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Ignacio Garćıa-Jurado2 Anne van den Nouweland3

October 1, 2007

Abstract

We define and study games with limited aspirations. In a game
with limited aspirations there are upper bounds on the possible pay-
offs for some coalitions. These restrictions require adjustments in the
definitions of solution concepts. In the current paper we study the
effect of the restrictions on the core and define and study the so-called
truncated core.
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1 Introduction

We define and study games with limited aspirations. In a game with limited
aspirations there are upper bounds on the possible payoffs for some coali-
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tions. These restrictions require adjustments in the definitions of solution
concepts. In the current paper we study the effect of the restrictions on the
core and define and study the so-called truncated core.

Games with limited aspirations derive from our earlier work on interval
games. In Carpente et al. (2005) we argue that to desribe players’ opportu-
nities in strategic-form games, it is natural to associate so-called coalitional
interval games with strategic-form games. Coalitional interval games arise
when one cannot provide a sharp worth for each coalition of players but
instead associates with each coalition a lower bound and an upper bound
for its worth – leading to the definition of an interval associated with each
coalition. Coalitional interval games were first introduced by Branzei et al.
(2004) in the context of bankruptcy problems. Within this context, Branzei
et al. (2003) define two possible extensions of the Shapley value. Carpente
et al. (2005) provide axiomatic characterizations of the method that asso-
ciates with each strategic-form game a coalitional interval game. However,
to the best of our knowledge, little else is known about interval games.

The current paper is inspired by our desire to develop a better under-
standing of coalitional interval games. Our research program focusses on
defining and studying solution concepts for these games. In the current pa-
per we concentrate on the core. We do this in a slightly more general setting
than that of interval games. Whereas in an interval game there is an upper
bound to the interval for each coalition, we allow for the possibility that
such upper bounds may exist only for some coalitions. Hence, we arrive at
the definition of games with limited aspirations.

The organization of the paper is as follows. In Section 2 we formally
define games with limited aspirations. In this section we also provide two
examples of situations where games with limited aspirations arise, namely
minimum cost spanning tree problems and queueing problems, and we derive
the associated games with limited aspirations. In Section 3 we define a
core concept for games with limited aspirations which we call the truncated
core. We derive conditions for non-emptiness of the truncated core of a
game with limited aspirations which we call t-balancedness, we study the
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relation between cores and truncated cores, and we provide an axiomatic
characterization of the truncated core as a solution for games with limited
aspirations.

2 Games with limited aspirations

We are interested in the effect that upper limits on payoffs for coalitions
can have on solution concepts for coalitional games. To study this issue, we
define games with limited aspirations. A game with limited aspirations is a
4-tuple (N,F , v, a), where (N, v) is a coalitional game, F is a collection of
coalitions, and a is a map from F to R. The coalitional game (N, v) with set
of players N provides for every coalition S ⊆ Ṅ the value or worth v(S) ∈ R
that the members of the coaliton can jointly obtain if they coordinate their
actions. We make the usual assumption that v(∅) = 0. Unlike ordinary
coalitional games, however, in a game with limited aspirations, for some
coalitions there is an upper bound on how much the players in the coalition
can jointly receive in payouts. F ⊆ 2N denotes the set of such coalitions
and for each S ∈ F the upper bound on joint payouts is a(S). In line with
the interpretations of v and a, we assume that a(S) ≥ v(S) for all S ∈ F .
Also, whenever convenient to minimize notation, we will use a(∅) = 0.

We denote by GA(N) the set of games with limited aspirations with
player set N and by GA the set of all games with limited aspirations with a
finite player set. As the player set N can be backed out of the characteristic
function v and the collection of coalitions F can be backed out of the function
a, we identify (N,F , v, a) with (v, a) whenever there is no need to stress the
sets N and F .

We define games with limited aspirations in a general manner, However,
for most of the situations with which we associate games with limited aspi-
rations, the associated games satisfy F = 2N \ ∅ (there is an upper bound
on payouts for every non-empty coalition) and the corresponding bounds
satisfy a subadditivity condition.1

1The subadditivity condition is a(S)+a(T ) ≥ a(S∪T ) for all S, T ⊆ N with S∩T = ∅.
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2.1 Examples of games with limited aspirations

Minimum cost spanning tree problems and queueing problems are two exam-
ples of situations that naturally give rise to games with limited aspirations.

2.1.1 Games with limited aspirations in minimum cost spanning
tree problems

Consider a source node 0 and set of agents N = {1, . . . , n} who all need to
get connected to the source node, directly or indirectly, to get access to its
resources. An example is a trunk line for electricity to which agents need
to connect to get power. In the basic model, we assume that there is no
loss of the resource due to transportation and each agent i who is connected
to the source node receives a benefit bi. Denote the vector of benefits by
b = (bi)i∈N . Of course, there are costs associated with the various possible
connections. These costs are reflected in a cost matrix C = (cij)i,j∈N0

,
where N0 = N ∪{0} and cij ∈ R represents the cost of a connection between
i and j for all pairs i, j ∈ N0. Connections are undirected and costly, so
that cij = cji > 0 for each pair i, j ∈ N0. It is assumed that the benefits
of being connected are large compared to the costs so that each agent finds
it worth while to pay the cost of getting connected.2 The triple (N0, b, C)
is a minimum cost spanning tree problem. For brevity, we refer to such a
problem as mcstp.

In a mcstp, when the agents build connections, a network g on N0 results,
where g ⊆ {{i, j} | i, j ∈ N0, i 6= j}. The elements of g are called links or
connections and the cost associated with a network g, c(g), is the sum of
the costs of its links:

c(g) =
∑

{i,j}∈g

cij .

The objective of the agents is to build a network that connects them to the
source in the least costly way possible. As there is no loss of the resource due

If F = 2N \ ∅ and we define a(∅) = 0, then the subadditivity condition is equivalent to
subadditivity of the coalitional game (N, a).

2For example, bk >
P

i,j∈N0
cij for each k ∈ N would be a bound that gives this result,

although smaller benefits will be sufficient in most cases.
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to transportation, agents can get the resource by connecting to other agents
that are already connected to the source. In general, a network g on a set of
nodes M is said to connect the nodes in M if for every two nodes i, j ∈ M

there exists a path in the network from node i to node j, i.e., a sequence of
links {i0, i1}, . . . , {il−1, il} in g with i0 = i and il = j. The number of links
in the path (l) is called the length of the path. A least costly network to
connect a set of nodes will be a network that has no cycles – paths of length
at least 3 that begin and end in the same node and do not use the same link
more than once. Such a network is known as a tree on the set of nodes. In
a tree there exists a unique path between any two of its nodes.

Consider a mcstp (N0, b, C) and denote the set of networks that con-
nect the nodes in N0 by G(N). Hence, G(N) is the set of all networks
g ⊆ {{i, j} : i, j ∈ N0, i 6= j} with the property that there exists a path in g

between any two nodes in N0. A minimum cost spanning tree (or mcst) for
N is a network gN ∈ G(N) with the property that

c(gN ) = ming∈G(N)c(g).3

It is well-known that a (not necessarily unique) mcst exists.4 We denote the
cost of a mcst for N in the mcstp (N0, b, C) by m (N,C) = ming∈G(N)c(g).

Hence, the total cost that the agents in N have to incur to get connected
to the source node is m (N,C). This cost burden needs to be distributed
among the individual agents in some way. An approach to this problem
that is often encountered in the literature uses coalitional games. In a first
step a coalitional game is associated with the mcstp and then a solution
concept for coalitional games, e.g. the Shapley value, is applied to obtain a
distribution of the costs.

Bird (1976) formulated a coalitional cost game c associated with a mcstp

that assigns to each coalition its stand-alone cost. We will look at the situa-
tion from the perspective of revenues and assign to each coalition it’s mem-

3It follows from earlier remarks that a minimum cost network that connects the players
in N to the source is a tree.

4Prim (1957) introduced an algorithm for constructing a mcst for any set of nodes and
corresponding costs for links.
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bers benefits from being connected to the source minus the stand-alone costs.
For each coalition S ⊆ N , consider the mcstp (S0, b, C) on S induced by
(N0, b, C) and define the stand-alone cost of coalition S by c (S) = m (S, C)
and the coalition’s revenue by

v(S) =
∑
i∈S

bi − c(S).

Hence, the cost of a coalition S is defined to be the minimal cost of connect-
ing all agents in S to the source node, assuming that no indirect connections
through agents not in S can be used. This is a pessimistic approach because
agents in N \S want to be connected to the source node as well, so it would
seem reasonable to assume those agents would not object if players in S

want to connect through them as long as the agents in S bear the cost. This
could enable the members of S to connect to the source node for lower costs
and therefore raise the coalition’s revenue.

Bergantiños and Vidal-Puga (2007) take an optimistic point of view by
looking at coalitions’ marginal costs. Let S ⊆ N and suppose that a network
gN\S ∈ G(N\S) has already been formed that connects the nodes in N\S
to the source node 0.5 The marginal cost c̃(S) of the agents in S equals

c̃ (S) = ming∈G(N):gN\S⊆g

(
c(g)− c(gN\S)

)
and the corresponding revenue of coalition S is

ṽ(S) =
∑
i∈S

bi − c̃(S).

The drawback of this optimistic approach is that the total cost of connecting
all agents to the source node may exceed the sum of their marginal costs, as
would be the case if all links between an agent node and the source node are
much more expensive than links between agent nodes. However, it seems
reasonable to impose that each coalition of agents pays at least its marginal
cost, so that a coalition S is not subsidized by the other agents.

5Note that to determine the marginal cost of coalition S it does not matter which
network gN\S exists that connects the players in N\S to the source node.
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Games with limited aspirations give us the possibility to take these con-
siderations on board. We associate with a mcstp (N0, b, C) a game with lim-
ited aspirations (v, a), where v is the revenue game based on Bird’s (1976)
pessimistic cost game, and a gives upper bounds on revenues as implied by
the optimistic cost c̃ (S), i.e., a (S) = ṽ (S) for each coalition S ⊆ N . Note
that this satisfies the requirement a(S) ≥ v(S) for all S as a coalition’s
marginal cost can never exceed its stand-alone cost.

2.1.2 Games with limited aspirations in queueing problems

Consider a set of agents N = {1, . . . , n} who all need to be served by a server
that processes agents’ jobs in succession. Examples of such situations are
abundant, such as people queueing to obtain new driver’s licences, queues
at immigration offices, queues to purchase tickets to concerts, etc. Each
agent i ∈ N has a disutility of waiting equal to θi ≥ 0 per unit of time spent
waiting. The waiting time of an agent depends on his position in the queue
and the time it takes to serve those in front of him. In the basic model, we
assume that each agent takes exactly one period of time to get served and
that an agent i receives a benefit bi from being served that is high enough
such that each agent finds it worth waiting as long as is necessary to get
served6 (queueing in immigration offices seems a good example here, as I
am sure those of you who have ever tried to obtain a visa would agree).
Therefore, if agents’ positions in the queue are given by the permutation
σ : N −→ N , then agent i ∈ N has a position σ(i) in the queue and his
disutility of waiting equals (σ(i)− 1) θi as he needs to wait for the σ(i)− 1
agents ahead of him in the queue to be served. The triple (N, b, θ), where
N is the set of agents in the queue, θ = (θi)i∈N is the vector of disutilities
or costs, and b = (bi)i∈N is the vector of benefits, is a queueing problem.

The disutility of waiting is a cost and agents can be compensated for
waiting by payments. If an agent i receives a transfer ti and is σ(i)th to be
served, then his total benefit equals bi − (σ(i)− 1) θi + ti. If agents differ in
their disutility of waiting, it is beneficial for an agent with a higher disutility

6Technically, this condition is bi >
P

j∈N\{i} θj for each i ∈ N .

7



of waiting to pay an agent with a lower disutility of waiting who is ahead of
him in the queue to switch positions. If θi > θj and σ(i) = σ(j) + 1, then
both agents will be better off if agents i and j switch positions and agent i

pays agent j a transfer ti ∈ (θj , θi).
Therefore, it is optimal for the agents to arrange themselves into a queue

where an agent with a higher disutility of waiting is in front of one with a
lower disutility of waiting. Denoting the set of all permutations of N by
P(N) and the total cost associated with a permutation σ by

c(N,σ) =
∑
i∈N

(σ(i)− 1) θi,
7

we say that a permutation is efficient for queueing problem (N, b, θ) if its
total cost is lowest among that of all possible permutations. Hence, the
total cost (i.e. disutility of waiting) that the agents in N have to incur to
all get served is m(N, θ) = minσ∈P(N)c(N,σ). However, the waiting time
will be distributed unevenly among the agents; the first agent in line has no
waiting time and the last agent in line has the maximum possible waiting
time. Hence, in order to get all agents to agree on forming an efficient queue,
the agents need to determine appropriate transfers between themselves that
compensate the agents that need to wait longer. Coalitional games have
been used in the literature to approach this question.

Chun (2004) takes a pessimistic point of view of a queueing problem
(N, b, θ) by considering a coalition’s cost if they have to let the other agents
go first without being compensated for waiting for them to be served. Let
S ⊆ N , denote the number of agents in S by s, and suppose that the agents
in N\S are arranged in some order σN\S : N\S −→ {1, . . . , n − s}.8 The
cost c(S) of the players in S is defined by9

c (S) = min
σ∈P(N):σN\S⊆σ

∑
i∈S

(σ(i)− 1) θi

7Note that transfers between agents do not play a role in determining the total cost as
they are budget neutral.

8Technically, σN\S is a bijection between N\S and {1, . . . , n− s}.
9Formally, σN\S ⊆ σ can be described as σ(i) = σN\S(i) for each i ∈ N\S.
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and the revenue of the coalition is

v(S) =
∑
i∈S

bi − c (S) .

Maniquet (2003) formulated a coalitional cost game c̃ associated with a
queueing problem (N, b, θ) that assigns to each coalition its stand-alone cost
– the cost it would incur if its members are the only agents to be served. For
each coalition S ⊆ N , consider the queuing problem (S, b, θ) on S induced
by (N, b, θ) and define c̃(S) = m(S, θ) and the corresponding revenues by

ṽ(S) =
∑
i∈S

bi − c̃(S).

Hence, the cost of a coalition S is defined to be the minimal cost of the
agents in S being served without them waiting for or compensating the
agents in N\S. This is, of course, a very optimistic estimate of the cost to
the agents in S. The drawback of this optimistic approach is that the cost
of any coalition of agents that consists of more than one agent exceeds the
sum of the costs of its individual members. Hence, the costs according to c̃

do not go far toward finding a reasonable solution to the queueing problem
but they do provide a lower bound.

Games with limited aspirations give us the possibility to take these con-
siderations on board. We associate with a queueing problem (N, b, θ) a
game with limited aspirations (v, a) where v is the revenue game based on
Chun’s (2004) pessimistic cost game as defined above and a gives the upper
bounds on revenues as implied by Maniquet’s (2003) optimistic cost game,
i.e. a (S) = ṽ (S) for each coalition S ⊆ N . Note that this satisfies the
requirement a(S) ≥ v(S) for all S.

3 The truncated core

In this section, we extend the core concept to games with limited aspirations
and define a truncated core that takes the upper bounds on payoffs into
account. We define conditions on games with limited aspirations that are
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necessary for the existence of allocations in the truncated core. We also
investigate when the core and the truncated core coincide.

The core of a game with limited aspirations (N,F , v, a) is C(v) = {x ∈
RN | x(S) ≥ v(S) for all S ⊆ N and x(N) = v(N)}.10 Note that the
aspirations do not play a role in the determination of the core of a game.
When taking the aspirations into account, we arrive at the defintion of the
truncated core. The truncated core of the game with limited aspirations is

CT (v, a) = {x ∈ RN | x(S) ≥ v(S) for all S ⊆ N,

x(S) ≤ a(S) for all S ∈ F , and x(N) = v(N)}.

The truncated core can also be expressed as

CT (v, a) = {x ∈ C(v) | x(S) ≤ a(S) for all S ∈ F}.

Obviously, CT (v, a) ⊆ C(v) for all games with limited aspirations (N,F , v, a).

3.1 t-Balancedness

In this subsection we present a necessary and sufficient condition for the
non-emptiness of the truncated core of a game with limited aspirations.

Let (N,F , v, a) ∈ GA(N) be a game with limited aspirations. A family
of coalitions G ⊆ 2N is said to be t-balanced if there exist non-negative
coefficients {yS | S ∈ G} and {wS | S ∈ G ∩ F}, satisfying the following
requirements

1. yS > 0 for all S ∈ G \ F
2. min{yS ,wS} = 0 and max{yS ,wS} > 0 for all S ∈ G ∩ F
3.

∑
S∈G,i∈S yS −

∑
S∈G∩F ,i∈S wS = 1 for all i ∈ N .

If G is a t-balanced collection of coalitions then coefficients {yS | S ∈ G} and
{wS | S ∈ G ∩ F} satisfying the above requirements are called t-balancing
coefficients. Note that condition 2 means that for every S ∈ G ∩ F either
yS > 0 or wS > 0 but not both.

10Throughout the paper, we use x(S) =
P

i∈S xi.
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A game with limited aspirations (N,F , v, a) is t-balanced if for every t-
balanced family of coalitions G with t-balancing coefficients {yS | S ∈ G}
and {wS | S ∈ G ∩ F} it holds that∑

S∈G
ySv(S)−

∑
S∈G∩F

wSa(S) ≤ v(N).

In this inequality, due to condition 2 for t-balancing coefficients, for each
S ∈ G ∩ F either yS > 0 and v(S) appears with a positive weight, or wS > 0
and a(S) appears with a negative weight, but not both.

t-Balancedness is a necessary and sufficient condition for non-emptiness
of the truncated core. To prove this result, we first prove a lemma stating a
relation between t-balancedness and a linear program. Let (N,F , v, a) ∈ GA

be a game with limited aspirations. Define the associated linear program
P (v, a) by

maximize
∑

S⊆N ySv(S)−
∑

S∈F wSa(S)
subject to

∑
S⊆N,i∈S yS −

∑
S∈F ,i∈S wS = 1, i ∈ N,

yS ≥ 0, S ⊆ N,
wS ≥ 0, S ∈ F .

The game (N,F , v, a) is t-balanced if ond only if the value vP (v,a) of the
linear program P (v, a) is equal to v(N).

Proof. It is obvious that the game (N,F , v, a) ∈ GA is t-balanced if
vP (v,a) = v(N).

Now, suppose that the game (N,F , v, a) ∈ GA is t-balanced. Choosing
yN = 1 and yS = 0 for all S ⊂ N , S 6= N , and wS = 0 for all S ∈ F , it is clear
that vP (v,a) ≥ v(N). To show that vP (v,a) ≤ v(N), choose yS and wS that
satisfy the constraints of the linear program P (v, a), i.e., yS ≥ 0, S ⊆ N ,
and wS ≥ 0, S ∈ F , and

∑
S⊆N,i∈S yS −

∑
S∈F ,i∈S wS = 1 for all i ∈ N .

Define G = {S ⊆ N | S /∈ F and yS 6= 0} ∪ {S ⊆ N | S ∈ F and yS 6= wS}.
If S ∈ G ∩ F , we define ỹS = yS−min{yS ,wS} and w̃S = wS −min{yS ,wS}.
This assures that min{ỹS ,w̃S} = 0 and max{ỹS ,w̃S} > 0 for all S ∈ G ∩ F .
To simplify notation, we define ỹS = yS for all S ∈ G \ F . Then, clearly,
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ỹS > 0 for all S ∈ G \ F . Also, for each i ∈ N , it holds that∑
S∈G,i∈S

ỹS −
∑

S∈G∩F ,i∈S

w̃S

=
∑

S∈G\F ,i∈S

ỹS +
∑

S∈G∩F ,i∈S

(ỹS − w̃S)

=
∑

S∈G\F ,i∈S

yS +
∑

S∈G∩F ,i∈S

(yS − wS)

=
∑

S⊆N,S /∈F ,i∈S

yS +
∑

S⊆N,S∈F ,i∈S

(yS − wS)

=
∑

S⊆N,i∈S

yS −
∑

S∈F ,i∈S

wS = 1.

This shows that the family of coalitions G ⊆ 2N is t-balanced with t-
balancing coefficients {ỹS | S ∈ G} and {w̃S | S ∈ G ∩ F}. Because
(N,F , v, a) is t-balanced (by assumption), it holds that

∑
S∈G ỹSv(S) −∑

S∈G∩F w̃Sa(S) ≤ v(N). From this we derive∑
S⊆N

ySv(S)−
∑
S∈F

wSa(S)

=
∑

S⊆N,S /∈F

ySv(S) +
∑

S∈G∩F
(ySv(S)− wSa(S)) +

∑
S∈F\G

(ySv(S)− wSa(S))

≤
∑

S⊆N,S /∈F

ySv(S) +
∑

S∈G∩F
(ySv(S)− wSa(S))

≤
∑

S⊆N,S /∈F

ySv(S) +
∑

S∈G∩F
(ySv(S)− wSa(S))

−
∑

S∈G∩F
min{yS ,wS} (v(S)− a(S))

=
∑

S∈G\F

ỹSv(S) +
∑

S∈G∩F
(ỹSv(S)− w̃Sa(S))

=
∑
S∈G

ỹSv(S)−
∑

S∈G∩F
w̃Sa(S) ≤ v(N),

12



where the first inequality follows from the fact that yS = wS and v(S) ≤
a(S) for all S ∈ F \ G, the second inequality follows from the fact that
min{yS ,wS} ≥ 0 and v(S) ≤ a(S) for all S ∈ G ∩ F , and the second equality
uses that yS = 0 if S /∈ F and S /∈ G, while ỹS = yS if S ∈ G \ F .

This shows that vP (v,a) ≤ v(N). 2

A game with limited aspirations (N,F , v, a) is t-balanced if and only if
its truncated core CT (v, a) is non-empty.

Proof. Necessity Let (N,F , v, a) ∈ GA such that CT (v, a) 6= ∅ and take
x ∈ CT (v, a). Let G be a t-balanced family of coalitions with t-balancing
coefficients {yS | S ∈ G} and {wS | S ∈ G ∩ F}. Then∑

S∈G
ySv(S)−

∑
S∈G∩F

wSa(S) ≤
∑
S∈G

ySx(S)−
∑

S∈G∩F
wSx(S)

=
∑
i∈N

xi

∑
S∈G,i∈S

yS

−
∑
i∈N

xi

∑
S∈G∩F ,i∈S

wS

 =
∑
i∈N

xi = v(N),

where the inequality and the last equality follow from the conditions for the
truncated core, and the second equality follows from the third condition for
the t-balancing coefficients. This shows that (N,F , v, a) is t-balanced.

Sufficiency Let (N,F , v, a) ∈ GA be t-balanced. By Lemma 3.1, this
implies that vP (v,a) = v(N). This, in turn, is equivalent to the statement
that the value of the dual program of P (v, a) equals v(N). This dual program
DP (v, a) is given by

minimize
∑

i∈N xi

subject to
∑

i∈S xi ≥ v(S), S ⊆ N,∑
i∈S xi ≤ a(S), S ∈ F .

Therefore, the statement vDP (v,a) = v(N) implies that there exists a x ∈ RN

such that x(S) ≥ v(S) for all S ⊆ N, x(S) ≤ a(S) for all S ∈ F , and
x(N) = v(N). Hence, CT (v, a) 6= ∅. 2

3.2 Cores and truncated cores

In this subsection we explore conditions under which the truncated core of
a game with limited aspirations is equal to its core. As CT (v, a) ⊆ C(v)
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for all games with limited aspirations (N,F , v, a), it follows trivially that
CT (v, a) = C(v) when C(v) = ∅. Hence, we can restrict our attention to
considering games for which the core is not empty and in the remainder of
this subsection we assume that the game with limited aspirations is balanced,
i.e. the game (N, v) is balanced.

3.2.1 A sufficient condition

A sufficient condition for the truncated core and the core of a game to
coincide is a(S) ≥ v(N)− v(N\S) for all S ∈ F .

Let (N,F , v, a) be a game with limited aspirations with the property
that a(S) ≥ v(N)− v(N\S) for all S ∈ F . Then CT (v, a) = C(v).

Proof. In light of CT (v, a) = {x ∈ C(v) | x(S) ≤ a(S) for all S ∈ F},
we only need to show that for every x ∈ C(v) it holds that x(S) ≤ a(S)
for all S ∈ F . Let x ∈ C(v) and S ∈ F . Then x(S) = x(N) − x(N\S) =
v(N)−x(N\S) ≤ v(N)− v(N\S) ≤ a(S), where the first inequality follows
from the fact that x ∈ C(v) and the last one follows from the condition in
the statement of the theorem. 2

The condition a(S) ≥ v(N) − v(N\S) for all S ∈ F that appears in
Theorem 3.2.1 is not necessary for CT (v, a) = C(v). This is illustrated in
the following example.

Consider a 3-player game with limited aspirations. N = {1, 2, 3}. Rev-
enues are given by v(S) = 1 if and only if both of the conditions S∩{2, 3} 6=
∅ and 1 ∈ S hold, and v(S) = 0 for other S ⊆ N . Aspirations are given
by a(S) = 1 if 1 ∈ S and a(S) = 0 if 1 /∈ S. For this game, the core has
exactly one element, namely x = (1, 0, 0), where player 1 (who is needed to
get any positive revenue at all) gets the revenue of the grand coalition. Note
that x ∈ CT (v, a) as well, because x(S) > 0 only if 1 ∈ S. This shows that
C(v) = CT (v, a). However, a(2, 3) = 0 < 1 = v(N)− v(1).

3.2.2 Necessary and sufficient conditions

In this subsection, we provide necessary and sufficient conditions for the
truncated core and the core of a game to coincide.
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First we show an intermediate result. Let (N, v) be a balanced game.
Define a game (N,wv) by wv(S) = minx∈C(v) x(S) for each S ⊆ N . Then
the core of the game (N,wv) coincides with that of the game (N, v).

Let (N,F , v, a) be a balanced game with limited aspirations. Then
C(v) = C(wv).

Proof. First we observe that wv(N) = minx∈C(v) x(N) = v(N), because
x(N) = v(N) for all x ∈ C(v).

Now, let x ∈ C(v). Then x(N) = v(N) = wv(N) and for all S ⊆ N it
holds that x(S) ≥ miny∈C(v) y(S) = wv(S). We conclude that x ∈ C(wv).
This proves that C(v) ⊆ C(wv).

To prove that C(wv) ⊆ C(v), let x ∈ C(wv). Then x(N) = wv(N) =
v(N). Also, for each S ⊆ N it holds that x(S) ≥ wv(S) = miny∈C(v) y(S) ≥
v(S), where the last inequality follows from the fact that y(S) ≥ v(S) for
all y ∈ C(v). We conclude that x ∈ C(v). 2

It is clear that we cannot increase the revenue of any coalition S above
wv(S) without losing the property reflected in the previous theorem. In
this sense, then, (N,wv) is the largest game that has the same core as the
game (N, v). The idea behind this result is that if we increase the revenues
of coalitions just up to the level where the core constraint for the coalition
would become binding for at least one core element, then we would not affect
the core.

This result inspires a constraint on aspirations that guarantees equality
between the core and the truncated core of a game.

Let (N,F , v, a) be a balanced game with limited aspirations. Then
CT (v, a) = C(v) if and only if the aspirations satisfy the property that
a(S) ≥ maxx∈C(v) x(S) for each S ∈ F .

Proof. We first prove the ’if’ part. Suppose that a(S) ≥ maxx∈C(v) x(S)
for each S ∈ F . In light of CT (v, a) = {x ∈ C(v) | x(S) ≤ a(S) for all S ∈
F}, we only need to show that for every x ∈ C(v) it holds that x(S) ≤ a(S)
for all S ∈ F . This, however, follows directly from a(S) ≥ maxx∈C(v) x(S)
for each S ∈ F .

We proceed with the proof of the ’only if’ part. Suppose that CT (v, a) =
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C(v). Let S ∈ F . Then for all x ∈ C(v) it holds that x ∈ CT (v, a) and
x(S) ≤ a(S). Hence, a(S) ≥ maxx∈C(v) x(S). 2

We can use the bounds on aspirations in the previous theorem to obtain
a result similar to that which we obtained in Theorem 3.2.2.

Take a balanced game with limited aspirations (N,F , v, a). Define a
game (N,F , v, av) by changing the aspirations to av(S) = maxx∈C(v) x(S)
for each S ∈ F .

Let (N,F , v, a) be a balanced game with limited aspirations. Then
CT (v, av) = C(v).

Proof. The result follows immediately by applying Theorem 3.2.2. 2

It follows from Theorem 3.2.2 that if CT (v, a) = C(v), then

a(S) ≥ max
x∈C(v)

x(S)

for each S ∈ F . Therefore, for a balanced game with limited aspirations
such that CT (v, a) = C(v), changing the aspirations from a to av represents
a (weak) lowering of the aspirations. It is clear that we cannot decrease
the aspiration of any coalition S ∈ F below av(S) without losing the prop-
erty reflected in the previous theorem. Example 3.2.1 demonstrates this, as
CT (v, a) would be empty in that example if we chose a(1) < 1. In this sense,
then, the aspirations av are the lowest aspirations that have no impact on
the core of the game (N, v). The idea behind this result is that if we add
aspirations of coalitions that are just low enough so that they are binding
for at least one core element, then we would not affect the core.

Stringing previous results together, we derive that CT (v, av) = C(v) ⊇
CT (v, a). It is possible that CT (v, av) 6= CT (v, a) when C(v) 6= CT (v, a)
which can only happen for a balanced game with limited aspirations (N,F , v, a)
for which the aspiration of one or more S ∈ F is too low, specifically
a(S) < maxx∈C(v) x(S).

The lowest aspirations that do not affect the truncated core are given by
bv,a(S) = min{a(S),maxx∈C(v) x(S)} = min{a(S), av(S)} for each S ∈ F .

Let (N,F , v, a) be a balanced game with limited aspirations. Then
CT (v, bv,a) = CT (v, a).
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Proof. Note that CT (v, a) = {x ∈ C(v) | x(S) ≤ a(S) for all S ∈ F}
and CT (v, bv,a) = {x ∈ C(v) | x(S) ≤ bv,a(S) for all S ∈ F}. Hence, we
only need to show that for every x ∈ C(v) it holds that x(S) ≤ a(S) for all
S ∈ F if and only if x(S) ≤ bv,a(S) for all S ∈ F .

The implication one way, if x(S) ≤ bv,a(S) then x(S) ≤ a(S), follows
immediately from bv,a(S) ≤ a(S) for each S ∈ F .

To prove the other implication, let x ∈ C(v) and S ∈ F and assume
that x(S) ≤ a(S). Then x(S) ≤ maxx∈C(v) x(S) and combining this with
x(S) ≤ a(S) leads to x(S) ≤ bv,a(S). 2

Note that for a balanced game with limited aspirations changing the
aspirations from a to bv,a represents a (weak) lowering of the aspirations. It
is clear that we cannot decrease the aspiration of any coalition S ∈ F below
bv,a(S) without losing the equality CT (v, bv,a) = CT (v, a).

3.3 Axiomatic characterization

In this subsection we provide an axiomatic characterization of the truncated
core. To this end, we introduce several properties of solutions on the class
of games with limited aspirations.

Formally, a solution on a set A of games with limited aspirations is
a correspondence f defined on A ⊂ GA that assigns to each game with
limited aspirations (N,F , v, a) ∈ A a set of payoff vectors f(v, a) ⊆ {x ∈
RN |

∑
i∈N xi ≤ v(N)}.11 The following properties of solutions for games

with limited aspirations are straightforward extensions of similar properties
of solutions for coalitional games. Let A ⊂ GA be a set of games with
limited aspirations and f a solution on A.

Non-Emptiness. For all (N,F , v, a) ∈ A it holds that f(v, a) 6= ∅.
Individual Rationality. For all (N,F , v, a) ∈ A it holds that f(v, a) ⊆

{x ∈ RN | xi ≥ v(i) for all i ∈ N and xi ≤ a(i) for all {i} ∈ F}.12

Superadditivity. For all (N,F , v1, a1) ∈ A and (N,F , v2, a2) ∈ A such
11When we want to stress the player set, we will use the notation f(N,F , v, a).
12We make the usual simplification to notation of denoting v(i) and a (i) instead of

v({i}) and a({i}).
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that (N,F , v1 + v2, a1 + a2) ∈ A, it holds that f(v1, a1) + f(v2, a2) ⊆ f(v1 +
v2, a1 + a2).13

We are also going to use consistency properties. To define those, we
need to define reduced games with limited aspirations. Let (N,F , v, a) be a
game with limited aspirations, let S ∈ 2N\{∅, N}, and let x ∈ RN be such
that x(N) ≤ v(N). The reduced game with limited aspirations with respect
to S and x is the game (S,FS , vS,x, aS) where FS = {T ⊆ S | T ∈ F},
aS(T ) = a(T ) for all T ∈ FS , and

vS,x(T ) =


0 if T = ∅,
v(N)− x(N\S) if T = S,
maxQ⊆N\S{v(T ∪Q)− x(Q)} if T ∈ 2S\{∅, S}.

Consistency. For all (N,F , v, a) ∈ A, S ∈ 2N\{∅, N}, and x ∈ f(N,F , v, a),
it holds that (S,FS , vS,x, aS) ∈ A and xS ∈ f(S,FS , vS,x, aS).14

Converse Consistency. Let (N,F , v, a) ∈ A and x ∈ RN such that
x(N) = v(N). If for all S ∈ 2N\{∅, N} it holds that (S,FS , vS,x, aS) ∈ A

and xS ∈ f(S,FS , vS,x, aS), then x ∈ f(N,F , v, a).
Let GAc = {(N,F , v, a) ∈ GA | CT (v, a) 6= ∅} be the set of t-balanced

games with limited aspirations.
The truncated core on GAc satisfies consistency.
Proof. Let (N,F , v, a) ∈ GAc, S ∈ 2N\{∅, N}, and x ∈ CT (v, a). As

the core satisifes consistency with respect to the reduced game vS,x,15 we
know that xS ∈ C(S, vS,x). Therefore, to prove that xS ∈ CT (vS,x, aS) and,
consequently, (S,FS , vS,x, aS) ∈ GAc, it suffices to prove that

∑
i∈T xi ≤

aS(T ) for all T ∈ FS . This follows straightforwardly from x ∈ CT (v, a) and
aS(T ) = a(T ). 2

The truncated core on GAc satisfies converse consistency.
Proof. Let (N,F , v, a) ∈ GAc and x ∈ RN with x(N) = v(N) such that

(S,FS , vS,x, aS) ∈ GAc and xS ∈ CT (S,FS , vS,x, aS) for all S ∈ 2N\{∅, N}.
As the core satisifes converse consistency with respect to the reduced games

13The sum of games is defined, as usual, on a per-coalition basis. The sum of aspirations
is defined likewise.

14As usual, xS denotes the projection of x on RS .
15See Lemma 2.11 in Peleg (1986).
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vS,x,16 we know that x ∈ C(N, v). Therefore, to prove that x ∈ CT (N,F , v, a),
it suffices to prove that x(S) ≤ a(S) for all S ∈ F . If S ∈ F , S 6= N ,
then this follows from xS ∈ CT (S,FS , vS,x, aS) and, consequently, x(S) ≤
aS(S) = a(S). If N ∈ F and S = N , then this follows from x(N) = v(N) ≤
a(N). 2

Peleg (1986) uses bilateral converse consistency in an axiomatic char-
acterization of the core. Bilateral converse consistency is stronger than
converse consistency as it stipulates that xS ∈ f(S,FS , vS,x, aS) only for
coalitions S with two players is sufficient to conclude that x ∈ f(N,F , v, a).
Such a property of bilateral converse consisteny is not satisfied by the trun-
cated core of games with limited aspirations. For example, consider the
game (N,F , v, a) ∈ GAc with N = {1, 2, 3, 4}, F = {{1, 2, 3}}, v(S) = 1
if | S |= 1, v(S) = 3 if | S |= 2, v(S) = 5 if | S |= 3, and v(N) = 12,
and a({1, 2, 3}) = 8. Taking x = (3, 3, 3, 3), it holds that x ∈ C(v) and
xS ∈ CT (vS,x, aS) for all S ⊂ N with | S |= 2. Nevertheless x 6 ∈CT (v, a).

Consistency can be used to provide an axiomatic characterization of the
truncated core.

The truncated core is the unique solution on GAc satisfying non-emptiness,
individual rationality, superadditivity, and consistency.

The proof of this theorem follows along the lines of the proof of Theorem
5.4 in Peleg (1986). We provide the proof of Theorem 3.3 in the appendix.
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Appendix

Theorem 3.3: The truncated core is the unique solution on GAc satisfying
non-emptiness, individual rationality, superadditivity, and consistency.

Proof of Theorem 3.3. It is straightforward to prove that the trun-
cated core satisfies individual rationality, superadditivity, and non-emptiness
on GAc, in addition to consistency. To show uniqueness, let f be a solution
on GAc that satisfies non-emptiness, individual rationality, superadditivity,
and consistency. The proof proceeds in two parts.

Part 1. We first show that f(v, a) ⊆ CT (v, a) for all (N,F , v, a) ∈ GAc.
We do this by induction on the number of players.

If |N | = 1, then f(v, a) ⊆ CT (v, a) by individual rationality of f .

20



Suppose |N | = 2. Let x ∈ f(v, a) and i ∈ N . By consistency it follows
that xi ∈ f({i},F{i}, v{i},x, a{i}). Together with individual rationality, this
implies that xi ≥ v{i},x(i) = v(N)−x(N\{i}) ≥ xi, where the last inequality
follows from x(N) ≤ v(N) (which holds because f is a solution). Hence, we
conclude that x(N) = v(N) has to hold. This and individual rationality give
us that xj ≥ v(j) for all j ∈ N , xj ≤ a(j) for all {j} ∈ F , and x(N) = v(N),
which is to say that x ∈ CT (v, a).

Now suppose that |N | > 2 and that f(v, a) ⊆ CT (v, a) for all games with
fewer players. If x ∈ f(N,F , v, a), then by consistency xS ∈ f(S,FS , vS,x, aS)
for all S ∈ 2N\{∅, N}. By the induction hypothesis, we then know that
xS ∈ CT (vS,x, aS) for all S ∈ 2N\{∅, N}. As the truncated core on GAc

satisfies converse consistency (see Lemma 3.3), we can conclude that x ∈
CT (N,F , v, a).

Part 2. We now show that CT (v, a) ⊆ f(v, a) for all (N,F , v, a) ∈ GAc.
Let (N,F , v, a) ∈ GAc. We distinguish three cases.

Case 1. |N | = 1. Suppose N = {i}. As f(N,F , v, a) ⊆ CT (N,F , v, a) =
{v(i)}, non-emptiness of f implies that v(i) ∈ f(N,F , v, a).

Case 2. |N | ≥ 3. Let x ∈ CT (v, a). We define a game (N,F , w, b) by
w({i}) = v({i}) for all i ∈ N , w(S) = x(S) if |S| > 1, and b(S) = a(S)
for all S ∈ F . Then, obvioulsy, CT (w, b) = {x}. By non-emptiness of f

and Part 1 of this proof, it then follows that f(w, b) = {x}. We define a
game (N,F , u, c) by u(S) = v(S)−w(S) for all S ∈ 2N and c(S) = 0 for all
S ∈ F . This implies that u({i}) = 0 for all i ∈ N , u(S) ≤ 0 for all S ∈ 2N ,
and u(N) = 0. Then CT (u, c) = {0} and by non-emptiness of f and Part
1 of this proof it follows that f(u, c) = {0}. Superadditivity of f now gives
us {x} = f(w, b) + f(u, c) ⊆ f(w + u, b + c) = f(v, a). This proves that
CT (v, a) ⊆ f(v, a).

Case 3. |N | = 2. Suppose N = {i, j}. Let k /∈ N and define M =
{i, j, k}. Define the game (M,G, u, b) as follows: u(S) = v(S ∩ N) if S ∈
2M\{M} and u(M) = v(N), G = F∪{{k}, {i, k}, {j, k},M}, b(S) = a(S) for
all S ∈ F , b({k}) = 0, b({i, k}) = a(i), b({j, k}) = a(j), and b(M) = v(N).
Let x = (xi, xj) ∈ CT (N,F , v, a). Then y = (xi, xj , 0) ∈ CT (M,G, u, b). As
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|M | = 3, we can apply the results we found in Case 2 and conclude that
y ∈ f(M,G, u, b). Also, (N,GN , uN,y, bN ) = (N,F , v, a). Consistency of f

then allows us to conclude that x = yN ∈ f(N,GN , uN,y, bN ) = f(N,F , v, a).
This proves that CT (v, a) ⊆ f(v, a). 2
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