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Abstract. Conventional models of navigation commonly assume a navigation agent’s location
can be precisely determined. This paper examines the more general case, where an agent’s actual
location cannot be precisely determined. This paper develops a formal model of navigation under
imprecision using a graph. Two key strategies for dealing with imprecision are identified and
defined: contingency and refinement. A contingency strategy aims to find an instruction sequence
that maximizes an agent’s chances of reaching its destination. A refinement strategy aims to use
knowledge gained as an agent moves through the network to disambiguate location. Examples
of both strategies are empirically tested using a simulation with computerized navigation agents
moving through a road network at different levels of locational imprecision. The results of the
simulation indicate that both the strategies, contingency and refinement, applied individually
can produce significant improvements in navigation performance under imprecision, at least at
relatively fine granularities. Using both strategies in concert produced significant improvements
in performance across all granularities.

1. Introduction

Conventional models of navigation commonly assume a navigation agent’s location
can be precisely determined. However, all location sensing technology is inher-
ently imprecise, and in general precise location cannot be determined. Imprecision
leads to granularity, where individual elements within a particular grain cannot be
discerned apart.

For example, a cell phone network is a familiar imprecise location-aware technol-
ogy. In order to correctly route calls, the network tracks in which network cell each
cell phone is located. The cells are typically between a few hundred meters to a
few kilometers in size. Conventional models of navigation would not be applicable
to a person driving through a busy city armed with only a basic cell phone, since it
would not be possible to discern apart the locations of different road intersections
within each cell. The techniques explored within this paper are designed to be able
to cope with just such a situation. These techniques use the constraints placed
on an agent’s movement by the transport network to augment imprecise knowledge
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about location. Potentially, such techniques could be used to provide location-based
services, such as navigation assistance, to users whose precise location, and perhaps
precise destination, is unknown.

Following the literature review in the section §2, §3 introduces a formal model
of navigation under imprecision. This formal model is extended with two key
strategies, contingency and refinement, in §4. The results of an empirical study
of computerized agent navigation, based on the formal model, are reported in §5.
A discussion of the computational issues and the relationship to human navigation
is contained in §6, followed by conclusions in §7.

1.1. Why imprecise?

A basic premise of this work is that irrespective of improvements in location sensing
technology, imprecision will remain an important issue for location-aware systems
into the foreseeable future. Given the decreasing cost and increasing availability of
low power high precision GPS devices it can seem as if there is no need to consider
the effects of imprecision. In the case of GPS, obstacles such buildings or dense
forest canopy attenuate GPS radio frequency (RF) signals and can lead to severe
multipath problems [15]. Such problems have recently led several major US cell
phone networks to abandon GPS-based location sensing in favor of augmented cell
phone network-based location sensing (such as TruePosition, [33]) in their attempts
to meet FCC E911 requirements (the ability to locate a cell phone to within about
50 to 100m in an emergency, see [10]).

No location-aware technology is ever likely to achieve so complete and uniform
coverage that every person at any location and any time can determine their precise
location. Rather, we assume that in the future a range of different location-sensing
technologies, (including GPS, triangulation of RF wireless LAN signals [3], prox-
imity to infrared beacons [34], scene analysis and computer vision [18], and inertial
tracking [25]) will be needed for location aware systems in different environments
(in cities, in buildings, in wilderness) and for different people. Hightower and
Boriello [16] provide an extensive review of location sensing technology including a
discussion of accuracy and precision issues.

One further issue is relevant to this discussion: privacy. It is likely, as location-
aware systems become more commonplace, that many people will want to protect
sensitive information about their location. Individuals may wish to obfuscate their
precise location for privacy reasons (eg [7]) at the same time as accessing valuable
location-based services. The techniques developed within this paper might be used
by an individual wishing to access location-based services without revealing their
precise location. In other circumstances, however, these techniques might also be
used by some third party to determine more precisely the location of an individual,
providing a mechanism for tracking an individual in a way that potentially could
be an invasion of privacy.

In summary, even given future developments in technology, there exist many
potential scenarios where an individual might wish access location-based services
without using precise knowledge of location.
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2. Background

This paper presents an empirical study of navigation under imprecision in computer-
ized agents. However, the ultimate objectives of this work concern navigation under
imprecision in human agents. There exist numerous studies of human navigation
and wayfinding. The term “wayfinding”, coined by Lynch [21], is often regarded
as near synonymous with “navigation” (eg [17], although wayfinding is sometimes
described as “non-instrumental navigation”). Studies of human cognition suggest
that human navigation involves landmark knowledge, concerning significant loca-
tions in a space; procedural knowledge, concerning routes through a space; and
survey knowledge, concerning an allocentric view of the space [26, 2, 14]. A variety
of models of navigation have been proposed, addressing different aspects of human
navigation, including route descriptions [30, 8, 1], landmarks [23], planning and
survey knowledge [13, 32, 31].

Most models of human navigation agents deal exclusively with navigation where
an agent’s location can be precisely determined. The classic TOUR model of
Kuipers [19, 20], for example, relies on knowledge of precise location. More re-
cently, Frank [11, 12] proposes an algebra of navigation derived from the TOUR
model, similarly based on knowledge of precise location. Relatively few studies of
imprecision in navigation have been attempted. Chown [5] has begun to exam-
ine the role of uncertainty in the PLAN model, an extension of the TOUR model.
Raubal and Worboys [24] have used rough sets to model imprecise knowledge in the
wayfinding process. In [24] indiscernibility in observations results in some propo-
sitions being undetermined, in addition to others being classically true or false. A
different approach is taken in [4], where fuzzy set theory is used to model impreci-
sion in a robot’s location. In [4] machine learning techniques are used to improve
the robot’s navigation performance under imprecision. None of these approaches
addresses the specific problem, examined in this paper, of delivering location-based
navigation services to an agent under imprecision.

3. Imprecise navigation

3.1. Formal description of imprecise navigation

Graphs are a natural mechanism for representing networks, such as road networks.
A graph G comprises a set of vertices V and edges E connecting those vertices. A
labeled graph additionally has a label w(e) associated with each edge e ∈ E. A
simple mechanism for modeling the imprecision of an agent’s location is to use an
equivalence relation ∼ on the set of vertices V , where a location v ∈ V cannot be
discerned apart from other locations in the equivalence class of v, [v] ∈ V/ ∼. The
movement of an agent through a network under imprecision can then be represented
as a sequence of equivalence classes on the vertices of a graph.

Adopting this model of imprecision in navigation has the advantage of simplic-
ity. However, representing imprecision by an equivalence relation on V assumes a
discrete model of movement through a network, where edges facilitate movement
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between nodes, but movement along edges is not represented. Representing the
movement of an agent along an edge, such as movement along a road joining two
intersections, is likely to be an important component of a more sophisticated model
of imprecision in navigation.

Assuming a graph G = (V,E) is simple (there are no edges from a vertex to itself
and at most one edge between two different vertices), a path p can be represented
as a sequence of vertices (v0, v1, ..., vn), where each pair of vertices vi, vi+1 in p
is connected by an edge e ∈ E. A navigation agent cannot directly use paths to
navigate under imprecision since they refer to precise locations within the graph.
Instead, the agent must abstract away from precise locations by considering the
instructions needed to follow a path.

For each vertex v ∈ V we define a labeling function fv : C(v) → L, where C(v) is
the set of vertices connected to v by a single edge (C(v) := {v′ ∈ V |(v, v′) ∈ E}) and
L is some set of labels. The actual elements of L are arbitrary, but the cardinality
of L must be greater than or equal to the largest degree of any vertex v ∈ V
(|L| ≥ sup(deg(v)) for all v ∈ V ). In other words, L must be at least large enough
to ensure that every fv is injective (one-to-one). Using the labeling function, a
sequence of instructions for following a path can be generated without directly
referring to (precise) locations. For some path p = (v0, v1, ..., vn) and labeling
functions fv0 , ..., fvn−1 the instruction sequence q is given by:

q = a0a1...an−1 where ai = fvi
(vi+1)

Each element ai of an instruction sequence q is called an instruction. The set of all
instruction sequences forms a language on L. Crucially, while each path can be asso-
ciated with a unique instruction via the labeling functions, an individual instruction
can describe many different paths. Figure 1 provides an example graph annotated
with labels L = {n, s, e, w}. As stated above, the choice of labels is arbitrary. Car-
dinal directions are used in this example only to make Figure 1 easier to interpret.
From Figure 1, the label of v3 from v0 is s (fv0(v3) 7→ s). The path (v6, v7, v3, v4, v8),
for example, would be represented by the instruction sequence enes. This same in-
struction sequence would also describe the path (v3, v4, v1, v5, v9). Note that while
the equivalence classes V/ ∼ form contiguous blocks in Figure 1, akin to cells in a
cell phone network, this is not a requirement of the model.

3.2. Basic navigation agent

Based on the formal model above, we can provide the outline of a basic agent
capable of navigation under imprecision. The basic agent is assumed to possess
(precise) knowledge of the labeled graph G = (V,E) and the weights associated
with each edge w : E → R+, the granulation V/ ∼, the graph labeling functions
fv : C(v) → L, and the destination d ∈ V . Note that in this initial work we
assume that the destination d is precisely known, but this assumption can easily be
generalized to address cases where the destination is itself imprecise, modeled by
an equivalence class [d]. While the agent is actually located at some vertex s ∈ V ,



5

n

nnn

n

n n

e

e

s

n

e
w

s

e

s

w
e

s
w

s

s
w

s

v0 v1

v2
v3 v4

v5

v6

v7 v8 v9

v10 v11

Figure 1. Example granulated graph annotated with labels and equivalence classes (dotted lines
indicate equivalence between enclosed vertices)

it can only access imprecise information about its current location in terms of the
equivalence class [s].

Algorithm 1 gives a naive algorithm that could be used by such an agent attempt-
ing to navigate from a starting vertex s ∈ V to a destination vertex d ∈ V . While
the agent is initially located at s, it is unable to discern s apart from other elements
in the equivalence class [s]. Instead, the algorithm arbitrarily selects an element
s′ ∈ [s] and generates the instruction sequence q for the shortest path from s′ to d
(given weights w(e) for each edge e ∈ E). The algorithm then executes the sequence
of instructions by making the agent follow each instruction in turn, ignoring any
instructions that cannot be completed (ie where at location v for some instruction
a there exists no v′ ∈ V such that fv(v′) 7→ a). When the instruction sequence
has been executed, the algorithm checks to see whether the agent has reached its
destination, by checking whether the (updated) location s is in the equivalence class
of the destination location [d]. If so, the agent has arrived at a location indistin-
guishable from d and the algorithm terminates. Otherwise, the algorithm reiterates
using an arbitrarily selected element of [s] as the new starting vertex.

4. Improving imprecise navigation

Even though precise location information is unavailable to the navigation agent,
it is possible to improve the basic imprecise navigation algorithm described above
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Algorithm 1: Basic imprecise navigation algorithm
G = (V,E), w : E → R+, V/ ∼, {fv|∀v ∈ V.fv : C(v) → L}, s ∈ V , d ∈ V
while s /∈ [d] do

// Generate instruction sequence
Choose arbitrary s′ ∈ [s]
Calculate shortest path p = (v0, v1, ..., vn) where v0 = s′, vn = d given w
Generate instruction sequence q = a0a1...an−1 where fvi(vi+1) 7→ ai

// Follow instruction sequence
for j = 0 to j < |q| do

if ∃t ∈ V such that fs(t) 7→ aj then s = t

by taking advantage of the constraints the network places on movement. The
basic imprecise navigation routine in Algorithm 1 has two main elements: generat-
ing an instruction sequence, and following an instruction sequence. In general, it
is possible to identify two corresponding strategies for improving navigation under
imprecision, termed here contingency and refinement. Contingency involves finding
an instruction sequence that maximizes an agent’s chances of reaching its destina-
tion. Refinement involves using additional information gained while following an
instruction sequence to infer more detailed knowledge about an agent’s location.
Both strategies are elaborated upon below.

4.1. Contingency

Since the same instruction sequence can be used to describe different paths, a con-
tingency strategy aims to find an instruction sequence that maximizes an agent’s
chances of reaching its destination. In human navigation, for example, instructions
such as “Continue straight on to the T-junction and then turn right”, can some-
times be used for navigating from a range of different starting locations to a single
destination.

To illustrate an example of contingency, consider the graph in Figure 1. An
agent is located at v11 and tries to navigate to v1. Assuming edges are weighted
using the Euclidean distance along each edge, the shortest path from v11 to v1 is
(v11, v8, v4, v1), with instruction sequence nnn. However, due to imprecision, the
agent is unable to discern v10 and v11 apart. The shortest path from v10 to v1

is (v10, v7, v3, v4, v1) with instruction sequence nnen. Note that the instruction
sequence nnen is also a path from v11 to v1, although this is not the shortest
path. Selecting the instruction sequence nnen guarantees the agent will arrive at
its destination from either v10 or v11; selecting the instruction sequence nnn will
only lead an agent to the destination if it is located at v11. As a result, one example
of a contingency strategy would be to find and preferentially use those instruction
sequences that increase an agent’s chance of reaching its destination.

Algorithm 2 provides a modified example of Algorithm 1. Instead of selecting an
arbitrary element of [s] to use for generating an instruction sequence, the algorithm
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checks the instruction sequences for all shortest paths from all elements of [s] to d.
The most successful instruction sequence (the one that when executed leads most
frequently to the destination) is selected for the next stage of the algorithm.

Algorithm 2: Imprecise navigation algorithm with contingency
G = (V,E), w : E → R+, V/ ∼, {fv|∀v ∈ V.fv : C(v) → L}, s ∈ V , d ∈ V
while s /∈ [d] do

// Generate instruction sequence
m = 0
for each vertex s ∈ [s] do

Calculate shortest path p = (v0, ..., vn) where v0 ∈ [s], vn = d given w
Generate instruction sequence q′ = a0a1...an−1 where fvi

(vi+1) 7→ ai

c = {s′ ∈ [s]| q′ executed from s′ terminates in [d]}
if |c| > m then q = q′ and m = |c|

// Follow instruction sequence
for j = 0 to j < |q| do

if ∃t ∈ V such that fs(t) 7→ aj then s = t

4.2. Refinement

An agent has the ability to sense its current imprecise location. Refinement aims
to use knowledge gained as an agent moves through the network to disambiguate
location. Again, an analogy exists in human navigation. Humans unsure of their
current location might head in what they believe to be the general direction of their
destination in the hope that particular road configurations or landmarks will enable
them to discover more precisely their location as they travel.

To illustrate an example of refinement, consider again the graph in Figure 1 and
an agent located at v11 trying to navigate to v1. Selecting at random one of the
instruction sequences for the shortest paths from elements of the equivalence class
[v11] to v1 yields either nnn or nnen. Whichever is selected, after executing the first
instruction, n, the agent will arrive at v8. Even though the agent cannot discern
apart the location of v8 from v9, there exists no direct path from either v10 or v11

to v9 (without first passing through some other vertex that can be discerned apart
from v8, v9, v10 and v11). One example of a refinement strategy would be to use
precise knowledge of the graph network to disambiguate location in cases such as
that described above, and recalculate new routes through the space in the light of
this refinement.

Algorithm 3 provides a modified example of Algorithm 1, which adopts this re-
finement strategy. After executing each instruction, the algorithm checks whether
knowledge about the current location can be refined based on the possible paths
to that location. Specifically, when the agent moves from one equivalence class
to the next, the algorithm finds those vertices that can be reached using a direct
path between the two equivalence classes. This information allows the agent to
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refine knowledge about its location, as illustrated in the example above. When
a refinement occurs, the algorithm reiterates based on the revised knowledge of
location.

Algorithm 3: Imprecise navigation algorithm with refinement
G = (V,E), w : E → R+, V/ ∼, {fv|∀v ∈ V.fv : C(v) → L}, s ∈ V , d ∈ V ,
R = [s]
while s /∈ [d] do

// Generate instruction sequence
Choose arbitrary s′ ∈ R
Calculate shortest path p = (v0, ..., vn) where v0 = s′, vn = d given w
Generate instruction sequence q = a0a1...an−1 where fvi(vi+1) 7→ ai

// Follow instruction sequence
for j = 0 to j < |q| do

if ∃t ∈ V such that fs(t) 7→ aj then s = t
if R * [s] then

Find R′ = {t ∈ [s]|∃ a path p = (r, v1, ..., vn, t) where r ∈ R and
vi ∈ [s] ∪ [r]}
Update R = R′ and j = |q|

5. Imprecise navigation simulation

This section describes the results of a large navigation simulation programmed
using Java. The simulation was conducted with imprecise driving agents using
different navigation strategies through a graph at different levels of granularity.
The graph used was a road network containing more than 3000 vertices from the
city of Bloomington, Indiana (available from http://www.city.bloomington.in.
us/its/gis/). During the development of the simulation, a range of different road
network data sets were successfully used. The Bloomington data set was chosen
since it exhibits a wide range of different network configurations (in particular a
dense downtown grid network and sparser suburban networks).

Four different types of agent were used during the simulation: the basic agent
(Agent B, as in Algorithm 1), an agent that used a contingency strategy to select
preferred instruction sequences (Agent C, as in Algorithm 2), an agent that used
a refinement strategy to disambiguate location as it moved through the network
(Agent R, as in Algorithm 3), and an agent that used both contingency and re-
finement strategies in concert (Agent CR, a combination of Algorithms 2 and 3).
As described in the previous section, each agent has access to precise information
about the labeled graph G and associated weights w, the granulation V/ ∼, the
graph labeling functions fv, and the destination d. The simulation does model an
agent’s state in terms of its precise location s. However, the agent does not have
access to this precise state, only to imprecise information about its location in terms
of the equivalence class [s]. In the same way, a human agent who is lost will possess
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a precise state (where he or she is actually located), but may lack precise knowledge
about that state. The simulation randomly selects starting and destination vertices
from the network. Each agent then attempts to navigate between the same starting
and destination vertices. The simulation was repeated for fifty different randomly
chosen pairs of starting and destination vertices. Finally, the simulation was re-
peated using seven different granulations (a total of 350 individual simulations by
each of four driving agents).

Figure 2 shows a small portion of the simulation road network with example routes
taken by each of the four different agents along with the shortest path. Agent B
takes the longest and most circuitous route, even backtracking from a dead end at
one point. Agents C, R and CR all take similar routes. In this case Agent C took
the shortest route, followed by CR and then R. Note that while all the agents arrive
at a location indiscernible from the destination (the regular granulation is shown
as a grid in the background of Figure 2), none of the agents arrive at the actual
destination.

The results of the experiment are summarized in Figure 3. The graph shows the
average normalized distance traveled for each agent at each level of granularity.
Granularity is measured in terms of the average number of vertices per equivalence
class, plotted on a log scale for clarity. The granulations used in the simulation
were regular square grid partitions at different cell sizes, covering the extent of
the road network, in much the same way as the cells of a cell phone network can
be thought of as a partition on space. This partition induces equivalence classes
on the vertices V/ ∼. The normalized distance is the ratio of the actual distance
traveled by an agent to the length of the shortest path between start and destination
vertices. The normalized distance is a measure of the performance of each agent:
larger normalized distances indicate the agent had to travel further to reach its
destination, meaning worse performance.

The normalized distance is a good way of comparing the performance of the dif-
ferent agents, but is not suitable for comparing the performance of an agent with
the shortest path. Occasionally, agents can achieve normalized distances of less
than 1 (meaning the path the agent took was shorter than the shortest path). This
occurs because an agent may stop once it has reached a vertex indistinguishable
from the destination. Sometimes, particularly with coarser granulations, the vertex
the agent stops at is a little nearer the starting point that the actual destination.
Indeed, while Figure 3 shows an increase in normalized distance with granular-
ity at finer granularities, the chart display a pronounced decrease in normalized
distance with the two coarsest granularities. This is likely to be a result of the
discrepancy between the destination and the actual location reached by an agent,
indistinguishable from the destination. As the granularity gets very coarse, this
discrepancy tends to get larger, and the normalized distance traveled by all of the
agents decreases.

The graph in Figure 3 shows that in general, Agents C and R perform better than
Agent B, while Agent CR performs better than any other agent. To test whether
the performance of the improved agents (Agents C, R, and CR) was significantly
better than that of the basic agent (Agent B) a t-test of normalized distances for the
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Table 1. Results of one-tailed t-distribution significance test for
difference in performance of Agents C, R and CR from Agent
B. The table shows for each granularity level (measured in mean
number of vertices per equivalence class) whether an agent’s
performance was significantly different from that of the Agent
B at the 5% level (S=significant, NS=not significant).

1.0 3.4 8.4 14.8 31.7 67.9 138.1

Agent C NS S S S NS S S
Agent R NS S S S NS NS NS

Agent CR NS S S S S S S

populations of 50 simulations for each agent at each granularity level was conducted
(Table 1). The null hypothesis was that there was no significant difference between
the performance of the improved agents over that of agent B. At the finest level of
granularity each equivalence class contained only one vertex. At this granularity
all the navigation algorithms decay gracefully to a conventional shortest path algo-
rithm (normalized distance traveled equals 1). As a result, all the agents achieve
a normalized distance of 1 at the finest granularity, and there were no significant
differences between performance of any agents. For all the other granularities agent
CR was found to exhibit significant improvements at the 5% level. Agents C and
R also showed significant improvements at the finer granularities, but not at some
of the coarser ones. For example, Agent R produced no significant improvement
at over Agent B for the three coarsest granularities. Further significance tests, not
shown in Table 1, also indicated that Agent CR performs significantly better than
either Agents C or R, except at the coarsest granularity.

To summarize, the results of the simulation indicate that the strategies of con-
tingency and refinement applied individually can both produce significant improve-
ments in navigation performance under imprecision, at least at relatively fine gran-
ularities. Using both strategies in concert produced significant improvements in
performance at all granularities tested where some indiscernibility existed.

6. Discussion

6.1. Computational issues

The time complexity of the algorithms involved in imprecise navigation is dominated
by the shortest path calculation. Time complexity can be an issue in imprecise
navigation, as a result of the high number of shortest path recalculations. The
Java implementation described above uses Dijkstra’s algorithm to calculate shortest
paths. The naive Dijkstra’s algorithm is O(n2), where n is the number of vertices
in the graph, although a variety of optimizations exist to improve its performance
[6]. The key advantage of using Dijkstra’s algorithm in this context over related
shortest path algorithms, such as the A* algorithm, is that it calculates the shortest
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path from a vertex to all other vertices in a graph. This is ideal in the case of
the contingency strategy, where an agent must calculate the shortest path from
all starting vertices in [s] to a single destination d. By reversing the start and
destination nodes this calculation can be achieved with a single pass of Dijkstra’s
algorithm.

Agents need to recalculate the shortest path when they come to the end of an
instruction sequence that does not bring them to a vertex indistinguishable from the
destination, or when Agents R and CR gain refined knowledge about their location.
In general, all the agents need to recalculate the shortest path more often as the
granulation coarsens. Agents R and CR need to recalculate the shortest path more
often than B and C, but Agent CR reaches its destination more efficiently than
Agents B or C at least partially offsetting this additional computational burden.

The sequential nature of following navigation instructions means that shortest
path calculations might easily be optimized. An optimized shortest path algorithm
might provide an agent with instructions incrementally, using the time taken by
the agent to execute each instruction to complete more of the calculation. This
is clearly a potential strategy in human navigation where each instruction might
take seconds, minutes or even hours to complete. Another strategy would be to
precompute and cache the results of an all-pairs shortest path (APSP) algorithm,
such as the Floyd-Warshall algorithm. This would reduce shortest path calculation
to a intensive one-off calculation of the shortest paths between all pairs of vertices
in a graph. Most APSP algorithms have a time complexity of O(n3).

Finally, while it was not used directly in this paper Stell [27] has developed an ap-
proach to granulation in graphs that could prove very useful in imprecise navigation.
Stell suggests a range of different classifiers capable of generating new granulated
graphs based on equivalence relation for vertices and/or for edges in a graph. It
is possible that such a granulated graph could be used for “high-level” reasoning
about navigation and even for reducing the time complexity of the shortest path
computation. A discussion of some of the key issues surrounding generalization of
graphs can be found in [28]. The main obstacle to using a granulated graph for
shortest path calculations is deciding what weights to assign to granular edges that
arise from the amalgamation of precise weighted edges, although several possibilities
suggest themselves and will be explored in further research.

6.2. Human navigation issues

Several key issues not covered in this paper will need to be addressed before the
results of this work find practical application in human navigation, enumerated
below.

• First, the system described does not incorporate mistakes. A degree of fault
tolerance is in-built into the system, since navigation agents sometimes select
sub-optimal or incorrect instruction sequences. However, human navigation
agents do make mistakes when executing instructions, particularly when the
vagueness and ambiguity of human instructions is taken into account. Future
work must address this issue.
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• Second, landmarks are an important feature of human navigation, used for
orientation or to provide reassurance and feedback (eg [23]). Deriving landmarks
under imprecision is difficult. One possibility is to use visibility analysis to
identify landmarks that can be seen from most or all locations within a cell, (eg
tall buildings like the CN tower in Toronto). Alternatively, spatially extended
landmarks might be used (eg Oxford Street in London) where the landmark
itself induces an equivalence relation on point locations.

• Third, the constraints provided by the network form the basis of the contingency
and refinement strategies. These strategies can be expected to yield further
performance improvements with the introduction of more constraints, such as
using a directed graph. However, some navigation tasks, such as navigation on
foot, are less constrained and as a result are likely to be harder to achieve under
imprecision.

• Fourth, distance traveled is assumed to be a good measure of agent performance
in this study. However, in human navigation the simplicity of instructions
often needs to be taken into account. Based on [30, 29], Mark [22] developed
a navigation application that weighted shortest paths according to how simple
(easy to follow) the resulting instructions were. The issue of performance, both
in terms of how far an agent travels and how simple an instruction sequence is
to execute, needs to be addressed in future research.

• Fifth, and finally, the system described here is not very interactive. In human
navigation systems, targeted human user interaction could be a valuable source
of information. Simple questions to the human user, such as “Can you see the
CN Tower?”, might help with orientation or in refining location.

7. Conclusions and further work

This paper describes initial work on navigation under imprecision. It details a
formal model of imprecise navigation, and identifies two key strategies for effec-
tive navigation under imprecision: contingency and refinement. A simulation with
navigation agents using these strategies indicates that both strategies can produce
significant improvements in an agent’s navigation performance especially if used in
combination.

While this paper has been concerned primarily with navigation in computerized
agents, the results have clear implications for navigation of human agents. Current
work in progress is attempting to develop human imprecise navigation applications,
based on extensions of the empirical work described in this paper. This work is
focused on using verbal interfaces to achieve navigation under imprecision. Verbal
interfaces are ideal for this task as unlike most visual maps, they allow instructions
to be delivered in an explicitly sequential form, and provide a natural mechanism
for communicating imprecision. Future work will also begin to address vagueness
in human spatial verbal predicates, such as “near”, “far”, “left”, and “right” (eg
[35, 9]).
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