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Abstract

We extend the simple model of voluntary public good provision to
allow for two or more public goods, and explore the new possibilities
that arise in this setting. We show that, when there are many pub-
lic goods, voluntary contribution equilibrium typically generates, not
only too low a level of public good provision, but also the wrong mix of
public goods. We also analyse the neutrality property in the more gen-
eral setting, and extend a neutrality proposition of Bergstrom, Blume
and Varian (1986).
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1 Introduction

Economists’ intuitions concerning voluntary public good provision have come
mainly from analysis of the single public good model as set out, for example,
by Cornes and Sandler [3] and Bergstrom, Blume and Varian [1]. The neu-
trality property, and the circumstances required for it to hold, are now well
understood. In addition, the presumption of inefficiency of the voluntary
contribution mechanism is well established, as is its specific interpretation as
being the consequence of underprovision.
By contrast, there have been few explicit analyses of models with more

than one public good. Notable exceptions are Kemp [6], Bergstrom, Blume
and Varian [1] and Cornes and Schweinberger [4]. Kemp establishes a neutral-
ity proposition on the assumption that all players are positive contributors to
every public good. Bergstrom, Blume and Varian note that this assumption
is problematic. They establish equilibrium existence in the presence of many
public goods, and present a neutrality proposition. However, although they
allow for the presence of noncontributors, their neutrality proposition invokes
a rather restrictive assumption - one that can be relaxed, as we show below.
Cornes and Schweinberger simultaneously develop a number of extensions of
the basic model, making it a little difficult to pinpoint precisely what are the
implications of assuming many public goods.
There are good reasons for wanting to explore models two or more public

goods. There are many examples of several public goods being voluntarily
and simultaneously supplied in the real world. National governments simul-
taneously contribute to many domestic and international public goods, local
governments provide many local public goods, many individuals contribute
voluntarily to several charitable causes, and so on. If we take public goods
at all seriously, our models should be able to accommodate the possibility
of more than one. Furthermore, not only do answers to existing questions
change, but new questions arise as soon as a second public good is introduced.
In the standard model with a single public good, the possibility of corner

solutions at which individuals choose not to contribute must be taken seri-
ously. However, such a situation, though likely, is not generic. By contrast,
if there is more than one public good, individuals will certainly be at corner
solutions unless preferences are very special, even if the number of potential
contributors is small. The presence of two or more public goods generates
a second potential source of inefficiency associated with the voluntary con-
tribution model, conceptually distinct from the widely accepted tendency
towards underprovision. Not only will aggregate public good provision tend
to be ‘too low’, but the mix of public goods will generally be ‘wrong’. By
this we simply mean that, starting from a Nash equilibrium, it will generally
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be possible to find a Pareto superior allocation without increasing the ag-
gregate level of resources devoted to the provision of public goods above its
equilibrium level. Finally, in the unlikely event that preferences and incomes
conspire to generate an equilibrium at which all individuals are at interior so-
lutions, individual contribution levels are indeterminate. Consequently, there
is a coordination problem with respect to individual contribution levels.

2 Constrained Pareto Efficiency with Many
Public Goods and Individuals.

There are n players, a single private good, and m public goods. The prefer-
ences of individual i are represented by the utility function

ui = ui (ci,G) , i = 1, 2, ..., n,

where ci = 0 is individual i ’s consumption of the private good, and G is the
vector of total quantities of m public goods: G ≡ (G1, G2, ..., Gm) ∈ Rm+ .
ui (.) is strictly increasing in all arguments, strictly quasiconcave, and every-
where differentiable. All prices are unity, and an overall resource constraint
requires the value of the bundle of private and public goods not to exceed
some exogenously given level W :

nX
i=1

ci +
mX
j=1

Gj 5W.

2.1 Pareto efficiency

Consider the problem

Maximise
c∈Rn

+,G∈Rm
+

(X
i

ωiui (ci,G) |
nX
i=1

ci +
mX
j=1

Gj 5W
)
.

A Pareto efficient allocation satisfies the first-order conditions associated
with this problem for some strictly positive set of weights ω1, ...,ωn. We
confine attention to interior optima at which all private good consumption
quantities are strictly positive1. The Lagrangean for this problem is

L =
X
i

ωiui (ci,G)− λ

"
nX
i=1

ci +
mX
j=1

Gj −W
#
.

1Within the context of the model with a single public good, Campbell and Truchon [2]
discuss the implications of Pareto efficiency with zero private good consumption levels.
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The first-order conditions are

∂L

∂ci
= ωiuic − λ = 0,

∂L

∂Gj
=

nX
i=1

ωiuij − λ = 0,

∂L

∂λ
= W −

nX
i=1

ci −
mX
j=1

Gj = 0,

where uic ≡ ∂ui
∂ci
and uij ≡ ∂ui

∂Gj
. Eliminating the weights, we obtain a set of

Samuelson conditions, one for each public good:

nX
i=1

uij
uic

= 1, j = 1, ...,m.

Pareto efficiency requires the provision of each public good to be taken up
to the point at which the social benefit from a further increment equals the
social cost of that increment.

2.2 Constrained Pareto efficiency

In the economy with a single public good, comparison of Samuelson’s condi-
tion with the Nash equilibrium conditions tells us that, in general, too few
resources are devoted to public good provision at a voluntary contribution
equilibrium. This remains the case in the presence of two or more public
goods. However, we are interested in a further question: in the presence of
more than one public good, what can we say about themix of public goods?
We will argue that, in general, Nash equilibrium also implies an inappropriate
mix of public goods in the following sense. Starting from an equilibrium, it
is generally possible to reduce output of one public good and increase that of
another so as to generate a Pareto improvement, even without increasing the
aggregate level of resources devoted to public good production. To address
this issue, we introduce the notion of constrained Pareto efficiency.

Definition 1 The allocation (c0,G0)∈ Rn
+ ×Rm

+ is ‘constrained Pareto ef-
ficient’ if there does not exist another feasible allocation (c,G)∈ Rn

+ ×Rm
+

such that

mX
j=1

Gj =
mX
j=1

G0j
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and

ui (ci,G) = ui (c0i,G0)

with at least one strict inequality2.

To characterize constrained Pareto efficient allocations in terms of the
associated first-order conditions, we consider allocations consistent with the
requirement that

mX
j=1

Gj = K,

where K is some exogenously fixed parameter. Within the set of feasible
allocations in which the total amount of public good provision is constrained
to equal K, a constrained Pareto efficient allocation satisfies the first-order
conditions associated with the problem

Maximise
c∈Rn

+,G∈Rm
+

(
nX
i=1

ωiui (ci,G) |
mX
j=1

Gj = K,
nX
i=1

ci =W −K
)
.

The Lagrangean expression is

L(.) =
nX
i=1

ωiui (ci,G)− λ

"
mX
j=1

Gj −K
#
− µ

"
nX
i=1

ci −W +K

#
. (1)

Setting the relevant partial derivatives equal to zero, we obtain

ωiuic − µ = 0, i = 1, ..., n,
nX
i=1

ωiuij − λ = 0, j = 1, ...,m,

=⇒
nX
i

uij
uic

=
nX
i

uik
uic

=
λ

µ
, j, k = 1, ...,m; j 6= k. (2)

Proposition 1 Consider an economy with n individuals, m public goods and
a single private good. Assume that all utility functions are everywhere strictly
quasiconcave, strictly increasing and differentiable. Then, among allocations
in which every individual consumes a strictly positive quantity of the private
good, a necessary condition for constrained Pareto efficiency is that

nX
i

uij
uic

=
nX
i

uik
uic
, j, k = 1, ...,m; j 6= k.

2The constraint on public goods is an equal value constraint. If the cost of a unit of
public good j were pj , the constraint would read

Pm
j=1 pjGj =

Pm
j=1 pjG

0
j.
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Constrained Pareto efficiency is consistent with the aggregate level of
resources to public good provision being ‘too high’

³
λ
µ
< 1

´
or ‘too low’³

λ
µ
> 1

´
, but insists that, whatever that level is, the sum of marginal benefits

must be equal across all public goods. If this is not the case, it is possible to
obtain a Pareto improvement at an unchanged value of

Pm
j=1Gj.

Changing the public good mix alone is not by itself sufficient to realize
Pareto improvement. It has to be accompanied by a redistribution of private
good consumption. The possibility of such Pareto improvement, and the
nature of the perturbation required to achieve it, may be clarified by using
a theorem of the alternative. Mangasarian [7] provides a good exposition of
such theorems. Kanbur and Myles [5] provide an economic application, and
Myles [8] discusses their application to various economic problems. Starting
from an arbitrary initial allocation, consider the effect on individuals’ utility
levels of a small perturbation:


du1
du2
...
dun

 =


u1c 0 · · · 0 u11 · · · u1m
0 u2c · · · 0 u21 · · · u2m
...

...
. . .

...
...

. . .
...

0 0 · · · unc un1 · · · unm





dc1
...
dcn
dG1
...

dGm


.

We want to restrict attention to allocations in which the total amount of
public good provision is unchanged. Thus we require that

mX
j=1

dGj = 0.

In view of the overall resource constraint, we also require that

nX
i=1

dci = 0.

Equations may be written in matrix form as

du = Adq,

Bdq = 0,

and Cdq = 0,
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where

duT ≡ (du1, du2, ..., dun) ,

dqT ≡ (dc1, ..., dcn, dG1, ..., dGm) ,

A ≡


u1c 0 · · · 0 u11 · · · u1m
0 u2c · · · 0 u21 · · · u2m
...

...
. . .

...
...

. . .
...

0 0 · · · unc un1 · · · unm

 ,
B ≡ (1, 1, ..., 1, 0, 0, ..., 0) ,

C ≡ (0, 0, ..., 0, 1, 1, ..., 1) ,

where the (n+m)-vector B contains n ‘1’s and m ‘zeroes’, and the (n+m)-
vector C contains n ‘zeroes’ and m ‘1’s. Consider the following question.
Starting from a Nash equilibrium, is there a perturbation that satisfies the
required restrictions and permits a Pareto improvement? This is equivalent
to the following question. Does there exist a vector dq such that

du = Adq > 0,Bdq = 0 and Cdq = 0?

An answer to this question can be found by exploiting the following theorem
of the alternative:

Theorem 1 For three matricesA, B andC with the same number of columns,
exactly one of the following holds:

(i) there exists a vector x such that Ax ≥ 0,Bx = 0,Cx = 0, or
(ii) there exist three vectors y1, y2 and y3 such that ATy1+B

Ty2+C
Ty3 =

0, y1 > 0, y2 ≥ 0 and y3 ≥ 0.

The theorem implies that either there is a Pareto-improving perturbation
[case (i)], or there is a set of strictly positive welfare weights on the house-
holds for which the allocation satisfies the first-order necessary conditions for
maximizing the weighted sum of utilities [case (ii)]. In the latter case, the
vectors y2 and y3 correspond to the Lagrangian multipliers associated with
the constraints that restrict admissible perturbations.
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To see this, note that the first-order conditions associated with (1) may
be written in the form

u1c 0 · · · 0
0 u2c · · · 0
...

...
. . .

...
0 0 · · · unc
u11 u12 · · · u1n
...

...
. . .

...
um1 um2 · · · umn




ω1
ω2
...
ωn

+


1
...
1
0
...
0


µ+



0
...
0
1
...
1


λ = 0.

This condition, which characterizes a Pareto efficient allocation, precisely
corresponds to case (ii) of the theorem, thus leading to equation (2). Hence, if
it is not satisfied, we can be sure that there is a feasible Pareto improvement.
To highlight graphically our general statement, consider an example with

two individuals and two public goods. In this case, we have

du1 = u1cdc1 + u11dG1 + u12dG2,

du2 = u2cdc2 + u21dG1 + u22dG2,

dc1 + dc2 = 0,

dG1 + dG2 = 0.

Now consider perturbations consistent with du1 = 0. Substitution and a
little rearrangement yields·

dc1
dG1

¸
du1=0

=
u12
u1c
− u11
u1c
. (3)

Similarly, ·
dc1
dG1

¸
du2=0

=
u21
u2c
− u22
u2c
. (4)

Pareto improvement is possible if and only if, in the neighborhood of the
initial allocation, ·

dc1
dG1

¸
du1=0

6=
·
dc1
dG1

¸
du2=0

. (5)

Using (5) and rearranging, Pareto improvement is possible if and only if

u11
u1c

+
u21
u2c

6= u12
u1c

+
u22
u2c
,
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dG1

dc1 du = 01 

du > 02 

du > 01 

du = 02 

dG1

dc1

du = 01 

du > 02 

du > 01 

dG1

dc1 du = 01 

du > 02 

du > 01 

du = 02 

du = 02 

(a)

(b)

(c)

Figure 1:

-that is, if and only if (2) is violated.
Figure 1 shows three possible situations3. In Panels (a) and (c), inequality

(5) is satisfied.
In the situation depicted by Panel (a), it is possible to make both indi-

viduals better off by an increase in G1 accompanied by an increase in c1. By
itself, an increase in G1 helps individual 1 and hurts 2. A transfer of private
good consumption is necessary, and also sufficient, to compensate individual
2 for her utility reduction while allowing individual 1 to enjoy at least her

3Figure 1 does not exhaust all possible ways of drawing the diagram. The lines that
correspond to zero utility change for one or other of the individuals may be downward-
sloping. However, this does not affect our principal conclusions.
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initial utility level. In the situation depicted by Panel (c), a reduction in G1
helps individual 2 but hurts 1. In this case, it must be accompanied by a
transfer of private consumption from individual 2 to 1 in order to generate
a Pareto improvement. Finally, Panel (b) depicts a situation in which no
Pareto improvement is possible, which corresponds to case (ii) of theorem 1.
We will argue below that one cannot generally expect the situation depicted
in Panel (b) to arise at a Nash equilibrium - though possible, it is most un-
likely. In general, a reallocation of expenditure between the public goods,
accompanied by an appropriate redistribution of the resources available for
private consumption, is sufficient to permit a Pareto improving perturbation
from an existing equilibrium allocation.

3 Equilibrium and Efficiency in a 2×2Model
3.1 The model

This section works through a specific example to show that, in a perfectly
standard setting, one cannot generally expect a Nash equilibrium to be con-
strained Pareto efficient. There are two individuals and two public goods,
for which reason we will call this the 2× 2 model. Preferences of individual
i are represented by the Cobb-Douglas utility function

ui (ci,X, Y ) = ciX
αiY βi , (6)

where ci is a private good, X and Y are the total quantities of two public
goods, and αi, βi > 0 . Note that, as the value of any quantity approaches
zero, the associated marginal utility approaches infinity. This ensures that,
at any equilibrium, all private good quantities and total public good pro-
vision levels are strictly positive. Furthermore, at such an allocation, the
marginal utility of each good is strictly positive. In particular, we can be
sure that, at equilibrium, ci > 0 for all i and that, in the neighborhood
of an equilibrium, utility functions are strictly increasing in all arguments.
They are also strictly quasiconcave, and everywhere continuously differen-
tiable. Finally, Cobb-Douglas utility functions are weakly separable. As a
consequence, individual i ’s indifference map in (X,Y ) space can be drawn
independently of the precise realized value of ci and is homothetic. These
features greatly simplify subsequent discussion without making preferences
unusual or idiosyncratic in any relevant respect. We claim that the conclu-
sions that we draw from this example are generic.
We assume throughout that the prices of all goods are unity. Individual

10



i0s budget constraint is

ci + xi + yi = wi, (7)

where xi and yi are, respectively, individual i ’s contributions to X and Y ,
and wi is her exogenous income.
The assumption of separability that is reflected in (6) implies that each

individual’s preferences over X and Y can be defined, and the associated
indifference map drawn, independently of the precise value of private good
consumption. Homotheticity of the subutility function in (X,Y ) space im-
plies that, for each individual, the locus of points at which the marginal rate
of substitution between X and Y equals their relative price of unity is a
straight line through the origin. In general, the two individuals’ expansion
paths in (X,Y ) space will have different slopes4. The separability and ho-
motheticity that are built into our example imply that each individual i ’s
most preferred ratio, (Y/X)∗i , at the given prices is unique. We will call
this ratio individual i ’s “ideal ratio.” Since the two individuals consume the
same quantities of the two public goods, it follows that at any allocation
and, a fortiori, at any Nash equilibrium, their marginal rates of substitution
between X and Y must differ if α1/β1 6= α2/β2. Panel (a) of Figure 2 shows
a situation in which α1/β1 > α2/β2, and in Panel (b) α1/β1 = α2/β2. If one
were to imagine the parameters αi and βi being randomly drawn from a con-
tinuum set of those parameters, we would not typically expect the situation
depicted in Panel (b) to arise - that is to say, it is non-generic. Situation (a)
therefore seems empirically the more plausible one to consider.

3.2 Equilibrium when α1
β1
= α2

β2

If α1
β1
= α2

β2
, then the two individuals share a common ideal ratio at the ex-

isting prices. The equilibrium ratio of total public good levels must then
equal the common ideal ratio. Suppose this were not the case - for example,
suppose that Y N

XN >
¡
Y
X

¢∗
1
=
¡
Y
X

¢∗
2
. Consequently, at the prevailing equilib-

rium, at least one of the individuals, say i, must be choosing contributions
such that yi

xi
>
¡
Y
X

¢∗
1
. This cannot be a Nash equilibrium, since given the

prevailing contribution of the other, individual i can do better by consuming
an unchanged level of ci, while also contributing less to Y and more to X.
It immediately follows that, if α1

β1
= α2

β2
, the individuals will have the same

4These assumptions rule out the possibility that the two individuals’ expansion paths
intersect each other. Consequently, the results we obtain here will be valid over the whole
(X,Y ) space.
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X

Y (Y/X)2
*

(Y/X)1
*

i1

i2

(a)

X

Y
(Y/X)  = 1

* (Y/X)2
*

i1

i2

(b)

Figure 2:
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marginal rates of substitution at equilibrium:

∂u1/∂X

∂u1/∂c1
=

∂u1/∂Y

∂u1/∂c1
= 1 =

∂u2/∂X

∂u2/∂c2
=

∂u2/∂Y

∂u2/∂c2

=⇒ ∂u1/∂X

∂u1/∂c1
+

∂u2/∂X

∂u2/∂c2
=

∂u1/∂Y

∂u1/∂c1
+

∂u2/∂Y

∂u2/∂c2
.

The first-order condition for constrained Pareto efficiency, (2), is satisfied. A
notable feature of this situation is that, even though the equilibrium levels of
X and Y may be uniquely determined, individual contributions are indeter-
minate, so that the individuals face a coordination problem with respect to
their individual contribution levels. If (x∗1, x

∗
2, y

∗
1, y

∗
2) is an equilibrium vec-

tor of contributions, so too is any vector (x∗1 +∆, x∗2 −∆, y∗1 −∆, y∗2 +∆) ,
where ∆ may take any positive or negative value consistent with both in-
dividuals’ budget constraints being satisfied and contribution levels being
nonnegative.
Although such an equilibrium is constrained Pareto efficient, it is unlikely

to arise for the reason we have given. The probability that α1
β1
= α2

β2
can

plausibly be argued to be zero. We therefore turn to what we regard as the
more likely situation in which α1

β1
6= α2

β2
.Without loss of generality, we focus

on the situation in which α1
β1
> α2

β2
and therefore

¡
Y
X

¢∗
1
<
¡
Y
X

¢∗
2
.

3.3 Equilibrium when α1
β1
> α2

β2

If α1
β1
> α2

β2
, then

¡
Y
X

¢∗
2
>
¡
Y
X

¢∗
1
. No allocation, and therefore no equilib-

rium allocation, equates the marginal rates of substitution across individuals.
Moreover, a Nash equilibrium can never imply equilibrium values ofX and Y
outside the cone spanned by the lines

¡
Y
X

¢∗
2
and

¡
Y
X

¢∗
1
in Figure 2(a). Denote

the Nash equilibrium quantities by XN and Y N . For the moment, we leave
to one side the precise location of the Nash equilibrium. Our argument to
this point implies that there are three possibilities to consider:

1. Y N/XN =
¡
Y
X

¢∗
1
,

2.
¡
Y
X

¢∗
1
< Y N/XN <

¡
Y
X

¢∗
2
,

3. Y N/XN =
¡
Y
X

¢∗
2
.

Consider each of these in turn:
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Case 1: Y N/XN =
¡
Y
X

¢∗
1
: If the prevailing equilibrium ratio equals indi-

vidual 1’s ideal ratio, then at that allocation ∂u1/∂Y
∂u1/∂X

= 1. This is
consistent with individual 1 contributing to both public goods. How-
ever, ∂u2/∂Y

∂u2/∂X
> 1, which implies that individual 2 certainly does not

contribute to X. At most, he contributes to Y alone. Thus, in the
present case we can conclude that either individual 1 contributes to
both goods and individual 1 to Y alone, or individual 1 contributes to
both goods and individual 2 to neither.

Now consider the second possibility:

Case 2:
¡
Y
X

¢∗
2
> Y N/XN >

¡
Y
X

¢∗
1
: If the equilibrium allocation lies strictly

between the two individuals’ ideal ratios, then we must have ∂u2/∂Y
∂u2/∂X

>

1 > ∂u1/∂Y
∂u1/∂X

. Individual 1 contributes only to X, and individual 2
contributes only to Y .

Case 3: Y N/XN =
¡
Y
X

¢∗
2
: Analysis of case 3 follows the same lines as that

of Case 1.

We need to be more explicit about the precise location of the Nash equi-
librium. To do so, we consider a numerical example.

Example 1 The individuals’ preferences are represented by the Cobb-Douglas
utility functions:

u1 = c1X
2Y,

u2 = c2XY
2.

Aggregate income in the economy is unity:

w1 + w2 = 1.

Tedious but elementary manipulations reveal that, depending on the pre-
cise initial distribution of the aggregate income, Nash equilibrium may fall
into any one of 5 regimes, according to the pattern of individual contribu-
tions. The following table summarizes the regimes:

Regime xN1 yN1 xN2 yN2
I w1 5 1

9
0 0 w2

4
w2
2

II 1
9
< w1 5 1

3
(8w1−w2)

9
0 3w2−6w1

9
4(w1+w2)

9

III 1
3
< w1 5 2

3
2w1
3

0 0 2w2
3

IV 2
3
< w1 5 8

9
4(w1+w2)

9
3w1−6w2

9
0 (8w2−w1)

9

V w1 >
8
9

w1
2

w1
4

0 0

14



1/9 1/3 2/3 8/9

0.2

0.5

0.1

0.3

0.4

0.6

0.7

0.8

w  = 1  w2 1−w1

0 1

X , Y , X  + YN N N N

X  + YN N

YN

XN

Figure 3:

Table 1.
A significant feature of the table is the following: in Regimes II and IV,

the aggregate quantities of the two public goods depend only on aggregate
income, not on its precise distribution:

1

9
< w1 5

1

3
=⇒ XN =

2 (w1 + w2)

9
, Y N =

4 (w1 + w2)

9
,

2

3
< w1 5

1

9
=⇒ XN =

4 (w1 + w2)

9
, Y N =

2 (w1 + w2)

9
.

Figure 3 illustrates the behavior of equilibrium provision of the public goods
as the income distribution varies.
It may be confirmed that

1

9
< w1 5

1

3
=⇒ u2X

u2c
=
c2
X
= 1 >

1

4
=
c1
Y
=
u1Y
u1c
.

Similarly,

2

3
< w1 5

8

9
=⇒ u2X

u2c
=
c2
X
=
1

4
< 1 =

c1
Y
=
u1Y
u1c
.

Thus income distributions within these ranges certainly do not generate con-
strained Pareto efficient equilibria. In fact, in this example there are just
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three constrained Pareto efficient equilibrium allocations. Two occur at ex-
treme distributions: w1 = 0, w2 = 1 and w1 = 1, w2 = 0. These are con-
strained Pareto efficient for a familiar reason: if one individual enjoys all
the income, there is no way to compensate her for any perturbation away
from her preferred public good mix, since the other individual’s endowment
is zero. The third possibility is more interesting, and arises when the initial
distribution is equal: w1 = w2 = 1/2.
The source of the constrained inefficiency is readily explained. Suppose

that, in our numerical example, w1 = 2/3 and w2 = 1/3. Recall that the
constrained Pareto efficiency requirement is

∂u1/∂X

∂u1/∂c1
+

∂u2/∂X

∂u2/∂c2
=

∂u1/∂Y

∂u1/∂c1
+

∂u2/∂Y

∂u2/∂c2
.

At the Nash equilibrium associated with the chosen income distribution, we
know that ∂u1/∂X

∂u1/∂c1
= ∂u1/∂Y

∂u1/∂c1
= ∂u2/∂Y

∂u2/∂c2
= 1. Thus constrained efficiency

requires that

∂u2/∂X

∂u2/∂c2
= 1.

However, this cannot be the case at this allocation, which implies a ratio
X/Y that is far from individual 2’s ideal ratio. Intuitively, a reduction in X
, accompanied by an increase in Y such that X + Y is constant, has only a
second-order adverse effect on individual 1’s utility. However, it has a first-
order beneficial effect on individual 2’s utility. There is a transfer of private
good consumption from individual 2 to 1 which, if it were to accompany the
substitution of Y for X, would enable both to be better off than at the initial
equilibrium.
Starting at (w1, w2) = (2/3, 1/3), consider the path traced out by the re-

sulting equilibria as individual 1’s initial income falls and that of individual 2
rises. The associated equilibrium involves lessX and more Y , whileX+Y re-
mains constant (until we reach the point where (w1, w2) = (1/3, 2/3)). As we
move along the path traced out by the resulting equilibria, it remains the case
that ∂u1/∂X

∂u1/∂c1
= ∂u2/∂Y

∂u2/∂c2
= 1. However, ∂u1/∂Y

∂u1/∂c1
falls and ∂u2/∂X

∂u2/∂c2
rises. Thus there

is one, and only one, Nash equilibrium on the path that is constrained Pareto
efficient. This is the symmetric allocation at which (X,Y ) = (1/3, 1/3),
achieved from an initial income distribution of (w1, w2) = (1/2, 1/2).
We can summarize the conclusions of this section in the following remarks:

Remark 1 In the 2-individual Cobb-Douglas example, if α1
β1
6= α2

β2
, then the

individuals’ ideal ratios of public goods must differ, and there is no Nash
equilibrium at which both individuals contribute to both public goods.
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Remark 2 In the 2-individual Cobb-Douglas example, if α1
β1
6= α2

β2
, then there

is only one interior initial income distribution5 for which the associated Nash
equilibrium is constrained Pareto efficient.

4 Equilibrium and Neutrality in a 2×2Model
We turn now to the matter of neutrality. Figure 3 shows two shaded regions,
corresponding to regimes II and IV, in which income transfers do not affect
the real equilibrium. This neutrality property does not depend on the Cobb-
Douglas for its validity, and may be demonstrated using the line of argument
employed in Cornes and Sandler [3].
Note that in Regime II both individuals make positive contributions to

public good X - we will say that, in that regime, they “share an interest” in
X. Slightly more formally, and more generally,

Definition 2 Individuals i and j share an interest in public good k at an
allocation if, at that allocation, both individuals’ marginal rates of substitution
between that public good and the private good equal the relative price, pk/pc,
where pk represents the price of public good k.

Similarly, in Regime IV they share an interest in Y . Suppose that the
initial income distribution places the individuals somewhere in Regime II.
Now transfer an amount ∆ from individual 1 and give it to individual 2.
Denote the initial equilibrium allocation by the quantities¡

c01, c
0
2, x

0
1, x

0
2, y

0
1, y

0
2

¢
where, by assumption, y01 = 0. Such an allocation implies satisfaction of both
individuals’ budget constraints with equality:

c0i + x
0
i + y

0
i = wi, i = 1, 2.

After the transfer, consider the following allocation:¡
c01, c

0
2, x

0
1 −∆, x02 +∆, y01, y

0
2

¢
.

If∆ 5 x01, such an allocation is feasible, and satisfies both individuals’ budget
constraints with equality:

c01 +
¡
x01 −∆

¢
+ y01 = w1 −∆,

c02 +
¡
x02 +∆

¢
+ y02 = w2 +∆.

5By an ‘interior income distribution’, we mean one which gives both individuals strictly
positive initial incomes.
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Moreover, each individual is still enjoying the same real consumption bun-
dle, since neither of the private consumption levels changed, nor have either
of the total provision levels of the public goods. Since relative costs are,
by assumption, constant, this allocation remains a Nash equilibrium. The
inequality ∆ 5 x01 ensures that the new allocation remains within Regime II.
Thus, although in general we cannot have both individuals contributing

to both goods, the following proposition establishes the continued relevance
of the neutrality proposition:

Proposition 2 In the 2× 2 model, a shared interest in just one public good
is sufficient to generate neutrality.

In Regime II, the two individuals are linked by their common interest in
X, and in Regime IV by their common interest in Y.

5 Constrained Pareto Efficiency and Neutral-
ity in a 2× 3 Model

Allowing a third individual not only enables us to check the robustness of the
constrained Pareto efficiency and neutrality properties of the two-individual
game, but also uncovers an additional possibility, that of ‘partial neutrality’.
We continue to assume that there are two public goods, but we add one more
individual. We call this the 2 × 3 model. Assume that the individuals can
be strictly ranked according to their ideal ratios at the prevailing prices:µ

Y

X

¶∗
1

>

µ
Y

X

¶∗
2

>

µ
Y

X

¶∗
3

.

Again, a specific Cobb-Douglas example enables us to locate various
regimes, distinguished by the patterns of positive and zero contributions.
Let the three individuals have the following preferences:

u1 = c1X
3Y,

u2 = c2X
2Y 2,

u3 = c3XY
3.

We continue to suppose that the total income of the group is unity, and that
unit prices are all unity. Figure 4 depicts all possible income distributions
with the help of the 2-dimensional simplex - see the inset for clarification of
our convention for depicting initial incomes.
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Each point in the simplex represents an income distribution, the individ-
uals’ incomes being the lengths of that point’s perpendiculars to the three
sides. Some tedious calculations allow us to identify the 17 regimes that exist
in this example. Figure 4 shows the 17 regimes. In each, the listed variables
xi, yi are the contribution levels that are positive in that regime. The equa-
tions are those of the boundaries between the regimes. Figure 5 reproduces
the regimes and introduces our labelling conventions. The shading will be
explained below.

5.1 Pareto (In)efficiency in a 2× 3 model
Continuing with our 3-individual example, we now show that the set of initial
income distributions that lead to constrained Pareto efficient equilibria is the
set represented by (i) all the points within regime C, (ii) those points within
Regime A at which w1 = w3, and (iii) those points within regime O at which
w1 = w3.
First, consider Regime C. Within this regime, we know that the following

conditions hold:

∂u1/∂X

∂u1/∂c1
=

∂u2/∂X

∂u2/∂c2
=

∂u2/∂Y

∂u2/∂c2
=

∂u3/∂Y

∂u3/∂c3
= 1. (8)
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We also know that

3c1 = x1 + x2 = X,
2c2 = x1 + x2 = X,
2c2 = y2 + y3 = Y,
3c3 = y2 + y3 = Y,

x3 = 0,
y1 = 0.

(9)

Constrained Pareto efficiency requires that

∂u1/∂X

∂u1/∂c1
+

∂u2/∂X

∂u2/∂c2
+

∂u3/∂X

∂u3/∂c3
=

∂u1/∂Y

∂u1/∂c1
+

∂u2/∂Y

∂u2/∂c2
+

∂u3/∂Y

∂u3/∂c3

or, in view of (8),

∂u3/∂X

∂u3/∂c3
=

∂u1/∂Y

∂u1/∂c1
.

Differentiating the utility functions, this requires that

c3
X
=
c1
Y
,

which is clearly implied by (9) . Thus, all allocations in Regime C are con-
strained Pareto efficient.
Now consider Regime A. The pattern of positive contributions implies

that, at any allocation in A,

∂u2/∂X
∂u2/∂c2

= 1,
∂u2/∂Y
∂u2/∂c2

= 1,

2c2 = x2 = X = 2w2
5
,

2c2 = y2 = Y =
2w2
5
,

x1 = 0,
x3 = 0,
y1 = 0,
y3 = 0,
c1 = w1,
c3 = w3.

(10)

Differentiating the utility functions, the requirement for constrained Pareto
efficiency becomes

3c1
X
+
c3
X
=
c1
Y
+
3c3
Y
.
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Substituting from the system (10), constrained Pareto efficiency requires that

3w1
2w2/5

+
w3
2w2/5

=
w1
2w2/5

+
3w3
2w2/5

,

which in turn requires that

w1 = w3.

A careful auditing of each regime reveals that only those income distributions
in C, together with all other income distributions in which w1 = w3, yield
constrained Pareto efficient equilibrium outcomes.

5.2 Neutrality in a 2×3 model
Consider first Regime C. Here individuals 1 and 2 share an interest in X, and
individuals 2 and 3 share an interest in Y. Our earlier reasoning can be used to
show that the Cobb-Douglas assumption may be dropped without damaging
the neutrality property. Start from any income distribution consistent with
Regime C. Then that remains an equilibrium after any set of transfers that
keeps the distribution within Regime C. The same observation holds for any
pair of income distributions that lie within Regime J, and for any pair within
K.
Now consider Regimes B, G and I. Within each of these, individuals 1 and

2 share an interest in either X or Y. However, individuals 2 and 3 have no
shared interest. Within each of these Regimes, there is a ‘partial neutrality’
property. Suppose we start at an equilibrium within Regime B. After any
transfer between the two individuals with a shared interest that remains
within Regime B, that allocation remains an equilibrium. However, any net
transfer between individual 3 and either of the other individuals will lead to
a different equilibrium. The income transfer must be in the direction of the
hatching if it is to produce an unchanged equilibrium. Again, both the initial
and the final income distributions must lie within the same Regime. A shift
from a point in B to a point in G will not lead to neutrality.
In the same way, areas D, F and L represent regimes within which there

is partial neutrality with respect to transfers between individuals 2 and 3,
but not involving individual 1. Finally, areas N and P represent regimes for
which there is partial neutrality between individuals 1 and 3.

6 Extending to an n×m Model

Although our exposition has relied on specific examples, we claim that the
major qualitative conclusions that we have drawn hold generally. The main
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role of our restrictions on preferences is to limit the number of possible
regimes - that is, patterns of positive contributions across individuals - and to
facilitate the computation of these regimes from knowledge of the preferences
and endowments.
For example, relaxation of homotheticity immediately destroys our ability

to rank individuals globally according to their ideal ratios. The situation is
analogous to factor intensity rankings of industries in international trade
theory. Our 2× 2 example has 5 possible regimes. More general preferences
would permit four additional possibilities. In one, individual 1 contributes
to both goods and individual 2 to X alone. In another, both contribute to
both goods. In the third, individual contributes to both and individual 1 to
Y alone. Finally, it is possible that individual 1 contributes solely to Y and
individual 2 solely to X.
There seems little to be gained by exploring these complications further.

It is sufficient to observe that allowing for more general preferences greatly
complicates the mapping from sets of initial income distributions to regimes.
More significant is the observation that, at any observed equilibrium, we
know the pattern of observed contributions. We know that if individual i
is contributing to public good j, then ∂ui/∂Gj

∂ui/∂ci
= 1. On the other hand, if

individual i is not contributing to good k then, in general, ∂ui/∂Gk
∂ui/∂ci

< 16.
We have already introduced the idea of two individuals sharing an interest

in a public good. We now introduce the idea of individuals being linked.

Definition 3 Individuals h and h+k are linked at an equilibrium if there is a
set of public goods [ labelled G1, G2, ..., Gk ] and a set of individuals [labelled
h, h+1, ...,h+k] such that, at that equilibrium,

• Individual h shares an interest with individual h+1 in public good G1,
• Individual h+1 shares an interest with individual h+2 in public good
G2,

• ...,
• Individual h+k-1 shares an interest with individual h+k in public good
Gk.

6There is, of course, the possibility that an individual is ‘on the margin’, contributing
nothing because, at the existing allocation, her appropriate marginal valuation precisely
equals the public good’s unit cost when her contribution is zero. This implies that the
allocation is on the boundary between two regimes, a possibility that we henceforth ignore
on the grounds that it is a zero probability event.
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Clearly, if individuals h and h+k are linked, so too are any two individuals
who belong to the chain that links them. Now consider a Nash equilibrium
in an economy consisting of many individuals, a single private good, and
many public goods. Suppose that individuals h and h+ k are linked. There
is no loss of generality in supposing that they are linked through individuals
h+1, h+2, ..., h+ k− 1, and by public goods 1, 2, ..., k. We therefore have
the following chain of relationships consisting of their budget constraints at
equilibrium:

c0h + g
0
h1 = wh,

c0h+j + g
0
h+j j + g

0
h+j j+1 = wh+j j = 1, 2, ..., k − 1,

c0h+k + g
0
h+k k = wh+k,

where g0h+j j stands for individual h + j’s contribution to public good j at
the initial equilibrium, and we assume that all the individual contribution
levels are strictly positive. Now suppose that there is a redistribution of
income from individual h to individual h+ k, so that their incomes become
wh−∆ and wh+k+∆ respectively. Now consider the allocation, in which the
quantities are indicated by the superscript 1, characterized by the following:¡

c1h , g
1
h 1

¢
=
¡
c0h , g

0
h 1 −∆

¢
,

¡
c1h+j, g

1
h+j j, g

1
h+j j+1

¢
=
¡
c0h+j, g

0
h+j j +∆, g0h+j j+1 −∆

¢
j = 1, 2, ..., k − 1,

¡
c1h+k, g

1
h+k k

¢
=
¡
c0h+k, g

0
h+k k +∆

¢
.

If ∆ ≤ min
©
g0h 1, g

0
h+1 2, ..., g

0
h+k−1 k

ª
, the new allocation is feasible in the

sense that the budget constraint of every individual remains satisfied with
equality. Since each of the individuals involved is enjoying an unchanged
consumption of the private good (i.e. c0i = c

1
i , i = h, h+1, ..., h+ k), and an

unchanged aggregate level of all public goods (i.e. G0j = G
1
j , j = 1, 2, ..., k),

and since each has unchanged preferences, the first-order conditions asso-
ciated with each player’s maximization problem remain satisfied, and the
allocation therefore remains a Nash equilibrium.

Proposition 3 (Partial neutrality) A pure income redistribution amongst
a set of linked individuals that maintains the link between them has no effect
on the original equilibrium allocation.
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This is a more general statement than is Theorem 7 in Bergstrom, Blume
and Varian [1]. They consider three groups of individuals - those who con-
tribute ‘only to G’, those who contribute ‘to G and H’, and those who con-
tribute ‘only to H’. The statement of their theorem requires that the wealth
transfer leaves unchanged the total wealth of each of these three groups. How-
ever, a net transfer that reduces the wealth of the first group and increases
that of the last group is also neutral provided that the initial members of the
three groups remain linked7.
Finally, we draw attention to another new feature that may characterize

equilibrium in the presence of more than one public good. Suppose that we
observe an equilibrium in which two individuals share an interest in each of
two goods. Suppose, for example, that for individuals i and j and public
goods k and `, the individual contributions g0i k, g

0
i `, g

0
j k and g

0
j ` are all

strictly positive at an observed equilibrium. Starting from the same initial
income distribution, consider any other allocation at which the contribution
levels are g0i k+∆, g

0
i `−∆, g0j k−∆ and g0j `+∆. If∆ ≤ min

©
g0i `, g

0
j k

ª
, such an

allocation is feasible. It gives each individual her original consumption bundle
and the same levels of public goods as before, satisfies each individual’s first-
order conditions, and is therefore a Nash equilibrium. Thus we can conclude
that

Proposition 4 Even if, starting from a given vector of incomes, there is a
unique vector of Nash equilibrium level of public good provision, nevertheless,
if two individuals share an interest in the same two public goods, there is a
coordination problem with respect to those individuals’ contributions to the
goods in which they share an interest.

7 Conclusions

Although a number of papers formally incorporate the possibility of many
public goods, little attention has been paid to the new questions that one

7To see this, suppose there are just three individuals. The initial Nash equilibrium
is
¡
G0,H0

¢
. Suppose individual GONLY, who contributes only to G, loses income

∆wGONLY . HONLY’s income rises by the same amount. Such a transfer is not allowed
by Bergstrom, Blume and Varian. Now consider the allocation in which ∆gGONLY =
∆wGONLY , ∆hHONLY = ∆wHONLY = −∆wGONLY , and (∆gBOTH ,∆gBOTH) =
(−∆wGONLY ,−∆hHONLY ). A quick check shows that, at this new equilibrium, G1 =
G0+ ∆gGONLY +∆gBOTH = G

0, H1 = H0+ ∆hHONLY +∆hBOTH = H
0, and all three

individuals enjoy an unchanged level of private good consumption. It is also an equilib-
rium. Thus a net transfer between two linked individuals, provided it does not destroy
the chain that links them, preserves the initial allocation as an equilibrium.
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can ask of equilibrium in a world of many public goods. We have shown that
the presence of 2 or more public goods introduces a new aspect to the con-
sideration of the inefficiency of equilibrium. Not only may too few resources
be devoted to public good production, but their mix may be inefficient in a
sense that we have made precise.
We have not explored the policy implications of the multiple public good

model extensively. It may be observed that there are many public goods
in the real world, some of which are supplied exclusively by governments,
some of which are supplied by private agents, and some by both. This
observation provokes the following two questions, one of which is a posi-
tive question, the other normative. Why do governments choose to supply
such particular goods? Which public goods should be supplied by govern-
ment? The literature on private provision of public goods continues to ask
the question of how much governments should provide a public good, based
on a single public good model. Our model provides a promising analyt-
ical vehicle for further exploring these important and hitherto overlooked
issues.
Although we have assumed that all public goods are supplied by summa-

tion technology, it is natural to assume a situation where the public goods are
supplied by different technologies such as best-shot or weaker- or weakest-
link. The analysis of this paper is just a first step towards addressing these
more interesting and important issues in a multiple public good setting.
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