• In Chapter 7, we study the use of disjunctive emerging patterns for classification.

The disjunctive characteristics of these patterns enable contrasts to be discovered

in circumstances where simple emerging patterns rarely exist. To improve the

robustness of the classifier, we propose a methodology for testing the significance

of the disjunctions. Previous work on statistical significance, such as for finding

significant association rules, considers pure conjunctions, but in our work, we

consider disjunctions.

We conduct experiments to investigate whether the use of disjunctive emerging

patterns for classification is worthwhile. Our results indicate that the significant

disjunctive patterns do allow more robust classifiers to be built, obtaining higher

accuracies over previous classifiers based on emerging patterns, especially when

the data is sparse.

• In Chapter 8, we study the problem of mining second order contrasts between

multiple groups of classes. These contrasts allow two levels of analysis: within

group contrasts and across groups contrasts. We call such patterns group dis-

criminative contrasts, and these are a new and complex type of contrast pattern.

To address the issue of pattern interpretability, we propose a method for finding

the attributes which have the most impact in group discriminative contrasts.

We evaluate our technique using a real census [71] data set, as well as a few

other data sets. From the census data, we are able to identify attributes which

otherwise cannot be identified by other techniques, which have strong influence

in discriminating males from females, conditional to their race background.

We propose an algorithm for mining these second order contrasts, based on

weighted Zero-suppressed Binary Decision Diagrams. It allows both the pat-

terns and the influential attributes to be found simultaneously, by processing all
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classes at once and pushing multiple constraints deep inside the mining routine.

This level of mining complexity has not been considered in previous techniques.

• Finally, Chapter 9 presents the conclusions of our study, and proposes future

research directions.
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Chapter 2

Overview of Pattern Mining

Techniques

There exist numerous pattern mining techniques. This chapter presents an overview of

some of the influential techniques for mining various types of patterns, which include

frequent itemsets, frequent subsequences, constrained patterns, and contrast patterns.

Firstly, we give some preliminary definitions.

2.1 Preliminaries

This preliminary section provides terminologies which will be used in the remainder

of this chapter and the remainder of this thesis. Assume we have a dataset D defined

upon a set of k attributes (also referred as dimensions) {A1, A2, . . . , Ak}.

An item is an element of the domain values of an attribute. For every attribute

Ai, the domain of its values (or items) is denoted by dom(Ai). Let I be the aggregate

of the domains across all the attributes, i.e. I =
⋃k

i=1 dom(Ai). An itemset is a subset

of I. Let P and Q be two itemsets. P contains Q if Q is a subset of P , i.e. Q ⊆ P .

Alternatively, P is a superset of Q.

Example 3. Suppose I = {a, b, c, d, e, f, g}. An itemset P = {a, b, e} is a subset of

Q = {a, b, d, e, f}, and Q is a superset of P .

A dataset is a collection of transactions, where each transaction is an itemset. The

size of a dataset D is the number of transactions in D, denoted by |D|. The frequency

9
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id Itemset

t1 {a, b, e}
t2 {b, c, e}
t3 {a, b, c, d}
t4 {a, b, c, e}

Figure 2.1: A dataset

of an itemset P in D, denoted by count(P,D), is the number of transactions in D which

contain P . The support of P , denoted by support(P,D), is the frequency divided by

the size of D, i.e. count(P,D)
|D| , where 0 ≤ support(P,D) ≤ 1.

Example 4. Figure 2.1 shows an example of a dataset D. The size of D is 4, i.e.

|D| = 4. The frequency of itemset {a, b} in D is 3, since it is contained by transactions

t1, t3, and t4. Its support is 3
4 = 0.75.

2.2 Frequent Itemsets and Their Applications

A frequent itemset is defined as follows.

Definition 3. Given a minimum support threshold α, a frequent itemset [4] in a

dataset D is an itemset P such that support(P,D) ≥ α.

Frequent itemsets exhibit an anti-monotonic APRIORI property, that is, all sub-

sets of a frequent itemset are also frequent itemsets.

Theorem 1. APRIORI property [4]: for any two itemsets P and Q, such that

Q ⊆ P , if P is a frequent itemset, then Q is also a frequent itemset.

Proof. Suppose P is a frequent itemset, given a minimum support threshold α. Let Q

be a subset of P , i.e. Q ⊆ P . For every transaction T which contains P , i.e. P ⊆ T ,

T also contains Q, i.e. Q ⊆ T . However, for every transaction T which contains Q,

i.e. Q ⊆ T , T may not contain P . Therefore, support(Q,D) ≥ support(P,D). If P

is a frequent itemset, i.e. support(P,D) ≥ α, then Q is also a frequent itemset, i.e.

support(Q,D) ≥ α.

The number of frequent itemsets can be huge, especially for low α and in circum-

stances where many items occur frequently. Mining frequent itemsets then can be very
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time consuming [5]. The number of itemsets to be checked is O(2N ), where N is the

number of items. To address this problem, concise representations of frequent itemsets

have been defined, such as closed frequent itemsets and maximal frequent itemsets.

Definition 4. A closed frequent itemset [128] is a frequent itemset which is not a

subset of another frequent itemset with the same frequency.

Lemma 1. For any two closed frequent itemsets P and Q, such that Q is a subset of P ,

the support of P is less than the support of Q [128], i.e. support(P,D) < support(Q,D).

Maximal frequent itemsets are the most concise representation which removes

frequent itemsets which are subsets of another frequent itemset. Maximal frequent

itemsets, however, do not allow support information to be deduced for their subsets.

Definition 5. A maximal frequent itemset [18] is a frequent itemset which is not

a subset of another frequent itemset.

Lemma 2. For any two maximal frequent itemsets P and Q, Q is not a subset of P ,

and P is not a subset of Q [18].

Example 5. Consider an example dataset shown in Figure 2.1. Given a minimum

support threshold α = 0.5. The frequent itemsets (with their frequencies) are {a} : 3,

{b} : 4, {c} : 3, {e} : 3, {a, b} : 3, {a, c} : 2, {a, e} : 2, {b, c} : 3, {b, e} : 3, {c, e} : 2,

{a, b, c} : 2, {a, b, e} : 2, {b, c, e} : 2.

The closed frequent itemsets are {b}, {a, b}, {b, c}, {b, e}, {a, b, c}, {a, b, e}, {b, c, e}.

Itemset {a} is not a closed frequent itemset because its superset {a, b} has the same sup-

port of 3. For the same reason, itemsets {c}, {e}, {a, c}, {a, e}, and {c, e} are not closed

frequent itemsets.

Itemsets {a, b, c}, {a, b, e} and {b, c, e}, are maximal frequent itemsets because none

of their supersets are frequent itemsets.

The sets of frequent itemsets (FI), closed frequent itemsets (CFI), and maximal

frequent itemsets (MFI), follow the following relationship [29]: MFI ⊆ CFI ⊆ FI.

The set MFI can be orders of magnitude smaller than CFI, and the set CFI can

be smaller than FI. The CFI is useful, since it is smaller than FI, yet still contains

enough information about the support of the itemsets [127]. When there exist very long

patterns (i.e. patterns containing many items), however, FI and CFI may become very

large, thus, finding MFI is more practical [18]. The set of maximal itemsets have been

shown to be adequate in high dimensional databases, such as biological databases [135].
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Frequent itemsets have been shown to be useful for finding association rules and

for building classifiers. Association rules [4], are typically found using two constraints:

a minimum support, and a minimum confidence of each rule. The confidence measures

the association between items in an itemset. Those rules can be found in two phases:

i) find the frequent itemsets with respect to the minimum support, ii) find the highly

confident frequent itemsets. Work in [92] studied class-association rules, also known as

classification rules, which find strong associations between itemsets and the classes in

the dataset, which are particularly useful for building a classifier.

There exist various types of association rule based classifiers [163, 91, 152], which

may employ additional constraints to improve classification performance. Sequential

association rules have also been studied in [161], and these are useful for finding asso-

ciations between sequences of events in a sequence database.

2.3 Review of Frequent Itemset Mining

The first technique for mining frequent itemsets was introduced for mining association

rules [4, 104]. Association rules are useful for both knowledge discovery and classi-

fication. Numerous association rule mining techniques have been proposed, varying

in the data representations, the candidate generation techniques, and the candidate

pruning techniques. Each of them may be more suitable for different characteristics

of the output patterns, or the input data, e.g. data sparsity/density. There exists an

association rule based classifier called ARC-AC, which has also been studied for various

domains, such as medical images [11], and text documents [164]. A detailed review of

the state-of-the-art of frequent pattern mining techniques and their future directions

can be found in [66].

Frequent itemset mining techniques can be classified into two categories of ap-

proaches: the generate-and-test approach [4], and the pattern growth approach [70].

The first category of approach generates candidate patterns by exploring the item-

set lattice to search for candidate patterns, while pushing the frequency constraint to

prune its search space. The second approach avoids the generation of infrequent can-

didate patterns by using the input database as a guide for pruning. Each of them has

advantages and disadvantages, which we will describe shortly.

12
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2.3.1 Generate-and-test Frequent Itemset Mining Approach

The APRIORI [4] algorithm was one of the first generations of frequent itemset mining

algorithms. It generates pattern candidates in a breadth-first, bottom-up fashion. It

finds length (k + 1) candidates from the frequent itemsets of length k (k ≥ 1), and

counts the frequencies of the candidates as they are generated.

Example 6. Recall the dataset used in Example 5. Given a minimum support threshold

α = 0.5, the APRIORI algorithm starts with each item being a pattern candidate, tests

its frequency, and finds that item ’d’ is not frequent. Thus, it finds the length-1 frequent

itemsets: {a}, {b}, {c}, {e}.

Then, length-2 candidates are generated from the length-1 frequent itemsets, by

finding their pair-wise cross-products (e.g. a × b = ab): {a, b}, {a, c}, {a, e}, {b, c},

{b, e}, {c, e}. From these candidates, {a, b}, {a, e}, {b, e}, and {c, e} are frequent item-

sets, since their support values exceed 0.5. Length-3 candidates are generated from the

length-2 frequent itemsets, and so on, using the same procedure. The iteration termi-

nates when only one length-k frequent itemset is found, or none of the candidates is

frequent.

Frequency counting is the core computation in frequent itemset mining. The naive

approach for calculating the frequency requires one database scan for each pattern

candidate. This, however, is inefficient given the exponential search space. For a

database of N items, the number of pattern candidates is O(2N ). Work in [99] proposed

a counting inference method, which allows more efficient frequency counting. They

introduced the notion of key patterns, which are minimal itemsets that have the same

support and occur in the same transactions. Recall that closed itemsets are the maximal

itemsets of the same pattern space as key patterns.

Key-patterns have the useful property that all k-itemset candidates which are

supersets of a key-pattern inherit the frequency of the key-pattern. Once an infrequent

key-pattern has been identified, none of its supersets needs to be generated. On the

other hand, all supersets of a frequent key-pattern that occur in the database are

also frequent. This technique is most effective when the number of key-patterns is

significantly smaller than the number of the actual patterns, which often occurs in a

dense dataset. The results in [99, 100] indicate that the algorithm is superior than the

APRIORI technique for mining the complete set of frequent itemsets.

Efficient successors of APRIORI for finding maximal frequent itemsets include

13
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tid a b c d e

t1 1 1 0 0 1
t2 0 1 1 0 1
t3 1 1 1 1 0
t4 1 1 1 0 1

tid a b c d e

t1 1 1 0 0 1

t2 0 1 1 0 1

t3 1 1 1 1 0

t4 1 1 1 0 1

(a) Vertical layout (b) Horizontal layout

Figure 2.2: Vertical and horizontal layout of dataset D

MAFIA [29], DepthProject [1], and GenMax [63]. Differing from the Apriori-based ap-

proach, which performs a breadth-first search through the itemset-lattice, these tech-

niques perform a depth-first search that finds maximal frequent itemsets early, by

integrating strong search pruning strategies. The following discussion compares the

performance between those algorithms.

MAFIA and DepthProject similarly perform depth-first-search when exploring the

itemset lattice, except they use different database representations. MAFIA uses a

vertical bitmap representation where each item is associated with a list of zeros and

ones. The ’ones’ in the bitmap represent the occurrences of that item in the database.

Instead of using a vertical database layout, DepthProject uses a horizontal database

representation, which allows more efficient support counting when the dataset is sparse,

since the bitmap contains many zeros. Figure 2.2 shows the vertical and horizontal

layout of the example dataset D shown in Figure 2.1.

GenMax aims to improve the MAFIA algorithm by adopting compact database

representations. It associates each transaction with a transaction identifier, or tid, and

represents the occurrence of each item by a list of tids from the transactions which

contain that item. The frequency is calculated based on the tid-lists, instead of bitsets

which are used by both MAFIA and DepthProject.

A performance study of MAFIA, in comparison to the other algorithms in the same

category is presented in [61]. It is shown that MAFIA works best when mining long

itemsets in a dense dataset(contain highly similar transactions). In sparse datasets,

DepthProject is faster than MAFIA for high support thresholds, but MAFIA performs

well for low support thresholds. Compared to both DepthProject and MAFIA, GenMax

is superior for higher supports where the bitsets contain many more zeros than ones.
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2.3.2 Pattern Growth Mining Approach

The second category of approaches, called the pattern growth [70], avoids generating

infrequent candidates. It employs a partitioning-based, divide-and-conquer strategy,

rather than the Apriori bottom-up generation of frequent itemsets. The pattern-growth

decomposes the mining task into a set of smaller tasks, and incrementally grows pat-

terns using smaller database projections. A partially grown pattern is called a prefix.

For an item x, the algorithm projects an x-conditional database, which excludes trans-

actions which do not contain that item. The frequent patterns are found recursively

by projecting subsequent conditional databases.

The first pattern-growth algorithm, FP-growth [70], is based on a prefix tree data

structure, called the FP-Tree (Frequent Pattern Tree). An FP-tree is a compact rep-

resentation of a database. It contains the frequent items, and every branch represents

an itemset, allowing common prefixes to be shared between itemsets. Each node in

the prefix tree represents a prefix and its frequency. An FP-tree is accompanied by a

header table, which stores the total frequency of each item in the database. Nodes with

same label (i.e. item) are linked, and the head of the link lists for each item is stored

in a header table.

Figure 2.3 shows an example of an FP-tree for the example dataset given in Fig-

ure 2.1. Since an FP-tree stores information about the frequency of the contained

itemsets, frequency calculation be performed efficiently, especially when many of the

itemsets share similar prefixes. Such a circumstance occurs in a database that contains

many frequent items.

Compared to the generate-and-test approach which requires multiple database

scans, the FP-growth algorithm only needs two database scans. The first scan counts

the frequency of each item, and the second one builds the FP-tree representation of the

database.

Variants of FP-trees have also been shown to be useful for finding the other types

of patterns, such as sequential patterns [48], constrained patterns [21], and contrast

patterns [14]. We will provide more details about these other types of patterns later.

Dynamic Item Ordering

The technique proposed in FP-growth [70] uses a dynamic item ordering, which re-

sults in smaller conditional databases and, in turn, more efficient overall mining time.
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Item Total frequency

b 4
a 3
c 3
e 3

{}:4

b:4

a:3 c:1

c:2 e:1 e:1

e:1

Figure 2.3: An FP-tree

The FP-growth algorithm orders the items in each FP-tree by decreasing frequency,

putting the most frequent item at the top of the tree. This item ordering aims to find

long frequent itemsets early, and reduce the width of the conditional FP-trees. When

performing a conditional database projection, the least frequent item in the FP-tree is

chosen when growing the first prefix. This ordering produces tall-narrow FP-trees for

low frequency items and short-wide trees for high frequency items.

Example 7. Consider the FP-tree in Figure 2.3. Suppose the frequency constraint

requires the patterns to have frequency at least 2. The tree is traversed starting with the

lowest item, i.e. e, projecting a conditional database {{b, a, c}}. Since the conditional

database contains only one transaction, it returns all subsets of {b, a, c} as frequent

patterns. Returning to the initial FP-tree, it then visits the second-lowest item, i.e. e,

and projects a conditional database {{a, b}, {a, b}}. Items c and d are omitted from the

e-conditional database, since they are infrequent in this conditional database.

Optimised Implementations of FP-growth

Prior to the construction of every conditional FP-tree, two scans of the current FP-

tree database are required. The ordering of the items is important for efficiency of the

algorithm. The first scan finds the frequent items, and the second scan constructs the

new tree. In a sparse dataset, the FP-tree does not allow many prefixes to share nodes,

resulting in numerous large conditional FP-trees. An improved FP-growth method,

namely FP-growth* was proposed in [64], which uses an additional array for each

FP-tree, and allows early pruning and faster construction of the conditional FP-trees.

The array stores the frequency of 2-itemsets. As a result, the frequent items in the
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subsequent conditional databases can be found from this array, saving one database

scan.

Work in [64] proposed extensions of the FP-growth* algorithm for mining maxi-

mal frequent itemsets and closed frequent itemsets, called as FPmax* and FPclose*,

respectively. Compared with the other algorithms, FP-max* [64] is faster than MAFIA

and GenMax for dense datasets, where many long patterns exist. For sparse datasets,

on the other hand, which contain short patterns, it is less efficient due to the overhead

cost in constructing many conditional FP-trees, especially when the support thresh-

old is low. Similar trends are found in the comparison between FP-close* and the

extensions of MAFIA for finding closed frequent itemsets.

Work in [167] introduced a pattern-growth algorithm, called CHARM, for mining

closed frequent itemsets, which explores both the itemset space and the tid-set space.

It uses an Itemset-tidset-tree (or IT-tree for short), and grows prefixes from the IT-

tree. An optimised FP-growth algorithm, called CLOSET+, for mining frequent closed

itemsets was proposed in [158].

There exist numerous alternative implementations [62, 78] of pattern growth which

mainly differ in their database representations. Another tree based algorithm called

Leap [165] exists, which is optimised for finding maximal frequent itemsets. It uses a

variant of FP-trees called Headerless Frequent Pattern trees (HFP-trees). The HFP-

tree does not have a header table. In addition to support, each node has a second

variable, called participation, which represents the number of times the node has par-

ticipated in the already-counted patterns at a given time in the mining process. In

general, the algorithm avoids generating non-maximal candidates, and the HFP-trees

are used for efficiently calculating the support of the maximal frequent itemsets.

Different data structures for storing the conditional databases are more suitable for

different situations. Tree data structures, such as the FP-tree, or other tree-based data

structures [64, 94, 132, 45, 165], are suitable for dense data. Tree-based techniques can

benefit from the sharing of common prefixes, but they are not very suitable for sparse

data, due to poor compactness of the tree representations.

On the other hand, an array structure is favorable when the conditional databases

are sparse, i.e. the frequent patterns are short. The LCM algorithm [151] uses a

combination of prefix-trees, bitmaps, and array. Their selection of data representation

type is based on heuristics regarding the data density.

There exist two graph-based algorithms for mining frequent patterns. A recent
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implementation of LCM [117] uses a Zero-suppressed Binary Decision Diagram (ZBDD)

for compactly storing the output patterns, and it performs well for mining patterns in

sparse datasets. Another algorithm that uses a ZBDD was proposed in [113], called

ZBDD-growth, which employs the FP-growth framework. It has a limited scalability,

though, when mining a large number of patterns. More details about this algorithm

will be given in Chapter 3.

2.3.3 Row-wise Pattern Mining In High Dimensional Datasets

The row-wise mining approach [125] explores row combinations instead of item com-

binations. Such a technique is suitable for mining patterns in the high dimensional

biological datasets, which typically contain only a few rows, but a large number of

dimensions or data attributes.

Based on the relationship between closed frequent itemsets and their transaction-

id-sets [167], several row-wise mining algorithms [125, 124, 136, 34, 96] have been pro-

posed for finding closed patterns in sparse high-dimensional microarray datasets. This

row-wise mining approach has two advantages: it does not have support counting over-

head, and all of the generated candidates are closed itemsets. The following are some

terminologies used in the row-wise mining framework.

Definition 6. Given an itemset P , bit support(P ) denotes the set of row-ids in which

P occurs Let R be the set of row-ids. A rowset is a subset of R [136]. Given a rowset

R, row support set(R) is the maximal itemset which occurs in all rows in R.

In this thesis, we use the following support definition for rowsets.

Definition 7. The support of row support set(R), denoted rsupport(R), is the number

of row-ids in R relative to the number of transactions in D, i.e. rsupport(R) = |R|
|D| .

The row-support-set of a given rowset R is a closed frequent itemset if the row-

support, i.e. rsupport(R), is at least equal to the minimum support threshold. The

following theorem holds between a closed frequent itemset and the row-support-set of

its corresponding row-set R.

Theorem 2. A closed frequent itemset P is a a row support set(R), such that

rsupport(R) ≥ α, and rowset R is the bit-support of P , i.e. R = bit support(P ).

There exist other works on finding patterns in microarray datasets which study

different type of constraints, such as those in [24, 40]. Many variants of the row-
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wise mining techniques are based on the closure property of itemsets [33, 157], and

representative sets [126]. In such a representative data description method, some of the

patterns may be underrepresented. Due to this reason, we prefer the complete pattern

representation.

2.4 Frequent Patterns in Sequential Databases

In this section, we will consider a type of frequent pattern which is suitable for se-

quential data, known as a frequent subsequence. The fundamental difference between

sequences and itemsets is that the data values or items in a sequence are ordered and

may be duplicated, which is not the case in an itemset. We will give the definitions

and terminologies, and will review the techniques for mining frequent subsequences,

shortly.

2.4.1 Definition of Frequent Subsequences

Let I be the set of items. A sequence S over set I is an ordered list of items, e1e2 . . . em

where ej ∈ I, for 1 ≤ j ≤ m.

Each item in a sequence S is called an element of S. The j-th element that occurs

in S is denoted by S[j]. The number of elements in a sequence, m, is referred as the

length of S, and it is denoted by |S|. Each number between 1 and m is a position in

S. Set I is also called as the alphabet domain of S. For instance, in a DNA data set,

the set I contains alphabet letters A, C, G, T . An item from the alphabet domain

can occur multiple times as different elements of a sequence. A sequential dataset D

is a collection of sequences, defined upon a domain set of items, I. The number of

sequences in D is denoted by |D|.

A sequence P = a1a2 . . . am is a supersequence of another sequence Q = b1b2 . . . bn

(n ≤ m), and q is a subsequence of p, if there exist integers 1 ≤ i1 < i2 < . . . < in ≤ m

such that Q[1] = P [i1], Q[2] = P [i2], . . ., Q[n] = P [in]. We say that P contains

the subsequence Q. The frequency of a sequence P in D, denoted count(P,D), is

the number of sequences in D which contain P . The support of P in D, denoted

support(P,D), is the relative frequency of P with respect to the number of sequences

in D, i.e. support(P,D) = count(P )
|D| .

Sequence Q is a prefix of P if Q is a subsequence of O, and Q[i] is equal to P [i]
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for all 1 ≤ i ≤ |Q|. Sequence Q is a suffix of P if Q is a subsequence of P , and Q[i] is

equal to P [j] for all 1 ≤ i ≤ |Q|, j = (|P | − |Q| + i). An x-suffix of a sequence P is a

suffix of P which begins with item x. Moreover, it is a longest x-suffix in P if it begins

with the first occurrence of x in sequence P .

The task of mining frequent subsequences from a dataset D is defined as finding

all subsequences from D whose supports are at least min support, formally defined as

follows.

Definition 8. Given a positive minimum support threshold α, P is a frequent sub-

sequence if the support of P in dataset D is at least α i.e. support(P,D) ≥ α, where

0 ≤ α ≤ 1.

Many of the techniques for finding frequent subsequences [6, 3, 105, 166, 31, 48]

are developed based on frequent itemset mining, since frequent subsequences also ex-

hibit the anti-monotonic Apriori property [6]. That is, for every sequence P and its

subsequence Q, support(P ) ≤ support(Q).

Theorem 3. APRIORI property [6]: For any two sequences P and Q such that

Q ⊆ P , if P is a frequent subsequence in a dataset D, then Q is also a frequent

subsequence in D.

Example 8. Consider the sequential dataset example in Figure 2.4. Subsequence ’aba’

has a frequency of 3, since it occurs in sequences s1, s4, s5. Based on the anti-monotonic

property, the frequency of each of its subsequences, i.e. a, b, aa, ab, ba, is no less than

3.

Since every prefix of a sequence P is a subsequence of P , frequent subsequences also

have a prefix anti-monotonic property [131]. That is, every sequence P and its prefix

Q, support(P ) ≤ support(Q). According to Theorem 3, therefore, if P is a frequent

subsequence, then all of its prefixes are also frequent subsequences. This prefix anti-

monotonic property is heavily used for pruning infrequent candidates when mining

frequent subsequences [6, 105, 3, 129, 47].

2.4.2 Review of Frequent Subsequence Mining Techniques

Similar to the categorisation of approaches for finding frequent itemests, techniques for

finding frequent subsequences can also be categorised into two approaches: i) candidate
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id Sequence

s1 abbac
s2 bcabc
s3 bbabc
s4 aacba
s5 abbba

Figure 2.4: A sequence dataset

generation and test approach, and ii) prefix growth approach. However, mining subse-

quences is more challenging, since items in a frequent subsequence must follow the same

ordering as they appear in the input sequences. Moreover, an item may occur multiple

times in a sequence, but can only occur once in an itemset. Due to these differences, the

dynamic item ordering technique used by frequent itemset mining algorithms [4, 70], is

not applicable for frequent subsequence mining.

Apriori, AprioriAll, AprioriSome [6] were the first techniques in sequential pattern

mining, which are based on the Apriori property. They scan the database once to

find the frequent single items, e.g. x and y, and then combine the pair of frequent

items to get length-2 candidates, e.g. xy and yx. Length-3 candidates are found by

combining the frequent subsequences of length two, and so on. Subsequently, more

efficient techniques were proposed, such as GSP [3], PSP [105] and SPADE [166].

GSP (Generalized Sequential Pattern) [3] follows the Apriori, candidate generation-

and-test, framework. Support counting is the major cost in the GSP algorithm, which

requires one database scan for each pattern candidate. PSP (Prefix Sequential Pattern)

[105] is similar to GSP, except that PSP introduces the use of a prefix-tree to perform

the mining procedure. SPADE, proposed in [166], is based on decomposing the pat-

tern lattice into smaller sub-lattices, and decomposing the mining task into mining in

those smaller sub-lattices. For counting support, SPADE uses a vertical, instead of a

horizontal, data representation .

PrefixSpan [129] adopts the framework of FP-growth [70], by growing prefixes of the

frequent subsequences and projecting conditional databases. It prunes the infrequent

candidates based on the prefix anti-monotonic property, and it does not use a tree

structure. Optimisation techniques used by PrefixSpan include pseudo-projection and

bi-level database projection. The pseudo-projection technique uses pointer-offset pairs

for finding the conditional databases, instead of physically creating them. However, it

is only possible when the database fits in the main memory. The bi-level projection

21



CHAPTER 2. OVERVIEW OF PATTERN MINING TECHNIQUES

allows fewer and smaller databases being projected, by inducing a conditional database

for each length-2 prefix. Work in [129] shows that PrefixSpan is the most efficient and

scalable for mining long subsequences.

WAP-mine [130] uses a WAP-tree (Web Access Pattern tree) as database repre-

sentation, which is similar to the FP-tree [70] in frequent itemset mining. Each node

in a WAP tree is labeled, and nodes with the same label are linked together. Each

branch represents a sequence. Unlike the other algorithms, WAP-mine grows suffixes

of frequent subsequences. The use of a prefix tree aims to achieve data compression,

and quick identification of frequent prefixes. Similar to FP-growth for mining frequent

itemsets, WAP-mine also uses the least-frequent-item ordering which aims to generate

smaller and fewer conditional databases. However, the item ordering does not allow

much optimisation due to the possible multiple occurrences of an item in a sequence,

and the number of conditional databases can be enormous.

PLWAP [48] improves WAP-mine by avoiding physical construction of the condi-

tional databases. PLWAP uses a PLWAP-tree (Pre-order Linked Web Access Pattern

tree) as data structure with a special code annotating each node which allows the initial

database to be re-used for the conditional databases. The algorithm follows the prefix-

growth framework, but it can be computationally expensive when long subsequences

exist.

2.5 Mining Frequent Patterns With Additional Constraints

Frequent pattern mining is based only on a single frequency constraint, which is anti-

monotonic. Work in [68, 69] has explored various constraints which can be pushed into

frequent pattern mining. A class of monotone constraints, namely convertible monotone

constraints, were also studied. A monotone constraint specifies that if an itemset

satisfies the constraint, then all of its supersets also satisfy the constraint. Various

interesting applications exist where both anti-monotone and monotone constraints are

used. An example is given shortly.

Example 9. In market basket data analysis, a marketing analyst might be interested

in finding combinations of items which occur frequently in the database, for which the

sum of their price is higher than a certain threshold. The minimum frequency is an

anti-monotone constraint, whereas the minimum total price is a monotone constraint.

Unlike frequent patterns, patterns which satisfy both monotonic and anti-monotonic
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{a, b, c, d}

{a, b, c} {a, b, d} {a, c, d} {b, c, d}

{a, b} {a, c} {a, d} {b, c} {b, d} {c, d}

{a} {b} {c} {d}

{}

Figure 2.5: An itemset lattice with a subalgebra ({{a}, {b}, {c}, {d}}, {{a, c, d},
{b, c, d}})

constraints cannot be fully represented using only the maximal itemsets. Work in [69,

28, 20, 21, 46] proposed efficient techniques for pushing both constraints into pattern

mining. The techniques for finding these types of patterns can be categorised into: i)

an itemset lattice traversal, and ii) an FP-tree based approach. We will shortly give

an overview of DualMiner [28] and FP-Bonsai [21], which represent the two respective

approaches.

DualMiner [28] uses the concept of subalgebras for finding the set of patterns that

satisfy the given constraints. A subalgebra is a top-bottom pair of itemsets, (T ,B),

which represents the set of itemsets which are supersets of B and also subsets of T .

T and B respectively correspond to the maximal and the minimal itemsets in the set.

When mining the patterns, DualMiner explores the subalgebra space starting with

the largest subalgebra (∅, I), where I is the set of all items. It explores subsets of the

subalgebra in a depth-first manner, while checking the constraints. Exploring subsets of

the subalgebra confines the itemset lattice from both directions, from the top as well as

the bottom. For example, Figure 2.5 shows an example of subalgebra ({a}, {b}, {c}, {d},

{{a, c, d}, {b, c, d}}), given I = {a, b, c, d}.

Due to its similarity to MAFIA in the depth-first search strategy, optimisation

techniques in MAFIA can be adopted for efficient support counting and for pruning

non-maximal good subalgebras. DualMiner performs well when the anti-monotone

constraint is selective, but its performance decreases for less selective anti-monotone

constraints.

The FP-Bonsai [21] algorithm considers a class of monotone constraints, namely

the ”local” monotone constraints, which depend solely on the patterns and not on the

23



CHAPTER 2. OVERVIEW OF PATTERN MINING TECHNIQUES

transaction database. Examples of such constraints in the market basket data domain

include cardinality (|X| >= n), and sum of prices (sum(X.price) >= n). Conceptually,

the FP-Bonsai algorithm incorporates the FP-growth algorithm with a data reduction

technique [20], based on the local nature of the monotone constraint, which allows the

FP-tree to be pruned. However, such a technique can not be applied for mining other

types of monotone constraints which are dependent on the underlying database, such

as the infrequency constraint which is considered in contrast mining.

The pruning strategy of FP-Bonsai has been adopted by another algorithm, namely

BifoldLeap [46], which pushes both the monotone and anti-monotone constraints into

the leap-traversal algorithm [165], based on the use of FP-trees and COFI-trees [45] for

efficient support counting at the expense of memory usage.

2.6 Contrast Pattern Definitions

Contrast patterns capture differences between two sets of objects, or changes in a set of

objects between different time periods. For example, when comparing the data between

diabetic and non-diabetic patients, contrast characteristics, such as ’aged between 65-

85 years old and do not have high blood pressure’ may occur in 60% of the diabetic

patients, but only in 1% of the non-diabetic patients.

Emerging patterns [37] are a simple type of contrast pattern. They are item

combinations which have sharp differences of frequency between two classes. These

patterns are a class of constrained patterns, where the constraints depend on two

classes of data.

Contrast mining has been used for a number of bioinformatics applications, such

as classifying gene expressions [40], and understanding leukaemia diseases [84]. Work

in [87] proposed an efficient technique for mining emerging patterns, by introducing a

concept for describing geography of differences between datasets [37]. Other mining

techniques, and the useful applications of emerging patterns can be found in [38, 51,

16, 14]. Emerging patterns are defined as follows.

Definition 9. Consider two classes in a dataset D, namely Dp (the positive class)

and Dn (the negative class). The growth rate [37] of an itemset P is the support

ratio between the two classes, i.e.
support(P,Dp)

support(P,Dn)
. The discriminating power, or

strength [42] of P is the ability of P to distinguish the instances in Dp from the

instances in Dn, which is a function of its support and its growth rate:
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strength(P,Dp,Dn) = support(P,Dp) ∗
growthrate(P,Dp,Dn)

1 + growthrate(P,Dp,Dn)

Definition 10. [37] Given a minimum growth rate ρ, A ρ Emerging Pattern favour-

ing Dp (i.e. positive class) is an itemset which has a growth rate greater than or equal

to ρ.

The growth rate may be finite or infinite. In the case that the growth rate ρ is

infinite, the pattern is called a Jumping Emerging Pattern (JEP) [37]. Jumping

emerging patterns present only in the positive class but absent in the negative class.

The following definition of emerging pattern further specifies the threshold of the

support of the pattern for each class.

Definition 11. [37] Given two support thresholds α and β, an Emerging Pattern

(EP) for the positive class Dp is an itemset P which satisfies two constraints: i)

support(P,Dp) ≥ α (i.e. frequent in Dp), and ii) support(P,Dn) ≤ β (i.e. infrequent

in Dn).

By having a non-zero value of β, greater robustness to noise can be achieved, but

the discriminating power of the emerging patterns is sacrificed. By setting β = 0,

constrained emerging patterns reduce to jumping emerging patterns. Moreover, P is

a minimal jumping emerging patterns if P does not contain other emerging pat-

terns. Minimal jumping emerging patterns are considered the most expressive patterns

because their supports are no smaller than their supersets. Due to their high discrimi-

nating power, jumping emerging patterns have been successfully applied for building a

highly accurate classifier, called the JEP-Classifier [82].

Example 10. Consider the example data set shown in Figure 2.6. Given α = 0.25 and

β = 0, the minimal jumping emerging patterns are ae, ad, i, ch, eh. All their supersets

which occur in the positive class are also jumping emerging patterns.

Emerging patterns are related to class-association rules [91]. An emerging pattern

P may correspond to an association rule: P → Dp, where Dp is the positive class.

The rule’s confidence can be measured by dividing the total frequency of the emerging

pattern in both classes, with the frequency of the pattern in the positive class. That

is, confidence(P → Dp) =
count(P,Dp)+count(P,Dn)

count(P,Dp) . The rule’s confidence is equal to 1 if

count(P,Dn) = 0, as the case for all jumping emerging patterns. Therefore, jumping
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id Itemset

t1 {a, e, g}
t2 {a, d, i}
t3 {b, f, h}
t4 {c, e, h}

id Itemset

t1 {a, f, g}
t2 {b, d, h}
t3 {b, f, h}
t4 {c, e, g}

(a) Positive class (b) Negative class

Figure 2.6: A dataset with a positive class and a negative class

emerging patterns are class-association rules which have 100% confidence in the positive

class.

A condensed representation of contrast patterns was proposed in [146], by adopting

the concept of closed frequent patterns to emerging patterns, it finds emerging patterns

that do not have same growth rate as their subsets. There is another type of emerging

pattern defined using a statistical significance χ2-test, called the Chi Emerging Pat-

terns (Chi-EP) [50]. These patterns can find statistically significant contrasts, and

are useful for improving the robustness of an emerging pattern-based classifier, in the

presence of noise.

2.7 Review of Contrast Mining Techniques

Work in [37] introduced the concept of border for concisely representing emerging pat-

terns, which relies on the interval-closure property.

Definition 12. A border is a an ordered pair < L,R > that represents a collection

of itemsets. L is called the left border, which is the collection of minimal itemsets in

S, and R is the right border, which is the collection of maximal itemsets in S.

Definition 13. A set of itemsets S is interval closed if there exists L and R such

that L and R are in S and for every X ∈ S, L ⊆ X ⊆ R holds.

A closed interval also corresponds to a subalgebra in constrained pattern min-

ing [28], where the left border corresponds to the bottom itemsets, and the right border

corresponds to the upper itemsets. The input data set and the set of emerging patterns

are interval-closed. Hence, the set of emerging patterns can be found by manipulating

the border of the positive class and the border of the negative class, according to the

given support constraints. The borders of the contrast patterns are then found by
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differentiating the borders between the two datasets, which is called the Border-Diff

operation[37]. The algorithm is called Horizon-Miner, which we outline below.

Given a minimum support α for the positive class, and a maximum support β for

the negative class. The right border for the positive class can be found using any of the

maximal frequent itemset mining techniques (e.g. [29, 70]) with a minimum support

threshold α, and the right border for the negative class contains the maximal frequent

itemsets given a minimum support threshold β. The contrast patterns are found by

finding itemsets which occur within the positive class border representations, and do

not occur within the negative class border representations.

A semi-naive border differential algorithm was introduced in [41] by employing a

set-enumeration tree to enumerate subsets of the right border of the positive class, while

checking the constraint. It allows different constraints, i.e. growth rate constraint,

or minimum/maximum support constraint, to be applied on the emerging patterns.

This algorithm performs well on small databases, but it does not scale well for large

databases.

A more efficient algorithm for computing Border-Diff was proposed in [16], which

is based on the relationship between jumping emerging patterns and minimal hyper-

graph transversals. The following are formal definitions of hypergraph and its minimal

transversal.

Definition 14. A hypergraph is defined by a set of vertices V = {v1, v2, . . . vn} and a

set of edges E, where each edge is some subset of V . A transversal of a hypergraph

is any set of vertices that contains at least one element of every edge. A minimal

transversal is a transversal such that no proper subset is also a transversal.

Each transaction t in the positive class Dp can be thought of as inducing a hyper-

graph with respect to all the transactions in the negative class Dn. The vertex set V

corresponds to the elements of t. Hypergraph edges are individually defined by sub-

tracting a transaction in Dn from V . The minimal emerging patterns are the minimal

transversals of this set of hypergraphs.

The border-differential technique can be extended for finding constrained emerging

patterns, with α and β support thresholds. The hypergraph edges are induced from the

right border representations of Dp and Dn, respectively, and the minimal transversals

of the resulting hypergraph are guaranteed to have support at least α in Dp and less

than β in Dn.
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For efficient minimal hypergraph transversals, the work in [16] proposed a recursive-

partitioning approach, which grows the emerging patterns incrementally in a similar

manner to growing patterns in the pattern-growth approach. Further optimisations to

this partitioning approach were introduced in [14]. They use a prefix tree for compactly

storing the transactions in Dp and Dn, which allows fewer hypergraph problems to be

induced by transactions that share some common prefix.

2.8 Statistically Class-Discriminative Contrast Patterns

There is another approach [160, 139] for finding contrasts that uses a statistical method

for exploring the pattern space and for measuring the discriminative power of the can-

didates, which are called contrast sets. This statistical method differs from emerging

patterns whose discriminative power is measured based on their support values and

the relative support ratio between the classes. A statistical test, such as the χ2-

approximation or the Fisher’s exact test, is used for testing whether the association

between items within a pattern is statistically significant. Moreover, work in [160]

identified the multiple tests problem when numerous rules exist. They proposed a

solution by adjusting the critical significance level as the number of rules grows.

Work in [51] also proposed a technique for finding statistically interesting con-

trasts, based on adopting the χ2-test for emerging patterns. The difference between

the statistically significant emerging patterns and statistically significant contrast sets

lies in the function for measuring their discriminative powers. Work on statistical sig-

nificant rules, however, has a slightly different aim from classification, since significant

rules aim to reduce the false-positives rather than the false-negatives [160].

Another class of statistically important contrasts was introduced in [83, 81]. In [81],

they studied patterns which correspond to relative risks and odds ratio in a cohort

study for studying the risk factors of a disease. In the contrast mining context, a

disease is interpreted as a positive class, the risk factors as patterns, and an exposure

of an individual to a factor as the occurrence of the pattern in a transaction. Relative

risks (RR) are the ratio of the proportions between exposed (to specific a factor) and

unexposed individuals. This measurement is similar to the growth rate of an itemset.

If an exposed factor is represented by an itemset, the relative risk of factor P is:
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RR =
count(P,Dp)/|Dp|

count(P,Dn)/|Dn|

=
support(P,Dp)

support(P,Dn)

= growthrate(P,Dp,Dn)

The odds ratio (OR), for a factor P is the ratio between the odds that a diseased

individual has been exposed to the factor and the odds that a healthy individual has

been exposed to the factor.

OR =
support(P,Dp)/(1 − support(P,Dp))

support(P,Dn)/(1 − support(P,Dn))

Based on the concept of itemset closure [128], an equivalence class represents a set

of itemsets which have the same frequency in the database. Similar to the concept of

a border, an equivalence class EC is represented by two sets of itemsets: i) the closed

patterns, which correspond to the maximal itemsets in EC, ii) the generators which

correspond to the minimal itemsets in EC. All itemsets within an equivalence class

share the same level of statistical significance. This technique is useful when a large

number of contrast patterns exists, and the closed patterns are much fewer.

The proposed algorithm in [83] finds only the generators and the closed patterns,

which are sufficient to represent the equivalence classes. Their algorithm uses hash

tables, or FP-trees, for storing the closed patterns and the generators. The FP-trees

contain the closed frequent itemsets, and their class frequencies. Once the closed pat-

terns are found, their statistical significance can be measured based on their class

frequencies. Additionally, the class-discriminative behaviour of the patterns is con-

strained by a δ threshold, which specifies the maximum frequency of a pattern in the

negative class. When multiple classes exist, one class is chosen as the positive class, and

the δ threshold specifies the maximum frequency of the pattern in each of the negative

classes.

2.9 Classification Based on Contrast Patterns

The first emerging pattern (EP) based classifier is called Classification by Aggregat-

ing Emerging Patterns (CAEP) [42]. Based on their distinguishing class frequencies,

emerging patterns favor Dp over Dn, for a chosen positive class Dp. Thus, given a test
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instance T , if an emerging pattern occurs in T , that pattern makes a contribution to

classify T as an instance of Dp [42]. To make a classification, all patterns which contain

T are found from each class, and their contribution are aggregated. Finally, class C

will be chosen as the label of T if the aggregated score of patterns which favor C are

stronger than those which favor the other class. CAEP chooses the class whose total

contrast strength of the contributing patterns is maximum: class(T ) = maxscore(T,C) C,

score(T,C) =
∑

strength(Q,C,¬C) (2.1)

where Q is an element of E(C), E(C) is the set of emerging patterns of class C, ¬C is

the other class, and Q contains T , i.e. Q ∈ E(C), T ⊆ Q.

Apart from support or contrast strength aggregation, other scoring functions may

be used by the EP-based classifier, such as a transaction coverage function which is used

by association rule classifiers [92]. Emerging patterns can achieve very high accuracy for

classifying a two-class data set, especially when there are enough training transactions.

The Jumping Emerging Pattern Classifier (JEP-Classifier) [39] aggregates the con-

tributing minimal JEPs by the sum of their support in Dp, instead of their strength.

It was shown to be highly accurate for classifying large and dense data sets, i.e. when

there are many individually frequent items, due to the sharp class-distinguishing char-

acteristics of JEPs. However, the JEP-Classifier may overfit the training data and

become noise-intolerant. It may not perform well for classifying extremely imbalanced

data sets, since the occurrence of JEPs may be rare.

In the presence of multiple classes, emerging pattern-based classifiers follow a

pairwise technique [15]. Given n classes in the data set, they perform n(n−1)
2 mining

operations, for which each operation finds the emerging patterns for one of the classes

and merges the other remaining classes into one negative class. Similar to the CAEP

model, for classifying a test instance T , they find the emerging patterns from each

class-pair, and then associate each class with a tally of wins. The class that has the

most wins is chosen as the label for T .

2.9.1 Noise-tolerant Emerging Pattern Classifier

On noisy data sets, JEP-classifier does not perform well. In such circumstances, there

can exist JEPs which occur very rarely in the positive class, and they may correspond to

noise. Moreover, the number of JEPs may be very small, due to the strict requirement

30



2.9. CLASSIFICATION BASED ON CONTRAST PATTERNS

that the patterns must have zero support in the negative class. To overcome those

limitations, Chi Emerging Patterns (Chi EP) [50] were introduced to find large-growth-

rate emerging patterns, and eliminate the noisy patterns using a statistical significance

test.

Definition 15. An itemset X is a Chi Emerging Pattern (Chi EP) if all of the following

conditions are true:

1. support(X) ≥ ξ, where ξ is a minimum support threshold

2. growthrate(X) ≥ ρ, where ρ is a minimum growth rate threshold

3. ¬∃Y (Y ⊂ X) ∧ (support(Y ) ≥ ξ) ∧ (growthrate(Y ) ≥ ρ) ∧ (strength(Y ) ≥

strength(X))

4. |X| = 1 ∨ |X| > 1 ∧ (∀Y (Y ⊂ X ∧ |Y | = |X| − 1) ⇒ chi(X,Y ) ≥ η), where

η = 3.84 is a minimum chi-value threshold and chi(X,Y ) is computed using the

following contingency table

X Y
∑

row

D1 countD1(X) countD1(Y ) countD1(X) + countD1(Y )

D2 countD2(X) countD2(Y ) countD2(X) + countD2(Y )
∑

column countD2+D2(X) countD1+D2(Y ) countD1+D2(X) + countD1+D2(Y )

The first condition ensures a chi-EP is not a noise by imposing a minimum support

on the training dataset. The second condition ensures that the pattern has a strong

discriminating power. The third condition prefers short patterns which have large

strength. And the fourth condition ensures that every item in every chi-EP contributes

significantly to the discriminating power of the pattern.

Bayesian Classification by Emerging Patterns (BCEP) [49], was proposed to han-

dle noise in the input data set, based on the Bayes theorem and emerging patterns.

Such a Bayesian classifier is inherently noise tolerant due to its collection of class and

conditional probabilities. The chosen class C for a given transaction T the BCEP

classifier should maximise the following probability function:

P (C|T ) =
P (T,C)

P (T )
= P (C)

P (T |C)

P (T )

where P (Y |X) denotes the conditional probability of Y given X, and the probabilities

are estimated from the training data set.
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The main weakness of a Bayesian classifier is the assumption that all attributes

are independent given the class. This assumption is relaxed in the BCEP classifier

by using emerging patterns, since an emerging pattern is a combination of attribute

values. The use of Chi Emerging Patterns in the BCEP classifier [50] combines the

noise tolerance of the Bayesian approach, and the high quality of the Chi-EP patterns.

An empirical study showed that BCEP has a higher accuracy than the other EP-based

classifiers, being able to handle different types of noise, such as attribute noise, label

noise, and a combination between the two.

2.9.2 Lazy Classification

The classifiers that we have so far discussed perform the mining of emerging patterns

from the training data set, and then use those patterns repeatedly to new instances

(from the testing data set) for classification. There is a lazy approach, called the DeEPs

classifier [82], which uses the new (test) instance as a constraint to extract knowledge

useful only for the classification of this instance. The classifier is also termed as instance-

based classifier.

The strength of the DeEPs classifier is its effective data reduction technique. It

uses the new instance as a filter to remove irrelevant training values. It excludes

training instances which do not contain any of the items which appear in the test

instance, and excludes items which do not appear in the test instance. This results

in a sparser training data, which makes the mining of relevant patterns easier. This

lazy classification approach mines patterns for each instance in the testing set. It is

useful when there is an excessive number of patterns, but it may increase redundancy

when the test instances are similar. According to [82], the DeEPs classifier is useful for

practical applications, where the data is frequently updated or changing.

2.9.3 PCL Classifier

Work in [84] proposed a pattern-based classifier for studying leukemia disease, based

on the collective likelihood of emerging patterns. The intuition behind this classifier,

namely Prediction by Collective Likelihood (PCL), is that a given test instance should

contain strong emerging patterns from its own class and weak emerging patterns from

the other class (or classes). This classifier has shown to be useful for classifying gene

32



2.10. SUMMARY

expression profiles, in which many high dimensional emerging patterns exist. We will

give an overview of the classifier shortly.

In many cases, a testing sample contains several emerging patterns from each class.

PCL orders the patterns by decreasing frequency. Given a test instance T , it makes its

prediction by finding how many top-k emerging patterns from each class are contained

in T , and measuring how far away are the contained patterns from the top-k patterns

in the entire class. The score for each class is computed as the following function:

score(T )D =

k
∑

m=1

support(EPim)

support(EPm)

where D may be Dp or Dn, EPm denote the m-th emerging pattern in D, and EPim

is the m-th emerging pattern which is contained in T . The maximum score value is

1, for which the most common property of class D is present in T . The score gives

the collective likelihood of the top-k emerging patterns which are contained in T to

describe the property of class D.

This technique has been shown to be able to outperform the other supervised

classification techniques, due to its ability to provide new insight into the correlation

between genes, which are discovered by the emerging patterns. However, PCL still

has some limitations. Due to the high dimensionality of the data set, PCL performs

a feature selection technique prior to mining the emerging patterns, which may hide

some dependency between genes, and in turn influence the prediction ability. Moreover,

mining emerging patterns requires discrete data, which means, the performance of such

a classifier is also influenced by the data discretisation method.

2.10 Summary

In this chapter, we have given a review of the existing techniques in pattern mining.

They include the techniques for mining frequent itemsets, frequent subsequences, and

mining contrast patterns. The pattern growth is considered as the winning approach

for mining a large number of patterns. Tree data structures, or combinations between

trees and arrays, are popularly used in many implementations of the pattern growth

algorithm. Only two implementations which are based on a graph data structure, and

they are so far only useful for mining frequent itemsets. These graph-based algorithms,

however, are not competitive compared to the tree-based algorithms.
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Chapter 3

Binary Decision Diagrams and

Related Applications

This chapter provides related background on Binary Decision Diagrams (BDDs) [7, 25,

26], which are the data structure that underpins the data mining techniques presented

in this thesis.

3.1 Overview of Binary Decision Diagrams and Applica-

tions

Binary Decision Diagrams (BDDs) [7, 25] were firstly introduced as a directed acyclic

graph (DAG) data structure for representing switching functions f : Bn 7→ B, which

map bit vectors to single bits. Informally, a Binary Decision Diagram is similar to

a binary decision tree, except that identical sub-trees are merged, and node fan-in is

allowed as well as fan-out. Binary Decision Diagrams (and their variants) have been

widely used in the field of VLSI/CAD, such as for logic synthesis [103] and formal

verification of digital systems [27, 154], and in the field of reliability engineering for

fault-tree analysis [144]. A summary of the various types of the data structures can be

found in [148]. We will list several of the variants which are useful for data mining.

Formally, a BDD [25] is a canonical directed acyclic graph (DAG), consisting of

one source node, multiple internal nodes, and two sink nodes (also called as terminal

nodes) which are labeled as 0 (referring to the 0-terminal node) and 1 (referring to the

1-terminal node). Each internal node may have multiple parent nodes, but it has only
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two child nodes. The nodes are labeled and ordered such that the parent has a lower

index than its children.

In BDD semantics, an internal node N with label x, denoted node(x,N1, N0),

encodes the boolean formula N = (x ∧ N1) ∨ (x ∧ N0), which follows the Shannon

decomposition [26]. Given a Boolean function f , the Shannon decomposition is based

on the two partial evaluations of f with respect to one of its variables:

f = xfx + xfx (3.1)

where x is a variable, fx is a partial evaluation of f when x = 1, and fx is a partial

evaluation of f when x = 0. N1 and N0 are referred to as the true-child and false-child

of N . The edge connecting node N to N1 (resp. N0 ) is also called the true-edge (resp.

false-edge) 1. Each path from the root to sink-1 (resp. sink-0) gives a true (resp. false)

output of the represented function.

A class of BDDs, called Ordered Binary Decision Diagrams (OBDDs) [26], are

canonical graph representations of Boolean functions. Suppose there is a variable in-

dexing function π which determines the variable ordering in the OBDD. If an internal

node Ny is a child of N (either be a true-child or a false child), and node Ny is labeled

with variable y, then π(x) < π(y). Moreover, an OBDD is called a Reduced Ordered

Binary Decision Diagram (ROBDD) [26] if it employs the following two reduction rules:

• Elimination rule: If both outgoing edges of a node v point to the same node u,

then eliminate v and redirect all of its incoming edges to u (Figure 3.1(a)).

• Merging rule: If nodes u and v are identical, then eliminate one of the two

nodes, and redirect all incoming edges of the deleted node to the remaining one

(Figure 3.1(b)).

ROBDDs are useful for compactly representing Boolean functions. Efficient ma-

nipulations of ROBDDs are obtained based on the following two important properties:

• Canonical: Equivalent subtrees are shared and redundant nodes are eliminated.

• Caching of computation results: Intermediate computation results are stored

for future re-use.

1In their illustrations, the true-edges are shown as solid lines, the false edges are shown as dotted
lines

36



3.1. OVERVIEW OF BINARY DECISION DIAGRAMS AND APPLICATIONS

(a) Elimination rule (b) Merging rule

Figure 3.1: ROBDD Reduction Rules (f0 = fx; f1 = fx)

The effect of these principles is that a boolean formula can be represented with high

compression, i.e. for an n variable formula, the possible space of truth values is 2n,

however the corresponding BDD can have exponentially fewer nodes. An optimal util-

isation of BDD can be achieved by having as much node sharing as possible in the

BDD.

ROBDDs have been shown to be able to achieve high data compression and efficient

computation time. Their canonical property allows logical operations such as AND,

OR, XOR, etc. to be performed in polynomial time with respect to the number of

nodes. In recent ROBDD application, ROBDDs are often referred to as BDDs (a

survey can be found in [107]). Consider an example of a BDD in Example 11.

Example 11. Let F be a boolean formula such that F = (a∧ b∧ c) ∨ (a∧ b∧ c) ∨ (a∧

b ∧ c) ∨ (a ∧ b ∧ c). Figure 3.2(a) shows an example of a binary decision tree for F ,

where each branch represents an assignment for its variables. A solid line represents a

TRUE value of the variable, and a dotted line represents a FALSE value of the variable.

Each node at the lowest level represents the output of the function, 1 means TRUE,

0 means FALSE. An example of a BDD representation for F , with the same variable

ordering as the binary decision tree, is shown in Figure 3.2(b). It shows that the BDD

representation is 8 nodes smaller than the binary decision tree.

Due to the vast number of BDD applications, there exist many variants of OB-

DDs, which employ different rules from the reduction rules for ROBDDs. Other BDD-

inspired data structures have been introduced for data mining applications, such as

Reduced Ordered Decision Graphs (RODGs) [122], which are compact representations

of decision trees, and useful for inducing classification rules. For text mining appli-

cations, work in [36] introduced Directed Acyclic Word Graphs (DAWGs), which are

DAG database representations for mining substrings.

A number of efficient BDD packages have been implemented with the following

useful properties:
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(a) Binary Decision Tree (b) Binary Decision Diagram

Figure 3.2: Example of a Binary Decision Tree and a Binary Decision Diagram for
boolean formula F = (a ∧ b ∧ c) ∨ (a ∧ b ∧ c) ∨ (a ∧ b ∧ c) ∨ (a ∧ b ∧ c)

• Able to generate BDDs for large-scale functions

• Able to check the equivalence of two functions, i.e. that two BDDs are identical,

in constant time

• Able to carry out logic operations within a time that is almost proportional to

the size of the BDDs

In order to achieve their efficiency, though, the variable ordering plays an important

role. We will discuss how it affects the compactness of BDDs shortly.

3.1.1 Effect of Variable Ordering on the Compactness of a BDD

Depending on the function being represented, the number of nodes in a BDD may be

highly sensitive to its variable ordering. A good variable ordering for a compact BDD

has two properties [58]:

• Groups of inputs that are closely related should be kept near to each other

• Inputs that greatly affect the function should be located at higher positions in

the structure

The problem of finding the optimal variable ordering for BDDs is NP-complete [149].

There exist many works that investigate the variable ordering. One approach is to find

the appropriate ordering before generating a BDD, based on heuristics [57, 8, 141].

Another approach is to start with an initial ordering and permute the variables as the

BDD is constructed [138]. The latter approach is usually more effective than the former

but it consumes much more of the computation time.
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(a) Var.ordering π1 = {b, c, a} (b) Var.ordering π2 = {c, b, a}

Figure 3.3: Binary decision diagrams for a boolean formula F = (a ∧ b ∧ c) ∨ (a ∧ b ∧
c) ∨ (a ∧ b ∧ c) ∨ (a ∧ b ∧ c) with alternative variable orderings

Example 12. Recall the binary decision diagram for the boolean formula F = (a ∧

b ∧ c) ∨ (a ∧ b ∧ c) ∨ (a ∧ b ∧ c) ∨ (a ∧ b ∧ c) in Figure 3.2b. Suppose two alternative

variable orderings are given, labeled π1, and π2, such that π1 = {b, c, a}, π2 = {c, b, a}.

The binary decision diagrams under the two variable orderings are shown in Figure 3.3,

which are labeled P1 and P2, respectively. It shows that P2 is one node smaller than

P1, showing that variable ordering π2 is more suitable for this boolean formula.

3.1.2 Canonical Property of BDDs

Since multiple identical nodes are not allowed, BDDs are canonical. Moreover, a set

of BDDs for representing multiple functions may be united into a single graph, called

Shared Binary Decision Diagrams [115], by merging identical nodes across the BDDs.

The canonical property of BDDs is maintained by storing the unique nodes in a

hash table called the uniquetable. Each entry in this table is a pair <key,node>. node

is a BDD node, and the key is an integer value, which is a function of the node’s label

and the keys of its child nodes. Prior to creating a new node, the uniquetable is checked

whether the node exists. If it does not exist, then the node is inserted into the table.

Otherwise, a pointer to the pre-existing node is returned instead. The time complexity

for creating a BDD node, therefore, depends on the access time of the uniquetable.

There exist a number of BDD packages that have been developed for various

applications. CUDD [145] is one of the first packages that is widely used for developing

many VLSI/CAD applications. The more recently developed package, JINC [145, 123],

is object-oriented and has a library for symbolic methods. They allow fast uniquetable

access, with O(1) time complexity. JINC uses a hash table with open chaining. That is,

nodes with the same hash key are stored as a sorted linked list. The lookup operation

requires a single traversal of that list, which has an average size of n
m , where n is the
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number of nodes and m is the size of the table. Their implementation keeps n
m to a

small value, and allows O(1) time complexity for an insertion or lookup operation.

3.1.3 Caching Principle of BDD Operations

Each BDD primitive operation is associated with a cache, which is also called as com-

putation table, that maps the input parameters to the output of each computation. The

cached output may be re-used if the same intermediate operation is re-visited, avoid-

ing redundant computations. This caching ability makes the complexity of most BDD

perations polynomial with respect to the number of nodes. This principle is particu-

larly effective if many subtrees are being shared within the input BDD, since the same

subtree may be encountered multiple times throughout the intermediate computations.

The caching library in JINC [123] implements the cache as a hash table. Each

entry in this table is a pair of 〈input, output〉, where the input uniquely identifies the

input parameters of the corresponding operation. If two operations have the same key

for their input parameters, then the pre-existed cache entry is replaced by the newer

entry.

3.2 Zero-suppressed Binary Decision Diagrams for Rep-

resenting Sets of Itemsets

This section shows that BDDs can be used for efficiently representing sets of itemsets,

using their Zero-suppressed Binary Decision Diagrams (ZBDDs) variant [106]. ZBDDs

are suitable for representing a large-scale itemset data [111], which makes them po-

tentially useful for our data mining tasks. Different from ROBDDs, however, different

reduction rules are employed by ZBDDs. We will firstly describe the Boolean function

representation of a set of itemsets, followed by the formal definition of ZBDDs.

A collection of itemsets can be mapped into a Boolean space [106]. Given a domain

of n items, a set of itemsets can be represented as a Boolean function by using n input

boolean variables for each bit in the itemset. The output value, 1 or 0, expresses whether

each item-combination specified by the input variables are included in the set or not.

Formally, an itemset p is represented by a n-bit binary vector X = (x1, x2, . . . , xn),

here xi = 1 if item i is contained in p. The characteristic function for a set S is the

function XS : {0, 1}n 7→ {0, 1}, where XS(p) = 1 if p ∈ S, and XS(p) = 0 otherwise.
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ITEMSETS

(a) Merging rule (b) Zero-suppression rule

Figure 3.4: ZBDD Reduction Rules

In ZBDD semantics, an internal node N = (x,N1, N0) represents a set S of itemsets

such that S = ({x} × S1) ∪ S0, where S1 and S0 are the sets of itemsets encoded by

N1 and N0, respectively. An itemset p in S is interpreted as a conjunction of the items

contained in p, and yields a true assignment for the boolean formula encoded by N .

Thus, each path from the root node to the sink-1 node represents an itemset in S.

A ZBDD consisting of only the sink-0 node encodes the empty set (∅), and a ZBDD

consisting of only the sink-1 node encodes the set of empty itemsets ({∅}).

Similar to the Ordered Binary Decision Diagrams, Zero-suppressed Binary Deci-

sion Diagrams are canonical and their variables are ordered. Different from ROBDDs,

however, ZBDDs employ the following two rules (see their illustrations in Figure 3.4):

1. Merging rule: share all equivalent subtrees (to obtain canonicity)

2. Zero-suppression rule: eliminate all nodes whose true-edge points to the sink-0

node, and bypass the incoming links to the node’s 0-child

The zero-suppression rule is effective, since the characteristic functions represented

by ZBDDs are monotonic boolean functions, i.e. do not contain negated variables or

terms. Thus, negative variables are not necessary and their corresponding nodes may

be eliminated.

Basic set operations for ZBDDs which will be used in our algorithm are listed in

Table 3.1. These include set-union (A∪B), set-subtraction or set-difference (A\B), and

set-intersection (A ∩B), which have been defined in [106, 118]. They have polynomial

time complexity in the number of nodes in the input ZBDD(s).

Example:

1. Given P = {{a, b, d}, {b, c}}, Q = {{b, c, d}, {a, c, d}}

P ∩ Q = {{}}

2. Given P = {{a, b, d}, {b, c}}, Q = {{b, c, d}, {a, c, d}}

P ∪ Q = {{a, b, d}, {b, c}, {b, c, d}, {a, c, d}}
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Table 3.1: Primitive ZBDD operations, P and Q are two ZBDDs

0 The 0-terminal node; an empty set, i.e. ∅
1 The 1-terminal node; a set of an empty itemset, i.e. {∅}
P.change(v) Invert all occurrences of item v in P
P ∩ Q Set-intersection: itemsets which are elements of both P and Q
P ∪ Q Set-union: itemsets which are elements of either P and Q
P − Q Set-subtraction: itemsets which are elements of P but not Q

3. Given P = {{b, c}, {a, c, d}, {a, b, d}}, Q = {{a, b, d}, {a, c}}

P \ Q = {{b, c}, {a, c, d}}

Similar to BDD library routines, ZBDD library routines also perform recursive

task decompositions. For example, the traversal procedure for counting the number

of nodes in a ZBDD P , i.e. count(P ), recursively decomposes the operation into the

child-nodes of P . The recursion terminates when it finds a sink node. The procedure

is shown below.

count(P ){

if (P == 1): return 1

if (P == 0): return 0

if (P == (x, P1, P0)): return count(P1) + count(P0)))

}

With the use of ZBDD’s cache, the procedure count(P ) visits each node in P

only once, even though a node may be part of multiple branches. Should the same

sub-graph be visited from different branches, the pre-computed result that exists in the

computation table may be re-used. The time complexity of this traversal operation is

O(|P |), assuming the cache lookup operation takes a constant time, where |P | denotes

the number of nodes in P .

Example 13. The boolean function representation, and the ZBDD encoding for a

set of itemsets: {{a, b, d}, {b, c}, {b, c, d}, {a, c, d}} are shown in Figure 3.5 (assume

lexicographic variable ordering). This set can also be expressed as a DNF formula:

F = (a ∧ b ∧ d) ∨ (b ∧ c) ∨ (b ∧ c ∧ d) ∨ (a ∧ c ∧ d)

Due to its ability to efficiently manipulate sparse combinations [111], ZBDDs are

potentially useful for mining patterns in sparse high dimensional datasets. ZBDDs are

popularly used for solving boolean satisfiability problems [30, 9], and in the field of

42



3.3. ZERO-SUPPRESSED BINARY DECISION DIAGRAM APPLICATIONS IN DATA MINING

a b c d F
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 1
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 0
1 1 1 1 0

Figure 3.5: A ZBDD representation for a set of itemsets {{a, b, d}, {b, c},
{b, c, d}, {a, c, d}}, and the truth table for its characteristic function F = (a ∧ b ∧
d) ∨ (b ∧ c) ∨ (b ∧ c ∧ d) ∨ (a ∧ c ∧ d)

reliability engineering for fault-tree analysis [134]. A survey on their applications can

be found in [108]. However, they have received relatively little attention thus far in

data mining. We will give an overview of their data mining applications in the following

section.

3.3 Zero-suppressed Binary Decision Diagram Applica-

tions in Data Mining

In existing data mining applications [109, 112, 80], ZBDDs have been shown to be

useful for representing and manipulating the input databases, and for storing the output

frequent patterns. Work in [117] shows that using ZBDDs for maintaining the output

patterns can improve the LCM [151] algorithm for mining frequent itemsets. Work

in [116] shows symmetric itemset mining using ZBDDs. Furthermore, work in [109, 112]

shows that ZBDDs are useful for post-processing operations on the patterns, such as

pattern matching, and extracting length-k patterns.

43



CHAPTER 3. BINARY DECISION DIAGRAMS AND RELATED APPLICATIONS

3.3.1 ZBDD-growth

The technique proposed in [112], called ZBDD-growth, is based on the FP-growth

framework [70], which uses a vector of ZBDDs called ZBDD-Histogram, instead of

an FP-tree database representation. The algorithm can be used for finding frequent

itemsets, as well as their maximal and closed variants. We will give an overview of the

ZBDD-growth algorithm.

When representing a set of itemsets as a ZBDD using its characteristic function,

which maps each itemset to a binary value of 1 (if it exists in the database) or 0

(otherwise). Thus, the frequency information of the itemsets are not represented in

the data structure. Due to this limitation, ZBDD-growth represents the database

using a ZBDD-histogram, which is a vector of ZBDDs. A histogram {Fm−1, . . . F1, F0},

represents itemsets whose frequencies are up to (2m − 1), where Fi is a ZBDD, 0 ≤ i ≤

(m − 1). The i-th digit of the ZBDD vector, i.e. Fi, represents itemsets whose i-th bit

of their (binary-coded) frequency values is one. Thus, F0 represents a set of itemsets

that appear at odd times (i.e. Least-significant-bit = 1), F1 represents a set of itemsets

whose second-lowest-bit of their binary-coded frequency values is one, and so on.

Let n be the maximum frequency of the itemsets, ⌈log2(n)⌉, and bit(n, i) be the

i-th bit of a given integer n. For a database with size n, a ZBDD-histogram is a vector

of ⌈log2(n)⌉ ZBDDs. For an itemset p with frequency x, it is represented in the k-th

ZBDD where bit(x, k) = 1. In the worst case, an itemset is replicated in each of the

ZBDDs if its frequency is 2n − 1.

Example 14. For example, to represent a set of itemsets (with their correspond-

ing frequency) {a(3), b(2), c(3), d(1), ac(2), ad(1), bc(2), bd(1), cd(1), acd(1), bcd(1)}, the

ZBDD-based database encodes each frequency value into binary: 3=11, 2=10, 1=01.

Since the frequency values are encoded by 2 bits, 2 ZBDDs are constructed which are

shown in Figure 3.6. The i-th ZBDD is labeled by Fi. Itemsets a and c occur in both

F1 and F0, since they have a support of 3; itemsets b, ac, and bc occur only in F1, since

they have a support of 2, and itemsets d, ad, bd, and cd, occur only in F0, since they

have a support of 1.

More detailed explanation of the ZBDD-growth algorithm follows. The frequent

itemsets are found by performing a depth-first search over the ZBDD-histogram of the

input database. This is performed based on the use of ZBDD primitive routines. It

firstly chooses an item v from the ZBDD-histogram, and performs the following two

subprocedures:
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Itemset Frequency F1 F0

a 3 1 1
b 2 1 0
c 3 1 1
ac 2 1 0
ad 1 0 1
bc 2 1 0
bd 1 0 1
cd 1 0 1
acd 1 0 1
bcd 1 0 1

Figure 3.6: A ZBDD-histogram [112] that represents a set of itemsets {bc(2), bcd(1),
cd(1), acd(1), ac(2), ad(1), bd(1), a(3), b(2), c(3), d(1)}

1. Find the v-conditional database and grow patterns which include v

2. Remove v from the database and grow patterns which do not include v

For efficiency purposes, the chosen item v is the top item that occurs in the ZBDDs in

the histogram.

Based on ZBDD semantics, given v is the top item in a histogram H, H can be

decomposed into the following set operation: H = ({v} × H1) ∪ H0, where H1 and H0

are the 1-child and the 0-child of the highest ZBDD-node in histogram H. Thus, the

histogram which represents the v-conditional database can be obtained just by referring

to H1 and H0, taking a constant time to compute.

ZBDD-growth makes use of ZBDD’s caching principle by storing the result of each

recursive call (i.e. the patterns found from each conditional database). Each entry in

the cache is a (H,F )-pair, where H is the ZBDD-histogram, which represents a vector

of ZBDDs, and F is the ZBDD which represents the patterns. This caching mechanism

avoids duplicate processing of the same histogram, and allows the overall mining time

to be almost linear to the total sizes of the ZBDDs.

3.3.2 Performance Analysis of ZBDD-growth

A ZBDD-histogram allows the support information of each pattern candidate to be

represented, but it has limited efficiency when the database is large and sparse, since

not many nodes can be shared, although node sharing is allowed across the ZBDDs.

Moreover, performing the conditional database projections can be computationally ex-
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pensive, since each operation on this histogram requires a series of operations on every

ZBDD within the vector.

The results shown in [113] indicate that ZBDD-growth can achieve an exponential

speed-up over FP-growth when mining frequent itemsets with a low support thresh-

old, especially in scenarios where many ZBDD nodes are shared. For higher support

threshold values, ZBDD-growth is less competitive, since a smaller number of patterns

exist and the mining procedure does not require many recursive calls. Moreover, high

support values also result in larger ZBDD-histograms, since O(log2(N +1)) ZBDDs are

required to represent itemsets with frequency N .

The performance of ZBDD-growth depends on the compactness of the ZBDDs,

which is influenced by the following factors:

• The similarity between the input itemsets

• The minimum support threshold

Due to those factors, ZBDD-growth does not perform very well when the support

threshold is high or in sparse data sets, since in such scenarios, not many nodes are

shared in the ZBDDs, and not many cache entries are re-used.

Recent work in [76] adopts the features of the BDD’s optimal variable order-

ing [58] for ZBDDs. They proposed heuristics are based on a dynamic weight assign-

ment method [115] for measuring the influence of each item to the number of patterns.

Their heuristics locate the more influential item higher in the structure. A theoretical

study of the variable orderings for ZBDDs was presented in [110].

3.3.3 Pattern Indexing and Post Processing

Recent work in [117] shows the advantage of using ZBDDs to provide efficient indexing

of large-scale frequent itemsets, over an existing frequent itemset mining algorithm

namely LCM (Linear-time Closed itemset Miner) [151].

Moreover, work in [113] shows that a ZBDD is useful not only for finding the

frequent itemsets, but also useful for performing post-processing operations on the out-

put patterns for further database analysis. Such operations include finding subsets or

supersets of particular itemsets, and finding itemsets of particular sizes. The efficiency

of such post-processing operations is also linear with respect to the size of the ZBDD

containing the patterns.
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Based on the mapping function between a set of itemsets and a Boolean function,

alternative Boolean function representations may be used for extracting hidden pat-

terns, or providing alternative and more succinct pattern representations. For instance,

finding simple disjoint decompositions of a Boolean function [109] is useful for iden-

tifying and merging common sub-patterns from a set of patterns; finding symmetries

within a Boolean function [116] can identify items which are interchangeable within a

set of patterns, which may be useful for finding item associations.

3.4 Binary Decision Diagrams for Pseudo-boolean Func-

tions

As mentioned earlier, the ZBDD representations of itemsets are not able to represent

the frequency values efficiently. Its characteristic function may be modified though,

such that each item-combination is mapped to an integer value which represents its

frequency. Such a function is called as a pseudo-boolean function. Given a vector of

binary-valued variables as input, it represents an integer-valued function.

Many variants of BDDs have been developed for representing pseudo-boolean func-

tions for performing algebraic computations in circuit verification. We will give an

overview of two such BDDs, namely Multi-terminal binary decision diagrams (MTB-

DDs) [32] and Edge-Valued Binary Decision Diagrams (EVBDDs) [154], which serve

to inspire our work.

3.4.1 Multi-terminal Binary Decision Diagrams

Multi-terminal binary decision diagrams (MTBDDs) [32] are generalisations of BDDs,

which were introduced for manipulating sparse matrices. MTBDDs are able to represent

not only binary functions, but finite set functions f : Bn 7→ R̃, where R̃ is the finite set

of integers. MTBDDs allow multiple constant-valued terminal nodes, instead of only 1

and 0 terminal nodes. Moreover, MTBDDs may be used for representing more general

functions from any finite space D̃ 7→ R̃, where D may be the finite set of integers

{0, . . . m − 1}, for which f : D̃ 7→ R̃ is a vector, or the finite set {0, . . . ,m − 1} ×

{0, . . . , n − 1}, for which f : D̃ 7→ R̃ is a matrix.

More formally, a vector v of length m is represented using ⌈lg m⌉ bits. The vector

thus becomes a function from the Boolean space B⌈lg m⌉ onto the range of the vector,
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Figure 3.7: A Multi-valued Binary Decision Diagram representation of a set of itemsets
{bc(2), bcd(1), cd(1), acd(1), ac(2), ad(1), bd(1), a(3), b(2), c(3), d(1)}

and can be represented as an MTBDD. To represent a matrix that has a dimension

m × n, ⌈lg m⌉ bits are used to represent the row indices, and ⌈lg n⌉ bits are used to

represent the column indices. In our pattern mining context, we may use a function

to map from each itemset to its frequency value, f : Bn 7→ R̃, and represent it as

an MTBDD. The trade-offs of this representation are the existence of many terminal

nodes for representing a large dataset, and the low level of node sharing among itemsets

which have different frequencies.

Example 15. Figure 3.7 shows an example of the multi-terminal valued binary decision

diagrams for the set of itemsets {bc(2), bcd(1), cd(1), acd(1), ac(2), ad(1), bd(1), a(3),

b(2), c(3), d(1)}, whose ZBDD-Histogram representation was shown in Figure 3.6.

3.4.2 Edge-Valued Binary Decision Diagrams

Edge-Valued Binary Decision Diagrams (EVBDDs) [154] are able to represent pseudo-

boolean functions as MTBDDs, without using numerous terminal nodes. EVBDDs

only contain two terminal nodes, 0 and 1. Instead of representing the output values

as terminal nodes, EVBDDs distribute the output values into the sub-graphs by using

weighted edges. The weights are additive, which are computed based on a recursive

decomposition of the represented function.

An EVBDD node v represents an arithmetic function f by using the following
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function decomposition:

f = x × (value + fl) + (1 − x) × fr + c (3.2)

where x is an input variable, c is a constant, and fl and fr are two functions. Based

on the above function decomposition, each node in EVBDDs is represented by a tuple

〈c, f〉, where c is a constant and f is a directed acyclic graph consisting of the following

types of nodes:

• The single terminal node, denoted by 0, which represents the function f = 0

• A non-terminal node which is described by a 4-tuple 〈v, childl(v), childr(v), value〉,

where v is an input variable, i.e. v ∈ {x0, . . . xn−1}, and childl(v) and childr(v)

are EVBDDs that represent the sub-expressions fl and fr, respectively.

An EVBDD is ordered if the variables are ordered, similar to that in Ordered

Binary Decision Diagrams. Moreover, it is reduced if both conditions are true:

• There is no non-terminal node v such that childl(v) = childr(v) with value = 0

• There are no two nodes u and v such that u = v.

Example 16. Consider function f(x0, x1, x2) = 3 + 2x0 − 7x0x1 − 5x0x2 + 6x0x1x2 +

3x1 − 5x1x2. Below are possible decompositions of this function:

f(x0, x1, x2) = 1 + x0(4 − 4x1 − 5x2 + x1x2) + (1 − x0)(2 + 3x1 − 5x1x2) (3.3)

f(x0, x1, x2) = 8 + x0(−3 − 4x1 − 5x2 + x1x2) + (1 − x0)(−5 + 3x1 − 5x1x2) (3.4)

f(x0, x1, x2) = 3 + x0(2 − 4x1 − 5x2 + x1x2) + (1 − x0)(3x1 − 5x1x2) (3.5)

Figure 3.8 shows an example of the reduced ordered EVBDD representation of f , which

uses the third decomposition (Equation 3.5). The value of each node is shown as a

weight on its incoming edge. The function is fully decomposed into:

f(x0, x1, x2) = 3+x0(2+x1(−4+x2(−4))+(1−x1)(x2(−5)))+(1−x0)(x1(3+x2(−5)))

Using EVBDDs for representing itemsets is possible. However, obtaining the fre-

quency of an itemset requires a traversal of the data structure to find the itemset and

recursively compute its frequency, which can be expensive to compute. For efficient
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Figure 3.8: An Edge-Valued Binary Decision Diagram representation of 3 + 2x0 −
7x0x1 − 5x0x2 + 6x0x1x2 + 3x1 − 5x1x2

pattern mining, where frequency counting is a core computation, we need to be able

to efficiently obtain the frequency of an itemset and the total frequency given a set of

itemsets.

3.5 Summary

We have given an overview of Binary Decision Diagrams, Zero-suppressed Binary De-

cision Diagrams, and related BDD variants namely Multi-terminal Binary Decision

Diagrams and Edge-Valued Binary Decision Diagrams. Multi Valued Binary Decision

Diagrams and Edge-Valued Binary Decision Diagrams, can represent numerical values,

but their manipulations can be expensive for representing large scale functions. Zero-

suppressed Binary Decision Diagrams are potentially the most useful data structures

for solving our pattern mining problems, but, they cannot straightforwardly represent

the frequency information of the patterns.
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Chapter 4

Efficient Mining of

High-Dimensional Frequent

Itemsets Using Weighted

Zero-suppressed Binary Decision

Diagrams

Mining frequent patterns [70], such as frequent itemsets, is a fundamental and well stud-

ied problem in data mining. Frequent itemsets correspond to combinations of items (or

attribute values) which occur frequently in the data set. Mining them in high dimen-

sional data can be costly in terms of both time and space, since the number of item

combinations is exponential in the number of dimensions and a large amount of patterns

may exist. To address this issue, we propose an original variant of Zero-suppressed Bi-

nary Decision Diagrams (ZBDDs) [106], called Weighted Zero-suppressed Binary

Decision Diagrams, and propose efficient algorithms using them as a primary data

structure. The purpose of this chapter is to analyse the behaviour of frequent itemset

mining in high dimensional datasets, which exist in the bioinformatics domain.
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WEIGHTED ZERO-SUPPRESSED BINARY DECISION DIAGRAMS

4.1 Introduction

State-of-the-art techniques, such as those found in the Frequent Itemset Mining Imple-

mentation (FIMI) Repository [78, 62], have made attempts to address the challenges

in frequent itemset mining. Many of them are based on the use of prefix tree data

structures, or combinations of prefix trees with other data structures, to compress the

data representation. An optimised FP-growth implementation [64] was one of the win-

ning techniques and used FP (frequent pattern)-trees [70]. A review of the FP-growth

technique was given in Chapter 2.

Zero-suppressed Binary Decision Diagrams (ZBDDs) are useful for mining frequent

patterns [112]. There exist several works [109, 116, 112, 117] which studied the use of

ZBDDs for mining frequent itemsets. We identified that the key features of ZBDDs

allow efficient manipulation of a large scale of data. In FP-trees, identical sub-trees

may exist, which may be merged and shared across multiple ZBDDs. By the sharing of

identical sub-trees, higher data compression can potentially be achieved, which is one

of the key features of ZBDDs. Furthermore, there exist efficient ZBDD library routines

which can be employed, which are attractive for mining high dimensional frequent

itemsets efficiently.

On the other hand, ZBDDs have a limited ability to represent the frequency values

of the itemsets. To address this issue, work in [112] proposed to use a vector of ZBDDs,

called ZBDD-histogram. A review of their technique was given in Chapter 3. In such a

representation, however, an itemset may be duplicated across multiple ZBDDs within

the histogram, which may limit the time and space efficiency when mining a large

scale of patterns in the high dimensional data sets. Work in [117] uses the ZBDD-

histogram as data structure for mining the closed frequent itemsets based on the LCM

framework [151]. Their technique employs the ZBDDs for storing and maintaining the

output patterns. The aim of our research, however, is to investigate whether BDD

manipulations can be integrated in the mining procedure, for manipulating the input

database, and searching for pattern candidates.

In this chapter, we introduce an original variant of BDDs, called the Weighted

Zero-suppressed Binary Decision Diagrams (Weighted ZBDDs), whose edges

are weighted to represent the frequency of each itemset in the structure. The weighted

edges in Weighted Zero-suppressed Binary Decision Diagrams are designed to fit nicely

in the depth-first search framework of frequent pattern mining, which allows efficient

retrieval of frequency through out the recursive database projections. There exist other
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weighted variant of BDDs, such as the Edge-Valued Binary Decision Diagrams [154]

which were proposed for efficient representation of discrete functions, but their weight

function is not suitable for our mining task.

4.1.1 Objective and Contributions

The main objective of this chapter is to identify and explain situations where ZBDDs

are advantageous compared to FP-trees. In particular, we aim to address questions

such as:

1. Does the canonical property of ZBDDs allow a scalable and efficient algorithm

for frequent itemset mining to be developed?

2. How much data compression can a ZBDD achieve compared to an FP-tree?

3. Does the use of a more compact data structure always mean that mining is more

efficient?

Our main contributions in this paper are three-fold:

• We present an algorithm that can mine frequent itemsets and their maximal/closed

variants, based on the use of a ZBDD as the primary data structure. A supple-

mentary bitmap is used for support checking (similar to the MAFIA algorithm [29]

reviewed in Chapter 2). A particularly attractive feature of our technique is the

use of multiple shared-ZBDDs to represent the input database, the intermediate

databases, as well as the final output, allowing them to share common sub-trees.

This feature is something which is not possible in prefix-tree-based techniques

like [64, 94, 132]. We also show how our mining technique can be adapted to the

row-wise mining approach [136, 125, 124], which has been an alternative solution

for mining high dimensional itemsets.

• We introduce Weighted Zero-suppressed Binary Decision Diagrams. The edge

weights allow itemsets and their corresponding frequencies to be compactly rep-

resented. Hence, support counting can be performed more efficiently compared

to when the bitmap is used. Moreover, their canonical property allows a more

efficient mining technique to be developed, which is achieved by re-using interme-

diate results. It is advantageous especially for mining large and dense data sets,

in which bitmap manipulations may be costly.
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• We experimentally investigate the behaviour of our techniques, according to var-

ious characteristics of high dimensional biological data sets. Our techniques are

compared against the competitive FP-growth implementation, FP-growth* [64],

and LCM over ZBDD (LCM-ZBDD) [117]. Our results show a number of situa-

tions where the use of a ZBDD (either weighted or non-weighted) is able to give

significant improvements over FP-growth* or LCM-ZBDD. Our techniques are

also compared against the CARPENTER algorithm [125], which represent the

algorithms in the row-wise mining framework. We find that our techniques are

performing efficiently for mining at higher supports in this row-wise mining.

4.2 Frequent Itemset Mining Algorithms Using ZBDDs

In this section, we firstly introduce our algorithm for mining frequent itemsets which

is based on the use of Zero-suppressed Binary Decision Diagrams, namely FIMiner,

then show how it can be used for finding maximal/closed frequent itemsets. Table 4.1

lists some pre-defined ZBDD library operations which are used in our algorithms. We

use slightly different notations from that in previous work [111, 118] though.

Example:

1. Given P = {{a, b, d}, {b, c}}, Q = {{b, c, d}, {a, c, d}}

P ∩Z Q = {{}}

P ∪Z Q = {{a, b, d}, {b, c}, {b, c, d}, {a, c, d}}

P ∪Zmax Q = {{a, b, d}, {b, c, d}, {a, c, d}}

P ∪Zmin
Q = {{a, b, d}, {b, c}, {a, c, d}}

2. Given P = {{b, c}, {a, c, d}, {a, b, d}}, Q = {{a, b, d}, {a, b, c}}

P \ Q = {{b, c}, {a, c, d}}

NotSubSet(P,Q) = {{a, c, d}, {a, b, d}}

3. Given P = {{a, d}, {b, c}}, Q = {{b, d}, {a, b}}

CrossProd(P,Q) = {{d}, {a}, {b}}

DotProd(P,Q) = {{a, b, d}, {b, c, d}, {a, b, c}}

Our algorithm, called FIMiner, adopts the FP-growth approach that has been

described in Chapter 2. The FIMiner is also similar to the ZBDD-growth algorithm,

except that we use one ZBDD, instead of a vector of ZBDDs, as database representation,
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Table 4.1: Primitive ZBDD operations, P and Q are two ZBDDs

Notation Description

0 The 0-terminal node; an empty set, i.e. ∅

1 The 1-terminal node; a set of an empty itemset, i.e.
{∅}

change(P, x) Invert all occurrences of item x in P

P ∩Z Q Set-intersection: itemsets which are element of
both P and Q

P ∪Z Q Set-union: itemsets which are element of either P
and Q

P ∪Zmin
Q Minimal set-union: minimal itemsets which are el-

ement of either P and Q

P ∪Zmax Q Maximal set-union: maximal itemsets which are el-
ement of either P and Q

P \ Q Set-subtraction: itemsets which are element of P
but not Q

NotSubSet(P,Q) Not Subset: itemsets which are element of P which
are not subset of any itemset in Q

CrossProd(P,Q) Cross Product: pair-wise intersections between the
itemsets in P and Q

DotProd(P,Q) Dot Product: pair-wise unions between the item-
sets in P and Q
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and we use a secondary bitmap database representation for calculating the frequency

of itemsets.

To give an overview, FIMiner recursively partitions the database into two databases,

and grows frequent patterns incrementally. A chosen item x induces an x-conditional

database, which corresponds to the itemsets in which it occurs, and patterns which

contain the item are found locally within the conditional database. To find patterns

which do not contain x, item x can be safely removed from the database and we call

the resulting database as x-reduced database. Removing x does not change the output

patterns because all frequent patterns which contain x only occur in the x-conditional

database.

Shown in Algorithm 4.1, the algorithm is invoked by FIMiner(ZD, α, prefix),

where ZD is a ZBDD containing the input data set, and prefix is initially empty

itemset (i.e. prefix = {}). Frequent itemsets are grown from the given prefix, us-

ing the input ZBDD which is traversed in a top-down fashion. The support of the

itemsets is calculated using the bitmap database representation. For a given prefix

itemset, bitmap(prefix) refers to the bit-vector of the occurrence of the itemset in the

initial input data set. We compute support(prefix) by counting the number of 1’s in

bitmap(prefix), denoted as |bitmap(prefix)|.

We now explain the algorithm line by line. For a given input ZBDD ZD, the

top-node’s label is firstly used to grow the current prefix, since it is trivial to obtain

its conditional database. Let x be the label of ZD. By Shannon’s decomposition, the

1-child node, labeled as ZDx contains all itemsets in ZD which contain x. Thus, the x-

conditional database is represented in ZDx , and patterns which contain x are recursively

found by calling FIMiner on ZDx (line 9). To find the x-reduced database, we compute

the set-union between the two child-nodes of ZD (line 11). For higher data compression

and efficiency purposes, the non-maximal itemsets are simultaneously removed, which

can be computed using the ZBDD’s library routine
⋃

Zmax
. We refer to this operation

as DB-merging. By the ZBDD’s canonical property, nodes may be shared across the

x-conditional database, x-reduced database, and the intermediate output.

In addition to the standard ZBDD primitive operations, we push the anti-monotonic

support constraint deep inside the routine using an infrequent prefix pruning strategy

(line 6-7), which is based on the anti-monotonic property of support. The support of

prefix∪{x} can be computed incrementally, by taking the bit-wise intersection between

bitmap(prefix) (carried from the previous mining iteration) and bitmap({x}). When

the new prefix itemset is known to be infrequent, the sink-0 node is returned to delete
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the prefix itemset and its supersets from the output (based on the zero-suppression

rule). Finally, the recursion terminates when the database is empty (line 1-2).

Since the library ZBDD operations store computation results in a cache, DB-

merging can be computed efficiently if many of the conditional DBs share common

subtrees. The output ZBDD is incrementally built from each recursion step, using

the same variable ordering as the input ZBDD. The intermediate output from the

x-conditional database and from the x-reduced database become the 1-child and 0-

child of the output node (line 12). Combining the output from each recursion level

incrementally builds the output ZBDD in a bottom-up fashion. To obtain the same

ordering of database projections, the items are ordered in the ZBDD by their increasing

frequency. Comparison between several variable orderings was studied in [110], which

showed that the increasing frequency ordering was one of the optimal orderings.

The increasing frequency variable ordering is similar to that used by the FP-growth

algorithm for projecting the conditional databases. FP-growth orders the item in each

FP-tree by a decreasing frequency, but it projects the first conditional database using

the least frequent item. Moreover, the FP-growth allows dynamic variable ordering,

but our FIMiner algorithm does not.

Example 17. Figure 4.1(a) shows the input database D. The variables are ordered

by their increasing frequency, item d being the least frequent. Thus, d is the first item

chosen to grow a prefix. Figure 4.2(b) illustrates the DB-merging operation between the

child-nodes on ZD. Identical nodes in the merged database are shared with the input

database, as well as the other databases It shows the ZBDD which represents the d-

conditional database (conditional DB), which contains itemsets {a, c, g} and {a, b, e}

from transaction 3 and transaction 5 in the input dataset D..

4.2.1 Maximal Frequent Itemset Mining

We now describe some optimisations that can be applied to our FI mining technique

for mining maximal frequent itemsets (MFIs). We call the algorithm MFI-Miner

(Algorithm 4.2). Using the same core operations as FI-Miner, MFI-Miner has an ad-

ditional procedure for removing the non-maximal patterns. This is performed using a

progressive focusing technique [29], which removes the locally non-maximal patterns

from each conditional DB. It can be computed using a ZBDD primitive set-subtraction

routine i.e. ZFIx
\ZFIx, where ZFIx and ZFIx

are basically computed as in Algorithm

1. This subtraction operation removes the frequent extensions of prefix which also
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id Itemset
1 {a, b, e, g}
2 {c, e, g}
3 {a, c, d, g}
4 {b, c, e}
5 {a, b, d, e}

(a) Input database D (b) ZBDD representation with increasing fre-
quency variable ordering (d < a < c < g < b < e)

Figure 4.1: A ZBDD representation for an input database D; the d-conditional database
share nodes with the 1-child of the top node in the ZBDD

Figure 4.2: Set-union between two child nodes of ZD to compute the DB-merging
operation (nodes marked with bold lines are the newly created nodes as a result of this
operation)
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Algorithm 4.1 FIMiner(ZD,α, prefix)

Input: A ZBDD ZD containing the database induced by a prefix itemset, a minimum support
threshold α, a prefix itemset prefix which projects ZD.

Output: A ZBDD ZFI containing the set of frequent itemsets in ZD

1: if (ZD is a sink node) then
2: return ZD /* Terminal case */
3: end if
4: /* Let ZD = node(x, ZDx

, ZDx
) */

5: prefixx = prefix ∪ {x}
6: if (support(prefixx) < α) then
7: ZFIx

= 0 /* Infrequent prefix pruning */
8: else
9: ZFIx

= FIMiner(ZDx
, α, prefixx) /* Grow new prefix prefixx and mine patterns which

contain x from the x-conditional database */
10: end if
11: ZFIx

= FIMiner(ZDx

⋃

Zmax
ZDx

, α, prefix) /* DB-merging: reduce database ZD by x and
mine patterns which do not contain x */

12: return ZFI = getNode(x, ZFIx
, ZFIx

) /* Combine the output patterns */

Note: support(prefixx) = |bitmap(prefix) ∩ bitmap({x})|.

occur as frequent extensions of prefixx since they are non-maximal local to the cur-

rent database. Additionally, our algorithm can adopt some of the advanced pruning

techniques used in [29, 64, 158]. For this purpose, an itemset tail is maintained for

each database. It contains the items that occur in the relevant database, and used for

pre-processing each conditional database in the following ways.

The first subroutine mineMFIx grows the new prefix prefixx. It employs two

pruning strategies. The x-conditional database, denoted ZDx , is pruned early by re-

moving items which are infrequent in the conditional database. This pruning uses an

itemset freqTail which contains items in tail whose bitmap support exceeds the min-

imum support threshold. Since freqTail is a single itemset, the CrossProd operation

between the ZBDDs representing freqTail and ZDx (line 6), the result is the intersec-

tion between each itemset in ZDx with freqTail. The second pruning uses an itemset

classEquivalent (line 7) which is a maximal itemset that occurs in every transaction

which contains the top-item x.

The second subroutine mineMFIx finds patterns which do not contain x. It uses

an itemset classSubsumed (line 1) which contains items that occur only in transactions

which contain x. The items of classSubsumed can be removed from the x-reduced

database, since their frequent supersets which are found from the reduced database are

non-maximal.
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The CrossProd(), DotProd(), and NotSubSet() are ZBDD library routines for

computing set intersection, pair-wise intersection, and non maximal removal between

two sets of itemsets.

Algorithm 4.2 MFIMiner(ZD, α, prefix, tail)

Input: A ZBDD ZD containing the database induced by a prefix itemset, a minimum support
threshold α, a prefix itemset prefix which projects ZD, a tail itemset tail which contains
items which occur in ZD.

Output: A ZBDD ZMFI containing the set of MFIs in ZD

1: if (ZD is a sink node) then
2: return ZD /* Terminal case */
3: end if
4: /* Let ZD = node(x, ZDx

, ZDx
) */

5: prefixx = prefix ∪ {x}
6: ZMFIx

= Subroutine mineMFIx /* Grow new prefix prefixx */
7: ZMFIx

= Subroutine mineMFIx /* DB-merging and mine patterns which do not contain
x */

8: ZMFIx
= NotSubSet(ZMFIx

, ZMFIx
) /* Progressive focusing: remove non-maximal pat-

terns */
9: ZMFI = getNode(x, ZMFIx

, ZMFIx
) /* Combine the output patterns */

Subroutine mineMFIx: grow prefixx

1: freqTail = find the set of frequent tail items
2: classEquivalent = find the set of items which occur in every instance in ZDx

3: if (support(freqTail) ≥ α) then
4: return freqTail /* FHUT pruning */
5: end if
6: ZDx

′ = CrossProd(ZDx
, freqTail) /* Infrequent items pruning */

7: ZDx
′′ = CrossProd( ZDx

′ , classEquivalent) /* Class-equivalent pruning */
8: ZMFIx

= MFIMiner(ZDx
′′ ,α,prefixx, freqTail)

9: return DotProd(ZMFIx
, classEquivalent)

Subroutine mineMFIx: merge database and mine patterns which do not contain x

1: classSubsumed = find the set of items which do not occur in ZDx

2: Zprojectx
= CrossProd(ZDx

, classSubsumed) /* Class-subsumed pruning */
3: ZDx+x

= (ZDx

⋃

Zmax
Zprojectx

) \ ZMFIx
/* DB-merging and pre-computed MFI pruning

*/
4: return MFIMiner(ZDx+x

, α, prefix, tail)

Note: P = I−P , where I is the set of domain items. CrossProd(), DotProd(), and NotSubSet()
are ZBDD library routines

4.2.2 Closed Frequent Itemset Mining

Our algorithm for mining closed frequent itemsets, CFIMiner, uses a similar framework

as MFIMiner, and employs a progressive focusing technique for removing the non-closed

patterns. However, the closed constraint requires the support of an itemset to be
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compared against its subset(s). Thus, the support information has to be represented

in the output data structure, which was not necessary for FIMiner and MFIMiner.

Additionally, CFIMiner can also adopt the more advanced pruning techniques found

in existing algorithms, using a similar mechanism to MFIMiner which maintains a tail

itemset.

To represent the patterns’ support in the ZBDD output, it uses additional vari-

ables, which are appended to each pattern. We refer to these extended pattern rep-

resentations as item-support-sets. In order to achieve higher compression, we use the

binary representation of the support values. For a database containing N transactions,

we reserve log2(N) binary variables to represent the itemsets.

Example 18. Given a database containing 5 transactions, 3 support-encoding variables

are reserved. Let r0 r1 r2 be the support-encoding binary variables, such that r2 = 0,

r1 = 0, r0 = 1 represents a support of 1, r2 = 0, r1 = 1, r0 = 0 represents 2, etc.

For instance, the item-support-set representation of itemsets (with their corresponding

frequencies) {{b, e} : 3, {a, b, e} : 2, {a, b} : 2} is {{b, e, r1, r0}, {a, b, e, r1}, {a, b, r1}}.

Furthermore, itemsets in the maximal item-support-sets correspond to closed itemsets.

Item-support-set {a, b, r1} is not maximal since {a, b, e, r1} exists. However, {a, b, e, r1}

is maximal, thus, itemset {a, b, e} is a closed itemset.

4.2.3 Row-wise Closed Frequent Itemset Mining

Let us now describe how our ZBDD-based mining framework can be adopted to the

row-wise mining framework for finding closed frequent itemsets (CFIs) in sparse high

dimensional datasets, which have been introduced in [125, 96, 124]. In this framework,

the patterns are mined by searching for possible row (instead of item) combinations.

We use the terminologies defined in Chapter 2 (Section 2.3.3).

Existing row-wise mining algorithms [125, 96] perform a depth-first search in the

lattice of row-id combinations. We will describe a pattern growth, bottom-up algo-

rithm [125] based on the use of a ZBDD, although adapting it to the top-down algo-

rithm [96] is also certainly possible.

The row-wise mining algorithm, namely RowCFIMiner, is shown in Algorithm 4.3.

We employ the same framework as the column-wise algorithm FIMiner (Section 4.2),

except that the ZBDD variables now correspond to row-IDs, instead of items. The in-

put ZBDD database is traversed top-down, and the conditional database is recursively

projected by the top-item of the ZBDD. Here, the database is transposed so that it
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contains the bit support of each item in the original database. A supplementary bitmap

data structure is also used for computing the row support set for each row combination.

A comparison between RowCFIMiner and FIMiner follows:

In a similar prefix-growth framework to FIMiner, the row-wise algorithm grows

prefixes of the rowsets (i.e. sets of row-ids) from the input database, instead of item-

sets. The rowsets are grown until its length exceeds the minimum support threshold,

or until the row support set is empty. More specifically, as each rowset is grown, its

row support set is incrementally computed based on the bitmap data representation.

When the length of the rowset reaches the minimum support, its row support set is a

fully-grown closed frequent itemset. Unlike FIMiner, where the output ZBDD is built

incrementally bottom-up, the row-wise algorithm inserts each pattern one at a time

into the output ZBDD, using the ZBDD’s primitive routine to compute set-union.

Unlike in our column-wise mining algorithms, there is no sharing between the

input and the output ZBDDs in row-wise mining, since now they contain different

sets of variables. To maximise node sharing within the output ZBDD, which stores

the closed frequent itemsets, we use the same variable ordering as in our column-wise

algorithm i.e. ordered by increasing frequency.

Our algorithm adopts the pruning strategies in [125, 124]. Additionally, using

ZBDD’s caching utility, we store the height (i.e. the number of items in its longest

path) of the ZBDD which represents each conditional database in a cache. Since the

ZBDD represents the row-ids, the height of a ZBDD gives the number of itemsets of the

database. If the height of the database is less than the minimum frequency threshold,

then we can prune that database, since all of its subsets are infrequent.

4.3 Weighted Zero-suppressed Binary Decision Diagrams

(Weighted ZBDDs)

Support counting using bitmaps in our algorithms described in the previous section

can be costly, especially in dense high dimensional datasets, which contain many long

patterns. To eliminate this overhead, we introduce an original variant of ZBDD, namely

the Weighted Zero-suppressed Binary Decision Diagram (Weighted ZBDD).

A WZBDD allows the counts of the itemsets to be represented using edge-weights, which

in turn allows more efficient frequent itemset mining. In a Weighted ZBDD, every edge

is attributed by a positive integer value. The node’s weight refers to the weight of the
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Algorithm 4.3 RowCFIMiner(ZTD,α, rprefix)

Input: A the transposed database ZTD, a minimum support threshold α, and a prefix
rowset rprefix that projects ZTD

Output: A ZBDD ZCFI containing the set of closed frequent itemsets in ZTD

1: if (ZTD is a 0-sink node) or (row support set(rprefix) is empty) then
2: return 0 /* Terminal case */
3: end if
4: if (ZTD is a 1-sink node) and (rsupport(rprefix,D) < α) then
5: return 0 /* Infrequent itemset pruning */
6: end if
7: if (rsupport(rprefix) ≥ α) then
8: return row support set(rprefix)
9: end if

10: /* Let ZTD = node(r, ZTDr , ZTDr
) */

11: rprefixr = rprefix ∪ {r}
12: ZCFIr = RowCFIMiner(ZTDr , α, rprefixr) /* Grow new rowset rprefixr and mine

patterns which occur in row r */
13: ZCFIr

= RowCFIMiner(ZTDr

⋃

Zmax
ZTDr , α, rprefix) /* DB-merging and mine pat-

terns which do not occur in row r */
14: ZCFI = ZCFIr

⋃

ZCFIr
/* Combine the output patterns */

15: return ZCFI

Note: row support set(rprefixr) = row support set(rprefix) ∩ row support set({r}).

incoming edge of that node. There exist other weighted types of Decision Diagrams [27,

154, 123] for manipulating pseudo-boolean functions, which we also discussed earlier in

Chapter 3, but they use different semantics from our Weighted ZBDDs. Formally, we

define an internal Weighted ZBDD node as follows:

Definition 16. Each node in a Weighted Zero-suppressed Binary Decision Diagram is

a pair 〈ϕ, ϑ〉, where ϑ is a ZBDD node, and ϕ is the weight of this node.

The weights in a Weighted ZBDD are anti-monotonic. Their values are decreasing

as the nodes are positioned lower in the structure. The weight of a node corresponds

to the total frequency of the represented itemsets below it. Given a node N ,we define

weight(N), which gives the weight of node N . If the node is a 1-sink node, ϕ = 1

and weight(N) represents the frequency of the empty itemset {}. If the node is a 0-

sink node, ϕ = 0 and weight(N) is 0, since the node represents an empty data set. If

the node is an internal node, its two child-nodes correspond to two partitions of the

data set, hence, the node’s weight is equal to the sum of the weights of its child-nodes

(Figure 4.3a), calculated by the following function:
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Weighted ZBDD node

(a)

Var. ordering: a < b < c < d < e

Weighted ZBDD representation for
{{a, b, e} : 2, {a, c, e} : 1, {a, b} : 2}

(b)

Figure 4.3: Weighted ZBDDs

weight(N) = weight(N1) + weight(N0) (4.1)

where N1 (resp. N0) denotes the 1-child (resp. 0-child).

Weighted ZBDDs are canonical, that is, nodes which contain the same set of

itemsets with the same corresponding supports are merged. Consequently, ZBDD’s

set-union routine needs to be adapted for Weighted ZBDDs to add the counts of any

itemset which occurs in both of its operands.

Example 19. Figure 4.3b shows an example of a Weighted ZBDD representing a set

of itemsets (with their counts): {{a, b, e} : 2, {a, c, e} : 1, {a, b} : 2}. The weight of node

a is 5, i.e. the total number of itemsets. The two node e’s are not merged, since their

child-nodes have different weights, respectively.

Table 4.2 shows a comparison between Weighted ZBDDs and the other types

of BDDs. The zero-suppression rule is employed in ZBDDs and Weighted ZBDDs.

BMDs [27] also have weighted edges, which were proposed for representing pseudo-

boolean functions, but BMDs use a different function decomposition from Weighted

ZBDDs. BMDs decompose the incoming weight for each node into a multiplicative and

additive function of the outgoing weights, whereas Weighted ZBDDs only use simple

addition, thus, allowing trivial frequency calculation of the variable in the root node.
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Table 4.2: Comparison between Weighted ZBDD and other BDD Variants

Data Structure Zero-suppressed Weighted Edges

Binary Decision Diagrams (BDDs) No No
Zero-suppressed BDDs (ZBDDs) Yes No
Binary Moment Diagrams (BMDs) No Yes
Weighted ZBDDs (WZBDDs) Yes Yes

4.4 Complexity Analysis

In the following discussion, we discuss the computational complexity for creating and

manipulating nodes in Weighted ZBDDs.

4.4.1 Constructing Weighted ZBDDs

The computational cost for creating a Weighted ZBDD node is the same as for a

non-weighted ZBDD, requiring one look-up operation to the uniquetable, which is the

same as that in a BDD. A uniquetable stores every node in the BDD/ZBDD/Weighted

ZBDD, which is usually implemented as an array of linked lists. If two keys have the

same hash value, then the two entries are stored in the linked list. More details about

the BDD’s uniquetable can be found in Chapter 3. The same hash function for ZBDDs

can be used for weighted ZBDDs, as is. Each Weighted ZBDD node, however, takes

up larger memory size, to store the additional weight value. When representing the

same database, the number of nodes in the Weighted ZBDD cannot be smaller than

the number of nodes in the ZBDD.

Theorem 4. The time complexity for creating a Weighted ZBDD that consists of N

nodes is O(Nlog2N).

Proof. When creating a node, the hash key for that node is computed and one cache-

lookup operation is performed to find a pre-existing entry. Given that nodes with the

same hash key are stored as a sorted linked list, the lookup operation requires a single

traversal of that list which has O(log2n) time complexity, where n is the number of

unique nodes. Thus, when creating N nodes, the overall time complexity is O(Nlog2N),

since N lookup operations are performed and the number of unique nodes is O(N).
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Theorem 5. Consider a database containing k unique itemsets with a maximum size

of L items. The number of nodes in the Weighted ZBDD representation is O(kL), and

the height of the Weighted ZBDD is O(L).

Proof. In the given database, there are kL elements in total. In the worst case, each of

those elements is represented by a node in the Weighted ZBDD, resulting in a Weighted

ZBDD with kL unique nodes. The height refers to the maximum length of any path in

the Weighted ZBDD, which is L, since each path corresponds to a unique itemset.

In practice, the number of nodes is much smaller than kL, since Weighted ZBDDs

allow node-sharing between common prefix paths, as well as suffix paths across multiple

intermediate databases. Since the number of nodes of the Weighted ZBDD is O(kL),

hence, its construction has O((kL).log2(kL)) time complexity.

The construction of a ZBDD has a similar time complexity to that of a Weighted

ZBDD, but there is a lower node-sharing probability in a Weighted ZBDD. However,

due to their weighted-edges, node-sharing is only limited amongst itemsets which have

the same frequency. If there are many itemsets which share the same frequency, then

many nodes can be shared in the Weighted ZBDD.

The basic ZBDD operations, such as set-union and set-subtraction, have poly-

nomial time-complexity with respect to the number of nodes in the input Weighted

ZBDDs, similar to the complexity of basic ZBDD operations. Our algorithm for min-

ing frequent itemsets employs the primitive Weighted ZBDD’s add() operation which

adds two sets of itemsets and combines their frequencies. The procedure is similar to

the predefined procedure for ZBDDs.

4.4.2 Efficiency of Weighted ZBDDs for Frequent Itemset Mining

By the canonical property of Weighted ZBDDs, multiple intermediate databases (i.e.

conditional databases and their intermediate outputs) may share nodes or subgraphs.

Representing the frequency values as edge weights in the data structure is very useful

for mining frequent itemsets, since it allows efficient identification between any two

identical databases (i.e. containing the same set of itemsets and frequencies).

Two identical Weighted ZBDDs represent the same set of itemsets and the same

corresponding support, thus, they also contain the same set of frequent itemsets. This

is possible to be done by adopting BDD’s caching mechanism. By caching the com-
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puted results from each conditional database, Suppose different prefixes project the

same conditional database, patterns from the earlier computation can be reused and

redundant computation can be avoided.

In our study, we use the caching implementation used by an existing BDD pack-

age called JINC [123]. The package was developed for studying a different type of

weighted BDDs. To cache an operation, the cache uses a hash function which maps

the memory address of the input nodes and the address of the output of the operation.

The caching mechanism is provided by the BDD package, we do not explicitly show it

in the algorithm described shortly. A caching mechanism in frequent itemset mining

has been studied also in cache-conscious prefix trees [60], but they aim to minimise

access to physical memory. On the other hand, BDD’s caching aims to make similar

intermediate computations able to re-use the computed results and reduce the overall

number of database projections.

4.5 Performance Study

In this section, we analyse the performance of our ZBDD-based techniques for mining

MFIs and CFIs. The algorithms were implemented in C++ using the BDD library

which was used in the work in[123]. All experiments were performed on a 2.0 GHz

CPU, 3 GB RAM, running Solaris, with a CPU-timeout limit of 100,000 seconds per

mining task.

We concentrate on gene-expression data sets, since they are one of the most chal-

lenging kinds of high dimensional data sets for pattern mining. They typically consist

of only a few number of samples (i.e. rows). The number of frequent itemsets in a

microarray data set can be enormous [35]. Works in [24, 34, 136, 84, 88, 86] have also

studied other itemset mining problems in microarray data sets.

The following are the data sets used in our experiments: i) Leukaemia ALL-AML 1,

ii) lung cancer2 which was previously studied in [124]. The ALL-AML data set contains

72 samples (i.e. transactions), each sample is described by 7129 genes (i.e. attributes).

The lung cancer data set contains 32 samples, described by 12533 genes. Continuous

attribute values are discretised using an entropy discretisation method.

In the item-wise framework, we implement our techniques, i.e. ZBDDMiner, WZDDMiner,

1http://research.i2r.a-star.edu.sg
2http://www-genome.wi.mit.edu/cgi-bin/cancer
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which are our ZBDD and WZDD based algorithms, using only the basic infrequent pre-

fix pruning. ZBDDMiner* and WZDDMiner* are their respective variants which use the

more advanced pruning techniques. We employ an increasing frequency variable order-

ing, so that the least frequent item is positioned at the top of the ZBDD/WZBDD,

which allows more effective pruning based on the infrequent prefix pruning strategy.

Their performance is compared against the state-of-the-art FP-tree based algo-

rithms, i.e. FP-growth* [64], FP-close*, and FP-max*3, which performed best on

dense data sets. We also compare the performance of our algorithms against the lat-

est version of LCM, referred to as LCM-ZBDD [117], which is based on a combination

of prefix-tree and array data representations, and employs a ZBDD for managing the

output patterns. LCM-ZBDD was shown to have a linear time complexity with respect

to the number of patterns. All of these contender algorithms were obtained from their

respective original authors.

From each algorithm, we measure the following: i) the CPU time spent for mining,

ii) the number of nodes in the output FP-trees, ZBDDs, or WZDDs, and iii) the total

node usage, which is the total number of nodes used through out mining including those

used for storing the input database, the intermediate databases, and the final output

patterns. For ZBDDs or WZDDs, shared nodes are counted only once.

We performed experiments for mining frequent itemsets (FIs), closed frequent

itemsets (CFIs), and maximal frequent itemsets (MFIs). When WZDDs are used for

mining FIs or MFIs, storing the support values in the output is not necessary, thus,

the output patterns are represented in a ZBDD. We also performed experiments for

mining CFIs in the row-wise mining framework. We choose the RERII [124] algorithm

as a baseline in our study, which we obtained from its author, since it is the state of

the art algorithm for row-wise mining, and it is based on the use of FP-trees.

4.5.1 Data and Pattern Characteristics

To obtain results within the CPU-timeout limit for low support threshold values, we

used the first 100 attributes from the ALL-AML data set, where the attributes are

ordered according to their entropy values from highest to lowest (i.e. attr.1 has highest

entropy). All methods could not complete mining at low support thresholds when all of

the attributes were used due to the CPU time out constraint. For a similar reason, we

3
FP-growth* uses more advanced pruning strategies than FP-growth, and FP-close* (resp. FP-max*)

is the extension of FP-growth* for mining closed (resp. maximal) frequent itemsets.
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Figure 4.4: Pattern length histogram

used the first 750 attributes from the lung cancer data set. In the following discussions,

we refer to the respective data sets as ALLAML-100 and lung-cancer-750.

We firstly study the characteristics of each data set, by measuring the compact-

ness of their ZBDD representations, based on two factors: node fan-out and node

fan-in. To measure the fan-out compression factor, we implement a Binary Decision

Tree (BDTree), which is a relaxed type of BDD with no node fan-in. The fan-in com-

pression factor4 is the relative difference between the number of nodes in the BDD and

the BDTree. The fan-out compression factor5 is the relative difference between the

number of nodes in the BDTree and the total number of items in the input transac-

tions. Table 4.3 shows that the ALL-AML-100 data set has a higher fan-out and fan-in

compression factor than lung-cancer-750. It indicates that the itemsets in the ALL-

AML-100 data set have more items in common, for which the ZBDD representation

has more node sharing than that for the lung-cancer-750 data set.

To further investigate the density/sparsity of the data sets, we also study the

pattern characteristics in each data set. Since the set of maximal frequent itemsets is

4fanIn = 1 − |BDD|
|BDTree|

5fanOut = 1 − |BDTree|

total number of items
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Table 4.3: Fan-out and fan-in compression factors of the input ZBDD
Dataset name ZBDD

fanOut fanIn

ALL-AML-100 0.012 0.202
lung-cancer-750 0.001 0.012

a subset of the closed frequent itemsets, we firstly investigate the distribution of the

closed itemsets.

Figures 4.4a and 4.4b show the length distribution of the CFIs for the two data

sets, respectively. Given a support threshold 40%, the ALL-AML-100 data set contains

millions of long patterns, i.e. the size of the patterns which has the highest frequency

is around 23-25 items, or about 80% of the maximum size. In the lung cancer data set,

given the same support threshold, there exist fewer patterns than that in the ALL-AML

data set, and the patterns are longer with a median size of 100 items, or about 25% of

the maximum size of 400.

Moreover, the length distribution of the maximal frequent itemsets in the ALL-

AML-100 data set (Figure 4.4c) shows a smaller number of short patterns, whose length

are shorter than the median, compared to the closed frequent itemsets. It shows that

many of the long closed frequent itemsets are also maximal frequent itemsets. For the

lung-cancer-750 data set (Figure 4.4d), however, there is a reduction in the number of

patterns whose length is around the median, showing that many of the closed frequent

itemsets are not maximal.

We henceforth regard the ALL-AML-100 as a dense data set, and the lung-cancer-

750 as a sparse data set. When mining the frequent itemsets in the lung-cancer data

set, however, we used only the first 50 attributes. None of the algorithms could perform

within a reasonable time if more attributes were included, due to the excessive number

of long patterns that exist when the support threshold value is relatively low.

4.5.2 FI Mining Performance

Figure 4.5 shows that for the ALL-AML data set, WZDDMiner is 10 times faster than

ZBDDMiner, and it is also up to 100,000 times faster than FP-growth* and LCM-ZBDD

given a support threshold of 35%. For the lung cancer dat set, which contains many

long patterns, moreover, WZDDMiner is able to achieve almost a million times speed-up

than LCM-ZBDD, completing within 1 second when the support threshold value is 36%.

70



4.5. PERFORMANCE STUDY

This significant speed-up shows that WZDDMiner is superior for mining a large number

of long frequent itemsets.

4.5.3 CFI Mining Performance

Let us now observe the performance comparison between our algorithms for mining

CFIs in the sparse data set against FP-close*. Figure 4.6 shows that LCM-ZBDD is the

fastest, and the WZDD algorithms are faster than the ZBDD algorithms. Due to the

CPU timeout constraint, the ZBDD algorithms could only complete mining for support

threshold ≥ 50%, whilst the WZDD algorithms are more scalable and able to complete

mining for support threshold ≥ 36%. Now let us look closer at the effectiveness of the

pruning strategies. The two figures 4.6a and 4.6b show that the pruning strategies in

either WZDDMiner* and ZBDDMiner* do not give much improvement on WZDDMiner and

ZBDDMiner.

Figure 4.7a shows that both WZDDs and ZBDDs (which include the support

encoding variables) are able to achieve higher compression than the FP-tree for storing

the output patterns. For support threshold of 40% whose length distribution of the

patterns is shown earlier, the WZDD is about 50 times smaller than the FP-tree,

excluding the header table of the FP-tree.

Furthermore, the total node usage of each algorithm is shown in Figure 4.7b. It

shows that FP-close* uses the least number of nodes for representing all the databases

(including the input, the output patterns, and the conditional databases). The reason

for this is the dynamic variable ordering employed by FP-close*, which allows dif-

ferent conditional databases to use different variable orderings. The ZBDD/WZBDD,

on the other hand, uses a static variable ordering for maximising the amount of node

sharing across multiple conditional databases. The results from this experiment show

that the conditional databases projected by FP-close* are more compact than their

ZBDD/WZBDD representations. Moreover, the header tables used by the FP-trees

are relatively smaller than the secondary bitmap used by the ZBDDs. The discrepan-

cies between FP-close* and our ZBDD/WZDD algorithms are decreasing as the sup-

port threshold decreases. ZBDDMiner* uses about 5 times fewer nodes than ZBDDMiner

given minimum support threshold of 68%, which shows the effectiveness of the advanced

pruning strategies in ZBDDMiner* for reducing the size of the intermediate ZBDD struc-

tures. On the other hand, WZDDMiner* and WZDDMiner use 5 times as many nodes as

ZBDDMiner, while avoiding the use of the secondary bitmap representation which are
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exhaustive for a sparse data set.

Figure 4.8 shows the runtime comparison between the algorithms for mining CFIs

in the dense data set. WZDDMiner has the fastest runtime for low support thresholds,

i.e. < 40%. When advanced pruning strategies are used, WZDDMiner* is up to 500

times slower than WZDDMiner. On the other hand, ZBDDMiner* can achieve up to 100

times speedup factor compared to ZBDDMiner. ZBDDMiner could not complete within

the CPU time limit for support threshold < 50%, and FP-close* exceeds the memory

limits for support threshold as low as 27%.

Figure 4.9a shows that the WZDDs for storing the output patterns have signif-

icantly fewer nodes than the FP-trees, which demonstrates the ability of WZDDs to

compactly represent huge volume of patterns that exist in a dense data set. Due to the

additional support-encoding variables, the ZBDDs contain about 100 times more nodes

than the WZDDs. Being similar to WZDDMiner*, WZDDMiner is able to achieve high data

compression. This shows that without the advanced pruning strategies, WZDDMiner can

achieve time as well as space efficiency.

The total node usage of each of the algorithms is shown in Figure 4.9b, which

shows that WZDDMiner uses the least number of nodes, except for support threshold

≥ 60%, where the FP-close* has the least total node usage.

4.5.4 MFI Mining Performance

Figure 4.10 shows the runtime comparison between the algorithms for mining MFIs

in the sparse data set. For low support threshold, i.e. < 50% in the sparse data

set, LCM-ZBDD is faster than the other algorithms, and WZDDMiner and WZDDMiner* are

exponentially faster than FP-max*. In the dense data set, WZDDMiner can be 5 times

faster than LCM-ZBDD, particularly when the support threshold is > 20%.

Unlike in mining CFIs, WZDDMiner* does improve the mining efficiency of WZDDMiner

for mining MFIs given a low support threshold, being 10 times faster when the support

threshold is 36%. The effectiveness of the pruning strategies in this scenario can be

justified by the characteristics of the patterns (shown in Section 4.5.1), which shows

that there are many closed frequent itemsets which are not maximal.

Figure 4.11a shows that the ZBDD representations for storing the output patterns

are smaller than the FP-trees for support threshold < 60%, being up to 1000 times

smaller at support threshold of 40%. This shows the significant data compression
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which can be achieved by ZBDDs for storing a huge number of short patterns which

exist in a sparse data set.

To compare the effectiveness of the advanced pruning strategies in ZBDDMiner*,

Figure 4.11b shows that ZBDDMiner* uses the least number of nodes through out mining

for low support threshold values, i.e. < 60%, although its run time is slower than

ZBDDMiner. More specifically, ZBDDMiner* can achieve about 50 times data compression

over both WZDDMiner and WZDDMiner*. FP-max* uses up to 100-1000 times more nodes

than both WZDD and ZBDD algorithms when the support threshold is lower than

50%. While the FP-trees require additional memory for their header tables, and the

ZBDDs for thei bitmap representations, WZBDDMiner* allows the highest compression

for this data set.

In the dense data set, the relative performance between WZDDMiner and FP-max*

is similar to that in the sparse data set. Figure 4.12 shows that WZDDMiner outper-

forms FP-max* for support threshold values ≤ 50%. WZDDMiner*, ZBDDMiner, and

ZBDDMiner* could not complete mining within the CPU time limit constraint for sup-

port threshold values less than 40%, 50%, 45%, respectively. The LCM-ZBDD, inter-

estingly, is twice slower than WZDDMiner for support threshold ≥ 30%, but it is ex-

ponentially faster for lower support threshold. This shows the strength of LCM-ZBDD

for mining MFIs at low support threshold in this sparse data set, using its pruning

strategies which prune the non-closed itemsets early. When the support threshold is

relatively high, its pruning is less effective, whilst WZDDMiner performs well, since it

does not have the overhead cost for checking closed itemsets.

Figure 4.13b shows that ZBDDMiner and ZBDDMiner* use smaller number of nodes

than WZDDMiner, being 10 times smaller for support threshold of 70% at the expense

of the use of the bitmap representations. The discrepancy decreases as the support

threshold decreases, though. WZDDMiner* has a larger node usage than WZDDMiner

and the other ZBDD algorithms. This shows that the pruning strategies are not very

effective for mining many short patterns in this data set. Moreover, FP-max* has the

largest total node usage for support threshold values ≤ 55%, which is also the case

when mining the sparse data set.

4.5.5 Effectiveness of Caching in WZDDMiner

One benefit of using WZDDs instead of ZBDDs is that WZDDMiner allows the conditional

databases to be cached and re-used if the same database is projected by different
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prefixes. We study the hit rate, which is the successful rate of finding a conditional

database in the cache, when mining CFIs in both data sets using both WZDDMiner

and WZDDMiner*. Similar trends are found from the maximal frequent itemset mining

scenarios.

The figures in Figure 4.14 show that the hit rate increases as the support threshold

value decreases, for which the number of conditional database projections increases.

In the dense data set, a maximum hit rate of 0.42 can be achieved by WZDDMiner*.

Interestingly, WZDDMiner shows a different behaviour compared to WZDDMiner*. The

hit rate achieved by WZDDMiner decreases when the support threshold values are less

than 50%, whereas WZDDMiner* can achieve higher or constant hit rate. This shows that

without employing the advanced pruning strategies, many more conditional databases

are projected, and they are more dissimilar. The pruned conditional databases, on the

other hand, are more similar, since the unnecessary items have been removed.

Figure 4.15 shows the absolute counts of the database projections created by

both algorithms, which show that WZDDMiner* projects exponentially fewer conditional

databases than WZDDMiner in the sparse data set, and about 5-10 times fewer in the

dense data set.

These results show that the pruning strategies in WZDDMiner* result in a significant

reduction in the number of conditional databases, and improvement in the number of

re-used databases. However, it does not guarantee a better time performance if the

data set is sparse, due to the small level of node sharing in the initial database.

4.5.6 Row-wise CFI Mining Performance

For this set of experiments, we used lung cancer data set with the first 100 attributes.

We compare our technique, labeled as ZBDD rowCFI-Miner, against RERII [124] for

which we implemented two variations, being different only in the structure (FP-Tree

or ZBDD) for storing the output patterns: i) RERII-FPTree, ii) RERII-ZBDD.

Figure 4.16a shows the running time of the three algorithms. RERII-FPtree is

twice as fast as RERII-ZBDD, and it performs best for support threshold ≥ 20%. ZBDD

rowCFI-Miner outperforms RERII-FPtree at support threshold 10%, but is slightly

slower on larger thresholds. ZBDD-rowCFI-Miner is at least 1.5 times faster than

RERII-ZBDD for all support thresholds. To further study ZBDD’s efficiency, we com-

pared the output size of RERII-ZBDD with the output size of RERII-FPtree in terms

of the number of nodes (shown in Figure 4.16b). The output ZBDD has 4-8 times
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Figure 4.5: Runtime for mining all frequent itemsets (FIs)
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Figure 4.6: Runtime for mining CFIs in lung-cancer-750 data set (sparse)

fewer nodes than the FP-tree, with the reduction factor exponentially increasing as the

support threshold decreases. This shows that ZBDD can achieve better compression

compared to FP-tree, but the tradeoff being more expensive to construct.

4.6 ZBDD vs FP-tree for Mining Frequent Itemsets

In this section we discuss some advantages and disadvantages of using ZBDDs in an

FI mining framework, based on our experimental results, with respect to a number of

dimensions: the compactness of ZBDD data structure, the effectiveness of pruning in

a ZBDD-based technique, and the efficiency of operations upon it.

4.6.1 ZBDD’s Canonicity

The canonical structure of a ZBDD is a a powerful feature which we have shown useful

for not only compressing high dimensional output patterns, but also for compressing
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Figure 4.7: Nodes used for mining CFIs in lung-cancer-750 data set (sparse)
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Figure 4.8: Runtime for mining CFIs in ALL-AML-100 data set (dense)
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Figure 4.9: Nodes used for mining CFIs in ALL-AML-100 data set (dense)
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Figure 4.10: Runtime for mining MFIs in lung-cancer-750 data set (sparse)
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Figure 4.11: Nodes used for mining MFIs in lung-cancer-750 data set (sparse)
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Figure 4.12: Runtime for mining MFIs in ALL-AML-100 data set (dense)
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Figure 4.13: Nodes used for mining MFIs in ALL-AML-100 data set (dense)
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Figure 4.14: Cache hit rate of conditional databases in WZDD-based algorithms for
mining CFIs
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Figure 4.15: Number of conditional databases for mining CFIs
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Figure 4.16: Results from row-mining CFIs in lung-cancer-100 data set (sparse)

the intermediate structures used for mining them, by allowing the various databases

to share nodes. This compression has been proven in our experimental results when

mining MFIs and CFIs at a relatively low support threshold, for which the FP-trees

had billions of overall nodes usage. In particular, in the dense dataset, WZDDs are

able to achieve up to 500 times overall data compression over FP-trees, as shown in

the total nodes usage comparison. In such a circumstance, many long patterns exist

and many sub-trees may be shared across multiple databases (including the conditional

DBs) which is not possible using FP-trees. On the other hand, in the sparse dataset in

which not too many conditional DBs are being projected, ZBDDs allow a higher overall

data compression than WZDDs, being able to share more nodes when representing the

intermediate databases but they require the use of a bitmap for support counting as a

tradeoff.

Furthermore, when ZBDDs are used for computing CFIs and the output data

structure contain additional support-encoding variables, we found that although the

size of the ZBDDs is increased, they can still contain fewer nodes than FP-trees when

the support threshold is relatively low.

4.6.2 Pruning Effectiveness

Our techniques use a basic infrequent prefix pruning, and some advanced pruning strate-

gies which are also used in existing algorithms. Firstly, let us consider the effectiveness

of infrequent prefix pruning. FP-trees may allow earlier pruning of infrequent prefixes

by allowing different item orderings to be used for different database projections. On

the other hand, ZBDDs and WZDDs use static item ordering as a tradeoff for achiev-

ing data compression. This explains a number of situations in our experimental results
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when ZBDDs and WZDDs are less efficient than FP-trees, when mining at a high

support threshold, in which a large search space can be pruned earlier by the FP-trees.

Secondly, the effectiveness of advanced pruning strategies rely upon the amount

of search space reduction being achieved over the extra cost of performing the pruning

routines. As part of the advanced pruning routines, our ZBDDMiner* algorithm uses a

bit-wise-and operation, and WZDDMiner* traverses the databases, for support counting,

which is an expensive computation to perform in high-dimensional datasets. Based on

our experiments, ZBDDMiner* does improve the mining efficiency of ZBDDMiner, espe-

cially when the total size of the conditionalDBs is significantly reduced. The pruning

routines in WZDDMiner* rely upon some library ZBDD routines which can reuse com-

putation results, allowing efficient pruning when a large number of conditional DBs

(or their substructures) are being shared as is the case when mining MFIs in dense

datasets at low support threshold. Moreover, the effectiveness of the advanced pruning

strategies is influenced by the closedness of the patterns. Due to this reason, with-

out employing advanced pruning, WZDDMiner performs well in circumstances where the

number of patterns is much larger than the number of CFIs.

4.6.3 Cached Computation Results

One powerful feature of ZBDDs is their caching principle. The ZBDD routines used in

our framework allow the result from intermediate computations, to be cached. More

particularly the WZDD-based framework allows the output from every conditional DB

which has been proven useful. In dense datasets, or in sparse datasets with low support

threshold, millions of long patterns exist and different prefix itemsets may project sim-

ilar conditional DBs (and thus, similar patterns). This has proven a significant time

improvement by WZDDs over FP-trees, despite the use of static item ordering which

may hurt its efficiency as we have discussed earlier. In particular, our experimental

results show the WZDD-based technique (without advanced pruning) outperforms the

FP-tree based technique (with advanced pruning) when mining huge volume of MFIs

(indicated by the number of nodes in the output data structures) at low support thresh-

olds, and it has similar time performance as the FP-tree based technique for mining

CFIs in the relatively denser dataset.
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4.7 Summary of Results

We now return to the questions which were posed at the beginning of the paper:

1. Does the canonical property of ZBDDs allow an efficient and scalable algorithm

for frequent itemset mining to be developed ?

As we have seen in our experimental results, the WZDD based algorithm is supe-

rior over both ZBDDs and FP-trees for mining MFIs at a low support threshold,

or mining CFIs in a dense dataset. In such a circumstance, millions of long

patterns exist, and hence, numerous auxiliary DBs are induced and their canoni-

cal WZDD representations (which are substantially smaller than FP-trees) allow

mining to be performed efficiently through re-using intermediate results.

2. How much data compression can a ZBDD achieve compared to an FP-tree ?

(a) When mining CFIs, the total size of non-weighted ZBDDs used throughout

mining may be larger than the FP-trees, this being a result of having the

extra support encoding variables on the output for closed frequent itemsets.

They, however, could achieve slightly higher overall data compression by a

factor of 2 compared to FP-trees, as shown in our results when mining CFIs

at low support in dense datasets.

More specifically, for storing the output closed frequent itemsets, ZBDDs

with support-encoding variables increase the size of the traditional ZBDDs

(without support-encoding variables) by 100 times, yet, they may contain

fewer nodes than FP-trees when mining CFIs at a low support threshold.

(b) When mining MFIs, non-weighted ZBDDs are able to achieve further overall

data compression up to 100 times more compact than WZDDs, as found

in our experiments. This shows WZDDs achieve lower data compression

than ZBDDs due to their weighted edges. However, WZDDs are still much

more compact than FP-trees for representing all of the databases created

throughout mining, more particularly if the support threshold is not too

high, as shown in our results that they used up to 1000 times fewer nodes

than the FP-trees

3. Does the use of a more compact data structure really mean that mining is more

efficient?
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Not always. In situations where the intermediate databases are highly compressed

and the total number of nodes is much less than FP-trees, intermediate results

can be reused effectively which increases mining speedups over FP-trees. Such

situations were found in our experimental results when mining MFIs/CFIs in

a dense dataset. On the other hand, if the WZDD data representations were of

similar size than FP-trees, the FP-tree based techniques are more efficient as they

use a more flexible variable ordering which allows earlier search space pruning.

Moreover, although the ZBDD representations in the intermediate computations

are often smaller than the WZDDs, based on our findings, it does not always

mean a more efficient mining was obtained. This can be explained by the extra

cost of using a secondary data bitmap with (non-weighted) ZBDDs, which may

require expensive computation in high dimensional datasets.

4.8 Related Work

We are aware of several other works which use ZBDDs for itemset mining [113, 116].

Work in [116] demonstrated that ZBDDs are useful for mining patterns in sparse high

dimensional amino acid datasets. Such sparse data sets contain only a few rows, but

a large number of items, which contain a large number of patterns. They studied

the mining of item symmetry using ZBDDs, which are useful for providing a succinct

representation of the patterns.

Work in [113, 112] proposed a ZBDD-based pattern growth mining of frequent

itemsets, which uses a different data representation to our proposed technique. Its op-

timised variant for mining closed frequent itemsets is proposed in [114]. Their ZBDD

representation of the databases encode the support values by storing the itemsets in

multiple ZBDD functions based on their binary support values, whose representations

are referred as tuple histograms. Their experiments show their technique outperforms

FP-growth [70] for mining the traditional type of datasets when huge volume of pat-

terns exist. Such a representation is less compact and requires more complex routines

to construct, instead of the simpler, and faster, basic ZBDD routines used in our frame-

work. A review of their technique was given in Chapter 3. Therefore, their technique

does not seem scalable for mining the more challenging microarray datasets which have

exponentially large search space. Furthermore, we have shown our technique can be

adapted to the row-wise mining framework.

More recent work in [76] proposed a method for choosing a good variable ordering
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for ZBDDs in data mining applications. The method computes the variable ordering

after the ZBDD has been built, and re-arranges the variables. This method is different

from ours, since we decide the variable ordering prior to constructing the ZBDDs. Our

variable ordering heuristics aim to achieve an efficient mining of frequent itemsets,

as well as to achieve an overall compact data representation across multiple shared

ZBDDs, which represent the intermediate data structures used throughout mining.

Their method, on the other hand, finds a variable ordering which is optimised for a

particular ZBDD.

A vast number of other techniques for mining frequent itemsets have been pro-

posed. The survey can be found in the FIMI Repository [78]. Tree data structures

are widely used in many techniques in the FIMI repository, such as FP-growth [70],

AFOPT [94], CLOSET+ [158], and PatriciaMine [132]. None of these techniques use

a data structure which allows sharing across the auxiliary DBs, which is a key feature

of our ZBDD-based technique.

CLOSET+ [158] is an FP-tree-based algorithm, which is designed for closed item-

set mining. It explores not only the itemset space, but the combinations of itemset and

row-id space to find the closed frequent itemsets.

AFOPT [95] introduced a combination of trees and arrays for representing dense

and sparse conditional databases, respectively. For a very small conditional database, it

uses a bucket counting technique [1] which counts the frequency for every combination

of the items instead of employing a divide-and-conquer mining. The AFOPT tree [94]

is an FP-tree-like structure with an inverted item ordering, i.e. ascending frequency

ordering having the least frequent item at the top. Like the item ordering in the

FP-growth algorithm, the items in the AFOPT-tree are visited least-frequent-first, so

that long-narrow or short-wide conditional trees are projected. Hence, the AFOPT-

tree is traversed top-down, which requires extra computations for for constructing and

maintaining parent links from each node.

Although prefix sharing is less likely to occur in an AFOPT-tree than that in an

FP-tree, the AFOPT-tree saves much space from not storing parent links (statistics are

shown in [95]). Moreover, the AFOPT algorithm has adopted the pruning techniques

for mining maximal frequent itemsets and able to outperform FP-max* for mining short

patterns in sparse data sets. It has a worse performance than FPmax*, though, for

mining long patterns in dense datasets.

PatriciaMine [132] optimises the prefix-growth algorithm by using a Patricia trie
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as data structure. It merges successive items which have the same frequency in each

path, which makes it able to achieve a more compressed structure. However, the trie

structure is expensive to compute. PatriciaMine performs well for mining patterns in

a sparse data set. For dense data sets, which require numerous database projections,

the construction of the conditional databases is a bottleneck of this algorithm.

4.9 Summary

In this chapter, we have examined the use of advanced data structures, Zero suppressed

BDDs (ZBDDs), for mining (maximal/closed) frequent itemsets. We also identified sit-

uations where they are superior over state of the art techniques. Overall, we found

that ZBDDs allow much higher data compression for storing huge volume of long pat-

terns as well as the intermediate structures used in mining them. We also introduced a

weighted ZBDD, which is able to improve mining efficiency than the traditional ZBDD.

Although our algorithm is not uniformly superior than the other algorithms, it allows

more efficient mining in dense high dimensional datasets at low support thresholds.

We believe this result suggests that ZBDDs can serve as a very valuable tool in data

mining.
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Chapter 5

Mining Frequent Subsequences

Using Weighted Sequence Binary

Decision Diagrams

In this chapter, we study an important pattern mining task in sequential databases.

In particular, we study the mining of frequent subsequences which is a fundamental

type of sequential pattern. Given a minimum frequency threshold, it is defined as a

frequently occurring ordered list of events or items, where an item may be a web page

in a web access sequence, or a nucleotide in a DNA sequence. There are many useful

applications, including analyzing time-stamped market basket data, finding web access

patterns (WAP) from web logs [130], finding relevant genes from DNA sequences [101]

and classifying protein sequences [54, 143].

5.1 Introduction

Frequent subsequence miners must explore an exponentially sized search space [129],

which can be computationally expensive when a large number of long frequent subse-

quences exist, such as in DNA or protein sequence data sets [135, 55, 19], which have

a small alphabet. or in other data sets at a low minimum support [130]. Popular

techniques for mining frequent subsequences such as those in [129, 47], adopt a pattern

growth approach which is thought to be the most efficient category of approaches for

sequential pattern mining. The generation of infrequent candidate patterns is avoided
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by projecting the database into smaller conditional databases recursively.

However, such a technique can be computationally expensive due to the following

factors: 1) Projecting numerous conditional databases takes considerable time as well as

space, especially since item reordering optimizations do not make sense for sequential

mining, like they do for frequent itemset mining. 2) Each conditional database is

processed independently, although they often contain some common sub-structures.

Highlighted in the previous chapter, BDDs can achieve greater data compression

than prefix trees, since node fan in (suffix sharing) as well as node fan out (prefix shar-

ing) is allowed in a BDD. Complementing their compactness, BDDs are also engineered

to enforce reuse of intermediate computation results. The use of BDDs in a pattern

growth framework has been shown useful for mining frequent itemsets, more particu-

larly, for compressing and efficiently manipulating the numerous conditional databases.

Instead of a prefix tree, we will demonstrate how a directed acyclic graph (DAG), such

as a Binary Decision Diagram (BDD) [25], can be used as an alternative data struc-

ture for mining frequent subsequences. We focus on mining a large number of long

subsequences efficiently, in terms of both time and space.

PrefixSpan [129], is one of the best algorithms for mining frequent subsequences.

Its optimisation technique completely avoids physically constructing database projec-

tions. The benefit of using a tree data structure for efficiently mining frequent subse-

quences is questioned in [129]. The compactness of a prefix tree relies on the existence of

common prefix-paths, which cannot be fully exploited in the sequence context. Recent

work [47] proposed a tree based PLWAP algorithm for mining sequential web access

patterns in weblogs, using a WAP-tree data structure which allows common prefixes to

share nodes in the tree. The PrefixSpan is useful for mining long subsequences which

occur rarely in the database, whereas PLWAP is more useful for mining short but many

subsequences. A review of these techniques can be found in Section 2.4.2 (Chapter 2).

5.2 Contributions

In this chapter, we introduce a mining technique based on the use of a special kind

of BDD, which can provide an overall compressed representation of the intermediate

databases. In contrast to previous thinking, our technique can benefit from the explicit

construction of the BDD by relying on sophisticated techniques for node sharing and

caching. It is not straightforward to efficiently encode sequences into BDDs, however.
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To this end, we introduce an original variant, namely the Sequence Binary Decision

Diagram (SeqBDD), which is suitable for compactly representing sequences and

efficiently mining frequent subsequences. Based on the canonical property of SeqBDDs,

multiple databases may share sub-structures, which in turn allows high overall data

compression to be achieved and redundant computations to be avoided. The questions

which we address in this research are:

• Can sequences be compactly represented using a BDD?

• Can the use of a BDD benefit frequent subsequence mining?

• Can a BDD-based frequent subsequence mining technique outperform state-of-the-

art pattern growth techniques?

To summarise, our contributions in this chapter are three-fold:

• We introduce a compact and canonical DAG data structure for representing se-

quences, which we call a Sequence Binary Decision Diagram (SeqBDD),

and its weighted variant which allows the frequency (or support) of the sequences

to be represented. Unlike prefix-trees, SeqBDDs allow node fan-out as well as

fan-in, which is a novel data representation in the sequence mining literature.

• We show how a weighted SeqBDD can be used for mining frequent subsequences in

the prefix-growth framework. In particular, node-sharing across multiple databases

is allowed, and BDD primitives which promote re-use of intermediate computa-

tion results are adopted in the mining procedure, allowing high data compression

and efficient mining to be achieved. A novel feature of our mining technique is

its ability to avoid duplicating similar conditional databases which are projected

by different prefixes.

• We experimentally investigate the behavior of our technique for finding frequent

subsequences in biological data sets, which have a small alphabet domain, in

weblog data sets, and several synthetic data sets. We compare its performance

against the competitive pattern growth algorithms, PLWAP [47] and PrefixS-

pan [129]. SeqBDDMiner is proven to be superior when the input sequences

are highly similar, or when the minimum support threshold is low, where the

conditional databases share many common sub-structures.
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5.3 Overview of ZBDD-based Representations of Sets of

Sequences

Directly representing sets of sequences as ZBDDs is not possible, since ZBDDs do not

allow a variable to appear multiple times in any path. A natural way to encode a

sequence is by introducing variables which encode each item and its position in the

sequence. In the following discussion, to differentiate the original sequential repre-

sentation from its itemset representation, we refer to items in the original domain as

alphabet letters.

Let L be the maximum length of a sequence S, and N be the size of the alphabet

domain A. As a naive encoding, S can be expressed as an itemset over a new domain I ′

containing L×N items, each item represents an alphabet letter at a particular position

in the sequence. Another encoding requires L × log2N items [80], which may be more

efficient if the sequences contain many elements. We will give more details about

each encoding shortly. We refer to the ZBDD representations based on the alternative

encodings as ZBDDnaive, and ZBDDbinary, respectively.

5.3.1 Naive Encoding Scheme

Let xi be an item in I ′, where i ∈ [1 . . . L], and x ∈ A. Item xi in the itemset

representation of a sequence S represents the occurrence of letter x at the i’th position

in S.

Example 20. Suppose we have an alphabet domain A = {a, b, c}, and the maximum

length of the sequences is 5. The itemset domain contains 15 items. Let D be a

sequence database containing p1 = aabac, p2 = baba, p3 = aaca, p4 = bbac. The

itemset representation of p1 is {a1, a2, b3, a4, c5}. Figure 5.1 shows the itemset encoded

database.

5.3.2 Binary Encoding Scheme

The binary encoding scheme represents each alphabet letter by n = ⌈log2(N + 1)⌉

binary variables. Suppose there are 3 letters, a, b, and c, they are represented using 2-

bit binary variables v1, v0, such that (v1, v0) = (0, 1) represents a, (1, 0) represents b, and

(1, 1) represents c. At a given position i ∈ [1 . . . L] in the sequence, and j ∈ [0, . . . , n],
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Sequence Itemset Encoded
p1 = aabac a1, a2, b3, a4, c5

p2 = baba b1, a2, b3, a4

p3 = aaca a1, a2, c3, a4

p4 = bbac b1, b2, a3, c4

Figure 5.1: Sequence to itemset translation using Naive encoding, and the resulting
ZBDD representation of the sequence database

Symbol Binary Code Itemset Encoded
(v1, v0)

a (0, 1) xj.0

b (1, 0) xj.1

c (1, 1) xj.1xj.0

Sequence Itemset Encoded
p1 = aabac x1.0, x2.0, x3.1, x4.0, x5.1, x5.0

p2 = baba x1.1, x2.0, x3.1, x4.0

p3 = aaca x1.0, x2.0, x3.1, x3.0, x4.0

p4 = bbac x1.1, x2.1, x3.0, x4.1, x4.0

Figure 5.2: Sequence to itemset translation using binary coding, and the resulting
ZBDD representation of the sequence database

item xi.j encodes the binary coding of a sequence element (vn, . . . , v0) such that vj = 1.

Figure 5.2 shows the encoded database D and its ZBDD representation.

5.3.3 Compactness of ZBDD Representations

The work in [80] uses a lexicographic variable ordering for the ZBDD. Other variable

orderings may be used, but it does not have much influence on the compactness of the

ZBDD, due to the position-specific item representation. The binary encoding allows

more flexible node sharing between different alphabet representations, at the cost of

using more nodes in each path than the naive encoding. In the context of sequential

patterns, the ZBDDs are used to store frequent subsequences, which may occur in
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different positions in various sequences in the database. Using the position-specific

itemset encoding, there is no quick way to identify the occurrence of a subsequence in

several sequences. Based on this limitation, we next propose a new type of BDD which

is more suitable, and more compact, for representing sequences.

5.4 Weighted Sequence Binary Decision Diagrams

We have shown in the previous section that Zero-suppressed Binary Decision Diagrams

have limitations for representing sequences. In this section we will describe our proposed

data structure, namely the Sequence Binary Decision Diagram or SeqBDD for

short, and its weighted variant which allows more efficient manipulation of sequences.

In Sequence Binary Decision Diagrams (SeqBDDs), only the 0-child nodes are

ordered with respect to their parent nodes, and a variable is allowed to occur multiple

times in a path, which is not possible using any of the existing BDD variants. Analogous

to ZBDDs, both the node-merging and the zero-suppression rules are employed in

SeqBDDs, which allow a compact and canonical graph representation of sequences.

In order to use SeqBDDs for mining sequential patterns such as frequent subse-

quences, the frequency of the sequences need to be represented in the database. In-

spired by the weighted-variant of ZBDD for frequent itemset mining [98], we introduce

Weighted Sequence Binary Decision Diagrams (Weighted SeqBDDs).

5.4.1 Sequence Binary Decision Diagrams

In SeqBDD semantics, a path in a SeqBDD represents a sequence, in which the nodes

are arranged in-order to the positions of their respective variables in the sequence. More

specifically, the top node corresponds to the head of the sequence, and the successive

1-child nodes correspond to the following elements, respectively. A SeqBDD node

N = node(x,N1, N0) denotes an internal node labeled by variable x, and N1 (resp.

N0) denotes its 1-child (resp. 0-child). The label of node N has a lower index (appear

earlier in the variable ordering) than the label of N0. We denote the total number of

descendant nodes of node N , including N itself, by |N |.

Let x be an item and P and Q be two sets of sequences. We define an operation

x × P which appends x to the head of every sequence in P , and a set-union operation

P
⋃

Q which returns the set of sequences which occur in either P or Q.
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Definition 17. A SeqBDD node N = node(x,N1, N0) represents a set of sequences S

such that S = Sx
⋃

(x × Sx), where Sx is the set of sequences which begin with element

x (with the head elements being removed), and Sx is the set of sequences which do not

begin with x. Node N1 represents set Sx, and node N0 represents set Sx.

Moreover, every sequence element in the SeqBDD can be encoded into a set of

binary variables, using a similar binary encoding scheme used in ZBDDbinary which

was discussed in Section 5.3.2. However, each path is much likely longer, but the

improvement in terms of node sharing is relatively small. Thus, in most cases, the

database representation with the binary encoding id less compact. In the following

discussion, we will compare the compactness of SeqBDDs with ZBDDs under the naive

itemset encoding.

Compactness of a SeqBDD: By removing the variable ordering between each

node and its 1-child, the SeqBDD’s merging rule allows common suffix-paths between

sequences to share nodes, regardless of their length. This is something which is not

possible in the ZBDD representations. We employ a lexicographic variable ordering

for the SeqBDD. Other variable orderings may be used, however, this would not have

much influence on the compactness, since, it is only employed partially.

The following theorems state the compactness of SeqBDDs relative to ZBDDs and

prefix trees, where the size is proportional to the number of nodes.

Theorem 6. Given a sequence database, the SeqBDD, ZBDD, and prefix tree represen-

tations satisfy the following relation: SeqBDD ≤ ZBDD ≤ Prefix tree, where SeqBDD

is the most compact, and the sequences in the ZBDD are encoded by the naive itemset

encoding.

Proof. The proof for this theorem follows from Lemma 3.

Lemma 3. Given a sequence database, nodes in the ZBDD have a many-to-one rela-

tionship with the SeqBDD, and nodes in the prefix tree have a many-to-one relationship

with the ZBDD.

Proof. Since the merging rule criteria affects either the ZBDD or the SeqBDD only if

there is some common suffix between the sequences, assume there are two non-identical

sequences in the input database, p and q, which share a common suffix namely suffix.

Let PZ and QZ be two suffix paths in the ZBDD which correspond to suffix in p and
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q, respectively, PSeq and QSeq be corresponding paths in the SeqBDD, and Ptree and

Qtree be the corresponding paths in the prefix tree.

If |p| 6= |q|, the suffixes of p and q are represented using different sets of variables

and PZ and QZ can be mapped to Ptree and Qtree respectively. If |p| = |q|, however,

PZ and QZ are merged, and both Ptree and Qtree correspond to one path in the ZBDD.

Regardless of the length of p and q, the suffix suffix is encoded similarly in both se-

quences and PSeq and QSeq are merged, which shows the many-to-one mapping between

the ZBDD nodes to SeqBDD.

5.4.2 Weighted Sequence Binary Decision Diagrams

A Weighted SeqBDD is a SeqBDD with weighted edges. Every edge in a weighted

SeqBDD is attributed by an integer value, and each internal node’s incoming edge

corresponds to the total frequency of all sequences in that node. Thus, the weight of

the incoming link is monotonically decreasing as the node is positioned lower in the

structure. We define a Weighted SeqBDD node by the following definition.

Definition 18. A Weighted SeqBDD node N is a pair of 〈ϕ, ϑ〉 where ϕ is the weight

of N , and ϑ is a SeqBDD node.

The weight of node N , i.e. ϕ, represents the weight of the incoming link to N .

For a node N , we define a function weight(N) = ϕ, which gives the total frequency of

the sequences in N . If N is an internal node, N0 and N1 correspond to two partitions

of the database, and weight(N) is the sum of the total frequencies of the sequences in

N0 and in N1:

weight(N) = weight(N0) + weight(N1) (5.1)

Two nodes in a Weighted SeqBDD are merged only if they have the same label,

the same respective child-nodes, and also the same weights on the outgoing edges

respectively. Hence, a Weighted SeqBDD may be less compact than the non-weighted

SeqBDD, since two nodes which contain similar sequences cannot be merged in the

Weighted SeqBDD if their respective frequencies are different. Figure 5.3 illustrates a

weighted SeqBDD node and the merging rule for weighted SeqBDDs.

Example 21. Consider a set of sequences, with their respective frequencies, S = {aaa :

3, aba : 2, bc : 2, bbc : 2}. Figure 5.4(a) shows an example of a Weighted SeqBDD

representation of S. Assuming a lexicographic ordering, the prefix-path a is shared
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(a) Node N = 〈ϕ, ϑ〉;

ϑ = node(x, N1, N0); ϕ = ϕ1 + ϕ0.
(b) Weighted SeqBDD’s Merging Rule applies

only if ϕ0 ≡ ϕ′

0 and ϕ1 ≡ ϕ′

1

Figure 5.3: Illustration of Weighted SeqBDDs

(a) Weighted SeqBDD (b) SeqBDD

Figure 5.4: Weighted SeqBDD vs SeqBDD for a set of sequences S = {aaa : 3, aba :
2, bc : 2, bbc : 2}, using a lexicographic variable ordering

between sequences aaa and aba, and prefix b is shared between sequences bc and bbc. The

lower node representing suffix c is shared between sequences bc and bbc, but the bottom

a-nodes are not merged because they have different frequencies. As a comparison, the

SeqBDD for the same sequences, being 1 node smaller, is shown in Figure 5.4(b).

Monotonic property of weights in a Weighted SeqBDD: When a Weighted

SeqBDD is used for storing subsequences, we can use the weights to efficiently prune

sequences which do not satisfy the minimum support constraint due to the monotonic

property of the weight function. In particular, its monotonicity is described by the

following theorem.

Lemma 4. Given a weighted SeqBDD node N , weight(N0) ≤ weight(N) and weight(N1) ≤

weight(N)

Proof. The proof for this lemma is straightforward from Equation 5.1. Since the weight

of each node is a positive integer, and it is the sum of the weights of its child nodes, i.e.

N0 and N1, the weight of a node is no smaller than the weight of its child nodes.
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Based on Lemma 4, if the weight of a node N is less than the minimum support,

node N and its child-nodes correspond to infrequent sequences. Thus, they can be safely

removed and replaced by the sink-0 node. Being monotonic, the weights in Weighted

SeqBDDs may be used for representing other monotonic functions, other than the total

frequency which we have defined, such as the maximum (or minimum) length of the

sequences.

Weighted SeqBDD primitive operations: Basic ZBDD operations (listed in

Table 4.1) such as set-union and set-subtraction can be adapted for Weighted SeqBDDs

(and for the general SeqBDDs). In the following discussion, we show how the weight

function can be integrated with ZBDD’s set-union operation. When a sequence co-

exists across the input SeqBDDs, its frequencies are added. If both of its inputs are

sink-1 nodes, the output is also a sink-1 with the weights of the input nodes being added.

Moreover, the weight of each node in the output is computed using Equation 5.1. Below,

we show that the operation is correct, with references made to the corresponding lines

in the SeqBDD’s addSeqBDD() procedure shown in Algorithm 5.1.

Theorem 7. Correctness of the addSeqBDD() procedure: Given two Weighted

SeqBDDs P and Q, the addSeqBDD(P,Q) correctly adds the sequences in P and Q and

their corresponding frequencies.

Proof. Consider the following cases:

1. If P is a sink-0, i.e. P is empty, the output consists of all sequences in Q. Similarly,

if Q is a sink-0, P is returned as output (line 1-2).

2. If both P and Q are sink-1 nodes, i.e. each of P and Q consists of an empty

sequence, then the output also consists of an empty sequence represented by a

sink-1 node with weight of the total frequency between P and Q (line 5).

3. If both P and Q are internal nodes with labels x and y.

(a) Suppose x = y (line 7-8). Since x is the lowest indexed item among the

head item of all sequences in P and Q, x should be the label of the output

node. The 1-child of the output node should contain all sequences which

begin with x, which are present in P1 and Q1, and the 0-child of the output

node contains the remaining sequences.

(b) Suppose x has a lower index1 than y (line 9-10), x has a lower index than the

head of all sequences in Q. Therefore, the output node should be labeled with

1A sink-1 is considered an internal node with the highest index.
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Algorithm 5.1 addSeqBDD(P,Q)

Input: P and Q are the input weighted SeqBDDs, each of which represents a set of sequences
Output: 〈Z.weight, Z〉 : the weighted SeqBDD containing set-union between P and Q

Procedure:
1: case P is a sink-0 node : return Z = Q
2: case Q is a sink-0 node : return Z = P
3: case Q = P is a sink-1 node :
4: Calculate weight: Z.weight = weight(P ) + weight(Q)
5: return 〈Z.weight, 1〉
6: Let Z = node(Z.var, Z1, Z0), P = node(x, P1, P0), Q = node(y, Q1, Q0)
7: case x = y :
8: Z.var = x ; Z1 = addSeqBDD(P1, Q1) ; Z0 = addSeqBDD(P0, Q0)
9: case x has a lower index than y :

10: Z.var = x ; Z1 = P1 ; Z0 = addSeqBDD(P0, Q)
11: case x has a higher index than y : return addSeqBDD(Q,P )
12: Calculate weight: Z.weight = weight(Z0) + weight(Z1)
13: return 〈Z.weight, Z〉

x, and all sequences which begin with x are present in P1. The remaining

output sequences exist in P0 and Q.

(c) Suppose x has a higher index than y (line 11). This condition is opposite to

condition 3(b), since the operation is commutative.

In each of the above cases, any sequence which co-occurs in P and Q is identified when

the sink-1 nodes are found. Hence, when a co-occurring sequence is found, its total

support is computed bottom-up beginning with the sink nodes, followed by the parent

nodes respectively (line 12).

Properties of Weighted SeqBDDs: A weighted SeqBDD is similar to a

prefix tree, except that identical sub-trees are merged. Table 5.1 shows a comparison

between their structural properties. Firstly, Weighted SeqBDDs store the frequencies

as edge-weights, and they do not have side-links which are needed for finding database

projections in the prefix trees. The caching mechanism in Weighted SeqBDDs allows

the cost of projecting the databases to be reduced. Moreover, weighted SeqBDDs are

similar to prefix trees in a sense that node fan-out is allowed, but node fan-in is only

allowed in weighted SeqBDDs.

An example of a Weighted SeqBDD and a prefix tree, presented as a PLWAP

tree [47], is shown in Figure 5.5, both of which represent the initial database containing

sequences {aabac, baba, aaca, bbac}. The weighted SeqBDD contains 4 fewer nodes than

Prefix tree through merging of the lower a-c nodes between sequences aabac and bbac,
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Property Weighted SeqBDD Prefix Tree
Support storage As edge weight In every node
Side-links No Yes
Fan-out Yes Yes
Fan-in Yes No

Table 5.1: Comparison between Weighted SeqBDD and Prefix Tree

Data Structure Zero-suppressed Weighted Edges
SeqBDD Yes No
Weighted SeqBDD Yes Yes
Weighted ZBDD Yes Yes
BMD No Yes
FreeBDD No No

Data Structure Variable Ordering
SeqBDD A global variable ordering is en-

forced between each node and its
0-child

ZBDD A global variable ordering
BMD A global variable ordering
FreeBDD A variable ordering is enforced on

the 1-child nodes in each path,
different paths may have different
variable orderings

Table 5.2: Comparison between (Weighted) SeqBDD and other BDD Variants

and the lower a-node between sequences baba and aaca.

Table 5.2 shows a comparison between a Weighted SeqBDD and the other types

of BDD. The zero-suppression rule is employed in ZBDDs and SeqBDDs, and their

weighted variants [98]. BMDs [27] also have weighted edges, but they use a different

weight function. In terms of variable ordering, SeqBDDs employ a global ordering

which is applied only upon the 0-child nodes, whereas FreeBDDs [59] allow different

paths to have different orderings. The other BDDs apply a global ordering between

each node and both of its child nodes.

Table 5.3 shows some statistics of the weighted SeqBDD and ZBDD representa-

tions for three real data sets (description of these data sets is given in Section 5.6),

when used for representing the frequent subsequences and their frequency values. For

yeast.L200 data set, the size of the weighted SeqBDD (W-SeqBDD) is 456 for storing

475 sequences with an average length of 2.9, which is 25% smaller than the Weighted

ZBDDs (WZBDDs), labeled as WZBDDnaive and WZBDDbinary. For the other two

data sets, which contain more and longer sequences, W-SeqBDD is more compact than

WZBDDnaive (i.e. achieving 60% compression for snake, and 10% compression for
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Dataset minsup Num. of subsequences Average length

yeast.L200 0.8 475 2.9
snake 0.3 2616 5

davinci 0.001 999 5

Dataset |W-SeqBDD| |WZBDDnaive| |WZBDDbinary|
yeast.L200 456 632 644

snake 1007 3293 4451
davinci 1030 1165 3331

Table 5.3: Characteristics of the represented subsequences, and size comparison be-
tween weighted SeqBDD (W-SeqBDD), WZBDDnaive, and WZBDDbinary, in terms of
the number of nodes

davinci which has a larger alphabet). For all three data sets, the WZBDDbinary is

smaller than WZBDDnaive, with the davinci data set having the largest difference due

to the large alphabet size.

Complexity analysis: In the following discussion, we discuss the computational

complexity for creating and manipulating nodes in the general SeqBDDs, which is also

applicable to the Weighted SeqBDDs. The computational cost for creating a SeqBDD

node requires one look-up operation to the uniquetable, which is the same as that in a

BDD.

Theorem 8. The time complexity for creating a SeqBDD that consists of N nodes is

O(N).

Proof. When creating a node, the hash key for that node is computed and one lookup

operation is performed to find a pre-existing entry in the unique table. Based on the

existing hash table implementation in JINC [123], an insertion or lookup operations

has O(1) time complexity. Thus, when creating N nodes, the overall time complexity

is O(N).

Theorem 9. Given a database containing k sequences with a maximum length of L.

The number of nodes in the SeqBDD representation is bounded by kL, and the height

of the SeqBDD is bounded by L.

Proof. In the given database, there are kL elements in total. In the worst case, each of

those elements is represented by a node in the SeqBDD, thus, the SeqBDD consists of

kL unique nodes. The height refers to the maximum length of any path in the SeqBDD,
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which is L, which refers to the maximum length of the input sequence since each path

corresponds to a unique sequence.

Note: in practice, the number of nodes is much smaller than kL, since many nodes

in a SeqBDD which correspond to common prefixes, or common suffixes, may be shared

across multiple sequences. Since the number of nodes of the SeqBDD is O(kL), hence,

its construction has O((kL)) time complexity.

The basic operations, such as set-union and set-subtraction, have polynomial time-

complexity with respect to the number of nodes in the input SeqBDDs. Our algorithm

for mining frequent subsequences employ the primitive SeqBDD’s addSeqBDD operation

which adds two sets of sequences and combines their frequencies. The complexity

analysis of such operation follows.

Theorem 10. Given two SeqBDDs P and Q, and a binary operation <op>(P , Q),

where <op> is a primitive operation. The time complexity of <op>(P ,Q) is O(|P | +

|Q|).

Proof. The primitive operations visit each node from the two input nodes at most once.

Hence, the number of recursive calls is O(|P |+ |Q|). Since in each recursive call, a new

node may be created, the total number of unique nodes (including the input and the

output nodes) is O(|P | + |Q|). In the worst case, no nodes are merged between the

input and the output SeqBDDs. Hence, the overall time complexity for the operation

is O(|P | + |Q|).

Caching mechanism: To reduce computational cost, the SeqBDDs employ the

same caching mechanism as in the BDDs, and in our implementation, we use the

caching library of JINC [123]. There exist cache-conscious prefix trees [60] for mining

frequent itemsets, which are designed to minimise access to physical memory. On the

other hand, BDD’s caching mechanism has a different aim, that is to make similar

intermediate computations to re-use the computed results. It is also automatically

provided by the BDD library implementation, and it is not explicitly shown in the

algorithm described shortly.
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(a) Weighted SeqBDD (b) Prefix tree

Figure 5.5: Weighted SeqBDD vs Prefix tree for a data set containing sequences
{aabac, baba, aaca, bbac}, using a lexicographic variable ordering.

5.5 Frequent Subsequence Mining Algorithm Using Weighted

Sequence BDDs

We call our algorithm for mining frequent subsequences SeqBDDMiner. SeqBDDMiner

follows a prefix growth mechanism similar to PrefixSpan in [129], but uses a Weighted

SeqBDD for representing the database. In the remainder of the paper, unless otherwise

stated, we refer to the Weighted SeqBDD by its general term SeqBDD.

Unlike PrefixSpan, our algorithm physically creates the conditional databases but

this benefits mining, since the SeqBDD allows nodes to be shared across multiple

databases, and allows the results to be shared between similar intermediate computa-

tions. Using the SeqBDD’s caching principle, moreover, construction of the conditional

databases can be performed efficiently.

The initial SeqBDD representation of the database is built by add-ing the input

sequences. The construction procedure is shown in Algorithm 5.2. For an item x, the

x-conditional database contains suffixes of the first occurrence of x from each sequence

in the input database. We find an f -list for each item x, which is an ordered list of

elements which are frequent in the conditional database. This list allows early pruning

of the conditional database by removing items which do not appear in the f -list. For

efficiency purpose, the ordering in this list is inverted from the SeqBDD’s global variable

ordering, which allows the output node to be built bottom-up incrementally.

For finding the frequency of an item, we define a SeqBDD-based operation which

follows a divide-and-conquer strategy. Given an input SeqBDD database P , and an
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Algorithm 5.2 buildSeqDB(D)

Input: D : a sequence data set.
Output: initDB : the Weighted SeqBDD containing sequences in the input data set D.
Procedure:
1: initDB = 0 /* Initialise initDB to be a sink-0 node */
2: for each sequence s in D do
3: Ps = a Weighted SeqBDD containing sequence s /* Build a SeqBDD which contains a

sequence s */
4: initDB = initDB

⋃

Ps /* Add PS to initDB */
5: end for

Note: A
⋃

B denotes the addSeqBDD(A, B) operation where A and B are SeqBDDs.

item x. Let var be the label of P . The frequency of x is found by recursively adding its

frequency in the two database partitions: P1 and P0. The first partition, P1, contains

sequences which begin with var, the second partition contains the remaining sequences.

If var = x, weight(P1) gives the frequency of x in the first database partition. On the

other hand, if var 6= x, the frequency of x in the first database partition is computed

recursively in P1. The recursion in P1 terminates at the first occurrence of x in each

branch. The similar recursion procedure is performed in P0. We define the operation

frequency(P, x) for finding the frequency of item x in a SeqBDD P as the following.

If P is a sink node, frequency(P, x) = 0, otherwise,

frequency(P, x) =







frequency(P1, x) + frequency(P0, x) if P.var 6= x

weight(P1) + frequency(P0, x) if P.var = x

For an item x, finding the x-suffixes (and the conditional databases), which is a

major component in our mining algorithm, we define a SeqBDD operation suffixTree

using a similar recursive strategy as the above discussed frequency operation. Given a

SeqBDD P , and an item x, suffixTree(P, x) is the set of x-suffixes which are contained

in P , excluding the head elements, which we call as the x-suffix tree. If P is a sink

node, suffixTree(P, x) = ∅, otherwise,

suffixTree(P, x) =







suffixTree(P1, x)
⋃

suffixTree(P0, x) if P.var 6= x

P1
⋃

suffixTree(P0, x) if P.var = x

Optimisations: The first optimisation is called infrequent database pruning,

which is based on the monotonic property of the weights in a SeqBDD. If the weight

of the top node is less than the minimum support α, then the conditional databases
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can be safely pruned. Additionally, SeqBDDMiner has a number of optimisations which

rely on the use of the SeqBDD’s caching library:

• Caching of intermediate results. The frequent subsequences from each condi-

tional database are stored in a cache table called the patternCache, to be re-used

if the same conditional database is projected by some other prefixes. We denote

the cached patterns for a conditional database P by patternCache[P ].

• Caching of pruned conditional databases. For a given item x, and an input

database, the (pruned) conditionalDB is stored in a cache table, using a similar

mechanism as the patternCache. The procedure for obtaining the conditionalDB

comprises of 3 operations: 1) find the x-suffix tree, 2) find its f -list, 3) prune

infrequent items from the x-suffix tree. Each operation is associated with its own

cache, so that various databases, which may share common sub-structures, may

share the results of their intermediate computations.

Details of the mining algorithm: The SeqBDDMiner algorithm is shown in

Algorithm 5.3, which we will explain line-by-line. The procedure begins with the input

SeqBDD containing the initial data set with the infrequent items being removed, the

f -list contains the frequent items which are ordered in reverse to the SeqBDD’s variable

ordering. Firstly, the infrequent database pruning is applied if the total frequency of

the sequences is less than the minimum support (line 1). The function terminates if the

database is empty (line 4), or if the output is found in the patternCache. In the latter

case, a pointer to the cached output is returned (line 8). For each item x in the f -list,

it projects the x-suffix tree (line 12). Prior to its processing, the x-conditional database

is pruned in 2 steps (line 13-14): i) Find the frequent items in x-suffix tree using the

pre-defined SeqBDD’s frequency() operation; ii) Remove the infrequent items from

x-suffix tree. Then, the function is called recursively on the x-conditionalDB (line

15). When the locally frequent patterns are returned from the x-conditionalDB, x is

appended to the head of every pattern. The output node is built incrementally by

adding the intermediate outputs for all such x (line 16).

Example 22. Reconsider the set of sequences D in Example 20. Let min support be

3. Construction of the initial SeqBDD database is shown in Figure 5.6, which incre-

mentally adds the individual SeqBDD of each sequence. Let Si be the SeqBDD which

contains sequence pi, where i = {1, 2, 3, 4}. The conditional databases for item c and

b are shown in Figure 5.7. The first item in f -list is c, hence, c-suffix tree is built by

finding suffixes {} from S1, a from S3, and {} from S4, and then adding them together.
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Figure 5.6: SeqBDDs representing S1 = {aabac}, S2 = {baba}, S3 = {aaca}, S4 =
{bbac}, S1 +S2, (S1 +S2)+S3, and ((S1 +S2)+S3)+S4, using a lexicographic variable
ordering

Figure 5.7: The initial database, and conditional databases when growing prefix c and
prefix b, and the corresponding locally frequent subsequences, labeled as FS|c and
FS|b, respectively. FS|c + FS|b shows the combined frequent subsequences. FS|c +
FS|b + FS|a shows the globally frequent subsequences. ( minsup = 3 )
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Algorithm 5.3 SeqBDDMiner(inputDB, α, f -list)

Input: inputDB : a SeqBDD containing the input database
α : the minimum support threshold
f -list : a list of items which occur frequently in inputDB

Output: allFS : a SeqBDD containing the frequent subsequences
1: if (weight(inputDB) < α) then
2: return 0 /* Infrequent database pruning: return sink-0 node */
3: end if
4: if (inputDB is a sink node) then
5: return inputDB /* Terminal case */
6: end if
7: if (patternCache[inputDB] is not empty) then
8: return patternCache[inputDB] /* Do cache lookup: return the cached entry if exists */
9: end if

10: allFS = 1 /* Initialise the output node as a 1-sink node */
11: for each item x in f -list do
12: x-suffix tree = suffixTree(inputDB, x) /* Find the x-suffix tree */
13: f |x-list = the list of frequent items in x-suffix tree /* Find the frequent items in x-suffix

tree */
14: x-condDB = remove items which do not appear in f |x-list from x-suffix tree /* Prune

infrequent items from x-suffix tree */
15: x-FS = x×SeqBDDMiner(x-condDB, α, f |x-list) /* Find frequent subsequences with prefix

x from the conditional DB */
16: allFS = addSeqBDD(x-FS, allFS) /* Incrementally build the output node */
17: end for
18: patternCache[inputDB] = allFS /* Cache the output patterns */
19: return allFS

Note : x × P appends item x to the head of every sequence in P , by creating a node(x, P, 0),

where P is a SeqBDD.

The f -list in c-suffix tree is empty. Thus, the resulting c-conditionalDB contains an

empty set {} with a support of 3, no more patterns can be grown. The output node for

prefix c, containing {c : 3} is shown under label FS|c.

The next item in f -list is item b. b-suffix tree contains suffixes ac, aba, bac, whose

f -list (labeled as f |b-list) contains only item a. Then, SeqBDDMiner() is called on b-

conditionalDB. Consequently, prefix a is being grown from b-conditionalDB, resulting

frequent subsequences b : 3 and ba : 3, labeled as FS|b. The output node, allFS, which

previously contains FS|c, is now combined with FS|b. The new output node is labeled

FS|c +FS|b. Since for every prefix item x, the highest node of allFS always has a lower

index than x (due to the reversed item-ordering in f -list), FS|c + FS|b can be obtained

by simply appending allFS to the 0-child of FS|b. The same procedure is performed for

the last item, a, obtaining patterns {a : 4, ac : 3, aa : 3}.
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Soundness and completeness of the algorithm: We will show that the

algorithm is sound and complete, based on properties of the Weighted SeqBDD. As

earlier discussed, the output patterns are grown recursively based on the frequent items

from each conditional database. Thus, we need to show that the frequent items are

correctly found from the given database. We show this by proving the correctness of

the frequency SeqBDD operation.

Theorem 11. Given a SeqBDD P and an item x. The function frequency(P, x)

correctly calculates the frequency of item x in the given database P .

Proof. The total frequency of an item x, can be derived from paths which contain x,

since each path maps to a unique sequence. Firstly, if the database contains only a

single path, which may contain multiple occurrences of x, the weight of the highest

x-node gives the frequency of x in the database, since any lower x-node belongs to the

same sequence. Secondly, if the database contains multiple paths and there are two

x-nodes A and B such that each one is the highest x-node in their corresponding paths,

A and B represent two separate partitions of the database and thus, the total weights

of A and B gives the frequency of x in the overall database.

Theorem 12. The SeqMiner algorithm is sound and complete.

Proof. We will prove this theorem in two parts: (a) the algorithm is sound, and (b)

the algorithm is complete.

Soundness: We will show that growing prefix x from an item in the x-conditional

database generates a frequent subsequence pattern. Given a prefix x = x1, x2, . . . xn,

and its conditional database P , by definition, P contains items which are frequent in

the longest x-suffixes from the original database. The frequency of each item in the

original database is no smaller than its frequency in P . More specifically, the frequency

of each item i in P , is the number of sequences in the original database which contain

subsequence x1, x2, . . . xn, i. Thus, if i occurs in P , growing x with item i generates

subsequence x1, x2, . . . xn, i which is frequent in the original database.

Completeness: We will show by contradiction that there exists no frequent subse-

quence patterns which contain an item which does not occur in the conditional database

of any of its prefixes.

Suppose there exists a frequent subsequence pattern q = q1, q2, . . . qn−1, qn which is

not found by the algorithm, because item qn does not occur in the conditional database
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of one of the prefixes of q. Let x and y be two prefixes of q, such that x = q1, q2, . . . qm,

where m < (n−1), and y = q1, q2, . . . qm, . . . qn−1. Let P be the x-conditional database.

Suppose item qn does not occur in P because z = q1, q2, . . . qm, qn is infrequent. The

subsequence z is also a subsequence of the frequent pattern q, which contradicts the

anti-monotonic property which says that all subsequences of a frequent subsequence

pattern are also frequent. Therefore, such a subsequence pattern q does not exist, and

the algorithm is complete.

Complexity analysis: To analyse the complexity of our mining algorithm, we

consider the space complexity for constructing the initial database, the final output,

and the conditional databases, in terms of the number of nodes. The time complexity

can be derived from the space complexity by Theorem 8, which is O(N) where N is

the number of nodes.

Given a SeqBDD P which represents a sequence database, and a SeqBDD S which

represents the frequent subsequences in P . Let L be the maximum length of the

sequences in P , k be the number of sequences in P .

Theorem 13. The total number of nodes for constructing the initial database is O(k2.L).

Proof. The initial database is constructed by incrementally adding the SeqBDD rep-

resentation of each sequence to the database. Let A and B be two SeqBDDs, where

A contains the SeqBDD for the first n − 1 sequences, B contains the SeqBDD for the

n-th sequence, where n = {1, 2, . . . k},. Since |A| is bounded by (n − 1).L, and |B| is

bounded by L, then the output of addSeqBDD(A,B) contains O(|A|+ |B|) nodes, which

is equal to O(n.L). So, the overall time complexity to build the complete database is
∑n=k

n=1 O(n.L), which is O(k2.L).

Theorem 14. The total number of nodes for constructing the conditional databases is

O(k2.L2.2L).

Proof. The number of frequent subsequences is O(k.2L), and each subsequence con-

tains O(L) elements. Therefore, the total number of nodes in the output SeqBDD is

O(k.L.2L), which corresponds to the number of conditional databases. Since the size of

an x-conditional database is bounded by the x-suffix tree, let us consider the following

cases when processing suffixTree(P ,x). Let S = suffixTree(P, x). It is straightfor-

ward to show that |S| = O(|P |) if P is a sink node or P contains only one sequence. If

P is not a sink node, the output is obtained by adding suffixTree(P1, x) (or P1 if the
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label of P is x) with suffixTree(P0, x), each of which contains O(|P |) nodes. Hence,

the overall size of the output is O(|P |), which is O(k.L) by Theorem 9, and the total

number of nodes used by the conditional databases is O(k2.L2.2L).

Note: In practice, many nodes are shared across multiple conditional databases,

and many conditional databases are pruned by the infrequent database pruning. Hence,

the total number of nodes is much less than k2.L2.2L. Moreover, SeqBDD’s caching

principle avoids redundant node constructions by allowing any of the computation

results (the suffix trees and conditional database) for each subtree to be cached and

re-used when needed.

5.6 Performance Study

In this section we present experimental results to compare the performance of our

SeqBDDMiner algorithm, which is based on our proposed Weighted Sequence Bi-

nary Decision Diagrams, with the state-of-the-art prefix-growth algorithms such as

PLWAP [48], and PrefixSpan which has been shown superior in [129]. We implement

the weighted SeqBDDs and our SeqBDDMiner algorithm using the core library func-

tions from an existing BDD package, JINC2. All implementations were coded in C++.

Similarly, PLWAP and PrefixSpan were coded in C++, which we obtained from their

respective authors. All tests were performed on a 4.0 GHz CPU with 32 GB RAM,

running Redhat Linux 5, with a CPU time-out limit of 100,000 seconds per mining task.

We use the default table parameters as provided by the author of the BDD package

shown below.

Maximum size of the unique table (bytes): M = Unlimited

Maximum size of each cache table (bytes): K = 131072

Hash functions for the cache table:

for binary operations: h(A,B) = ((B + (A ∗ p2)) ∗ p1) mod K

for unary operations: h(A) = ((A ∗ p1) mod K,

where p1 and p2 are large prime numbers, e.g. p1 = 4256249, p2 =

12582917

The cached binary operations include addSeqBDD(P,Q), and suffixTree(P, x).

2JINC was developed by the author of [123] for studying a different type of weighted BDDs
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Table 5.4: Data set characteristics and a proposed categorisation based on the average
sequence length

Data set name |D| N L C Category
yeast.L200 25 4 129 35 Short
DENV1 9 4 50 50 Long
snake 174 20 25 25 Short
PSORTb-ccm 15 20 50 50 Long
gazelle 29369 1451 652 3 V.short
davinci 10016 1108 416 2 V.short
C2.5.S5.N50.D40K 17808 50 42 3 V.short
|D| = Number of sequences in the data set
N = Number of items in the domain
L = Maximum sequence length
C = Average sequence length
V.short = Very short

The unary operations include SeqBDDMiner(P ) (finding the frequent subsequences from

a given database P ), and removing the infrequent items from a given database.

Our experiments aim to analyze the following factors: 1) SeqBDD’s compact-

ness : the amount of data compression which can be achieved by the (Weighted)

SeqBDD due to its fan-out and fan-in; 2) Runtime performance: the runtime perfor-

mance of our SeqBDD-based algorithm in comparison to the other encodings discussed

in Section 5.3, and in comparison to the existing prefix growth algorithms. We will

also analyze the effects of increasing similarity of the sequences, which would increase

the length (and volume) of the patterns. 3) Effectiveness of pattern caching: how

much database projection is avoided due to pattern caching. We analyse three types

of real data sets: i) DNA sequence data sets, ii) protein data sets, and iii) weblog data

sets. Their characteristics are shown in Table 5.4. Detailed descriptions of each type

of data set are given shortly.

DNA sequence data sets typically contain long sequences which are defined

over 4 letters, i.e. A,C,G, T . Due to the small alphabet size, the sequences may be

highly similar and a large number of long frequent subsequences exist. We choose 2 data

sets from the NCBI’s website [102]: yeast.L2003, which contains the first 25 sequences,

with a maximum length of 200 elements, and DENV14, which contains genes from

3yeast.L200 is obtained from NCBI’s website using query: yeast [organism] AND 1:200 [sequence
length].

4DENV1 is obtained from NCBI’s website using query: dengue virus type 1 AND 1:100 [sequence
length];
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dengue virus. We remove any sequence duplicates for our experiments. Due to the

large number of patterns, we only use the first 50 elements from each sequence, to

allow mining to complete within a reasonable time with low support thresholds.

Protein sequence data sets are defined over 20 letters which are also relatively

dense. The two data sets are snake [156], and PSORTb-ccm [143] which is smaller.

Due to the length of the input sequences, we only use the first 25 elements from each

sequence in the snake dataset, and 50 elements from each sequence in the PSORTb-ccm

data set.

Weblog data sets: Compared to the biological data sets, weblog data sets have

a larger domain and the sequences are relatively shorter. In particular, mining frequent

subsequences in the weblog data sets is challenging when the minimum support is low

due to the large number of sequences. We choose two weblog data sets : i) gazelle [156],

ii) davinci [47].

The synthetic data sets were generated using the sequential synthetic data

generator in [75] The first data set, C2.5.S5.N50.D40K consists of 40,000 sequences,

defined over 50 items, with average sequence length of 2.5, and the average length of

maximal potentially frequent sequence is 5. This data set contains shorter sequences

than the weblog data sets, although it has a smaller domain. Secondly, we use the

synthetic data generator to generate data sets with a varied value of N (i.e. number

of items in the domain) to analyse the effects of the alphabet size to the algorithm’s

performance. Moreover, to analyse the effects of the similarity of the sequences, we

choose the protein PSORTb-ccm and append an increasing length of synthetically-

generated common prefixes and common suffixes to each sequence.

5.6.1 Compactness of SeqBDDs Due to Fan-out and Fan-in

In this subsection, we examine the compactness of SeqBDDs for compressing a sequence

database, due to their node fan-out and node fan-in. To calculate the fan-out compres-

sion factor, we implement a Sequence Binary Decision Tree (SeqBDTree), which is a

relaxed type of SeqBDD with no node fan-in. We then calculate the compression be-

ing achieved due to node fan-out, i.e. fanOut and fanIn. 5, fanOut is the number of

nodes in the SeqBDTree, counted as a proportion of the the total number of elements

in the data set. fanIn is the node-count difference between SeqBDD and SeqBDTree,

5fanOut = 1−
|SeqBDTree|

total number of elements
, fanin =

|SeqBDTree|−|SeqBDD|

|SeqBDTree| , |SeqBDTree| = the num-

ber of nodes in the SeqBDTree
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Table 5.5: Fan-out and Fan-in compression factors of SeqBDD and a proposed data set
categorisation

Dataset name fanOut fanIn Category
yeast.L200 0.22 0.12 Similar
DENV1 0.53 0.07 Similar
snake 0.52 0.10 Highly similar
PSORTb-ccm 0.024 0.004 Dissimilar
gazelle 0.42 0.16 Similar
davinci 0.59 0.03 Similar
C2.5.S5.N50.D40K 0.52 0.18 Highly similar

as a proportion of the total number of nodes in the SeqBDTree, which represents the

compression being achieved by the SeqBDD over SeqBDTree (or prefix tree). Table 5.5

shows for each data set, the fanOut and fanIn compression factors. The mining times

using either data structures for a few representative data sets will also be shown shortly.

The fanOut compression factors represent the amount of common prefixes shared

among the input sequences in each data set. DENV1, snake, davinci, and C2.5.S5.N50.D40K

are those data sets which have more than 50% fanOut factors, i.e. on average, more

than 50% of the prefixes are shared across sequences. Such a factor indicates a high

prefix-similarity between the input sequences. The fanIn compression factors show that

low compression factors can be achieved by the SeqBDD over the prefix tree represen-

tation. Only up to 18% is achieved, for C2.5.S5.N50.D40K data set, which indicates

that only 18% of the suffixes are shared across sequences, given thousands of sequences

that exist. The PSORTb-ccm data set, which contains a small number of short se-

quences, has the lowest fanIn compression of 0.4% over the prefix tree. We find that

the compression factors are related to the similarity and the length of the sequences.

Intuitively, for data sets which contain long sequences, the SeqBDDs are likely to have

more node-sharing. But, it is true only if there eixst many common prefixes or suffixes,

or a few but long common prefixes or suffixes.

The first two DNA sequence data sets are considered similar, due to their small

alphabet and long sequences. Moreover, the protein data sets, which contain shorter

sequences over a larger alphabet are relatively sparser, thus, have lower similarity, than

the DNA sequences. The snake data set, however, is shown to contain much larger

prefix sharing and suffix sharing compard to the other protein data set, which indicates

the highly similar sequences it may contain. The two weblog data sets, both of which

contain a large number of very short sequences, are considered sparse data sets. More
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specifically, the gazelle data set has lower fanOut but higher fanIn compression factor

compared to the davinci data set. Such a high probability of sharing across either

prefixes or suffixes of the sequences occurs due to the large number of sequences that

exist in these data sets. It indicates that there is a relatively high similarity between

sequences in these data sets. Lastly, the synthetic data set, which also contains a large

number of very short sequences, is sparser than either weblog data set, but it has the

highest fanIn compression factor due to the suffix sharing, and also allows a high fanOut

compression factor due to the prefix sharing. These factors indicate the high similarity

of sequences in this sparse synthetic data set.

Based on the observations made above on the compression factors, we can roughly

classify the data sets into the following categories:

• Highly similar (high prefix-similarity and suffix-similarity): fanOut ≥ 0.5 and

fanIn ≥ 0.1.

• Similar (either one of high prefix-similarity or suffix-similarity): fanOut ≥ 0.5, or

fanIn ≥ 0.1.

• Dissimilar (low prefix-similarity and low suffix-similarity): fanOut < 0.5 and fanIn

< 0.1.

Figure 5.8 shows the respective mining times using either SeqBDD or SeqBDTree

data structure for mining frequent subsequences in two data sets : snake and davinci.

Both data sets have similar fanOut, but snake has a larger fanIn, i.e. contains more

similar suffixes than davinci. It shows that both SeqBDTree and SeqBDD have similar

runtimes when the support threshold is larger than a certain limit (20% for snake, and

0.04% for davinci). For lower support threshold values, SeqBDD-based miner achieves

an exponential improvement over SeqBDTree-based miner. These trends show that the

node fan-in in SeqBDDs is increasingly more effective to the mining time efficiency, as

the support threshold decreases.

5.6.2 Runtime Performance of the Mining Algorithm

In Table 5.3 (Section 5.4.2), we showed some statistics in terms of the number of

nodes in (Weighted) SeqBDD, and in ZBDD (with two alternative itemset encoding

scheme) for representing the frequent subsequence patterns. We now show the mining

time comparison between either type of data representations when they are used for

110



5.6. PERFORMANCE STUDY

0.1

1

10

100

1000

10000

100000

0 0.1 0.2 0.3 0.4 0.5 0.6

C
P

U
 ti

m
e(

se
co

nd
s)

minsup

SeqBDD
SeqBDTree

0.1

1

10

100

1000

10000

100000

0 0.0005 0.001 0.0015 0.002

C
P

U
 ti

m
e(

se
co

nd
s)

minsup

SeqBDD
SeqBDTree

(a) snake (b) davinci

Figure 5.8: Mining time comparison between SeqBDD and SeqBDTree
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Figure 5.9: Mining time comparison between SeqBDD, ZBDDnaive, and ZBDDbinary

mining frequent subsequences in snake and davinci data sets. Figure 5.9 shows that

SeqBDDMiner is uniformly superior in both data sets, being at least 10 times faster

than either ZBDD representation. Interestingly, ZBDDnaive is faster than ZBDDbinary

in the davinci data set, but slower in the snake data set. The statistics in Table 5.3

show that ZBDDbinary is faster when its size is not much larger than ZBDDnaive.

DNA sequence data sets: The runtime performance comparisons are shown in

Figure 5.10. In the yeast.L200 data set, SeqBDDMiner is 10 times slower than PLWAP

and 100 times slower than PrefixSpan when the support threshold is 70% or larger, but

its running time grows exponentially slower as the threshold decreases. SeqBDDMiner

has, moreover, higher scalability since it can finish mining given a support threshold

as low as 5% in under 1000 seconds, whereas both PLWAP and PrefixSpan could not

finish within the CPU time limit given a support threshold.

In the DENV1 data set, which contains similar sequences, SeqBDDMiner is sub-

stantially the most efficient, whereas PLWAP and PrefixSpan are exponentially slower

with respect to a decreasing minimum support. For support threshold values less than
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Figure 5.10: Mining times in DNA data sets

60%, PrefixSpan and PLWAP could not complete within the CPU time limit. This

shows the benefits of using SeqBDDs for mining highly similar sequences, for which

both PLWAP and PrefixSpan have more limited scalability.

Protein sequence data sets: The runtime performance comparisons are shown

in Figure 5.11. For both datasets, SeqBDDMiner is more scalable than the other

algorithms when the support threshold value is low. More specifically in the snake data

set, given a support threshold value as low as 2%, SeqBDDMiner completes mining

within 500 seconds which is 4 times faster than PrefixSpan, and PLWAP could not

complete mining within the CPU time limit. In general, the runtimes of both PLWAP

and PrefixSpan grow exponentially slower than SeqBDDMiner as the support threshold

decreases. Similar trends are found in the small and dense data set, PSORTb-ccm.

Weblog data sets: The runtime performance comparisons are shown in Figure

5.12. Overall, the runtime of SeqBDDMiner is slower than both PLWAP and PrefixSpan

for high support threshold values, but SeqBDDMiner grows exponentially slower than

the other algorithms with respect to a decreasing support threshold value.

In the gazelle data set, for support threshold larger than 0.05%, SeqBDDMiner is

up to 10,000 times slower than the both PLWAP and PrefixSpan. But for a support

threshold value as low as 0.02% (lower for PrefixSpan), SeqBDDMiner spends about

50,000 seconds, whilst PLWAP could not complete mining within the CPU time limit.

In the davinci data set, which has a larger fanOut factor than gazelle, SeqBDDMiner

is up to 100 times faster than PLWAP and PrefixSpan for support threshold 0.03% or

lower.

Synthetic data sets: The mining time for mining frequent subsequences in

C2.5.S5.N50.D40K data set is shown in Figure 5.13(a). PrefixSpan has the best run-
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Figure 5.11: Mining times in protein data set
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Figure 5.12: Mining times in weblog data sets
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time performance in either data set, being 250 times faster than SeqBDDMiner. When

compared against PLWAP, the runtime of SeqBDDMiner grows slower than PLWAP

as the support threshold decreases, and more specifically, SeqBDDMiner is up to four

times faster than PLWAP when the support threshold is lower than 0.04%.

Figure 5.13(b) shows the effects of increasing the domain size on various synthetic

data sets, each of which is generated using a fixed S10.D10K parameter and the domain

size is varied between 4, 6, 8, 10, 20, 30, 40, and 50, with a minimum support threshold

being 25%. Having fewer items in the domain consequently generates more similar se-

quences, and longer frequent subsequences. It shows that PLWAP and PrefixSpan have

similar relative runtime performance, but SeqBDDMiner becomes more competitive as

the number of domain items decreases.

Lastly, we analyse the effect of similarity of the input sequences to the algorithms’

performance by appending an increasing length of synthetic common prefix, or common

suffix, to the PSORTb-ccm data set. Figure 5.13(c) and (d) show the trends of running

time for each scenario given a support threshold of 80%. It shows that SeqBDDMiner

is superior, having an almost constant (i.e. very small increase) in its mining time as

the length of common prefix increases up to 20 items, whereas PLWAP and PrefixSpan

increase exponentially. As the length of common suffix increases, SeqBDDMiner bene-

fits from sharing of common sub-trees with a linear growth of running time whilst the

other algorithms have an exponentially increasing running time.

5.6.3 Effectiveness of SeqBDDMiner Due to Pattern Caching

In order to analyse the effectiveness of BDD’s caching ability, we compare the number

of database projections performed by SeqBDDMiner against PrefixSpan. For the case

of SeqBDDMiner, if a conditional database exists in the patternCache cache, then no

further projections are performed for that database. We also count the number of con-

ditional databases should the caching mechanism is not used by the SeqBDDs, which

we refer to as SeqBDTreeMiner. As representative data sets, we show the comparison

for DENV1, snake, PSORTb-ccm, and gazelle data sets in Figure 5.14. It shows that

SeqBDDMiner always projects the smallest number of conditional databases. More-

over, in cases where there is a huge reduction in terms of the database projections,

such as in DENV1 data set, and in other data sets with low support threshold, SeqB-

DDMiner projects significantly fewer databases than PrefixSpan. When compared to

SeqBDTreeMiner, it shows that the caching mechanism in SeqBDDMiner reduces the
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Figure 5.13: Mining times in synthetic data sets

number of database projections by up to 12 times for all data sets, being more effective

when the minimum support threshold is low.

We now examine the hit rate of the cached patterns from each conditional database,

by counting the number of conditional databases which are skipped because they exist

in the cache table. Figure 5.15(a) shows that at a support threshold as high as 90% in

the highly similar DENV1 data set, SeqBDDMiner is able to achieve a high hit rate of

53%.

In the snake data set which contains short sequences, and PSORTb-ccm data set

which contains long but dissimilar sequences, SeqBDDMiner achieves a low hit rate

except when the support threshold is relatively low (Figure 5.15(b) and (c)). This

shows that a large amount of node-sharing among the conditional databases at a low

support threshold value can still be achieved, even though the sequences are short or

dissimilar.

In the gazelle data set which is highly similar but contains short sequences, the hit

rate does not even reach 30% for a support threshold as low as 0.03% (Figure 5.15(d)),

which corresponds to the poorer time performance of SeqBDDMiner, except when the

support threshold value is low.
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Figure 5.15: Hit rate of cached patterns in SeqBDDMiner
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5.7 Weighted SeqBDD vs Prefix Tree for Mining Frequent

Subsequences

In this section, we provide a detailed discussion of the performance of our SeqBDD-

based algorithm in terms of the effectiveness of its caching utility which is affected

by the amount of node sharing between the databases, which leads us to identify two

interesting circumstances according to similarity characteristics of the input data set.

(Highly) similar sequences: In a data set which contains (highly) similar se-

quences, its input SeqBDD has a large amount of node fan-out or node fan-in and the

conditional databases are also more likely to share many nodes, especially when the

sequences are long.

Our experimental results show that SeqBDDMiner achieves a high hit rate of the

pattern cache and the best runtime performance when mining the highly similar DNA or

protein sequence data sets, especially at a low support threshold. Consider the following

situation. Suppose p and q (p 6= q) are two frequent subsequences. If every sequence

which contains p also contains q, then both conditional databases are identical and

the pre-computed patterns can be re-used. Otherwise, the two conditional databases

may still share common sub-trees given the input sequences are highly similar. When

performing database projections, the databases share a lot of similar computations due

to their large degree of node-sharing.

However, if the sequences are very short, the patterns are more likely to be dis-

similar and the amount of node-sharing among the conditional databases may not be

significant. This is proven by the poor hit rate of the cached patterns when mining

the weblog gazelle data set. In this circumstance, the construction of the conditional

databases is costly, whereas PLWAP or PrefixSpan can have a better performance since

they do not physically build the conditional databases.

Dissimilar sequences: In a data set which contains dissimilar sequences, its

input SeqBDD has little node fan-out and node fan-in. In general, being dissimilar,

the conditional databases are also dissimilar and caching effectiveness decreases, since

not many node re-use is allowed. If the support threshold is low, however, similarity

of the frequent subsequences increases and the node-sharing among the conditional

databases also increases, as shown by the increased hit rate of the pattern cache in

our experiments with the DNA.Homologene554, and DENV2 at a very low support

threshold value.
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In the beginning of this chapter we posed three questions which we aim to answer:

Can a BDD be used for compactly representing sequences? We showed that

ZBDDs have a limited data compression ability for representing sequences. In this

paper, we have proposed a more suitable type of BDD, namely Sequence BDDs, which

allow sequences of various lengths to share nodes representing their common prefixes

as well as suffixes, through the sharing of common sub-trees. In our experiments,

we showed that a SeqBDD is able to provide at least 10% data compression over the

relevant prefix tree representation. Furthermore, we found that the total amount of

node sharing across the conditional databases is proportional to the compactness of the

initial SeqBDD database.

Can the use of a SeqBDD benefit frequent subsequence mining? The key features

of our proposed algorithm are SeqBDD’s canonical structure and its caching ability. We

performed experiments for examining the effects of caching in our SeqBDDMiner, and

showed that regardless of the compactness of the initial SeqBDD database, maintaining

the canonicity across multiple SeqBDDs is advantageous since many of the intermediate

databases do share common sub-trees. Thus, redundancy can be avoided by allowing

the same sub-trees to re-use their computation results.

Can our proposed SeqBDD-based miner outperform state-of-the-art pattern growth

techniques in frequent subsequence mining? When the input sequences are long and

similar, SeqBDDMiner outperforms the state-of-the-art pattern growth techniques such

as PLWAP and PrefixSpan. When the input sequences are short, or dissimilar, SeqBD-

DMiner is less competitive due to the low node-sharing across the conditional databases,

except when the support threshold value is low for which SeqBDDMiner has a higher

scalability than the other techniques.

5.8 Related Work

Our mining technique is based on the prefix-growth framework which suits prefix-

monotone constraints [131]. Such constraints include the minimum frequency (consid-

ered in this paper), minimum length, gap constraint [77], similarity constraint (mea-

sured by the longest common subsequences) [119], and many more. There also exist

tough constraints [131], which are not prefix-monotone, such as sum or average con-

straint, and regular expressions. However, work in [131] showed that the prefix-growth

framework, as well as our technique, can be extended to handle such constraints.
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CloSpan [162] and BIDE [156] are extensions of the prefix-growth framework for

mining closed subsequences, which are a different class of frequent subsequence patterns.

Extending our algorithm for mining closed subsequences is also possible, since suffixes

of a sequence which have the same frequency may share nodes in the weighted SeqBDD

representation.

There appears to be little work that considers the use of BDDs for storing and

manipulating sequences. Work in [80] addresses the problem of capturing/enumerating

all possible n-grams (sequences without gaps), such as in a text file. Their approach

is based on the use of ZBDDs and sequence-to-itemset encoding. More discussion

about this approach (and some of its limitations) can be found in Section 4. Other

BDD-variants exist for analysing sequential events in fault-tree analysis [144], but they

consider pseudo-sequential events since any event does not occur more than once in

each fault-path. There exists a type of unordered BDD, namely the Free BDDs[59],

but unlike SeqBDDs, they do not allow a variable to appear multiple times in any path.

The combinatorial pattern matching community has studied the use of subsequence

automata [72], which are inspired by Directed Acyclic Subsequence Graphs (DASGs)

[13], for solving subsequence matching problems. Similar to SeqBDDs, identical sub-

trees are merged, but every node in DASGs may have m outgoing edges, where m

is the size of the alphabet. Such a technique can be extended for finding frequent

subsequences, but it does not have SeqBDDMiner’s ability to avoid infrequent candidate

generations, and to re-use intermediate computation results which we have shown to

be particularly advantageous in our study.

5.9 Summary

In this chapter, we have introduced Weighted Sequence Binary Decision Diagrams

(Weighted SeqBDDs) for efficient representation of sequences and shown how they may

be used as the basis for mining frequent subsequences. A primary objective has been

to investigate situations where the use of a Sequence BDD is superior to the prefix tree

style approaches. In our experimental results, we have shown that SeqBDDs can be

highly effective in improving the efficiency of frequent subsequence mining, for cases

when the input sequences or intermediate computations are similar, the sequences are

long, or when the mining is at low support. Based on this evidence, we believe SeqBDDs

are an important and worthwhile data structure for sequence data mining.
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Chapter 6

Efficient Mining of Expressive

Contrast Patterns using

Zero-suppressed Binary Decision

Diagrams

Contrast patterns are distinguishing characteristics between classes of data, which can

be expressed by patterns whose frequency is significantly different between two classes.

In the previous two chapters, we have shown that Zero-suppressed Binary Decision Di-

agrams are useful for mining frequent patterns and frequent subsequences, especially in

a high-dimensional space. In this chapter, we will introduce new definition of expressive

contrast patterns, which generalises the previous definitions of simple contrast patterns.

We will also propose efficient algorithms for mining contrasts, based on the use of the

graph-based data structures that we have previously studied, such as Zero-suppressed

Binary Decision Diagrams and their weighted variant (Chapter 4).

6.1 Introduction

In a high-dimensional space, such as in gene expression data sets [51, 38, 84], mining

contrast patterns is highly challenging, due to two reasons: i) the exponential search

space, ii) the multiple frequency constraints limit the search space pruning. Previous

contrast mining techniques have been unable to handle more than about 60 dimensions
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in such circumstances. Also, existing definitions of emerging patterns [37] are limited

to express only conjunction of attribute values, or data items. When disjunctions as

well as conjunctions of attribute values are allowed in the more expressive contrasts,

the pattern search space is considerably larger and therefore, mining them is even more

challenging. A key focus of our study is the mining of contrasts for high dimensional

data, especially when disjunctions are allowed.

Existing emerging pattern mining technique uses structures such as FP-trees [70]

and Pattern trees [51], for storing and manipulating the input database, the conditional

databases, and the output patterns. Our technique, on the other hand, uses graph-

based ZBDDs, as database representations. Our technique also uses ZBDD routines

which follow a divide-and-conquer strategy, which in turn allows the output ZBDD to

be constructed bottom-up incrementally. We have shown that Zero-Suppressed Binary

Decision Diagrams and their weighted variant (Chapter 4) can be a powerful data min-

ing tool for mining high-dimensional frequent patterns. This chapter investigates their

use for mining high-dimensional contrasts. The use of a graph-based data structure for

contrast mining is a novel feature which has not been considered in existing techniques.

In this chapter, we make the following important contributions:

• We show that Zero-suppressed Binary Decision Diagrams (ZBDDs) can be em-

ployed as a tool for mining contrast patterns, which also allow the support con-

straints to be pushed inside the ZBDD manipulation routines. This provides an

interesting alternative to popular structures such as the frequent pattern tree [70],

whose variants have previously been proposed as an effective contrast mining

method [14, 51].

• We present an algorithm, EPMiner that uses ZBDDs to mine a well-known, simple

type of contrast pattern, known as the emerging pattern [37]. Experimental

evaluation shows this technique achieves very large speedups over the state-of-

the-art technique which is based on pattern trees [51].

• We investigate more complex contrast patterns which generalise emerging pat-

terns, by allowing disjunction as well as conjunction. We call these patterns

disjunctive emerging patterns. We establish the formal characteristics of

such patterns, show that EPMiner can be adopted to this more complex scenario,

and provide experimental evidence that it can be practically feasible for mining

very high dimensional datasets. We are not aware of any other work which is

suitable for mining this kind of contrast pattern.
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6.2 Mining Emerging Patterns using ZBDDs

This section presents our algorithm for mining contrasts which is based on the use of

Zero-suppressed Binary Decision Diagrams (ZBDDs) (Reviewed in Chapter 3). Recall

the definition of emerging patterns in [37], which can be mined efficiently using border-

representations of the input datasets.

Given a positive dataset Dp, a negative dataset Dn, and two support thresholds

α and β, an emerging pattern p is an itemset which satisfies two constraints:

1. Anti-monotonic constraint: frequent in Dp, i.e. support(p,Dp) ≥ α

2. Monotonic constraint: infrequent in Dn, i.e. support(p,Dn) < β

Our ZBDD-based mining technique allows both constraints to be pushed inside the

mining routines by adopting the pattern growth framework presented in Chapter 2.

The bitmaps from both datasets are used as the method for computing the support

of each pattern. For a given itemset q and a dataset D, bitmap(q,D) denotes the

bit-vector of the transactions in D which contains q.

6.2.1 Pushing the Anti-monotonic Constraint

The anti-monotonic constraint is pushed inside the mining routine by making sure that

each prefix satisfies the frequency constraint in Dp. If an itemset is infrequent, so do

its supersets, thus, they can be pruned. Using this principle, a candidate pattern is

grown only if it satisfies the anti-monotonic constraint.

6.2.2 Pushing the Monotonic Constraint

The pattern growth framework is based on the relationships between emerging patterns

and hypergraph transversals, which essentially pushes the monotonic constraint deep

inside mining. In principle, our algorithm could examine a search space covering all

possible itemset combinations. However, this is unnecessary and instead we traverse a

search space which avoids generating candidate patterns which could never satisfy the

monotonic β constraint. The search space is dictated by the contents of Dn.

For any given prefix p, we can partition Dn into the set of transactions which

contain p (denoted by Dp
n) and transactions which do contain p (denoted by Dp

n). If p
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needs growing, then it only needs to be extended by an item which is not from at least

one of the transactions in Dp
n, i.e. from the complement of one of the transactions in

Dp
n, otherwise a non minimal pattern will result.

It is therefore advantageous for the input ZBDD to contain the complements of

the transactions in Dn (i.e. Dn). Traversing Dn and finding its minimal transversals,

thus, ensure that the candidate generation space is much smaller. This pruning method

is particularly effective if Dn contains few but long transactions, as is often the case

for biological data.

The emerging patterns are grown in a depth-first fashion by recursively finding

transversals of the hypergraph which consists of the transactions in Dn. If β = 0,

this integrates the monotonic constraint inside the mining procedure, such that each

minimal hypergraph transversal is a minimal itemset with zero support in Dn. If β > 0,

the same principle applies on the right border (i.e. the maximal itemsets) of Dn which

includes itemsets whose support in Dn is ≥ β. We refer to the partially grown patterns

as prefixes. As prefixes are grown, their support in Dp is calculated using the bitmap

data representation for checking the anti-monotonic frequency constraint.

6.2.3 The Algorithm of EPMiner for Mining Minimal Emerging Pat-

terns

Our EPMiner algorithm for finding minimal emerging patterns is shown in Algorithm 6.1,

which is based on the use of ZBDD routines. Before we explain the algorithm line by

line, let us firstly list the pruning strategies which are employed within the mining

algorithm:

• α constraint pruning: This strategy is based on the anti-monotonicity of the

apriori principle. Any itemset which does not satisfy the α constraint should

have its supersets pruned. So, as a pre-processing step, any item i such that

support({i},Dp) < α can be deleted from both Dp and Dn.

• β constraint pruning: This strategy is based on the monotonicity of the β

constraint. If an itemset satisfies the β constraint, then it is not necessary to

extend it any further, otherwise a non minimal pattern would result.

• Non minimal pattern pruning: Since the final output is required to only

consist of minimal patterns, it is profitable to immediately prune any non-minimal

patterns for each prefix which is being grown.
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Algorithm 6.1 EPMiner( ZD, prefix, Dp, Dn, α, β )

Call EPMiner( Dn, {}, Dp, Dn, α, β ) to begin mining initially.

Input: A ZBDD ZD containing a complemented projection of the negative dataset,
a prefix itemset prefix which projects ZD, a bitmap Dp of the positive dataset,
a bitmap Dn of the negative dataset, a min support threshold α, a max support
threshold β.

Output: A ZBDD ZEP containing the set of minimal emerging patterns (i.e. itemsets
p s.t. support(p,Dp) ≥ α and support(p,Dn) < β).

1: if (ZD is a sink node) then
2: if (support(prefix,Dn) < β) then
3: return 1; /* prefix satisfies the β constraint */
4: else
5: return 0; /* Remove prefix and its supersets from output */
6: end if
7: end if
8: /* Let ZD = node(x,ZDx , ZDx

) */
9: prefixnew = prefix ∪ {x} /* Grow new prefix with the next item in the search

space */
10: if (support(prefixnew,Dp) < α) then
11: ZEPx

= 0 /* Prune prefixnew by α constraint pruning */
12: else if (support(prefixnew,Dn) ≤ β) then
13: ZEPx = 1 /* Prune supersets of prefixnew by β constraint pruning */
14: else
15: ZEPx = EPMiner(ZDx

, prefixnew,Dp,Dn, α, β) /* Mine supersets of prefixnew

from the projection of ZD which does not contain x */
16: end if
17: ZDreduced

= ZDx

⋃

Z ZDx /* Remove x from the search space by computing set-union
between the two children of ZD */

18: ZEPx
= EPMiner(ZDreduced

, prefix,Dp,Dn, α, β) /* Explore candidates from the
remaining search space */

19: Z ′
EPx

= NotSupSet(ZEPx , ZEPx
) /* Non-minimal patterns elimination */

20: ZEP = getNode(x,Z ′
EPx

, ZEPx
) /* Combine the output patterns */

21: return ZEP
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The first parameter to the algorithm, ZD, is a ZBDD containing the complemented

negative dataset, or its projection. prefix is a prefix itemset which satisfies the α

constraint, but fails the β constraint. Dp and Dn correspond to the bitmaps from the

respective positive and negative datasets.

The algorithm is invoked by calling EPMiner(Dn, prefix = {},Dp,Dn, α, β). It is

called recursively on projections of Dn as the pattern candidates are explored. Lines

1-7 in the algorithm state the terminal condition of the recursion. When it reaches

a sink node, 0 or 1, it has reached the end of the search space for growing the given

prefix. If prefix passes the β constraint, then accept prefix as a minimal emerging

pattern (line 3). Otherwise prefix cannot be part of the output ZBDD, and so the the

sink-0 node is returned (line 5).

Following a divide-and-conquer strategy, the algorithm comprises of two sub-

procedures. The first procedure computes ZEP x , which grows prefix with the next

item x which is found in the currently projected database ZD. The second procedure

computes ZEPx
which grows prefix with the other items in the search space (exclud-

ing item x). Results from these two operations will then be combined in the resulting

ZBDD output.

Before attempting to grow prefix with the next item, x, the algorithm first

tests whether the α and β prunings can be performed. Line 11 prunes prefixnew =

prefix∪{x} and its supersets by the α-constraint pruning. The support of prefixnew is

calculated incrementally using bitmap(prefix,D), which has been computed in previ-

ous recursion, i.e. support(prefix∪{x},D) = the count of ones in bitmap(prefix,D)∩

bitmap({x},D), where D ∈ {Dp,Dn}. Line 13 uses β-constraint pruning to stop

prefixnew from being grown. Finally, if none of these two cases holds, prefixnew

is grown further using projection of ZD which does not contain x, storing the output

in ZEPx
.

Line 18 computes ZEPx
, the set of patterns which are supersets of prefix but do not

contain x. ZEPx
is found from ZDreduced

which removes item x, obtained by computing

the set-union between the two child-nodes of ZD (line 17). The generated patterns from

ZEPx and in ZEPx
are locally minimal, but may not be globally minimal. Non-minimal

pattern elimination is performed by a primitive ZBDD operation NotSupSet(P ,Q) (line

19) which finds itemsets in P which are not supersets of any itemset in Q.
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6.2.4 Optimisations for EPMiner

For the case where β = 0 (which corresponds to the common and important case of

jumping emerging patterns), the computation of ZEP x (line 15 in the algorithm) can be

optimised by passing it the minimal union between ZDx
and ZDx , i.e. ZDx

⋃

Zmin
ZDx .

As a result, the computed ZEPx only contains patterns which may be non-minimal

by the item {x}. Thus, line 19 in the algorithm can be replaced by a set-difference

operation ZEPx \ZEPx
which is a less complex operation. This optimisation cannot be

used in the general case when β > 0, since it could eliminate valid pattern candidates.

We investigated a number of heuristics for finding the optimal variable ordering

for an efficient performance of EPMiner, using information about the item frequencies

in Dp and Dn. Three alternative ordering strategies were worth considering:

• The first heuristic places the least frequent item in Dp at the top of the ZBDD,

with subsequent items being ordered by increasing support in Dp. This aims to

achieve early α support threshold pruning based on Dp, by locating items which

are more likely to be pruned, higher up in the structure.

• The second heuristic places the least frequent item in Dn (i.e. occurring most

frequently in Dn) as the first item in the ZBDD, with other items being ordered

by increasing frequency in Dn This can be justified on two levels. Firstly, consider

line 15 in the algorithm. Having a smaller ZDx
here is likely to be advantageous,

particularly when the ZBDD at that point is large. Using the most frequent item

in Dn at the top of the tree, means that ZDx
is likely to be small for the early

recursive calls. Secondly, this heuristic gives higher preference to the β constraint,

in a similar manner to that for the α constraint in the first heuristic, the aim being

to achieve early β-constraint pruning.

• The third heuristic places items from the same attribute close together because

every (conjunctive) emerging pattern may contain at most one item from any

attribute. Therefore, pattern candidates that contain two or more items from

any attribute can be pruned earlier. Moreover, this ordering can be combined

with the first or the second heuristic by ordering the items within each attribute

by increasing support in Dp (based on the first heuristic) or in Dn (based on

the second heuristic). The attributes are then ordered by increasing minimum

support of its items.
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6.2.5 Time Complexity of EPMiner

The EPMiner algorithm consists of two sub-procedures: i) finding patterns which con-

tain an item x, where x is the top-variable in the input ZBDD ZD which corresponds

to the complemented projection of Dn, and ii) finding patterns which do not contain

x. The first sub-procedure processes the 0-child of ZD, and the second sub-procedure

processes the union-ed ZBDD of the 0-child and the 1-child of ZD. ZBDD’s set-union

operation has O(|ZD|) time complexity.

Theorem 15. The total number of database projections, or the number of prefixes

which are generated, is O(Nlog2N), and N2 in the worst case, where N is the total

size of nodes in the input ZBDDs.

The support calculation for each prefix requires two bit-wise AND operations, one

operation for calculating its support in Dp, and the other for calculating its support in

Dn. The time complexity of each bit-wise AND operation is O(|Dp|) and O(|Dn|).

Theorem 16. The overall time complexity of the bit-wise AND operations for all pre-

fixes is O(|D|log2|ZD|), where |D| = |Dp| + |Dn| and |ZD| is the number of nodes in

the ZBDD representing Dn.

6.2.6 More Efficient Support Checking Based on Weighted ZBDDs

As mentioned above, two bitwise-AND operations are needed to calculate the support

of each prefix. This can be computationally expensive when many patterns exist. Some

of them, however, may actually project the same conditional databases but it would

not be identified from the bitmap representations.

As an alternative data representation, we can use the weighted ZBDDs to represent

the two datasets, Dp and Dn, and project the respective conditional database for each

prefix. Obtaining the support of a prefix is trivial once the conditional database has

been projected. More particularly, the support of the prefix in a dataset is represented

in the weight of the top-node in the weighted ZBDD representation of the conditional

database.

The benefit of using the weighted ZBDD representation is that it may re-use

the same conditional databases which are projected by another prefix through out

the mining procedure. For a given dataset represented by a weighted ZBDD with N

nodes, each database projection has O(N) time complexity. The number of conditional
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database projections for each dataset through out mining is O(N). Thus, the overall

time complexity of the dataase projections for a dataset is O(N2). In practice, due to

the caching principle, the computational cost may be much smaller than N2, especially

when many patterns share the same, or similar, prefixes.

6.3 Disjunctive Emerging Patterns

In this section we introduce a more general type of contrast pattern, which we will

hereafter refer to as a disjunctive emerging pattern.

Recall that emerging patterns correspond to conjunctions of items that have high

support in Dp and low support in Dn. Disjunctive emerging patterns generalise emerg-

ing patterns by allowing disjunctions as well as conjunctions for pattern descriptions.

They essentially correspond to a restricted class of CNF formulae, which use items as

variables and are a conjunction of disjunctions, where each disjunction contains only

items coming from the same attribute domain. No negation is allowed and there must

exist at least one item from each attribute domain in the formula.

Example 23. Given a dataset having three attributes A,B,C, with domains {a1, a2, a3},

{b1, b2, b3}, {c1, c2, c3}. A valid disjunctive emerging pattern might be represented by

a formula f , where f = (a1 ∨ a3) ∧ (b1 ∨ b2) ∧ (c1 ∨ c2 ∨ c3). Without any ambiguity,

we can alternately represent f as an itemset {a1, a3, b1, b2, c1, c2, c3}, where it is implic-

itly understood that conjunctions exist across attributes and disjunctions exist within

attributes.

Henceforth, we will blur the distinction between disjunctive formulae and their

itemset representations. Given a formula describing a disjunctive emerging pattern, we

need to be able to calculate its support.

Definition 19. Let s be a disjunctive emerging pattern. The support of s with respect

to dataset D, support(s,D), is the number of instances from D which are contained in

(the itemset representation of) s.

Using this revised definition of support, we can define appropriate α and β support

thresholds for disjunctive emerging patterns.

Definition 20. Given Dp, Dn and support thresholds α and β. A disjunctive emerg-

ing pattern is an itemset d such that
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tid Attr. A Attr. B Attr. C

1 a1 b2 c1

2 a1 b1 c3

3 a2 b3 c2

4 a3 b2 c2

(a) Positive class

tid Attr. A Attr. B Attr. C

1 a1 b3 c1

2 a2 b1 c2

3 a2 b3 c2

4 a3 b2 c1

(b) Negative class

Figure 6.1: A dataset example; the domain values of the attributes are {a1, a2, a3},
{b1, b2, b3}, {c1, c2, c3}

• d contains at least one item from the domain of every attribute

• support(d,Dp) ≥ α and

• support(d,Dn) ≤ β.

d is said to be maximal if there does not exist another disjunctive emerging pattern d′

such that d ⊂ d′.

From a classification perspective, an unknown data instance seems more likely to

be from the positive class if is contained in one of these sets, which we will study in

the following chapter.

Example 24. Consider the data set example in Table 6.1. Given α = 0.5 and β = 0,

the disjunctive emerging patterns include {a1, b1, b2, c1}, {a1, b1, b2, c1, c2}, {a1, b1, b2,

c1, c2, c3}, {a1, a3, b1, b2, b3, c3}, {a1, a2, a3, b1, b2, b3, c3}, etc. The maximal disjunctive

emerging patterns are {a1, b1, b2, c1, c2, c3}, {a1, a2, a3, b1, b2, b3, c3}, {a1, a3, b1, b2, b3, c2,

c3}, {a1, a2, b1, b2, c1, c3}.

One important case arises for datasets with ordered domains. Observe that a

disjunctive emerging pattern corresponds to a region of high contrast. That is, a

subspace which contains α instances from Dp and at most β instances from Dn. Suppose

an attribute Ai has an ordered domain of items. An itemset is a contiguous subset of

dom(Ai) if it contains a collection of items appearing consecutively in the order of

dom(Ai). Hence, it is possible to define variants of disjunctive emerging patterns, such

as contiguous disjunctive emerging patterns.

Definition 21. Given datasets Dp and Dn, an itemset S is a contiguous disjunctive

emerging pattern if it satisfies the following three conditions

1. support(S,Dp) ≥ α
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(a) s1 = {a1, a2, a3, b1, b2, c1, c2, c3} (b) s2 = {a1, a3, b1, b2}

Figure 6.2: Geometric Representation of Disjunctive Emerging Patterns

2. support(S,Dn) ≤ β

3. S is contiguous

Moreover, S is a maximal contiguous disjunctive emerging pattern if there

is no proper superset of S satisfying conditions 1-3.

Compared to the more general disjunctive emerging patterns, contiguous disjunc-

tive emerging patterns might be considered more meaningful to humans, since their

corresponding regions cannot contain any gaps or holes, i.e. they must be connected.

Example 25. In Figure 6.2a shows a contiguous pattern s1, given ordered attribute

domains {a1, a2, a3}, {b1, b2, b3}, {c1, c2, c3}, such that s1 = (a1 ∨ a2 ∨ a3) ∧ (b1 ∨ b2) ∧

(c1 ∨ c2 ∨ c3).

Figure 6.2b shows a non-contiguous pattern s2, such that s2 = (a1 ∨ a3) ∧ (b1 ∨

b2) ∧ (c1 ∨ c2 ∨ c3). It is non-contiguous since its range of values on the first attribute,

i.e. {a1, a3}, is not contiguous.

6.3.1 Relationships Between Disjunctive Emerging Patterns and Emerg-

ing Patterns

We now examine the relationship between disjunctive emerging patterns and the emerg-

ing patterns in more detail. Broadly speaking, disjunctive emerging patterns can be

viewed as generalisations of emerging patterns, allowing more expressive contrasts.

The following theorem shows how disjunctive emerging patterns generalise emerg-

ing patterns.
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Theorem 17. Let p be an emerging pattern. Then p is contained in some disjunctive

emerging pattern using the same α and β support thresholds.

Observe that the converse of this theorem does not hold. It is often true that a

disjunctive emerging pattern does not contain any emerging patterns.

Example 26. Recall the example data set in Figure 6.1. Given α = 0.5 and β = 0,

emerging patterns do not exist, but several disjunctive emerging patterns exist.

Also observe that multiple emerging patterns of lower support can be merged

together to form a disjunctive emerging pattern. Again looking at Figure 6.1, both

{a1, b1} and {a1, b2} are emerging patterns when α = 0.25 and β = 0 and correspond

to the to the boolean formulae f1 = a1 ∧ b1 and f2 = a1 ∧ b2, each having support in

Dp of 0.25. These two emerging patterns can be unioned to yield a1 ∧ (b1 ∨ b2), which

is equivalent to the disjunctive emerging pattern a1 ∧ (b1 ∨ b2) ∧ (c1 ∨ c2 ∨ c3) (since

c1 ∨ c2 ∨ c3 is trivially true for any transaction), with support 0.5 with respect to Dp

and zero with respect to Dn.

An interesting special case exists when the cardinality of the domain for every

attribute is exactly two. In this circumstance, all disjunctive emerging patterns are

guaranteed to be emerging patterns.

To summarise, the key differences between emerging patterns and disjunctive

emerging patterns are:

• Disjunctive emerging patterns are more expressive. They can capture contrast

regions of greater complexity. This makes them more suitable for ordered data,

where it is frequently desirable for the contrasts to include disjunctions of items

within specific dimensions

• For a given threshold α and β, it is often the case that a dataset may have many

disjunctive emerging patterns but no emerging patterns

Of course, being more expressive, makes disjunctive emerging patterns more com-

plex to compute. However, it turns out we can still accomplish this efficiently using a

ZBDD technique similar to the EPMiner algorithm presented in Section 6.2.3.
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6.3.2 The Algorithm of DEPMiner for Mining Maximal Disjunctive

Emerging Patterns

We now describe our DEPMiner algorithm for mining maximal disjunctive emerging

patterns, shown in Algorithm 6.2, which is adopted from EPMiner algorithm (Algo-

rithm 6.1). Being similar, we will highlight only the main differences between DEPMiner

and EPMiner.

Because of the generality of disjunctive emerging patterns, DEPMiner explores the

search space in a depth-first top-down manner, rather than the bottom up manner that

was used for emerging patterns. We start with the most general itemset (i.e. containing

all items) and at each step, generate shorter itemsets as candidates. For efficiency

purposes though, since disjunctive patterns are likely to contain many items, it is

better to work with pattern complements, which are likely to be short (i.e. containing

fewer items), rather than the patterns themselves. So, generating shorter candidates

is obtained by growing a prefix bottom up in this complemented pattern space. The

initial input ZBDD is built from Dn, as opposed to Dn, used in EPMiner. Again this

aims to eliminate the generation of invalid candidates, but Dn is used here instead of

Dn, since the enumeration of maximal disjunctive EPs is proceeding top-down, rather

than bottom-up. Figure 6.3 shows an example of pattern lattice for a given set of

items I = {a, b, c, d}. A bottom-up enumeration begins with the empty set {} and

generates the longer itemsets {a}, {a, b}, etc. as subsequent candidates. A top-down

enumeration begins with the complete set {a, b, c, d} and generates the shorter itemsets,

i.e. {a, b, c}, {a, b}, as subsequent candidates.

The pruning based on the α and β constraints used in DEPMiner is similar to that

in EPMiner. Support checking, however, must be done using pattern complements and

so intersection tests, rather than containment tests are performed on the bitmaps for Dp

and Dn. e.g. If a disjunctive emerging pattern p is required to have support(p,Dn) ≤ β,

then its complement p must intersect with at least |Dn| − β transactions, denoted

by cover(p,Dn) ≥ |Dn| − β. Similarly for the α constraint, support(p,Dp) ≥ α ≡

cover(p,Dp) ≤ |Dp| − α. Thus, the conditions for α and β pruning are inverted from

that in EPMiner, since maximal patterns, rather than minimal, are being computed.

The algorithm is initialised by passing the negative dataset Dn to its first pa-

rameter, i.e. DEPMiner(Dn, {},Dp,Dn, α, β). Terminal cases of the algorithm are the

following:

• if support(prefixnew,Dp) < α, i.e. cover(prefixnew,Dp) > |Dp| − α, then per-
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Algorithm 6.2 DEPMiner(ZD, prefix, Dp, Dn, α, β)

Call DEPMiner(Dn, {}, Dp, Dn, α, β) to begin mining initially.

Input: A ZBDD ZD containing a projection of the negative data set, a prefix itemset
prefix which projects ZD, a bitmap Dp of the positive data set, a bitmap Dn of
the negative data set, a min support threshold α, a max support threshold β.

Output: A ZBDD ZDEP containing the set of minimal emerging patterns (i.e. itemsets
p s.t. cover(p,Dp) ≤ |Dp| − α and cover(p,Dn) ≥ |Dn| − β).

1: if (ZD is a sink node) then
2: if ( cover(prefix,Dp) ≤ |Dp| − α and cover(prefix,Dn) ≥ |Dn| − β) then
3: return 1; /* prefix satisfies the support constraints */
4: else
5: return 0; /* Remove prefix and its supersets from output */
6: end if
7: end if
8: /* Let ZD = node(x,ZDx , ZDx

) */
9: prefixnew = prefix ∪ {x} /* Grow new prefix with the next item in the search

space */
10: if (cover(prefixnew,Dp) > |Dp| − α) then
11: ZDEPx = 0 /* Prune prefixnew by α constraint pruning */
12: else if (cover(prefixnew,Dn) ≥ |Dn| − β) then
13: ZDEPx = 1 /* Prune supersets of prefixnew by β constraint pruning */
14: else
15: ZDEPx = DEPMiner(ZDx

, prefixnew,Dp,Dn, α, β) /* Mine supersets of
prefixnew from the projection of ZD which does not contain x */

16: end if
17: ZDreduced

= ZDx

⋃

Z ZDx /* Remove x from the search space by computing set-union
between the two children of ZD */

18: ZDEPx
= DEPMiner(ZDreduced

, prefix,Dp,Dn, α, β) /* Explore candidates from the
remaining search space */

19: Z ′
DEPx

= NotSupSet(ZDEPx, ZDEPx
) /* Non-minimal patterns pruning */

20: ZDEP = getNode(x,Z ′
DEPx

, ZDEPx
) /* Combine the output patterns */

21: return ZDEP

Note: cover(p,D) is the number of transactions in D which contain any item in p;
cover(p,D) = |D| − support(p,D).
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{a, b, c, d}

{a, b, c} {a, b, d} {a, c, d} {b, c, d}

{a, b} {a, c} {a, d} {b, c} {b, d} {c, d}

{a} {b} {c} {d}

{}

Figure 6.3: Example of pattern lattice for I = {a, b, c, d}.

form α constraint pruning (line 11)

• if support(prefixnew,Dn) ≤ β, i.e. cover(prefixnew,Dn) ≥ |Dn| − β, then per-

form β constraint pruning (line 13)

• if support(prefix,Dn) ≤ β, i.e. cover(prefix,Dn) ≥ |Dn| − β, then remove

prefix from output (line 1-7)

The ordering used for the ZBDD is to put the most frequent item in Dn at the top

and items are ordered in decreasing frequency in Dn thereafter. This is essentially the

inverse of the second ordering heuristic that was used for EPMiner, again being due to

the top-down nature of the search strategy.

The time complexity of DEPMiner is similar to EPMiner, but DEPMiner finds the

pattern complements which are longer than the patterns themselves. However, the

input to DEPMiner is the negative dataset in its positive form which is equal to or smaller

(i.e. each transaction contains fewer items) than its complemented form. Therefore,

DEPMiner performs more projections of the input database ZD than EPMiner, but the

projected databases are smaller.

Theorem 18. The DEPMiner algorithm (Algorithm 6.2) is sound and complete.

Proof. We will prove this theorem in two parts: (a) the algorithm is sound, (b) the

algorithm is complete, based on the divide-and-conquer strategy of the algorithm.

Soundness: First, we will show that growing a prefix by a chosen item x and

consequently restricting mining to the conditionally projected negative data set ZDx

(line 15), correctly generates disjunctive emerging patterns which exclude item x. By

growing a prefix itemset, DEPMiner implicitly restricts an item from the domain items
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I and generates a candidate for a disjunctive emerging pattern. Since the candidate

pattern is a complemented itemset of the prefix, the support of the candidate in a

dataset is equivalent to the number of transactions which do not contain any item

in the prefix. Should the prefix be grown by item x, the conditional database ZDx

corresponds to itemsets in the negative data set Dn which do not contain x (line 15).

This database projection narrows the search space to those transactions in Dn which

do not contain x and any other items in the prefix itemset. If the projected database

is empty, then, the candidate pattern (i.e. the complemented prefix itemset) has 0

support in Dn. The terminal cases of the algorithm (line 1-7) return the fully grown

prefix as a disjunctive emerging pattern if it satisfies the support constraints. Thus,

the algorithm is correct.

Completeness: We will show that all disjunctive emerging patterns which do

not contain item x are found from the conditional database ZDx
. When projecting the

conditional database, the itemsets of ZD which contain x are removed. This database

projection is complete, since any disjunctive pattern which does not contain x can only

have support in the transactions which do not contain x. The supporting transac-

tion must be a subset of the pattern. Thus, no valid candidates are omitted by the

conditional database projection, and the algorithm is complete.

6.3.3 The Algorithm of pseudoContigDEP for Mining Pseudo-Contiguous

Disjunctive Emerging Patterns

As we have seen, contiguous disjunctive emerging patterns are a subclass of disjunctive

emerging patterns. We introduce our strategy for mining pseudo-contiguous patterns,

that is, patterns which contain gaps constrained by a maximum gap size maxGap.

Contiguous patterns correspond to patterns satisfying maxGap = 0 constraint. The

technique employs two steps:

1. Mine the disjunctive emerging patterns using DEPMiner algorithm (Algorithm 6.2)

2. Use post processing on the set of disjunctive emerging patterns to derive the

set of contiguous disjunctive emerging patterns. This is done using a ZBDD-

based operation which splits each disjunctive emerging pattern into a maximal

contiguous pattern and then retains those patterns that satisfy the α threshold

(all such patterns are guaranteed to satisfy the β threshold).
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The ZBDD post processing operation pseudoContigDEP is described in Algo-

rithm 6.3. The main idea is that every disjunctive emerging pattern has a set of

pseudo-contiguous splits induced for each dimension. Then, the pseudo-contiguous

splits across dimensions are conjugated using an efficient ZBDD pair-wise unions op-

eration, DotProd. The checking of the α support constraint is also pushed inside the

ZBDD routines, in a similar manner to that of the algorithm that was used for mining

disjunctive emerging patterns.

Now we explain the pseudoContigSubsets operation, shown in Algorithm 6.4, for

splitting a dimension of a given pattern into subsets which satisfy a maxGap constraint.

The algorithm is initialised by setting p to be an itemset projection of a pattern in the

i-th dimension, dom to be the domain items of the i-th dimension. prefix is initially an

empty itemset {}. Each of itemsets p, and dom, is represented as a ZBDD. gapSize is

the gap between the last item in prefix and the first item in dom. gapSize is initially

0. The two itemsets p and dom are traversed in parallel. Given that p is a complement

of a disjunctive emerging pattern, prefix is the partially grown pseudo-contiguous split

from p which contains items in dom which do not occur in p (line 6-7). Every sequential

item that occurs in p increases gapSize (line 9). If gapSize is equal to maxGap then

prefix is stopped from growing and returned as a pseudo-contiguous split (line 11-12).

The split procedure continues with the remaining items in p. When p is empty, the

pair-wise union between dom and prefix is returned as output (line 2).

Example 27. Suppose pseudoContigSubsets is given an input itemset p = {a2, a3}

and a set of domain items dom = {a1, a2, a3, a4}. Suppose maxGap = 1. Since the

first item in dom, i.e. a1, does not occur in p, a new prefix {a1} is grown. The next

item in dom, i.e. a2, occurs in p, which increases the gap size to 1. The following item

is a3, which also occurs in p. The gap size is now 2 while the prefix itemset remains to

be {a1}. Since the gap is exceeding its maximum size, it is not possible to grow prefix

{a1} with other items without exceeding the maximum gap size. Thus, {a1} is a valid

pseudo-contiguous split. Another pseudo-contiguous split from p is {a4}.

The post-processing operation pseudoContigDEP iterates through each pattern in

the set of maximal disjunctive emerging patterns. And for each pattern, it iterates

through each item across all of the attribute domains. Suppose N is the total number

of items in the data set. Given that the pattern set is represented by a ZBDD, we

will firstly analyse the complexity to extract an itemset from a ZBDD, and then the

complexity of finding the pseudo-contiguous subsets for each itemset.
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Algorithm 6.3 pseudoContigDEP(P ,[dom1, dom2, ...domk], maxGap)

Input: A ZBDD P containing the complements of maximal disjunctive emerging pat-
terns, a vector of ZBDDs [dom1, dom2, ...domk] representing the domain of each
attribute, and a maximum gap size maxGap

Output: A ZBDD zOut containing the set of maximal pseudo-contiguous disjunctive
emerging patterns

1: zOut = {} /* Initialise the output */
2: for all p in P do
3: partialSplits = {{}} /* Initialise the set of pseudo-contiguous splits for pattern

p */
4: for all i in 1,..k do
5: projecti = CrossProd(p, domi) /* Find the projection of p in the i-th dimen-

sion */
6: splitsi = pseudoContigSubsets(projecti, domi, {}, 0) /* Find pseudo-

contiguous splits of p in the i-th dimension */
7: partialSplits = DotProd(partialSplits, splitsi) /* Conjugate the pseudo-

contiguous splits across all dimensions of pattern p */
8: end for
9: zOut = zOut

⋃

Zmax partialSplits /* Combine the pseudo-contiguous splits
across all patterns in P and remove the non-maximal patterns */

10: end for
11: return zOut
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Algorithm 6.4 pseudoContigSubsets(p, dom, prefix, gapSize)

Input: a ZBDD p containing an itemset, a ZBDD dom containing an attribute do-
main ZBDD (i.e. p ⊆ dom), a ZBDD prefix containing a partially grown pseudo-
contiguous subset, and the size of the partially grown gap gapSize that follows
after the last item in prefix.

Output: a ZBDD zOut containing the set of pseudo-contiguous subsets of p w.r.t.
dom satisfying the maxGap constraint

1: if (p is a sink node) then
2: zOut = DotProd(dom,prefix) /* p is empty, the pair-wise union between dom

and prefix is returned */
3: else
4: /* Let p = node(x, p1, p0), dom = node(y, dom1, dom0), where p0 = 0 and

dom0 = 0, since each of p and dom contains only one itemset */
5: if (x > y) then
6: prefixy = change(prefix, y) /* The first item x in p have a higher index (w.r.t

the variable ordering) than the first item y in dom, i.e. y is not int p, so prefix
is grown by y */

7: zOut = pseudoContigSubsets(p, dom1, prefixy, 0) /* Try to grow the new
prefix prefixy with gapSize reset to 0 */

8: else if (x = y and gapSize < maxGap) then
9: zOut = pseudoContigSubsets(p1, dom1, prefix, gapSize+1) /* Item x has

the same index than y; since gap is allowed, increment gapSize and try to
grow prefix using the remaining items in p1 */

10: else if (x = y and gapSize = maxGap) then
11: zRem = pseudoContigSubsets(p1, dom1, {}, 0) /* Item x has the same index

than y; since no larger gap is allowed, prefix is a complete pseudo-contiguous
split; try to find other pseudo-contiguous splits using the remaining items in
p1 */

12: zOut = prefix
⋃

Z zRem /* Pair-wise union between the pseudo-contiguous
splits */

13: end if
14: end if
15: return zOut
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The ZBDD’s operation to extract an itemset from a ZBDD has O(h) time com-

plexity where h is the height of the ZBDD, or the maximum number of items in any

path of the ZBDD, which is less than N . For each of the extracted itemsets, the time

complexity of pseudoContigSubsets operation is O(N) since it iterates through all

items across all attribute domains.

Theorem 19. Given k maximal disjunctive emerging patterns, where L is the number

of items in the longest pattern, and N is the number of items, the overall time complexity

of pseudoContigDEP operation is O(kLN)

6.4 Performance Study

In this section we evaluate our techniques for mining emerging patterns and disjunctive

emerging patterns. All algorithms were implemented in C++, and all experiments

were conducted on a 2.0 GHz CPU, 3 GB RAM, running Solaris, with a cpu-time limit

100,000 seconds. We carried out experiments on three gene-expression data sets1, the

Leukaemia data set ALL-AML (previously studied in [84]), lung cancer data set, and

colon tumor data set. Table 6.1 shows their characteristics. Column 1 (resp. Column

2) shows the number of instances in the positive (resp. negative) class. These data sets

were chosen due to their challenging characteristics. As is common for biological data,

they contain many dimensions but only have a few instances. Work in [86, 88, 84] has

previously studied mining minimal emerging patterns for these data sets.

All of the data sets were discretised using an entropy discretisation method, which

had the effect of removing some of the attributes. After discretisation, the ALL-AML

data set reduced to 865 attributes, the lung cancer reduced to 2172 attributes, and

the colon tumor reduced to 135 attributes. We also ordered the discretised attributes

according to their entropy value from highest to lowest (i.e. attribute1 has highest

entropy, attribute2 as second highest, etc).

6.4.1 Effects of Variable Ordering to the Performance of EPMiner

We firstly study the effects of using various different variable orderings in the ZBDD

to the performance of EPMiner for mining emerging patterns. The three figures in

Figure 6.4 show a comparison between the different variable ordering heuristics we

1http://research.i2r.a-star.edu.sg/rp/
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Table 6.1: Data Characteristics

Data set |Dp| |Dn| # of attr. # of attr. after discretisation
(# of items)

ALL-AML 27 11 7129 865 (1700)
lung cancer 16 16 12533 2172 (4371)
colon tumor 20 42 2000 135 (270)

considered for the ZBDD. The first heuristic is employed by ordering the variables by

their decreasing frequency in Dp. The second heuristic is employed by ordering the

variables by their decreasing frequency in Dn. Lastly, the third heuristic is employed

by arranging items from the same attribute close to each other and two-level ordering

is used, i.e. items within each attribute are ordered by decreasing support in Dn and

the attributes are ordered by decreasing maximum support of its items.

Figure 6.4a shows that employing the second ordering on the ZBDDs achieves the

fastest mining time as it reduces the complexity of the decomposed subtasks. Fig-

ure 6.4b shows the corresponding size (number of nodes) of the input ZBDDs. The

input ZBDDs have similar sizes using either the second or the third ordering, which

shows that the input ZBDD sizes are not much influenced by the grouping of items

within attributes. The algorithm’s mining time with the third ordering, however, is

slower than that using the second ordering, and the corresponding mining times for the

third ordering grow exponentially as α decreases. It shows that the attribute-grouping

of the items limits the pruning effectiveness of the algorithm, due to the larger condi-

tional databases being projected.

Using the first ordering, the input ZBDDs are larger compared to the other order-

ings, since the input ZBDDs are built based on the negative class Dn while the first

variable ordering heuristic is based on the positive class Dp. This big start-up also

results in its mining time being the slowest compared to the other orderings. More-

over, there is only a small difference between all the three orderings in terms of the

corresponding sizes of the output ZBDDs, shown in Figure 6.4c, with the second and

the third ordering giving the smallest ZBDDs. This shows that the second and third

variable orderings allow similar compression for representing the emerging patterns.

Based on this comparison, therefore, the following experiments are performed using

the second variable ordering heuristic.
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6.4.2 Scalability of EPMiner

We study the scalability of our ZBDD-based technique for mining (minimal) emerging

patterns, and compare it against a baseline emerging pattern mining technique which is

based on a variant of frequent pattern trees [51] (hereafter referred to as Pattern-Tree

EPMiner, whose implementation was obtained from its original author). Other tech-

niques for mining emerging patterns exist (e.g. [16, 14]), but have similar, or inferior

running behaviour to that of [51] for our data sets and so we do not include them in

our comparison.

We compare the scalability of our EPMiner algorithm, which is labelled as ZBDD

EPMiner, against the Pattern-Tree EPMiner [51], by running it on the ALL-AML

data set, using constraints α = 90% and β = 0, and increasing the data dimensionality

(i.e. number of dimensions). Figures 6.5a and 6.5b show that the mining time of ZBDD

EPMiner is substantially faster than Pattern-tree EP-miner, being approximately 100

times faster for 40-68 attributes (the running time of ZBDD EPMiner is very close to the

x-axis in these scenarios). Moreover, the ZBDD EPMiner was able to run effectively for

up to 800 attributes, whereas Pattern-Tree EPMiner could not complete mining for

more than 68 attributes, due to the memory limits being exceeded. This is in line with

previously published results from [84, 38], where emerging patterns were previously

only mineable for data sets with no more than 70 attributes.

Figure 6.5b shows the running time for the lung cancer data set. Emerging patterns

in this data set appear to be easier to mine due to the relatively small number of

patterns. The Pattern Tree EPMiner is able to mine emerging patterns for a larger

number of attributes, compared to that for the ALL-AML data set. Moreover, the

ZBDD EP-miner was able to run effectively for up to 1700 attributes. It is substantially

superior in running time compared to the Pattern-Tree EP-miner, giving speedups

of over 100 times.

Similar behaviour exists in the colon tumor data set, which is smaller than the

other two data sets. Figure 6.5c shows that the ZBDD EPMiner is able to mine emerging

patterns using all attributes, achieving up to 200 times speedup factor.

Secondly, we also compare the performance between using Weighted ZBDD and

ZBDD for mining the emerging patterns. Interestingly, WZBDD EPMiner does not always

outperform ZBDD EPMiner. Figures 6.6a and 6.6c show that WZBDD EPMiner is superior

for the ALL-AML and colon tumor data set, achieving a significant speedup for the

colon tumor data set. However, Figure 6.6c shows that it is slower than ZBDD EPMiner
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Figure 6.5: Comparison between the mining time using ZBDD or Pattern Tree for min-
ing emerging patterns, w.r.t various data dimensionalities (i.e. number of attributes)

for the lung cancer data set. It shows that the bitmap operation for frequency counting

performed by ZBDD EPMiner is not too expensive as long as the size of the positive

class is small.

6.4.3 Effects of Varying Support Threshold to the Performance of

EPMiner

Figure 6.7 shows the run time of all the EPMiner algorithms with respect to a varying

minimum support threshold in the positive class. The Pattern Tree EPMiner is the

fastest for the ALL-AML dataset when the minimum support threshold is high, but it is

slowest for all three data sets when the minimum support threshold is low. It shows that

the run time of Pattern Tree EPMiner grows exponentially as the minimum support

threshold decreases. In general, WZBDD EPMiner is shown to be less sensitive to the

minimum support threshold. Figures 6.7a and Figure 6.7b show that compared with

ZBDD EPMiner, WZBDD EPMiner is faster for the ALL-AML data set, but slower for the

lung cancer data set except when the minimum support threshold is very low (i.e. 0.1).
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6.4.4 Effects of Varying Support Threshold to the Performance of

DEPMiner

The evaluation performed in this subsection aims to study the comparative output of the

disjunctive emerging patterns over emerging patterns, and the required mining times

of those patterns, given the correctness and completeness of DEPMiner are theoretically

proven. Evaluation on the effectiveness of disjunctive emerging patterns, such as their

performance for classification will be studied in the following chapter.

Before studying the runtime performance of DEPMiner, we will firstly study the

output sizes. Figures 6.8a, 6.8c, and 6.8e show the output patterns in the lung cancer

data set (using 115 attributes), in the ALL-AML data set (using 300 attributes), and

in the colon tumor data set (using 100 attributes) with respect to different values of

minimum support α (given β = 0). We can see that for the lung cancer data set, with

a relatively small number of attributes, the number of patterns output is not as many

as those in the other data sets. Morever, the colon tumor data set contains the most

number of patterns compared to the other data sets, containing up to 700,000 patterns

when the minimum support is 0.2.

We also compare the relative volumes of patterns that are output, for a given

data set. Figure 6.8a shows the relative number of i) minimal emerging patterns, ii)

maximal disjunctive patterns, iii) maximal contiguous disjunctive emerging patterns, in

the lung cancer data set. For this scenario, it is clear that the number of non-disjunctive

EPs is fewer than the disjunctive EPs and their contiguous variants. This is expected,

since emerging patterns are more specific versions of either type of disjunctive patterns.

Though it is not shown here, in our experience, it can often be the case that under given

support thresholds, a data set may contain zero EPs, but may contain many hundreds

of (possibly contiguous) disjunctive EPs. In the ALL-AML and the colon tumor data

sets, the number of disjunctive EPs is not much greater than the number of EPs and

contiguous disjunctive EPs.

The corresponding mining times for all data sets are shown in Figures 6.8b. 6.8d,

and 6.8f. For the lung cancer data set, the mining times of EPMiner and DEPMiner lie

on the X-axis, while the times for mining contiguous disjunctive EPs are higher due

to the post-processing pseudoContigSplit operation. It can be seen that the splitting

time is constant with respect to a varying number of patterns from varying α. Indeed,

all the algorithms have a roughly constant time with respect to α for this scenario. For

the other data sets, the mining time for finding contiguous disjunctive EPs increases
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exponentially as the minimum support decreases, whereas the mining time for finding

disjunctive EPs is always faster than the mining time for finding EPs.

6.4.5 Scalability of DEPMiner

We now study the scalability of our ZBDD-based algorithm DEPMiner for mining max-

imal disjunctive emerging patterns, either using ZBDD or Weighted ZBDD (WZBDD),

which are labeled as ZBDD DEPMiner and WZBDD DEPMiner, respectively. In particular,

we compare their behaviour as we vary number of attributes and the minimum support

α in Dp. No comparison is made against other systems, since we are not aware of any

other work that is suitable for mining these patterns.

The number of patterns output with respect to an increasing number of attributes,

for the three data sets are shown in Figure 6.9. Their corresponding mining times are

shown in Figure 6.10 The thresholds of α = 90% and β = 10% are used for the ALL-

AML data set and the lung cancer data set; the thresholds of α = 90% and β = 0%

are used for the colon tumor data set.

Figures 6.9a and 6.9b show that the ALL-AML data set contains many more

patterns than the lung cancer data set, although it has lower dimensionality. Figure

6.9c, moreover, shows that the colon tumor data set contains more patterns than the

ALL-AML data set. We consider the lung cancer data set sparse, and the colon tumor

data set dense. Since the patterns being output are stored in a ZBDD, it is interesting

to reflect on the compression this structure it can achieve. Figure 6.9d shows the

number of ZBDD nodes in the output, for the lung cancer data with respect to a varying

dimensionality, i.e. number of attributes. When 2172 attributes are present, the ZBDD

requires 1,236,100 nodes, to store the 2,080,960 maximal disjunctive emerging patterns.

Figure 6.9e gives a more detailed picture, presenting a length histogram of the patterns.

We can see that most of the patterns are close to the maximum length of 4371 items

having an average length of around 4367 items.

More importantly, it shows that our DEPMiner algorithm is able to mine these

complex kinds of patterns even when there are a very large number of attributes, e.g.

600 attributes from the ALL-AML data set which contain about half a million patterns

(Figure 6.9a). Figure 6.10a shows that WZBDD DEPMiner is able to be 5 times faster than

ZBDD DEPMiner for the ALL-AML data set. Figure 6.10b shows that WZBDD DEPMiner

is 10 times faster than the ZBDD DEPMiner Moreover, Figure 6.10c shows that WZBDD

DEPMiner achieved 100 times speed up for the colon tumor data set.
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6.5 Discussion

In this section, we will discuss the strength and weakness of pattern tree, ZBDD, and

WZBDD, for mining contrast patterns, either they are expressed as simple emerging

patterns, or disjunctive emerging patterns.

6.5.1 ZBDD vs Pattern-Tree

The main difference between using ZBDD and Pattern-Tree is that the Pattern-Tree

allows a dynamic variable ordering to prune the search space. This is not desirable

for ZBDDs, since different variable orderings would limit node sharing between the

intermediate ZBDD databases which is the main feature of the ZBDD-based algorithm.

Some evidence is shown in our experimental results, where ZBDD Miner outper-

forms the Tree Miner when many patterns exist, such as in circumstances with high

data dimensionalities, or strict anti-monotone constraint with regards to the patterns’

support in the positive class.

When the minimum support for the positive class is high, not many patterns

exist. Moreover, when the data dimensionality is high, the patterns are relatively short

compared to the input itemsets. In such a circumstance, the dynamic variable ordering

employed by the Pattern-Tree Miner is effectively useful for pruning the search space,

but it is less useful when the support threshold is low, or many long patterns exist,

which is shown in our experimental results.

6.5.2 Weighted ZBDD vs ZBDD

We firstly compare between the use of Weighted ZBDD and the non-weighted ZBDD

for mining emerging patterns. The weighted ZBDD is shown to be less sensitive to

the anti-monotone constraint: the minimum support in the positive class. The non-

weighted ZBDD, on the other hand, is more sensitive especially when the minimum

support is low.

The main difference between the algorithms which are based on weighted ZBDD

and non-weighted ZBDD is that Weighted ZBDD Miner performs ZBDD database

projections which represent the negative dataset partitions projected by prefixes of the

patterns. The overall cost of performing such database projections is influenced by the

data dimensionality and the number of the patterns.
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When many patterns exist, such as when the positive support is low, the benefit

offered by Weighted ZBDD allows the redundancy of frequency counting in ZBDD

Miner to be avoided. In the smaller More specifically, few short patterns exist when

the minimum support threshold is high.

The drawback of ZBDD Miner is in its bitmap-based frequency counting whose

efficiency is influenced by the size of the input dataset. The larger the input dataset,

and the higher the data dimensionality, the more expensive its computation is. Its

strong performance compared to the Weighted ZBDD Miner is evident in the smaller

lung cancer data set, with high dimensionality and high positive support threshold. On

the other hand, its weak performance is evident in the larger colon tumor data set.

When mining the disjunctive emerging patterns, the weighted ZBDD Miner is also

more scalable than the non-weighted ZBDD Miner. In most cases, there exist more

disjunctive patterns than the non-disjunctive patterns, hence, their search space is

larger. In such a scenario, the limitation of ZBDD Miner becomes more apparent, due

to the cost in performing frequency counting using its bitmap data representation. The

weighted ZBDD miner, on the other hand, allows more efficient frequency counting,

resulting in an overall efficient running time as shown in our experimental results.

6.6 Related Work

We have already referred to the general work in the area of ZBDD in Section 3.2. How-

ever, we are only aware of one paper [111] where ZBDD is used for pattern mining.

They propose a method for finding frequent patterns. Their approach is different from

ours in the sense that they explicitly store the support information by constructing

multiple shared-ZBDDs which groups itemsets based on their (binary-encoded) sup-

ports. It enumerates the complete set of frequent patterns (i.e. the patterns satisfying

all support constraints α > 0) regardless of the given support threshold, making it

inefficient for high values of α or for mining in high dimensionality data since millions

of patterns may exist. More details about their algorithm were also presented in Sec-

tion 3.3.1 in Chapter 3. On the other hand, our proposal stores the input transactions

in a single ZBDD, reducing its overall memory consumption, and pushes constraints

deep inside the ZBDD operations. We use a secondary structure such as bitmaps for

counting support, instead of storing support information inside the ZBDD structure.

Emerging patterns were proposed in [37], and have been successfully used in con-
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structing highly accurate classifiers [39], in particular, for predicting the likelihood of

diseases such as leukemia [84] using gene expression data [86]. They are closely related

to association rules with large confidence [160] and also to work on detecting group

differences [17]. A recent method for mining emerging patterns with zero frequency in

the negative dataset appears in [51]. This method is based on modifications to the FP-

tree [70]. FP-trees have also been used as the basis for mining contrasts having other

types of constraints, such as risk and odds ratio [81]. Work in [83] uses an FP-tree

for storing the frequency (in multiple classes) of each itemset. Adopting the similar

frequency representation in a BDD is possible, but it would affect the compactness of

the structure and the chance of node sharing across the databases.

Connections between the computation of certain kinds of emerging patterns and

hypergraph transversals are identified in [16]. Another related notion is version spaces

[120, 73], which correspond to emerging patterns with constraints α = 100% and β = 0.

A disjunctive version space [142] is a disjunction of version spaces, as opposed to the

disjunctive emerging patterns presented here, which are a conjunction of disjunctions

on attribute values.

Work in [16] identified out a connection between the computation of emerging

patterns and the computation of minimal hypergraph transversals (the complements of

maximal independent sets). A number of theoretical results for minimal transversals

have been developed in papers such as [23, 79, 22, 44]. There, it is shown that a

number of problems involving transversals can be computed in quasi-polynomial time

(measured according to combined input and output size). This work differs from ours

in two principal respects: i) It focuses solely on monotone constraints, whereas the

computation of dense maximal independent sets requires simultaneous consideration of

both a monotone (negative) and an anti-monotone (positive) constraint, ii) The basis

of their approach, the Fredman-Khachiyan algorithm, although having the best known

worst case complexity for minimal hypergraph transversals, is unsuitable in practice

for use on the kinds of hypergraphs that arise in data mining, often being orders of

magnitude slower than bottom-up search methods, since the the volume of output

tends to be very large, but the cardinality of patterns small. Work in [16] gives some

indicative results in this direction.

In an ordered domain, contiguous disjunctive patterns correspond to quantita-

tive association rules [147], having high confidence and a single item consequent. A

quantitative association rule is a conjunction of intervals. Disjunctive and more ex-

pressive association rules have been studied [121], but they allow DNF (disjunction of
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conjunctions) rules, instead of CNF (conjunction of disjunctions) which is the kind of

disjunction considered in our work. Thus, disjunctive emerging patterns can effectively

be useful for finding a more complex type of quantitative association rule.

Several papers have examined the computation of empty regions or ‘holes’ in

datasets [43, 93]. A contiguous disjunctive emerging pattern with β = 0 corresponds

to a hole in Dn which satisfies the α support constraint. Other work which con-

siders itemsets having disjunctive properties is [140], where similarities to classes of

functional dependencies are demonstrated. Interestingly, connections between the dis-

covery of functional dependencies and hypergraph transversals have been explored in

other work, see e.g. [65].

A number of recent papers have examined mining of closed patterns from high

dimensional datasets using row enumeration instead of column (item) enumeration [125,

136, 96]. The emphasis on closed patterns, as opposed to minimal patterns means this

is not directly applicable for finding minimal contrasts. However, alternative variants

of emerging patterns based on closure properties can certainly be defined e.g. see [146].

In contrast to the row enumeration work, our paper seeks to investigate the limits of

column-wise mining and indeed our results showed that column-wise mining of contrasts

in high dimensional datasets is feasible using ZBDDs.

6.7 Summary

In this chapter, we have developed efficient algorithms for mining contrast patterns

in high dimensional data. We presented an algorithm based on the use of Zero Sup-

pressed BDD (and its weighted variant) as a data structure. We demonstrated how

mining constraints could be integrated with the standard ZBDD library routines. Our

experimental results showed the technique scales well for a number of high dimensional

biological datasets and allows the computation of both simple contrasts, such as emerg-

ing patterns and also more complex contrast patterns which use both disjunction and

conjunction. For emerging pattern mining, we showed our method substantially im-

proves on the tree-based technique [51]. Moreover, we are not aware of other work

suitable for computing the expressive contrasts considered.
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Chapter 7

Using Expressive Contrast

Patterns for Classification

In previous chapter, we introduced a highly expressive class of contrasts, namely dis-

junctive emerging patterns, which allow disjunctions as well as conjunctions of attribute

values. Emerging patterns [37] have been shown to be useful for building accurate clas-

sifiers [42, 39], but the use of the more expressive contrasts for classification remains

an open question. This chapter investigates whether disjunctive emerging patterns

are helpful for improving the accuracy of classification. We use the term simple con-

trasts to refer to non-disjunctive emerging patterns, and expressive contrasts to refer to

disjunctive emerging patterns.

7.1 Introduction

A pattern-based classifier builds its model by finding contrast patterns from the given

training data. For classifying a test instance T , it weighs the contribution of each

pattern according to its occurrence in T , based on its contrast-strength in the training

data. Simple contrasts, however, have several limitations which can potentially be over-

come by expressive contrasts. For example, consider the following expressive contrast

from an income data set [71].

Example 28. Let the following combination be a contrast that differentiates male

from female, being true for more than 10% males in the population but not true for

any female: [age ∈ [30..39] ∧ (industry = ’manufacturing’ ∨ ’transportation’)]. Should
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the two industries are considered individually, each of the conjunctive combinations

i) [age ∈ [30..39] ∧ industry = ’manufacturing’], and ii) [age ∈ [30..39] ∧ industry =

’transportation’] is true for less than 10% males, and they are individually weaker con-

trasts.

The issue that occurs in the above example often arises when the data is sparse,

or very small, in which strong contrasts are rare. The conjunctive combinations in such

a circumstance have low frequency and low contrast strength, but they may be useful

for classification.

Another limitation of simple contrasts occurs in the presence of continuous at-

tributes. Emerging patterns assume discrete data. Hence, their usefulness for classifi-

cation is influenced by the data discretisation. In coarsely discretised data, the simple

contrasts may be lacking class-distinguishing ability. In a finely discretised data, on

the other hand, the simple contrasts may be lacking frequencies (support). We call this

problem the resolution problem.

7.1.1 Challenges in Using Expressive Patterns for Classification

Expressive contrasts allow disjunctions (within attributes) as well as conjunctions

(across attributes). Their expressiveness is potentially useful for identifying rare con-

trasts which may help remedy the above-mentioned situations. The disjunctive patterns

address the resolution problem by merging multiple intervals through considering their

disjunction. Suppose a continuous-valued attribute age is finely discretised into equal-

length intervals of size 5. A disjunction of [age ∈ [20..24) ∨ age ∈ [25..30)] corresponds

to an interval of size 10 (i.e. age ∈ [20..30), which is found using a coarser discretisation.

Despite their potential, using disjunctive patterns for classification can have some

limitations due to two factors:

• A large number of patterns may be available to be used by the classifier

• The patterns may contain disjunctions between data items which are not strongly

related, or irrelevant

Our model uses the most expressive (or maximal) disjunctive emerging patterns,

i.e. expanding any of its disjunctions results in a constraint violation. Being most

expressive, however, those patterns may contain irrelevant disjunctions. Suppose a
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combination [(age ∈ [20..24] ∨ age ∈ [40..44]) ∧ industry = ’manufacturing’] is a maxi-

mal disjunctive emerging pattern. For example, another combination age ∈ [20..24] ∧

industry = ’manufacturing’ is also a valid disjunctive pattern. It may be the case that

the two combinations have the same frequency, if people who are 40-44 years old and

working in the manufacturing industry do not exist in the given data samples. Such

a circumstance is likely to occur when the data is sparse, or has insufficient training

samples. To address this issue, our model adopts a methodology for statistically testing

the significance of disjunctive patterns.

7.1.2 Purpose and Contributions

In summary, the purpose of this chapter is to investigate the benefit of using highly

expressive contrasts for classification, compared to the simple contrasts. We also anal-

yse circumstances where they are helpful, or not helpful. More specifically, we aim to

answer the following questions:

• When should disjunctions be allowed in contrast patterns for building a classifier?

• Which types of contrast patterns are most suitable for various data characteris-

tics?

Our contributions in this chapter are three-fold:

• We propose a classifier based on expressive contrasts, such as disjunctive emerging

patterns [97]. As a means to reduce noise and improve classification accuracy,

we use a statistical significance method based on the Fisher’s Exact Test, similar

to that used in [152]. Moreover, to test the significance of each condition in a

pattern, we extend the testing methodology by using negative representations

of the patterns, which are conjunctions of negated attribute values. The use of

statistical tests on negative conjunctions has not been previously studied.

• We present experimental results using several real [71] and synthetic data sets, and

show the accuracy comparison between our classifier, and a JEP Classifier [39, 51],

which is based on emerging patterns with infinite growth rate. It shows that the

disjunctive classifier is superior for sparse data, and as good as the other classifier

for dense data. Moreover, our results show that the accuracy of our classifier has

a low sensitivity to data discretisation.
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• Based on our experimental findings, we present a series of recommendations for

practitioners, answering the two questions posed earlier, about when disjunctions

should be allowed in contrast patterns, and which types of contrast patterns are

most suitable for classifying data with particular characteristics.

7.2 Preliminary

We follow the definition of emerging patterns and disjunctive emerging patterns which

were defined in previous section. In the remainder of this chapter, we use the term

pattern to refer to a contrast pattern, either as an emerging pattern or a disjunctive

emerging pattern. Let Dp and Dn be the positive and the negative class, respectively.

The support of a pattern refers to its support in the positive class (i.e. Dp). In relation

to association rules, a pattern P is associated with the positive class. It corresponds

to a highly confident association rule: P → Dp
1.

An overview of the classifiers based on emerging patterns was given in Chapter 2

(Section 2.9). Given a test instance T , if a pattern P occurs in T , P makes a contribution

to classify T as an instance of Dp. The patterns which contain T can be found from

each class, and their contributions aggregated. To make the final classification decision,

class C is chosen as the label of T if the aggregated patterns which favor C are stronger

than those which favor the other class. The classifier based on aggregating emerging

patterns, namely CAEP [42], chooses class C if its total score (i.e. contrast strength of

the contributing patterns) is maximum: class(T ) = maxscore(T,C) C, and

score(T,C) =
∑

strength(Q,C,¬C) (7.1)

where Q is a contrast pattern which contains T , i.e. T ⊆ Q.

7.2.1 Overview of Disjunctive Emerging Patterns

Disjunctive emerging patterns (Chapter 6) express contrasts as conjunctions of dis-

junctions. They can be seen as CNF boolean formulae. Disjunctions are only allowed

between items within attributes, and conjunctions across attributes. Formally, a Dis-

junctive Emerging Pattern (DEP) is an itemset x s.t. x contains at least one

1The confidence of an association rule: confidence(P → Dp) =
support(P,Dp)∗|Dp|

support(P,D)∗|D|
, where D =

Dp

S

Dn
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item from the domain of every attribute, and satisfies two support constraints: i)

support(x,Dp) ≥ α, and ii) support(x,Dn) ≤ β. Itemset x is a maximal DEP if there

does not exist another DEP y such that x ⊂ y.

Example 29. Given a dataset having three attribute domains {a1, a2, a3}, {b1, b2, b3},

{c1, c2, c3}. Suppose x = {a1, a2, a4, b1, b4, c1, c2} is a disjunctive pattern. The associa-

tion rule that x represents, denoted f(x), is (a1 ∨ a2 ∨ a4) ∧ (b1 ∨ b4) ∧ (c1 ∨ c2) → Dp.

The dataset projection into multi-dimensional space considers a disjunctive itemset

as a subspace. Figure 7.1 shows tha subspace which corresponds to pattern x given

in the previous example. Thus, the support of a disjunctive itemset is calculated by

counting the transactions which it contains.

For an attribute over an ordered domain, a set of adjacent items is called a con-

tiguous itemset. An itemset is g-contiguous if the gap between any two consecutive

items is no larger than a given minimum threshold g, where 0 ≤ g ≤ k − 2, where k is

the number of domain items for that attribute. Moreover, a g-contiguous pattern is

a pattern which does not contain any non g-contiguous subsets in any of its dimensions.

Consider Figure 7.1, x is g-contiguous for g ≥ 2, and y is g-contiguous for g ≥ 1.

Apart from their expressiveness, another advantage of the non-contiguousness of

disjunctive patterns is that they can allow rare contrasts to be identified. However,

there is a possible disadvantage. A non-contiguous disjunction geometrically splits a

pattern into contiguous sub-patterns, but in real situations, these sub-patterns may

be irrelevant. For this reason, we will propose a statistical technique for testing the

significance of a gap, which measures whether such gap makes a significant contribution

to the contrast strength of the pattern.

7.3 Statistically Significant Disjunctive Emerging Patterns

For the purpose of our study, our classifier uses the existing JEP-classifier frame-

work [39] as a baseline, which is particularly powerful for classifying the challenging

multi class, or dense, data sets. A JEP, or Jumping Emerging Pattern, is an emerging

pattern that has an infinite growth rate. The JEP-classifier is based on minimal JEPs,

i.e. those which are most expressive. For this reason, our classifier is based on maximal

disjunctive patterns which have infinite growth rate.

Since disjunctive patterns are relatively longer (i.e. contain more items) than the

simple patterns, intuitively not every item makes an equally-high contribution into the
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(a) x = {a1, a2, a4, b1, b4, c1, c2} (b) y = {a1, a2, a4, b1, b2, b3, b4, c1, c2},

Figure 7.1: Geometric representations of disjunctive patterns x and y

contrast strength of a pattern, which may introduce noise to the classification model.

To address this issue, we propose two levels of significance testing:

• External significance: tests whether the occurrence of a pattern is highly as-

sociated with the class

• Internal significance: tests whether each element in a pattern makes a signifi-

cant contribution into the contrast strength of the pattern.

Work in [159] proposed a multiple test correction method to solve the multiple

tests problem when testing the significance of multiple rules. Although this method

is useful to improve the significance of the rules, we do not use it in our classifier,

since the multiple tests problem is more of an issue in knowledge discovery, rather than

classification (discussed in [152]).

7.3.1 Statistical Fisher Exact Test and Externally Significant Patterns

Work in [152, 159] has shown that Fisher Exact Test (FET) is useful for finding statis-

tically significant association rules, which makes it potentially useful for finding signif-

icant contrast patterns as well. To test the significance of a pattern P , FET uses a 2x2

contingency table containing the support of P and its complemented support in each

class (shown in Table 7.1). FET tests the null-hypothesis which says that there is no

significant association between the rows and the columns of the contingency table. The

test returns a probability (i.e. p-value) for whether the hypothesis should be accepted.

Given a contingency table [a, b; c, d], and n = a + b + c + d. The p-value is computed
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Table 7.1: The contingency table for testing the significance of association between
pattern P and class C

D P ¬P

C a = support(P, C) b = support(¬P, C)
¬C c = support(P,¬C) d = support(¬P,¬C)

by:

p([a, b; c, d]) =

min(b,c)
∑

i=0

(a + b)!(c + d)!(a + c)!(b + d)!

n!(a + i)!(b − i)!(c − i)!(d + i)!
(7.2)

If the p-value of a pattern is below the given significanceLevel (typically 0.05), we

reject the null-hypothesis and say that the pattern has a significant class-association.

In our model, we call such a pattern an externally significant pattern.

7.3.2 Internally Significant Disjunctive Emerging Patterns

As has been identified in [152, 159], the inclusion of each condition in a significant

association rule should significantly contribute to the rule’s associations with the classes.

The testing methodology was originally fashioned for purely conjunctive rules. To adapt

the method for our needs, we use the negative representation of a disjunctive pattern.

Based on the Negative Normal Form (NNF) representation of boolean formulae, a

pattern can be represented as a conjunction of negative items, and it is significant if

each negative item has a significant contribution. This differs from the previous work on

significant association rules which are conjunctions of positive items instead of negative

items.

Example 30. Suppose there are two attribute domains, {a1, a2, a3, a4}, {b1, b2, b3, b4},

and x = {a1, a4, b2, b4} is a disjunctive pattern. The CNF representation of x is f(x) =

(a1 ∨ a4) ∧ (b2 ∨ b4). The NNF (Negative Normal Form) of f(x) is the conjunction of

the non-occurring variables, i.e. fN (x) = (¬a2 ∧ ¬a3) ∧ (¬b1 ∧ ¬b3).

The significance of a negated item ¬z in the previous example which occurs in

fN(x) is calculated between x and its generalisation (by inverting ¬z to z). Let z = a2.

Let y be the generalisation of x such that y = x∪{a2}. The contingency table for testing

the significance of ¬a2 in x consists of the frequency of ¬a2 and a2 in transactions that

contain y. We can calculate the p-value using Equation 7.2 and the contingency table

in Table 7.1, by letting P = ¬z, C = Dp|y, and ¬C = Dn|y, where Dp|y refers to
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the transactions in Dp which contain y, and similarly for Dn|y. The p-value gives the

significance of ¬z in fN (x), where x = ¬z ∧ y. If each of the negative items a2, a3, b1,

and b3 is significant in fN (x), then we say that x is an item-significant pattern.

Given ordered attribute domains, a disjunctive pattern can be projected into a

subspace possibly with some holes in it, where a hole corresponds to a disjunction of

non-contiguous items. If there are many small holes, those holes may not be worth

retaining if they contain very few data instances from the positive class. On the other

hand, big holes may be necessary if they contain many data instances from the negative

class. To evaluate the significance of each hole in a disjunctive pattern, we can employ

the item-significance test for a set of items, instead of a singular item.

Formally, we call a set of contiguous items which are not contained by a disjunctive

pattern as a gap. A gap is a significant gap if it passes the internal significance test. We

call the generalisation of a pattern that is obtained by inverting a gap as the gap-filled

generalisation. A gap is maximal if it is not a subset of another gap. If each maximal

gap g in a x is internally significant, then we say that x is a gap-significant pattern.

Example 31. Consider pattern x in Fig. 7.1a. Given three attribute domains {a1, . . . a4},

{b1 . . . b4}, {c1, . . . c4}, the CNF representation of x is (a1∨a2∨a4)∧(b1∨b4)∧(c1∨c2).

This pattern contains two holes {a3}, {b2, b3}. To measure the significance of hole

{b2, b3} in x, we use the contingency table in Table 7.1, by letting P = ¬(b2 ∨ b3). The

p-value measures the significance of excluding interval {b2, b3} from x, with respect to

the gap-filled generalisation y, where y = x ∪ {b2, b3} (shown in Figure 7.1b).

7.3.3 Classification by Significant Disjunctive Emerging Patterns

Our classifier is built based on significant disjunctive emerging patterns. To obtain

patterns with strong contrast strength, we firstly find the maximal disjunctive patterns

which have an infinite growth rate. Using only those patterns, however, may overfit

the training data, especially when the data is sparse.

In real situations, there may exist patterns which have a significant association with

the test instance, but are not identified by the classifier due to the infinite growth rate

constraint. To eliminate this problem, our classifier allows some constraint violation

by filling-in the insignificant gaps, if both of the following conditions hold:

• The gap is not significant in the original pattern

• The resulting gap-filled pattern is externally significant
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If a pattern contains an insignificant gap, and the second condition does not hold, then

that pattern is removed from the classifier. Thus, all patterns which are used by the

classifier are externally and internally significant. We refer to such patterns significant

disjunctive patterns.

Algorithm 7.1 shows the procedure for filling the insignificant gaps and testing the

significance of the resulting pattern. Given a disjunctive pattern x. For each maximal

gap g in x, we test whether g is a significant-gap based on the gap-significance test

proposed in Section 7.3.2. If it is significant, it means that the discriminating ability

of x is highly dependent on the exclusion of g, and we leave the gap as it is (line 5).

However, if gap g is not significant in x, then it is a candidate to be filled (line 7). Since

x is a maximal pattern, i.e. none of its proper supersets satisfy the support constraints,

filling-in gap g violates the support constraints. To maintain the class-discriminating

ability of the gap-filled pattern, labeled as xfilled, we test its significance (line 10) by

the external significance testing described in Section 7.3.1.

We will shortly describe our classifier, SigDEPClassifier, as shown in Algo-

rithm 7.2. In the learning phase (line 1-4), it finds the significant disjunctive patterns

from each class Ci, which satisfy a pre-defined minimum support α in Dp, and maxi-

mum support β in Dn. In the classification phase (line 5-11), given a test instance T ,

the patterns which contain T are selected to make contribution into the classification

(line 7), and their discriminating powers aggregated for each class (line 8), using the

scoring function score (Equation 7.1). Other alternative scoring functions may be used

instead of the simple one that we proposed. Finally, decision is made for T based on

the class which has the highest score (line 10).

7.4 Experimental Results

In this section, we evaluate the performance of our classifier described in Section 7.3.3.

The aim of our experiments is to analyse the benefits of using statistically significant

disjunctive emerging patterns for building an accurate and robust classifier.

7.4.1 Experimental Setup

To evaluate the sensitivity of our classifier to data discretisation, we use the following

four data sets [71], which contain continuous attributes: breast-cancer-w, glass, wine,

and horse-colic data sets. Their characteristics are shown in Table 7.2. We categorise
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Algorithm 7.1 fillGaps(x)

Input: A disjunctive emerging pattern x
Output: A gap-filled significant pattern xfilled which fills the insignificant gap in x
1: G = the set of maximal gaps in x
2: xfilled = x /* Initialise the gap-filled pattern */
3: for each hole g in G do
4: if (gap g is a significant gap in x) then
5: xfilled = xfilled /* Leave gap g as it is in x */
6: else
7: xfilled = xfilled ∪ g /* Fill gap g in x */
8: end if
9: end for

10: if (the gap-filled pattern xfilled is externally significant) then
11: return xfilled /* The gap-filled pattern is returned */
12: else
13: return ∅ /* No pattern is returned */
14: end if

Algorithm 7.2 SigDEPClassifier(Dtrain, Dtest)

Input: A training dataset Dtrain, which contains k classes: C1, C2, . . . Ck, and a testing
dataset Dtest

Output: Assign the class label for each test case in T
1: for each class Ci in Dtrain do
2: ¬Ci =

⋃

j=1..k Cj − Ci

/* Combine the other classes to form the negative data set */
3: Si = the set of significant disjunctive patterns in Ci w.r.t ¬Ci

4: end for
5: for each test instance T in Dtest do
6: for each class Ci do
7: CT

i = disjunctive patterns in Ci which contain T
8: score[i] =

∑

strength(Q,Ci,¬Ci), where Q ∈ CT
i

/* Calculate the score for class Ci by aggregating the contrast strength of the
contributing patterns */

9: end for
10: classLabel[T ] = maxscore[i] i

/* Choose the class which has the highest score to be the label of the test instance
T */

11: end for
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Table 7.2: Data characteristics

Dataset C class sizes

breast-cancer-w 2 458 - 241
horse-colic 2 191 - 109

wine 3 59 - 71 - 48
glass 7 70 - 76 - 17 - 1 - 13 - 9 - 29

C = number of classes

the data sets based on their sparsity/density. The data sets which contain multiple

classes, namely wine and glass data sets, are considered sparser than the binary-class

data sets, namely breast-cancer-w and horse-colic data sets. Moreover, the glass data

set is considered extremely sparse, since it contains 7 classes with only a few instances

in each class.

The classification’s accuracies are based on 10-fold stratified cross validation. We

will compare the accuracy between our classifier, labeled CNF-classifier, and three other

classifiers:

• strictCNF classifier: which is based on disjunctive emerging patterns without

the significance test, strictly imposing the support constraints on the patterns.

We compare against this classifier to evaluate the influence of employing the

significance test in our CNF-classifier.

• JEP classifier [39]: which is based on jumping emerging patterns. It has shown to

be particularly powerful in large and high dimension databases where the other

EP-based classifiers have weak performance.

• C4.5 classifier [133]: one of the state-of-the-art classifiers (we obtained its im-

plementation from its original author), which is based on a decision tree. It has

shown to perform well on large data sets with balanced classes, but not so well

for rare-class classification.

7.4.2 Accuracy Comparison with respect to the Contiguousness of

Disjunctive Patterns

In this experiment, we study the influence of employing a gap constraint on disjunc-

tive emerging patterns to the classification accuracy. The gap constraint restricts all
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dimensions of each pattern to not contain a gap which exceeds g (ordered) items. We

vary the value of g between 0 to k − 2, where k is the number of discretised intervals

that we chose for each data set.

Figure 7.2a shows the accuracy of the classifiers for the breast-cancer-w data set.

When the gaps are small, i.e. g < 8, CNF and strictCNF classifiers are weaker than the

JEP classifier, whilst the strictCNF classifier is no weaker than C4.5. As g increases,

i.e. larger gaps are allowed in the disjunctive patterns, the accuracies of the CNF and

strictCNF classifiers increase. But when g = 8, the CNF classifier outperforms both

the JEP and C4.5 classifiers by achieving 98.6% accuracy.

Figures 7.2b shows the accuracy of the classifiers for the horse-colic data set. In

this data set, both of the CNF and strictCNF classifiers are more accurate than the JEP

classifier, which only has 63%-65% accuracy. Moreover, the CNF classifier is the most

accurate across all values of g, with its highest accuracy being achieved when g = 6.

For the sparse wine and glass data sets, we chose to use a high support threshold for

which the JEPs exist very rarely. Figure 7.2c shows that both the CNF and strictCNF

classifiers have much higher accuracies compared to the JEP classifier. In this scenario,

they can obtain higher accuracies than C4.5 given certain values of g. The relative

accuracy between the CNF classifier and strictCNF classifier, however, varies between

different values of g. Such a relative behaviour is similarly found in the glass data set,

as shown in Figure 7.2d, except that they do not exceed the accuracy of either the JEP

or C4.5 classifier in this scenario.

7.4.3 Accuracy Comparison with respect to the Discretisation Gran-

ularity

For this set of experiments, we varied the number of bins when performing equal-

density or equal-length discretisations for each data set. The choice of discretisation

was made in such a way so that a reasonable number of patterns exist and mining

could complete under 100,000 seconds. Figure7.3 shows the classification accuracy of

the different classifiers, with respect to the number of discretisation binnings.

For the breast-cancer-w data set, Figure 7.3a shows that the accuracies of both

CNF and strictCNF classifiers are improved when more binnings are used (i.e. finer

granularity), with the CNF classifier being relatively better. Given a fine granularity

with 12 bins, the accuracy of CNF classifier is 12% higher than the JEP classifier, and

2% higher than C4.5.
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For the horse-colic data set, Figure 7.3b shows that the CNF classifier outperforms

the other classifiers when a fine granularity is used. With 7 or more bins, the CNF

classifier can obtain 85% accuracy, whilst the JEP classifier only has 60% accuracy, and

C4.5 has 82%. When a coarse granularity is used, i.e. 6 or fewer bins, the accuracy of

CNF decreases towards the JEP classifier. Such a behaviour shows that the significance

tests employed by the CNF classifier helps improve the accuracy in this data set when

the data is finely discretised, but not when the data is coarsely discretised.

Figure 7.3c shows that in the wine data set, the accuracy of CNF classifier as

well as strictCNF classifier increases as the number of binnings increases. As the

number of bins increases, the accuracy of the JEP classifier decreases, whilst the CNF

and strictCNF classifiers have 100% accuracy, which outperforms C4.5 by 2%. In this

data set, the significance test used by the CNF classifier does not have much influence

in the classification accuracy across various discretisation granularities.

Figure 7.3d shows that in the glass data set, the accuracy of the CNF classifier

decreases with the increase in the number of bins. Results from this experiment show

that employing the significance test is not always useful for improving classification

accuracy. It is only useful when fine granularity is used, and many patterns exist.

More specifically, it is useful when the data is not extremely sparse. In this data set,

however, either the JEP or CNF classifier cannot achieve the accuracy obtained by C4.5.

7.4.4 Effects of Inter-dependency Between Multiple Attributes to the

Classification Accuracy

This set of experiment investigates the classification accuracies in datasets which have

strong inter-dependency between the attributes. Let k be the number of synthetic

attributes, we generate random values between 1 and valmax for each attribute. For

each transaction T , tn is the value of the n-th attribute. We define a linear function

f(T ) of the attributes, where f(T ) =
∑k−1

n=0(−1)ntn. The class label for T is defined

by the value of f(T ): if f(T ) ≤ c, class(T ) = 0 otherwise, class(T ) = 1, where c

is a small positive constant. An illustration of the data set is shown in Figure 7.4a

with 20 transactions, k = 2, valmax = 40, where the dotted-lines show a possible data

discretisation. We created several synthetic datasets with an increasing number of

transactions, which makes the class-distinction more difficult given a strong attribute

interdependency.

Figure 7.4b shows the accuracy of each classifier for various number of instances,
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N . For each value of N , we generate 10 data sets with k = 4, valmax = 1000, and

calculate the average of the accuracy over those 10 data sets. The contrast patterns

which are used by the classifier have minimum support α of 40%. Given this scenario,

the JEP classifier has the lowest accuracy. The accuracies of both the CNF classifier and

strictCNF classifier increase for larger training data. It shows that these two classifiers

have a high ability to classify data with inter-dependent attributes, which cannot be

handled by the JEP classifier.

7.4.5 Effects of Support Threshold to the Classification Accuracy

We now compare the sensitivity of the accuracy with respect to the minimum sup-

port of the contrast patterns. Figure 7.5 shows the accuracies aggregated over various

support thresholds, for an increasing discretisation granularity (measured in terms of

the number of bins or discretised intervals). The aggregation is computed as (mean

- 2 st.dev), which gives a lower bound estimate of the 95% confidence interval. In

the breast-cancer-w data set, the JEP classifier has a large sensitivity with the support

threshold given a fine granularity (i.e. 12 bins), whereas the accuracies of either the

CNF classifier have lower sensitivity. In the horse-colic data set, the CNF classifier does

not perform as well as strictCNF classifier for coarser granularities, which shows that

the significance test is less useful when there is a few number of bins.

For the case of multi-class classification, in the glass data set, the strictCNF

classifier without significant testing has similar performance as the JEP classifier, but

the CNF classifier has a high sensitivity with respect to the discretisation granularities as

well as the minimum support threshold. In the wine data set, which is relatively small

and more balanced, the CNF classifier outperforms all the other classifiers, showing its

suitability for multi-class classification.

7.5 Discussion

In this section, we will discuss the behaviour of the CNF classifier with respect to the

characteristics of the input data set, based on the performance results shown in the

previous section. Under each data category, either dense binary-class or sparse multi-

class data sets, we make a further categorisation based on the class sizes.

The influence of discretisation granularity: Our performance study showed

circumstances where the CNF classifier has a high accuracy. In a finely discretised data,
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Figure 7.2: Comparison of classification accuracy with respect to the contiguousness of
the patterns (in terms of the maximum size of each gap)

many of the patterns may not be contiguous, and more gaps may occur. Moreover,

each bin comprises of a small range of values, which is likely to have low frequency

unless the data is very dense. Thus, given a finely discretised data, many gaps in the

patterns may be spurious and insignificant, which explain circumstances in our exper-

iments (Section 7.4.3) where the CNF classifier outperforms the accuracy of strictCNF

classifier.

The influence of gap constraint: The gap constraint seems to have stronger

influence in the dense data sets compared to the sparse data sets. Applying a very

strict gap constraint, i.e. setting g to be very small, may hurt accuracy. In such a

circumstance, patterns which contain large gaps are split into smaller patterns. The

new patterns have smaller support, thus smaller contrast strength, than the original

patterns. This explains circumstances where our CNF classifier has a low accuracy for

small values of g.

When the data is dense, the gap constraint has an important influence to the score

which aggregates the strength of the mined patterns. This explains circumstances in

our performance study, where the CNF classifier is able to improve the classification
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Figure 7.3: Comparison of classification accuracy with respect to data discretisation’s
granularity

accuracy in dense data sets. It indicates that dense data sets may contain more noise

than the sparse data sets, and the significance tests performed by CNF classifier are able

to handle noise.

7.5.1 Practical Recommendations for Users

Practical recommendations for users: Answering the questions posed at the begin-

ning of this chapter, we now present our recommendations on choosing the appropriate

type of patterns for building a highly accurate classifier.

When should disjunctions be allowed in contrast patterns for building a classifier?

Disjunctions should be allowed in contrast patterns for building a classifier when the

data is sparse, that is when the classes are imbalanced, when the attributes have strong

interdependency, or when the data is finely discretised.

Which types of contrast patterns are most suitable for various data characteris-

tics? In a sparse data, expressive contrasts are more appropriate compared to simple

contrasts. Whenever continuous-valued or ordered attributes exist, a fine granularity
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Figure 7.4: Comparison of classification accuracy in synthetic data sets with respect to
data sparsity ( in terms of # training instances)

discretisation should be used, e.g. 8 bins or finer, and disjunctive patterns are appro-

priate. The significance test should be performed on expressive patterns, except when

the data is greatly imbalanced. The disjunctive patterns without significance test are

suitable for a greatly imbalanced data. Simple conjunctive patterns are useful for dense

and coarsely discretised data sets.

7.6 Related Work

A contrast pattern is similar to a highly confident class association rule [92]. Association

rule based classifiers have been studied [92, 163, 152], but none of them use disjunctive

rules. Moreover, statistical significance tests on association rules, such as in [159, 152],

have only been applied to rules with a simple conjunctive antecedent (i.e. condition).

Our testing method for significant disjunctive patterns has not been previously studied,

and it could possibly be extended for disjunctive association rules. Other statistical

measures, such as optimal rule [90] and odds ratio [83], can also be combined with the

significance test presented in this chapter.

The negative representations of significant disjunctive patterns are similar to neg-

ative association rules [10, 155]. Work in [10] also studied their use for classification.

However, our pattern representations limit the negation to occur only in the rule’s

antecedent. Disjunctive patterns are, moreover, more expressive than negative associ-

ation rules. They also have similar expressions to negative jumping emerging patterns

[150], but disallowing any positive item to occur in the patterns. Negative jumping

emerging patterns, however, are found from a transformed database (which adds the
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Figure 7.5: Comparison of mean and st.dev of the classification accuracy (over various
minimum support of the patterns) with respect to the discretisation granularities

non-occurring negative items to each transaction), which is more expensive than the

technique for finding disjunctive emerging patterns [97] from the original database.

7.7 Summary

In this chapter, we have investigated the advantages and disadvantages of using expres-

sive (in the form of CNF combinations) contrast patterns in classification, compared

to the simple contrasts. We proposed a statistical testing for finding significant CNF

patterns, which can also be adopted for disjunctive association rules or negative as-

sociation rules. Overall, we found that expressive forms of patterns can be beneficial

for classification, since expressive patterns are less sensitive, hence, more robust, with

respect to the data discretisation and data sparsity.
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Chapter 8

Mining Patterns and Influential

Attributes That Capture Class

and Group Contrast Behaviour

In Chapter 7, we studied the use of contrast patterns for classification, either the

patterns are expressed as the simple emerging patterns [37], or the more expressive

disjunctive emerging patterns which we proposed in Chapter 6. When multiple groups

of classes are present, however, the existing types of contrast patterns cannot discover

more interesting knowledge, such as the contrasts of contrasts which are second-order

properties. Such information is useful for discovering how differentiating factors can

vary across groups of classes, and discovering both the class and group contrast be-

haviour. Another problem is the overwhelming number of patterns which often exist.

For instance, in the census data set [71], millions of (first-order) contrast patterns

that differentiate males from females can be discovered, based on only the first ten

attributes in the data set. What is needed, is the ability to summarise the meaning of

such patterns in a highly compact way. In this chapter, we address the following two

research questions: i) ’how do we discover and mine second-order differences?’, ii) ’how

do we identify to the user those attributes which have the most impact with respect to

a collection of second order-differences?’.
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Figure 8.1: First order differences within groups and second order differences across
groups

8.1 Introduction

Second-order differences are meaningful in a number of interesting situations. The

following are two examples which motivate our research:

Example 32. In the census data set [71], one might wish to ask ’what are the dif-

ferences between males and females, which are characteristic for one race group, but

less characteristic for another race group?’ The first-order contrast mining discovers

contrasts between males and females, and the second-order contrast mining discovers

how those contrasts differ between two race groups.

Example 33. In the domain of plant physiology [137], the biologists would like to

discover ’how does the response to a given treatment differ between the tip and base

of a leaf?’ First-order contrast mining discovers treatment contrasts, comparing leaf

samples which are given a treatment, against leaf samples which are not given the

treatment. Second-order differentiation then compares treatment contrasts with respect

to the tip of the leaf, against treatment contrasts with respect to the base of the leaf.

To answer our research questions, we propose the following two solutions:

• A method that discovers the second-order differences between contrasts for one

group of classes, compared to contrasts for some other group of classes. This

problem differs from standard contrast mining scenarios, since one needs to be

able to compare across groups of classes, as well as between classes.

• A technique for ranking attributes, based on their degree of influence within a

collection of second order differences. Such a ranking is far easier to interpret by
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a user, compared to returning millions of patterns. It aims to identify the key

underlying factors responsible for change across groups.

Firstly, we introduce a class of second-order contrast patterns that we will call the

Group Discriminative Contrast (GDC) patterns. They correspond to patterns

of contrast that strongly differentiate the classes in one group, but whose discriminative

power (i.e. ability to differentiate the classes) in the other group is weaker. To explain

further, consider an example of a second-order contrast for the census data set [71].

When comparing the differences between male and female across two race groups, i.e.

’White’ and ’Non-White’, some patterns are able to strongly discriminate males and

females if the individual belongs to the white race, but not if the individual belongs

to the other race group. Figure 8.1 provides a conceptual diagram explaining the

relationship between the first-order and second-order contrasts.

Example 34. In the census dataset, 1.5% males and 0.4% females in the ’White’ pop-

ulation satisfy the pattern ’older than 60 years and worked in a durable manufacturing

industry’. This shows that the rule consisting of age and the industry can significantly

contrast males from females in the ’White’ race group, since there are 4 times more

males than females for which the rule is true. However, this pattern does not match

any individual in the ’Non-white’ population and hence it is not a contrast for that

group. We say this pattern is a group discriminative contrast pattern, since it is a

class contrast (between male and female) for one group (‘White’), but it is not a class

contrast for the other group (‘Non-white’).

Secondly, we propose a technique for finding attributes which represent the un-

derlying factors behind second-order contrast behaviour. In particular, we identify in-

fluential attributes, whose values can be used to find partitions of the original groups,

such that these partitions show significant differences in contrast behaviour across the

groups. Our work is motivated by the work in [88] which shows that variation in values

for certain attributes may increase/decrease the discriminative ability of some contrast

patterns. How to assess the degree to which an attribute is responsible in the dis-

criminative ability of contrast patterns has so far been an open question. The number

of contrast patterns is usually exponential in the number of attributes, whereas the

number of influential attributes is smaller than the number of attributes.

Example 35. Recall the previous example. Suppose the ‘working industry’ of the indi-

vidual is not included in the pattern. In the ’White’ population group, 11.5% males and

15.2% females are 60 years old, or older, and in the ’Non-White’ population group, 6%
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males and 10% females belong to that age group. This shows that considering the age

by itself does not capture a strong contrast in either race group. Moreover, the industry

specification attribute has some degree of group discriminative contrast influence, since

when combined with age information, it helps the differentiation between males and

females in the ’White’ group, but does not help the differentiation in the ’Non-White’

group. Furthermore, if the industry attribute had a similar effect when combined with

many different patterns, we would rank it highly in terms of overall attribute influence.

8.1.1 Challenges

A major challenge in our research is that it is not obvious how one can develop a concept

of second order contrast that is simple, intuitive, and useful in practice. Addressing

this question is a key aim of the paper.

On the mining side, since we are considering multiple groups of classes, efficient

data representation of those classes is a critical factor for efficient mining. To address

this issue, we propose to use the Weighted Zero-suppressed Binary Decision Diagrams

(WZBDDs) as data structure. In previous chapters of this thesis, WZBDDs have shown

their usefulness for mining the other, simpler type, of patterns.

Furthermore, since we are not only discovering the patterns of second order con-

trast, but also the influence of each attribute in those patterns, our mining task requires

repeated and expensive exploration of the pattern space for each possible attribute. To

achieve efficiency, thus, it is important to be able to push multiple constraints deep

into the mining routine.

8.1.2 An Overview of Feature Ranking Techniques

In regard to ranking how influential an attribute is, existing feature ranking techniques

such as entropy or statistical measures, purely focus on the ability of a single attribute

to determine a class label. They do not rank an attribute based on consideration of

its participation in multi-variate behaviour, or on its ability to find subcategories that

exhibit interesting contrast behaviour. This can be very limiting and may result in

important attributes being overlooked. e.g. Work in [89] has shown that attributes

which are ranked low according to entropy, may still be influential with respect to a set

of contrast patterns. Our technique can uncover such attributes, since the influence of
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an attribute is measured with respect to its behaviour and participation within combi-

nations of contrast patterns.

8.1.3 Contributions

This chapter makes the following important contributions:

• We address two levels of contrasts: first order contrasts between classes within a

group, and second order contrasts between the first order contrasts across groups

Existing work in contrast mining [37, 168, 17, 38, 160] has only addressed the

problem of finding first order contrasts.

We introduce a formal definition for a novel type of contrast pattern, the group

discriminative contrast pattern, that differentiates the classes within a group, and

at the same time, discriminates between the groups. Furthermore, we introduce

a new attribute ranking method that measures the influence of an attribute with

respect to its discriminative power for second-order contrast patterns, termed the

group discriminative contrast Influence.

• We propose a mining technique which can efficiently explore the pattern space and

mine the set of second order contrasts, as well as rank the degree of influence for

each attribute within this set. Our algorithm is based on the use of Weighted Zero-

suppressed Binary Decision Diagrams (WZBDDs) and relies on a novel method

for embedding group discriminative constraints within a prefix enumeration style

framework. One of the advantages of using WZBDDs is their ability to compactly

represent numerous databases, which may be beneficial in second order contrast

mining, since multiple groups of classes are considered. We adopt the WZBDD

mining framework which we introduced in Section 4, which had been extended

for mining contrasts in Section 6.

• We experimentally evaluate our technique on real datasets, and compare our at-

tribute influential scoring method against other classic feature ranking methods,

such as entropy and correlational techniques. Our experiments demonstrate the

efficiency of our mining technique and also show that our approach is able to dis-

cover some intuitively meaningful attributes, representing underlying influential

factors that would be difficult or impossible to isolate using standard techniques.
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8.2 Preliminaries

Assume we have a data set D defined upon a set of k attributes. For every attribute

Ai, i ∈ {1, 2..k}, the domain of its values (or items) is denoted by dom(Ai). Let I be

the aggregate of the domains items across all the attributes, i.e. I =
⋃k

i=1 dom(Ai).

An itemset is a subset of I. Let p and q be two itemsets. We say p contains q if p is

a superset of q, i.e. p ⊇ q. We require that an itemset can contain at most one item

from the domain of any given attribute.

The data set D can be projected to a multi-dimensional space, where each attribute

corresponds to a dimension in this space, and an itemset corresponds to a subspace.

The projection of p on dimension A, denoted pA, is the item in itemset p which belongs

to the domain of attribute A, i.e. pA = p ∩ dom(A). If pA 6= {}, then p is called an

A-dependent itemset, or p depends on the value of attribute A. Given an A-dependent

itemset p, q is the A-generalization of p if q contains all items in p except the item

which belongs to the domain of attribute A, i.e. q = p \ pA.

Example 36. Let p1 = {x0, y1, z1} be an itemset that depends on 3 attributes, where

dom(A1) = {x0, x1}, dom(A2) = {y0, y1}, and dom(A3) = {z0, z1}. The projection of

p1 in dimension A3 is {z1}, and its A3-generalization is {x0, y1}.

A dataset is a collection of transactions, where each transaction is an itemset.

The support of an itemset p in dataset D, i.e. support(p,D), is the fraction of the

transactions in D which contain p (0 ≤ support(p,D) ≤ 1). The support function is

monotonic, that is, for all itemset q such that p ⊇ q, support(p,D) ≤ support(q,D) .

In the context of first-order contrast mining, a data set contains a positive class,

namely Dp and a negative class namely Dn. The growth rate of an itemset p, denoted

gr(p), is the ratio between its support in Dp and its support in Dn, i.e. gr(p) =
support(p,Dp)
support(p,Dn) . For all itemsets q such that p ⊇ q, if support(p,Dp) = support(q,Dp),

then gr(p) ≥ gr(q), and if support(p,Dn) = support(q,Dn), then gr(p) ≤ gr(q). We

follow the definition of emerging patterns which has been used through out this thesis.

Given α and β threshold values, where 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1, an itemset p is an

emerging pattern (EP) [37] if support(p,Dp) ≥ α and support(p,Dn) ≤ β.
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8.3 Group Discriminative Contrast

In this section, we define the second-order contrast characteristics between two groups

of classes in terms of Group Discriminative Contrast (GDC) patterns and Group

Discriminative Contrast Influential (GDC Influential) attributes, whose defi-

nitions generalise previous work on the simple type of contrasts, emerging patterns

(EPs) [37].

Considering the data in a multi-dimensional space, an EP between the positive

and the negative class in a particular group corresponds to a subspace that contains at

least α positive instances and no more than β negative instances from that group. Such

a subspace may have different contrasting ability between the classes in another group

though. Hence, before introducing our second-order contrast definitions, we firstly

introduce a formula for measuring the contrast strength of a pattern in a particular

group, using a function similar to one in [42] as follows.

Definition 22. Let G1 and G2 be two groups of classes. Each group G, G ∈ {G1, G2},

contains a positive class and a negative class. Given an itemset p and a group G,

we refer to the positive and the negative class in G, as Dp and Dn, respectively. Let

supportG(p,C) be the support of p in class C in group G, and grG(p) be the growth rate

of p in group G.

The contrast intensity of p in group G, denoted CIG(p,Dp,Dn), is the dis-

criminative power between the positive instances and the negative instances from group

G which are contained in subspace p. We define CIG(p,Dp,Dn) as a function of the

support and the growth rate of p:

CIG(p,Dp,Dn) = supportG(p,Dp) ∗
grG(p)

1 + grG(p)

Let p and q be two itemsets, such that p contains q, i.e. p ⊇ q. In a given group

G, the following monotonic properties hold between their contrast intensities:

• if supportG(p,Dn) = supportG(q,Dn), then CIG(p,Dp,Dn) ≤ CIG(q,Dp,Dn)

• if supportG(p,Dp) = supportG(q,Dp), then CIG(p,Dp,Dn) ≥ CIG(q,Dp,Dn)

• if supportG(q,Dp) = 0, then CIG(q,Dp,Dn) = 0 and CIG(q,Dp,Dn) = CIG(p,Dp,Dn)
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Figure 8.2: Subspace q is the generalization of subspace p in dimension A3, where
pA3 = z1. A triangle represents a positive instance, a circle represents a negative
instance, in the specific group

8.3.1 Group Discriminative Contrast Patterns

In this sub-section, we will formally define Group Discriminative Contrast (GDC)

Patterns, which correspond to subspaces that have strong contrast intensity between

classes in one group, but they have relatively weaker contrast intensity in the other

group. Firstly though, we define the following measurement for measuring how much

stronger a subspace is for differentiating the classes in one group, compared to the other

group. We refer to the first group as the primary group, and the latter as the secondary

group.

Definition 23. Let G1 and G2 be two groups of classes, where G1 is the primary group

and G2 is the secondary group. Let Dpi
and Dni

be the positive and the negative class

in group Gi, respectively. The group-discriminating power of a pattern p, denoted

gCIDiff(p,G1, G2), is the difference between the contrast intensity of p in group G1

and its contrast intensity in group G2. It is defined as:

gCIDiff(p,G1, G2) = CIG1(p,Dpi
,Dni

) − CIG2(p,Dpi
,Dni

)

Example 37. Figure 8.2 (a) shows a subspace q in the primary group G1, which

contains 6 positive instances and 5 negative instances. Suppose there are 10 positive and

10 negative instances in each group. Hence, we can calculate CIG1(q) = 0.6 ∗ 0.6
0.6+0.5 =
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0.33. Figure 8.2 (b) shows the same subspace in the secondary group, G2, which contains

5 positive and 6 negative instances. CIG2(q) = 0.23. The group discriminating power of

q, i.e. gCIDiff, is 0.10, which shows that the contrast intensity of q between the positive

and the negative class in G1 is larger by 0.10 from its contrast intensity in G2.

An itemset with a positive group discriminating power corresponds to a subspace

in which the contrast between the positive and the negative class in the primary group is

stronger than the class-contrast in the secondary group. If the difference of its contrast

strength exceeds a given threshold, then we call that itemset a group discriminative

contrast pattern, which is formally defined as follows.

Definition 24. Let p be a subspace that corresponds to an emerging pattern in group

G1. Given a positive minimum threshold, δgdc, p is a Group Discriminative Con-

trast (GDC) pattern with respect to the primary group G1, if its group discriminating

power is no less than δgdc, i.e. gCIDiff(p,G1, G2) ≥ δgdc

A GDC pattern can be seen as a conditional contrast pattern, since it has a strong

contrast strength given data instances from the primary group relative to the secondary

group. The following properties hold between GDC patterns and the first-order contrast

patterns:

• Not all of the first-order contrast patterns for the primary group are GDC pat-

terns. Only those patterns whose contrast strength for the secondary group is

lower by δgdc or more, are GDC patterns.

• A GDC pattern may be a relatively strong first-order contrast for the secondary

group, but its contrast strength for the primary group is higher by δgdc or more.

8.3.2 Group Discriminative Contrast Influential Attributes

We now introduce our method for measuring responsibility (or influence) of an attribute

in the set of group discriminative contrast (GDC) patterns. To give an analogy, a

subspace can be seen as a window which captures the contrast intensity between the

classes in each group based on the instances which are contained in that subspace. The

attributes whose values are specified in the pattern correspond to the dimensions of

the frame of that window. As one dimension is removed from, or added to a window,

i.e. the value of an attribute is generalized or specified, its contrast intensity may
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Table 8.1: Measurement categorisation according to input parameters and group ap-
plicability

Input parameter(s) Group measurement Between-groups measurement

A pattern Contrast intensity Group discriminating power
(CI) (gCIDiff)

An attribute and Contrast influence Group discriminating influence
a pattern (CIGain) (gCIDiffGain);

Group discriminating influence ratio
(gCIDiffGainR)

An attribute and GDC influence
a set of patterns (globalInfluence)

change due to the increase or decrease in the relative number of positive and negative

instances in the new window. Such an increase of contrast intensity can thus be used for

measuring the responsibility (influence) of an attribute in a particular pattern, which

may vary between different patterns and different groups. Moreover, an attribute has

some influence in a pattern only if one of its domain values is contained in the pattern,

i.e. the pattern depends on that attribute.

Hence, we formulate the following requirements for defining the scoring function

that measures the group discriminative contrast influence of an attribute:

• Aggregates the attribute’s influence across all GDC patterns

• For each pattern, measures the attribute’s contrast influence in the primary group

• For each pattern, measures the attribute’s difference of contrast influence between

the groups

We refer to the influence of an attribute in a GDC pattern as its local influence,

and the group-discriminative contrast influence of an attribute, or the influence of an

attribute across all the GDC patterns, as its global influence. In the remainder of

this section, we use the general term pattern for referring to a GDC pattern, unless

stated otherwise.

Definition 25. Given an attribute A, and a pattern p such that p is A-dependent, the

local influence of A in p, denoted localInfluence(p,A,G1,G2), measures the attribute’s

group discriminative contrast (GDC) influence locally in subspace p. Given the set of all

A-dependent GDC patterns, SA, the global influence of A, globalInfluence(SA, A,G1, G2),

aggregates the GDC influence of A across all patterns in SA:
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globalInfluence(SA, A,G1, G2) =
∑

p∈SA

localInfluence(p,A,G1, G2)

If localInfluence(p,A,G1, G2) < 0, we say that attribute A has a negative influence

in p, as it shows that the inclusion of attribute A weakens the group discriminating

power of p. If globalInfluence(SA, A,G1, G2) > 0, then A is a Group Discriminating

Contrast Influential Attribute, or GDC Influential Attribute for short, which

means that A-dependent patterns exist, and the inclusion of dimension A strengthens

the overall group discriminating power of those patterns.

An attribute’s local contrast influence in a group: We now describe the mea-

surement of the local influence of an attribute in a subspace, based on the following

definition which measures the gain in the contrast intensity of the subspace, as a result

of including that attribute in its dimensions.

Definition 26. Given group G. Let Dp and Dn be the positive and the negative class

in G. Let A be an attribute, p be an A-dependent pattern, and q be its A-generalization.

The local contrast influence of A in p, denoted CIGainG(p,A,Dp,Dn), is the con-

trast intensity which is gained from the A-generalization of p:

CIGainG(p,A,Dp,Dn) = CIG(p,Dp,Dn) − CIG(q,Dp,Dn)

In the given group, a positive (resp. negative) CIGain of attribute A in subspace

p shows that specifying the value of attribute A in p strengthens (resp. weakens) the

class-discriminating ability of subspace p. This can be used for measuring the contrast

influence of an attribute in the primary group (satisfying requirement 2 of the scoring

function). However, it is a group measurement, which does not tell us about the dif-

ference in influence of the attribute with respect to the secondary group (requirement

3 of the attribute’s influence scoring function).

An attribute’s local contrast influence difference between groups: The follow-

ing formula measures the relative local influence of attribute A, in terms of how much

group-discriminating power is gained as a result of specifying the value of attribute A

in a pattern.

Definition 27. Let G1 be the primary group, G2 be the secondary group. Let p be an

A-dependent pattern, and q be the A-generalization of p. The group-discriminating

185



CHAPTER 8. MINING PATTERNS AND INFLUENTIAL ATTRIBUTES THAT CAPTURE
CLASS AND GROUP CONTRAST BEHAVIOUR

influence of attribute A locally in p, denoted gCIDiffGain(p,A,G1, G2), is the gain in

the group discriminating power of p with respect to its A-generalization.

gCIDiffGain(p,A,G1, G2) = gCIDiff(p,G1, G2) − gCIDiff(q,G1, G2)

Example 38. Recall the subspace examples in Figure 8.2. In group G1, CIG1(p,Dp1 ,Dn1) =

0.42 and CIG1(q,Dp1 ,Dn1) = 0.33. Thus, attribute A3 has a positive contrast influence

of 0.09 in p. In group G2, attribute A3 has a negative contrast influence of -0.17. Thus,

the group-discriminating influence of A3 is 0.50, i.e. gCIDiffGain(p,A3, G1, G2) =

0.33− (−0.17) = 0.50, which shows that the inclusion of attribute A3 in p increases the

between-groups difference of its ability to capture contrast between the classes.

Furthermore, gCIDiffGain(p,A,G1, G2) also measures how much larger is the con-

trast influence of attribute A in the primary group than its contrast influence in the

secondary group, locally in subspace p. Re-writing gCIDiffGain() in terms of the con-

trast intensities of the subspaces, we have:

gCIDiffGain(p,A,G1, G2) = CIG1(p) − CIG2(p) − CIG1(p \ A) + CIG2(p \ A)

= CIGainG1(p,A) − CIGainG2(p,A)

Note: CIGi
(p) refers to CIGi

(p,Dpi
,Dni

), CIGainGi
(p,A) refers to CIGainGi

(p,A,Dpi
,Dni

),

where i ∈ {1, 2}.

Scoring function formulation: Let A1 and A2 be two attributes. If A1 has a larger

(resp. smaller) group discriminating influence than A2, locally in a given pattern, the

contrast influence of A1 in the primary group is not necessarily larger (resp. smaller)

than A2. Thus, to satisfy both requirement 2 and requirement 3 of the scoring function,

we further define the group-discriminating influence ratio, denoted gCIDiffGainR,

that measures the relative between-groups difference of the influence of attribute A with

respect to its influence in the primary group, locally in pattern p:

gCIDiffGainR(p,A,G1, G2) =
|gCIDiffGain(p,A,G1, G2)|

CIGainG1(p,A)

The absolute value of the group discriminating influence is used in gCIDiffGainR()

to preserve the positive/negative sign of the attribute’s influence in the primary group.

Using this measurement, attribute A1 is more influential than attribute A2 if the
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between-groups difference of contrast influence of A1 is larger than A2, relative to

their respective contrast influence in the primary group.

Finally, we can re-write the global group discriminative contrast (GDC) influence,

given an attribute A, and a set SA which contains A-dependent GDC patterns, as:

globalInfluence(SA, A,G1, G2) =
∑

p∈SA

gCIDiffGainR(p,A,G1, G2)

A positive global influence indicates that an attribute has helped strengthening

the overall group discriminating power of the GDC patterns. Hence, such an attribute

is a key factor in the contrast behaviour of those patterns. To find a ranking of

GDC influential attributes we sort the attributes so that the attribute with the

largest score of global GDC influence is the most-influential attribute. Some of the

GDC patterns used for measuring the global influence may correspond to overlapping

subspaces. Overlaps cannot be straightforwardly eliminated, since all GDC patterns

may potentially affect the contrast intensity of the subspace, as well as the influence

of an attribute in that subspace. It is worth noting that overlaps are not necessarily

problematic though, since classifiers based on emerging patterns allow overlaps, but

have still proven extremely successful (e.g. [42]). More sophisticated techniques for

handling overlaps are beyond the scope of our research.

Table 8.1 shows the characteristics of each measurement defined in this section.

The contrast intensity and group discriminating power depend on only a single pattern,

the contrast influence and the group discriminating influence depend on a pattern and

an attribute. In terms of the group-dependency, the contrast intensity and contrast

influence are within-group measurements as they depend on a single group, whilst the

group discriminating power and the group discriminating influence are between-groups

measurements.

8.4 The Algorithm of mineGDC for Mining Group Discrim-

inative Contrasts

This section introduces our algorithm, called mineGDC, which finds group-discriminative

contrast patterns and their influential attributes. Before we describe our mining algo-

rithm in detail, let us consider a naive algorithm that consists of three independent

steps:
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1. Find all of the emerging patterns (EPs) in the primary group

2. Apply the GDC constraint on those patterns via postprocessing, i.e. calculate

their contrast intensities

3. For each attribute, find the dependent patterns and calculate the attribute’s in-

fluence in those patterns

The naive mining approach can suffer from significant redundancy, because not

all of the EPs satisfy the GDC constraint, and many patterns depend on several at-

tributes. Our technique integrates those three steps and finds the GDC patterns while

simultaneously calculating the influence of each attribute.

8.4.1 Mining Challenges

Our mining task is challenging due to three reasons. Firstly, it explores both the

pattern space (for finding the GDC patterns) and the feature space (for finding the

GDC influential attributes). Since the feature space has O(n) search space, where n

is the number of features, and the pattern space has O(2n) search space, performing

the search in both spaces can be space and computationally expensive. None of the

existing pattern mining or feature selection techniques deal with both search spaces

simultaneously, which is a noteworthy feature of our algorithm.

Secondly, mining patterns with the GDC constraint is challenging because it de-

pends on relative measurements of contrast intensity differences and ratio across groups.

Such a constraint cannot be easily handled using the existing contrast pattern mining

techniques, such as in [37, 168, 17, 38, 97], as they can only handle one positive and

one negative class.

Thirdly, the scoring function for measuring attribute influence is expensive to

compute, since it depends on multiple factors: the difference of contrast intensities

between each pattern and its generalisation, and the ratio of those differences across

groups We address those challenges by using a compact and efficient database repre-

sentation, namely the Weighted Zero-suppressed Binary Decision Diagram (WZBDD),

which is a directed acyclic graph (DAG) data structure and has previously been stud-

ied for efficient frequent pattern mining (Section 4), and for first-order contrast mining

(Section 6). WZBDDs are useful since they allow compact representation and efficient

manipulation of the multiple classes which are considered in second-order contrast min-

ing.
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8.4.2 Overview of the mineGDC Algorithm

To give a general overview, our mining framework follows a prefix growth mecha-

nism which is typically used in the classical mining framework for finding frequent

patterns [70]. It recursively grows prefixes of the patterns and projects conditional

databases which contain subsets of the database which are relevant to each prefix, al-

lowing efficient support calculation. The classical infrequent prefix pruning strategy for

finding EPs prunes a prefix (and its supersets) if its support in the positive class is less

than the minimum threshold.

To adopt the prefix growth approach for our problem, our technique projects

secondary databases for all of the four classes (i.e. two classes from both groups).

Moreover, to efficiently perform the GDC influence calculation for all attributes, the

global influence score is computed incrementally. As soon as a GDC pattern is found

through out the mining routine, the local influence of each attribute in that pattern

is calculated. Not all attributes are needed to be considered for each pattern though,

since the attributes whose domain values do not occur in a pattern have zero influence.

Based on the monotonicity of contrast intensity, if the support of an itemset in the

positive class is 0, then its contrast intensity and its supersets’ are also 0. Therefore,

when performing the conditional database projections, we order the classes so that the

negative class (from each group) is projected only if the conditional positive class is

not empty.

8.4.3 Mining Second-Order Contrasts Using Weighted Zero-suppressed

Binary Decision Diagrams

We will shortly describe our mining algorithm, mineGDC, as shown in Algorithm 8.1.

The input databases correspond to the classes from both groups, which are represented

as WZBDDs. The positive class in the primary group serves as the pattern generator,

since prefixes of the patterns are prefixes of the itemsets in this class. Prefixes are

recursively grown using the item in the top node of the pattern generator.

Mining begins by calling mineGDC(prefix,Dgen, [Dn1 ,Dp2 ,Dn2 ]), with an empty

itemset prefix as the prefix itemset which is to be grown. Let x be the top-item in Dgen

which belongs to the domain values of attribute A (line 1). Conditional database pro-

jections are performed for each input database, based on the Weighted Zero Suppressed

Binary Decision Diagram (WZBDD) routines defined in Section 4 (line 3). The reduced

189



CHAPTER 8. MINING PATTERNS AND INFLUENTIAL ATTRIBUTES THAT CAPTURE
CLASS AND GROUP CONTRAST BEHAVIOUR

databases are also computed to remove item x (line 4). Those reduced databases will

be used to grow the current prefix with the remaining items.

Patterns which contain x are found from the conditional databases (line 6), all

of which are A-dependent. Thus, the influence of attribute A can be updated imme-

diately after all patterns that contain x have been found (line 7). This intermediate

computation allows the global influence of all attributes to be calculated as the algo-

rithm returns. Detailed explanation about the influence calculation will be given later.

When all patterns that contain the top-item have been found, other prefixes are grown

from the reduced databases (line 8). The output node contains the GDC patterns found

from both the x-conditional databases and from the reduced databases (line 9).

The recursion terminates when the longest prefix for a particular candidate pat-

tern has been found (line 12), or when the pattern generator is empty (line 17). When

Dgen is an empty itemset, the prefix itemset prefix is a candidate pattern, and its

GDC-constraint is checked (line 13) based on its support in each class. The support of

prefix in a particular class is represented as the weight of the WZBDD representation

of its conditional database. The output value of 1, i.e. sink-1 node (line 14), returns

prefix as a GDC pattern, which incrementally builds up the final output WZBDD.

On the other hand, the output value of 0, i.e. sink-0 node (line 15,17), discards prefix

from the final output.

Updating an attribute’s influence: The procedure shown in Algorithm 8.2, called

the calcInfluence(), calculates the influence of attribute A in a given set of A-

dependent patterns, given all of those patterns contain the particular item r which is an

item from the domain of A. The inputs are four databases, the first two correspond to

the r-conditional databases for finding the contrast intensities of the patterns, the next

two databases correspond to the reduced databases which exclude item r for finding the

contrast intensities of the generalized patterns. The framework is similar to the pattern

growth framework, which recursively projects conditional databases for each class, but

the projections are guided by prefixes of the given patterns (line 1-8). The influence

calculation is performed when it finds the database projections for the longest prefix of

a particular pattern (line 11-20). Using the projected conditional databases represented

as WZBDDs, the contrast intensity and the contrast influence of the attribute can be

easily computed using the pattern’s support values which correspond to the weight of

the relevant WZBDDs.

The efficiency of this procedure relies on the use of WZBDD’s caching mechanism
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Algorithm 8.1 mineGDC(prefix, Dgen, [Dn1,Dp2,Dn2])

Input: Dgen : the generator data set, corresponds to the positive class in group G1

Dn1: the negative class in group G1

Dp2, Dn2: the positive and negative classes in group G2.
All inputs are represented as WZBDDs

Output: The GDC patterns and the GDC influence of each attribute
1: Let x be the label of the top-node in Dgen; prefixx = prefix ∪ {x}
2: for each D in [Dgen, Dn1, Dp2, Dn2] do
3: D(x) = Find the x-conditional database of D
4: D(x) = Remove x from database D /* Compute the reduced database */
5: end for
6: resx = mineGDC(prefixx, Dgen(x), [Dn1(x), Dp2(x), Dn2(x)]) /* Grow prefixes which contain

item x */
7: calcInfluence(x, resx, G1(x), G2(x), G1, G2) /* Update attribute influence from item x and

the x-conditional patterns GDC patterns */
8: resx = mineGDC(prefix, Dgen(x), [Dn1(x), Dp2(x), Dn2(x)]) /* Grow prefixes which do not

contain item x */
9: result = node(x, resx, resx) /* Build the output node */

10: return result
11: Terminal cases:
12: Case 1: Dgen contains an empty itemset
13: Check GDC-constraint on prefix, using its support* in each class
14: if (prefix is a GDC pattern) then return 1
15: else return 0
16: end if
17: Case 2: Dgen is empty: return 0

(*): The support of itemset prefix in dataset D can be calculated using the WZBDD routine:

weight(Dprefix), where Dprefix is the conditional database projected by prefix.

which allows intermediate computations, such as projecting secondary databases, to be

shared across functions. So, the database projections performed in calcInfluence()

may re-use the cached results from the database projections performed in mineGDC(),

and vice versa, which avoids redundant computations.

8.5 Performance Study

In this section we evaluate our method and the performance of our algorithm for mining

second-order contrasts. Our algorithms were implemented in C++, using the WZDD

library routines developed previously for frequent itemset mining (Chapter 4). All

experiments were conducted on a 3 GHz CPU, 4 GB RAM, running Solaris. The

objectives of our experiments include:

• to compare the volume of GDC patterns with emerging patterns (EPs)
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• to evaluate the runtime performance of our mining algorithm.

• to evaluate our proposed GDC based attribute ranking by comparing it against

other methods

• to show that meaningful contrast influential attributes can be discovered by our

method;

8.5.1 Pattern Volume Comparison

Figure 8.3a shows the number of patterns in the census data set using the first 20

attributes, with GDC-constraint: α = 1%, β = 0.5%, and a varying δgdc, i.e. the

minimum group discriminating power. In the ’white’ race group, there are 5 million

EPs. When δgdc is very small, almost every EP is a GDC pattern. As δgdc increases to

0.05, the number of GDC patterns drops by roughly 10% from the EPs. We identify 17

GDC influential attributes in such a scenario (shown in Table 8.3a). The other datasets,

i.e. adult, satimage, and the ALL, also have similar trends (shown in Figure 8.3b, 8.3c,

and 8.3d). The number of GDC patterns can still be overwhelming, but our technique

can find the attributes which help explain the second-order contrast behaviour of those

patterns, which we will discuss shortly.

8.5.2 Time Performance of the Mining Algorithm

We measure the runtime performance of our algorithms for mining the GDC patterns

and their influential attributes using several data sets, with a varying minimum group

discriminating power threshold, δgdc, where δgdc > 0. We implemented 2 algorithms: i)

naive: a two-phase algorithm which finds the GDC patterns, then for each attribute,

calculates its influence by projecting the relevant patterns. ii) mineGDC: the algorithm

described in Section 4.3 which simultaneously finds the influential attributes in the

pattern mining phase.

We chose three real UCI data sets [71]: census, adult, and satimage, and a biolog-

ical data set ALL leukaemia [85] which has a high dimensionality. In the census data

set, we choose to find the first-order differences between male (as positive class) and fe-

male, and the second-order differences between two race groups: ’White’, and the other

races (combination of all other races in the data set) which we label as ’Non-White’. In

the adult data set, the first-order contrast differentiates individuals with high income

(i.e.>50K) from those with low income (i.e. ≤50K), grouped by their gender.
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The satimage and ALL data sets contain multiple classes. We formulate the groups for

those data sets by grouping the classes. Table 8.2 shows the class sizes in each data

set.

Figure 8.3 shows that the number of patterns increases as the value of δgdc de-

creases. Figure 8.3b, moreover, shows that when δgdc is very low, all EPs are GDC

patterns for the satimage dataset, which indicates that all first-order EPs for the pri-

mary group also have strong class-discriminating power.

Figure 8.4 shows the running time comparison between the two algorithms for find-

ing the GDC influential attributes (and the corresponding patterns). Overall, when δgdc

is high, there exist only a few patterns, for which both algorithms have similar run-

time. As δgdc decreases, the discrepancy between the mineGDC and the naive algorithm

increases. More specifically, the mineGDC algorithm is 4 times faster when δgdc = 0.01

in the census data set, or when δgdc = 0.15 in the satimage data set. This shows that

the attribute’s influence calculation can be performed efficiently using our technique,

since mineGDC visits patterns which are shared by numerous attributes only once, and

allows multiple re-use of intermediate database projections while finding the patterns

and calculating the influence of the attributes.

8.5.3 Attribute Ranking Comparison

The census data set contains several household attributes and income attributes de-

scribing census data from the year 1970. With threshold values α = 1%, β = 0.5%,

and δgdc = 0.05, we found 17 influential attributes for capturing group discriminative

contrasts with the ’white’ race group as primary group (Table 8.3a), out of 20 attributes

which are included in our experiment. To evaluate our attribute ranking, we compare

it against other rankings which are based on entropy measure [52], and the statistical

Pearson’s correlation measure.

The entropy-based ranking is based on the information gain of an attribute,

which measures its ability to improve class discrimination. The columns in Table 8.4

show the info gain of each attribute in each group, and the info-gain difference across

the groups, labeled IGDiff. Attributes group-quarter-type (i.e. the type of housing) and

marital-status appear in the top-5 attributes in our GDC based ranking as well as in

this entropy-based ranking. It shows our technique is able to identify such attributes

whose male-vs-female discrimination ability is stronger in the ’white’ group than their

discrimination ability in the other group. Group quarter and farm attributes, which are
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highly ranked by entropy, however, are not identified by our method. It suggests that

patterns containing those attributes have weak group discriminating contrast influence.

If we look closer at their info gain differences, the values are actually very small, which

means that there is no significant difference of their class discrimination ability across

the groups, explaining why they are not identified by our method. Our attribute rank-

ing identifies other influential attributes which have low ranks in the entropy-based

ranking, which shows the ability of the GDC based ranking to identify the interdepen-

dency between multiple attributes, whereas an entropy measure treats each attribute

independently. Later in this section, we will show a more interesting result regarding

those attributes whose entropy-based ranks are lower than their GDC-based ranks.

The top-10 attributes found using a correlation measure are listed in Table 8.4.

For each attribute, Corr(g) is the Pearson’s correlation coefficient between the values

of that attribute in the positive class and the values of that attribute in the nega-

tive class in group g. A large correlation value indicates that an attribute is a poor

class-discriminator in g, because its values vary closely between the classes. The score

of correlation difference between groups, denoted CorrDiff = Corr(G2) - Corr(G1),

measures how much an attribute correlates with the classes in the secondary group,

but does not correlate with the classes in the primary group. The most influential

attribute in our ranking(see Table 8.3a), i.e. group-quarter-type, has a negative corre-

lation difference score, meaning that it is a weaker class discriminator in the primary

group compared to the secondary group. Like the entropy measure, this result shows

that a correlation measure does not to identify the interdependency between multiple

attributes, which can be identified by our method.

8.5.4 A Meaningful Discovery

The attributes which are influential for capturing GDC patterns when the ’white’ race is

chosen as primary group are shown in Table 8.3a. The GDC influential attributes when

the ’non-white’ race is chosen as primary group are shown in Table 8.3b. Attributes

that have positive global GDC influence for one race group but have zero or negative

influence in the other group are marked by asterisks (*). Interestingly, the first two

attributes, group-quarter-type, (i.e. type of housing), and num-of-families-in-household,

are the top-2 attributes in both groups, suggesting that they have an equally high

importance for finding group-discriminative male-vs-female contrast in each group.

Based on the GDC based ranking for each race group, attribute monthly-rent
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Table 8.2: Class names and sizes in each group in four data sets

Group 1
Data set Positive class Negative class
Census White.Male (2957) White.Female (3089)
Adult Male.>50K (6662) Male.≤50K (15128)
Satimage C1 (1072) C7 (1038)
ALL BCR+ABL (9) E2A+PBX1 (18)

Group 2
Data set Positive class Negative class
Census Not-White.Male (448) Not-White.Female

(525)
Adult Female.>50K (1179) Female.≤50K (9592)
Satimage C2+C3 (1440) C4+C5 (885)
ALL MLL (14) T-ALL (28)
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Figure 8.4: Runtime comparison between the mineGDC algorithm and the naive algo-
rithm
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8.5. PERFORMANCE STUDY

Table 8.3: Attribute ranking by GDC (global) influence

Rank Att.name GDC influence
1 group-quarter-type 38408.1
2 num-of-families(in-household) 38408.1
3 monthly-rent* 36215.1
4 relationship-to-householder 35590.2
5 marital-status* 24987.3
6 house-ownership* 24971.6
7 mother-location(in-household)* 23022.3
8 father-location(in-household)* 15495.5
9 age-of-eldest-child(in-household) 11012.2
10 family-total-income* 7033.2
11 spouse-location(in-household) * 5756.4
12 age-of-youngest-child(in-household) 4424.0
13 num-of-fathers(in-household) 1171.1
14 family-size* 275.6
15 family-unit 119.8
16 age 119.2
17 house-value* 2.5
18 num-of-couples(in-household) 0.0
19 farm 0.0
20 group-quarter 0.0

(a) ’White’ race as primary group; Attributes marked by (*) do not have
a GDC influence in the other ranking in Table 8.3b

Rank Att.name GDC influence
1 num-of-families(in-household) 872.8
2 group-quarter-type 871.3
3 num-of-fathers(in-household) 315.1
4 father-location(in-household) 313.5
5 relationship-to-householder 300.0
6 num-of-couples(in-household)* 54.9
7 age-of-eldest-child(in-household) 11.6
8 age 4.3
9 family-unit 4.0
10 age-of-youngest-child(in-household) 2.3
11 marital-status 0.0
12 family-size 0.0
13 spouse-location(in-household) 0.0
14 mother-location(in-household) 0.0
15 family-total-income 0.0
16 monthly-rent 0.0
17 house-value 0.0
18 house-ownership 0.0
19 farm 0.0
20 group-quarter 0.0

(b) ’Non-white’ race as primary group; The attribute marked by (*)
does not have a GDC influence in the other ranking shown in Table 8.3a
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Table 8.4: Attribute ranking by entropy and correlation based influence
Rank Att.name IG(G1) IG(G2) IGDiff
1 marital-status 0.973 0.952 0.021
2 group-quarter-type 0.995 0.983 0.012
3 house-ownership 0.999 0.988 0.010
4 group-quarter 0.999 0.989 0.009
5 farm 0.999 0.995 0.005
6 num-of-fathers 0.999 0.995 0.004
7 num-of-families 0.999 0.995 0.004
8 monthly-rent 0.999 0.995 0.004
9 house-value 0.999 0.995 0.004
10 age-of-youngest-child 0.999 0.995 0.004

(a) Ranking based on group information gain (IG) difference;
G1 = ’white’ race group, G2 = ’non-white’ race group

Rank Att. name Corr(G1) Corr(G2) CorrDiff
1 num-of-families -0.006 0.158 0.164
2 age -0.005 0.099 0.104
3 mother-location -0.007 0.086 0.094
4 family-size -0.020 0.054 0.075
5 father-location 0.008 0.046 0.039
6 marital-status -0.009 0.025 0.034
7 house-value -0.018 -0.004 0.015
8 farm -0.002 0 0.002
9 family-unit -0.009 -0.015 -0.006
10 monthly-rent -0.008 -0.015 -0.007

(b) Ranking based on group correlation difference;
G1 = ’white’ race group, G2 = ’non-white’ race group

198



8.6. RELATED WORK

appears to be influential only for the ’white’ race and not for the other race group. Since

it does not appear in the top-5 attributes in the other rankings (i.e. entropy-based and

correlation-based), it shows that when considered individually, it does not differentiate

the male and female differences across groups. However, our ranking suggests that

monthly-rent can help capture the group differences when it is combined with some

other attribute(s) within GDC patterns. To give a specific example, we found that

specifying monthly rent in the following rule:

’do not live with a spouse, and monthly rent > $125,’

increases the between-groups difference of this rule’s male-vs-female discriminating abil-

ity. Based on this rule, someone who does not live with a spouse and pays high monthly

rent, is more likely to be a male in the ’white’ race group, but without considering

monthly rent, it is equally likely that the individual is a male or a female, in either

race group. This example shows that a GDC influential attribute can help identify

important sub-categories (corresponding to GDC patterns) in the population, such as

a category of people who do not live with a spouse and pay high monthly rent, in which

there is a strong differentiation between male and female in the ’white’ race group but

there is not a strong differentiation between male and female in the other group 1.

8.6 Related Work

Our method for measuring an attribute’s influence is pattern based, which has not

been addressed in previous work. Existing feature selection techniques have a com-

mon objective of finding attributes which are most relevant to the data classification.

Entropy [52] based techniques measure the class discriminating ability of an attribute

independently of the other attributes. A recent work [74] proposes a correlation-based

technique for finding a set of features which have high inter-correlation among them-

selves, and low correlation with the other features. Their method for measuring the

significance of an attribute-set may be used for measuring the discriminating ability

of an attribute in first-order contrast as well as second-order contrast. The difference,

however, is that our model can identify subspaces, instead of the entire data space, in

which second-order contrast occurs.

1This rule corresponds to our intuition since it is likely that there are much more white people who
pay high rent than non-white people, hence, the amount of rent is more useful for discriminating male
and female in the white population than it is for the non-white population.
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Group discriminative contrast patterns correspond to subspaces of high class-

contrast in the primary group and low class-contrast in the secondary group. Min-

ing interesting subspaces has been previously studied for solving other data mining

problems, such as in [2] for finding outliers in high-dimensional data sets. However,

there has not been any work which addresses the problem of second-order differentia-

tion. Work [139] addresses the problem of finding contrast sets, which are first-order

contrasts between multiple groups (i.e. classes) of data instances.

Work in [37, 160], proposed techniques for finding (first-order) contrasts between

classes. Moreover, work in [153] studies a technique for comparing frequent patterns be-

tween classes, which may be extended to comparing contrast patterns between groups.

However, their method cannot identify the influence of each attribute that causes the

differences, which is a novel aspect of our technique. Previous work in [50] uses χ2-

test to measure the significance of an item in the discriminating power of an emerging

pattern. Such a measure may be used for measuring the attribute’s local influence

in a pattern in a given group of classes, but unlike our method, the χ2 measure is

independent to which class is chosen as the positive (or negative) class.

8.7 Summary

In this chapter, we have introduced a method for finding attributes which are influential

for capturing contrast between classes in a group, as well as the (second-order) contrast

across groups. Our experiments showed that our method can overcome the limitation

of classical attribute selection techniques, which do not take into account the inter-

dependency between multiple attributes which may vary between patterns and across

groups. Using our method, moreover, an influential attribute can help explain the key

underlying factors of the contrast behaviour that is found in certain data sub-categories,

instead of considering the entire data as in the classical feature selection techniques.

We have shown that Weighted ZBDDs allow complex patterns, such as second order

contrasts, to be mined efficiently. This level of complexity has not been addressed by

any of the previous pattern mining techniques.
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8.7. SUMMARY

Algorithm 8.2 calcInfluence(A, r, P, [G1(r), G2(r), G1, G2])

Input: A: an attribute
r: a value from the domain of A
P : a set of r-dependent GDC patterns and their gCIDiff values
G1(r) = [Dp1(r), Dn1(r)]: r-conditional databases from group G1

G2(r) = [Dp2(r), Dn2(r)]: r-conditional databases from group G2

G1 = [Dp1, Dn1]: databases from group G1

G2 = [Dp2, Dn2]: databases from group G2

P , G1(r), G2(r), G1, and G2 are represented as WZBDDs
Output: The GDC influence of item r in P
1: x = the label of the top-node in P .
2: for each Gi in [G1(r), G2(r), G1, G2] do
3: Gi(x) = Find the x-conditional of databases from DpGi

and DnGi

4: Gi(x) = Remove x from DpGi
and DnGi

in group Gi /* Find the reduced databases */
5: end for
6: calcInfluence(A, r, Px, [G1(r.x), G2(r.x), G1(x), G2(x)])

/* Calculate influence of A in patterns which contain x */
7: calcInfluence(A, r, Px, [G1(r.x), G2(r.x), G1(x), G2(x)]))

/* Calculate influence of A in patterns which do not contain x */
8: return
9: Terminal cases:

10: if P contains an empty itemset then
11: Let prefspec be the itemset that projects G1(r), G2(r)

12: prefgen = prefspec \ r /* prefgen is the A-generalization of pref */
13: gCIDiffspec = CI(prefspec, G1) - CI(prefspec, G2)

/* Calculate gCIDiff for prefspec */
14: gCIDiffgen = CI(prefgen, G1) - CI(prefgen, G2)

/* Calculate gCIDiff for prefgen */

15: influence[A] +=
gCIDiffspec−gCIDiffgen

gCIDiffspec

/* Update the global GDC influence of attribute A */
16: return
17: end if
18: if P is empty then
19: return
20: end if

Note: CI(prefspec,Gi) is calculated using the weight of the WZBDDs of Dpi(r)
and Dni(r)

which

represent the conditional databases projected by prefspec. CI(prefgen,Gi) is calculated using

the weight of the WZBDDs of Dpi
and Dni

which represent the conditional databases projected

by prefgen.
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Chapter 9

Conclusions

In this thesis, we have shown that Binary Decision Diagrams can be a powerful tool

for solving pattern mining problems in a variety of situations. We introduced origi-

nal variants of Binary Decision Diagrams, namely Weighted Zero-suppressed Binary

Decision Diagrams (ZBDDs) and Weighted Sequence Binary Decision Diagrams (Se-

qBDDs). We studied the problems of mining the fundamental frequent itemsets, and

frequent subsequences. We also studied contrast mining, considering the simple types

of contrasts, as well as the complex types of contrasts, such as expressive contrasts and

second order contrasts.

The Weighted Zero-suppressed Binary Decision Diagrams are useful for mining

itemset-based patterns, such as frequent itemsets and contrast patterns, whereas the

weighted Sequence Binary Decision Diagrams are useful for mining sequential patterns.

These new graph-based data structures are novel in data mining. We believe that

our weighted BDDs are promising for solving difficult pattern mining problems, which

could not been solved using previous techniques. Although their performance may be

limited when the patterns are rare, our weighted BDD based pattern mining algorithms

have been shown to be able to outperform the existing tree-based algorithms, especially

when there exist a large volume of patterns.

We now give a summary of the thesis, and then a list of interesting future research

directions.
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9.1 Thesis Summary

In Chapter 4, we proposed an original variant of Zero-suppressed Binary Decision Di-

agrams, called Weighted Zero-suppressed Binary Decision Diagrams. We proposed a

family of algorithms based on Weighted Zero-suppressed Binary Decision Diagrams

for mining frequent patterns, such as frequent itemsets and their closed/maximal vari-

ants. The algorithms include FIMiner for mining frequent itemsets, MFIMiner for

mining maximal frequent itemsets, CFIMiner for mining closed frequent itemsets, and

RowCFIMiner for mining closed frequent itemsets using the row-wise mining framework.

In previous techniques, prefix trees are the commonly used data structure. On

the other hand, ZBDDs and their weighted variant are directed acyclic graphs. We

have discussed the advantages and disadvantages of using ZBDDs or trees for mining

frequent patterns. ZBDDs can outperform trees, due to the BDD’s ability to share

and re-use the result of similar computations. Redundancy in performing intermediate

computations, such as repeatedly finding patterns from the same conditional databases,

can now be avoided through out the mining routine. Moreover, they also allow node

sharing across multiple databases, such as the input database, the output, and the

conditional databases, which is not allowed in trees. The use of ZBDDs and weighted

ZBDDs is proven to be useful for mining a large number of high dimensional patterns.

In Chapter 5, we proposed an original Sequence Binary Decision Diagram (Seq-

BDD), which is a graph data structure useful for mining sequential patterns. We pro-

posed a SeqBDD-based algorithm for mining frequent subsequences, called SeqBDDMiner.

Tree data structures are not preferred by previous sequential pattern mining techniques.

When mining frequent itemsets, compact trees can be obtained by re-ordering the items.

However, this is not possible for the sequences context, since the the ordering of items

in sequences must be preserved. Our study showed that a graph data structure, such

as Sequential BDDs (SeqBDDs), can be useful. Although a SeqBDD may not be much

smaller than a tree, the BDD’s feature of re-using nodes and computation results be-

tween multiple intermediate databases is powerful. SeqBDDMiner allows efficient mining

of a large number of long subsequences, such as those in DNA and protein sequences.

In Chapter 6, we studied the problem of mining expressive contrasts. We pro-

posed a novel type of expressive contrast patterns, called disjunctive emerging patterns.

Disjunctive emerging patterns allow disjunctions within attributes, and conjunctions

across attributes. We proposed a family of algorithms for mining the pure conjunctive

emerging patterns (EPMiner), and for the disjunctive emerging patterns (DEPMiner).
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9.1. THESIS SUMMARY

We have discussed the strength and limitation of using ZBDDs, weighted ZBDDs,

or trees, for mining contrasts. When a ZBDD is used as the primary data structure, a

secondary bitmap data representation is required to perform the frequency calculation.

Bitmap-based frequency calculation can be a bottleneck to the algorithm’s efficiency.

When a Weighted ZBDD is used, the bitmap is no longer needed. When the number

of patterns is enormous and the input data is relatively large, the weighted ZBDDs

are more efficient than the ZBDDs. However, the ZBDDs may be more compact than

weighted ZBDDs when the data is sparse, or not many patterns exist. Compared to

previous techniques based on prefix trees, our graph-based algorithms scale well for

mining a large number of contrasts in high dimensional data sets. As evidence, we

found circumstances where the non-disjunctive EPs are rare, but disjunctive EPs exist

in abundance.

In Chapter 7, we studied how useful are disjunctive emerging patterns for building

classifiers. Since disjunctions of attribute values may correspond to a non-contiguous

range of values in ordered domain, a disjunctive pattern may contain gaps or holes. We

employed a significance test on those gaps and on the overall patterns, and investigated

how these influence the classification accuracy. We found that the significance tests are

beneficial when many patterns exist and they contain many gaps. Our classifier, called

CNFClassifier (due to the correspondence between a disjunctive pattern and a CNF

boolean function) can be more accurate than the simple contrast based classifier, espe-

cially when the data is sparse. Allowing disjunctions is shown to be useful for building

more robust classifiers, and overcoming the limitation of the EP-based classifiers, whose

performance is sensitive to the sparsity/density of the data.

In Chapter 8, we studied the problem of second order contrasts. Finding contrasts

of contrasts (i.e. second order contrasts) between groups of classes is an interesting

problem because of the multiple class scenario, and the multiple constraints associated

with those classes. All of the previous contrast mining techniques have so far only

considered first order contrasts. We introduced a novel type of second order contrast

patterns, called Group Discriminative Contrast (GDC) patterns, and a method for

finding the attributes which have strong influence in those patterns. Our proposed

algorithm, based on weighted ZBDDs, can simultaneously mine GDC patterns and the

influential attributes. We found influential attributes which otherwise can not be found

using traditional feature ranking techniques. The weighted ZBDDs play an important

role in our algorithm, due to their ability to compactly represent numerous databases,

which allows multiple constraints to be pushed deep inside the routine.
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Table 9.1: List of algorithms

Algorithm Application Related Chapter

FIMiner Frequent itemset mining 4

MFIMiner Maximal frequent itemset mining 4

RowCFIMiner Row-wise closed frequent
itemset mining

4

SeqBDDMiner Frequent subsequence mining 5

EPMiner Emerging pattern mining 6

DEPMiner Disjunctive emerging pattern
mining

6

CNFClassifier Disjunctive emerging pattern
based classification

7

GDCMiner Group discriminative contrast
mining; Second order contrast
mining

8

To summarise, Table 9.1 lists the algorithms we have discussed in this thesis and

their applications.

9.2 Future Research Directions

Some possible future research directions are listed below:

• It is interesting to study hybrid mining techniques that combine the strength

of Binary Decision Diagrams and existing prefix-tree structures. The two data

structures may benefit each other in terms of data compression, allowing pruning

to take place early during mining, and re-using of intermediate results.

• The types of fundamental patterns being studied in our research include frequent

itemsets and frequent subsequences. Exploring other constraints on those pat-

terns, and investigating the behaviour of the BDD-based algorithms for mining

them would be interesting.

• Previous work on contrast mining has studied various constraints on emerging

patterns, as well as various classification models based on emerging patterns. Ex-

tending them to the context of expressive contrasts would be interesting. Whether
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9.2. FUTURE RESEARCH DIRECTIONS

they are able to provide solutions to the limitation of simple contrasts is also worth

investigating.

• It is interesting to study other applications of second order contrasts, such as

multi-group classification, which has not been addressed in any of the previous

work.
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