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 Introduction 

 Lung cancer is one of the leading causes of mortality 
and morbidity in the world and accounts for one third of 
all the cancer-related deaths  [1] . An estimated 1.61 mil-
lion people across the world were diagnosed with lung 
cancer in 2008  [2] . Non-small cell lung cancer accounts 
for 80% of all the lung cancer cases and its 5-year sur-
vival remains 8–15%  [3] . Current treatments of lung 
 cancer include surgery, radiotherapy and chemotherapy. 
For metastatic lung cancer, chemotherapy with the com-
bination of cisplatin and pemetrexed is used as first-line 
treatment. EGFR antagonists like erlotinib and gefitinib 
are recommended in the low percentage of cancers with 
EGFR-tyrosine kinase mutations. Despite the introduc-
tion of new therapies, lung cancer kills more people than 
breast, colon and prostate cancers combined, and there 
has been little overall improvement in patient survival in 
3 decades  [4] . This justifies the need for new and innova-
tive therapies. Stem cells may be able to deliver such ther-
apies to the site of tumours with minimal adverse effects.

  Mesenchymal Stem Cells  

 Mesenchymal stem cells (MSCs) are a type of bone 
marrow-derived stem cell, which can differentiate in vitro 
into osteoblasts, chondrocytes and adipocytes. They do 
not possess any unique markers for their identification, 
so their identification relies on the expression of CD73, 
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 Abstract 

 Despite recent advances in treatment, lung cancer accounts 
for one third of all cancer-related deaths, underlining the 
need of development of new therapies. Mesenchymal stem 
cells (MSCs) possess the ability to specifically home into tu-
mours and their metastases. This property of MSCs could be 
exploited for the delivery of various anti-tumour agents di-
rectly into tumours. However, MSCs are not simple delivery 
vehicles but cells with active physiological process. This re-
view outlines various agents which can be delivered by MSCs 
with substantial emphasis on TRAIL (tumour necrosis factor-
related apoptosis-inducing ligand). 

 Copyright © 2013 S. Karger AG, Basel 

 Published online: May 23, 2013 

 Dr. Sam M. Janes, MSc, PhD, FRCP 
 Lungs for Living Research Centre, University College London 
 5 University Street 
 London WC1E 6JJ (UK) 
 E-Mail s.janes   @   ucl.ac.uk 

 © 2013 S. Karger AG, Basel
0025–7931/13/0856–0443$0/0 

 www.karger.com/res 

 Previous articles in this series: 1. Bouros D, Laurent G: Regen-
erative medicine and stem cells – Prometheus revisited. Respira-
tion 2013;85:1–2. 2. Kolios G, Moodley Y: Introduction to stem cells 
and regenerative medicine. Respiration 2013;85:3–10. 3. Ardhana-
reeswaran K, Mirotsou M: Lung stem and progenitor cells. Respira-
tion 2013;85:89–95. 4. Tzouvelekis A, Ntolios P, Bouros D: Stem 
cell treatment for chronic lung diseases. Respiration 2013;85:179–
192. 5. Cárdenes N, Cáceres E, Romagnoli M, Rojas M: Mesenchy-
mal stem cells: a promising therapy for the acute respiratory distress 
syndrome. Respiration 2013;85:267–278.    6. Farkas L, Kolb M: Vascu-
lar repair regeneration as a therapeutic target for pulmonary arterial 
hypertension. Respiration 2013;85:355–364. 

Th is is an Open Access article licensed under the terms of 
the Creative Commons Attribution-NonCommercial 3.0 
License (www.karger.com/OA-license-WT), applicable to 
the online version of the article only. Distribution for non-
commercial purposes only.

D
ow

nl
oa

de
d 

by
: 

U
C

L 
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

14
4.

82
.1

07
.1

70
 -

 9
/1

0/
20

13
 5

:4
4:

13
 P

M

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/16219868?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1159%2F000351284


 Kolluri   /Laurent   /Janes   

 

Respiration 2013;85:443–451
DOI: 10.1159/000351284

444

CD90 and CD105 while lacking CD34, CD45 and other 
haematopoietic stem cell markers  [5] .

  MSCs lack the expression of MHC II and its co-stim-
ulatory molecules CD80 and CD86 and CD40  [6] . This 
low immunogenicity of MSCs may make allogeneic cells 
incapable of eliciting an immune response when used in 
immunocompetent patients hence avoiding the need for 
human leucocyte antigen matching and allowing an off-
the-shelf therapy  [7] . This paves the way for using MSCs 
as cell-based therapeutic vectors for the treatment of can-
cers. Indeed, clinical trials using MSCs for treatment of a 
wide variety of diseases including graft-versus-host dis-
ease and Crohn’s disease have proved delivery of alloge-
neic MSCs is safe. MSCs are also easily extracted and 
readily expandable with up to 50 population doublings in 
10 weeks  [8] . Taken together, these properties may enable 
the creation of MSC cell banks.

  MSC Homing to Tumours and Mediators Involved 

 It has been widely demonstrated that MSCs home to 
and infiltrate into areas of new stroma formation possibly 
forming crucial stromal support  [9] . This has been shown 
in several models, including lung metastases  [10, 11] , Ka-
posi sarcomas  [12]  and gliomas  [13] . However, their role 
once integrated within the tumour environment is un-
known.

  The precise mechanism of homing of MSCs to the tu-
mours is not fully mapped, but it was widely accepted that 
the chemokines released by the tumours attract MSCs. 
This is substantiated by the presence of a wide variety of 
chemokine receptors on the MSC cell surface and exper-
iments in vitro and in mouse models that have either 
over- or under-expressed these receptors, showing a 
change in MSC homing capabilities  [14–18] . There are 
several different ligands and receptors postulated to play 
a role in MSC migration. However, there is general agree-
ment that these studies have not yet been able to pinpoint 
the exact chemokine and its respective receptor that gov-
erns MSC tumour tropism, and there may indeed be a 
combination of receptors and chemokines responsible.

  CXCL12 and its receptor CXCR4 have generated par-
ticular interest in MSC homing. Their knockouts are uni-
versally fatal in utero and their role in migration of hae-
matopoietic cell migration is well characterised  [19, 20] . 
Several tumours are known to release CXCL12  [21, 22]  
and studies show over-expression of these receptors leads 
to increased MSCs migration to infarcted myocardium 
 [23] . However, knockdown of these receptors does not 

mitigate MSC homing capability  [24] . This can be inter-
preted that the CXCL12 ligand and its receptor CXCR4 
might be capable of inducing some MSC migration but 
they are not the only receptors responsible for MSC hom-
ing. This is further substantiated by the fact that some 
MSCs do not express this receptor at all  [18] .

  Work on MSC homing is complicated and varying re-
sults may be explained by a number of factors. MSCs are 
extracted from various tissues and their lack of unique 
identification markers to classify them results in a num-
ber of different populations being used making cross-ref-
erencing results difficult. Furthermore, different in vitro 
culture conditions and the passage numbers used alter the 
expression of cell surface receptors  [16, 25] . This results 
in lack of homogeneity of MSCs being used in laborato-
ries likely explaining the variability seen. Taken together, 
MSC migration is highly likely to be dependent on the 
expression of a number of chemokine receptors on their 
cell surface  [26, 27] .

  MSCs as Delivery Vectors for Pro-Apoptotic Agents 

 The homing capability of MSC can be exploited to de-
liver pro-apoptotic agents straight into the tumour mi-
cro-environment. Several studies have achieved this with 
varying success and are summarised in  table 1 .

  The majority of studies have used MSCs engineered to 
express and deliver a variety of cytokines. Interleukin (IL)-
2, an immune modulatory cytokine, has been shown when 
over-expressed by MSCs to improve immune surveillance 
against tumours and reduce metastasis from a subcutane-
ous model  [28] . Similarly CX3CL1, a chemokine which ac-
tivates both T cells and NK cells when delivered by MSCs, 
leads to a substantial decrease in lung tumours induced by 
intravenous delivery of melanoma cells  [29] . Interferon-β, 
which induces differentiation and S-phase accumulation 
leading to apoptosis, when expressed by genetically en-
gineered MSCs suppresses pancreatic tumours, prostate 
cancers, breast cancers and melanomas in animal models 
 [30–33] . Finally, a similar effect occurs with the delivery of 
IL-12-expressing MSC in renal cell carcinoma  [34] .

  An exciting set of viruses which selectively target and 
inhibit tumour cells without affecting normal cells are 
termed oncolytic viruses  [35] . These viruses are geneti-
cally engineered to selectively infect and destroy tumour 
cells. However, their delivery to the tumour site remains 
a major challenge  [36] . Using MSC tumour tropism rais-
es a new possible modality of virus delivery. MSCs would 
again act as carrier vectors for the oncolytic virus and this 

D
ow

nl
oa

de
d 

by
: 

U
C

L 
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

14
4.

82
.1

07
.1

70
 -

 9
/1

0/
20

13
 5

:4
4:

13
 P

M

http://dx.doi.org/10.1159%2F000351284


 MSCs as Vectors for Lung Cancer 
Therapy 

Respiration 2013;85:443–451
DOI: 10.1159/000351284

445

delivery mechanism comes with the added advantage of 
limiting the recipient immune response to the virus to a 
minimum. This technique has been very successfully used 
in several tumour models, which include breast and lung 
metastases  [37,   38]  and ovarian cancer  [39] . Indeed, a re-
cent study has demonstrated the feasibility of treating 
ovarian cancer using MSC oncolytic virus, paving the way 
for a phase I clinical trial  [40] .

  MSCs have also been engineered to express an enzyme 
which converts a pro-drug into a cytotoxic agent at the 
site of tumours. This has been successfully demonstrated 
in a glioma model  [41]  where MSCs were engineered to 
express the herpes simplex virus-thymidine kinase which 
converts the prodrug ganciclovir at the tumour site. How-
ever, this approach may be limited by the toxicity to the 
carrier MSCs. A similar approach has been used to con-
vert 5-fluorocytosine to 5-fluorouracil by MSCs express-
ing cytosine deaminase enzyme in melanoma  [42]  and 
colon cancer models  [43] . MSCs have also been geneti-
cally modified to express rabbit carboxylesterase enzyme, 

which can efficiently convert the prodrug CPT-11 into 
the active drug SN-38, which acts as a potent topoisom-
erase I inhibitor  [44] . In a different approach, nano-sized 
exosomes which are mass produced by MSC  [45]  have 
been extracted and used to deliver a variety of therapeu-
tics including siRNA  [46] .

  There is increasing interest in the use of nanoparticles 
in a variety of biomedical applications. However, the abil-
ity to deliver them efficiently to a disease that is systemi-
cally distributed remains a key challenge. Again, MSC 
 tumour tropism has been used as a method of tumour 
targeting. A silica nanorattle-doxorubicin drug delivery 
system was efficiently anchored to MSCs by specific anti-
body targeting the CD90 receptor on the MSC cell surface 
and successfully delivered into a glioma model  [47] . In-
terest has also arisen in using nanoparticles as a method 
of tracking MSC homing to tumours. Iron oxide nanopar-
ticles phagocytized by MSCs have been used to identify 
MSC homing to pulmonary lung metastases using mag-
netic resonance imaging  [11] . 

Table 1.  Anti-tumour agents delivered by MSCs

Agent Rationale Model References

IL-2 immune modulatory subcutaneous model 28

CX3CL activates T cells and NK cells melanoma lung metastasis 29

Interferon-β induces differentiation and S-phase arrest pancreatic cancer
prostate cancer
breast cancer
melanoma

30 – 34

IL-12 activates T cells and NK cells renal cell carcinoma 34

Oncolytic virus destroys tumours by viral infection breast cancer
lung cancer
ovarian cancer
lung metastasis

37 – 39

HSV-tk conversion of ganciclovir to active cytotoxic drugs glioma 41

Cytosine deaminase converts 5-fluorocytosine to 5-fluorouracil melanoma
colon cancer

42, 43

rCE converts the pro-drug CPT-11 to SN-38,
a potent topo-isomerase I inhibitor

glioma 44

Nanoparticle silica nanorattle-doxorubicin glioma 47

TRAIL tumour-specific death ligand glioma
pancreatic cancer
lung metastasis

10, 54, 55

 MSCs have been used to deliver a variety of anti-tumour agents. The rationale behind their use and the models used are described 
with references. HSV-tk = Herpes simplex virus thymidine kinase; rCE = rabbit carboxylesterase enzyme.
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  Delivery of TRAIL 

 TRAIL (tumour necrosis factor-related apoptosis-in-
ducing ligand) is the most studied and well-characterised 
pro-apoptotic agent widely accepted to be ideal as MSC 
cargo. TRAIL, also known as APO2 ligand, is a type II 
transmembrane protein with 281 amino acids and a 
member of the TNF death ligand superfamily. TRAIL 
triggers the extrinsic death pathway ( fig. 1 ). The physio-
logical function of TRAIL is not fully understood. How-
ever, it is believed to play a role in the control of auto-
reactive immune cells and immune surveillance especial-
ly against transformed cells  [48] .

  There are five types of TRAIL receptors identified to 
date and they include TRAIL-R1, TRAIL-R2, TRAIL-R3 
and TRAIL-R4. However, only TRAIL-R1 (death recep-
tor-4, DR-4) and TRAIL-R2 (DR-5) are able to transduce 
a signal into the cell after binding of TRAIL to their
extracellular domains. The receptors TRAIL-R3 and 
TRAIL-R4 do possess extracellular domains capable of 
binding to the ligand but lack an intracellular cytoplasmic 

domain, thus failing to mediate death signals to the intra-
cellular apoptotic machinery. Hence, TRAIL-R3 and 
TRAIL-R4 act as decoy receptors that antagonize TRAIL-
induced apoptosis. All these receptors form heterotri-
mers upon binding of the ligand. Osteoprotegerin is a 
soluble protein which possesses the capability of binding 
to TRAIL with low affinity  [49] . This protein is not ex-
pressed on the cell surface.

  The novelty of TRAIL is that it only induces apoptosis 
in transformed cells with virtually no effect on normal 
cells. This makes TRAIL a unique therapeutic with very 
few off-target adverse effects characteristic of chemother-
apeutic agents and radiation. The mechanism for this se-
lective targeting of tumour cells is not well characterised. 
The decoy receptor theory states that the normal cells ex-
press decoy receptors while the transformation of cells 
makes them express DR4 and DR5 thus making them vul-
nerable to TRAIL  [50] . However, this theory is not wide-
ly accepted and it is believed that the selective cytotoxic-
ity of TRAIL occurs beneath the cell membrane. One in-
triguing study shows that in tumours TRAIL receptors 

DNA damage

radio-/chemotherapy

FADD

Apoptosis

Intrinsic pathway

Extrinsic pathway

Caspase 8

Caspase 9

TRAIL

cFLIP

IAPs
SMAC

t-BID
BID

MSC

Tumour cell

Caspase 3

p53

Bax-Bak

Cyt-C

Apaf-1

  Fig. 1.  TRAIL signalling induces the extrinsic apoptotic pathway. TRAIL triggers the extrinsic apoptotic pathway 
while conventional chemotherapeutics and radiotherapy trigger the intrinsic apoptotic pathway mediated by 
mitochondria. There is crosstalk between the two pathways mediated by cleavage of BID into t-BID by caspase 
8. cFLIP and IAPs are potent inhibitors of apoptotic proteins and their inhibition could induce synergistic effects 
by simultaneous triggering of both pathways. FADD = FAS-activated death domain; BID = BH3 interacting-
domain death agonist; BAK = Bcl-2 homologous antagonist; Cyt-C = cytochrome c; Apaf-1 = apoptotic protease-
activating factor 1. 
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lead to apoptosis when expressed within lipid rafts of the 
cell membrane ( fig. 2 ). These rafts concentrate pro-apop-
totic downstream signalling molecules internally. In nor-
mal tissue, however, the receptors are largely in the non-
raft areas and TRAIL binding can lead to pro-survival 
pathway activation  [51] . Other studies have identified the 
TRAIL receptor glycosylation status  [52]  and pre-ligand 
binding assembly domain of receptors playing roles in 
TRAIL sensitivity  [53] . It is likely that TRAIL sensitivity 
is multi-factorial and cannot be ascribed to any single 
mechanism.

  The selective tumour-specific cytotoxicity of TRAIL 
has led to hailing it as a ‘silver bullet’ for the treatment 
of cancer. However, its limited bioavailability and poor 
pharmacokinetic profile have made its use a serious chal-
lenge. The half-life of TRAIL is very short at around 30 
min  [54] . To circumvent this problem, we and others 
have engineered MSC to constitutively express TRAIL. 
This has been demonstrated effective in several models, 
including glioma  [55] , pancreatic cancer  [56]  and a lung 
metastasis model  [43] . MSC-TRAIL cells home into the 
tumours and expresses TRAIL leading to selective apop-
tosis of tumour cells with no detectable cytotoxicity to the 
surrounding tissue. We have used a Tet-On promoter 
system allowing the controlled release of TRAIL with the 
addition of doxycycline  [10] . Interestingly, the tumour 
killing capability of MSCs expressing TRAIL is signifi-
cantly higher than that of recombinant TRAIL  [10] .

  However, not all tumours are fully sensitive to TRAIL. 
TRAIL triggers the extrinsic apoptotic pathway, while 
conventional chemotherapeutics and radiation trigger 
the intrinsic apoptotic pathway ( fig. 2 ). It would be ideal 
to trigger the simultaneous activation of both pathways to 
harness synergistic effects. There is known synergy be-
tween traditional chemotherapy agents and TRAIL. This 
synergy results in increased apoptosis by amplification 
of apoptotic signals through crosstalk between the two 
apoptotic pathways  [57] . A number of chemotherapeutic 
agents have demonstrated synergy both in vitro and in 
vivo: cisplatin  [58] , vorinostat  [59] , pemetrexed  [60] , 
sunitinib  [61] , etoposide  [62] , doxorubicin  [62]  and bor-
tezomib  [63] . Furthermore, the combination of chemo-
therapeutics and MSC expressing TRAIL was shown to 
be synergistic with bortezomib  [64]  in myeloma cells and 
vorinostat in lung cancer  [65] .

  Identifying and targeting proteins responsible for 
TRAIL resistance may also increase the anti-tumour po-
tency of TRAIL, such as cFLIP (cellular FLICE-inhibitory 
protein)  [66, 67] , cIAP1/cIAP2  [68]  and XIAP  [56, 69, 
70] . Another potential use of MSC-delivered TRAIL 

would be to decrease the required dosage of chemother-
apeutic agents improving drug tolerance and reducing 
adverse effects  [71] . 

  Immunosuppressive Effects of MSCs 

 The ability of MSCs to home effectively to tumours 
makes them an attractive therapeutic option. However, 
MSCs are not merely vehicles which transport the thera-
pies but are cells possessing physiological properties. 

  It is widely accepted that in large numbers MSCs pos-
sess immunosuppressive effects in vitro. They are capable 
of arresting the immune cells in G0/G1 phases thus pre-
venting the S-phase entry and subsequent cell division. 
This has been demonstrated in T cells  [72] , B cells  [73]  
and dendritic cells  [74] . This leads to reduced cytotoxic 
capability of T cells and antibody production of B cells. 
MSCs also exert an immunosuppressive effect by activa-
tion of regulatory T cells. These properties of MSCs are 
clinically exploited for the treatment of graft-versus-host 
disease after bone marrow transplantation  [75] .

  These anti-inflammatory effects have been tested in a 
number of clinical trials in inflammatory conditions, such 

PLAD

Glycosyla on

Lipid ra

Pro-apopto c 
molecules

Pro-survival 
molecules

Pro-survival 
signalling

Apoptosis

Cholesterol

  Fig. 2.  TRAIL signalling varies based on death receptor location 
and glycosylation. TRAIL induces apoptosis pathways when the 
death receptors are glycosylated or forms pre-ligand binding as-
sembly domain (PLAD) or when located on lipid rafts. 
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as inflammatory bowel disease and chronic obstructive 
pulmonary disease, and in other diseases, such as cardiac 
disease. Several studies show an enhanced cardiac func-
tion  [76–79]  and reduced infarct size  [78]  by injecting 
MSCs after myocardial infarction and chronic ischemic 
heart failure. The exact mechanisms of this effect are to be 
characterised but have been attributed to anti-inflamma-
tory properties of MSCs. These anti-inflammatory prop-
erties have also been demonstrated in murine models of 
pulmonary fibrosis and acute lung injury, and were 
thought the result of the paracrine effect of secreted trop-
ic factors  [80] . The Battacharya laboratory has also shown 
that MSCs can protect against acute lung injury by donat-
ing their mitochondria to alveolar epithelial cells  [81] .

  The immunosuppressive capability of MSCs could, 
however, be a double-edged sword. Their immunosup-
pressive nature could potentially interfere with any phys-
iological anti-cancer immune cell function in the tumour 
environment.

  Direct Effects of MSCs on Tumour Biology 

 Reports on untransduced MSC effects on tumour 
growth are mixed. The majority of work suggests MSCs 
not only home to tumours but also have intrinsic anti-

tumour properties. MSCs alone lead to benefit in a mu-
rine glioma model  [82] , in our studies of pulmonary me-
tastases  [6]  and in a breast cancer metastasis model with 
either intravenous or intra-tumour delivery of MSCs sig-
nificantly reducing the growth and metastasis  [83] . The 
mechanism of this anti-tumour effect is not fully estab-
lished, although MSCs have been shown to down-regu-
late many pro-survival genes, such as AKT in the Kaposi 
sarcoma mouse model  [12]  and NF-κB in hepatoma and 
breast cancer cells  [84] . 

  In specific context, however, MSCs can appear to be 
tumour promoting, which was demonstrated by tumour 
development after subcutaneous co-administration of 
MSCs with allogeneic melanoma cells producing tu-
mours, while allogeneic melanoma cells seeded on their 
own are not capable of tumour induction  [85] . This effect 
was attributed to the immunosuppressive effect of MSCs 
which suppressed the host immune reaction to the allo-
geneic melanoma cells.

  As discussed earlier, MSCs do produce a wide array 
of chemokines, cytokines and growth factors ( fig.  3 ). 
They may also produce and secrete growth factor signal-
ling that promotes survival in tumour cells resulting in 
enhanced tumour burden and metastases. It has been 
demonstrated that MSCs enhance the in vivo growth of 
Burkett’s lymphoma cells through a VEGF-dependent 
mechanism  [86] . The growth of breast cancer cells was 
augmented by IL-6 secreted by MSCs via STAT3 activa-
tion  [87, 88] . It has also been shown that MSCs can 
down-regulate cyclin D2 and arrest chronic myeloid 
leukaemia cells in G0/G1 phase preserving their prolif-
erative capacity and reducing apoptosis in vivo  [74] . 
Furthermore, under the nutrient-depleted conditions of 
the tumour micro-environment, MSCs utilize autopha-
gy for survival and secrete anti-apoptotic factors that fa-
cilitate solid tumour survival and growth in breast can-
cer cells  [89] .

  Another important and serious concern is the ambigu-
ity that MSCs might themselves undergo malignant 
transformation. Karyotype abnormalities have been no-
ticed after in vitro passage of murine MSCs  [90–92]  and 
transformations of bone marrow-derived cells have been 
implicated in a murine gastric carcinoma model  [93] . Hu-
man MSCs, however, have stable karyotypes in culture 
and exhibit senescence with features of shortening telo-
meres over a 44-week culture period  [94] . There have 
been about 300 clinical trials in clinicaltrials.gov injecting 
MSCs for cell therapy with no reported incident of MSC 
malignant transformation.

MSCs

Pro-apopto c e ects Pro-survival e ects

Wnt

NF- B

Apoptosis

AKT

VEGF

IL-6 

Autophagy

Cyclin D2

Immune cells

  Fig. 3.  MSCs are not inert carriers. MSCs exert both pro-survival 
and pro-apoptotic effects on tumours. Their pro-apoptotic effects 
include inhibition of Akt, Wnt and NF-κB signalling. MSCs them-
selves induce apoptosis in some tumours. They also exert pro-sur-
vival effects by inducing VEGF and STAT3 activation. They sup-
press immune cells thereby reducing immune surveillance of tu-
mours. They undergo autophagy and release pro-survival paracrine 
factors. They inhibit cyclin D2. 
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  From Bench to Bedside 

 Developing a cellular therapy using MSCs as delivery 
vectors is the ultimate goal of this area of research and 
MSCs have exhibited the potential for clinical translation. 
MSCs can be easily isolated, cultured in flasks and genet-
ically modified. Their allogeneic application confers them 
an added advantage of being a possible off-the-shelf ther-
apeutic. Their ability to target metastasis and provide a 
local high concentration of their cargo makes them 
unique.

  Many phase I and II clinical trials involving MSCs for 
a variety of treatments were recorded in the largest clini-
cal trial database, clinicaltrials.gov. The therapeutic areas 
include graft-versus-host disease, ischaemic cardiac dis-
ease, Crohn’s disease and chronic obstructive pulmonary 
disease  [95] . However, there are no reported trials of the 
use of MSC as delivery agents for anti-tumour therapy to 
date.

  Conclusion 

 MSC have the potential to be ideal delivery vectors for 
a variety of pro-apoptotic agents in treating cancers. The 
lack of knowledge of MSC physiology within the tumour 
environment is producing caution, and more robust 
studies characterising their homing mechanisms may im-
prove proposed therapies. Indeed, simple questions, such 
as how many cells need to be given and when, remain un-
answered. However, their role as an adjunct in patients 
with metastatic tumours looks hopeful.
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