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I. INTRODUCTION

Zellner’s idea of combining several equations into one model to improve estimation

efficiency (Zellner 1962) ranks as one of the most successful and lasting innovations

in the history of econometrics.  The resulting seemingly unrelated regressions (SUR)

model has generated a wealth of both theoretical and empirical contributions.

Reviews of work on or involving the SUR model can be found in Srivastava and

Dwivedi (1979), Judge et al (1985), Srivastava and Giles (1987) and Fiebig (2001).  It

was also Zellner (in Zellner 1971) who popularised Bayesian inference in

econometrics generally and described the SUR model within the context of Bayesian

inference.  However, at that time, convenient methods for deriving or estimating

marginal posterior density functions and moments for individual SUR coefficients

were not generally available.  Subsequently, analytical results were derived for some

special cases (Drèze and Morales 1976, Richard and Tompa 1980, Richard and Steel

1988, Steel 1992) and importance sampling was suggested as a means for estimating

marginal posterior density functions and their moments (Kloek and van Dijk 1978).

More recently, the application of Markov Chain Monte Carlo (MCMC) methodology

to Bayesian inference has made available a new range of numerical methods that

make Bayesian estimation of the SUR model more convenient and accessible.  The

literature on MCMC is extensive; for a general appreciation of its scope and purpose,

see Tierney (1994), Albert and Chib (1996), Chen et al (2000), Chib and Greenberg

(1996), Gilks et al (1996), Tanner (1996), and the chapter by Geweke et al (this

volume).  For application of MCMC to the SUR model, see, for example, Percy

(1992, 1996), Chib and Greenberg (1995), Griffiths and Chotikapanich (1997) and

Griffiths et al (2000).
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The objective of this chapter is to provide a practical guide to computer-aided

Bayesian inference for a variety of problems that arise in applications of the SUR

model.  We describe examples of problems, models and algorithms that have been

placed within a general framework in the chapter by Geweke et al (this volume); our

chapter can be viewed as complimentary to that chapter.  The model is described in

Section II; the joint, conditional and marginal posterior density functions that result

from a noninformative prior are derived.  In Section III we describe how to use

sample draws of parameters from their posterior densities to estimate posterior

quantities of interest; two Gibbs sampling algorithms and a Metropolis-Hastings

algorithm are given.  Modifications necessary for nonlinear equations, equality

restrictions and inequality restrictions are presented in Sections IV, V and VI,

respectively.  Three applications are described in Section VII.  Section VIII contains

methodology for forecasting.  Some extensions are briefly mentioned in Section IX

and a few concluding remarks are given in Section X.

II. MODEL SPECIFICATION AND POSTERIORS FROM A

NONINFORMATIVE PRIOR

Consider M equations written as

1,2,...,i i i iy X e i M= β + =              (1)

where iy  is a T-dimensional vector of observations on a dependent variable, iX  is a

( )iT K×  matrix of observations on iK  nonstochastic explanatory variables, possibly

including a constant term, iβ  is a iK -dimensional vector of unknown coefficients that

we wish to estimate, and ie  is a T-dimensional unobserved random vector.  The M

equations can be combined into one big model written as
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1 1 1 1

2 2 2 2

M M M M

y X e

y X e

y X e

β       
       β       = +
       
       β       

! " ! !
             (2)

that we then write compactly as

eXy +β=              (3)

where y is of dimension ( 1),TM ×  X is of dimension ( )TM K× , with 1
M

iiK K== ∑ , β

is ( 1)K ×  and e is ( 1)TM × .  We assume the distribution for e is given by

~ (0, )Te N IΣ ⊗              (4)

Thus, the errors in each equation are homoskedastic and not autocorrelated.  There is,

however, contemporaneous correlation between corresponding errors in different

equations.  The variance of the error of the i-th equation we denote by ,iiσ  the i-th

diagonal element of Σ .  The covariance between two corresponding errors in different

equations (say i and j), we write as ,ijσ  an off-diagonal element of Σ .

Using (.)f  as generic notation for a probability density function (pdf), the

likelihood function for andβ Σ  can be written as

22 11
2( | , ) (2 ) exp{ ( ) ( )( )}

TMT
Tf y y X I y X

−− −′β Σ = π Σ − − β Σ ⊗ − β               (5)

This pdf can also be written as

22 11
2( | , ) (2 ) exp{ tr( )}

TMTf y A
−− −β Σ = π Σ − Σ              (6)

where A is an ( )M M×  matrix with ( , )i j -th element given by

[ ] ( ) ( )ij i i i j j jA y X y X′= − β − β              (7)

Note that A  can also be written as
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* *( ) ( )A Y X B Y X B′= − −              (8)

where Y  is the ( )T M×  matrix 1 2( , ,..., )MY y y y= , *X  is the ( )T K×  matrix

*
1 2( , ,..., )MX X X X= , and B  is the ( )K M×  matrix

1

2

M

B

β 
 β =
 
 β 

"
             (9)

Result (9) on page 42 of Lütkepohl (1996) can be used to establish the equivalence of

equations (5) and (6).  Specifically,

     
1 1* * * *

1

tr[( ) ( ) ] [vec( )] [ ]vec( )

( ) ( )( )

T

T

Y X B Y X B Y X B I Y X B

y X I y X

− −

−

′′− − Σ = − Σ ⊗ −

′= − β Σ ⊗ − β
            (10)

Two prior pdfs will be considered in this chapter; they are the conventional

noninformative prior (see, for example, Zellner 1971, ch.8)

( 1) 2
( , ) ( ) ( )

M
f f f

− +β Σ = β Σ ∝ Σ              (11)

and another prior that imposes inequality restrictions on β , but is otherwise

noninformative.  The inequality prior and its consequences will be considered later in

the chapter.  The noninformative prior in (11) is chosen to provide objectivity in

reporting, not because we believe total ignorance is prevalent.  Geweke et al (chapter

in this volume) discuss how to modify results to accommodate the prior of a specific

client.

A. Joint Posterior pdf for (β,Σ)(β,Σ)(β,Σ)(β,Σ)

Applying Bayes’ theorem to the prior pdf in (11) and the likelihood function in (5)

and (6) yields the joint posterior pdf for andβ Σ
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( 1) 2 11
2

( 1) 2 11
2

( , | ) ( | , ) ( , )

exp{ ( ) ( )( )}

exp{ tr( )}

T M
T

T M

f y f y f

y X I y X

A

− + + −

− + + −

β Σ ∝ β Σ β Σ

′∝ Σ − − β Σ ⊗ − β

= Σ − Σ

           (12)

In the remainder of this section we describe a number of marginal and conditional

posterior pdf’s that are derived from equation (12). These pdf’s will prove useful in

later sections when we discuss methods for estimating quantities of interest.  We will

assume that interest centers on individual coefficients, say the k-th coefficient in the i-

th equation ikβ , and, more generally, on some functions of the coefficients, say ( )g β .

Forecasting future values *y  will also be considered.  The relevant pdf’s that express

our uncertain post-sample knowledge about these quantities are the marginal pdf’s

( | ),ikf yβ  ( )( ) |f g yβ  and *( | )f y y , respectively.  Typically, we report results by

graphing these pdf’s, and tabulating their means, standard deviations and probabilities

for regions of interest. Describing the tools for doing so is the major focus of this

chapter.

B. Conditional Posterior pdf for ( | )β Σβ Σβ Σβ Σ

The term in the exponent of equation (12) can be written as

1 1

1

ˆ ˆ( ) ( )( ) ( ) ( )( )

ˆ ˆ( ) ( ) ( )

T T

T

y X I y X y X I y X

X I X

− −

−

′ ′− β Σ ⊗ − β = − β Σ ⊗ − β

′ ′+ β−β Σ ⊗ β−β
           (13)

where yIXXIX TT )(])([ˆ 111 ⊗Σ′⊗Σ′=β −−− . It follows that the conditional posterior

pdf for givenβ Σ  is the multivariate normal pdf

11
2

ˆ ˆ( | , ) exp{ ( ) ( ) ( )}Tf y X I X−′ ′β Σ ∝ − β−β Σ ⊗ β −β            (14)

with posterior mean equal to the generalised least squares estimator
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1 1 1ˆ( | , ) [ ( ) ] ( )T TE y X I X X I y− − −′ ′β Σ = β = Σ ⊗ Σ ⊗            (15)

and posterior covariance matrix equal to

1 1( | , ) [ ( ) ]TV y X I X− −′β Σ = Σ ⊗            (16)

The last two expressions are familiar ones in sampling theory inference for the SUR

model.  They show that the traditional SUR estimator, written as

1 1 1ˆ̂ ˆ ˆ[ ( ) ] ( )T TX I X X I y− − −′ ′β = Σ ⊗ Σ ⊗            (17)

where Σ̂  is a 2-step estimator or a maximum likelihood estimator, can be viewed as

the mean of the conditional posterior pdf for ˆgiven .β Σ   The traditional covariance

matrix estimator 1 1ˆ[ ( ) ]TX I X− −′ Σ ⊗  can be viewed as the conditional covariance

matrix from the same pdf.  Since this pdf does not take into account uncertainty from

not knowing Σ  (the fact that Σ̂  is an estimate is not recognised), it overstates the

reliability of our information about .β   This dilemma was noted by Fiebig and Kim

(2000) in the context of an increasing number of equations.

C. Marginal Posterior pdf for ββββ

The more appropriate representation of our uncertainty about β  is the marginal

posterior pdf ( )|f yβ .  It can be shown that this pdf is given by

2

( | ) ( , | )

T

f y f y d

A
−

β = β Σ Σ

∝

∫
           (18)

The integral in (18) is performed by using properties of the inverted Wishart

distribution (see, for example, Zellner 1971, p.395).  For 
2

( | )
T

f y A
−β ∝  to be
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proper, we require *rank( )T M X≥ +  (Griffiths et al 2001).  Also, this pdf is not of a

standard recognisable form.  Except for special cases, analytical expressions for its

normalising constant and moments are not available.  Estimating these moments, and

marginal pdf’s for individual coefficients ikβ , is considered in the next section; first,

we describe some more pdf’s that will prove to be useful.

D. Conditional Posterior pdf for 1 2( | , ..., )Mβ β ββ β ββ β ββ β β

It is possible to show that the posterior pdf for the coefficient vector from one

equation, conditional on those from other equations, is a multivariate t-distribution.

To derive this result, we will consider the posterior pdf for 1,β  conditional on

2 3( , ,..., )Mβ β β .  We write a partition of *( )Y X B−  into its first and remaining

( 1)M −  columns as

( )*
1 1 1 (1)Y X B y X E− = − β

The corresponding partition of A is

1 1 1 1 1 1 1 1 1 (1)

(1) 1 1 1 (1) (1)

( ) ( ) ( )

( )

y X y X y X E
A

E y X E E

′ ′− β − β − β 
=  

′ ′− β  

Using a result on the determinant of a partitioned matrix, we have

( )1
(1) (1) 1 1 1 1 1 1 1 1 1 (1) (1) (1) (1) 1 1 1( ) ( ) ( ) ( ) ( )A E E y X y X y X E E E E y X−′′ ′′ ′= − β − β − − β − β

Defining 1
(1) (1) (1) (1) (1)( )TQ I E E E E−′ ′= − , and 1

1 1 (1) 1 1 (1) 1( )X Q X X Q y−′ ′β =#  the second

term in the above equation can be written as

1 1 1 (1) 1 1 1 1 1 1 (1) 1 1 1 1 1 1 (1) 1 1 1( ) ( ) ( ) ( ) ( ) ( )y X Q y X y X Q y X X Q X′′ ′ ′− β − β = − β − β + β −β β −β# # # #
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Collecting all these results, substituting into equation (18), and letting (1) (1)| |E E′  be

absorbed into the proportionality constant, we can write

1 1( ) / 2

1 1 1 (1) 1 1 1
1 2 3 1 2

1

( ) ( )
( | , , ,..., )

K v

M

X Q X
f y v

s

− +
 ′′β − β β − β
 β β β β ∝ +
  

# #

#
           (19)

where 1 1v T K= −  and 2
1 1 1 1 (1) 1 1 1 1( ) ( ) /s y X Q y X v′= − β − β# ## .  Equation (19) is in the

form of a multivariate t-distribution with degrees of freedom 1v , mean 1β# , and

covariance matrix ( ) 2 1
1 1 1 1 (1) 1/( 2) ( )v v s X Q X −′− # .  See, for example, Zellner (1971,

p.383).  The conditional posterior pdf’s for other iβ  are similarly defined.

E. Conditional Posterior pdf for ( | )Σ βΣ βΣ βΣ β

Viewing the joint posterior pdf in equation (12) as a function of only Σ  yields the

conditional posterior pdf for Σ  given β. It is the inverted Wishart pdf (see, for

example Zellner 1971, p.395)

( 1) 2 11
2( | , ) exp{ tr( )}

T M
f y A

− + + −Σ β ∝ Σ − Σ            (20)

It has T degrees of freedom, and parameter matrix A.

F. Marginal Posterior pdf for ΣΣΣΣ

The marginal pdf for Σ , obtained by using the result in (13), and then using properties

of the multivariate normal pdf to integrate out β , is given by

1/ 2 ( 1) 21 11
2

1/ 2 ( 1) 21 11
2

( | ) ( , | )

ˆ ˆ( ) exp{ ( ) ( )( )}

ˆ( ) exp{ tr( )} (21)

T M
T T

T M
T

f y f y d

X I X y X I y X

X I X A

− − + +− −

− − + +− −

Σ = β Σ β

′ ′∝ Σ ⊗ Σ − − β Σ ⊗ − β

′= Σ ⊗ Σ − Σ

∫
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where Â  is an ( )M M×  matrix with ( , )i j -th element given by

ˆ ˆˆ[ ] ( ) ( )ij i i i j j jA y X y X′= − β − β

The posterior pdf in (21) is not an analytically tractable one whose moments are

known.  However, as we will see, we can draw observations from it using the Gibb’s

sampler.

III. ESTIMATING POSTERIOR QUANTITIES

Given the intractability of the posterior pdf 
2

( | )
T

f y A
−β ∝ , methods for estimating

marginal posterior pdf’s for individual coefficients ,ikβ  their moments, and

probabilities of interest, are required.  Suppose that we have draws (1) (2) ( ), ,...., Nβ β β

taken from ( | )f yβ  and, possibly, draws (1) (2) ( ), ,..., NΣ Σ Σ  taken from ( | )f yΣ .  We

will describe a number of ways one can proceed to estimate the desired quantities;

then, we discuss how the required posterior draws can be obtained.

A. Estimating Posterior pdf’s

A simple way to estimate the marginal posterior pdf of ikβ , say, is to construct a

histogram of draws of that parameter.  Joining the mid points of the histogram classes

provides a continuous representation of the pdf, but, typically, it will be a jagged one

unless some kind of smoothing procedure is employed.  Alternatively, one can obtain

a smooth pdf, and a more efficient estimate, by averaging conditional posterior pdf’s

for the quantity of interest.  In this case, for conditional posterior pdf’s one can use the

t-distributions defined by (19), or, if draws on both andβ Σ  are available, the normal

distributions defined by (14).

Considering the t-distribution first, an estimate of ( | )ikf yβ  is given by
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( )

( )

( ) ( ) ( ) ( )
1 1 1

1

( 1) / 22( )

2( ) ( )2( ) ( )
1 ( )( )

1ˆ ( | ) | , ,..., , ,...,

1 1
i

N

ik ik i i M

v

N
ik ik

i
i i kki i kk

f y f y
N

c v
N s qs q

− +
=

− +

=

β = β β β β β

 β − β = + 
  

∑

∑

$ $ $ $

$

$

$ $$ $$

#

##

              (22)

The univariate t-distribution that is being averaged in equation (22) is the conditional

pdf for a single coefficient from iβ , obtained from the multivariate t-distribution in

(19), after generalising from 1β  to iβ .  The previously undefined terms in (22) are the

constant

/ 2[( 1) / 2]

( / 2)

vv v
c

v

Γ +=
Γ π

where (.)Γ  is the gamma function, the conditional posterior mean ikβ#  which is the k-

th element in iβ# , and ( )i kkq  that is the k-th diagonal element of 1
( )( ) .i i iX Q X −′   To plot

the pdf in (22), we choose a grid of values for ikβ  (50-100 is usually adequate), and

for each value of ikβ , we compute the average in (22).  These averages are plotted

against the ikβ .

Alternatively, the conditional normal distributions in (14) can be averaged

over .Σ  In this case an estimate of the marginal posterior pdf for ikβ  is given by

( )

( )

( )

1

2( )
( )( )

1 ( )( )

1ˆ ( | ) | ,

1 1 1 1 ˆexp
22

N

ik ik

N

ik ik
i kki kk

f y f y
N

N hh

=

=

β = β Σ

  = − β − β 
π   

∑

∑

$

$

$
$$$

             (23)

where ˆ
ikβ  is the k-element in the i-th vector component of β̂  (see equation(15)), and

( )i kkh  is the k-diagonal element in the i-th diagonal block of 1 1[ ( ) ]TX I X− −′ Σ ⊗  (see
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equation (16)).  Like in (22), the average in (23) is computed for, and plotted against,

a grid of values for ikβ .

B. Estimating Posterior Means and Standard Deviations

Corresponding to the three ways given for estimating posterior pdf’s, there are three

ways of estimating their posterior means and variances.  The first way is to use the

sample mean and covariance matrix of the draws.  That is,

( )

1

1ˆ ( | )
N

E y
N =

β = β = β∑ $

$
          (24)

and

( )( )( ) ( )

1

1ˆ( | )
1

N

V y
N =

′β = β − β β − β
− ∑ $ $

$
           (25)

The second and third approaches use the results (1) an unconditional mean is

equal to the mean of the conditional means, and (2) the unconditional variance is

equal to the mean of the conditional variances plus the variance of the conditional

means. Applying these two results to the conditional posterior pdf in (19) yields

( ) ( ) 1 ( )
( ) ( )

1 1

1 1ˆ ( | ) ( )
N N

i i i i i i ii iE y X Q X X Q y
N N

−

= =

′ ′β = β = = β∑ ∑$ $ $

$ $

# #            (26)

and

( )( )2( ) ( ) 1 ( ) ( )
( )

1 1

1 1ˆ( | ) ( )
2 1

N N
i

i i i i i i i ii
i

v
V y s X Q X

v N N
−

= =

  ′′β = + β − β β − β − − 
∑ ∑$ $ $ $

$ $

# # # ##

(27)

Applying the two results to the normal conditional posterior pdf’s in (14)

yields
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( ) 1( ) 1 1( )

1 1

1 1ˆ ˆˆ ( | ) [ ( ) ] ( )
N N

T TE y X I X X I y
N N

− − −

= =
′ ′β = β = Σ ⊗ Σ ⊗ = β∑ ∑$ $ $

$ $
       (28)

and

( )( )1( ) 1 ( ) ( )

1 1

1 1 ˆ ˆ ˆ ˆˆ( | ) [ ( ) ]
1

N N

TV y X I X
N N

− −

= =

′′β = Σ ⊗ + β − β β − β
−∑ ∑$ $ $

$ $
           (29)

Clearly, using the sample means and standard deviations from equations (24) and (25)

is much easier than using the conditional quantities in equations (26) through (29).

However, averaging conditional moments generally leads to more efficient estimates.

C. Estimating Probabilities

Often, we are interested in reporting the probability that ikβ  lies with a particular

interval or finding an interval with a pre-specified probability content. In sampling

theory inference intervals with 95% probability content are popular. An estimate of

the probability that ikβ  lies in a particular interval is given by the proportion of draws

that lie within that interval. Alternatively, one can find conditional probabilities and

average them, along the lines that the conditional means are averaged in equations

(26) and (28). Using the conditional normal distribution as an example, we can

estimate the probability that ikβ  lies in the interval ),( ba  as

( )( )

1

1ˆ( ) ( | )
N

ik ikP a b P a b
N =

< β < = < β Σ <∑ $

$
           (30)

Order statistics can be used to obtain an interval with a prespecified

probability content. For example, for a 95% probability interval for ikβ , we can take

the 0.025 and 0.975 empirical quantiles of the draws of the ikβ .
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D. Functions of ββββ

How do we proceed if we are interested in some functions of β , say ( )g β ? Examples

of such functions considered later in this chapter are monotonicity and curvature

conditions in a cost system, and the relative magnitudes of equivalence scales in

household expenditure functions.  Examples outside the context of SUR models are

the evaluation of consumer surplus (Griffiths 1999) and the stationary region in a time

series model (Geweke 1988).

If it is possible to derive, analytically, conditional distributions of the form

( )1 2,( ) | , , Mf g yβ β β…  or ( )( ) | ,f g yβ Σ , then one can work with these conditional

distributions along the lines described above. However, the ability to proceed

analytically is rare, given that ( )g β  is frequently nonlinear and of lower dimension

than β . Instead, we can compute values ( )( ), 1,2, ,g Nβ =$ $ … , from the draws of β .

These values can be placed in a histogram to estimate the pdf of ( )g β . Their sample

mean and variance can be used to estimate the corresponding posterior mean and

variance. Probabilities can be estimated using the proportion of values in a given

region and order statistics can be used to find an interval with a given probability

content.

E. Gibbs Sampling with ββββ  and ΣΣΣΣ

We now turn to the question of how to obtain draws β  and Σ  from their respective

marginal posterior pdf”s. One possible way is to use an MCMC algorithm known as

Gibbs sampling. In this procedure draws are made iteratively from the conditional

posterior pdf”s. Specifically, given a particular starting value for Σ , say (0)Σ , the $ -

th draw from the Gibbs sampler (0) (0)( , )β Σ  is obtained using the following two steps:
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1. Draw ( )β $  from ( 1)( | , )f y−β Σ $ .

2. Draw ( )Σ $  from ( )( | , )f yΣ β $ .

Making these draws is straightforward, given that the two conditional posterior pdf’s

are normal and inverted Wishart, respectively. (See the appendix for details.) MCMC

theory suggests that, after a sufficiently large number of draws, the Markov Chain

created by the draws will converge. After convergence, the subsequent draws can be

viewed as draws from the marginal posterior pdf’s ( | )f yβ  and ( | )f yΣ .  It is these

draws that can be used to present results in the desired fashion. Draws taken prior to

the point at which convergence is assumed to have taken place are sometimes called

the "burn in"; they are discarded.  A large number of diagnostics have been suggested

for assessing whether convergence has taken place.  See, for example, Cowles and

Carlin (1996). Assessing whether convergence has taken place is similar to assessing

whether a time series is stationary.  Thus, visual inspection of a graph of the sequence

of draws, testing whether the mean and variance are the same at the beginning of the

chain as at the end of the chain, and testing whether two or more separately-run chains

have the same mean and variance, are ways of checking for convergence.

Since we are using a sample of draws of β  and Σ  to estimate posterior means

and standard deviations and other relevant population quantities, the accuracy of the

estimates is a concern. Estimation accuracy is assessed using numerical standard

errors. Methods for computing such standard errors are described in the chapter by

Geweke et al.  Because the draws produced by MCMC algorithms are correlated, time

series methods are used to compute the standard errors; also, larger samples are

required to achieve a given level of accuracy relative to a situation involving

independent draws.
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Although the above remarks on convergence and numerical standard errors

were made in the context of the Gibbs sampler for β  and Σ , they also apply to other

MCMC algorithms including the Gibbs sampler for β  and the Metropolis Hastings

algorithm described below.

F. Gibbs Sampling with ββββ

If the number of equations is large, making Σ  of high dimension, then it may be

preferable to use a Gibbs sampler based on the conditional posterior pdfs for the iβ

from each equation. Note, however, that this alternative is not feasible if cross-

equation restrictions on the iβ , as discussed in Sections V and VII, are present.

To proceed with this Gibbs sampler, we begin with starting values for all

coefficients except the first, say (0) (0) (0)
2 3( , , , )Mβ β β…  and then sample iteratively using

the following steps for the $ -th draw:

1. Draw ( )
1β $  from ( )( 1) ( 1)

1 2| , , Mf − −β β β$ $… .

2. Draw ( )
2β $  from ( )( ) ( 1) ( 1)

2 1 3| , , , Mf − −β β β β$ $ $… .

!

i.   Draw ( )
iβ $  from ( )( ) ( ) ( 1) ( 1)

1 1 1| , , , , ,i i i Mf − −
− +β β β β β$ $ $ $… … .

!

M.   Draw ( )
Mβ $  from ( )( ) ( )

1 1| , ,M Mf −β β β$ $… .

The conditional posterior pdfs are multivariate t-distributions from which we can

readily draw values (see the Appendix). Ordinary least squares estimates are adequate

for starting values.
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G. A Metropolis-Hastings Algorithm

An alternative to Gibbs sampling is a Metropolis-Hastings algorithm that draws

observations from the marginal posterior pdf ( | )f yβ . As we will see, this algorithm

is particularly useful for an inequality-restricted prior, or if the equations are

nonlinear. The algorithm we describe is a random-walk algorithm; it is just one of

many possibilities. For others see, for example, Chen et al (2000).

The Metropolis–Hastings algorithm generates a candidate value *β  that is

accepted or rejected as a draw from the posterior pdf ( | )f yβ . When it is rejected, the

previously accepted draw is repeated as a draw. Thus, rules are needed for generating

the candidate value *β  and for accepting it. Let V  be the covariance matrix for the

distribution used to generate a candidate value. The maximum likelihood covariance

matrix is usually suitable. For the linear SUR model this matrix is 1 1ˆ[ ( ) ]TX I X− −′ Σ ⊗ .

Choose a feasible starting value (0)β . The following steps can be used to draw the

( 1) th+ −$  observation in a random walk Metropolis–Hastings chain.

1. Draw a candidate value *β  from a ( )( , )N cVβ $  distribution where c  is a

scalar set such that *β  is accepted approximately 40-50% of the time.

2. Compute the ratio of the posterior pdf evaluated at the candidate draw to

the posterior pdf evaluated at the previously accepted draw.

*

( )

( | )

( | )

f y
r

f y

β=
β $

Note that this ratio can be computed without knowledge of the normalising

constant for ( | )f yβ .  Also, if any of the elements of *β  fall outside a

feasible parameter region defined by an inequality-restricted prior (see
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Section V), then *( | ) 0f yβ = .  When 1>r , *β  is a more likely value than

( )β $  in the sense that it is closer to the mode of the distribution.  When

1<r , *β  is further into the tails of the distribution. If 1>r , *β  is

accepted; if 1<r , *β  is accepted with probability r . Thus, more draws

occur in regions of high probability and fewer draws occur in regions of

low probability.  Details of the acceptance-rejection procedure follow in

step 3.

3. Draw a value u  for a uniform random variable on the interval (0,1).

If ru ≤ , set ( )1 *+β = β$ .

If ru > , set ( )1 ( )+β = β$ $ .

Return to step 1 with $  set to 1+$ .

Let ( )*( | )q β β $  be the distribution used to generate the candidate value *β  in step 1. In

our case it is a normal distribution. In more general Metropolis-Hastings algorithms,

where our choice of distribution is not necessarily utilized, r  is defined as

( )* *

( ) ( )*

( | ) ( | )
.

( | ) ( | )

f y q
r

f y q

β β β=
β β β

$

$ $

In our case ( ) ( )* *( | ) ( | )q qβ β = β β$ $ . Various alternatives for (.)q  have been

suggested in the literature.

IV. NONLINEAR SUR

Many economic models are intrinsically nonlinear, or a nonlinear model may result

from substituting nonlinear restrictions on β  into a linear model. The Gibbs sampling
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algorithms that we described are no longer applicable for a nonlinear SUR model.

However, we can still proceed with the Metropolis-Hastings algorithm.

Suppose that the nonlinear SUR model is given by

( , )i i iy h X e= β + Mi ,,2,1 …=            (31)

where the ih  are the nonlinear functions. The dimensions of iy , ih and ie  are )1( ×T .

In this context X  represents a set of explanatory variables and β  is the vector of all

unknown coefficients. The omission of an i-subscript on X  and β  is deliberate; the

same coefficients and the same explanatory variables can occur in different equations.

The earlier assumptions about the ie  are retained.

With a nonlinear model, ( )f β ∝ constant may no longer be suitable as a

noninformative prior; consideration needs to be given to the type of nonlinear

function and to whether particular values for some parameters need to be excluded.

Thus, we give results for a general prior on β , denoted by ( )f β .  We retain the

noninformative prior 
( 1) / 2

( )
M

f
− +Σ ∝ Σ , and assume a priori independence of β  and

Σ .  Thus, the prior pdf is given by

( 1) / 2
( , ) ( )

M
f f

− +β Σ ∝ Σ β            (32)

The likelihood function can be written as

22 11
2

22 11
2

( | , ) (2 ) exp{ ( ( , )) ( )( ( , ))}

(2 ) exp{ tr( )} (33)

TMT
T

TMT

f y y h X I y h X

A

−− −

−− −

′β Σ = π Σ − − β Σ ⊗ − β

= π Σ − Σ

where ),,,( 21 ′′′′= Myyyy … , ),,,( 21 ′′′′= Mhhhh … , and, now, A  is an )( MM ×  matrix

with th),( −ji  element given by
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[ ] [ ( , )] [ ( , )]ij i i j jA y h X y h X′= − β − β            (34)

The joint posterior pdf for ( , )β Σ  is

( 1) 2 11
2( , | ) ( ) exp{ tr( )}

T M
f y f A

− + + −β Σ ∝ β Σ − Σ            (35)

and, integrating out Σ , the marginal posterior pdf for β  is

2
( | ) ( )

T
f y f A

−β ∝ β            (36)

Thus, the posterior for β  in the nonlinear SUR model involves the same determinant

of sums of squares and cross products of residuals as it does in the linear model. A

more general prior has been added.  (Of course, it also could have been included in

the linear model.)

The Metropolis-Hastings algorithm described in Section III can be readily

applied to the posterior pdf in equation (36). Because the earlier results on conditional

posterior pdfs for β  and the iβ  no longer hold, the draws need to be used directly to

estimate posterior pdfs and their moments.

V. IMPOSING LINEAR EQUALITY RESTRICTIONS

Economic applications of SUR models frequently involve linear restrictions on the

coefficients. For example, the same coefficient may appear in more than one equation,

the Slutsky symmetry conditions in demand models lead to cross-equation

restrictions, or one might want to hypothesize that all equations have the same

coefficient vector. Under the existence of cross-equation linear restrictions, the Gibbs

sampler using β  and Σ , and the Metropolis-Hastings algorithm, can still be used.

However, the Gibbs sampler involving only β  is no longer applicable. If the

restrictions are all within equation restrictions, all three algorithms are possible.
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Suppose a set of J  linear restrictions is written as

( )1 2R R R r
η β = = γ 

           (37)

where 1R  is )( JJ ×  and nonsingular, 2R  is ))(( JKJ −× , and η  and γ  are J  and

)( JK −  dimensional sub-vectors of β , respectively. To make this partition, it may be

necessary to reorder the elements in β . Correspondingly, we can reorder the columns

of X  and partition it so that the linear SUR model can be written as

( )1 2y X e X X e
η = β + = + γ 

           (38)

This reordering may destroy the block-diagonal properties of X .  From (37), we can

solve for η  as

1
1 2( )R r R−η = − γ            (39)

Substituting (39) into (38) and rearranging yields

1 1
1 1 2 1 1 2( )y X R r X X R R e− −− = − γ +

or

z Z e= γ +            (40)

where rRXyz 1
11
−−= , and 1

2 1 1 2Z X X R R−= −  represent new sets of “observations”.

In general, Z  and γ  can no longer be partitioned unambiguously into M  separate

equations. However, the stochastic properties of e  remain the same. Thus, all the

results in Sections II and III that did not rely on a partitioning of X  and β  can still be

applied to the model in (40). In particular, a Gibbs sampler can be used to draw γ  and
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Σ , and the Metropolis-Hastings algorithm can be used to draw γ , from their

respective posterior pdf’s.

VI. IMPOSING INEQUALITY RESTRICTIONS

Possible inequality restrictions on the coefficients range from simple ones such as a

sign restriction on a single coefficient to more complex ones such as enforcing the

eigenvalues of a matrix of coefficients to be nonpositive. Letting the feasible region

defined by the inequality constraints be denoted by S , and defining the indicator

function

1 for  
( )

0 for  S

S
I

S

β∈
β =  β∉

           (41)

the inequality restrictions can be accommodated by setting up the otherwise

noninformative prior pdf

( 1) 2
( , ) ( )

M
Sf I

− +β Σ ∝ Σ β            (42)

Using Bayes’ Theorem to combine this prior with the likelihood function in equation

(5), we obtain the joint posterior pdf.

( 1) 2 11
2

( 1) 2 11
2

( , | ) ( | , ) ( , )

exp{ ( ) ( )( )} ( )

exp{ tr( )} ( ) (43)

T M
T S

T M
S

f y f y f

y X I y X I

A I

− + + −

− + + −

β Σ ∝ β Σ β Σ

′∝ Σ − − β Σ ⊗ − β β

= Σ − Σ β

From this result we can derive the following conditional and marginal posterior pdf’s.

The conditional posterior pdf for ( | )β Σ  is the truncated multivariate normal

distribution

11
2

ˆ ˆ( | , ) exp{ ( ) ( ) ( )} ( )T Sf y X I X I−′ ′β Σ ∝ − β−β Σ ⊗ β −β β            (44)
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The conditional posterior pdf for )|( yΣ  is the same inverted-Wishart distribution as

was given in equation (20). The marginal posterior pdf for β  is

2
( | ) ( )

T
Sf y A I

−β ∝ β            (45)

The posterior pdf for 1β  conditional on the remaining iβ  is the truncated multivariate

t-distribution

     

1 1( ) / 2

1 1 1 (1) 1 1 1
1 2 3 1 2

1

( ) ( )
( | , , ,..., ) ( )

K v

M S

X Q X
f y v I

s

− + ′′β −β β −β β β β β ∝ + β
  

# #

#
          (46)

Of interest is how to best use these pdfs to draw observations on β , and

possibly Σ , from their respective posterior pdf’s. The conditional posterior pdf’s for

( | )β Σ  and ( | )Σ β  can be used within a Gibbs sampler providing the inequality

restrictions are sufficiently mild for a simple acceptance-rejection algorithm to be

practical when sampling from the truncated multivariate normal distribution. By a

“simple acceptance–rejection algorithm”, we mean that a draw is made from a

nontruncated multivariate normal distribution and, if it lies outside the feasible region,

it is discarded and replaced by another draw. This procedure will not be practical if

the probability of obtaining a draw within the feasible region is small, which will

almost always be the case if the number of inequality restrictions is moderate to large.

Thus, we are using the term “mild” inequality restrictions to describe a situation

where the maximum number of draws necessary before a feasible draw is obtained is

not excessive.

If the inequality restrictions are not mild, then a Metropolis-Hastings

algorithm can be employed. In the steps we described in Section III, if a candidate
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value *β  is infeasible, then 0=r , and the retained draw is automatically the last

accepted feasible draw.  That is, ( 1) ( )+β = β$ $ .

If the inequality restrictions are not mild, but are linear, then using a Gibbs

sampler on subcomponents of β  might prove successful. For example, using the

truncated multivariate t-distributions for each of the iβ , as specified in equation (46),

could be useful. Also within different contexts, sampling from truncated multivariate t

and multivariate normal distributions has been broken down into sampling from

univariate conditional distributions by Geweke (1991) and Hajivassiliou and

McFadden (1990).  Also, see the Appendix.

VII. THREE APPLICATIONS

A. Wheat Yield

In Griffiths et al (2001) the following model was used for predicting wheat yield in

five Western Australian shires.

     2 3 2 2 2
1 2 3 4 5 6 7 8 9 10t t t t t t t tY t t t G G D D F F e= β +β +β +β +β +β +β +β +β +β +          (47)

Yield ( )tY  depends on a cubic time trend to capture technological change and on

quadratic functions of rainfall during the germination period ( )tG , the development

period ( )tD , and the flowering period ( ).tF   The rainfalls are measured relative to

their sample means.  Inequality restrictions are imposed to ensure that the response of

yield to rainfall, at average rainfall, is positive.  That is, for germination rainfall, for

example, 5 6/ 2 0.Y G∂ ∂ = β + β >   Thus, the feasible region for this example is

{ }5 6 7 8 9 10( ) | 2 0, 2 0, 2 0S β = β β + β > β + β > β + β >            (48)
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Although Griffiths et al (2001) used separate single equation estimation for the five

shires and focussed on several forecasting issues, investigation within a five-equation

SUR model has started.  Given that the inequality restrictions within each equation are

relatively mild, but in total they are not, a Gibbs sampler using the truncated t

densities in equation (46) seems a profitable direction to follow.  Also, some

preliminary work involving the Metropolis-Hastings algorithm on the complete β

vector has proved effective.

B. Cost and Share Equations

In a second application, a translog cost function (constant returns to scale) and cost-

share equations for merino woolgrowers (310 observations over 23 years) was

estimated by Griffiths et al (2000) using, as inputs, land, capital, livestock and other.

In the equations that follow c is cost, q is output, the iw  are input prices and the iS

are input shares.

4 4 4

0 1
1 1 1

log log( ) 0.5 log( ) log( )T i i ij i j
i i j

c
T w w w e

q = = =

  = β +β + β + β + 
 

∑ ∑∑

4

1

log( )i i ij j i
j

S w e
=

= β + β +∑ i = 2, 3, 4

This SUR model has the following characteristics.

1. The equations are linear.

2. There are a number of linear equality restrictions that need to be imposed.

Specifically, the sijβ  in the cost function are equal to the sijβ  in the share

equations, and, furthermore, to satisfy homogeneity and symmetry, we

require
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4

1

1i
i=

β =∑
4

1

0ij
j=

β =∑ jiij β=β

3. Inequality restrictions are required for the functions to satisfy concavity

and monotonicity.  These restrictions are

• Monotonicity 0 1iS< <

• Concavity B S ss′− +   is negative semidefinite where





















ββββ

ββββ

ββββ

ββββ

=

44434241

34333231

24232221

14131211

B





















=

4

3

2

1

S

S

S

S

S





















=

4

3

2

1

S

S

S

S

s

Note that B S ss′− +  is negative semidefinite if and only if its largest

eigenvalue is nonpositive.

Since iS  depends on the input prices, a decision concerning the input

prices at which iS  is evaluated, and the inequality restrictions imposed,

needs to be made. The inequality restrictions were imposed at average

input prices for each of the 23 years.

4. Given the severe inequality restrictions that were imposed, the Metropolis-

Hastings algorithm was used.

5. The quantities of interest are nonlinear functions of the parameters. They

are the elasticities of substitution
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1+
β

=σ
ji

ij
ij SS

i ≠ j

and input demand elasticities

j
i

ij
ij

i
i

ii
ii

S
S

S
S

+
β

=η

−+β=η 1

C. Expenditure Functions

Our third example involves two expenditure functions estimated from a sample of

1,834 Bangkok households, and deflated by an “equivalence scale” measure of

household size (Griffiths and Chotikapanich 1997).  For the t-th observation, the

functions are

t
tttt

ttttt

t

t
t e

mmmx

mmmxm

x

m
w 1

332211

3322111111
1 )(

)( +
β+β+β

α−α−α−β+α=

t
tttt

ttttt

t

t
t e

mmmx

mmmxm

x

m
w 2

332211

3322112222
2 )(

)( +
β+β+β

α−α−α−β+α=

1 21 2 31 31t t tm n n= + δ + δ

2 22 2 32 31t t tm n n= + δ + δ

3 23 2 33 31t t tm n n= + δ + δ

where

jtw = expenditure proportion for commodity j,

tx = total expenditure,

jtm =equivalence scale for commodity j,
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2tn =number of extra adults (each household has at least one adult),

3tn = number of children.

The unknown parameters are

 (α1, α2, α3, β1, β2, β3, δ21, δ31, δ22, δ32, δ23, δ33)

This SUR model has the following characteristics:

1. The equations are nonlinear in the parameters.

2. A number of inequality restrictions were imposed, namely,

1 20 , 1< β β < Additional expenditure from a one-unit increase in

supernumerary income must lie between zero and one.

3 20 1j j≤ δ ≤ δ ≤ Expenditure requirements for extra adults are less than

those for the first adult but greater than those for

children.

2 2 3 3

min 1, 2
1

it
i

t i t i t

e
i

n n

 
α < = + δ + δ 

The smallest level of consumption in the sample must be

greater than subsistence expenditure, a constraint from

the utility function.

3. Given the nonlinear equations and the inequality constraints, the

Metropolis-Hastings algorithm was used.

4. Two nonlinear functions of the parameters are of interest.  They are the

general scale or "household size":
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0
k kk

k k k k kk k k

x m
m

x m m

β
=

− α + α β
∑

∑ ∑ ∑

and the elasticities.  Expressions for the latter can be found in Griffiths

and Chotikapanich (1997).

VIII. FORECASTING

Suppose that we are interested in forecasting dependent variable values in the next

period. The shire-level wheat yield application in the previous section is an example

of where such a forecast would be of interest. In that case the objective is to forecast

yield for each of the five shires. Since the yields are correlated via the stochastic

assumptions of the SUR model, a joint forecast is appropriate. We can write next

period’s observation as

* * *y X e= β +            (49)

where *y  is an M-dimensional vector, *X  is an )( KM ×  block diagonal matrix with

the i-th block being a )1( iK×  row vector containing next period’s explanatory

variables for the i-th equation,

1*

2*
*

3*

x

x
X

x

 
 
 =
 
 
  

"
           (50)

and * ~ (0, )e N Σ  is next periods )1( ×M  random error vector. The conventional

Bayesian forecasting tool is the predictive pdf *( | )f y y . Graphing marginal

predictive pdf’s from this density function, and computing its means, standard

deviations and probabilities of interest are the standard ways of reporting results.
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The procedure for deriving the predictive pdf is to begin with the joint pdf

*( , , | )f y yβ Σ  and to then integrate out Σ  and β , either analytically or via a

numerical sampling algorithm.  Now,

1/ 2/ 2 11
* * * * *2

1/ 2 11
*2

( | , ) (2 ) exp{ ( ) ( )}

exp{ tr( )}

Mf y y X y X

A

−− −

− −

′β Σ = π Σ − − β Σ − β

∝ Σ − Σ
           (51)

where * * *[ ][ ]A y X y X ′= − β − β . Thus, using the posterior pdf in equation (12) (no

inequality restrictions), we have

* *

( 2) 2 11
*2

( , , | ) ( | , ) ( , | )

exp{ tr[( ) ]}
T M

f y y f y f y

A A
− + + −

β Σ = β Σ β Σ

∝ Σ − + Σ

Using properties of the inverted Wishart distribution to integrate out Σ  yields

* *

( 1) 2
*

( , | ) ( , , | )

T

f y y f y y d

A A
− +

β = β Σ Σ

∝ +

∫
         (52)

Because analytical integration of β  out of equation (52) is not possible, we consider

the conditional predictive pdf *( | , )f y yβ . It turns out that this pdf is a multivariate

student t. Thus, *( | )f y y  and its moments can be estimated by averaging quantities

from *( | , )f y yβ  over draws of β  obtained using one of the MCMC algorithms

described earlier.

To establish that *( | , )f y yβ  is a multivariate t-distribution, we first note that

(see, for example, Dhrymes 1978, p. 458)

1
* * * * *(1 ( ) ( ))A A A y X A y X−′+ = + − β − β            (53)

Thus,
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*

( 1) 21
* * * * *

( ) 21

* * * * *
*

( | , ) 1 ( ) (

( ) ( )

T

M v

f y y y X A y X

A
v y X y X

v

− +−

− +−

 ′β ∝ + − β − β 

  ′ ∝ + − β − β 
   

           (54)

where * 1v T M= − + .  Equation (54) is a multivariate t-distribution with mean

* *( | , )E y y Xβ = β            (55)

covariance matrix

*
*

( | , )
2

A
V y y

v
β =

−
           (56)

and degrees of freedom *v . Given draws ( )β $ , 1,2, , N=$ …  from an MCMC

algorithm, one can average the quantities in equations (54) to (56) over these draws to

estimate the required marginal predictive pdf’s and their moments. Marginal

univariate t distributions from (54) are averaged and the formulas are analogous to

those in equations (22), (26) and (27) except, of course, that our random variable of

interest is now an element of *y , say *iy , not ikβ .

Percy (1992) describes an alternative Gibbs sampling approach where *y , β

and Σ  are recursively generated from their respective conditional pdf’s. With our

approach, it is not necessary to generate draws on *y . Also, because we have derived

the predictive pdf conditional on β , the introduction of inequality restrictions on β

does not change the analysis. The range of values of β  over which averaging takes

place is restricted, but that is accommodated by the way in which β  is drawn, and the

result in (54) still holds.

An interesting extension, and one that is of concern to Griffiths et al. (2001), is

capturing the extra uncertainty created by not knowing the value of one or more
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regressors in *X . We have this problem if a wheat yield forecast is made prior to all

rainfalls having been observed. The effect can be captured by modelling rainfall and

averaging the predictive pdf for yield conditional on rainfall over rainfalls draws

made from its predictive pdf.

IX. SOME EXTENSIONS

Consider estimating β  in the SUR model when there are missing observations on one

or more of the dependent variables. This problem was considered in the context of

expenditure functions by Supat (1996). For the moment, assume the observations are

truly missing and that they are missing at random; they are not zeros created by

negative values of an unobserved latent variable, as in the case with the Tobit model.

Writing Oy  to denote observed components and Uy  to denote unobserved

components, estimation can proceed within a Gibbs sampling framework using the

conditional posterior pdfs ( | , , )O Uf y yβ Σ , ( | , , )O Uf y yΣ β  and ( | , , )U Of y yβ Σ . The

conditional posterior pdfs for β  and Σ  are the normal and inverted Wishart pdf’s

given in equations (14) and (20). To investigate how to draw observations from

( | , , )U Of y yβ Σ , we write the ( 1)M ×  t-th observation ( )ty  as

( ) ( ) ( )t t ty X e= β +           (57)

The subscript t  has been placed in the parentheses to distinguish the )1( ×M  t-th

observation all equations ( )ty  from the )1( ×T  observations on the i-th equation iy .

The structure of ( )tX  is similar to that of *X  defined in equation (50).  We wish to

consider equation (57) for all values of t  where ( )ty  has one or more unobserved

components.  Reordering the elements if necessary, we can partition equation (57) as
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( ) ( ) ( )

( ) ( ) ( )

U U U
t t t

O O O
t t t

y X e

y X e

     
  =   β +  
          

           (58)

where we write

( ) ( )

UU UO

t t OU OO
E e e

 Σ Σ
′  =    Σ Σ  

           (59)

The conditional posterior pdf ( ) ( )( | , , )U O
t tf y yβ Σ  is a multivariate normal distribution

with mean

1

( ) ( ) ( ) ( ) ( )( | , , ) ( )U O O UO OO O O
t t t t tE y y X y X

−
β Σ = β + Σ Σ − β            (60)

and covariance matrix

1

( ) ( )( | , , )U O UU UO OO OU
t tV y y

−
β Σ = Σ − Σ Σ Σ               (61)

Furthermore, ( ) ( )( | , , )U O
t ty yβ Σ , Tt ,,2,1 …=  are independent. Thus, for generating ( )

U
ty

within the Gibbs sampler, we use the conditional normal distributions defined by

equations (60) and (61) for all observations where an unobserved component is

present.

Suppose, now, that the unobserved components represent negative values of a

Tobit-type latent variable. In this case we have the additional posterior information

that the elements of ( )
U
ty  are negative. The conditional posterior pdf for

( ) ( )( | , , )U O
t ty yβ Σ  becomes a truncated (multivariate) normal distribution with a

truncation that forces ( )
U
ty  to be negative. Its location vector and scale matrix (no

longer the mean and covariance matrix) are given in equations (60) and (61). A
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convenient algorithm for drawing from this truncated normal distribution is described

in the Appendix.

For extensions into Probit models, see Geweke et al. (1997) and references

therein. The literature on simultaneous equation models with Tobit and Probit

variables can be accessed through Li (1998).  Sets of SUR expenditure functions with

a common parameter and with unobserved expenditures that result from infrequency

of purchase are considered by Griffiths and Valenzuela (1998). Smith and Kohn

(2000) study Bayesian estimation of nonparametric SURs.

X. CONCLUDING REMARKS

With the recent explosion of literature on MCMC techniques, Bayesian inference in

the SUR model has become a practical reality. However, it is the author’s view that,

prior to the writing of this chapter, the relevant results have not been collected and

summarised in a form convenient for applied researchers to implement. It is my hope

this chapter will facilitate and motivate many more applications of Bayesian inference

in the SUR model.

XI. APPENDIX – DRAWING RANDOM VARIABLES AND VECTORS

A. Multivariate Normal Distribution

To draw a vector y  from a ( , )N µ Σ  distribution:

1. Compute the Cholesky decomposition H  such that Σ=′HH .

2. Generate z  from ),0( IN .

3. Calculate y Hz= µ + .
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B. Multivariate t Distribution

Consider the multivariate k-dimensional t-distribution with pdf

( ) 21( | , ) ( ) ( )
k v

f x V v x V x
− −− ′µ ∝ + − µ − µ 

It has v  degrees of freedom, mean µ  and covariance matrix Vvv ))2(( − . (Assume

2>v .)  To draw a vector x  from this pdf:

1. Compute the Cholesky decomposition H  such that VHH =′ .

2. Generate the )1( ×k  vector 1z  from ),0( kIN .

3. Generate the )1( ×v  vector 2z  from (0, )vN I .

4. Calculate 1 2 2x Hz z z v′= µ + .

C. Inverted Wishart Distribution

Let Σ  have an m-dimensional inverted Wishart distribution with parameter matrix S

and degrees of freedom v . It has pdf

( 1) 2 11
2( | ) exp{ tr( )}

v m
f S S

− + + −Σ ∝ Σ − Σ

To draw observations on Σ :

1. Compute the Cholesky decomposition H  such that 1−=′ SHH .

2. Draw independent )1( ×m  normal random vectors vzzz ,,, 21 …  from

),0( mIN .

3. Calculate 
1

1

v

i i
i

H z z H
−

=

 ′ ′Σ =  
 

∑ .
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D. Univariate Truncated Normal Distribution

Suppose that x  is a truncated normal random variable with location µ , scale σ  and

truncation bxa << . To draw x :

1. Draw a uniform (0,1) random variable U .

2. Calculate

1 a b u a
x U−  − µ − − µ      = µ + σΦ Φ + Φ − Φ       σ σ σ       

         (A.1)

where Φ  is the standard normal cumulative distribution function.

E. Multivariate Truncated Normal Distribution

Suppose that x  is an m-dimensional multivariate truncated normal distribution

such that 1 1 1 2 2 2, , , m m ma x b a x b a x b< < < < < <… .

1. Use (A.1) to draw 1x .

2. Find the location and scale parameters for the truncated conditional

normal distribution )|( 12 xx  conditional on 1x  drawn in step 1.

3. Apply (A.1) to the distribution )|( 12 xx .

4. Find location and scale parameters for the distribution of ),|( 123 xxx

conditional on the draws made in steps 1 and 3.

5. Apply (A.1) to the distribution ),|( 123 xxx .

6. And so on.
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