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Abstract

In this paper a compound binomial risk model with a constant dividend barrier is

considered. Two types of individual claims, main claims and by-claims, are defined,

where by-claims are produced by the main claims and may be delayed for one time

period with a certain probability. Some prior work on these time-correlated claims

has been done by Yuen and Guo (2001) and the references therein. Formulae for the

expected present value of dividend payments up to the time of ruin are obtained for

discrete-type individual claims, together with some other results of interest. Explicit

expressions for the corresponding results are derived in a special case, for which a

comparison is also made to the original discrete model of De Finetti (1957).
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1 Introduction

In recent years, risk models with correlated claims and models with dividend pay-

ments have been two of the major interests in the risk theory literature. The risk

model considered in this paper is a compound binomial model with time-correlated

individual claims and dividend payments that are ruled by a constant dividend bar-

rier.

A framework of time-correlated claims is built by introducing two kinds of indi-

vidual claims, namely main claims and by-claims, and allowing possible delays of the

occurrence of by-claims. Considerations of delay in claim settlement can be found in

Waters and Papatriandafylou (1985), Yuen and Guo (2001) and Wu and Yuen (2004).

Other dependence structures in terms of main claims and by-claims are studied in

Yuen and Wang (2002) and Wu and Yuen (2003).

Because of the certainty of ruin for a risk model with a constant dividend barrier,

the calculation of the expected discounted dividend payments is a major problem of

interest in the context, instead of the ruin probability of the business. The very first

risk model with dividends in the literature was proposed by De Finetti (1957), in

which a discrete time model with very simple periodic gains was studied. References

for the results of De Finetti’s model can be found in Bühlmann (1970, Section 6.4.5)

and Gerber and Shiu (2004, Appendix). Other discrete time risk models involving

dividends include the discrete time model with a constant barrier of Claramunt et

al. (2002), in which the expected present value of dividends is calculated based on a

system of linear equations, and the model considered in Dickson and Waters (2004)
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that is used to tackle certain problems in the classical continuous time model. Also,

problems relating to dividends have been considered more extensively in the contin-

uous time setting. Related works can be found in Bühlmann (1970), Dickson and

Waters (2004), Gerber (1979), Gerber and Shiu (1998, 2004), Højgaard (2002), Li

and Garrido (2004), Lin et al. (2003), Paulsen and Gjessing (1997), Zhou (2005) and

references therein.

In this paper, Section 2 defines the model of interest, describes various payments,

including the premiums, claims and dividends, and lists the notation. In Section 3,

difference equations are developed for the expected present value of dividend pay-

ments. Then an explicit expression is derived, using the technique of generating

functions. Moreover, closed-form solutions for the expected present value of divi-

dends are obtained for two classes of claim size distributions in Section 4. Numerical

examples are also provided to illustrate the impact of the delay of by-claims on the

expected present value of dividends. Finally, in Section 5, a slightly modified model is

discussed, also aiming to evaluate the impact of the delay of by-claims on the expected

present value of dividends through a comparison between our results and those given

in Gerber and Shiu (2004, Appendix) where there is no delay.

2 The model

We consider a discrete time compound binomial risk model with two types of individ-

ual claims: main claims and by-claims. For a detailed description and the intuition

for this model, see Yuen and Guo (2001). Let Uk be the total amount of claims up
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to the end of the kth time period, k ∈ N+ and U0 = 0. We define

Uk = UX
k + UY

k , (2.1)

where UX
k and UY

k are the total main claims and by-claims, respectively, in the first

k time periods.

Random variables X1, X2, . . . denote the sizes of the main claims and are in-

dependent and identically distributed (i.i.d.) having a probability function (p.f.)

fm,m = 1, 2, . . .. The probability of having a main claim in each time period is

p, 0 < p < 1, and the probability of no claim is q = 1− p.

The amounts of by-claims, denoted by Y1, Y2, . . ., are also i.i.d. and have another

p.f. gn, n = 1, 2, . . .. Xi and Yj are independent of each other for all i and j, and

their means are denoted by µX and µY , respectively. One main claim induces one

by-claim, which occurs simultaneously with probability 0 ≤ θ ≤ 1, that is to say, the

by-claim may be delayed with probability 1−θ. We only consider a delay of one time

period in this paper.

Assume that premiums are received at the beginning of each time period with a

constant premium rate of 1 per period, and all claim payments are made only at the

end of each time period. We introduce a dividend policy to the company that certain

amount of dividends will be paid to the policyholder instantly, as long as the surplus

of the company at time k is higher than a constant dividend barrier b (b > 0). It

implies that the dividend payments will only possibly occur at the beginning of each

period, right after receiving the premium payment. The surplus at the end of the kth
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time period, Sk, is then defined to be, for k = 1, 2, . . .,

Sk = u + k − Uk − UDk, (S0 = u). (2.2)

Here the initial surplus is u, u = 1, 2, . . . , b. The positive safety loading condition

holds if p(µX +µY ) < 1. We define UDk as the sum of dividend payments in the first

k periods, for k = 1, 2, . . . ,

UDk = D1 + D2 + · · ·+ Dk, (UD0 = 0).

Denote by Dn the amount of dividend paid out in period n, for n = 1, 2, . . ., with

definition

Dn = max{Sn−1 + 1− b, 0}. (2.3)

Define T = min{k|Sk ≤ 0} to be the time of ruin, ψ(u; b) = P [T < ∞|S0 = u]

to be the ruin probability, and φ(u; b) = 1 − ψ(u; b), for u = 1, 2, . . . , b, to be the

non-ruin probability. Let v be a constant annual discount rate for each period. Then

the expected present value of the dividend payments due until ruin is

V (u; b) := E

[
T∑

k=1

Dkv
k−1

∣∣∣S0 = u

]
.

3 The expected present value of dividends

To study the expected present value of the dividend payments, V (u; b), we consider the

claim occurrences in two scenarios (see Yuen and Guo (2001)). In the first scenario,

if a main claim occurs in a certain time period, its associated by-claim also occurs in

the same period. Thus the surplus process is renewed at the beginning of the next
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time period. The second scenario is simply the complement of the first one, i.e., given

a main claim, its associated by-claim will occur one period later. Conditional on the

second scenario, we define a complementary surplus process as follows:

S∗k = u + k − Uk − UD∗
k − Y, k = 1, 2, . . . , (3.1)

with S∗0 = u, where UD∗
k is the sum of dividend payments in the first k time periods,

and Y is a random variable following the probability function gn, n = 1, 2, . . ., and is

independent of all other claim amounts random variables Xi and Yj for all i and j. The

corresponding ruin probability is denoted by ψ∗(u; b) with ψ∗(0; b) = ψ∗(1; b) = 1, the

non-ruin probability is denoted by φ∗(u; b) = 1 − ψ∗(u; b), and the expected present

value of the dividend payments is denoted by V ∗(u; b). Then conditioning on the

occurrences of claims at the end of the first time period, we can set up the following

difference equations for V (u; b) and V ∗(u; b):

V (u; b) = v

{
qV (u + 1; b) + pθ

∑
m+n≤u+1

V (u + 1−m− n; b)fmgn

+p(1− θ)
u+1∑
m=1

V ∗(u + 1−m; b)fm

}
, u = 1, 2, . . . , b− 1, (3.2)

V ∗(1; b) = vq

2∑
n=1

V (2− n; b)gn, (3.3)

and for u = 2, 3, . . . , b− 1,

V ∗(u; b) = v

{
q

u+1∑
n=1

V (u + 1− n; b)gn

+pθ
∑

m+n+l≤u+1

V (u + 1−m− n− l; b)fmgngl

+p(1− θ)
∑

m+l≤u+1

V ∗(u + 1−m− l; b)fmgl

}
, (3.4)
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with boundary conditions:

V (0; b) = 0,

V (b; b) = 1 + V (b− 1; b),

V ∗(0; b) = 0,

and

V ∗(b; b) = 1 + V ∗(b− 1; b).

The second boundary condition holds because when the initial surplus is b, the pre-

mium received at the beginning of the first period will be paid out as a dividend

immediately. Except the first dividend payment, the rest of the model is the same

as that starting from an initial surplus b − 1. The last condition can be explained

similarly.

From (3.2) and (3.4) one can rewrite V ∗(u; b) as

V ∗(u; b) =
u∑

n=1

V (u− n; b)gn, u = 2, 3, . . . , b− 1. (3.5)

This result can also be obtained from model (3.1) as

V ∗(u; b) = E[V (u− Y ; b)] =
u∑

n=1

V (u− n; b)gn.

Substituting (3.5) into (3.2) gives

V (1; b) = vqV (2; b) + v2pq(1− θ)V (1; b)f1g1, (3.6)

and for u = 2, 3, . . . , b− 1,

V (u; b) = v

{
qV (u + 1; b) + pθ

∑
m+n≤u+1

V (u + 1−m− n; b)fmgn
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+p(1− θ)
∑

m+n≤u+1

V (u + 1−m− n; b)fmgn

}

= v

{
qV (u + 1; b) + p

∑
m+n≤u+1

V (u + 1−m− n; b)fmgn

}
, (3.7)

with a new boundary condition:

V (b; b) = 1 + V (b− 1; b). (3.8)

To obtain an explicit expression for V (u; b) from (3.6) and (3.7), we define a new

function W (u) that satisfies the following difference equation,

W (1) = vqW (2) + v2pq(1− θ)W (1)f1g1, (3.9)

and for u = 2, 3, . . .,

W (u) = v

{
qW (u + 1) + p

∑
m+n≤u+1

W (u + 1−m− n)fmgn

}
. (3.10)

Apart from a multiplicative constant, the solution of (3.9) and (3.10) is unique. There-

fore, we can set W (1) = 1. It follows from the theory of difference equations that the

solution to (3.6) and (3.7) with boundary condition (3.8) is of the form

V (u; b) = C(b)W (u), (3.11)

where C(b) = 1/[W (b)−W (b− 1)].

Remark: Result (3.11) is the discrete counterpart of V (u; b) for the classical model,

which is of the form V (u; b) = h(u)/h′(b) for a certain function h. See Gerber (1979).

Let the generating function of W (u) be W̃ (z) :=
∑∞

u=1 W (u)zu, −1 < <(z) < 1.

Similarly, f̃(z) :=
∑∞

m=1 fmzm and g̃(z) :=
∑∞

n=1 gnzn are probability generating

functions (p.g.f.’s) of {fm}∞m=1 and {gn}∞n=1, respectively. Furthermore, we construct
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two new generating functions h̃(z, 1) := q + pf̃(z)g̃(z) and h̃(z, k) := [h̃(z, 1)]k. We

denote the probability function of h̃(z, k) by h(i, k). Yuen and Guo (2001) have

commented that h(i, k) is the probability function of the total claims in the first k

time periods in the compound binomial model with individual claim amount X1 +Y1.

In the following theorem, we show that V (u, b) can be expressed explicitly in terms

of h(i, k).

Theorem 1 For the expected present value of dividend payments, V (u; b), of model

(2.2), we have, for u = 2, 3, . . . , b,

V (u; b) = C(b)
∞∑
i=1

vi+1q
[
vp(1− θ)f1g1h(i + u− 1, i)− h(i + u, i)

]
, (3.12)

where

C(b) =

{ ∞∑
i=1

vi+1q
{

vp(1− θ)f1g1[h(i + b− 1, i)− h(i + b− 2, i)]

−[h(i + b, i)− h(i + b− 1, i)]
}}−1

,

and V (1; b) = C(b).

Proof. The result (3.12) can be derived by using the technique of generating func-

tions. Multiplying both sides of (3.10) by zu and summing over u from 2 to ∞, we

get

∞∑
u=2

W (u)zu = vq

∞∑
u=2

W (u + 1)zu + vp

∞∑
u=2

∑
m+n≤u+1

W (u + 1−m− n)fmgnzu.

Rewriting both sides of the above equation in terms of W̃ (z) yields

W̃ (z)−W (1)z = vqz−1
[
W̃ (z)−W (1)z −W (2)z2

]
+ vpz−1W̃ (z)f̃(z)g̃(z).
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From (3.9) and the fact that W (1) = 1, the above equation simplifies to

W̃ (z)
{

1− v
[
q + pf̃(z)g̃(z)

]
z−1

}
= W (1)z − vqW (1)− vqW (2)z

= vq [vp(1− θ)f1g1z − 1] . (3.13)

From (3.13) and the definition of h̃(z, 1) we obtain a final expression for W̃ (z)

W̃ (z) =
vq [vp(1− θ)f1g1z − 1]

1− vh̃(z, 1)z−1
. (3.14)

Rewriting [1− vh̃(z, 1)z−1]−1 in terms of a power series in z, we have

W̃ (z) = v2pq(1− θ)f1g1

∞∑

k=0

vkh̃(z, k)z1−k − vq

∞∑

k=0

vkh̃(z, k)z−k.

Comparing the coefficients of zu in both sides gives, for u = 2, 3, . . . , b,

W (u) = v2pq(1− θ)f1g1

∞∑
i=u

vi+1−uh(i, i + 1− u)− vq

∞∑
i=u+1

vi−uh(i, i− u)

=
∞∑
i=1

vi+1q
[
vp(1− θ)f1g1h(i + u− 1, i)− h(i + u, i)

]
.

The above result together with (3.11) gives us the explicit expression for V (u; b) as

in (3.12). 2

To end this section, we show that the ruin is certain in the risk model described

in (2.2). For b = 1, since φ(1; 1) = qφ(1; 1) and 0 < q < 1, then φ(1; 1) = 0.

For b = 2, 0 ≤ φ(1; 2) ≤ φ(2; 2) = q φ(2; 2) + p (1 − θ)φ∗(1; 2)f1 = q φ(2; 2), then

φ(1; 2) = φ(2; 2) = 0. The following theorem shows that ruin is certain for b ≥ 3

under certain conditions.

Theorem 2 The ruin probability in a compound binomial risk model with delayed

claims and a constant dividend barrier is one, i.e., ψ(u; b) = 1, for u = 1, 2, . . . , b,

provided that
∑

m+n≤b−1 fm gn < 1, for b ≥ 3.
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Proof. Since ψ(u; b) ≥ ψ(b; b) for u = 0, 1, 2, . . . b, then it is sufficient to prove that

ψ(b; b) = 1 or φ(b; b) = 0 for b ≥ 3.

Conditioning on the occurrences of claims at the end of the first time period gives

φ(b; b) = q φ(b; b) + p θ
∑

m+n≤b−1

φ(b−m− n; b)fm gn

+p(1− θ)
b−1∑
m=1

φ∗(b−m; b)fm, (3.15)

φ∗(u; b) =
u−1∑
n=1

φ(u− n; b)gn, u = 2, 3, . . . , b. (3.16)

Substituting (3.16) into (3.15) yields

φ(b; b) = q φ(b; b) + p
∑

m+n≤b−1

φ(b−m− n; b)fmgn.

It follows from the inequality φ(b−m− n; b) ≤ φ(b; b) that

φ(b; b) ≤ q φ(b; b) + pφ(b; b)
∑

m+n≤b−1

fm gn . (3.17)

Since
∑

m+n≤b−1 fmgn < 1 and 0 ≤ φ(b; b) ≤ 1, then inequality (3.17) gives φ(b; b) = 0,

this implies that ψ(b; b) = 1. 2

4 Two Classes of Claim Size Distributions

Equation (3.12) gives an explicit expression for V (u; b) in terms of h(i, k). However,

it can be seen that this formula is not computationally tractable. In this section, we

consider two special cases for the distribution of X1+Y1 such that W (u) has a rational

generating function which can be easily inverted. One case is that the probability

function of X1 + Y1 has finite support such that its p.g.f. is a polynomial, and the

other case is that X1 + Y1 has a discrete Kn distribution, i.e., the p.g.f. of X1 + Y1 is

a ratio of two polynomials with certain conditions.
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4.1 Claim amount distributions with finite support

Now assume that the distribution of X1 +Y1 has finite support, e.g., for N = 2, 3, . . . ,

(f ∗ g)x = P (X1 + Y1 = x) = πx, x = 2, 3, . . . , N ,

where ∗ denotes convolution. Then

DN(z) := h̃(z, 1) = q + p

N∑
x=2

zxπx, −1 < <(z) < 1, (4.1)

is a polynomial of degree N . Then W̃ (z) in (3.14) simplifies to

W̃ (z) =
v2pq(1− θ)π2z

2 − vqz

z − vDN(z)
= z

vq − v2pq(1− θ)π2z

vDN(z)− z

=
z

p πN

q − vpq(1− θ)π2z

(z −R1)(z −R2) · · · (z −RN)
,

where R1, R2, . . . , RN are the N roots of the equation of vDN(z)− z = 0 in the whole

complex plane. Further, if R1, R2, . . . , RN are distinct, then by partial fractions, we

have

W̃ (z) =
1

p πN

N∑
i=1

aiz

Ri − z
,

where

ai =
vpq(1− θ)Ri − q∏N

j=1,j 6=i(Ri −Rj)
, i = 1, 2, . . . , N.

Inverting the p.g.f. W̃ (z) yields

W (u) =
N∑

i=1

ai

pπN

R−u
i , u = 1, 2, . . . . (4.2)

Now V (u; b) = C(b)W (u), for u = 1, 2, . . . , b − 1, and as V (b; b) = 1 + V (b − 1; b),

then

V (u; b) =
W (u)

W (b)−W (b− 1)
=

∑N
i=1 aiR

−u
i∑N

i=1 ai(1−Ri)R
−b
i

, u = 1, 2, . . . , b. (4.3)
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Example 1 In this example, we assume f1 = g1 = 1. Then Uk − Uk−1 can only take

three possible values: 1, 0, or -1. This generalizes De Finetti’s original model where

periodic gains are +1 or -1. The p.g.f. of W (u) in (3.14), has a simplified expression

W̃ (z) =
zvq [1− vp(1− θ)z]

vpz2 − z + vq
. (4.4)

Let 0 < R1 < 1 < R2 be the solutions of the equation vpz2 − z + vq = 0. Then by

partial fractions, (4.4) can be rewritten as

W̃ (z) =
1

p

(
a1z

R1 − z
+

a2z

R2 − z

)
,

where

a1 =
vpq(1− θ)R1 − q

R1 −R2

, a2 =
vpq(1− θ)R2 − q

R2 −R1

.

Substituting them into (4.3) gives, for u = 1, 2, . . . , b,

V (u; b) =
a1R

−u
1 + a2R

−u
2

a1(1−R1)R
−b
1 + a2(1−R2)R

−b
2

=
(R1 + θR2)R

−u
2 − (R2 + θR1)R

−u
1

R−b
2 (1−R2)(R1 + θR2)−R−b

1 (1−R1)(R2 + θR1)
. (4.5)

The last equality holds because of the property of roots R1 and R2 that R1 + R2 =

(vp)−1. Two extreme cases of (4.5) are

V (u; b) =
R−u

2 −R−u
1

R−b
2 (1−R2)−R−b

1 (1−R1)
for θ = 1,

and

V (u; b) =
R
−(u+1)
2 −R

−(u+1)
1

R
−(b+1)
2 (1−R2)−R

−(b+1)
1 (1−R1)

for θ = 0.
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Another value of interest in Example 1 is the optimal dividend barrier b∗, which

is the optimal value of b that maximizes V (u; b) for a given u. From (4.5) we know

that b∗ is the solution of equation

d

db

[
R−b

2 (1−R2)(R1 + θR2)−R−b
1 (1−R1)(R2 + θR1)

]
= 0.

We have

b∗ =
ln (R2−1)(R1+θR2) ln(R2)

(R1−1)(R2+θR1) ln(R1)

ln(R2)− ln(R1)
,

which does not depend on the initial surplus u. Practically, we round b∗ to the closest

integral value.

Furthermore, we can prove the following result.

Theorem 3 For the risk model considered in Example 1, the expected present value

of the dividend payments up to the time of ruin, V (u; b), increases as the probability

of a delay of the by-claims is increasing as well.

Proof. The theorem can be proved by the following fact:

d

dθ

[
(R1 + θR2)R

−u
2 − (R2 + θR1)R

−u
1

R−b
2 (1−R2)(R1 + θR2)−R−b

1 (1−R1)(R2 + θR1)

]

=
R−u

2 R−b
1 (1−R1)(R

2
1 −R2

2) + R−b
2 R−u

1 (1−R2)(R
2
2 −R2

1)[
R−b

2 (1−R2)(R1 + θR2)−R−b
1 (1−R1)(R2 + θR1)

]2 < 0,

since 0 < R1 < 1 < R2. 2

In Example 1, let p = 0.45, v = 0.95, b = 10, then we have R1 = 0.78786, R2 =

1.55132. Table 1 summaries the results for V (u; b) for θ = 0, 0.25, 0.5, 0.75, 1, and

u = 1, . . . , 10. The numbers show that the higher the initial surplus of the insurance
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Table 1: Values of V (u; 10) when f1 = g1 = 1
V (u; 10) θ = 0 0.25 0.5 0.75 1

u = 1 0.40851 0.36231 0.32549 0.29547 0.27052
2 0.60719 0.57724 0.55338 0.53392 0.51775
3 0.82786 0.80834 0.79279 0.78011 0.76957
4 1.08763 1.07477 1.06453 1.05618 1.04924
5 1.40424 1.39561 1.38874 1.38313 1.37847
6 1.79767 1.79167 1.78689 1.78300 1.77976
7 2.29159 2.28717 2.28365 2.28078 2.27839
8 2.91499 2.91144 2.90862 2.90631 2.90439
9 3.70400 3.70082 3.69829 3.69623 3.69451

10 4.70400 4.70082 4.69829 4.69623 4.69451

Table 2: Values of V (1; b) when θ = 0.5
b = 1 2 3 4 5

V (1; b) 1.35364 1.42832 1.35958 1.19780 1.00398
6 7 8 9 10
0.81751 0.65524 0.52082 0.41219 0.32549

company, the higher the expected present value of dividend payments prior to the

time of ruin. They also confirm Theorem 3 that V (u; b) is increasing as the probability

of the delay of by-claims is increasing, i.e., θ is decreasing. Moreover, the impact of

the delay of by-claims on V (u; b) is getting smaller as u increases.

With fixed θ = 0.5 and u = 1, we get the optimal dividend barrier b∗ = 2. In

Table 2, the expected present values of dividend payments V (1; b) for b = 1, 2, . . . , 10

are provided. The values confirm the fact that when b = 2, the policyholders receive

the most dividends prior to ruin.
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4.2 Kn claim amount distributions

Li (2005a, b) studies a class of discrete Sparre Andersen risk models in which the

claims inter-arrival times are Kn distributed. This class of distributions includes

geometric, negative binomial, discrete phase-type, as well as linear combinations (in-

cluding mixtures) of these.

For the two independent claim amount random variables X1 and Y1, if they have

Kn distributions, so does their sum. Therefore, in this subsection, we assume that

(f ∗ g)x = P (X1 + Y1 = x) is Kn distributed for x = 2, 3, . . . , and n = 1, 2, . . . , i.e.,

the p.g.f. of f ∗ g is given by

f̃(z)g̃(z) =
z2En−1(z)∏n
i=1(1− z qi)

, <(z) < min
{ 1

qi

: 1 ≤ i ≤ n
}

,

where 0 < qi < 1, for i = 1, 2, . . . , n and En−1(z) =
∑n−1

k=0 zkek is a polynomial of

degree n− 1 or less with En−1(1) =
∏n

i=1(1− qi) . Then W̃ (z) can be transformed to

the following rational function

W̃ (z) =
z[v2pq(1− θ)f1g1z − vq]

∏n
i=1(1− zqi)

z
∏n

i=1(1− zqi)− vq
∏n

i=1(1− zqi)− vpz2En−1(z)
.

Since the denominator of the above equation is a polynomial of degree n + 1, it

can be factored as [(−1)n
∏n

i=1 qi − vpen−1]
∏n+1

i=1 (z − Ri), where R1, R2, . . . , Rn+1

are the n + 1 zeros of the denominator. We remark that (−1)n
∏n

i=1 qi − vpen−1 =

(−1)nvq/
∏n+1

i=1 Ri. Then W̃ (z) simplifies to

W̃ (z) =

[
n+1∏
i=1

Ri

]
[vp(1− θ)f1g1z

2 − z]
∏n

i=1(zqi − 1)∏n+1
i=1 (z −Ri)

=

[
n+1∏
i=1

Ri

]
[z − vp(1− θ)f1g1z

2]
n+1∑
i=1

ri

(Ri − z)
,
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where

ri =

∏n
j=1(Riqj − 1)

∏n+1
j=1,j 6=i(Ri −Rj)

, i = 1, 2, . . . , n + 1.

Inverting W̃ (z) gives

W (1) =

[
n+1∏
i=1

Ri

]
n+1∑
i=1

riR
−1
i =

n+1∑
i=1

ri

(
n+1∏

j=1,j 6=i

Rj

)
= 1,

and

W (u) =

[
n+1∏
i=1

Ri

]
n+1∑
i=1

ri

[
1− vp(1− θ)f1g1Ri

]
R−u

i , u = 2, 3, . . . .

Now that C(b) = 1/[W (b)−W (b− 1)], then finally we have

V (1; b) = C(b) =
1[

n+1∏
i=1

Ri

]
n+1∑
i=1

ri

[
1− vp(1− θ)f1g1Ri

]
(1−Ri)R

−b
i

, (4.6)

and

V (u; b) = C(b)W (u)

=

n+1∑
i=1

ri

[
1− vp(1− θ)f1g1Ri

]
R−u

i

n+1∑
i=1

ri

[
1− vp(1− θ)f1g1Ri

]
(1−Ri)R

−b
i

, u = 2, . . . , b. (4.7)

Example 2 In this example, we assume that the main claim X1 follows a geometric

distribution with fx = β(1 − β)x−1, 0 < β < 1, x = 1, 2, . . . , and the by-claim Y1

follows a geometric distribution with gx = γ(1 − γ)x−1, 0 < γ < 1, x = 1, 2, . . . , so

that

f̃(z)g̃(z) =
(1− β)(1− γ)z2

(1− βz)(1− γz)
.

Here n = 2, q1 = β, q2 = γ, and En−1(z) = (1−β)(1− γ). Let R1, R2, R3 be the three

roots of the equation

z(1− βz)(1− γz)− vq(1− βz)(1− γz)− vpz2(1− β)(1− γ) = 0.
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Then we have

W̃ (z) = (R1R2R3)
[
z − vp(1− θ)βγz2

] 3∑
i=1

ri

Ri − z
, (4.8)

where

r1 =
(R1β − 1)(R1γ − 1)

(R1 −R2)(R1 −R3)
, r2 =

(R2β − 1)(R2γ − 1)

(R2 −R1)(R2 −R3)
, r3 =

(R3β − 1)(R3γ − 1)

(R3 −R2)(R3 −R1)
.

Then (4.6) and (4.7) simplify to

V (1; b) =
1

(R1R2R3)
∑3

i=1 ri

[
1− vp(1− θ)βγRi

]
(1−Ri)R

−b
i

,

and

V (u; b) =

∑3
i=1 ri

[
1− vp(1− θ)βγRi

]
R−u

i

∑3
i=1 ri

[
1− vp(1− θ)βγRi

]
(1−Ri)R

−b
i

, u = 2, . . . , b.

As an example, let p = 0.35, v = 0.95, b = 10, β = γ = 0.8. From the above results

we get R1 = 0.64044, R2 = 1.01812, R3 = 1.47972, r1 = 0.75021, r2 = −0.19739, and

r3 = 0.08718. The values of V (u; 10) for θ = 0, 0.25, 0.5, 0.75, 1, and u = 1, . . . , 10

are listed in Table 3. We observe the same features as in Example 1, that V (u; b) is

an increasing function with respect to u, and a decreasing function over θ. Also, the

impact of the delay of by-claims on the expected present value of dividends is reduced

for a higher initial surplus of the company.

5 The effect of timing of dividends

To further explore the impact of the delay of by-claims on V (u; b), in this section

we consider a different timing for dividend payments, assuming f1 = g1 = 1. The

decision to pay a dividend to policyholders is now made only at the end of each time
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Table 3: Values of V (u; 10) for geometric distributed claims
V (u; 10) θ = 0 0.25 0.5 0.75 1

u = 1 0.05164 0.04968 0.04786 0.04617 0.04460
2 0.07264 0.07252 0.07242 0.07232 0.07223
3 0.11652 0.11637 0.11624 0.11612 0.11601
4 0.18535 0.18519 0.18504 0.18490 0.18477
5 0.29301 0.29284 0.29268 0.29253 0.29239
6 0.46121 0.46104 0.46087 0.46072 0.46058
7 0.72391 0.72373 0.72356 0.72340 0.72326
8 1.13409 1.13391 1.13374 1.13358 1.13344
9 1.77455 1.77437 1.77420 1.77404 1.77390

10 2.77455 2.77437 2.77420 2.77404 2.77390

period, by measuring the surplus of the company relative to the barrier b. Thus

dividends can only be paid at the end of each time period, even though the surplus of

the company at the beginning of the period may have exceeded the barrier b. We will

use V1(u; b) to denote the expected present value of dividend payments up to the time

of ruin in this case and a closed-form solution for V1(u; b) is obtained in the following.

When θ = 1, there are no delays for the by-claims, the model turns to be the one

proposed in De Finetti (1957) since the surplus increases or decreases by 1 each period.

An explicit expression of V1(u; b) has been provided in Gerber and Shiu (2004). Thus

when 0 < θ < 1, the explicit expression for V1(u; b) will show us the impact of the

possible delay of the by-claims on the expected present value of dividend payments.

It can be shown that V1(u; b) satisfies difference equations

V1(1; b) = vqV1(2; b) + v2pq(1− θ)V1(1; b), (5.1)

and

V1(u; b) = vqV1(u + 1; b) + vpV1(u− 1; b), u = 2, 3, . . . , b− 1, (5.2)
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with boundary condition:

V1(b; b) = vq[1 + V1(b; b)] + vpV1(b− 1; b). (5.3)

It is straightforward to show that V1(u; b) has a closed-form solution with the form

of Aru +Bsu, where r and s are the roots of the quadratic equation vqx2−x+vp = 0,

and 0 < s < 1 < r. From (5.1) and (5.3) one can determine the coefficients A and B

as follows:

A =
r + sθ

rb(r − 1)(r + sθ)− sb(s− 1)(s + rθ)
,

and

B =
s + rθ

sb(s− 1)(s + rθ)− rb(r − 1)(r + sθ)
.

Therefore

V1(u; b) =
(r + sθ)ru − (s + rθ)su

rb(r − 1)(r + sθ)− sb(s− 1)(s + rθ)
, u = 1, 2, . . . , b. (5.4)

The result of Theorem 3 is still true in this case, and it indicates that if θ < 1,

i.e., by-claims can be delayed, result (5.4) is always bigger than the result (A12) of

Gerber and Shiu (2004),

V1(u; b) =
ru − su

rb(r − 1)− sb(s− 1)
, u = 1, 2, . . . , b,

which is a special case of the former result with θ = 1.
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