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Abstract

We consider a diffusion perturbed classical compound Poisson risk model
in the presence of a constant dividend barrier. Integro-differential equa-
tions with certain boundary conditions for the expected discounted penalty
(Gerber-Shiu) functions (caused by oscillations or by a claim) are derived
and solved. Their solutions can be expressed in terms of the Gerber-Shiu
functions in the corresponding perturbed risk model without a barrier. Fi-
nally, explicit results are given when the claim sizes are rationally distribu-
ted.
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1 Introduction

Consider the following classical continuous time surplus process perturbed by a
diffusion

U(t) = u + c t −
N(t)∑

i=1

Xi + σB(t) , t ≥ 0 , (1)

where {N(t); t ≥ 0} is a Poisson process with parameter λ, denoting the to-
tal number of claims from an insurance portfolio. X1,X2, . . . , independent of
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{N(t); t ≥ 0}, are positive i.i.d. random variables with common distribution func-
tion (df) P (x) = 1 − P̄ (x) = P (X ≤ x), density function p(x), moments µj =∫ ∞

0
xjp(x)dx, for j = 0, 1, 2, . . . , and the Laplace transform p̂(s) =

∫ ∞
0

e−s xp(x)dx.
{B(t); t ≥ 0} is a standard Wiener process that is independent of the aggregate

claims process S(t) :=
∑N(t)

i=1 Xi and σ > 0 is the dispersion parameter. In the
above model, u = U(0) ≥ 0 is the initial surplus, c = λµ1(1 + θ) is the premium
rate per unit time, and θ > 0 is the relative security loading factor.

The classical risk model perturbed by a diffusion was first introduced by Gerber
(1970) and has been further studied by many authors during the last few years;
e.g., Dufresne and Gerber (1991), Furrer and Schmidli (1994), Schmidli (1995),
Gerber and Landry (1998), Wang and Wu (2000), Wang (2001), Tsai (2001, 2003),
Tsai and Willmot (2002a,b), Chiu and Yin (2003), and the references therein.

In this paper, a barrier strategy is considered by assuming that there is a
horizontal barrier of level b ≥ u such that when the surplus reaches level b, the
“overflow” will be paid as dividend. Let Ub(t) be the modified surplus process
with initial surplus Ub(0) = u under the above barrier strategy.

Define now Tb = inf{t : Ub(t) ≤ 0} to be the time of ruin and

Ψb(u) = P (Tb < ∞|Ub(0) = u) , 0 ≤ u ≤ b ,

to be the ultimate ruin probability. Further, define

Ψb, d(u) = P (Tb < ∞, Ub(Tb) = 0 |Ub(0) = u), 0 ≤ u ≤ b ,

to be the probability of ruin caused by the oscillations in Ub(t) due to the Wiener
process B(t) and

Ψb, s(u) = P (Tb < ∞, Ub(Tb) < 0 |Ub(0) = u), 0 ≤ u ≤ b ,

to be the probability of ruin caused by a claim. We have that Ψb(u) = Ψb, d(u) +
Ψb, s(u), with Ψb, d(0) = 1 and Ψb, s(0) = 0.

Next, for δ > 0, define

φb, d(u) = E[e−δ Tb I(Tb < ∞, Ub(Tb) = 0) |Ub(0) = u] , 0 ≤ u ≤ b,

with φb, d(0) = 1, to be the Laplace transform of the ruin time Tb with respect to δ
if the ruin is due to the oscillations. Let w(x, y), for x, y ≥ 0, be the non-negative
values of a penalty function and define

φb, s(u) = E
[
e−δ Tb w

(
Ub(T

−
b ), |Ub(Tb)|

)
I(Tb < ∞, Ub(Tb) < 0)

∣∣ Ub(0) = u
]
,
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with φb, s(0) = 0, to be the expected discounted penalty (Gerber-Shiu) function if
the ruin is caused by a claim. Then

φb(u) = φb,d(u) + φb,s(u)

is the expected discounted penalty function.

The barrier strategy was initially proposed by De Finetti (1957) for a binomial
model. More general barrier strategies for a compound Poisson risk process have
been studied in a number of papers and books. These references include Bühlmann
(1970), Segerdahl (1970), Gerber (1972, 1979, 1981), Paulsen and Gjessing (1997),
Albrecher and Kainhofer (2002), Højgaard (2002), Dickson and Waters (2004),
and Gerber and Shiu (2004). The main focus is on optimal dividend payouts and
the time of ruin, under various barrier strategies and other economic conditions.
More recently, there are some research papers studying the ruin related quantities
such as the surplus before ruin and the deficit at ruin by using the Gerber-Shiu
function under a barrier strategy, in the classical risk model or Sparre Andersen
risk models, e.g., Lin et al. (2003), Li and Garrido (2004).

The main goal of this paper is to evaluate the Gerber-Shiu function φb(u) and
its decompositions of φb, s(u) and φb, d(u) in the above defined diffusion perturbed
classical risk model in the presence of a constant dividend barrier b and analyze
several of its special cases.

2 Integro-differential Equations and Their Solu-

tions

In this section, we will show that φb, d(u) and φb, s(u) both satisfy an integro-
differential equation with certain boundary conditions. First, the conditions sat-
isfied by φb, d(b) and φb, s(b) are given in the following two theorems.

Theorem 1 If the initial surplus is b, then we have the following equations:

φ′
b, d(b) + $ φb, d(b) =

(
λ$

λ + δ

)∫ b

0

φb, d(b − z)p(z)dz , (2)

where

$ =
1

σ

[
c

σ
+

√( c

σ

)2
+ 2(λ + δ)

]
.
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Proof: Let ν = c/σ. For 0 < ε < b, define T = inf{s > 0 : ν s + B(s) = −ε}. It
follows from Karatzas and Shreve (1991, p. 197) that

P (T ∈ dt) =
ε√
2πt3

exp
[
− (ε + νt)2

2t

]
dt, t > 0 , (3)

P (T < ∞) = exp(−2νε) , (4)

E[exp(−αT )] = exp(−νε − ε
√

ν2 + 2α) . (5)

Let τ = T ∧W1, where W1 is the occurence time of the first claim which is expo-
nentially distributed with parameter λ. Then by the strong Markovian property
of Ub(t), we have

φb, d(b) = E [exp(−δ τ )φb, d(Ub(τ ))]

= E [exp(−δ T )φb, d(Ub(T ))I(T < W1)]

+E [exp(−δ W1)φb, d(Ub(W1))I(T ≥ W1)]

= I1 + I2 . (6)

Note that

I1 =

∫ ∞

0

exp(−δs)φb, d(b − σε)E [I(s < W1)]P (T ∈ ds)

= φb, d(b − σε)

∫ ∞

0

exp[−(λ + δ)s]P (T ∈ ds)

= φb, d(b − σε)E
[
exp[−(λ + δ)T ]

]

= φb, d(b − σε) exp[−νε− ε
√

ν2 + 2(λ + δ) ] ,

and

I2 =

∫ ∞

0

λ exp[−(λ + δ)s]E[I(T ≥ s)]

∫ b

0

φb, d(b − z)p(z)dzds

= λ

∫ ∞

0

exp[−(λ + δ)s]P (T ≥ s)ds

∫ b

0

φb, d(b − z)p(z)dz ,

where

λ

∫ ∞

0

exp[−(λ + δ)s]P (T ≥ s)ds

=

∫ ∞

0

λ exp[−(λ + δ)s] [P (T = ∞) + P (s ≤ T < ∞)]ds

=
λ

λ + δ
[1 − exp(−2νε)] +

∫ ∞

0

λ exp[−(λ + δ)s]

∫ ∞

s

P (T ∈ dt) ds
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=
λ

λ + δ
[1 − exp(−2νε)] +

λ

λ + δ

∫ ∞

0

{
1 − exp[−(λ + δ)t]

}
P (T ∈ dt)

=
λ

λ + δ
[1 − exp(−2νε)] +

λ

λ + δ

{
P (T < ∞)− E

[
exp[−(λ + δ)T ]

]}

=
λ

λ + δ

[
1 − exp

(
− νε − ε

√
ν2 + 2(λ + δ)

)]
.

Therefore,

φb, d(b) = φb, d(b − σε) exp[−νε− ε
√

ν2 + 2(λ + δ) ]

+
λ

λ + δ

[
1 − exp(−νε − ε

√
ν2 + 2(λ + δ) )

] ∫ b

0

φb, d(b − z)p(z)dz .

Subtracting both sides by φb, d(b − σε), dividing both sides by σε, letting ε go
to 0, and substituting back ν = c/σ, we finally prove that (2) holds. 2

Theorem 2 If the initial surplus is b, then we have the following equations:

φ′
b, s(b) + $ φb, s(b) =

(
λ$

λ + δ

)[∫ b

0

φb, d(b − z)p(z)dz + ω(b)

]
. (7)

Proof: The proof is exactly similar to that of Theorem 1. 2.

Theorem 3 Suppose p(x) is continuously differentiable on (0,∞), then φb, d(u)
satisfies the following homogenous integro-differential equation for 0 < u < b :

σ2

2
φ′′

b, d(u) + c φ′
b, d(u) = (λ + δ)φb, d(u)− λ

∫ u

0

φb, d(u − x) p(x)dx , (8)

with the boundary conditions

φb, d(0) = 1, (9)[
c +

λ + δ

$

]
φ′

b, d(b) +
σ2

2
φ′′

b, d(b) = 0 . (10)

Proof: The proof of the integro-differential equation (8) is exactly the same
as that of the integro-differential equation satisfied by φ∞, d(u), see Gerber and
Landry (1998, pp. 265-266). The boundary condition (9) is from the definition of
φb, d. Letting u go to b from the left in (8) and noting that (2) holds in Theorem
1, we can prove that the boundary condition (10) holds. 2
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Theorem 4 Suppose p(x) is continuously differentiable on (0,∞) and ω(u) is
twice continuously differentiable on (0,∞), then φb, s(u) satisfies the following
non-homogenous integro-differential equation for 0 < u < b :

σ2

2
φ′′

b, s(u) + c φ′
b, s(u) = (λ + δ)φb, s(u) − λ

∫ u

0

φb, s(u − x) p(x)dx − λω(u) , (11)

with boundary conditions

φb, s(0) = 0, (12)[
c +

λ + δ

$

]
φ′

b, s(b) +
σ2

2
φ′′

b, s(b) = 0 . (13)

Proof: The proof of the integro-differential equation (11) is exactly the same as
that of the integro-differential equation satisfied by φ∞, s(u), see Tsai and Willmot
(2002a, pp. 53-54) or Chiu and Yin (2003, pp. 63-64). The boundary condition
(12) is from the definition of φb, s. Letting u go to b from the left in (11) and
noting that (7) holds in Theorem 1, we can prove that the boundary condition
(13) holds. 2

The solutions of above integro-differential equations with boundary conditions
heavily depend on the solutions of the following homogenous integro-differential
equation:

σ2

2
v′′(u) + c v′(u) = (λ + δ)v(u)− λ

∫ u

0

v(u− x) p(x)dx , u ≥ 0 . (14)

The general solution of equation (14) is of the form

v(u) = η1 v1(u) + η2 v2(u), u ≥ 0 , (15)

where v1(u) and v2(u) are two linearly independent solutions of (14), which will be
discussed in the next section, and η1, η2 are any real numbers. Then the solution
of the integro-differential equation (8) with boundary conditions (9) and (10) is

φb, d(u) = η1 v1(u) + η2 v2(u), 0 ≤ u ≤ b , (16)

where η1 and η2 can be determined by solving the following linear equation system

{
η1 v1(0) + η2 v2(0) = 1 ,

η1

{[
c + λ+δ

$

]
v′

1(b) + σ2

2
v′′

1(b)
}

+ η2

{[
c + λ+δ

$

]
v′

2(b) + σ2

2
v′′

2(b)
}

= 0 .

Let φ∞, s(u) be the expected discounted penalty function if the ruin is caused
by a claim in the perturbed compound Poisson risk model (1) without a barrier.
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Tsai and Willmot (2002a) shows that it satisfies the following integro-differential
equation for u ≥ 0 :

σ2

2
φ′′
∞, s(u) + c φ′

∞, s(u) = (λ + δ)φ∞, s(u) − λ

∫ u

0

φ∞, s(u − x) p(x)dx − λω(u) .

We note that this equation is the same as equation (11) except b = ∞. Then
φ∞, s(u) can be viewed as a particular solution of (11). It follows from the general
theory of differential equations that the solution of the integro-differential equation
(11) with boundary conditions (12) and (13) can be expressed as

φb, s(u) = φ∞, s(u) + ϑ1 v1(u) + ϑ2 v2(u), 0 ≤ u ≤ b , (17)

where ϑ1 and ϑ2 can be determined by solving the following linear equation system




ϑ1 v1(0) + ϑ2 v2(0) = 0 ,

ϑ1

{[
c + λ+δ

$

]
v′

1(b) + σ2

2
v′′

1(b)
}

+ ϑ2

{[
c + λ+δ

$

]
v′

2(b) + σ2

2
v′′

2(b)
}

= −
[
c + λ+δ

$

]
φ′
∞, s(b)− σ2

2
φ′′
∞,s(b) .

Tsai and Willmot (2002a) have shown that φ∞, s(u) satisfies a defective renewal
equation, described as follows. Let ρ = ρ(δ) be the unique non-negative root of
the following generalized Lundberg equation:

λp̂(s) = λ + δ − c s − σ2 s2/2 , (18)

with ρ(0) = 0. Let

h(y) =
2 c

σ2
e−(ρ+ 2 c

σ2 )y,

γ(y) =
λ

c

∫ ∞

y

e−ρ(x−y)p(x)dx ,

and

γω(y) =
λ

c

∫ ∞

y

e−ρ(x−y)ω(x)dx .

Then φ∞, s(u) satisfies the following defective renewal equation:

φ∞, s(u) =

∫ u

0

φ∞, s(u − y) g(y)dy + gω(u), u ≥ 0, (19)

where g(y) = h ∗ γ(y) and gω(u) = h ∗ γω(u), with ∗ denoting the convolution
operation.

Properties of φ∞, s(u) and its applications have been studied extensively by
Tsai (2001, 2003), Tsai and Willmot (2002a, 2002b), Chiu and Yin (2003), and
Li and Garrido (2005) for n = 1. Therefore, we may use the properties of φ∞, s(u)
to analyze φb, s(u).
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3 Analysis of the Function v(u)

The solution of the homogenous equation (14) is uniquely determined by the initial
conditions v(0) and v′(0) and can be solved by Laplace transforms. Let v̂(s) =∫ ∞

0
e−s xv(x)dx be the Laplace transform of v(u). Taking Laplace transforms on

both sides of (14) gives
[
1

2
σ2 s2 + c s − (λ + δ) + λ p̂(s)

]
v̂(s) =

σ2

2
v(0) s + c v(0) +

σ2

2
v′(0). (20)

Since σ2 ρ2/2 + c ρ − (λ + δ) + λ p̂(ρ) = 0, then (20) can be rewritten as
{

1 −
(

2λ/σ2

s + ρ + 2 c/σ2

)[
p̂(ρ) − p̂(s)

s − ρ

]}
v̂(s)

=
v(0)

s + ρ + 2 c/σ2
+

v(0)(ρ + 2 c/σ2) + v′(0)

(s − ρ)(s + ρ + 2 c/σ2)
. (21)

Inverting it yields

v(u) =

∫ u

0

v(u− y) g(y)dy +
σ2 v(0)

2 c
h(u)

+
σ2 [v(0)(ρ + 2 c/σ2) + v′(0)]

2 c
eρu ∗ h(u) , u ≥ 0. (22)

We remark that equation (22) is defective renewal equation, since g(y) is a de-
fective density function with

∫ ∞
0

g(y)dy = (c ρ + σ2 ρ2/2 − δ)/(c ρ + σ2 ρ2/2) < 1,
see Gerber and Landry (1998, eq. (16)).

One can find two linearly independent solutions v1(u) and v2(u) by specifying
the initial conditions vi(0) and v′

i(0) for i = 1, 2. For example, setting v1(0) = 1
and v′

1(0) = −(ρ + 2 c/σ2) yields

v1(u) =

∫ u

0

v1(u− y) g(y)dy +
σ2

2 c
h(u) , u ≥ 0 , (23)

and setting v2(0) = 0 and v′
2(0) = 1 yields

v2(u) =

∫ u

0

v2(u − y) g(y)dy +
σ2

2 c
eρ u ∗ h(u) , u ≥ 0 . (24)

To prove that v1(u) and v2(u) are linearly independent, we assume that there
are constants c1 and c2 such that c1 v1(u) + c2 v2(u) ≡ 0, for any u ≥ 0. Then we
have c1 v1(0)+c2 v2(0) = 0 and c1 v′

1(0)+c2 v′
2(0) = 0. Solving these two equations

gives c1 = c2 = 0. This proves that v1(u) and v2(u) are linearly independent.

Remarks:
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1. Gerber and Landry (1998, eq. (17)) have shown that φ∞, d(u) with φ∞, d(0) =
1 also satisfies the defective renewal equation (23). By the uniqueness of the
solution of the defective renewal equation (23), we have v1(u) = φ∞, d(u).

2. By comparing (23) and (24), we can easily prove that

v2(u) = eρu ∗ v1(u) = eρ u ∗ φ∞, d(u) =

∫ u

0

φ∞, d(u− x)eρxdx, u ≥ 0 .

4 Main Results

Under the assumptions on v1(u) and v2(u) stated in the previous section, eq. (16)
gives for 0 ≤ u ≤ b :

φb, d(u) = φ∞, d(u)−
[c + (λ + δ)/$]φ′

∞, d(b) + (σ2/2)φ′′
∞, d(b)

[c + (λ + δ)/$] v′
2(b) + (σ2/2)v′′

2(b)
eρ u ∗ φ∞, d(u) , (25)

and (17) gives for 0 ≤ u ≤ b :

φb, s(u) = φ∞, s(u) −
[c + (λ + δ)$]φ′

∞, s(b) + (σ2/2)φ′′
∞, s(b)

[c + (λ + δ)/$] v′
2(b) + (σ2/2)v′′

2 (b)
eρ u ∗ φ∞, d(u) . (26)

In particular, if δ = 0 and w(x, y) = 1, then ρ = 0, and φb, d(u) and φb, s(u) simplfy
to the ruin probabilities Ψb, d(u) and Ψb, s(u), respectively. We have the following
results for 0 ≤ u ≤ b :

Ψb, d(u) = Ψ∞, d(u) −
(c + λ/$)Ψ′

∞, d(b) + (σ2/2)Ψ′′
∞, d(b)

(c + λ/$)Ψ∞, d(b) + (σ2/2)Ψ′
∞, d(b)

∫ u

0

Ψ∞, d(x)dx ,

Ψb, s(u) = Ψ∞, s(u)−
(c + λ/$)Ψ′

∞, s(b) + (σ2/2)Ψ′′
∞, s(b)

(c + λ/$)Ψ∞, d(b) + (σ2/2)Ψ′
∞, d(b)

∫ u

0

Ψ∞, d(x)dx .

Dufrensne and Gerber (1991, Eq. (4.7)) shows that

Φ′
∞(u) =

2(c − λµ1)

σ2
Ψ∞,d(u),

where Φ∞(u) is the non-ruin probability of the risk model (1). Then Ψb, d(u) and
Ψb, s(u) can be expressed for 0 ≤ u ≤ b as

Ψb, d(u) = Ψ∞, d(u)−
(c + λ/$)Ψ′

∞, d(b) + (σ2/2)Ψ′′
∞, d(b)

(c + λ/$)Φ∞′(b) + (σ2/2)Φ′′
∞(b)

Φ∞(u) , (27)

Ψb, s(u) = Ψ∞, s(u) −
(c + λ/$)Ψ′

∞, s(b) + (σ2/2)Ψ′′
∞, s(b)

(c + λ/$)Φ′
∞(b) + (σ2/2)Φ′′

∞(b)
Φ∞(u) . (28)

9



Remark: Since Ψ∞, s(u) + Ψ∞, d(u) = Ψ∞(u) = 1 − Φ∞(u), then it follows from
(27) and (28) that Ψb, d(u) + Ψb, s(u) = 1 for 0 ≤ u ≤ b. This shows that ruin is
certain under the constant dividend barrier strategy.

Next, we will show that if p is rationally distributed then both v1 and v2 have
a rational Laplace transform, which can be inverted explicitly by partial fractions
as follows. Let us assume that claim size X is rationally distributed, i.e.,

p̂(s) =
Qm−1(s)

Qm(s)
, <(s) ∈ (hX ,∞), (29)

where m ∈ N+, hX := inf{s ∈ R : E[e−s X ] < ∞}, Qm is a polynomial of degree
m with leading coefficient 1, Qm−1 is a polynomial of degree m − 1 or less, and
Qm and Qm−1 do not have any common zeros. Further, since p̂(s) is finite for
all s, with <(s) > 0, equation Qm(s) = 0 has no roots with positive real parts.
This class of distributions is widely used in applied probability applications, which
includes, as special cases, Erlangs and part of phase-type, Coxian distributions,
as well as mixture of them. Further discussions on rational distributions can be
found in Cox (1955) and Neuts (1981, Chapter 2).

Substituting (29) into (20) with v1(0) = 1 and v′
1(0) = −(ρ + 2 c/σ2) and

multiplying Qm(s) to both the denominator and numerator yields

v̂1(s) =
(σ2/2)(s − ρ)Qm(s)

[σ2 s2/2 + c s − (λ + δ)]Qm(s) + λQm−1(s)
. (30)

Since [σ2 s2/2 + c s − (λ + δ)]Qm(s) + λQm−1(s) is a polynomial of degree m + 2
with leading coefficient σ2/2, then it can be factored as

[σ2 s2/2 + c s − (λ + δ)]Qm(s) + λQm−1(s) = (σ2/2)(s − ρ)

m+1∏

i=1

(s + Ri) ,

where ρ > 0 and −R1,−R2, . . . ,−Rn+1, with <(Ri) > 0, i = 1, 2, . . . , n + 1, are
all the roots of the equation [σ2 s2/2 + c s − (λ + δ)]Qm(s) + λQm−1(s) = 0 on
the whole complex plane. We remark ρ is also the unique positive root of the
generalized Lundberg equation (18). If R1, R2, . . . , Rm+1 are distinct, then by
partial fractions, (30) can be rewritten as

v̂1(s) =
Qm(s)∏m+1

i=1 (s + Ri)
=

m+1∑

i=1

αi

s + Ri
, (31)

where αi = Qm(−Ri)/
∏m+1

j=1,j 6=i(Rj − Ri), i = 1, 2, . . . ,m + 1. Inverting it gives

v1(u) =
m+1∑

i=1

αi e
−Ri u, u ≥ 0. (32)
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Then we have for u ≥ 0

v2(u) =

∫ u

0

v1(u − x)eρxdx =
Qm(ρ)∏m+1

i=1 (ρ + Ri)
eρ u −

m+1∑

i=1

αi

(ρ + Ri)
e−Ri u . (33)

5 An Example

In this section, we will illustrate some explicit results when the claim sizes are
exponentially distributed.

Suppose that the claim sizes are exponentially distributed with density func-
tion

p(x) = κ e−κ x, x ≥ 0,

and Laplace transform p̂(s) = κ/(s + κ). The equation

[σ2 s2/2 + c s − (λ + δ)](s + κ) + λκ = 0 (34)

has one positive root, say ρ, and two negative roots, say −R1,−R2. Then (32)
gives

v1(u) = φ∞, d(u) =
κ − R1

R2 −R1
e−R1 u +

κ − R2

R1 −R2
e−R2 u, u ≥ 0 ,

and

v2(u) =

∫ u

0

v1(u − x)eρxdx

=
ρ + κ

(ρ + R1)(ρ + R2)
eρu +

R1 − κ

(ρ + R1)(R2 −R1)
e−R1 u

+
R2 − κ

(ρ + R2)(R1 − R2)
e−R2 u, u ≥ 0 .

Then (25) gives

φb, d(u) =
κ − R1

R2 − R1

(
1 +

ξ

ρ + R1

)
e−R1 u +

κ − R2

R1 − R2

(
1 +

ξ

ρ + R2

)
e−R2 u

− ξ(κ + ρ)

(ρ + R1)(ρ + R2)
eρ u, 0 ≤ u ≤ b ,

where

ξ =
(σ2/2)v′′

1(b) + [c + (λ + δ)/$] v′
1(b)

(σ2/2)v′′
2(b) + [c + (λ + δ)/$] v′

2(b)
.
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The evaluation of φb, s(u) depends on the choice of the penalty function w(x, y),
e.g., if w(x, y) = 1, then ω(u) = P̄ (u) = e−κ u, and Tsai and Willmot (2002a)
shows that the Laplace transform of φ∞, s(u) can be expressed as

φ̂∞, s(s) =
λ(s + κ)[ω̂(ρ) − ω̂(s)]

[σ2 s2/2 + c s − (λ + δ)](s + κ) + λκ
=

2λ/[σ2(ρ + κ)]

(s + R1)(s + R2)
, (35)

inverting it yields

φ∞, s(u) =
2λ

σ2(ρ + κ)(R2 − R1)

[
e−R1 u − e−R2 u

]
, u ≥ 0 . (36)

Then (26) gives

φb, s(u) =
1

(R2 −R1)

[
2λ

σ2(ρ + κ)
− ς (R1 − κ)

ρ + R1

]
e−R1 u

+
1

(R1 − R2)

[
2λ

σ2(ρ + κ)
− ς (R2 − κ)

ρ + R2

]
e−R2 u − ς (ρ + κ)

(ρ + R1)(ρ + R2)
eρ u ,

where

ς =
(σ2/2)φ′′

∞, s(b) + [c + (λ + δ)/$]φ′
∞, s(b)

(σ2/2)v′′
2(b) + [c + (λ + δ)/$] v′

2(b)
.

Now, let c = 1.1, λ = 1, κ = 1, σ = 0.5, δ = 0.05, b = 10. The roots of
equation (34) are: ρ = 0.1812, −R1 = −0.2264, −R2 = −9.7548. Then

φ10, d(u) = 0.08 e−0.2264u + 0.9183 e−9.7548 u + 0.0016 e0.1812 u ,

φ10, s(u) = 0.7011 e−0.2264u − 0.7153 e−9.7548u + 0.0142 e0.1812u, 0 ≤ u ≤ 10 .

If the discount factor δ is set to be δ = 0, then ρ = 0, R1 = 0.0823, R2 = 9.7177.
In this case, φ10,d(u) simplifies to the ruin probability due to oscillations Ψ10, d(u)
and φ10, s(u) simplifies to the ruin probability caused by a claim Ψ10, s(u), which
are given as follows.

Ψ10, d(u) = 0.1029 − 0.8971 e−9.7177 u ,

Ψ10, s(u) = 0.8971 − 0.8971 e−9.7177 u, 0 ≤ u ≤ 10 .

The total probability of ruin Ψ10(u) = Ψ10, d(u)+Ψ10, s(u) = 1, for all 0 ≤ u ≤ 10,
this is because the ruin is certain under the constant barrier strategy.
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