A STUDY ON THE STRUCTURAL INTEGRITY OF HEALTHY AND DISEASED NAILS: THE RETENTION OF DISULPHIDE BONDS

A. BARALDI^{1,2}, S. MURDAN¹, S.A. JONES², M.J. TRAYNOR³ and M.B. BROWN^{3,4}

¹Department of Pharmaceutics, The School of Pharmacy, University of London, London, UK,

Onychomychosis is the most common disorder of the nail plate. *Trichophyton rubrum*, the organism most abundant during onychomychotic infections, is known to embed within the nail, produce keratinolytic proteinases¹ and change the visual characteristics of the local tissue, but there is not, at present, a clear understanding of how the infection impacts the nail integrity. The hard, yet slightly elastic structure of the nail plate is believed to be at least in part a consequence of extensive keratin disulphide links (-SS-). Breakage of disulphide bonds, consequently generating –SH groups, often result in a reduction in barrier function². The aim of this work was to characterize the -SS- bonds in healthy and onychomychotic nails and investigate the link between -SS- bonds and nail barrier integrity.

Raman infrared spectroscopy was used to characterise the -SS- and -SH bonds on the dorsal and ventral sides of 4 healthy fingernail clippings, 4 healthy toenail clippings and 4 diseased toenail clippings. Tris(2-carboxyethyl)phosphine (TCEP) was used as a positive control and nail barrier integrity was determined using rhodamine B and water as markers. The Raman spectra (Fig.1) showed that healthy nails have a high content of -SS- bonds, in agreement with previously published work³. Upon treatment with TCEP, nail -SS- bonds are reduced and -SH groups are formed as shown by the presence of the -SH band in the raman spectrum. Interestingly, the Raman spectra of diseased nails showed that the -SS-content remains high and comparable to that of healthy nails and no -SH groups are evident. Rhodamine B and water ingress (measured as nail swelling) into the nail were significantly lower in nails with a high proportion of

-SS- bonds (rhodamine penetration: $0.16 \pm 0.07 \,\mu\text{g/mg}$ and nail swelling: $15.21\pm1.54\%$ weight increase) than in nails containing a proportion of –SH (rhodamine penetration: $0.39 \pm 0.03 \,\mu\text{g/mg}$ and nail swelling: $277.02 \pm 29.75\%$ weight increase).

The data presented herein suggest that the human nail plate barrier properties are at least in part a function of –SS- bond integrity and that these bonds are retained in onychomycotic nails.

Acknowledgements

The authors would like to acknowledge BBSRC for financial support; Horiba Jobin Yvon Itd for Raman analyses and Dr Simon FitzGerald for his technical assistance and help in the Raman analyses.

References

- 1. Weitzman, I, Summerbell, R. C, The Dermatophytes, Clin. Microbiol. Rev, 8, 240-259 (1995).
- 2. Brown, M. B, Khengar, R. H, Turner, R. B, Forbes, B, Traynor, M. J, Evans, C. R. G, Jones, S. A, Overcoming the nail barrier: A systematic investigation of ungual chemical penetration enhancement, Int. J. Pharm, 370, 61-67 (2009).
- 3. Gniadecka, M, Nielsen, O. F, Christensen, D. H, Wulf, H. C, Structure of water, proteins, and lipids in intact human skin, hair, and nail, J.Invest. Dermatol,110, 393-398 (1998).

²Pharmaceutical Science Division, King's College London, Franklin-Wilkins Building, London, UK, ³School of Pharmacy, University of Hertfordshire, College Lane, Hatfield, Hertfordshire, UK and ⁴MedPharm Ltd, Surrey Research Park, Guildford, UK.