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We report a high quality and system-wide proteome cat-
alogue covering 71% (3,542 proteins) of the predicted
genes of fission yeast, Schizosaccharomyces pombe, pre-
senting the largest protein dataset to date for this impor-
tant model organism. We obtained this high proteome and
peptide (11.4 peptides/protein) coverage by a combina-
tion of extensive sample fractionation, high resolution Or-
bitrap mass spectrometry, and combined database
searching using the iProphet software as part of the
Trans-Proteomics Pipeline. All raw and processed data
are made accessible in the S. pombe PeptideAtlas. The
identified proteins showed no biases in functional prop-
erties and allowed global estimation of protein abun-
dances. The high coverage of the PeptideAtlas allowed
correlation with transcriptomic data in a system-wide
manner indicating that post-transcriptional processes
control the levels of at least half of all identified proteins.
Interestingly, the correlation was not equally tight for all
functional categories ranging from rs >0.80 for proteins
involved in translation to rs <0.45 for signal transduction
proteins. Moreover, many proteins involved in DNA dam-
age repair could not be detected in the PeptideAtlas de-
spite their high mRNA levels, strengthening the transla-
tion-on-demand hypothesis for members of this protein
class. In summary, the extensive and publicly available S.
pombe PeptideAtlas together with the generated proteo-
typic peptide spectral library will be a useful resource for

future targeted, in-depth, and quantitative proteomic
studies on this microorganism. Molecular & Cellular Pro-
teomics 12: 10.1074/mcp.M112.023754, 1741–1751, 2013.

In many respects Schizosaccharomyces pombe is a typical
eukaryotic cell, and its genome contains several conserved
genes necessary for eukaryotic cell organization such as cy-
toskeleton, compartmentalization, cell cycle control, proteol-
ysis, protein phosphorylation, and RNA splicing (1). Yet it has
one of the smallest numbers of protein-coding genes re-
corded to date for a self-sustaining eukaryote, and the cells
are compatible with a range of experimental biology tech-
niques, including genetic engineering (1). The evolution from
the first prokaryote to the first eukaryote took about 2,300
million years. It then took another 500 million years for the first
multicellular organisms to evolve from the first unicellular eu-
karyote. This time span suggests that not many new genes
were required for the evolution from unicellular to multicellular
eukaryotes, a fact that is supported by comparative genomics
(2). Furthermore, fission yeast seems to be more closely re-
lated to mammalian cells than the budding yeast based on the
degree of conservation of several cellular processes such as
cell cycle control and heat shock response. It is estimated that
fission yeast diverged from budding yeast around 330–420
million years ago (3). Hence, S. pombe has been a prime
model organism for the study of numerous central biological
processes such as cell cycle control, DNA repair, and recom-
bination (4, 5). Because it shares many features with cells of
multicellular eukaryotes, the proteome of S. pombe consti-
tutes a “eukaryotic core proteome” with a high significance
also for multicellular species.

Proteins carry out most biological functions. These func-
tions are modulated through the dynamic adaptation of the
cellular concentration of the corresponding proteins, their sta-
tus of post-translational modification, and their subcellular
distribution. Although transcriptomic studies indicate the po-
tential for protein expression, they do not directly measure
proteome characteristics, and the corresponding protein
quantities cannot be precisely computed from the transcript
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levels due to poor correlation of mRNA and protein
abundances. The type, site of attachment, and stoichiometry
of post-translational modifications are even more difficult to
infer from transcript profiles (6–8). Thus, comprehensive pro-
teome analysis is essential for understanding the structure
and control of physiological processes and for discovering
new emergent properties of biological systems. To date, only
few eukaryotic proteomes have been extensively catalogued.
They include Saccharomyces cerevisiae with 67% coverage
of the predicted ORFs (9, 10), Caenorhabditis elegans (54%)
(11), Arabidopsis thaliana (50%) (12), Drosophila melanogaster
(63%) (13), and more recently Mus musculus (50%) (14), and
Homo sapiens (50%) (15, 16). Interestingly, the genomes of
these species were also the first eukaryotic genomes to be
sequenced and S. pombe became the sixth, signifying their
paramount importance for biological studies.

The fact that there are only few comprehensive proteome
datasets available from more than 40 eukaryotic species with
completely sequenced genomes reflects that cataloging pro-
teomes remains challenging. To date, all large scale proteome
studies were carried out using mass spectrometry-based
shotgun proteomics, which is currently the method of choice
for whole proteome studies (17). In this method, the protein
complement of a cell is extracted and digested by a protease,
frequently trypsin, and the resulting peptides are identified by
tandem mass spectrometry. In general, the proteome cover-
age achievable by this technique is largely dependent on
sample complexity, dynamic range of the proteins in a sam-
ple, the mass spectrometric instrumentation and methods
used, and algorithms for peptide identification and protein
inference (18). Generally, multidimensional sample fraction-
ation (9) or optimized analytical strategies such as analysis-
driven experimentation (13) have been used to achieve satu-
ration coverage of the expressed proteome (19). To date, less
than half of all open reading frames of S. pombe have been
identified by most previous proteome studies (20, 21). We
recently published a dataset containing absolute protein
abundances for 66% of the predicted ORFs in S. pombe
determined using a MS intensity-based estimation approach
(22). As only moderate sample fractionation was applied, pro-
teome coverage has not been maximized in this dataset.

In this study, we provide an extensive peptide atlas of S.
pombe using different growth conditions, an extensive frac-
tionation strategy at the protein level, and a standard fraction-
ation approach at the peptide level, respectively, followed by
high resolution mass spectrometry, and we combined the
peptides identified from the dataset by different search en-
gines using the iProphet tool (23) in the Trans Proteomics
Pipeline (TPP). We covered 71% of all predicted ORFs of S.
pombe and, more importantly, more than twice the number of
identified unique peptide sequences compared with previous
studies. Therefore, this extensive peptide catalogue of S.
pombe provides an excellent resource for the development of
sensitively targeted proteomics workflows for high throughput

quantification of selected sets of proteins. Moreover, the da-
taset allowed us to generate a spectral library to improve the
interpretation of LC-MS/MS data in future proteomics S. pombe
studies via the discovery of proteomic methods and also to
estimate the cellular concentration of the identified proteins to
infer primary features of a eukaryotic core proteome.

To publicly access and browse this MS dataset, a Peptide-
Atlas of all identified and statistically validated MS/MS spectra
was generated and stored in the PeptideAtlas repository. The
PeptideAtlas web interface has a rich set of visualization and
data exploration tools, allowing users to interactively mine
information about individual proteins and peptides, their ge-
nome mappings, and the supporting spectral evidence.
Therefore, the PeptideAtlas has become the tool of choice for
selecting proteotypic peptides (24) and to build methods for
targeted proteomics and selected reaction monitoring (10).

EXPERIMENTAL PROCEDURES

Sample Preparation—Fission yeast (S. pombe) strain FY7056 was
acquired from the Yeast Genetic Resource Center, Japan. The cells
were grown in liquid medium (SD medium supplemented with 100
mg/liter lysine and 2% glucose) at 30°C until an A600 of 0.6–0.7 was
reached. Cells were harvested by centrifugation at 300 � g for 5 min,
resuspended in stop buffer (0.9% NaCl, 1 mM NaN3, 10 mM EDTA, 50
mM NaF), and centrifuged at 2,000 � g for 1 min. For the IEF frac-
tionation experiment, the following aliquots were used: 1) rapidly
growing cells in EMM (�4 � 106 cells/ml); 2) cells grown in EMM to
�4 � 106 cells/ml, then centrifuged, washed 1� in EMM-N, and
incubated (nitrogen-starved) in EMM-N for 24 h, before harvesting; 3)
cells grown in yeast extract medium (YE), �4 � 106 cells/ml, and 0.5
mM H2O2, harvested 1 h after H2O2 addition; 4) Cells grown in YE
�4 � 106 cells/ml, rapidly shifted to 39°C, and harvested 30 min after
temperature shift. Aliquots 3 and 4 were performed as described in
more detail in Ref. 25. For aliquots 5 and 6 (the meiotic samples),
strain 968 h90 was grown in EMM to �3 � 106 cells/ml, washed once
in EMM � 0.5% glucose and without NH4Cl, resuspended in EMM �
0.5% glucose and without NH4Cl at 28°C to induce meiosis, and
harvested after 12 and 15 h as described in Ref. 26. For samples 1–4,
strain 972 h- was employed and grown at 30°C.

Protein Level Fractionation—Cells were washed with S-buffer
(1.4 M sorbitol, 0.5 mM MgCl2, 40 mM HEPES, pH 6.5, 1 mM PMSF).
Washed cells were resuspended with S-buffer containing additionally
10 mM DTT and incubated at 30°C for 10 min with gentle shaking.
Pellets collected by spinning at 300 � g for 5 min were resuspended
in S-buffer containing 1:3 (w/v) of lyticase (L4025, Sigma) and incu-
bated at 30°C for 40 min with gentle shaking. The cell suspension was
diluted with S-buffer, and the pellets (spheroplasts) were collected by
centrifugation at 300 � g, 4°C for 5 min, followed by two washes with
ice-cold S-buffer. The lysis of spheroplasts in F-buffer (18% Ficoll
400, 0.5 mM MgCl2, 20 mM PIPES, pH 6.5, 1 mM PMSF) was carried
out by homogenization using 20 strokes of a loose-fitting Dounce
homogenizer on ice. Unlysed material was removed by gentle centri-
fugation at 300 � g for 10 min. The supernatant was carefully layered
on top of ice-cold GF-buffer (7% Ficoll 400, 20% glycerol, 0.5 mM

MgCl2, 20 mM PIPES, pH 6.5, 1 mM PMSF) and was centrifuged at
4,000 � g, 4°C for 5 min. The pellet (pellet-1) was saved, and the
supernatant was centrifuged at 55,000 � g, 4°C for 30 min (F2
pellet-2). The supernatant was mixed with ice-cold 5� RIPA buffer
and centrifuged at 20,000 � g, 4°C for 20 min to obtain the super-
natant as the first fraction named F1. Pellet-1 and pellet-2 were
separately resuspended in ice-cold 1� RIPA. Sonicated (five times for
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10 s) suspensions were centrifuged at 20,000 � g, 4°C for 20 min, to
obtain the supernatant as the second fraction named F2 from pellet-1
and third fraction named F3 from pellet-2. All the pellets from F1 to F3
preparations were combined and lysed with 2% SDS, 6 M urea in PBS
by boiling for 5 min. The lysate was centrifuged at 20,000 � g, 4°C for
20 min, to obtain the fourth fraction F4.

SDS-PAGE and In-gel Digestion—Protein amounts of all fractions
were estimated by BCA assay (Thermo Fisher Scientific). 80 �g of
protein lysate from each fraction was used for SDS-PAGE using a
NuPAGE 4–12% BisTris1 gel, 1.0 mm, 10 wells (Invitrogen), and done
following the manufacturers’ instructions. The gel was cut into 20
equal lanes, and tryptic in-gel digestion was done as described
previously (27).

Preparation of IEF-fractionated Peptide Samples—Aliquots of 108

cells of the six different S. pombe samples described above were
lysed, respectively, with glass beads in 100 �l of lysis buffer (8 M urea,
0.1% RapiGest, and 0.1 M ammonium bicarbonate) using rigorous
shaking six times for 30 s in a FastPrep instrument (Q-Biogene) and
pooled. The protein mix obtained was reduced with 5 mM tris(2-
carboxyethyl)phosphine for 60 min at 37°C and alkylated with 10 mM

iodoacetamide for 30 min in the dark at 25°C. After quenching the
reaction with 12 mM N-acetylcysteine, the samples were diluted with
100 mM ammonium bicarbonate buffer to a final urea concentration of
1.5 M. Proteins were digested by incubation with sequencing-grade
modified trypsin (1:50, w/w; Promega, Madison, WI) overnight at
37°C. Then the samples were acidified with 2 M HCl to a final con-
centration of 50 mM and incubated for 15 min at 37°C, and the
cleaved detergent removed by centrifugation at 10,000 � g for 5 min.
Subsequently, peptides were desalted on C18 reversed-phase spin
columns according to the manufacturer’s instructions (Macrospin,
Harvard Apparatus), dried under vacuum, and re-solubilized in Off-
Gel electrophoresis buffer containing 6.25% glycerol and 1.25% IPG
buffer (GE Healthcare). The peptides were separated on a 12-cm pH
3–10 IPG strip (GE Healthcare) with a 3100 OFFGEL fractionator
(Agilent) using a protocol of 1 h of rehydration at maximum 500 V, 50
�A, and 200 milliwatts. Peptides were separated at maximum 8000 V,
100 �A, and 300 milliwatts until 20 kV-h were reached. Subsequently,
the peptides in each of the 12 IEF fractions were desalted using C18
reversed-phase columns according to the manufacturer’s instruc-
tions (Macrospin, Harvard Apparatus), dried under vacuum, and
stored at �80°C until further use.

LC-MS/MS Analysis—LC-MS analysis was carried out as de-
scribed previously (28). In brief, freeze-dried samples were reconsti-
tuted in 0.1% formic acid and analyzed using nanoHPLC coupled to
a LTQ Orbitrap XL or classic or LTQ-FT-ICR Ultra (Thermo Fisher
Scientific). Peptides were trapped onto a C18 pre-column and sepa-
rated on an analytical column using a 2-h gradient ranging from 0 to
80% acetonitrile, 0.1% formic acid. MS scans were acquired with a
resolution of 60,000 (100,000) Full Width at Half Maximum at 400 m/z
in the Orbitrap (LTQ-FT-ICR). The 10 (five for the LTQ-FT-ICR) most
intense ions were selected for collision-induced dissociation (CID)
fragmentation and analyzed in the ion trap with enabled preview
mode.

Data Processing and Analysis—The instrument data were first con-
verted to the peak lists in the centroid mzXML file format. The con-
version was performed with ReAdW.exe (version 4.0.2), which is part
of the Trans-Proteomic Pipeline (TPP) (version 4.5.0) (29). The peak
list files were searched against a target-decoy database (30) consist-

ing of all S. pombe sequences downloaded from PomBase (version
17Feb2010) as well as known contaminants such as porcine trypsin
and human keratins (Non-Redundant Protein Database, National In-
stitutes of Health, NCI Advanced Biomedical Computing Center,
2004) with forward and reverse sequences. The final database, which
contained 10,584 sequence entries, was compiled using Sequence
Reverser (part of MaxQuant version 1.0.13.13) and was searched
using three search engines Mascot (Matrix Science, London, UK
version 2.3) (31), X! Tandem (version 2011.12.01.1, k-score plugin)
(32), and OMSSA (version 2.1.9) (23), respectively. The database
search parameters were set as follows: full tryptic specificity was
required (cleavage after lysine or arginine residues at two peptide
termini, unless followed by proline); no missed cleavages were al-
lowed; carbamidomethylation was set as fixed modification; mass
tolerance of the precursor ion and the fragment ions was set at 15
ppm and 0.4 Da, respectively. A statistical analysis of the identified
peptides was performed through the TPP (version 4.5.0), a uniform
proteomics MS/MS analysis platform utilizing open XML file formats.
In brief, the database search output results were further validated
using the PeptideProphet software and the results merged with
iProphet (34) to generate a single list of peptide assignments. Only
assignments with an FDR below 1% were used to perform the protein
assembly with ProteinProphet (35). The FDR was also set below 1%
for protein and peptide assignments corresponding to a probability
cutoff of p � 1 and p � 0.98, respectively. Additionally, the data were
uploaded into the PeptideAtlas database as described previously (10)
and are available for browsing and downloading. There, all identified
proteins and peptides can be viewed along with the corresponding
MS/MS scans, protein coverage, precursor m/z, charge, and score.
Importantly, we also included peptides with up to two missed cleav-
ages and semi-tryptic in the on-line version of the PeptideAtlas.
Relative protein abundances were calculated using the exponentially
modified Protein Abundance Index (emPAI) algorithm as described by
Ishihama et al. (36) only for proliferating cells from all peptide spec-
trum matches (including shared peptides) at an FDR of 1% of the
corresponding sample dataset (Experiment 2, Fig. 1A and supple-
mental Table S6). In addition, a spectral library was created from the
PSMs that matched the 1% FDR cutoff. The creation was done with
SpectraST (37) in three steps. First, a raw library was created contain-
ing the raw PSMs matching the cutoff. Second, all PSMs that matched
a decoy entry in the original search results were removed. In the final
step, spectra assigned to a single peptide were assembled to consen-
sus spectra, and decoy entries were added to the library (38, 39).

Analysis of Undetected Proteins—For S. cerevisiae, we used a
PeptideAtlas built May 2009 (10), and mRNA concentrations were
obtained as median values across several measurements under nor-
mal growth (40). In the case of S. pombe, mRNA expression meas-
urements were not available for the protein samples. Thus, mRNA
expression levels were derived from a previously published tiling array
dataset obtained under similar experimental conditions (41). We se-
lected 21 CEL files closely matching the experimental conditions of
the protein samples, namely exponential growth, oxidative stress,
heat shock, quiescent cells (nitrogen starvation), and meiotic cells. To
map tiling array expression data to individual gene expression levels,
we utilized a custom CDF file created specifically for the platform
used in the study (Affymetrix GeneChip� S. pombe Tiling 1.0FR array;
CDF file available upon request). Robust MultiArray Average (rma in
Affy/Bioconductor) was used for background correction, normaliza-
tion, and evaluation of the expression levels. Finally, measurements
across the conditions were averaged yielding expression levels for
5489 S. pombe genes.

Orthologous genes were determined using a manually curated
ortholog list (version 2.16) (42). Gene Ontology (GO) annotations were
obtained from BioMart (43). The TopGO R package from Bioconduc-

1 The abbreviations used are: BisTris, 2-[bis(2-hydroxyethyl)amino]-
2-(hydroxymethyl)propane-1,3-diol; emPAI, exponentially modified
Protein Abundance Index; PSM, peptide spectrum match; FDR, false
discovery rate; EMM, EMM, Edinburgh minimal medium; TPP, Trans
Proteomic Pipeline; F, fraction; GO, Gene Ontology.
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tor was used for GO enrichment analysis (44). By default, TopGO
takes into account the GO structure for significance analysis. We
used the Fisher test to measure significance of enrichment. All GO
terms with less than 20 or more than 1,000 annotated gene products
were ignored. We grouped genes into three classes, namely high
expression, medium expression, and low expression, according to
their measured mRNA levels. Genes that are among the top 25%
quantile with respect to their mRNA levels were included in high class,
middle 50% quantile in medium class, and bottom 25% quantile in
low class. The background set for the enrichment analysis of unde-
tected proteins in a given class is set to be all genes in the respective
class. For example, we used all genes in the high class as the
background for the undetected proteins in the high class. For the
undetected ortholog enrichment analysis, all genes that are known to
have an ortholog were used as background.

RESULTS AND DISCUSSION

Generation of an Extensive S. pombe PeptideAtlas

The workflow for the identification of the S. pombe pro-
teome is summarized in Fig. 1A. For protein level separation
(Fig. 1A, Experiment 2), we used fractionation methods based
on density centrifugation and differential solubility in a range
of buffer systems as described under “Experimental Proce-
dures.” The aim was to reduce dynamic range of proteins in
each fraction (F) by depleting highly abundant proteins from
fraction to fraction. The basis of fractionation was to isolate
mainly cytosolic proteins in F1 and nuclear and other organ-
elle proteins in F2 and F3. In the last fraction, we used a buffer
containing denaturating agents (2% SDS and 6 M urea) to
solubilize proteins with low solubility in nonionic detergents.
The band intensities and patterns of SDS-polyacrylamide gels
of these fractions were somewhat different, indicating that
each fraction contained overlapping but different protein pop-
ulations and/or abundances (supplemental Fig. S1A). GO-slim
cellular component analysis with the protein abundances
(emPAI values) of each fraction indicated that overall proteins
of cytosolic, nuclear, and organelle were enriched in F1, F2
(also in F4), and F3, respectively (supplemental Fig. S1B).

However, we observed that the proteins of some organelles,
such as mitochondria, were also enriched in F2, suggesting
F2 is a mixture of nuclear and some organelle proteins, but
were less in highly abundant cytosolic proteins that interfered
with protein identification of low abundant nuclear/organelle
proteins. In a separate experiment (Fig. 1A, Experiment 1), cell
extracts from cells in six different states, including proliferat-
ing and quiescent cells, cells under oxidative and heat stress,
and cells during two stages of meiotic differentiation (see
“Experimental Procedures” for details) were combined to
maximize the number of expressed proteins, and the com-
bined sample was proteolyzed and separated using off gel
electrophoretic fractionation followed by LC-MS/MS analysis of
each fraction. All MS/MS data sets were subjected to the Trans
Proteomics Pipeline (TPP) software for MS data analysis and
validation (29). To maximize the number of peptides identifiable
from the acquired fragment ion spectra, we searched the data
sequentially with the search engines Mascot (31), X!Tandem
(32), and OMSSA (23) and combined the results using iProphet
(34). The generated list of peptide identifications was used to
determine the probability value that matches 1% FDR thresh-
old. All peptides matching this cutoff were then used to assem-
ble the list of proteins with ProteinProphet.

Overall, the combined data set of the gel-based and IEF
fractionation experiment consisted of 384 raw MS files with
4,770,221 MS/MS spectra of which 3,252,093 spectra could
be assigned to peptide sequences. From these spectra, we
identified 40,947 unique peptide sequences at a false-discov-
ery rate (FDR) of 1% from which we inferred 3,542 unique
proteins at an FDR of 1% (45). All identified proteins and
peptides together with their human orthologs can be found in
supplemental Table S1. The identified proteins cover 71% of
the genes predicted from the S. pombe genome annotation
(pompep_17Feb2010). Importantly, 90% of the proteins were
identified with three or more peptides and, on average, 11.4

FIG. 1. Experimental design of the S. pombe proteome analysis. A, proteomics workflow of identification of the S. pombe proteome
consisted of two different fractionation approaches (Experiment 1 and 2), high performance LC-MS analysis, and protein identification using
three database search engines (Mascot, X!tandem, and OMSSA) and the TPP for validation of MS data. The sample mix analyzed in Experiment
1 consisted of equal amounts of protein extracts obtained from cells in six different states, including proliferating and quiescent cells, cells
under oxidative and heat stress, and cells during two stages of meiotic differentiation, whereas proteins from proliferating cells were analyzed
and extensively fractionated in Experiment 2 (see “Experimental Procedures” for details). B, pie chart indicates the number (percentage) of
proteins being identified by 1, 2, or more unique stripped peptides.
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uniquely stripped peptides were identified per protein (Fig.
1B), indicating that extensive proteome coverage was
achieved and suggesting that the dataset will be very valuable
as a source of proteotypic peptides (46) for the generation of
targeted MS assays. To facilitate proteotypic peptide selec-
tion, we provide a table (supplemental Table S2) of all identi-
fied peptides ranked by their MS detectability (number of
PSMs) for each protein. Additionally, all PSMs are shown in
supplemental Table S3. The instrumental raw files as well as
the search results are also publicly available through
PeptideAtlas.

The extensive MS sequencing and global peptide coverage
of the PeptideAtlas also allowed us to generate an extensive
spectral library of the most frequently observed peptides to
increase the sensitivity, speed, and reliability of MS/MS spec-
tra interpretation in future LC-MS studies. The library of con-
sensus spectra that was created with SpectraST (47) is also
publicly available via PeptideAtlas. To demonstrate the utility
of this library, we assigned all MS/MS spectra generated from
three independent LC-MS/MS analyses of the same sample
to peptide sequences using spectral library and database
searching. As is apparent from supplemental Fig. S2, a con-
siderable increase in PSMs could be achieved using a com-
bination of both search approaches compared with standard
database searching.

Usability of the S. pombe PeptideAtlas for Selected
Reaction Monitoring Assay Generation

We also evaluated the usability of the MS/MS spectra,
which were acquired in fast scanning linear ion trap instru-
ments, for generating sensitive SRM assays that are typically
applied to triple quadrupole (QQQ) LC-MS platforms. Be-
cause this is a critical issue affecting most current large
LC-MS datasets, several publications have assessed the sim-
ilarity of MS/MS spectra acquired across different MS plat-
forms (48, 49). In both studies, the authors found a strong
correlation between the y-ion peak rank order and relative
intensity for QQQ and ion trap data. To evaluate if these
observations are also true for our S. pombe PeptideAtlas, we
extracted all MS/MS spectra with matching sequence assign-
ments from the latest SRM atlas build of S. cerevisiae. We
found around 80 matching MS/MS spectra acquired on QTOF
and QQQ instruments (supplemental Table S4), respectively,
and we compared their similarity to our dataset (supplemental
Fig. S3). In line with previous results, we found a good corre-
lation of y-ion peak ranks across the different platforms also
for this subset of identified S. pombe peptides. From this, we
conclude that our S. pombe PeptideAtlas provides a useful
resource for SRM assay development using different LC-MS
platforms.

Proteome Coverage Evaluation

To assess the extent of proteome coverage achieved by the
S. pombe PeptideAtlas, we performed bias analysis of phys-

icochemical protein properties and Gene Ontology (GO)
terms. By comparing the ratio of identified and unidentified
proteins in these classes, we detected biases against protein
groups that are notoriously difficult to identify by LC-MS/MS
due to their physicochemical properties such as very short
proteins (�100 amino acids), proteins with very basic isoelec-
tric point (pI) values, and multiple transmembrane domains
(supplemental Fig. S4) (11, 50). Importantly, no large biases
against specific GO categories could be detected in our da-
taset (supplemental Fig. S5 and supplemental Table S5). The
bias against short proteins could also be explained, at least in
part, by the commonly difficult annotation of small genes in S.
pombe (1, 51). Taken together, the available data suggest
near complete extraction and identification of most proteins in
S. pombe expressed under the multiple conditions employed.
However, we cannot rule out that some proteins, such as
poorly soluble or very short proteins, are missing in the
dataset.

Next, we compared the list of identified proteins with the
predicted proteome according to the annotations defined in
S. pombe GeneDB. The results of this analysis are shown in
Table I and supplemental Table S1 (protein details). We ob-
served only one dubious protein and have not observed any
“pseudogenes” and “unknown” proteins in our PeptideAtlas,
which highlights the globally good annotation of the S. pombe
genome. Intriguingly, our PeptideAtlas covers 59% of the
conserved hypothetical proteins and 78% of proteins with a
predicted role from homology.

Estimation of Protein Abundances

Because the PeptideAtlas was generated from a set of
different S. pombe samples that would complicate the inter-
pretation of the calculated protein abundances, we estimated
relative abundance levels only for proteins identified in exper-
iment 2 from proliferating cells (Fig. 1A). Notably, this data
subset accounted for the large majority of the MS data used
to build the PeptideAtlas, and therefore most identified pro-
teins could be quantified from this LC-MS dataset (supple-
mental Table S6). We used the emPAI calculation approach
(36) and grouped these proteins according to their cellular
concentrations. A good correlation (R2 � 0.78, see supple-
mental Table S7) with recently published absolute protein
concentrations determined by fluorescence microscopy of 28

TABLE I
Summary of annotation status

Annotation status Predicted Detected

Conserved hypothetical 586 345
Sequence orphan 294 90
S. pombe-specific 60 4
Dubious 55 1
Transposable element 22 1
Role from homology 2,158 1,685
Experiment characterized 1,911 1,416
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fission yeast proteins fused to yellow fluorescent protein in
exponentially growing cells was observed (52). This demon-
strates the following: (i) that we covered a protein concentra-
tion range of at least 3.5 orders of magnitude from 1.43 � 106

copies per cell (act1) to 600 copies per cell (cdc12) (52), and
(ii) that the calculated emPAI scores can be employed as a
good estimate of protein abundances in S. pombe. Addition-
ally, we also compared the spectral counting-based emPAI
values of this study with those obtained recently using more
accurate MS intensity-based protein abundance estimation
(22). The high number of overlapping proteins (supplemental
Table S6) and the good correlation of protein abundances
between the two datasets (supplemental Fig. S6, r � 0.7)
further strengthen the validity of our calculated protein levels.
This allowed us to cluster the quantified proteins according to
their cellular concentrations into five categories as very high
(proteins with abundance values greater than 90th percentile
of the log (emPAI)), high (80–90% quantile of log emPAI),
medium (20–80% quantile of log emPAI), low (10–20% quan-
tile of log emPAI), and very low (abundance values less than
10th percentile of the log (emPAI)). The relative protein abun-
dance distribution and cluster information of all quantified
proteins are shown in Fig. 2, A and B.

Functional Analysis of Protein Abundance Clusters

Physicochemical Properties—First we carried out bias anal-
ysis for physicochemical properties for the extreme protein
abundance clusters (Fig. 2A) to assess enriched features of
those protein groups (either low or high). This analysis re-
vealed that highly abundant proteins were consistently
smaller than proteins expressed at low levels (Fig. 2C), a
characteristic that was also observed in a system-wide study
of the S. cerevisiae proteome using a genetics approach (53)
and that is in accordance with the biosynthetic cost minimi-
zation hypothesis (54). Along that line, Lackner et al. (55)
reported that short mRNAs are more efficiently translated, are
more stable (with longer poly(A) tails), and are more efficiently
transcribed. This underpins the observation that short pro-
teins are more abundant due to higher gene expression at
multiple levels (transcription, RNA turnover, and translation).
Additionally, distributing the protein abundance clusters ac-
cording to their pI value showed that abundant proteins
generally have more extreme pI values, which reduces their
aggregation potential (56). Furthermore, the large majority
of proteins with high pI values consist of very abundant (and
small) proteins, a result from the high number of basic
histones and ribosomal proteins present in this cluster
(Fig. 2D).

GO-slim Analysis—Next, we performed GO-slim analysis
using the on-line tool GO term mapper to evaluate the func-
tional bias in each abundance category. To simplify this anal-
ysis, we combined the protein clusters of less than 20%
quantile of log emPAI (very low and low clusters) and more

than 80% of quantile of log emPAI (very high and high clus-
ters), respectively. Among the identified proteins (proliferating
cells from experiment 2), 3,504 proteins (99%) were found to
be associated with at least one GO term (Fig. 2E). Overall, 120
out of 127 GO terms were included. We observed that pro-
teins involved in metabolic and biosynthetic processes were
expressed over the entire range of abundance clusters (sup-
plemental Table S8). All 678 proteins in the very low � low
cluster and 710 out of 711 (except SPCC757.15) in the very
high � high cluster were found to be annotated. The top three
under- and over-represented GOs in these two abundance
clusters are shown in Fig. 2E. For better comparison, we
ignored GO terms with a small number of proteins in Fig. 2E,
e.g. “cell death” proteins (only three genes in total, supple-
mental Table S8). Interestingly, some categories of proteins
were under-represented in one cluster, whereas the same
protein groups were over-represented in the other abundance
cluster, additionally validating the observations. For example,
structure molecular activity and ribosomal activity were the
most strongly under-represented categories in low abundant
clusters and the most highly over-represented classes in high
abundant clusters (Fig.2E).

KEGG Pathway Analysis—To further investigate differences
of low and high abundance proteins in relation to their bio-
logical activities, we carried out enrichment analysis of path-
ways as annotated in the KEGG database. Because S. pombe
has been thoroughly used as a model organism to study cell
cycle control, we selected genes present in this pathway and
mapped the five protein abundance clusters to annotated cell
cycle proteins. We identified 55 (74%) of the 74 annotated
KEGG pathway cell cycle proteins, underlining the high cov-
erage of our PeptideAtlas (supplemental Table S9). For com-
parison, the coverage of these cell cycle proteins with existing
datasets was only 22% (21). With the exception of three
abundant proteins, all proteins in this functional class were in
the categories of medium or low abundance (Fig. 3). This
result is consistent with the exponentially growing, unsyn-
chronized cell population used in these analyses where the
fraction of mitotic cells is low. In particular, more than 50%
of the G2 phase proteins detected in our analysis were
found to be low or very low abundant (Fig. 3). We observed
that the majority of the detected proteins of anaphase-
promoting complex-cyclosome complex such as Cut4,
Cut9, and Apc2 were very low abundant. By contrast, Skp1-
Cullin-F-box E3 ligase complex consisted of relatively high
abundant proteins.

Proteome and Transcriptome Comparison

We compared our relative protein abundances in prolifer-
ating cells with published gene expression data using mi-
croarrays of S. pombe at the vegetative stage (www.ncbi.
nlm.nih.gov). Overall, the population of mRNA transcripts
quantified in this data source largely overlapped with the
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FIG. 2. Analysis of S. pombe protein abundance clusters and their associated physicochemical and functional properties. Protein
abundances for proliferating cells (Experiment 2) were assessed using emPAI value calculation. A, all identified proteins were clustered into five
major abundance categories based on protein density distribution against log emPAI value. B, number of proteins of the different abundance
clusters. Bias analysis of protein length (C), pI (D), and GO-slim (E) for the high and low abundant protein clusters. *, frequency � (number of
detected proteins associated with corresponding GO term within the cluster/number of total proteins in the cluster)/(number of total detected
proteins associated with corresponding GO term/number of total detected proteins).
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population of corresponding proteins quantified in this study
(3,497 out of 3,509 protein abundances, see supplemental
Table S10). We observed a correlation (Spearman rank cor-
relation) of rs � 0.58 between protein abundance and mRNA
abundance (Fig. 4) that is comparable with the correlation of
mRNA-protein abundance for several organisms reported so

far (rs (S. cerevisiae) � 0.57, rs (C. elegans) � 0.59, and rs (D.
melanogaster) � 0.66) (11) indicating that post-transcriptional
processes control the levels of around half of all identified
proteins. Moreover, the analysis revealed that proteins in the
high abundance cluster showed a stronger correlation than
those in the low abundance cluster (Fig. 4). To understand the
correlation between protein and mRNA abundance in specific
functional categories, we determined rs values for each GO-
slim category (supplemental Fig. S7). This analysis showed
that the overall protein abundance correlations were not
equally tight across functional categories. For example, we
found that the correlation between transcript and protein lev-
els is particularly poor for genes involved in signal transduc-
tion (rs � 0.43, supplemental Fig. S7). The same observation
was reported for C. elegans and D. melanogaster (11) and S.
cerevisiae (57), suggesting that post-transcriptional regulation
in these functional classes is conserved through eukaryotes.
Conversely, proteins involved in translation show a high cor-
relation between mRNA and protein levels (rs � 0.80, supple-
mental Fig. S7), which was also observed previously (57),
indicating that these processes are tightly controlled primarily
at the level of mRNA synthesis (transcriptional control). It is
important to note that the mRNA and protein abundances
were not determined from the same proliferating cells, which
might have an impact on the correlation of highly variable
transcripts/proteins. A thorough comparison of absolute
mRNA and protein abundances on a copy per cell level de-
termined in the same proliferating and quiescence S. pombe
cells, respectively, was published recently (22).

FIG. 3. Abundance distribution of cell cycle proteins. Proteins were mapped to the cell cycle pathway according to the KEGG database
together with their abundance classes determined from the analysis of unsynchronized proliferating cells (Fig. 1A, Experiment 2). Proteins not
identified in the PeptideAtlas are indicated in white.

FIG. 4. Correlation of protein and mRNA levels. Scatterplot of
normalized mRNA abundances and normalized protein abundances
(emPAI values) for proliferating S. pombe cells is shown, and both
values are presented in log scale. The Spearman rank correlation of
rs � 0.58 is indicated.
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Proteins Missing in the PeptideAtlas

To characterize proteins that were not identified in the
PeptideAtlas (data from all experiments) but predicted from
genome annotation, we conducted functional enrichment
analysis and analyzed the mRNA levels for those proteins in
matching conditions (see “Experimental Procedures”). First,
we tested if undetected proteins in the fission yeast Peptide-
Atlas were not identified because the corresponding genes
were not transcribed. We split genes into three classes based
on their mRNA levels as follows: high expressed (upper 25%
percentile), low expressed (lower 25% percentile), and me-
dium expressed (middle 50%). Interestingly, proteins of many
genes belonging to the “high” and “medium” abundance
classes were not detected in our experiments (supplemental
Tables S11.1–3). As expected, we found genes that were
difficult to identify, due to their physiochemical properties,
enriched in the undetected protein fraction (e.g. plasma mem-
brane proteins) independent of their mRNA abundance levels.
In contrast, we did find a significant enrichment of DNA-
binding proteins and proteins involved in DNA damage for
genes with high but not low mRNA levels (supplemental Table
S11.2.). We conducted the same analysis for proteins not
detected in the S. cerevisiae PeptideAtlas, which resulted in
the enrichment of similar terms (supplemental Tables S11.4–
6). Thus, there are functionally or biochemically related pro-
teins that are consistently difficult to identify across species, a
notion that was also confirmed when specifically analyzing
orthologous genes between the two species (supplemental
Table S11.7).

The enrichment of transmembrane proteins among unde-
tected proteins is most likely due to technical limitations (50)
rather than a biological phenomenon. We expected that pro-
teins that are needed only under specific stress conditions
would not be expressed in normal growth and thus remain
undetected. To improve the coverage of the proteome, we
therefore created the PeptideAtlas from a pool of cells grown
under various conditions. However, DNA damage was not
among the conditions included in this pool, thus explaining
why undetected proteins were enriched for this function.

We have previously shown that stress- and signaling-re-
lated proteins in S. cerevisiae are often subjected to transla-
tion on demand (40), i.e. the mRNA of these proteins is tran-
scribed even under “normal” conditions. Upon induction of
stress, those proteins can quickly be synthesized, which con-
stitutes an energy-efficient yet fast means of controlling abun-
dance of these proteins. The fact that transcriptional regulators
and stress-related proteins were enriched among the high and
medium classes suggests that many undetected proteins in S.
pombe are also subjected to translation on demand.

Cross-species Comparison of Protein Abundances

Finally, we compared S. pombe protein abundances
(emPAI values) to the published data sets of S. cerevisiae and

H. sapiens (15). First we performed ortholog mapping (58) that
resulted in 2,695 pairs of S. cerevisiae and 2,142 pairs of H.
sapiens orthologs, respectively, with protein abundances
(supplemental Table S12). These pairs were obtained after
removing duplicates, i.e. if several S. pombe protein IDs
match to one ortholog, we considered only one of the IDs and
if a group of orthologs matches to one S. pombe ID, only the
leading ortholog was considered. Next, we determined overall
Spearman correlations (rs) for the three datasets and ob-
served good protein abundance correlations between all spe-
cies, particular between the two yeast datasets (rs � 0.66,
supplemental Fig. S8).

In total, we found 1,758 genes with abundance values that
map to all three species (supplemental Table S13) and com-
pared their protein levels by hierarchical clustering (Fig. 5). We
observed several protein clusters with common or specific
protein expression patterns for the different species. Using
enrichment analysis, we could identify four clusters with sig-
nificantly enriched GO terms. As expected, proteins involved
in cell cycle and nucleotide binding (cluster 1) are low abun-
dant across all species, whereas the opposite is true for
ribosomal proteins (cluster 4). Because S. cerevisiae has the
lowest number of introns of the three organisms compared
(0.04 introns/gene (1)), the expression of proteins involved in
splicing is expected to be lowest in budding yeast, which can
be confirmed in cluster 2. Accordingly, the expression of
these proteins is higher in S. pombe (1 intron/gene (1))
and highest in the human cells (7.8 introns/gene (33)).

FIG. 5. Hierarchical clustering of protein levels of S. pombe
genes and their orthologous genes in S. cerevisiae and humans.
Protein clusters were subjected to GO-term enrichment analysis us-
ing DAVID (david.abcc.ncifcrf.gov). Only clusters with significant
terms (p � 0.05) are displayed.
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Interestingly, proteins of the proteasome are specifically
highly expressed in the human U2OS cell line compared with
both yeast strains (cluster 3). This suggests that the human
U2OS cells have higher proteasome activity and protein deg-
radation rates compared with the two yeast strains.

CONCLUSION

In conclusion, the proteomics information reported here
together with the S. pombe peptide library, which is now
available to the public via PeptideAtlas, will greatly alleviate
the study of S. pombe as a prime model, particularly using
targeted proteomics approaches. Our proteome analysis un-
derlines the necessity and usefulness of proteome analyses to
understand the features and traits of eukaryotic core pro-
teomes together with technical aspects of proteome analy-
sis and abundance of the actual effectors of biological
processes.
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