
Experiences of Modelling and Using

Object�Oriented Telecommunication Service

Frameworks in SDL

Mario Kolberg

Department of Electronic and Electrical Engineering
University of Strathclyde� Glasgow G� �XW� United Kingdom� mkolberg�acm�org

Richard O� Sinnott

GMD�Fokus� Kaiserin�Augusta�Allee ��� Berlin� Germany� sinnott�fokus�gmd�de

Evan H� Magill

Department of Electronic and Electrical Engineering
University of Strathclyde� Glasgow G� �XW� United Kingdom�

e�magill�eee�strath�ac�uk

Abstract

This paper describes experiences in using SDL and its associated tools to create
telecommunication services by producing and specialising object�oriented frame�
works� The chosen approach recognises the need for the rapid creation of validated
telecommunication services� It introduces two stages to service creation� �rstly a
software expert produces a service framework� and secondly a telecommunications
�business consultant� who specialises the framework by means of graphical tools
to rapidly produce services� Here we focus on the underlying technology required�
In particular we highlight the advantages of SDL and tools as well as issues and
problems incurred�

Key words� Object�Oriented Frameworks� Service Creation� SDL� TINA� Testing�
TTCN�

� Introduction

The area of Service Creation� while far from new� grows ever more complex
and challenging due to the constant increase in requirements placed on it by

Preprint submitted to Elsevier Preprint �� June ����

consumer demands� competition and new technologies� Many new factors need
to be considered to ensure that the general requirements on service creation
are met� Some of these requirements include�

� Reduction in the time to market for both new services and variants on
existing services�

� Reductions in development and operating costs�
� The need for open solutions to service creation� i�e� methods and processes
which are equally applicable in many software environments�

� The facility to provide prototype services� for the purpose of quality assur�
ance and validation of user requirements�

� Re�use of existing software�components�
� Speed of interaction and correct interworking of new services with existing
�or legacy� infrostructure�

Classic software engineering approaches are insu	cient to meet these chal�
lenges� Therefore� new and innovative service creation processes are required�
This paper reports on work carried out in the EU funded ACTS TOSCA
�TINA Open Service Creation Architecture� project which is addressing these
issues by developing a methodology and a suite of tools for the rapid creation
and validation of TINA�like services� This methodology is based on the combi�
nation of frameworks and paradigm tools� While object�oriented frameworks
are not new to the software engineering community
��
�� their application
in the service creation process of telecommunication services is believed to be
novel� Furthermore� and this is a vital point in the TOSCA approach� the use
of paradigm tools in combination with frameworks allows for widening the
participation in the service creation process� Paradigm tools o�er a graph�
ical and intuitive means whereby services can be designed� In other words�
paradigm tools abstract from the complexity of the frameworks and o�er a
view on their functionality which is accessible by non�technical people� e�g�
business consultants� Thus the service designer does not need to consider the
lower level behaviour of the service to be able to create one� Rather� they
should be provided with a high�level representation of the service components
and the ability to tune their behaviour and how they are composed with one
another� In other words� the creation of services is moved to a large extent
from the technical labs to the front o	ces where business consultants deal with
potential customers� Hence� almost immediate feedback on the behaviour of
the new services can be delivered and potential changes demanded by the cus�
tomer can be taken into account� More information on paradigm tools and the
paradigm based service creation process more generally are given in
������

The aims of the TOSCA project are to develop a service creation environment
that enables multimedia�based telecommunication services to be produced in
an e�ective manner� i�e� they are created rapidly but not at the expense of
their reliability or quality
������ Central to the approach is that the services

�

to be generated are validated� This validation is required both when the ser�
vice is initially created and also when it is deployed in an environment where
it may interwork with other services causing potentially undesired service in�
teractions
�������

Validation of services implies that formality is introduced into the service cre�
ation process� Producing formal speci�cations of the system to be developed is
a traditional starting point in applying formal techniques
���� Unfortunately�
it is often the case that formal techniques are used only at this stage of the
software development process� Ideally� formality should be taken through to
the �nal implementation of the software itself� This is a notoriously di	cult ac�
tivity � often depending upon the nature of the formal language and method �
requiring arduous re�nement and obligatory proof steps� An alternative pro�
cess to re�nement of speci�cations through to their �nal implementation is
to develop the speci�cation and implementation as dual� i�e� concurrent� ac�
tivities� Provided that the speci�cation and implementation are at the same
level of abstraction� the speci�cation can be used as a basis for testing the
implementation�

Distributed system development o�ers one area where the parallels between
the development of speci�cation and implementation can be readily drawn�
i�e� they can be expressed at the same levels of abstraction� Interface de�ni�
tion languages �IDL� when used as a common vocabulary for describing the
syntactic aspects of interface interactions� serve as an ideal starting point for
developing both speci�cations and implementations
����

Given that the rapid development of high quality services is a fundamental
aspect of service creation in TOSCA� developing speci�cations �and imple�
mentations� from nothing� or from an IDL only basis� is not a viable option�
Instead techniques that can expedite the software development process are
necessary� Whilst it is typically the case that implementations rarely �if ever��
start from nothing� the same cannot be said for the development of formal
speci�cations
����
�� In TOSCA we are addressing this issue through the
adoption of techniques based upon object�oriented frameworks�

The concept of framework based software engineering has arisen to help to
realise the holy grail of software engineering� re�use� Frameworks are a natural
extension of object�oriented techniques� Whilst object technology
��� provides
a basis for re�use of code� it does not provide features to capture the design
experience as such� Frameworks have developed to ful�l this need� A framework
can be regarded as a collection of pieces of software or speci�cation fragments
that have been developed to produce software of a certain type or niche
����
A framework is only partially complete� Typically� they are developed so that
they have holes or �exibility points in them where service speci�c information
is to be inserted� This �lling in �specialisation� of the �exibility points is used

�

to develop a multitude of services with di�ering characteristics�

Following the approach of parallel development of the speci�cation and imple�
mentation� in TOSCA the frameworks are developed both in the implemen�
tation world� using C�� and distributed technologies such as CORBA
���
and the speci�cation world� using SDL
���� SDL is frequently used in creat�
ing telecommunications services� Used with suitable tools� SDL can provide
support for service development from requirements capturing to testing�

As outlined above� the TOSCA approach uses paradigm tools to facilitate
the specialisation of the frameworks by business consultants� Our focus in
this paper� however� is on the development and usage of SDL frameworks�
Speci�cally� we identify the advantages and disadvantages of applying SDL and
it�s associated tools throughout the TOSCA based service creation lifecycle�

� The TOSCA approach to Service Creation

The TOSCA project is developing a service creation environment where ser�
vices can be created and validated in an expedited manner� Tool support
forms a central part of the TOSCA approach� TOSCA has developed a tool
chain that allows for both the development and usage of speci�cation frame�
works from semi�formal descriptions right through to their usage in testing
the created service� Figure � highlights this tool chain�

input to

input to

results in

execution of
test cases

specialising
C++ code

test case
derivation

produces

specialising
SDL code

results in

convert to SDL.GR and
add and check behaviourODL/IDL and

textual behaviour
description SDL.PR

SDT

SDL Model
of Framework

Y.SCE

Paradigm
Tool

SDL Model
of Service

ITEX

Orbix/C++
implementation
of Framework

Implementation
of Service in C++
on Orbix platform

Fig� �� The Tool Chain in TOSCA

Here the Y�SCE tool
��� allows �amongst other things� TINA ODL
��� and
CORBA IDL
��� descriptions to be developed �or imported� and subsequently
mapped to SDL in PR format� These SDL fragments are then themselves im�
ported into the Telelogic TAU toolset
���� This toolset consists of a collection

�

of tools that allow SDL speci�cations to be both speci�ed� simulated or vali�
dated �using the Speci�cation Design Tool �SDT� tool� and subsequently used
for generating test cases �using the Interactive TTCN Editor and eXecutor
�ITEX� tool�� The requirements on the behaviour of the framework are repre�
sented both by use cases and textual descriptions of the expected behaviour
of the framework components� Simulation techniques are used to ensure that
the framework has the correct behaviour� e�g� that it satis�ed the use cases�

When complete the SDL framework model can be used to generate test cases�
These can then be used to test both that the SDL service models are valid�
i�e� services created from the framework� as well as a minimum conformance
requirement on C���CORBA based service implementations�

The SDL model of the framework is then saved as a package which can then
be used by paradigm tools to develop complete models of services� TOSCA
has implemented two paradigm tools that can be used to produce intuitive
�graphical� models of the services� We consider one in particular based on the
functional block paradigm� This paradigm provides service designers with a
list of basic events at which the behaviour of the service can be de�ned� These
are the key points at which the designer can intervene and customise the ser�
vice behaviour� The basic events thus correspond to the framework �exibility
points� Numerous basic events have been identi�ed� e�g� starting�stopping the
service� starting�stopping user sessions� etc� We focus on the form of these �ex�
ibility points and the behaviour that can be inserted into them in sections �
and ��

Once the user of the paradigm tool is satis�ed with the design of the service�
the paradigm tool outputs both the specialising C�� and SDL� The generated
SDL is then imported into SDT and used to develop an SDL system based
on the framework package� Once complete� the SDL service speci�cation is
checked for minimum conformance through ensuring it passes all test cases
contained in the framework test suite� When this is the case� the SDL service
speci�cation itself is used to generate test cases for the C�� based service
implementation� These test cases may be executed against the C���CORBA
based service implementations through a TTCN�CORBA gateway� Informa�
tion on how CORBA based systems can be tested and the gateway itself are
provided in
�������

The �rst stage in this tool chain is the development of the framework descrip�
tion� This is represented through TINA ODL and CORBA IDL descriptions
with associated use cases and textual descriptions of the object and interface
behaviours� The actual framework itself is based around the TINA architec�
ture� or more speci�cally the Service Architecture
��� of TINA�

�

� Frameworks based on the TINA Architecture

The TINA Service Architecture introduces the underlying concepts and pro�
vides information on how telecommunication applications and the components
they are built from� have to behave� Central to the Service Architecture is the
concept of a session� This is de�ned as a temporary relationship between a
group of resources assigned to collectively ful�l a task or objective�

Three sessions are de�ned in TINA� the Access Session� Service Session and
Communication Session� Brie�y� the access session provides mechanisms to
support access to services �service sessions� that have been subscribed to�
The service session allows users to execute and manage sessions� i�e� it allows
control of the communication session� The communication session controls the
network resources required to establish end to end connections�

Currently� the service session has been the main area upon which frameworks
are being developed in TOSCA� The components in the service session and
the relation between the three sessions are depicted in Figure ��

access session

service session

communication
session

SF

SSM

ssUAP

user domain user domainprovider domain

ssUAP USM USM

stream connections established

Fig� 	� Relation between the TINA Sessions

Broadly speaking� an instance of a service typically consists of a Service Session
Manager �SSM� to control the global service behaviour� and a collection of
User Service Session Managers �USM� � one of each is used to control a users
participation in that service� Both types of components are instantiated by the
Service Factory �SF� when requested to do so by components of the Access
Session� The Service Session related User Application �ssUAP� represents a
set of applications in the user domain which allow a user to communicate with
a service�

The USM and SSM components in the framework are decomposed into generic
and speci�c parts with the generic parts being �xed and the speci�c parts
being incomplete in the framework and thus specialiseable by the paradigm

�

tool� Figure � gives an overview of the USM component structure and its
relation to a typical ssUAP and SSM�

USM
UFSmgr

CtrlWH

USPmgr

InvWH

other handlers

ssUAP

role: user role

status: user status

termMe suspMe

invite users

other buttons/windows
generic objects

S
S
M

Fig�
� Structure of the USM and Relation to ssUAP and SSM

Each of the service parts detailed above has a manager �UFSmgr� USPmgr for
the USM and GFSmgr� GSPmgr for the SSM not shown here�� These managers
are responsible for lifecycle and initial access to the managed objects� e�g� the
managers are able to initialise� suspend� resume or terminate the objects they
manage� or provide references to the objects they manage on request� When
the manager is told to suspend� resume or terminate itself it also suspends�
resumes or terminates the objects it manages respectively� As we shall see
in section �� these manager operations and the initialisation of the manager
together with the objects it is to create �and subsequently manage� correspond
to framework �exibility points�

Typically� users can join� suspend� resume or terminate their participation in
services� The logic associated with these requests are processed in the service
session� e�g� whether the user is able to resume themselves in the service at
that time� If successful� the appropriate operations are invoked on the com�
munication session� e�g� resume my previously suspended connections�

It is important to note that this architecture does not overly constrain the
kinds of services that can be created from it� Rather� it acts as a template
for a multitude of services� e�g� multimedia conferencing services� chatline ser�
vices or news�ash services to name but three� Indeed even within these three
services there exist a plethora of variations� In multimedia conferencing for
example� there might be di�ering roles� e�g� chairman� observer� participant�
These di�ering roles might result in di�ering expected functionalities� e�g� only
chairman can invite �or suspend or terminate� other users� only participants
can vote� Users might be able to have di�ering charging �or billing or account�
ing� possibilities� e�g� reverse or split charging� or other variations�

As well as these role speci�c specialisations� numerous others are possible also�

�

e�g� only start the service if a certain number of successful responses to the
invite have been received� Quit the service session if the number of users falls
below a certain level �or if the total charges generated from using the service
falls below a certain level�� Terminate a user if they have been suspended for
too long� It is precisely these variations on the general theme that paradigm
tools are expected to capture whilst the general theme itself is represented by
the framework�

To engineer frameworks it is thus necessary to have a core behaviour� In
TOSCA this core behaviour is based around the informal �textual� description
of the behaviour of the service session components� along with the TINA ODL
and IDL speci�cation for those objects� TINA ODL is a superset of IDL which
allows� amongst other things� to specify objects which o�er multiple interfaces
to their environment� Further� TINA ODL distinguishes between supported
and required interfaces� ODL also allows for the expression of groups of objects
and the objects used to manage those groups�

� Tool supported Mapping from ODL to SDL

Given that TINA component speci�cations are written in TINA ODL
����
supporting a TINA ODL mapping is critical if the framework based approach
is to be successful� Table � summarises the main rules of the ODL to SDL
mapping used in TOSCA and supported by the Y�SCE tool
�
��

��� Advantages of the Mapping

The greatest advantage of the mapping used is that it o�ers a basis for compar�
ison of the SDL model and the C���CORBA based implementation� Often
detractors of formal methods cite that formal models of systems bear little or
no relation to the actual software development itself� This is often a deliber�
ate policy� e�g� where a requirements speci�cation is made� Having a common
�syntactic� basis for the intercommunication between the objects in the SDL
world and in the C���CORBA implementation worlds addresses this issue
directly� Put another way� the formal model and software implementation can
be developed at the same level of abstraction� Through this� the model can be
used directly by tools etc� for reasoning about and testing the implementation
or parts of the implementation�

One major advantage of this mapping to others
��� is that it allows for ex�
ceptions in the SDL model� Exceptions are an essential feature in distributed
systems� moreover� ODL also supports exceptions� The support for exceptions

Table �
Summary of the ODL to SDL Mapping

ODL�IDL Structure SDL Mapping

group type block type

object type block type

interface type process type

object reference Pid

oneway �asynchronous� operation� signal pre�xed with pCALL

operation �synchronous� signal pair� The �rst signal is pre�xed
with pCALL � the second signal is
pre�xed with pREPLY or pRAISE
�if exception raised��

exception signal pre�xed with pRAISE

basic IDL types�
e�g� long� char�
oat� � � �

syntype

any not supported

enum newtype with corresponding literals

typedef syntype

struct newtype with corresponding struc�
ture

constant sysnonym

is gained through mapping ODL operations to SDL signals pairs� as opposed
to remote procedures� Remote procedures are a shorthand notation and use
a substitution model based on signal pairs and states� More precisely� remote
procedures are decomposed into two signals� The �rst carries the outgoing
parameters �in or inout� and the second the return value of the procedure
and all inout parameters� These signals are sent via implicit channels and sig�
nalroutes� As these signals are only internally generated and thus not visible
within a speci�cation� it is impossible to return with a di�erent signal such as
an exception signal�

As with other ODL language mappings� the Y�SCE tool generates client stubs
and server skeletons� The generated SDL is placed into packages� which are
ready to use in subsequent speci�cation steps� In TOSCA these packages were
converted to SDL�GR format and imported into the SDT tool�

�

��� Problems with the Mapping

Whilst overcoming certain problems with other mappings� e�g� lack of excep�
tions� the Y�SCE mappings are also not without problems� One problem with
this and other IDL mappings is that it reduces the advantages that can be
gained from the technique of abstraction� Working at the IDL and ODL level
when modelling a realistic system� e�g� a telecommunication service� means
that it is more di	cult to get the big�picture of what the system is doing�
This is lost to a certain extent through the often low level interactions of the
objects in the system�

There are further side e�ects of this abstraction problem that become apparent
when tools are used to check the SDL system� e�g� when trying to validate the
system through performing state space exploration� Having several hundred
objects interacting in non�trivial ways carrying complex parameters detracts
from the ability of the tools to work successfully�

As well as the abstraction problem� there are other di�erences and associated
problems with the mappings when interpreted from a CORBA perspective�
The current CORBA speci�cation does not directly support objects having
multiple interfaces as do other architectures� e�g� the Open Distributed Pro�
cessing Reference Model
���� Multiple interface objects are currently under
investigation and may well be in the next CORBA ��� speci�cation� Having
block types with multiple process types� i�e� objects types with multiple inter�
face types� requires design di�erences to be made between the SDL framework
and C�� frameworks� For example� CORBA objects have behaviour but SDL
blocks do not� Block behaviour in SDL is only given through the processes a
block contains� Similarly� CORBA objects can have data associated with them�
Data may not be declared at the block level in SDL� Instead processes must be
speci�ed to either reveal data or export data structures which can be viewed
or imported by the processes within that block respectively� Alternatively�
additional signals can be added between the processes to access the relevant
data� This is not an ideal solution however since it increases the communi�
cations necessary between the processes and can result in poorer run�time
performance�

A further issue connected to the ODL�SDL mapping is related to the thread�
ing models used in C�� and SDL� The chosen threading model for the
C���CORBA implementation is such that there is only one single thread
per ODL object group� However� in the SDL model this can not be achieved
in a straightforward way� In fact� since all ODL interfaces are mapped to pro�
cess types� instantiations of these can accept requests from other processes
concurrently� In other words� since the processing of the request is done in the
interface as opposed to the object� multiple requests to the same object at

��

di�erent interfaces� can be processed in parallel� Although also this issue can
be solved by added communication it is somewhat inellegant�

Another related di�erence between the current CORBA speci�cation and the
SDL mapping is that CORBA object references are �rst class citizens� i�e�
they may be passed around as parameters in operations� This facility enables
dynamic systems to be built where new resources can be found and subse�
quently bound to at run time� Blocks are not �rst class entities in SDL� e�g�
they cannot be passed around as parameters in signals� To overcome this� pro�
cesses representing the core block behaviour can be speci�ed� These processes
typically manage the other processes �representing the object interfaces� in
the block� References to these manager processes can subsequently be passed
around as parameters in signals�

Another discrepancy between the CORBA and SDL worlds is the dynamic
creation of objects� As stated� USMs and SSMs are dynamically created by
the service factory on request from users �and they themselves can dynamically
create objects when requested�� Since objects are represented as block types�
instances of these cannot be created dynamically and an alternative solution
is required�

One possibility is to have process instances inside blocks that exist at system
start�up� For example� at start�up� the UFS block contains a creator process
used only to create instances of the manager process type inside the UFS� This
manager process can then create instances of other process types as required�
The reference �PId� to this manager is returned to the invoker as illustrated
in Figure ��

createUFS(1,1):
UFScreator

aUFSmgr(0,):
theUFSmgrImp

registerRef

block type theUFS
inherits ... ;

Fig� �� Overcoming the lack of dynamic block creation in SDL

Typically� these creator processes �UFScreator� support a single exported pro�
cedure which is imported into blocks wishing to create �instances� of the
exporting block� For example� the service factory will import and can sub�
sequently call the exported remote procedure for the UFSmgr �createUFS��
Although no real dynamic block creation can be achieved through this ap�
proach� the perception of this is given�

The representation as object references as PIds is also di�erent than the
CORBA world� In CORBA� object references contain su	cient information so
that a client can decide whether they wish to invoked that service or not � at

��

least from a syntactic point of view� The same is not true for SDL� Possession
of a PId by another process does not allow that process to see what signals
can be sent to the process instance referenced by that PId��

There are also other minor problems due to the di�erences in keywords from
the ODL� IDL and SDL worlds� e�g� start is a valid IDL operation name but
not a valid SDL procedure name� These issues were easily resolved in TOSCA
since the frameworks were created in parallel� e�g� names such as ufsstart were
found that were satisfactory to all three languages�

� SDL Framework Development

Developing a framework so that it removes large parts of the problem of ser�
vice design� thus expediting the creation process� whilst still o�ering a means
to create numerous di�erent kinds of services is an especially challenging ac�
tivity� To produce successful frameworks requires that the points where design
decisions are made are �exibility points� Using frameworks to produce services
then requires that these �exibility points are made available so that new de�
sign choices can be taken to produce new services� Perhaps the hardest part
of the framework development process is the identi�cation of these �exibility
points
���

In TOSCA we focused on a small set of �exibility points� This set of �exibility
points allowed us to produce a multitude of di�erent services with di�erent
types of behaviour� Speci�cally� we chose the following �exibility points�

� start up� suspension� resumption and termination of user and service ses�
sions�

In producing a framework it is necessary to have �xed places where the �exibil�
ity points are to exist� Thus it is necessary to represent the points of �exibility
directly in the design of the framework� but the actual behaviour associated
with these �exibility points is e�ectively NULL until they are specialised� To
achieve this we introduced appropriate IDL operations that were associated
with the appropriate objects in the framework design� An example of the kind
of IDL associated with the UFSmgr described earlier is�

interface i UFSmgr � i CO lifecycle f
void suspendSessionRequest��� �� suspend a users�s session
void terminateSessionRequest��� �� terminate a user�s session
void suspendAll��� �� suspend USM and all managed objects
void requestObject�inout NamedObject obj�� �� create handlers
oneway void ufsstart��� �� not implemented in framework � specialised�

��

oneway void ufssuspend��� �� dto�
oneway void ufsresume��� �� dto�
oneway void ufsstop��� �� dto�

������� other operations
g�

We point out that the behaviour with the other IDL operations can be imple�
mented directly� i�e� before specialisation� As with other IDL language map�
pings� client stubs and server skeletons are generated from Y�SCE� These act
as templates whose behaviour is to be �lled in through inheritance� These
stubs and skeletons are placed in two SDL packages �Name Interface and
Name De�nition�� The Name Interface package contains the interface spec�
i�cations in the form of data types� signals� remote procedures� signallists
etc� Figure � gives an example of the kind of SDL generated focusing on the
i UFSmgr interface of the UFSmgr object�

process type <<package Name_Definition >> i_UFSmgr ;
inherits i_CO_lifecycle ;

virtual suspendSessionRequest

virtual ufsstart

dcl ... ;

other virtual procedures here
....

*

ufsstart

-

pCALL_i_UFSmgr_ufsstart

similar format
for other
procedure calls

Fig� �� Example of the Contents of the Name De�nition Package

The virtual procedure for the ufsstart �and all oneway operations� consist of a
virtual start transition followed by an immediate exit� In non�oneway opera�
tions� the generated procedures contain a pREPLY signal of the appropriate
kind� Along with the virtual procedure de�nitions� signals and �asterisk� states
are also generated that result in the procedures being called�

As an example of the way in which the generated SDL server skeletons can have
their core behaviour inserted� i�e� the behaviour before they are specialised� we
consider the implementation of the i UFSmgr interface �i UFSmgrImp� of the
UFS object given previously� The default behaviour for the UFSmgr is that it
creates a control window handler only� A simpli�ed example of the structure
of this object is given in �gure ��

This process type is parameterised with �amongst other things� the reference
to the user application� i�e� the PId for the ssUAP manager process� When an

��

dcl
createdRefs objRefList,
cwhRef objRef, ...;
imported procedure
createCWH fpar ...;

virtual process type theUFSmgrImp;
inherits <<package Name_Definition/block type USM/block type UFS>> i_UFSmgr
fpar in FSEPref objRef, ...;

redefined

createdRefs := empty, ...;

cwhRef := call
createCWH(FSEPref, self),

createdRefs := createdRefs //
MkString(cwhRef), ...

WAIT

WAIT

ufsstart

READY

pCALL_i_UFSmgr_ufsstart

[i_UFSmgr_Invocations]

[i_UFSmgr_Terminations]

other signallists

Fig� �� Structure of Basic UFSmgr

instance of this process type is created� initialisation of local variables is done�
e�g� the list of created references is set to empty� and the default behaviour
of creating a control window handler is made� As discussed� this requires that
the necessary exported remote procedure is imported� Following this default
behaviour� the UFSmgr is ready to be specialised� i�e� it is in a state where it
can accept the signal pCALL i UFSmgr ufsstart�

��� Advantages of SDL for Framework Development

SDL has many advantages when used to develop frameworks
���� Many of
these advantages stem directly from its support of object�orientation� For
example� the ability to directly re�use �through rede�nition� the Y�SCE
generated SDL stubs and skeletons contained in the Name Interface and
Named De�nition packages allows development of speci�cations to be made
in a constructive �and CORBA�like� manner�

The representation of �exibility points is also easily achieved in SDL through
procedures which can be called but have null behaviours� i�e� start and exit�
This allows for the behaviour of the framework as a whole to be checked
without necessarily having any specialisation taking place� e�g� the basic USM
behaviour �and SSM and SF� behaviours can be checked to ensure the frame�
work as a whole correctly represents the informal �textual� requirements�

This representation of holes also means that the SDL frameworks can be
used to derive test cases� These can then be used to check that SDL based
specialisations of the frameworks are valid� i�e� SDL service models� and that
the service implementations derived from the C���CORBA frameworks are
valid�

��

��� Disadvantages of SDL in Developing Frameworks

The SDL language itself supports the development of frameworks� however�
in TOSCA problems arose in the usage of tools when developing frameworks�
This was apparent when the framework design changed� Ideally� when the
ODL or IDL for the framework changed� the existing packages upon which the
SDL framework was based� could be replaced with these new packages� This
process should not have impinged upon the behaviour speci�ed in the SDL
framework that was independent of the new design change� Unfortunately�
this process was not possible� When new packages were generated� �le names
were not guaranteed to be distinct from those existing in the SDL framework�
i�e� not just the existing packages� This could �and did� lead to situations
where the behaviour speci�ed in the framework was lost due to a new �le
being generated that had the same name as an existing framework �le� i�e�
a �le that had SDL behaviour inserted was overwritten by a new skeleton�
To address this issue� the SDL stubs were manually edited� Clearly� this is
unsatisfactory� and requires further consideration�

As described earlier� in TOSCA we developed in parallel a C�� implementa�
tion and a SDL model of the same framework� In the C�� and Orbix world
there are two signal queues connected to each object� That is� incoming re�
quests to that object are collected in one queue� while a second queue accepts
replies to earlier requests� Hence an object cannot deadlock or drop an in�
coming request �through implicit signal consumption� because it received an
incoming request at a time it expected a reply� Although there are solutions
such as using the save construct� or processes to represent queues� these are
not straightforward to implement and somewhat inelegant�

Opposed to C��� a missing aspect of the object�orientation of SDL is that a
user cannot be forced to specialise certain framework parts� That is� a com�
ponent declared as virtual can be specialised in the service model but the
speci�cation would also be semantically correct if it is not�

� Service Creation � Specialising the Framework

As an example specialisation of the framework we show how a videophone
service can be created� This services supports two user roles� Caller and Callee�
There may only be one instance of these in the service at a time� The caller
and callee both have windows on their user application �ssUAP� which can
be used for terminating or suspending their respective participations in the
service� The caller and callee di�er in that the caller also has an invitation
window �for inviting the callee� and the callee is terminated from the session

��

after thirty seconds of suspension� That is� the callee should resume within
thirty seconds or they are automatically quit�

The user applications �ssUAP� associated with users are not modelled in the
framework� Instead the real C���CORBA implementation of these objects
are used� that is they are driven by a simulation of the SDL model� The
objects themselves allow for the dynamic manipulation of the user interface�
e�g� new windows or buttons can be added� The signals to achieve this come
from the SDL system� Speci�cally� from the specialisable procedure ufsstart�
The objects that deal with user application requests in the USM all support
a callback interface �process type�� It is instances of these process types that
the events raised by the user� e�g� through pushing buttons on their ssUAP�
are sent� Thus in the videophone example� the specialised ufstart for the caller
should create an invitation window handler� This handler then requests the
user application to add the appropriate window and the callback references are
established� We note that this is the most simple scenario since the invitation
window handler is a prede�ned component in the framework� Other more
complex can be achieved however� Examples of how this is achieved are given
in
��� The specialised procedure for the caller ufsstart is shown in �gure ��

oh!theStatus := TypeKnown,
oh!theObjectType!tag := ‘‘invWH

redefined procedure
ufsstart

redefined

requestObject(oh)

set(now+30.0,handlerT)

redefined procedure
ufssuspend

redefined

Redefined Process Type
<<Substructure calleeUSM/Block Type
theUFS/Block Type theUFSmgr>> theUFSmgrImp

suspended

handlerT

pCALL_i_UFSmgr_terminateSessionRequest TO self

-

Timer handlerT;

Fig� �� Specialising SDL for Caller and Callee in Videophone Service

For the callee� procedure ufssuspend must be specialised� To achieve this an
SDL timer is introduced and set to time �now � ���� The signal which is
generated by the timer is received in the UFSmgr and results in sending a
signal to terminate the callee� In the specialisable procedure ufsresume �called
during resumption of a user�� the timer is reset� Thus if ufsresume is executed
before the timer signal is consumed �less then �� seconds� the timer is stopped
and the user can resume into the session�

��

��� Advantages of using SDL for Framework Specialisation

Using the framework for producing services requires that the framework is
saved as a package� This implies minor modi�cations� like the removal of the
upper most block instances with their connecting channels� To specialise the
framework to create a service� the SDL package representing the framework
was used� Both simple and virtual inheritance were used to specialise the
components in the framework� Simple inheritance was used at the top most
block level� e�g� the USM block level� Subsequent block types� e�g� the UFS
block type as well as process types and procedures were reused by virtual
inheritance� This was necessary since virtual inheritance allows for the com�
munication links� i�e� channels and signalroutes in the framework to be reused
�and possibly extended�� Keeping the channels and signalroutes in the speciali�
sation was essential for being able to model frameworks in SDL � otherwise the
�added�value� of frameworks in storing the design and communication links� is
lost�

On the other hand� virtual inheritance does not allow for multiple rede�ni�
tions in one scope� However� considering the classes of services targeted in
TOSCA� this is a crucial property to have� Di�erent types of users in a service
are represented by di�erent types of USMs� or in other words� di�erent spe�
cialisations of the base USM in the framework� This is used for modelling the
various attributes of di�erent user types� e�g� a chairman and participants in
a conference service� As a result� it is not possible to use virtual inheritance
for the top�level block types� simple inheritance is used instead� This implies
that since the communication paths between blocks at the top most level are
not part of the framework they need to be generated by the paradigm tool�

��� Problems with using SDL for Framework Specialisation

A di	culty encountered in the development of the paradigm tool was the
fact that process communication �via signals� always requires an explicitly
drawn signal path between the communicating processes� This is also true
if signals are directly sent to a speci�c process identi�er �PId� of a process
in the system� We note that this is not strictly true according to the SDL
standard
���� however� it was true with the SDT tool�

For TOSCA� this meant a further deviation from the C���CORBA frame�
work implementation and how it is specialised� In the CORBA world� posses�
sion of an interface reference is su	cient to be able to communicate with the
interface instance � assuming of course that the reference is still valid� i�e� it
references an existing and available interface� Furthermore� as far as automatic

��

SDL generation by the paradigm tool is concerned� it is not su	cient to only
know the sender and potential receiver of a signal but corresponding channels
and signalroutes need to be generated as well� As the necessary paths often
involve multiple hierarchies of block and process types� the generation of the
channels and signalroutes cannot be achieved in a straightforward manner�

A further di�erence between the CORBA world and the SDL world� is that
clients in possession of an interface reference can see whether they wish to
invoke the service represented by the interface reference� In SDL this is not
the case� One way that this might be resolved is through the development of
interface repositories where possession of an interface reference �PId� enables
clients to query the functionality o�ered by that PId� e�g� the signals or remote
procedures that can be invoked and the associated terminations� Ideally� this
facility should be part of the ODL�IDL to SDL mapping process�

� Deriving Test Cases from the SDL Models

As stated in section �� the framework and services derived from the framework
are used to generate test cases� In the former case� these test cases are used to
check the minimum conformance requirement of the SDL and C���CORBA
services derived from the frameworks� That is� these framework test cases
are used to ensure that the created services are valid specialisations of the
associated frameworks� In the latter case� the test cases generated are used to
check the conformance relation between the SDL and C���CORBA service
models�

Several tools exist within the Telelogic TAU toolset that allow for the deriva�
tion of tests from SDL speci�cations� The Autolink tool of the SDT Validator
allows for the semi�automatic generation of TTCN test suites based on SDL
speci�cations� Development of test suites from the SDL models can also be
made interactively through the SDT TTCN link tool� This tool provides an
environment that links the SDL speci�cation world represented by the Spec�
i�cation Design Tool �SDT� with the testing world represented by the ITEX
tool� Once a TTCN link executable is generated from the speci�cation it may
be opened with ITEX and used to generate the declarations used to test the
system� In e�ect this corresponds to generating mappings for the SDL chan�
nel names� the signals they carry and the parameters associated with these
signals that the speci�cation has with its environment� The SDL channels are
mapped to points of control and observation �PCO� type declarations� the sig�
nals are mapped to ASN�� abstract service primitive �ASP� type de�nitions
and the signal parameters are mapped to ASN�� type de�nitions� An extra
TTCN table is also generated called OtherwiseFail� This table is used to catch
all other ASPs at the PCOs� i�e� signals on channels� other than those listed

�

in the test case through an �OTHERWISE statement� These result in a fail
verdict for the test� This table also accepts arbitrary timeout signals which
result in an inconclusive test through a �TIMEOUT statement� This table is
used as a default case for the test suite�

Having generated the static parts of the tests� the dynamic parts and the
constraint parts associated with the test case can be developed through syn�
chronising the TTCN test case with the SDL system� Once synchronised� the
messages to be sent and received can be selected� i�e� the PCOs used �channels
to�from the speci�cation� together with the ASN�� ASPs they carry from the
list of possible SDL signals at that time� Once a PCO and ASN�� ASP has
been selected the constraints associated with the signal� e�g� the values of the
parameters being sent or the acceptable values that are being received� can be
set and a verdict be assigned to the test case�

��� Problems with Test Case Generation and Execution

The generation of test cases from the SDL model for the framework and ser�
vices derived from the framework is not without problems� Many of these
stem from the necessary complexity of the system being speci�ed� As stated
in section ���� distributed systems are complex and typically consist of many
objects interacting in non�trivial ways� i�e� they pass �and accept� complex
data structures when interacting� The result of this is that SDL models of
such systems are themselves complex due to the similar level of abstraction
upon which they are based� i�e� IDL�

The more complex a speci�cation is� the less easy it is to check through tools�
Checks that are made during test case generation are typically based on explor�
ing the state space of the speci�cation� However� it was found within TOSCA
that this activity was not well supported due to the speci�cation complexity�
A typical manifestation of the problem was a deadlock of the tools when trying
to generate test cases�

A further problem with test case generation was the lack of support for PIds
in TTCN or ASN��� In distributed systems� object references� i�e� PIds� play
a central role in providing location transparency� These are passed around
as parameters in many processes� and also accepted by the environment� For
example� when a service is �rst started references to the ssUAP manager
�FSEPmgr� are passed in as a parameter� These are then used by the speci��
cation when adding buttons etc to the ssUAP� e�g� signals are directed to the
FSEPmgr reference and not just to the environment� TTCN does not support
a mapping for PIds however� Hence it was not possible to generate test cases
for the speci�cation directly� Instead� the speci�cation had to be modi�ed so

��

that it never accepted or produced PIds� Rather� it accepted another data
type �string� and this was then mapped �within the speci�cation� to the ap�
propriate PId� Thus the speci�cation required look�up tables to be speci�ed
from PIds and strings �and vice�versa� for testing�

The abstract test cases generated were to be executed through a
TTCN�CORBA gateway against the CORBA based service implementa�
tions
���� Here again� however� the test cases generated through the Telelogic
testing tools could not be executed directly against the service implementa�
tion� The TTCN�CORBA gateway has a di�erent representation of PCOs�
This tool maps PCOs to object references� Test suite operations are given
that allow the object references of the service implementation to be accessed�
e�g� the stringi�ed form of these references can be read in from a �le� and
subsequently used in testing� E�ectively� this issue stems from the TAU tools
treating service model speci�cations as black boxes when deriving test cases�
when tests of component interfaces inside of the speci�cation model are really
what is needed� Put another way� SDL channels do not have an equivalent
counterpart in the distributed services considered in TOSCA� That is� these
services are tested through interacting at their interfaces� i�e� the external in�
terfaces of the objects they are composed of� Channels do not correspond to
interfaces in the TOSCA service models� The same channel can be �and is�
used to send and receive many signals from many di�erent objects within a
single block� This is further exacerbated by having multiple instances of the
same block type� e�g� where there might be twenty observers in a service� It
is of course possible to have twenty block instances with separate channels
connected to the environment� however� this approach is neither practical nor
scalable� For example� it would require that twenty identical specialisations
of the framework USM were made� To resolve this� the test cases were man�
ually edited so that the PCOs generated by the TAU tools were replaced by
CORBA interface references obtained via TTCN�CORBA gateway based test
suite operations�

	 Conclusions

This paper has outlined the work in the ACTS TOSCA project� A framework
and paradigm tool based approach has been chosen to create telecommunica�
tions services� The overall goal of the project is to create multimedia based
services quickly and of high quality� Starting with ODL�IDL speci�cations and
an informal behaviour description of components based on the TINA service
session� C���CORBA and SDL based frameworks were developed in parallel�
These two frameworks were then used to create service implementations and
service models respectively�

��

We have highlighted some of the advantages and disadvantages of applying
SDL and its associated tools for this purpose� On the plus side� is that SDL
allows ODL�IDL based models to be speci�ed at all� It is one of the few lan�
guages to address current techniques and approaches to �distributed� software
development� The language also has many features that make it apposite for
framework development� e�g� the straightforward representation of �exibility
points means that SDL frameworks can be simulated and tested even though
they are incomplete models of software� The usage of frameworks is a natural
feature of SDL due to its support for object�orientation and package con�
structs� An added bonus is that tools are available that enable test cases to
be semi�automatically generated�

The picture is not all rosy however� One of the main advantage of having
SDL models of systems is through the tools that can be used to investigate
the behaviour of those systems� Unfortunately� due to the complexity of the
services in TOSCA� usage of tools that enable such detailed behaviour inves�
tigations were limited due mainly to the well known problem of state space
explosion� This problem was also manifest when generating test cases from the
SDL service speci�cations� Other issues also arose when test case generation
was attempted however� For example� it should not necessarily be the case
that testing of distributed systems is based on black box testing� i�e� where
channels are given as PCOs� Instead� testing of individual components within
the service should be possible � ideally� the interfaces �processes� that are to
be tested�

Many of the issues that arose in this work were due to the di�erent mappings
stemming from the ODL�IDL to SDL and CORBA IDL to C�� worlds� In
particular this was caused by the SDL approach attempting to resolve issues
that the CORBA world has yet to address� e�g� multiple interface objects� It
is hoped and expected that many of the issues in this paper will be resolved
through the upcoming SDL���� standard� e�g� dynamic block �multiple inter�
face object� creation� However� many of the other issues discussed here are
based on the need for alignment and extensions to existing SDL tools� In
particular� those tailored to distributed service creation�

Acknowledgements

The authors are indebted to the partners in the TOSCA project� The TOSCA
consortium consists of Teltec DCU� Silicon Software Systems Ltd� British
Telecommunications� University of Strathclyde� Centro Studi e Laboratori di
Telecommunicazioni SpA� Telelogic� Lund Institute of Technology� GMD and
Ericsson�

��

References

��� M� Fayad and D� Schmidt� Object�Oriented Application Frameworks�
Communications of the ACM� Volume ��� Number ��� October ����� pp�
	�
��

�	� R� Johnson� Frameworks 	
Components � Patterns�� Communications of the
ACM� Volume ��� Number ��� October ����� pp�
���	�

�
� H� Schmid� Systematic Framework Design� Communications of the ACM�
Volume ��� Number ��� October ����� pp� ������

��� D� B�aumer� G� Gryczan� R� Knoll� C� Lilienthal� D� Riehle and H� Z�ullighoven�
Framework Development for large Systems� Communications of the ACM�
Volume ��� Number ��� October ����� pp� �	����

��� S� Demeyerm T� Meijler� O� Nierstrasz and P� Steyaert� Design Guidlines for

Tailorable
 Frameworks� Communications of the ACM� Volume ��� Number ���
October ����� pp� ������

��� D� Brugali� G� Menga and A� Aarsten� The Framework Lifespan�
Communications of the ACM� Volume ��� Number ��� October ����� pp� ������

��� W� Codenie� K� de Hondt� P� Steyaert and A� Vercammen� From Custom
Applications to Domain�Speci�c Frameworks� Communications of the ACM�
Volume ��� Number ��� October ����� pp� ������

��� D� Schmidt and M� Fayad� Lessons Learned Building Reusable OO Frameworks
for Distributed Software� Communications of the ACM� Volume ��� Number ���
October ����� pp� ������

��� R� Sinnott and M� Kolberg� Business�Oriented Development of
Telecommunication Services with SDL� Proceedings of OOPSLA��� Workshop
on Precise Behaviour Speci�cations of Object�oriented Systems and Business
Speci�cations� Vancouver� Canada� October �����

���� TOSCA Consortium Deliverable �� Final Speci�cation of Process Architecture�
http���www�teltec�dcu�ie�tosca

���� TOSCA Consortium Deliverable ��� User Trial Report on Embedded Methods
and Tools� http���www�teltec�dcu�ie�tosca

��	� R� Sinnott and M�Kolberg� Engineering Telecommunication Services With SDL�
in Formal Methods for Open� Object�Based Distributed Systems� P� Ciancarini�
A� Fantechi and R� Gorriere �Eds��� Kluwer Academic Publishers� ����� pp� ����
	�
�

��
� M� Kolberg and E� Magill� Service and Feature Interactions in TINA� in Feature
Interactions in Telecommunications and Software Systems V� K� Kimbler and
L�G� Bouma �Eds��� IOS Press� ����� pp�������

���� M� Kolberg� R�O� Sinnott and E� H� Magill� Engineering of Interworking
TINA�based Telecommunication Services� Proceedings of Telecommunications
Information Networking Architecture Conference� Oahu� Hawaii� April �����

��

���� A� Olsen� D� Demany� E� Cardoso� F� Lodge� M� Kolberg� M� Bj�orkander and R�
Sinnott� The Pros and Cons of Using SDL for Creation of Distributed Services�
in Intelligence in Services and Networks � Paving the Way for an Open Service
Market� H� Zuidweg� M� Campolargo� J� Delgado� A� Mullery �Eds��� pp�
�	�

��� Lecture Notes in Computer Science� Vol� ����� Springer Verlag� �����

���� The Common Object Request Broker Architecture and Speci�cation� Revision
���� Object Management Group� Inc�� Framingham MA�� July �����

���� R� Sinnott� Frameworks� The Future of Formal Software Development� Journal
of Computer Standards and Interfaces� special edition on Semantics of
Speci�cations� August �����

���� R� Sinnott and M� Kolberg� Creating Telecommunication Services based on
Object�Oriented Frameworks
and SDL� Proceedings of Second IEEE International Symposium on Object�
Oriented Real�Time Distributed Computing �ISORC����� Saint Malo� France�
�����

���� J� Rumbaugh� M� Blaha� W� Premerlani� F� Eddy� W� Lorensen� Object�Oriented
Modelling and Design� Prentice Hall �����

�	�� R� Johnson and V� Russo� Reusing Object�Oriented Designs� Urbana� Ill�� May
�����

�	�� International Consultative Committee on Telegraphy and Telephony� SDL
� Speci�cation and Description Language� CCITT Z����� International
Telecommunications Union� Geneva� Switzerland� ���	�

�		� For more information see http���www�fokus�gmd�de�minos�y�sce�

�	
� TINA�C� TINA Object De�nition Language Manual� Version 	�
� July �����

�	�� Telelogic AB� Getting Started Part � � Tutorials on SDT Tools� Telelogic AB�
�����

�	�� I� Schieferdecker� M� Li� A� Ho�mann� Conformance Testing of TINA Service
Components � the TTCN�CORBA Gateway� Proceedings of the Intelligence in
Networks and Services Conference ����� Antwerp� May �����

�	�� M� Li� Testing Computational Interfaces of TINA Services using TTCN and
CORBA� Diplomarbeit� Department of Electrical Engineering�
Telecommunication Network Group� Technical University Berlin� �����

�	�� TINA�C� Service Architecture� Version ���� �� June �����

�	�� M� Born� A� Ho�mann� M� Winkler� J� Fischer� N� Fischbeck� Towards a
Behavioural Description of ODL� Proceedings of TINA �� Conference� Chile�

�	�� M� Bj�orkander� Mapping IDL to SDL� Telelogic AB� �����

�
�� Basic Reference Model of ODP � Part �� Foundations� ISO�IEC International
Standard ������	� ITU�T Recommendation X���	� Geneva� Switzerland �����

��

Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:

Kolberg, Mario; Sinnott, Richard O.; Magill, Evan H.

Title:

Experiences of modelling and using object-oriented telecommunication service frameworks in

SDL

Date:

1999

Citation:

Kolberg, M., Sinnott, R. O., & Magill, E. H. (1999). Experiences of modelling and using

object-oriented telecommunication service frameworks in SDL. Computer Networks, 31,

2577-2592.

Publication Status:

Published

Persistent Link:

http://hdl.handle.net/11343/28819

File Description:

Experiences of modelling and using object-oriented telecommunication service frameworks in

SDL

