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Abstract— In situations where processing memory is
limited, the Support Vector Machine quadratic program
can be decomposed into smaller sub-problems and solved
sequentially. The convergence of this method has been
proven previously through the use of a counting method.
In this initial investigation, we approach the convergence
analysis by treating the decomposed sub-problems as sub-
systems of a general system. The gradients of the sub-
problems and the inequality constraints are explicitly mod-
elled as system variables. The change in these variables
during optimization form a dynamic system modelled by
vector differential equations. We show that the change in
the objective function can be written as the energy in
the system. This makes it a natural Lyapunov function
which has an asymptotically stable point at the origin. The
asymptotic stability of the whole system then follows under
certain assumptions.

I. I NTRODUCTION

The Support Vector Machines (SVM) developed by
Vapnik [1] has been shown to be a powerful supervised
learning tool for pattern recognition problems. The data
to be classified is usually written as:

Θ = {(x1, y1) , (x2, y2) ... (xn, yn)}
xi ∈ <m

yi ∈ {−1, 1}
(1)

The SVM formulation is essentially a regularized
minimization problem leading to the use of Lagrangian
Theory and quadratic programming techniques. The for-
mulation defines a boundary separating two classes in the
form of a linear hyperplane in data space where the dis-
tance between the boundaries of the two classes and the
hyperplane is known as the margin. The idea is further
extended for data that is not linearly separable; where
it is first mapped via a nonlinear function to a possibly
higher dimension feature space. The nonlinear function
usually defined asφ(x) : x ⊂ <n → <m, n << m
is never explicitly used in the calculation. We note that
maximizing the margin of the hyperplane in either space
is equivalent to maximizing the distance between the
class boundaries.

The following dual problem expressed solely in terms

of Lagrange multipliers,αi is usually solved:

= (α)
min α∈D

=
1
2
αT Gα−αT e

D ={α|0 ≤ αi ≤ C,αT y = 0} (2)

where

Gij = yiyjK(xi, xj)
e = {1...1}

The explicit definition of the nonlinear functionφ(.),
has been circumvented by the used of a kernel function,
defined formally as the dot products of the nonlinear
functions;

K(xi, xj) =< φ(xi), φ(xj) > (3)

The trained classifier then has the following form:

f (x) = sign

(
n∑

i=1

αiyiK (x, xi) + b

)
(4)

The decomposition method is generally applied to
situations where computing memory is limited and hence
not all problem variables can be considered simulta-
neously during optimization. The method decomposes
the main problem into a series of sub-problems which
are then solved sequentially where a sub-problem is
identified by the corresponding set of variables known
as working setsin SVM literature. Osuna [2] is usually
credited as the earliest to apply a form of this method
to the SVM problem which he calledchunking. Later
algorithms such as SMO [3] and SVMlight [4] selected
working sets based on the steepest search direction. It
has been recognized by Lin, Hsu [5] and Chang [6]
that the choice of working sets is central to the speed
of the decomposition method. Lin [7], [8] also showed
that working sets chosen in this manner resulted in a
linear convergence rate. This was empirically confirmed
by Laskov [9] who further showed that decomposition
was sometimes faster than optimization on the entire
problem space. The convergence of the problem under
a SMO type algorithm has been proven by Keerthi
and Gilbert [10] using a counting method. A general



assumption is that the rate of convergence is proportional
to the rate of improvement to the objective function [9].

In this initial investigation, we examine the con-
vergence of the decomposition method using stability
analysis. We first model the optimization process as a
dynamic system governed by a vector differential equa-
tion. The gradients of the sub-problem and the potential
of overstep form the variables of this second order
system. The potential of overstep explicitly measures
the amount of constraint violation when the updated
variable is constrained to the feasible region. We show
that this system is non-conservative and the energy of
the system turns out to be the change in the objective
function. Next using Lyapunov’s direct method we show
that the dynamic system has an asymptotically stable
point at the origin which results in zero energy loss.
We begin by formally defining some notations which
will be used in the analysis and proceed to describe
the decomposition technique. In Section III, we model
the optimization process as a dynamic system and then
apply stability analysis to the resulting system. We use
the standard notation where scalars are denoted by italics,
column vectors by boldface small letters and matrices by
boldface capitals. Due to notation complexity, we take
x(i) to mean thei-th element ofx.

II. T HE DECOMPOSITIONMETHOD FORSUPPORT

VECTORMACHINES

In the decomposition technique, the main optimization
problem is broken down into a series of sub-problems.
The solution of a sub-problem results in the update of the
working set variables while the variables excluded from
the working set are untouched during the optimization
step. We use the subscriptp to indicate the working set
variables that are updated during an iteration ands to
indicate variables that do not change i.e. static during
the optimization step. The subscripts are also used to
indicate the size of the vectors and the matrices e.g. if
αp ∈ <m thenGp ∈ <m×m.

The decomposed sub-problem of the Lagrangian dual
(2) can be written in matrix form as follows:

= (αp)=
1
2

[
αp

αs

]T[Gp G∗
GT
∗ Gs

][
αp

αs

]
−

[
αp

αs

]T[
ep

es

]
(5)

subject to:

Dp = {αp|0 ≤ αp ≤ C1, αT
p yp = 0}

To simplify further, we can incorporate the equality
constraint into the objective function by treating the
scalarb, as a Lagrangian multiplier and write (5) as:

= (αp, b) =
1
2

[
αp

αs

]T[Gp G∗
GT
∗ Gs

][
αp

αs

]
−

[
αp

αs

]T[
ep

es

]
(6)

+b

[
αp

αs

]T[
yp

ys

]

subject to:

Dp = {αp|0 ≤ αp ≤ C1}
This general form of the decomposed sub-problem has
previously been proposed in [11] and has been shown to
give a similar result to (5).

Direct minimization of (6) on the feasible region
defined by the sub-spaceDp can be done by finding
the stationary gradients. This naturally results in the
Newton method. However, one can employ other update
methods as long as one is careful to ensure the updated
variables remain inDp e.g. [12]. The nature of our
problem simplifies this considerably because we havem-
inequality constraints which defineDp. We first write the
decomposed sub-problem as:

= (αp, b) =
1
2




αp

b
αs




T


Gp yp G∗
yT

p 0 yT
s

GT
∗ ys Gs






αp

b
αs


−




αp

b
αs




T


ep

0
es




or more compactly in augmented vector form as:

= (
α′p

)
=

1
2

[
α′p
αs

]T[Hp H∗
HT
∗ Gs

][
α′p
αs

]
−

[
α′p
αs

]T[
e′p
es

]
(7)

subject to:

Dp = {αp|0 ≤ αp ≤ C1}
where the augmented vectors corresponding to the work-
ing set is:

α′p =
[
αp

b

]

Hp =
[

Gp yp

yT
p 0

]

H∗ =
[

G∗
yT

s

]

e′p =
[

ep

0

]

Sinceαs is treated as ”static” the general gradient vector
is:

=′ (
α′p

)
α′p

=
[

Hp H∗
OT
∗ Os

][
α′p
αs

]
−

[
e′p
0s

]
(8)

The elements of the gradient vector corresponding to
the ”static” variables are zero as expected. The Hessian
matrix is then:

=′′ (
α′p

)
α′p

=
[
Hp O∗
OT
∗ OT

s

]
(9)

andO represents a matrix of zeroes of appropriate size.
The update rule for the variables is then found by setting
the gradients to zero as follows:

[
Hp H∗
OT
∗ Os

][
α′p
αs

]
−

[
e′p
0s

]
=

[
0′p
0s

]



Let t denote an arbitrary iteration step then:
[
α′p
αs

]t+1

=
[
α′p
αs

]t

−
[

Hp H∗
OT
∗ Os

]−1[
Hp H∗
OT
∗ Os

][
α′p
αs

]

+
[

Hp H∗
OT
∗ Os

]−1 [
e′p
0s

]
(10)

This form is meant to show thatαs remains unchanged
but is difficult to compute directly since the composite
matrix [

Hp H∗
OT
∗ Os

]

is singular. However, if we remove the rows and columns
corresponding toαs in (8) and (9) we obtain respec-
tively the augmented gradient vector corresponding to
the working set variables:

v′p =
[

Hp H∗
][α′p
αs

]
− e′p

=Hpα
′
p + H∗αs − e′p (11)

The unconstrained update rule is then:

α′t+1
p = α′t

p − H−1
p v′p (12)

We assume thatHp is non-singular which should hold
as long as the kernel function is positive definite. The
unconstrained update rule (12) is clearly Newtonian. All
that remains is to ensure that the updated variables re-
main inDp which can be done simply by restricting them
to the bounds of the inequality constraints should they
overstep the bounds. The constrained updated multiplier
∀i = 1...m is then:

αt+1
p

restricted

(i) =





C if αt+1
p (i) > C

0 if αt+1
p (i) < 0

αt+1
p (i) otherwise

(13)

In [13] we proposed the variableτ p(i) to account for
potential overstepi.e. if the iteration step causes thei-th
updated variable to exit the bounds. We also define the
quantitydp(i) as the distance of thei-th variable to either
the Upper Bound (UB) or Lower Bound (LB) depending
on the direction of update. We then have the following
augmented vector relationship:

τ ′p = −H−1
p v′p − d′p (14)

where the augmented potential overstep vector is

τ ′p=
[
τ p

τb

]

and the augmented vector of distances is

d′p=
[
dp

db

]

The scalarsτb and db are introduced since we treatb
as a variable. We believe that they could be interpreted

loosely as the potential of violating the equality con-
straint in (2) and the distance to the supremum ofb
respectively. When solving the problem in [3], these
scalars are not required in the computation since the
inequality bounds are explicitly adjusted to account for
them. We now write the constrained version of (12) as:

α′t+1
p = α′t

p − H−1
p v′p − τ ′p (15)

which ensures thatαt+1
p ∈ Dp and b minimizes the

corresponding term in (6). The change in objective
function during an iteration can be computed as follows:

Proposition2.1 (Change in Objective Function):Let
the kernel functionK(xi, xj) be positive definite and
suppose we solve (7) using (15). The change in objective
function value for anyα′p ⊂ α′ and∀p = 1...p′ is

M(v′p, τ
′
p)=

1
2

[
τ ′T

p Hpτ
′
p − v

′T
p H−1

p v′p
]

(16)

where the Hermitian matrixHp is the Hessian of the sub-
problem,v′p is the augmented gradient vector andτ ′

p is
the vector of potential overstep.

Proof: The proof is through direct calculation
where the change in objective function is defined for an
arbitrary stept as:

4== =(αt+1
p )−=(αt

p)

Using (7) and recalling thatαs is static during the
iteration we have:

4= =
1
2

[
α′p

t+1

αs

]T[
Hp H∗
HT
∗ Gs

][
α′p

t+1

αs

]

−
[
α′p

t+1

αs

]T[
e′p
es

]
+
[
α′p

t

αs

]T[
e′p
es

]
−

1
2

[
α′p

t

αs

]T[
Hp H∗
HT
∗ Gs

][
α′p

t

αs

]

which can be simplified as follows:

4= =
1
2

[
α′t+1

p

αs

]T[
Hp H∗
HT
∗ Gs

][
α′t+1

p

αs

]

−1
2

[
α′t

p

αs

]T[
Hp H∗
HT
∗ Gs

][
α′t

p

αs

]

−
[
α′t+1

p −α′t
p

αs −αs

]T[
e′p
es

]

=
1
2

[
α

′t+1
p

T
Hpα

′t+1
p −α

′t
p

T
Hpα

′t
p

]

+αT
s HT

∗ (α′t+1
p −α′t

p)

−(α′t+1
p −α′t

p)
T e′p

=
1
2
∆α′

p
T Hp∆α′

p + ∆α′
p

T v′p

where

∆α′
p= α′t+1

p −α′t
p



Now using (11) and (15) we then write the change in
objective function as a function ofv′p andτ ′p as follows:

4= =M(v′p, τ
′
p)

=
1
2

[
(H−1

p v′p + τ ′
p)T Hp(H−1

p v′p + τ ′
p)

]

−(H−1
p v′p + τ ′

p)T v′p

After further algebra we retrieve the required result:

M(v′p, τ
′
p)=

1
2

[
τ ′T

p Hpτ
′
p − v

′T
p H−1

p v′p
]

III. STABILITY ANALYSIS OF THE DECOMPOSITION

METHOD

In order to analyse the stability of the decomposition
method, we examine the change in the gradients,v′p and
the potential overstep,τ ′

p of an arbitrary sub-problem.
There are several reasons for this choice; the first is due
to the fact that the gradients form the KKT conditions
of the constrained minimization problem and the analysis
becomes mathematically nice in terms of these variables.

A. Modelling decomposition as a dynamic system

We attempt to investigate the change in gradients when
a sub-problem is solved through a number of iterations.
We denoteT as the duration of the iteration process or
horizon of the dynamic system in control theory. The
change in gradients is defined as:

δv′p =v′p
t+1 − v′p

t

Using (11) this then becomes

δv′p =Hp(α′t+1
p −α′t

p)

=Hp(−H−1
p v′p − τ ′

p)
=−v′p − Hpτ

′
p (17)

Dividing both sides by an iteration stepδt , we get:

δv′p
δt

=
−v′p − Hpτ

′
p

δt
(18)

This is a discretized vector differential equation where
we takeδt = 1. Now let us assume that the horizon of
the iteration is long orT is very large compared to an
iteration step so we have:

lim
T→∞,δt→0

δv′p
δt

=
dv′p
dt

=−v′p − Hpτ
′
p

The optimization of a sub-problem has now been mod-
elled as a first order dynamic system governed by the
following vector differential equation:

dv′p
dt

+ v′p + Hpτ
′
p = 0 (19)

The second order dynamic system can be found simply
by differentiating with respect to time,t giving us:

H−1
p

d2v′p
dt2

+ H−1
p

dv′p
dt

+
dτ ′

p

dt
= 0 (20)

The second order dynamic system (20) is actually similar
in form to the general damped mass-spring system [14],
[15]. However instead of scalar functions, we have the
damping vector functionh(v′p) : <m → <m given by:

h(v′p) = H−1
p

dv′p
dt

(21)

and the potential energy vector functionp(s) : <m →
<m written in terms of the potential of overstep:

p(s) = −
v′p∫

0

dτ ′
p

dt
ds

The potential energy is then the norm or the length of
the potential energy vector defined as:

P (s)= ‖p(s)‖

= −
v′p∫

0

dτ ′
p

dt

T

ds (22)

We now define the energy of the system,E(v′p,
dv′p
dt ) as

the sum of kinetic and potential energy as follows:

E(v′p,
dv′p
dt

) =
1
2

∥∥∥∥
dv′p
dt

∥∥∥∥
2

H−1
p

+ ‖p(s)‖ (23)

Using the definition in (14) and (19) this simplifies as
follows:

E(v′p,
dv′p
dt

) =
1
2

dv′p
dt

T

H−1
p

dv′p
dt

+

∥∥∥∥∥∥∥
−

v′p∫

0

dτ ′
p

dt
ds

∥∥∥∥∥∥∥

=
1
2
(−v′p − Hpτ

′
p)T H−1

p (−v′p − Hpτ
′
p)

+

∥∥∥∥∥∥∥

v′p∫

0

H−1
p

ds
dt

ds

∥∥∥∥∥∥∥

=
1
2

[
v′p

T H−1
p v′p + τ ′T

p Hpτ
′
p

]
+ v′p

T
τ ′

p

+

v′p∫

0

[
H−1

p (−s− Hpτ
′
p)

]T
ds

=
1
2

[
v′p

T H−1
p v′p + τ ′T

p Hpτ
′
p

]
+ v′p

T
τ ′

p

−1
2

v′p
T H−1

p v′p −
v′p∫

0

(−H−1
p s− d′p)

T ds

=
1
2

[
v′p

T H−1
p v′p + τ ′T

p Hpτ
′
p

]
+ v′p

T
τ ′

p

−v′p
T H−1

p v′p − v′p
T
τ ′

p

=
1
2

[
−v′p

T H−1
p v′p + τ ′T

p Hpτ
′
p

]

=M(v′p, τ
′
p) (24)



This shows that the energy of our dynamic system is
equivalent to the change in the objective function during
optimization and further analysis on the system will have
a direct correspondence to the iteration process itself.

B. Lyapunov’s direct method for stability

Lyapunov’s direct method is generally applied to in-
vestigate the asymptotic stability of equilibrium points in
a dynamic system. We review without proof Lyapunov’s
direct method in the following theorem which can be
found in various forms e.g. [14]–[16]. Detailed proofs
can be found in the references.

Theorem3.1 (Lyapunov’s Direct Method):Let D be
an open subset of<n containing an equilibrium point
x0 for a functionf ∈ C ′(D) i.e. f(x) is from a family
of first-order differentiable functions withf(x0) = 0.
Suppose we can find a functionL ∈ C ′(D) such that
L(x0) = 0 andL(x) > 0 if x 6= x0 then,

i. If
.
L(x) ≤ 0 for all pointsx ∈ D thenx0 is a stable

equilibrium point.
ii. If

.
L(x) < 0 for all points x ∈ D and in a

neighbourhood ofx0 then x0 is an asymptotically
stable equilibrium point.

iii. If
.
L(x) > 0 for all points x ∈ D and in a neigh-

bourhood ofx0 thenx0 is an unstable equilibrium
point.

Here
.
L(x) is the time derivative of the Lyapunov

function L(x). In order to extend the results of the the-
orem above to our dynamic system of vector differential
equations let us suppose we have the system:

.
x = Ax

Let us select a Lyapunov function having the matrix
quadratic form:

L(x) = xT Qx

wherex ∈ <2n andQ is a2n×2n matrix. Differentiating
with respect to time, we get the following:

.
L(x) =xT Q

.
x +

.
x

T
Qx

=xT QAx + AxT Qx

=xT Bx

where
B = QA + AT Q

Now to apply Theorem 3.1 we need only to determine
the definiteness of the matrixB. For the dynamic sys-
tem (20) a natural choice for the Lyapunov equation is
the energy function derived previously. However as noted
before, the dynamic system is a damped system so this
choice of Lyapunov equation ends up always negative
since it signifies energy loss. Since the hypothesis of
Theorem 3.1 requiresL(x) > 0, let us select the negative
of the energy function instead as the Lyapunov equation.
Conversely we could have written Theorem 3.1 in the

negative sense and reverse the order of the inequalities.
Nevertheless, we write our choice in the matrix quadratic
form as follows:

L(x) =−1
2

[
−v′p

T H−1
p v′p + τ ′T

p Hpτ
′
p

]

=
1
2

[
v′p
τ ′p

]T [
Hp

−1 0
0 −Hp

] [
v′p
τ ′p

]

=xT Qx

where

x =
1√
2

[
v′p
τ ′p

]
(25)

Q =
[

Hp
−1 0

0 −Hp

]

The derivative ofx with respect to time,t is found using
(19) and (14) to give:

.
x =

1√
2

[
dv′p
dt

dτ ′p
dt

]

=
1√
2

[ −v′p − Hpτ
′
p

−H−1
p (−v′p − Hpτ

′
p)

]

=
1√
2

[ −Ip −Hp

H−1
p Ip

] [
v′p
τ ′p

]
= Ax

whereIp is the identity matrix of appropriate dimensions.
We now computeB as follows:

B =QA + AT Q

=
[
Hp

−1 0
0 −Hp

][−Ip −Hp

H−1
p Ip

]

+
[−Ip H−1

p

−Hp Ip

][
Hp

−1 0
0 −Hp

]

=−2
[
Hp

−1 Ip

Ip Hp

]
(26)

The matrix B in (26) is negative semi-definite if the
sub-matrix Hp is positive semi-definite or the kernel
function selected is positive semi-definite. According to
Theorem 3.1(i) the sub-system defined by the differential
equation (20) has a stable equilibrium point at the
origin. If the kernel function is positive definite then the
system has an asymptotically stable equilibrium point.
Otherwise, the system is unstable. Furthermore, at the
equilibrium point the energy of the system is zero which
corresponds to zero change in the objective function as
expected at convergence. It is not too difficult to extend
this to the entire problem by viewing it as a larger system
composed of smaller sub-systems. The problem is solved
when this system reaches equilibrium which is equivalent
to all possible sub-systems achieving equilibrium. Now
since we have shown that an arbitrary sub-system is
stable depending on the choice of kernel function, and
if all sub-systems achieve equilibrium then by logical
argument the entire system will be stable. In optimization
sense, the main problem converges when solved by this
form of decomposition.



IV. D ISCUSSION

We have presented a convergence result for the de-
composition method using stability analysis of dynamical
systems. The analysis has been generalized in the sense
that it can be equivalently applied to other Support
Vector Machine models e.g. regression which are also
constrained optimization problems. It is interesting to
note that our previous notion of potential overstep has
an analogous energy interpretation as shown by (22)
which acts in the opposite direction of energy loss. In
optimization, we are generally interested in increasing
the rate of convergence which translates to increasing
the output of energy. This further reinforces our believe
that taking into account the constraints when solving a
sub-problem is a viable method for increasing the speed
of the algorithm. In particular, we may want to select a
sequence of sub-problems that minimize potential energy
to maximize the energy loss.

In this work, the main assumption is that the duration
T of the iteration is relatively large which in our opinion
is valid since small T is of no interest to us when trying
to increase the rate of convergence. However, it would
be interesting to investigate sub-systems that are near
unstable due to the choice of working set that causesB to
be nearly positive definite or indefinite. The assumption
made that all possible sub-systems are stable thus applies
only to well behaved problems. Furthermore, the systems
model we derived is coupled and the effects of coupling
on the rate of convergence is also another question of
interest. In short, the dynamics of a sub-system affects
the states of all the other sub-systems and is worth
studying further in order to strengthen the convergence
result.

V. CONCLUSION

In this work, we modelled the decomposition method
using a Newtonian update as a second order dynamic
system. The vector differential equations are written
in terms of the gradients of the sub-problem and the
potential of overstep. We then showed that the change in
objective function has a direct analogy with the energy
of the dynamic system. The system was then shown to
be asymptotically stable through the use of Lyapunov’s
direct method provided all possible sub-systems were
asymptotically stable. Stability of the system is then
taken to mean convergence of the optimization method.
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