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Abstract- Knowledge of the secondary structure and solvent
accessibility of a protein plays a vital role in prediction of fold,
and eventually the tertiary structure of the protein. This paper
deals with prediction of relative solvent accessibility, given only
the amino-acid sequence. In this paper, we use an improved
support vector regression (SVR) and new kernels for real valued
prediction of solvent accessibility. In this regard, two main issues
are addressed. First we address the problem of c selection, which
we found to be somewhat problematic in our earlier work (c
is a parameter with significant influence on noise insensitivity
and generalization of SVRs). In particular, rather than employ
the standard trial and error based approach, we used an
improved tube shrinking method to find c. Secondly, a novel
kernel combining solvation model, electrostatic charge model and
evolutionary information in the form of position specific scoring
matrix (PSSM) is given. A new dataset of 472 proteins with
less than 20% sequence identity is curated and used to evaluate
the result. To make a more objective comparison with earlier
methods, we use a standard dataset and show that the proposed
scheme is better than the ones normally used in literature. We
also report a lowest mean absolute error (MAE) so far of 0.12
on the standard dataset.

I. INTRODUCTION

Knowledge of the secondary structure and solvent accessi-
bility of a protein plays a vital role in predicting the tertiary
structure of the protein. The protein folding problem can
be defined as prediction of the complete three dimensional
structure of a protein given only the amino-acid sequence. The
folding free energy can be expressed as the summation of free
energies due to intra molecular interaction and the interaction
with the surrounding solvent molecules [24]. The problem of
predicting interaction with surrounding solvent molecule has
been shown to be more challenging. This essentially is to
predict accessible surface area of a given residue in the protein.
Most solvation models assume that the solvation energy of
the solute is the sum of individual solvation energies of the
residues. Hence it is important to know the solvation energy
of the residues in a given environment. Moreover, this would
also give an indication about the position of the residue with
respect to the core of protein which will enable the calculation
of accessible surface area of a residue [11], [24].

Unfortunately, calculating the solvation energy or accessible
surface area of the residue is a non-trivial task. Relative
Solvent Accessibility (RSA) helps us to express the accessible
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surface area in relative terms. Most of the early attempts
at RSA prediction concentrated on predicting whether it is
buried or exposed to solvents. These methods employ a binary
classifier to predict whether the solvent is exposed or buried
based on threshold of RSA, eg. 9% or 16%. Second generation
included three states viz., buried, intermediate and exposed.

Polastri et. al. [26] use bidirectional recurrent neural net-
work for protein solvent accessibility prediction. Yuan et.
al. [36] use support vector machines (SVM) for two and
three state RSA prediction reporting accuracies in the range
of 70-73%. NETASA [1] was developed to predict the net
accessible surface area and report results of about 71% on
Manesh database. It uses a simple neural network architecture
similar to PHD [27] and JPRED [5]. Kim and Park [16]
use support vector machines (SVM) and 3D local descriptors.
They call their system PSIsvm. They use PSSM matrix from
PSI-BLAST and 3D local descriptors comprising of disulphide
bridges, hydrophobic interactions and remote hydrogen bonds
as features. They report accuracies of around 78-80% for
two stage solvent accessibility classification for 16% and
25% buried state. In 2004, Nguyen and Rajapakse [22], [23]
propose a two stage SVM approach which takes into account
contextual relationships in the neighborhood. They report
accuracies of over 90% using Manesh dataset. Sim et. al. [32]
report slight improvement in predictions using a fuzzy k-
nearest neighbor method. Recently, real value prediction has
been developed to predict solvent accessibility particularly
based on regression methods. RVP-net [2] was developed
which predicts real valued solvent accessibility. In their work,
they show the importance of real valued calculations over two
stage predictions. Feed-forward neural network with multi-
layer function mapping is employed. The network is trained
with 80,000 residues. Gianese et. al. [7] use probability
profiles of amino acids to predict RSA. Garg et. al. [6]
use evolutionary information and feed-forward neural network
and report improvement in accuracies by about a percent.
Support Vector Regression has been quite popular in all other
work which followed. Yuan and Bailey [35] demonstrate the
application of regression approaches in predicting accessible
surface area. They predict accessible surface area in squared
angstroms rather than RSA. Yuan and Huang [37] use support
vector regression and report the best possible mean absolute
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error of 17% on a database they create. Wagner et. al. [34]
compare neural network and support vector regression for real
valued RSA prediction. On a new dataset they report decrease
in error rate by at least three percent compared to earlier
proposed methods.

In this work, we employ a new variant of support vector
regressor for real valued RSA prediction. A major difficulty
with earlier methods employing support vector regressor is
choosing e which is usually done by trial and error (Although
this fact is often skimmed over). The method described in this
paper uses an improved tube shrinking method developed by
Shilton et. al. [31] for automatically calculating e. In [31], the
co-authors have given the theoretical foundation of adaptive
SVM and for the first time we use them to demonstrate its
usefulness in application scenario. We also propose a novel
kernel combining solvation model, electrostatic charge model
and evolutionary information in the form of position specific
scoring matrix (PSSM) and compare it with standard kernels.
A new dataset is curated from recent version of CATH to val-
idate the proposed technique. This dataset is "harder" than the
ones used earlier as the maximum pairwise sequence identity
is less than 20%. We use Manesh dataset [17] to compare our
method objectively with previously proposed techniques. This
dataset contains 215 non-homologous proteins with sequence
identity less than 25%. 30 sequences are used for training
and 185 proteins are used for testing. The proteins used for
training include laba, labr, lbdo, lbeo, lbib, lbmf, lbnc,
lbtm, lbtn, Icem, lceo, Icew, lcfy, lchd, lchk, Icyx, Idea,
Idel, ldkz, Idos, lfua, lgai, lgpl, lgsa, lgtm, lhav, 2ilb,
2sns, 3grs, 3mdd. The same set is used by several authors
in literature [23], [22], [2], [1], [6] for comparison. Overall,
we try to show that the combination of the features used
and the kernel proposed performs better than the existing
techniques in literature. The paper is organized as follows:
Section II explains the dataset used, the features extracted and
the evaluation methods. Section III introduces e support vector
regression followed by v support vector regression and the
modified v support vector regression. Kernels are discussed in
section IV. Results and discussions are presented in section V.
Conclusions are given in section VI

II. MATERIAL AND METHODS

We construct the dataset from CATH version 2.6.0 released
in April 2005 [25]. At the first stage, we select proteins with
sequence length greater than 40 and with resolution of at
least 2 A. UniqueProt [21] with HSSP-value of 0 was used
to eliminate identical sequences. After doing this, we are
left with 472 proteins out of 10,000+ proteins with pairwise
sequence identity less than 20% (PSA472 dataset (available
on http://www.ee.unimelb.edu.au/ISSNIP/bioinf)). We get the
secondary structure definitions from DSSP [14] algorithm.
The 8 to 3 state reduction method used was H, G and I
to H, E and B to E and all others to C where H stands
for a Helix, E for 13 Strand and C for Coil. The solvent
accessibility values extracted from DSSP program have been
used. Relative Solvent Accessibility is defined as the ratio of

solvent exposed surface area observed in the given protein
(SA) to the maximum achievable solvent exposed surface area
for that particular amino-acid (MSA):

MSA (1)

In a recent work, it was shown that the Empirical Atomic
Solvation model [11] is the most effective out of the five
implicit solvation models tested. This makes use of the atomic
solvation parameters from Ooi et. al. [24]. Hence we make use
of the free energy of hydration parameter from Ooi et. al. [24]
as our first feature (denoted Xh). The values reflect the con-
tribution of each side chain to the thermodynamic parameters
of hydration which give an indication of hydrophobicity and
hydrophilicity.

Based on our earlier experiments, we make use
of Grantham Polarity [8] (scale was obtained from
http://au.expasy.org/tools/protscale.html) (xc) scale as
the input for the new kernels we propose to use. We also
extract probability of occurrence of amino acids in different
secondary structure states (a, j and C) using Chou-Fasman
method. The Chou-Fasman parameter for Helix(a) is given
by Pj = f1(f ) where (f )=Number of Residues in
Helix/Total Number of Residues and 'i' ranges over the set
of amino-acid residues. Similar conformational parameters
for strand Poi and coil Pai are calculated (x,). We then
extracted evolutionary information in the form of position
specific scoring matrix (PSSM) generated by PSI-BLAST [3]
using the non-redundant (NR) database. The low complexity
regions, coiled-coil regions and transmembrane helices were
filtered with pfilt [13]. We choose an E-value of 0.0001 and
10 iterations for PSI-BLAST. The BLOSUM62 matrix was
used for multiple sequence alignment. We used the following
function to scale the profile values from the range (-7,7) to
the range (0,1) [15], [12](which is better suited for Support
Vector Regression usage).

f 0.0
g(X) = 0.5 + Q.Ix

1.0

x< -5
-5 <x< 5
x > 5

(2)

where x is the value of the PSSM matrix. This results in a
set of 25 features for every amino-acid in the newly created
dataset. Instead of considering only one amino-acid, we use
a window of length L around the residue to capture the local
information. Another feature is added to every amino-acid to
indicate whether it is at the edge of the protein sequence or
in the middle. The final input to the support vector regressor
is of length 25L + 1.

For the evaluation of the proposed method, we use standard
Root Mean Squared Error (RMSE) and Mean Absolute Error
(MAE) values, namely:

RMSE 1= Ii/ fii)2
MAE= I Y-

i

(3)
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where yi denotes the observed values and Yi denotes predicted
values.

III. SUPPORT VECTOR REGRESSION

Support Vector Machines [4] are a relatively new class of
learning machines that have evolved from the concepts of
structural risk minimization (SRM) and regularization theory.
The major difference between support vector machines and
many other neural network (NN) approaches is that instead of
tackling problems using empirical risk minimization (ERM),
SVMs use the concept of regularised ERM. This has enabled
people to use SVMs with potentially huge capacities on
smaller datasets without running into the usual difficulties of
overfittting and poor generalization performance. The basic
idea of SVM theory is to (implicitly) map the input data into
higher dimensional feature space where the problem can be
treated as a linear one. The SVM formulation is desirable
due to its mathematical tractability and good generalization
properties. In this section, we give standard E-SV regression
followed by v-SV and modified v-SV regression.

A. e SV Regression

Suppose we are given a training set:

e) = (X1,Z1), (X2, Z2),.,(XN, ZN)

x, CdL (4)
Zi C

which is assumed to have been generated based on some
unknown but well defined map g: JdL -) J, so that
zi = g (xi) + noise. We define (implicitly, as will be seen
shortly) a map (o J dL jRdH. Using this map, the aim is
to find a non-linear approximation g to g with the form:

g(x) = WTh(x) + b (5)

which is a linear function of position in feature space (but
nonlinear in input space by virtue of the map io). The usual
E-SVR method of selecting w and b is to minimize the
regularized risk functional:

min R(w, b, , I)WTW + C1T, + C 1T*w,b,D,(.2
such that: (wTU(x) + b) > Zi, E6)

(wTh(x)+-b) < Zi +E+ (6)

(, * > 0

where wTw characterizes the complexity of the model and
k 1T, + I 1T* the empirical risk associated with it. The
constant C > 0 controls the trade-off between empirical
risk minimization (potential over-fitting) if C is large and
complexity minimization (potential under-fitting) if C is small.
The constant e > 0 in eq. 6 is included to give the model a
degree of noise insensitivity (assuming that e is well matched
to the noise present in the training data). Using lagrange
multiplier techniques, the dual form of eq. 6 is [30]:

min L(a) = IaTGa aTZ + e la|T 1
ce2

such that: 0c 1 < < c (7)
lTae = o

where Gij = K(xi, xj) and a is the elementwise mod (ie.
al C XN, |Ra = Ia). We also note that:

g (y) aiK (xi, y) + b

B. v- SVRegression
One difficulty with E-SV is the selection of E, which usually

requires a trial-and-error approach. To overcome this problem,
Scholkopf et. al. [28] introduced the v-SVR formulation,
which includes an additional term in the primal problem
to trade-off the tube size (e, no longer a constant) against
model complexity and empirical risk. From [28], the primal
formulation is:

min R= IWTW+CvC+ CjT + CjT*
w,b,~,*,2,c-
such that: (WT(p(x) + b) > zi--E

(WT((x)+ b) <zi+E+& (8)
(,X > O
e > 0

where v > 0 is a constant. The associated dual is [28], [30]:
minL(a) = I aTGa aTZ
such that: -N N< <

NT (9)lToa= C
1T IoZ| = Cv

where G is as before. The advantage of this form lies in the
properties of the constant v. It can be shown [28] that:
.N < V, where NE is the number of error vectors

(Ig (xi)- zi > E, oi = C) in the training set.

* Ns > V, where Ns is the number of support vectors

(Ig (xi)- zi > E, oi > 0) in the training set.
The advantage here is that v is connected directly to

the sparsity of the resulting regressor (where sparsity is the
proportion of zero multipliers ai = 0), which is in most cases
much easier to select.

C. Modified v-SV Regression
In this section we describe Modified v-SV Regression

developed by Shilton et. al. [31], [30]. In [31], the co-authors
have given the theoretical foundation of adaptive SVM and
for the first time we use this method to demonstrate its
usefulness in application scenario. One practical difficulty
with the standard v-SV regressor is the complexity of the
constraint set, and in particular the presence of the constraint
1T Ia = Cv. We would like to remove this constraint without
losing the ability to automatically select e based on another,
more useful parameter, v. Consider the primal form of the
standard v-SV regression in eq. 8. The term CvE is effectively
a linear regularization term for the variable e (in much the
same way that 2wTw is a regularization term for the variable
w). Replacing this with a quadratic regularisation term Civ C2,
we get the new regularised risk functional:

min R =
IWTW + Cv62 + C 1Tt + C1T*

w,b,(,(*,E 2 2 N,e
such that: (WT(p(x) + b) > Zi, Ec-

(T(px )<lE~*(10)(WT (x) + b) < zi + >+
(, V* >_ O
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where, once again, v > 0 is a constant. The associated dual
is [31], [30]:

minL(cx) = IolTHoa _ aTZ

such that: - 1§< 1 (11)
lTa = 0

where H =G + ~sgn(a) sgn(a)T, G is as before and
sgn (a) is the elementwise sigmoid (ie. sgn (a) C JRN,
sgn (a)i = sgn (ai)). It may also be seen [31], [30] that:

e =
I 1T (12)

Considering eq. 11, it should be noted that:
* The hessian matrix H is positive semi-definite and the

constraints are linear. Hence there will be no global
minima.

* While the modified v-SV regression method incorporates
tube-shrinking into its design, the constraint set of eq. 11
is no more complex than the standard E-SVR dual given
by eq. 7.

It can also be shown [30], [31] that:
l NE < e < 1 NS
v N - - v N (13)

and hence v is once again connected with the sparsity of the
regressor, simplifying its selection.

IV. KERNELS

The function K(xi, x;) = (O(x1)T(O(xj) is called the kernel
function. It is not difficult to show that our approximation
function g(x) may be written in terms of the kernel function:

g(y) = ozjK(x1, y) + b (14)

The feature map po JdL RdH are hidden by the
kernel function. It is well known that for any function K:
JdL X JdL -) X satisfying Mercer's condition [10], [29],
[20] there exists an associated set of feature map pO JdL +
JdH (although calculating these maps may not be a trivial
exercise). Mercer's condition states that K: JdL X JdL > X
must be a continuous, non-negative definite, symmetric kernel.
Indeed, we may start with such a kernel function and, with no
knowledge of (o at all, optimize and use an SV-regressor. This
is referred to as Kernel trick [29].

Instead of employing a standard kernel function, to effec-
tively make use of the features extracted we have constructed
the following new Mercer kernel using closure properties [33]:

k(x,y)=kh(Xh,Yh)kc(Xc,Yc)+ks(xs,Ys)+ke(Xe,Ye) (15)

where x and y represent the input data with subscript 'h'
denoting kernel for evaluating hydrophobic values, 'c' for
evaluating polarity values, 's' for evaluating Chou-Fasman
secondary structure conformational parameters and 'e' for
evaluating evolutionary information extracted in the form of
PSSM matrix. The four sub-kernels are defined as follows:

Hydrophobicity and Polarity Sub-Kernel: The hydrophobic-
ity sub kernel kh is a simple dot product of the free energy

values within a window of length L. Jaramillo et. al. [11] use
a simple summation in their solvation model, to good effect.
This motivates us to use a similar model in our kernel function.
The polarity sub kernel kc is similar, but with Grantham
polarity scales. The two sub-kernels are represented as shown
in eq. 16. The values dh and d, help in capturing the local
correlation [29]. w is a triangular window with positive real
numbers which is used to emphasize the central residue.

kh(Xh, Yh)

kc(xc, Yc)

L - ah

L- E W(i)Xh (i)Yh (i)
i=lI d (16)

I (i)Xc (i)yc (i)]
i=l

Sub-Kernel to infer the Secondary Structure State: To obtain
this kernel, we sum the Pa, Po and P, values over a window
of length L. The maximum value of the three is considered as
the output. Mathematically:

k, (x8, Y )=max

L

L E x (i8C S (i, I

i=l
L

L E Xs (i)y8s (i),
i=l
L

T E W
i

8
i

Y )
i=l

(17)

where the three terms in max represent the Chou-Fasman
parameters calculated for each state a, / and C. The idea here
is to pick up the most favorable secondary structure state in
the given window.
PSSM Sub-Kernel: We use a simple dot-product [18], [19]

to combine PSSM values of the two vectors. The values are
between 0 and 1 and to improve the local correlation we raise
the entire equation to power de. so:

ke(xe, Ye)
[ 20 L 1 d,
E E X,e (i, j)Ye (i, ;)
j=l i=l

20 L 20 L

1e (i,j)E EY1 (i,j)
_j=l i=l j=l i=l

(18)

All of the newly defined kernels are symmetric in nature.
The kernels kh and kc are dot-product kernels with element
scaling, and hence satisfy Mercer's condition. k, is the maxi-
mum of three simple dot products and hence is a valid kernel.
ke can be written in the dot product form thusly:

ke(xe, Ye) [: [xe(i J) Ye(i, A)]

"j (k

(19)

and hence also satisfies Mercer's condition.

We compare the proposed kernels with standard Radial
Basis Function (RBF) and Polynomial kernels defined as
follows:

* RBF: K(x,y) =exp (HX YiiH) 0

* Polynomial: K(X, y) = (-yXTy + r) d
I a > 0.
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TABLE I
COMPARISON WITH STANDARD KERNELS WITH PROPOSED KERNEL IN TERMS OF MAE AND SUPPORT VECTORS.

Support 0-5 5-10 10-15 15-20 20-25 Global
Vectors MAE

RBF(Gamma = 7) 3746 0.10 0.12 0.10 0.09 0.08 0.11
RBF (Gamma= 10) 3641 0.10 0.12 0.10 0.09 0.08 0.11
Proposed Kernel (Weighted) 4955 0.17 0.13 0.08 0.06 0.05 0.12
Proposed Kernel (Non - Weighted) 5161 0.20 0.14 0.09 0.09 0.06 0.14
Polynomial Kernel (d = 3) 5296 0.21 0.16 0.12 0.08 0.03 0.15

TABLE II
MAE VALUES FOR VARIOUS VALUES OF v.

v

0.01
0.05
0.1
0.2
0.3
0.4
0.5
1
2

0-5
0.46
0.39
0.34
0.29
0.27
0.26
0.25
0.27
0.25

5-10
0.40
0.34
0.29
0.26
0.24
0.23
0.23
0.24
0.23

10-15
0.35
0.29
0.25
0.21
0.20
0.20
0.19
0.20
0.19

15-20
0.30
0.24
0.20
0.17
0.16
0.16
0.15
0.16
0.15

20-25
0.25
0.19
0.15
0.13
0.12
0.11
0.11
0.12
0.11

25-30
0.20
0.15
0.11
0.09
0.08
0.08
0.08
0.08
0.08

30-35
0.15
0.10
0.07
0.06
0.06
0.07
0.07
0.06
0.07

35-40
0.10
0.05
0.03
0.05
0.05
0.06
0.06
0.05
0.06

40-45
0.05
0.02
0.04
0.07
0.08
0.08
0.08
0.07
0.08

45-50
0.01
0.05
0.08
0.10
0.11
0.11
0.11
0.11
0.11

50-100
0.13
0.18
0.21
0.22
0.23
0.23
0.23
0.23
0.23

Results are shown in table I. 0, 5, 10, etc. in table I
are solvent accessibility thresholds. Weighted indicates that
the three sub-kernels are weighted unequally (0.25, 0.25, 0.5
respectively in this experiment). Non-weighted means the
weights are equal to 1.

Calculating Free Parameters

To calculate the free parameters, we selected 20% of pro-
teins with minimum length of 55 and belonging to each class
(All oa, All 3, oa + /, Few Secondary Structures) as defined
by CATH. This was divided into two sets of 15% and 5% as
training and testing sets respectively. As described earlier, the
new SVR formulation eliminates e and introduces v which is
a free parameter. For several values of v we calculated MAE
and RMSE. We found that above a certain value (approx 0.5
for our problem) the effect of v is negligible. Based on this we
choose v = 2 for all our experiments. It may be seen that this
value should be increased for larger data sets. The MAE and
RMSE values for various values of v are shown in table II.

The window length L was chosen experimentally by vari-
ation from L = 1 to L = 19. MAE for various values of
window length L is given in table III. From the table we

0 50

0.45

0:05: L
0.00

RSA Bins

Fig. 1. Plot of MAE vs regression bins for various values of v'

chose a constant
experiments.

window length of L - 11 for rest of our

V. RESULTS AND DISCUSSION

3-fold cross-validation (CV) was carried out on PSA472
data set after dividing the data into three sets randomly. We
performed cross-validation using both RBF kernel and the
novel kernel presented here. We found that the number of
support vectors using RBF kernel was 30.81% and using the
proposed kernel was 38.62% of the total training vectors. The
results of the CV are as shown in table IV. The other major
result of this paper is the use of modified support vector
regression where the system automatically chooses the value
of e. We have shown that a reasonably high value of v (wherein
v > 1), which is independent of the noise present in the
system, gives good results consistently.

Finally, we compared our method with the other real value
prediction methods in literature [23], [6], [1], [7]. Manesh
dataset [17] was used to make this objective comparison as
this was the commonly used dataset. Table V summarizes
classification results of several systems for different RSA

TABLE IV
MAE VALUES FOR 3 FOLD CROSS-VALIDATION

MAE RMSE
SA Bins RBF Proposed Kernel RBF Proposed Kernel

(Weighted) (Weighted)
0-5 0.12 0.15 0.14 0.19
5-10 0.12 0.14 0.14 0.17
10-15 0.10 0.09 0.12 0.11
15-20 0.08 0.08 0.10 0.09
20-25 0.07 0.07 0.09 0.08
25-30 0.07 0.06 0.08 0.08
30-35 0.07 0.08 0.09 0.10
35-40 0.09 0.10 0.12 0.13
40-45 0.13 0.12 0.15 0.15
45-50 0.17 0.17 0.19 0.19
50-100 0.26 0.29 0.29 0.32
Overall 0.13 0.15 0.15 0.19
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TABLE III

MAE VALUES FOR VARIOUS VALUES OF L

L
1
3
5
7
9
11
13
15
17
19

0-5
0.44
0.35
0.29
0.27
0.27
0.25
0.24
0.23
0.23
0.63

5-10
0.38
0.30
0.24
0.23
0.22
0.22
0.21
0.19
0.19
0.58

10-15
0.33
0.26
0.22
0.22
0.21
0.21
0.20
0.19
0.19
0.55

15 -20
0.28
0.20
0.17
0.15
0.15
0.15
0.15
0.14
0.14
0.50

20-25
0.23
0.15
0.12
0.12
0.13
0.13
0.13
0.12
0.12
0.47

25-30
0.18
0.11
0.08
0.09
0.08
0.09
0.09
0.09
0.09
0.42

30-35
0.13
0.07
0.06
0.07
0.07
0.07
0.07
0.07
0.07
0.37

35-40
0.08
0.04
0.07
0.06
0.06
0.07
0.08
0.08
0.09
0.31

thresholds T. Threshold T is used to indicate whether a residue
is buried (< T) or exposed (> T). As it can be seen from
table V, the proposed method (ASVM) performs better than
all other methods for RSA thresholds > 20%. For other
thresholds, our method is the second best. The first eleven
columns of table V indicate two state classification (buried
or exposed). The 12th and the 13th columns indicate three
state classification (buried, intermediate and exposed). The
last column gives mean absolute error (MAE) for real valued
prediction. We report the best MAE to date (0.12) on Manesh
dataset.

Figure 2 shows the average mean absolute error obtained
for all the amino acids in Manesh dataset [17]. Hydrophobic
amino acids Valine (V), Isoleucine (I), Leucine (L) and Pheny-
lalanine (F) give the lowest mean absolute error. This indicates
the system's sensitiveness to the hydrophobic residues. Fig-
ures 3 and 4 show the plot of observed and predicted relative
solvent accessibility values for proteins 1PDA and 1SLU from
Manesh dataset. 1PDA gives the lowest mean absolute error

of 0.09 and ISLU gives the highest mean absolute error of
0.156. From the plots, it is clear that the values predicted
follows the observed values very closely. If we compare only
the recent SVR method [23] with our method, we report better
performance with single stage SVR against two-stage SVR.
This result is important as it emphasizes the fact that the
data representation used is contributing significantly. In [23],
authors choose e = 0.001. Choosing this value can be a bit
tricky and our system is free from this parameter. The correct
value of noise insensitivity parameter, E, is important to get
the best result from a support vector regressor. Other than data
representation, the improved performance of our single stage
SVR compared to the two-stage SVR [23] is due to automatic
calculation of e.

VI. CONCLUSION

Real valued relative solvent accessibility prediction using
adaptive support vector regression is proposed. Novel kernels
are employed which combine secondary structure statistics,
solvation model, electrostatic model and evolutionary infor-
mation in the form of PSSM. A new variant of support
vector regression which is free from choosing E, the noise
insensitivity parameter is presented for the first time in an

application scenario. A new dataset containing 472 proteins
has been curated (PSA472) from recent version of CATH with
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Fig. 2. Average MAE values for different amino acids in Manesh dataset
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Fig. 3. Predicted and Observed RSA for protein IPDA in Manesh dataset.
IPDA gives the lowest MAE of 0.090

sequence identity less than 20% to validate our method. We
get overall mean absolute error of 0.13 and 0.15 on PSA472
dataset. The proposed method is compared with a few other
methods using Manesh dataset [17]. On this set we report
the lowest mean absolute error (0.12) to date. The usefulness
of the proposed technique is demonstrated by making use

of it in protein topology prediction with highly encouraging
results [9].
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