Experiences of Modelling and Using
Object-Oriented Telecommunication Service
Frameworks in SDL

Mario Kolberg

Department of Electronic and Electrical Engineering
University of Strathclyde, Glasgow G1 1XW, United Kingdom, mkolberg@acm.org

Richard O. Sinnott

GMD-Fokus, Kaiserin-Augusta-Allee 31, Berlin, Germany, sinnott@fokus.gmd.de

Evan H. Magill

Department of Electronic and Electrical Engineering
University of Strathclyde, Glasgow G1 1XW, United Kingdom,
e.magill@Qeee. strath. ac.uk

Abstract

This paper describes experiences in using SDL and its associated tools to create
telecommunication services by producing and specialising object-oriented frame-
works. The chosen approach recognises the need for the rapid creation of validated
telecommunication services. It introduces two stages to service creation; firstly a
software expert produces a service framework, and secondly a telecommunications
"business consultant’ who specialises the framework by means of graphical tools
to rapidly produce services. Here we focus on the underlying technology required.
In particular we highlight the advantages of SDL and tools as well as issues and
problems incurred.

Key words: Object-Oriented Frameworks, Service Creation, SDL, TINA, Testing,
TTCN.

1 Introduction

The area of Service Creation, while far from new, grows ever more complex
and challenging due to the constant increase in requirements placed on it by

Preprint submitted to Elsevier Preprint 15 June 1999

consumer demands, competition and new technologies. Many new factors need
to be considered to ensure that the general requirements on service creation
are met. Some of these requirements include:

e Reduction in the time to market for both new services and variants on
existing services,

e Reductions in development and operating costs,

e The need for open solutions to service creation, i.e. methods and processes
which are equally applicable in many software environments,

e The facility to provide prototype services, for the purpose of quality assur-
ance and validation of user requirements,

e Re-use of existing software/components,

e Speed of interaction and correct interworking of new services with existing
(or legacy) infrostructure.

Classic software engineering approaches are insufficient to meet these chal-
lenges. Therefore, new and innovative service creation processes are required.
This paper reports on work carried out in the EU funded ACTS TOSCA
(TINA Open Service Creation Architecture) project which is addressing these
issues by developing a methodology and a suite of tools for the rapid creation
and validation of TINA-like services. This methodology is based on the combi-
nation of frameworks and paradigm tools. While object-oriented frameworks
are not new to the software engineering community [1-8], their application
in the service creation process of telecommunication services is believed to be
novel. Furthermore, and this is a vital point in the TOSCA approach, the use
of paradigm tools in combination with frameworks allows for widening the
participation in the service creation process. Paradigm tools offer a graph-
ical and intuitive means whereby services can be designed. In other words,
paradigm tools abstract from the complexity of the frameworks and offer a
view on their functionality which is accessible by non-technical people, e.g.
business consultants. Thus the service designer does not need to consider the
lower level behaviour of the service to be able to create one. Rather, they
should be provided with a high-level representation of the service components
and the ability to tune their behaviour and how they are composed with one
another. In other words, the creation of services is moved to a large extent
from the technical labs to the front offices where business consultants deal with
potential customers. Hence, almost immediate feedback on the behaviour of
the new services can be delivered and potential changes demanded by the cus-
tomer can be taken into account. More information on paradigm tools and the
paradigm based service creation process more generally are given in [9-11].

The aims of the TOSCA project are to develop a service creation environment
that enables multimedia-based telecommunication services to be produced in
an effective manner, i.e. they are created rapidly but not at the expense of
their reliability or quality [9,12]. Central to the approach is that the services

to be generated are validated. This validation is required both when the ser-
vice is initially created and also when it is deployed in an environment where
it may interwork with other services causing potentially undesired service in-
teractions [13,14].

Validation of services implies that formality is introduced into the service cre-
ation process. Producing formal specifications of the system to be developed is
a traditional starting point in applying formal techniques [15]. Unfortunately,
it is often the case that formal techniques are used only at this stage of the
software development process. Ideally, formality should be taken through to
the final implementation of the software itself. This is a notoriously difficult ac-
tivity — often depending upon the nature of the formal language and method —
requiring arduous refinement and obligatory proof steps. An alternative pro-
cess to refinement of specifications through to their final implementation is
to develop the specification and implementation as dual, i.e. concurrent, ac-
tivities. Provided that the specification and implementation are at the same
level of abstraction, the specification can be used as a basis for testing the
implementation.

Distributed system development offers one area where the parallels between
the development of specification and implementation can be readily drawn,
i.e. they can be expressed at the same levels of abstraction. Interface defini-
tion languages (IDL) when used as a common vocabulary for describing the
syntactic aspects of interface interactions, serve as an ideal starting point for
developing both specifications and implementations [16].

Given that the rapid development of high quality services is a fundamental
aspect of service creation in TOSCA, developing specifications (and imple-
mentations) from nothing, or from an IDL only basis, is not a viable option.
Instead techniques that can expedite the software development process are
necessary. Whilst it is typically the case that implementations rarely (if ever!)
start from nothing, the same cannot be said for the development of formal
specifications [17,18]. In TOSCA we are addressing this issue through the
adoption of techniques based upon object-oriented frameworks.

The concept of framework based software engineering has arisen to help to
realise the holy grail of software engineering: re-use. Frameworks are a natural
extension of object-oriented techniques. Whilst object technology [19] provides
a basis for re-use of code, it does not provide features to capture the design
experience as such. Frameworks have developed to fulfil this need. A framework
can be regarded as a collection of pieces of software or specification fragments
that have been developed to produce software of a certain type or niche [20].
A framework is only partially complete. Typically, they are developed so that
they have holes or flexibility points in them where service specific information
is to be inserted. This filling in (specialisation) of the flexibility points is used

to develop a multitude of services with differing characteristics.

Following the approach of parallel development of the specification and imple-
mentation, in TOSCA the frameworks are developed both in the implemen-
tation world, using C++ and distributed technologies such as CORBA [16]
and the specification world, using SDL [21]. SDL is frequently used in creat-
ing telecommunications services. Used with suitable tools, SDL can provide
support for service development from requirements capturing to testing.

As outlined above, the TOSCA approach uses paradigm tools to facilitate
the specialisation of the frameworks by business consultants. Our focus in
this paper, however, is on the development and usage of SDL frameworks.
Specifically, we identify the advantages and disadvantages of applying SDL and
it’s associated tools throughout the TOSCA based service creation lifecycle.

2 The TOSCA approach to Service Creation

The TOSCA project is developing a service creation environment where ser-
vices can be created and validated in an expedited manner. Tool support
forms a central part of the TOSCA approach. TOSCA has developed a tool
chain that allows for both the development and usage of specification frame-
works from semi-formal descriptions right through to their usage in testing
the created service. Figure 1 highlights this tool chain.

convert to SDL.GR and

ODL/IDL and add and check behaviou
textual behaviour input to
description \ SDL.PR
Y.SCE i
l input to SCE ———p

Orbix/CH+ produces

implementation ~ SPecidising

of Framework w Paradigm

Tool

specialising

resultsin

execution of
est cases ITEX

Fig. 1. The Tool Chain in TOSCA

Here the Y.SCE tool [22] allows (amongst other things) TINA ODL [23] and
CORBA IDL [16] descriptions to be developed (or imported) and subsequently
mapped to SDL in PR format. These SDL fragments are then themselves im-
ported into the Telelogic TAU toolset [24]. This toolset consists of a collection

of tools that allow SDL specifications to be both specified, simulated or vali-
dated (using the Specification Design Tool (SDT) tool) and subsequently used
for generating test cases (using the Interactive TTCN Editor and eXecutor
(ITEX) tool). The requirements on the behaviour of the framework are repre-
sented both by use cases and textual descriptions of the expected behaviour
of the framework components. Simulation techniques are used to ensure that
the framework has the correct behaviour, e.g. that it satisfied the use cases.

When complete the SDL framework model can be used to generate test cases.
These can then be used to test both that the SDL service models are valid,
i.e. services created from the framework, as well as a minimum conformance
requirement on C++/CORBA based service implementations.

The SDL model of the framework is then saved as a package which can then
be used by paradigm tools to develop complete models of services. TOSCA
has implemented two paradigm tools that can be used to produce intuitive
(graphical) models of the services. We consider one in particular based on the
functional block paradigm. This paradigm provides service designers with a
list of basic events at which the behaviour of the service can be defined. These
are the key points at which the designer can intervene and customise the ser-
vice behaviour. The basic events thus correspond to the framework flexibility
points. Numerous basic events have been identified, e.g. starting/stopping the
service, starting/stopping user sessions, etc. We focus on the form of these flex-
ibility points and the behaviour that can be inserted into them in sections 5
and 6.

Once the user of the paradigm tool is satisfied with the design of the service,
the paradigm tool outputs both the specialising C++ and SDL. The generated
SDL is then imported into SDT and used to develop an SDL system based
on the framework package. Once complete, the SDL service specification is
checked for minimum conformance through ensuring it passes all test cases
contained in the framework test suite. When this is the case, the SDL service
specification itself is used to generate test cases for the C++ based service
implementation. These test cases may be executed against the C++/CORBA
based service implementations through a TTCN/CORBA gateway. Informa-
tion on how CORBA based systems can be tested and the gateway itself are
provided in [25,26].

The first stage in this tool chain is the development of the framework descrip-
tion. This is represented through TINA ODL and CORBA IDL descriptions
with associated use cases and textual descriptions of the object and interface
behaviours. The actual framework itself is based around the TINA architec-
ture, or more specifically the Service Architecture [27] of TINA.

3 Frameworks based on the TINA Architecture

The TINA Service Architecture introduces the underlying concepts and pro-
vides information on how telecommunication applications and the components
they are built from, have to behave. Central to the Service Architecture is the
concept of a session. This is defined as a temporary relationship between a
group of resources assigned to collectively fulfil a task or objective.

Three sessions are defined in TINA: the Access Session, Service Session and
Communication Session. Briefly, the access session provides mechanisms to
support access to services (service sessions) that have been subscribed to.
The service session allows users to execute and manage sessions, i.e. it allows
control of the communication session. The communication session controls the
network resources required to establish end to end connections.

Currently, the service session has been the main area upon which frameworks
are being developed in TOSCA. The components in the service session and
the relation between the three sessions are depicted in Figure 2.

user domain provider domain user domain

access session

servicelsession

SUAP USM [, USM SUAP

T . .
commuhication
sessioni_

stream connections established

Fig. 2. Relation between the TINA Sessions

Broadly speaking, an instance of a service typically consists of a Service Session
Manager (SSM) to control the global service behaviour, and a collection of
User Service Session Managers (USM) - one of each is used to control a users
participation in that service. Both types of components are instantiated by the
Service Factory (SF) when requested to do so by components of the Access
Session. The Service Session related User Application (ssUAP) represents a
set of applications in the user domain which allow a user to communicate with
a service.

The USM and SSM components in the framework are decomposed into generic
and specific parts with the generic parts being fixed and the specific parts
being incomplete in the framework and thus specialiseable by the paradigm

tool. Figure 3 gives an overview of the USM component structure and its
relation to a typical ssUAP and SSM.

ssUAP

Tunnm

other handlers R N]

generic objects | |

other buttons/windows

Fig. 3. Structure of the USM and Relation to ssUAP and SSM

Each of the service parts detailed above has a manager (UFSmgr, USPmgr for
the USM and GFSmgr, GSPmgr for the SSM not shown here). These managers
are responsible for lifecycle and initial access to the managed objects, e.g. the
managers are able to initialise, suspend, resume or terminate the objects they
manage, or provide references to the objects they manage on request. When
the manager is told to suspend, resume or terminate itself it also suspends,
resumes or terminates the objects it manages respectively. As we shall see
in section 5, these manager operations and the initialisation of the manager
together with the objects it is to create (and subsequently manage) correspond
to framework flexibility points.

Typically, users can join, suspend, resume or terminate their participation in
services. The logic associated with these requests are processed in the service
session, e.g. whether the user is able to resume themselves in the service at
that time. If successful, the appropriate operations are invoked on the com-
munication session, e.g. resume my previously suspended connections.

It is important to note that this architecture does not overly constrain the
kinds of services that can be created from it. Rather, it acts as a template
for a multitude of services, e.g. multimedia conferencing services, chatline ser-
vices or newsflash services to name but three. Indeed even within these three
services there exist a plethora of variations. In multimedia conferencing for
example, there might be differing roles, e.g. chairman, observer, participant.
These differing roles might result in differing expected functionalities, e.g. only
chairman can invite (or suspend or terminate) other users, only participants
can vote. Users might be able to have differing charging (or billing or account-
ing) possibilities, e.g. reverse or split charging, or other variations.

As well as these role specific specialisations, numerous others are possible also,

e.g. only start the service if a certain number of successful responses to the
invite have been received. Quit the service session if the number of users falls
below a certain level (or if the total charges generated from using the service
falls below a certain level). Terminate a user if they have been suspended for
too long. It is precisely these variations on the general theme that paradigm
tools are expected to capture whilst the general theme itself is represented by
the framework.

To engineer frameworks it is thus necessary to have a core behaviour. In
TOSCA this core behaviour is based around the informal (textual) description
of the behaviour of the service session components, along with the TINA ODL
and IDL specification for those objects. TINA ODL is a superset of IDL which
allows, amongst other things, to specify objects which offer multiple interfaces
to their environment. Further, TINA ODL distinguishes between supported
and required interfaces. ODL also allows for the expression of groups of objects
and the objects used to manage those groups.

4 Tool supported Mapping from ODL to SDL

Given that TINA component specifications are written in TINA ODL [23],
supporting a TINA ODL mapping is critical if the framework based approach
is to be successful. Table 1 summarises the main rules of the ODL to SDL

mapping used in TOSCA and supported by the Y.SCE tool [28].

4.1 Advantages of the Mapping

The greatest advantage of the mapping used is that it offers a basis for compar-
ison of the SDL model and the C++/CORBA based implementation. Often
detractors of formal methods cite that formal models of systems bear little or
no relation to the actual software development itself. This is often a deliber-
ate policy, e.g. where a requirements specification is made. Having a common
(syntactic) basis for the intercommunication between the objects in the SDL
world and in the C++/CORBA implementation worlds addresses this issue
directly. Put another way, the formal model and software implementation can
be developed at the same level of abstraction. Through this, the model can be
used directly by tools etc. for reasoning about and testing the implementation
or parts of the implementation.

One major advantage of this mapping to others [29] is that it allows for ex-
ceptions in the SDL model. Exceptions are an essential feature in distributed
systems, moreover, ODL also supports exceptions. The support for exceptions

Table 1
Summary of the ODL to SDL Mapping

ODL/IDL Structure SDL Mapping
group type block type
object type block type
interface type process type
object reference Pid

oneway (asynchronous) operation) signal prefixed with pCALL_

operation (synchronous) signal pair. The first signal is prefixed
with pCALL_, the second signal is
prefixed with pREPLY_ or pRAISE_
(if exception raised).

exception signal prefixed with pRAISE_

basic IDL types, syntype

e.g. long, char, float, ...

any not supported

enum newtype with corresponding literals

typedef syntype

struct newtype with corresponding struc-
ture

constant sysnonyim

is gained through mapping ODL operations to SDL signals pairs, as opposed
to remote procedures. Remote procedures are a shorthand notation and use
a substitution model based on signal pairs and states. More precisely, remote
procedures are decomposed into two signals. The first carries the outgoing
parameters (in or inout) and the second the return value of the procedure
and all inout parameters. These signals are sent via implicit channels and sig-
nalroutes. As these signals are only internally generated and thus not visible
within a specification, it is impossible to return with a different signal such as
an exception signal.

As with other ODL language mappings, the Y.SCE tool generates client stubs
and server skeletons. The generated SDL is placed into packages, which are
ready to use in subsequent specification steps. In TOSCA these packages were
converted to SDL.GR format and imported into the SDT tool.

4.2 Problems with the Mapping

Whilst overcoming certain problems with other mappings, e.g. lack of excep-
tions, the Y.SCE mappings are also not without problems. One problem with
this and other IDL mappings is that it reduces the advantages that can be
gained from the technique of abstraction. Working at the IDL and ODL level
when modelling a realistic system, e.g. a telecommunication service, means
that it is more difficult to get the big-picture of what the system is doing.
This is lost to a certain extent through the often low level interactions of the
objects in the system.

There are further side effects of this abstraction problem that become apparent
when tools are used to check the SDL system, e.g. when trying to validate the
system through performing state space exploration. Having several hundred
objects interacting in non-trivial ways carrying complex parameters detracts
from the ability of the tools to work successfully.

As well as the abstraction problem, there are other differences and associated
problems with the mappings when interpreted from a CORBA perspective.
The current CORBA specification does not directly support objects having
multiple interfaces as do other architectures, e.g. the Open Distributed Pro-
cessing Reference Model [30]. Multiple interface objects are currently under
investigation and may well be in the next CORBA 3.0 specification. Having
block types with multiple process types, i.e. objects types with multiple inter-
face types, requires design differences to be made between the SDL framework
and C++ frameworks. For example, CORBA objects have behaviour but SDL
blocks do not. Block behaviour in SDL is only given through the processes a
block contains. Similarly, CORBA objects can have data associated with them.
Data may not be declared at the block level in SDL. Instead processes must be
specified to either reveal data or export data structures which can be viewed
or imported by the processes within that block respectively. Alternatively,
additional signals can be added between the processes to access the relevant
data. This is not an ideal solution however since it increases the communi-
cations necessary between the processes and can result in poorer run-time
performance.

A further issue connected to the ODL/SDL mapping is related to the thread-
ing models used in C++ and SDL. The chosen threading model for the
C++/CORBA implementation is such that there is only one single thread
per ODL object group. However, in the SDL model this can not be achieved
in a straightforward way. In fact, since all ODL interfaces are mapped to pro-
cess types, instantiations of these can accept requests from other processes
concurrently. In other words, since the processing of the request is done in the
interface as opposed to the object, multiple requests to the same object at

10

different interfaces, can be processed in parallel. Although also this issue can
be solved by added communication it is somewhat inellegant.

Another related difference between the current CORBA specification and the
SDL mapping is that CORBA object references are first class citizens, i.e.
they may be passed around as parameters in operations. This facility enables
dynamic systems to be built where new resources can be found and subse-
quently bound to at run time. Blocks are not first class entities in SDL, e.g.
they cannot be passed around as parameters in signals. To overcome this, pro-
cesses representing the core block behaviour can be specified. These processes
typically manage the other processes (representing the object interfaces) in
the block. References to these manager processes can subsequently be passed
around as parameters in signals.

Another discrepancy between the CORBA and SDL worlds is the dynamic
creation of objects. As stated, USMs and SSMs are dynamically created by
the service factory on request from users (and they themselves can dynamically
create objects when requested). Since objects are represented as block types,
instances of these cannot be created dynamically and an alternative solution
is required.

One possibility is to have process instances inside blocks that exist at system
start-up. For example, at start-up, the UFS block contains a creator process
used only to create instances of the manager process type inside the UFS. This
manager process can then create instances of other process types as required.
The reference (PId) to this manager is returned to the invoker as illustrated
in Figure 4.

block type theUFS
inherits.... ;
createUFS(1,1): registerRef
UFScreator

aUFSmgr(0,):
theUFSmgrimp

Fig. 4. Overcoming the lack of dynamic block creation in SDL

Typically, these creator processes (UFScreator) support a single exported pro-
cedure which is imported into blocks wishing to create ”instances” of the
exporting block. For example, the service factory will import and can sub-
sequently call the exported remote procedure for the UFSmgr (createUFS).
Although no real dynamic block creation can be achieved through this ap-
proach, the perception of this is given.

The representation as object references as Plds is also different than the
CORBA world. In CORBA, object references contain sufficient information so
that a client can decide whether they wish to invoked that service or not - at

11

least from a syntactic point of view! The same is not true for SDL. Possession
of a PId by another process does not allow that process to see what signals
can be sent to the process instance referenced by that PId1.

There are also other minor problems due to the differences in keywords from
the ODL, IDL and SDL worlds, e.g. start is a valid IDL operation name but
not a valid SDL procedure name. These issues were easily resolved in TOSCA
since the frameworks were created in parallel, e.g. names such as ufsstart were
found that were satisfactory to all three languages.

5 SDL Framework Development

Developing a framework so that it removes large parts of the problem of ser-
vice design, thus expediting the creation process, whilst still offering a means
to create numerous different kinds of services is an especially challenging ac-
tivity. To produce successful frameworks requires that the points where design
decisions are made are flexibility points. Using frameworks to produce services
then requires that these flexibility points are made available so that new de-
sign choices can be taken to produce new services. Perhaps the hardest part
of the framework development process is the identification of these flexibility
points [9].

In TOSCA we focused on a small set of flexibility points. This set of flexibility
points allowed us to produce a multitude of different services with different
types of behaviour. Specifically, we chose the following flexibility points:

e start up, suspension, resumption and termination of user and service ses-
sions.

In producing a framework it is necessary to have fixed places where the flexibil-
ity points are to exist. Thus it is necessary to represent the points of flexibility
directly in the design of the framework, but the actual behaviour associated
with these flexibility points is effectively NULL until they are specialised. To
achieve this we introduced appropriate IDL operations that were associated
with the appropriate objects in the framework design. An example of the kind
of IDL associated with the UFSmgr described earlier is:

interface i UFSmgr : i_CO _lifecycle {

void suspendSessionRequest|(); // suspend a users’s session
void terminateSessionRequest(); // terminate a user’s session
void suspendAll(); // suspend USM and all managed objects

void requestObject(inout NamedObject obj); // create handlers
oneway void ufsstart(); // not implemented in framework - specialised!

12

oneway void ufssuspend(); // dto.
oneway void ufsresume(); // dto.
oneway void ufsstop(); // dto.
//..... other operations

I

We point out that the behaviour with the other IDL operations can be imple-
mented directly, i.e. before specialisation. As with other IDL language map-
pings, client stubs and server skeletons are generated from Y.SCE. These act
as templates whose behaviour is to be filled in through inheritance. These
stubs and skeletons are placed in two SDL packages (Name_Interface and
Name_Definition). The Name_Interface package contains the interface spec-
ifications in the form of data types, signals, remote procedures, signallists
etc. Figure 5 gives an example of the kind of SDL generated focusing on the
i_UFSmgr interface of the UFSmgr object:

process type <<package Name_Definition >>i_UFSmgr ;
inheritsi_CO_lifecycle;

dcl ...;

virtual suspendSessionRequest
pCALL_i_UFSmgr_ufsstart

virtual ufsstart similar format |
ufsstart | |1 for other i
| procedure calls !

other virtual procedures here

Fig. 5. Example of the Contents of the Name_Definition Package

The virtual procedure for the ufsstart (and all oneway operations) consist of a
virtual start transition followed by an immediate exit. In non-oneway opera-
tions, the generated procedures contain a pREPLY _ signal of the appropriate
kind. Along with the virtual procedure definitions, signals and (asterisk) states
are also generated that result in the procedures being called.

As an example of the way in which the generated SDL server skeletons can have
their core behaviour inserted, i.e. the behaviour before they are specialised, we
consider the implementation of the i_UFSmgr interface (i-UFSmgrImp) of the
UF'S object given previously. The default behaviour for the UFSmgr is that it
creates a control window handler only. A simplified example of the structure
of this object is given in figure 6.

This process type is parameterised with (amongst other things) the reference
to the user application, i.e. the PId for the ssUAP manager process. When an

13

irtual process type theUFSmgrimp;
inherits <<package Name_Definition/block type USM/block type UFS>> i UFSmgr|

fpar in FSEPref objRef, ...; dd
redefined createdRefs objRefList,
cwhRef objRef, ...; pther signallists
WAIT imported procedure —
| createdRefs ;= empty, ...; | | createCWH fpar ...;
I .
owhRef = call pCALL_i_UFgmgr_ufsstart
createCWH(FSEPref, self), (US| o
createdRefs := createdRefs // 1 gr_|{Invocations|
ufsstart
MKkString(cwhRef), ... —>

[i_UFBmgr_Terminations]
WAIT READY

Fig. 6. Structure of Basic UFSmgr

[

instance of this process type is created, initialisation of local variables is done,
e.g. the list of created references is set to empty, and the default behaviour
of creating a control window handler is made. As discussed, this requires that
the necessary exported remote procedure is imported. Following this default
behaviour, the UFSmgr is ready to be specialised, i.e. it is in a state where it
can accept the signal pCALL_i_UFSmgr_ufsstart.

5.1 Advantages of SDL for Framework Development

SDL has many advantages when used to develop frameworks [17]. Many of
these advantages stem directly from its support of object-orientation. For
example, the ability to directly re-use (through redefinition) the Y.SCE
generated SDL stubs and skeletons contained in the Name_Interface and
Named_Definition packages allows development of specifications to be made
in a constructive (and CORBA-like) manner.

The representation of flexibility points is also easily achieved in SDL through
procedures which can be called but have null behaviours, i.e. start and exit.
This allows for the behaviour of the framework as a whole to be checked
without necessarily having any specialisation taking place, e.g. the basic USM
behaviour (and SSM and SF) behaviours can be checked to ensure the frame-
work as a whole correctly represents the informal (textual) requirements.

This representation of holes also means that the SDL frameworks can be
used to derive test cases. These can then be used to check that SDL based
specialisations of the frameworks are valid, i.e. SDL service models, and that
the service implementations derived from the C++4/CORBA frameworks are
valid.

14

5.2 Disadvantages of SDL in Developing Frameworks

The SDL language itself supports the development of frameworks, however,
in TOSCA problems arose in the usage of tools when developing frameworks.
This was apparent when the framework design changed. Ideally, when the
ODL or IDL for the framework changed, the existing packages upon which the
SDL framework was based, could be replaced with these new packages. This
process should not have impinged upon the behaviour specified in the SDL
framework that was independent of the new design change. Unfortunately,
this process was not possible. When new packages were generated, file names
were not guaranteed to be distinct from those existing in the SDL framework,
i.e. not just the existing packages. This could (and did) lead to situations
where the behaviour specified in the framework was lost due to a new file
being generated that had the same name as an existing framework file, i.e.
a file that had SDL behaviour inserted was overwritten by a new skeleton.
To address this issue, the SDL stubs were manually edited. Clearly, this is
unsatisfactory, and requires further consideration.

As described earlier, in TOSCA we developed in parallel a C++ implementa-
tion and a SDL model of the same framework. In the C++ and Orbix world
there are two signal queues connected to each object. That is, incoming re-
quests to that object are collected in one queue, while a second queue accepts
replies to earlier requests. Hence an object cannot deadlock or drop an in-
coming request (through implicit signal consumption) because it received an
incoming request at a time it expected a reply. Although there are solutions
such as using the save construct, or processes to represent queues, these are
not straightforward to implement and somewhat inelegant.

Opposed to C++, a missing aspect of the object-orientation of SDL is that a
user cannot be forced to specialise certain framework parts. That is, a com-
ponent declared as virtual can be specialised in the service model but the
specification would also be semantically correct if it is not.

6 Service Creation — Specialising the Framework

As an example specialisation of the framework we show how a videophone
service can be created. This services supports two user roles: Caller and Callee.
There may only be one instance of these in the service at a time. The caller
and callee both have windows on their user application (ssUAP) which can
be used for terminating or suspending their respective participations in the
service. The caller and callee differ in that the caller also has an invitation
window (for inviting the callee) and the callee is terminated from the session

15

after thirty seconds of suspension. That is, the callee should resume within
thirty seconds or they are automatically quit.

The user applications (ssUAP) associated with users are not modelled in the
framework. Instead the real C++/CORBA implementation of these objects
are used, that is they are driven by a simulation of the SDL model. The
objects themselves allow for the dynamic manipulation of the user interface,
e.g. new windows or buttons can be added. The signals to achieve this come
from the SDL system. Specifically, from the specialisable procedure ufsstart.
The objects that deal with user application requests in the USM all support
a callback interface (process type). It is instances of these process types that
the events raised by the user, e.g. through pushing buttons on their ssUAP,
are sent. Thus in the videophone example, the specialised ufstart for the caller
should create an invitation window handler. This handler then requests the
user application to add the appropriate window and the callback references are
established. We note that this is the most simple scenario since the invitation
window handler is a predefined component in the framework. Other more
complex can be achieved however. Examples of how this is achieved are given
in [9]. The specialised procedure for the caller ufsstart is shown in figure 7.

- - Redefined Process Type
redefined procedure redefined procedure <<Substructure calleeUSM/Block Type

ufsstart ufssuspend theUFS/Block Type theUFSmgr>> theUFSmgrimp

edefined redefined)
suspended Timer handlerT;

ohltheStatus := TypeKnown,
oh! theObjectTypeltag 1= *invWH set(now+30.0,handlerT)

requestObject(oh) ® PCALL_i_UEBmgr_terminateSessionRequest TO self

Fig. 7. Specialising SDL for Caller and Callee in Videophone Service

D

handlerT

For the callee, procedure ufssuspend must be specialised. To achieve this an
SDL timer is introduced and set to time (now + 30). The signal which is
generated by the timer is received in the UFSmgr and results in sending a
signal to terminate the callee. In the specialisable procedure ufsresume (called
during resumption of a user), the timer is reset. Thus if ufsresume is executed
before the timer signal is consumed (less then 30 seconds) the timer is stopped
and the user can resume into the session.

16

6.1 Advantages of using SDL for Framework Specialisation

Using the framework for producing services requires that the framework is
saved as a package. This implies minor modifications, like the removal of the
upper most block instances with their connecting channels. To specialise the
framework to create a service, the SDL package representing the framework
was used. Both simple and virtual inheritance were used to specialise the
components in the framework. Simple inheritance was used at the top most
block level, e.g. the USM block level. Subsequent block types, e.g. the UFS
block type as well as process types and procedures were reused by virtual
inheritance. This was necessary since virtual inheritance allows for the com-
munication links, i.e. channels and signalroutes in the framework to be reused
(and possibly extended). Keeping the channels and signalroutes in the speciali-
sation was essential for being able to model frameworks in SDL - otherwise the
"added-value’ of frameworks in storing the design and communication links, is
lost.

On the other hand, virtual inheritance does not allow for multiple redefini-
tions in one scope. However, considering the classes of services targeted in
TOSCA, this is a crucial property to have. Different types of users in a service
are represented by different types of USMs, or in other words, different spe-
cialisations of the base USM in the framework. This is used for modelling the
various attributes of different user types, e.g. a chairman and participants in
a conference service. As a result, it is not possible to use virtual inheritance
for the top-level block types: simple inheritance is used instead. This implies
that since the communication paths between blocks at the top most level are
not part of the framework they need to be generated by the paradigm tool.

6.2 Problems with using SDL for Framework Specialisation

A difficulty encountered in the development of the paradigm tool was the
fact that process communication (via signals) always requires an explicitly
drawn signal path between the communicating processes. This is also true
if signals are directly sent to a specific process identifier (PId) of a process
in the system. We note that this is not strictly true according to the SDL
standard [21], however, it was true with the SDT tool.

For TOSCA, this meant a further deviation from the C++/CORBA frame-
work implementation and how it is specialised. In the CORBA world, posses-
sion of an interface reference is sufficient to be able to communicate with the
interface instance - assuming of course that the reference is still valid, i.e. it
references an existing and available interface. Furthermore, as far as automatic

17

SDL generation by the paradigm tool is concerned, it is not sufficient to only
know the sender and potential receiver of a signal but corresponding channels
and signalroutes need to be generated as well. As the necessary paths often
involve multiple hierarchies of block and process types, the generation of the
channels and signalroutes cannot be achieved in a straightforward manner.

A further difference between the CORBA world and the SDL world, is that
clients in possession of an interface reference can see whether they wish to
invoke the service represented by the interface reference. In SDL this is not
the case. One way that this might be resolved is through the development of
interface repositories where possession of an interface reference (PId) enables
clients to query the functionality offered by that PId, e.g. the signals or remote
procedures that can be invoked and the associated terminations. Ideally, this
facility should be part of the ODL/IDL to SDL mapping process.

7 Deriving Test Cases from the SDL Models

As stated in section 2, the framework and services derived from the framework
are used to generate test cases. In the former case, these test cases are used to
check the minimum conformance requirement of the SDL and C++/CORBA
services derived from the frameworks. That is, these framework test cases
are used to ensure that the created services are valid specialisations of the
associated frameworks. In the latter case, the test cases generated are used to
check the conformance relation between the SDL and C++/CORBA service
models.

Several tools exist within the Telelogic TAU toolset that allow for the deriva-
tion of tests from SDL specifications. The Autolink tool of the SDT Validator
allows for the semi-automatic generation of TTCN test suites based on SDL
specifications. Development of test suites from the SDL models can also be
made interactively through the SDT TTCN link tool. This tool provides an
environment that links the SDL specification world represented by the Spec-
ification Design Tool (SDT) with the testing world represented by the ITEX
tool. Once a TTCN link executable is generated from the specification it may
be opened with ITEX and used to generate the declarations used to test the
system. In effect this corresponds to generating mappings for the SDL chan-
nel names, the signals they carry and the parameters associated with these
signals that the specification has with its environment. The SDL channels are
mapped to points of control and observation (PCO) type declarations, the sig-
nals are mapped to ASN.1 abstract service primitive (ASP) type definitions
and the signal parameters are mapped to ASN.1 type definitions. An extra
TTCN table is also generated called OtherwiseFail. This table is used to catch
all other ASPs at the PCOs, i.e. signals on channels, other than those listed

18

in the test case through an TOTHERWISE statement. These result in a fail
verdict for the test. This table also accepts arbitrary timeout signals which
result in an inconclusive test through a 7TIMEOUT statement. This table is
used as a default case for the test suite.

Having generated the static parts of the tests, the dynamic parts and the
constraint parts associated with the test case can be developed through syn-
chronising the TTCN test case with the SDL system. Once synchronised, the
messages to be sent and received can be selected, i.e. the PCOs used (channels
to/from the specification) together with the ASN.1 ASPs they carry from the
list of possible SDL signals at that time. Once a PCO and ASN.1 ASP has
been selected the constraints associated with the signal, e.g. the values of the
parameters being sent or the acceptable values that are being received, can be
set, and a verdict be assigned to the test case.

7.1 Problems with Test Case Generation and Ezecution

The generation of test cases from the SDL model for the framework and ser-
vices derived from the framework is not without problems. Many of these
stem from the necessary complexity of the system being specified. As stated
in section 4.2, distributed systems are complex and typically consist of many
objects interacting in non-trivial ways, i.e. they pass (and accept) complex
data structures when interacting. The result of this is that SDL models of
such systems are themselves complex due to the similar level of abstraction
upon which they are based, i.e. IDL.

The more complex a specification is, the less easy it is to check through tools.
Checks that are made during test case generation are typically based on explor-
ing the state space of the specification. However, it was found within TOSCA
that this activity was not well supported due to the specification complexity.
A typical manifestation of the problem was a deadlock of the tools when trying
to generate test cases.

A further problem with test case generation was the lack of support for Plds
in TTCN or ASN.1. In distributed systems, object references, i.e. PIds, play
a central role in providing location transparency. These are passed around
as parameters in many processes, and also accepted by the environment. For
example, when a service is first started references to the ssUAP manager
(FSEPmgr) are passed in as a parameter. These are then used by the specifi-
cation when adding buttons etc to the ssUAP, e.g. signals are directed to the
FSEPmgr reference and not just to the environment. TTCN does not support
a mapping for PIds however. Hence it was not possible to generate test cases
for the specification directly. Instead, the specification had to be modified so

19

that it never accepted or produced Plds. Rather, it accepted another data
type (string) and this was then mapped (within the specification) to the ap-
propriate PId. Thus the specification required look-up tables to be specified
from PIds and strings (and vice-versa) for testing.

The abstract test cases generated were to be executed through a
TTCN/CORBA gateway against the CORBA based service implementa-
tions [26]. Here again, however, the test cases generated through the Telelogic
testing tools could not be executed directly against the service implementa-
tion. The TTCN/CORBA gateway has a different representation of PCOs.
This tool maps PCOs to object references. Test suite operations are given
that allow the object references of the service implementation to be accessed,
e.g. the stringified form of these references can be read in from a file, and
subsequently used in testing. Effectively, this issue stems from the TAU tools
treating service model specifications as black boxes when deriving test cases,
when tests of component interfaces inside of the specification model are really
what is needed. Put another way, SDL channels do not have an equivalent
counterpart in the distributed services considered in TOSCA. That is, these
services are tested through interacting at their interfaces, i.e. the external in-
terfaces of the objects they are composed of. Channels do not correspond to
interfaces in the TOSCA service models. The same channel can be (and is)
used to send and receive many signals from many different objects within a
single block. This is further exacerbated by having multiple instances of the
same block type, e.g. where there might be twenty observers in a service. It
is of course possible to have twenty block instances with separate channels
connected to the environment, however, this approach is neither practical nor
scalable. For example, it would require that twenty identical specialisations
of the framework USM were made. To resolve this, the test cases were man-
ually edited so that the PCOs generated by the TAU tools were replaced by
CORBA interface references obtained via TTCN/CORBA gateway based test
suite operations.

8 Conclusions

This paper has outlined the work in the ACTS TOSCA project. A framework
and paradigm tool based approach has been chosen to create telecommunica-
tions services. The overall goal of the project is to create multimedia based
services quickly and of high quality. Starting with ODL/IDL specifications and
an informal behaviour description of components based on the TINA service
session, C++4/CORBA and SDL based frameworks were developed in parallel.
These two frameworks were then used to create service implementations and
service models respectively.

20

We have highlighted some of the advantages and disadvantages of applying
SDL and its associated tools for this purpose. On the plus side, is that SDL
allows ODL/IDL based models to be specified at all. It is one of the few lan-
guages to address current techniques and approaches to (distributed) software
development. The language also has many features that make it apposite for
framework development, e.g. the straightforward representation of flexibility
points means that SDL frameworks can be simulated and tested even though
they are incomplete models of software. The usage of frameworks is a natural
feature of SDL due to its support for object-orientation and package con-
structs. An added bonus is that tools are available that enable test cases to
be semi-automatically generated.

The picture is not all rosy however. One of the main advantage of having
SDL models of systems is through the tools that can be used to investigate
the behaviour of those systems. Unfortunately, due to the complexity of the
services in TOSCA, usage of tools that enable such detailed behaviour inves-
tigations were limited due mainly to the well known problem of state space
explosion. This problem was also manifest when generating test cases from the
SDL service specifications. Other issues also arose when test case generation
was attempted however. For example, it should not necessarily be the case
that testing of distributed systems is based on black box testing, i.e. where
channels are given as PCOs. Instead, testing of individual components within
the service should be possible - ideally, the interfaces (processes) that are to
be tested.

Many of the issues that arose in this work were due to the different mappings
stemming from the ODL/IDL to SDL and CORBA IDL to C++ worlds. In
particular this was caused by the SDL approach attempting to resolve issues
that the CORBA world has yet to address, e.g. multiple interface objects. It
is hoped and expected that many of the issues in this paper will be resolved
through the upcoming SDL2000 standard, e.g. dynamic block (multiple inter-
face object) creation. However, many of the other issues discussed here are
based on the need for alignment and extensions to existing SDL tools. In
particular, those tailored to distributed service creation.

Acknowledgements

The authors are indebted to the partners in the TOSCA project. The TOSCA
consortium consists of Teltec DCU, Silicon & Software Systems Ltd, British
Telecommunications, University of Strathclyde, Centro Studi e Laboratori di
Telecommunicazioni SpA, Telelogic, Lund Institute of Technology, GMD and
Ericsson.

21

References

. ayad an . chmidt, ject-Oriente pplication Frameworks,
1] M. Fayad d D. Schmid Object-Ori d Applicati F k
Communications of the ACM, Volume 40, Number 10, October 1997, pp. 32-38.

[2] R. Johnson, Frameworks = (Components + Patterns), Communications of the
ACM, Volume 40, Number 10, October 1997, pp. 39-42.

3] H. Schmid, Systematic Framework Design, Communications of the ACM,
Volume 40, Number 10, October 1997, pp. 48-51.

[4] D. Baumer, G. Gryczan, R. Knoll, C. Lilienthal, D. Riehle and H. Ziillighoven,
Framework Development for large Systems, Communications of the ACM,
Volume 40, Number 10, October 1997, pp. 52-59.

[5] S. Demeyerm T. Meijler, O. Nierstrasz and P. Steyaert, Design Guidlines for
"Tailorable’ Frameworks, Communications of the ACM, Volume 40, Number 10,
October 1997, pp. 60-64.

[6] D. Brugali, G. Menga and A. Aarsten, The Framework Lifespan,
Communications of the ACM, Volume 40, Number 10, October 1997, pp. 65-68.

[7] W. Codenie, K. de Hondt, P. Steyaert and A. Vercammen, From Custom
Applications to Domain-Specific Frameworks, Communications of the ACM,
Volume 40, Number 10, October 1997, pp. 71-77.

[8] D. Schmidt and M. Fayad, Lessons Learned Building Reusable OO Frameworks
for Distributed Software, Communications of the ACM, Volume 40, Number 10,
October 1997, pp. 85-87.

9] R. Sinnott and M. Kolberg, Business-Oriented Development of
Telecommunication Services with SDL, Proceedings of OOPSLA-98 Workshop
on Precise Behaviour Specifications of Object-oriented Systems and Business
Specifications, Vancouver, Canada, October 1998.

[10] TOSCA Consortium Deliverable 9, Final Specification of Process Architecture,
http://www.teltec.dcu.ie/tosca

[11] TOSCA Consortium Deliverable 11, User Trial Report on Embedded Methods
and Tools, http://www.teltec.dcu.ie/tosca

[12] R. Sinnott and M.Kolberg, Engineering Telecommunication Services With SDL,
in Formal Methods for Open, Object-Based Distributed Systems, P. Ciancarini,
A. Fantechi and R. Gorriere (Eds.), Kluwer Academic Publishers, 1999, pp. 187-
203.

[13] M. Kolberg and E. Magill, Service and Feature Interactions in TINA, in Feature
Interactions in Telecommunications and Software Systems V, K. Kimbler and
L.G. Bouma (Eds.), IOS Press, 1998, pp.78-84.

[14] M. Kolberg, R.O. Sinnott and E. H. Magill, Engineering of Interworking
TINA-based Telecommunication Services, Proceedings of Telecommunications
Information Networking Architecture Conference, Oahu, Hawaii, April 1999.

22

[15] A. Olsen, D. Demany, E. Cardoso, F. Lodge, M. Kolberg, M. Bjérkander and R.
Sinnott, The Pros and Cons of Using SDL for Creation of Distributed Services,
in Intelligence in Services and Networks - Paving the Way for an Open Service
Market, H. Zuidweg, M. Campolargo, J. Delgado, A. Mullery (Eds.), pp. 342-
354, Lecture Notes in Computer Science, Vol. 1597, Springer Verlag, 1999.

[16] The Common Object Request Broker Architecture and Specification: Revision
2.0, Object Management Group, Inc., Framingham MA., July 1995.

[17] R. Sinnott, Frameworks: The Future of Formal Software Development, Journal
of Computer Standards and Interfaces, special edition on Semantics of
Specifications, August 1998.

[18] R. Sinnott and M. Kolberg, Creating Telecommunication Services based on
Object-Oriented Frameworks
and SDL, Proceedings of Second IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC’99), Saint Malo, France,
1999.

[19] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorensen, Object-Oriented
Modelling and Design, Prentice Hall 1991.

[20] R. Johnson and V. Russo, Reusing Object-Oriented Designs, Urbana, I1l., May
1991.

[21] International Consultative Committee on Telegraphy and Telephony, SDL
- Specification and Description Language, CCITT Z.100, International
Telecommunications Union, Geneva, Switzerland, 1992.

[22] For more information see http://www.fokus.gmd.de/minos/y.sce.
[23] TINA-C, TINA Object Definition Language Manual, Version 2.3, July 1996.

[24] Telelogic AB, Getting Started Part 1 - Tutorials on SDT Tools, Telelogic AB,
1997.

[25] I. Schieferdecker, M. Li, A. Hoffmann, Conformance Testing of TINA Service
Components - the TTCN/CORBA Gateway, Proceedings of the Intelligence in
Networks and Services Conference 1998, Antwerp, May 1998.

[26] M. Li, Testing Computational Interfaces of TINA Services using TTCN and
CORBA, Diplomarbeit, Department of Electrical Engineering,
Telecommunication Network Group, Technical University Berlin, 1997.

[27] TINA-C, Service Architecture, Version 5.0, 16 June 1997.

[28] M. Born, A. Hoffmann, M. Winkler, J. Fischer, N. Fischbeck, Towards a
Behavioural Description of ODL, Proceedings of TINA 97 Conference, Chile.

[29] M. Bjorkander, Mapping IDL to SDL, Telelogic AB, 1997.

[30] Basic Reference Model of ODP - Part 2: Foundations, ISO/IEC International
Standard 10746-2, ITU-T Recommendation X.902, Geneva, Switzerland 1997.

23

University Library

o o A gateway to Melbourne's research publications

Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Kolberg, Mario; Sinnott, Richard O.; Magill, Evan H.

Title:
Experiences of modelling and using object-oriented telecommunication service frameworks in
SDL

Date:
1999

Citation:

Kolberg, M., Sinnott, R. O., & Magill, E. H. (1999). Experiences of modelling and using
object-oriented telecommunication service frameworks in SDL. Computer Networks, 31,
2577-2592.

Publication Status:
Published

Persistent Link:
http://hdl.handle.net/11343/28819

File Description:
Experiences of modelling and using object-oriented telecommunication service frameworks in
SDL

