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DISSERTATION ABSTRACT

Gwynhwyfer Mhuireach

Doctor of Philosophy

Department of Landscape Architecture

June 2018

Title: Relationships Among Airborne Microbial Communities, Urban Land Uses and 
Vegetation Cover: Implications for Urban Planning and Human Health

Variation in exposure to environmental microbial communities has been implicated in the 

etiology of allergies, asthma and other chronic and immune disorders. In particular, preliminary 

research suggests that exposure to a high diversity of microbes during early life, for example 

through living in highly vegetated environments like farms or forests, may have specific health 

benefits, including immune system development and stimulation. In the face of rapidly growing 

cities and potential reductions in urban greenspace, it is vital to clarify our understanding of the 

relationship between vegetation and microbial communities so that we can better design cities 

that support human health. To explore whether and how urban airborne bacterial communities 

vary with the amount and structural diversity of nearby vegetation, I used passive air sampling 

and culture-independent microbial DNA sequencing combined with more traditional landscape 

architecture tools, including geographic information systems (GIS) and remote sensing data. 

The results indicated that locations with little vegetation (i.e., paved parking lots) were marked 

by significantly different bacterial composition from areas that were heavily vegetated (parks 

and forests). These differences were largely driven by taxonomic groups and indicator species 

that were enriched at certain sites. My work also shows that regional agricultural activities 

during the summer may have a substantial effect on airborne bacterial communities in the 

Eugene-Springfield metropolitan area (Oregon), specifically through elevated abundance of 

Sphingomonas faeni, a taxon previously isolated from hay dust.

The second part of my work focused on building a conceptual bridge between scientific 

findings and potential design principles that can be tested in practical application. I performed 
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a narrative review of vegetation-health, vegetation-microbe, and microbe-health relationships, 

which formed the foundation of a framework to translate scientific findings into design-relevant 

concepts. Strengthening this linkage between science and design will help ensure that research 

questions are relevant to design practice and that new scientific knowledge is accessible to 

designers.

This dissertation includes previously published and unpublished co-authored material.
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CHAPTER I

INTRODUCTION

Urbanization is a global phenomenon unprecedented in extent and magnitude. By 2050, 

the world population is expected to reach 9.3 billion. All population growth is predicted to 

occur in urban areas (U.N. 2012). Urban development is the most rapidly increasing land use 

type, and over 50% of humanity now resides in urban areas. We are becoming “Homo urbanus,” 

in the words of Crane and Kinzig (2005), and the large-scale migration from rural to urban over 

the past century has been called “the greatest human-environmental experiment of all time” 

(Meyerson et al. 2007). This suggests that the urban condition should be a high-priority focus of 

study if we are to understand the implications of these changes to human habitat. 

Cities are unlike environments in which humans evolved. Although the first cities appeared 

around 4000 bc, it wasn’t until the rise of industrialization that a significant proportion of 

the global human population resided in cities (Davis 1955). Much of our evolutionary history 

was spent in forests, savannas, meadows and farmland, but over the last few centuries we have 

increasingly inhabited urban environments. We have only a rudimentary understanding of 

how this change has affected our health and well-being, yet we continue to modify urban 

environments. Cities are complex amalgamations of interdependent systems that are costly and 

difficult to alter once they are set on a particular trajectory. Urban policy, planning and design 

decisions that occur now will influence the lives of many generations to come.

Vegetation is a major component of the urban environment with recognized benefits for 

human well-being. Some of the many benefits of urban vegetation, or greenspace (see definitions 

of terms used in dissertation in Figure 1), include improving property values, increasing social 

cohesion, reducing the urban heat island effect, improving air quality, providing areas for 

recreation, promoting psychological well-being, and increasing biodiversity (Breuste 2008). Due 

to population growth and urbanization, it is predicted that in the future most people will have 

most of their interactions with nature in urban settings rather than wilderness. 
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However, increasing urban density through infill development can result in overall 

reductions of vegetation within metropolitan areas. In highly urbanized regions of England, 

for instance, there has been significant overall loss of greenspace since implementation of 

densification policies in 2000 (Dallimer et al. 2011). Despite the recognized importance of 

urban greenspace, there are currently no clear national guidelines in the US for its provision. In 

1981, the National Recreation and Parks Association published a guideline stating that cities 

should provide 10 acres of parkland for every thousand residents, but in 1995 replaced it with 

Figure 1. Definitions of terms used.

Aerobiome: The consortium of airborne microbes in a given environment.

Commensal: Microbes that live on and in the body of other organisms.

Culture-based approaches: Methods that involve the use of sterile dishes containing growth 
substrates (e.g., agar) to grow and identify microbes.

Densification policies: Governmental policies that encourage or require population growth 
to be accommodated within urban boundaries to the extent possible.

Dysbiosis: An imbalance in the human commensal microbiome.

Greenspace: Any vegetated area within an urbanized region, including private yards and 
gardens, public parks, street trees, vacant lots, and waste ground.

Helminths: Internal parasites, such as tapeworms, that live within higher organisms.

High-throughput genome sequencing: Parallelized process to identify nucleotides within 
many DNA or RNA molecules concurrently.

Macrobiodiversity: Number of species of large (visible) plants and animals.

Management regimes: The frequency, duration, and type of human activities performed to 
maintain desired characteristics of a site.

Microbiodiversity: Number of species of tiny (invisible) microbes, including bacteria, fungi, 
and viruses.

Microbiome: The consortium of microbes found in a given environment.

Saprophytes: Microbes commonly associated with soil.
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a “level of service” recommendation suggesting that open space provision should be specifically 

tailored to each community. According to the Trust for Public Land (2011), “Some cities 

have plenty of parkland that’s well distributed around town; others have enough land but an 

inequitable distribution; others are short of even a basic amount of park space for their citizens.” 

A survey of the 50 largest cities in the US conducted by the Trust for Public Land in 2003 found 

wide disparities in the recommended maximum distance any given household should be from 

the nearest park (Harnik and Simms 2004). Only 18 of the surveyed cities had any standards in 

place and, of those 18, the standards ranged widely from 1/8–1 mile. The combination of vague 

guidelines, growing urban populations and shrinking budgets (Baur et al. 2014) has led to an 

overall trend of losses in urban greenspace per resident (American Planning Association 2013). 

Furthermore, there is wide disparity in the provision of greenspace across different 

socioeconomic groups (Sherer 2003). Researchers have found that residents of disadvantaged 

neighborhoods tend to have less vegetation near their homes and poorer access to public 

greenspace (Wolch et al. 2005; Harlan et al. 2006; García and White 2006; Coalition for a 

Livable Future 2007; Fitzpatrick and LaGory 2000; Bell and Ebisu 2012; Dai 2011; Jennings 

et al. 2012; Landry and Chakraborty 2009; Dai et al. 2011; Wen et al. 2013; Astell-Burt et al. 

2014; Lakes et al. 2014). New research shows that not only is there an existing gap between 

greenspace provision in advantaged versus disadvantaged neighborhoods, but that the gap is 

increasing. From 2001 to 2011, US neighborhoods with higher ethnic populations lost overall 

greenness while those with higher white populations gained greenness (Casey et al. 2017). There 

is also evidence that urban biodiversity varies with socioeconomic status—people living in 

higher socioeconomic status neighborhoods (i.e., more household income, less unemployment, 

lower population density) have significantly greater species richness near their homes than do 

those living in lower socioeconomic status neighborhoods (Strohbach et al. 2009; Hope et al. 

2003; Kinzig et al. 2005). 

The Biodiversity Hypothesis posits that macrobiodiversity (e.g., urban greenspace) is 

intrinsically related to microbiodiversity, and that human health is indivisibly linked with both 
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macro- and microbiodiversity (von Hertzen et al. 2011). This hypothesis builds from earlier 

work suggesting that modern lifestyles have led to a severe reduction in exposure to “Old 

Friends,” or the various microbes and helminths with which humans co-evolved, thus disrupting 

immune training and development. Development of these theories was, in part, prompted 

by observations that increasing susceptibility to a suite of maladies associated with modern 

lifestyles has paralleled growth in urbanization ( Jackson 2003). 

The increasing prevalence of chronic and autoimmune disorders that were relatively rare 

or unknown before industrialization, including asthma, allergies, autism, depression, obesity, 

inflammatory bowel disorder (IBD), diabetes, and cancer, has been linked to lack of greenspace 

exposure, although results are sometimes mixed (Alcock et al. 2017; Ruokolainen et al. 2015; 

Wu and Jackson 2017; Cox et al. 2017; Dadvand et al. 2014; Timm et al. 2014; Astell-Burt 

et al. 2014; Li et al. 2008). This apparent relationship between health and urbanization may 

be partially explained by lifestyle changes, such as decreased physical activity and increased 

exposure to air pollutants, both of which are also associated with nearby greenspace. According 

to the Biodiversity Hypothesis, reduced exposure to microbial diversity may be another 

important factor, since all of the disorders listed have also been shown to be associated with 

microbial dysbiosis, or imbalance in the human commensal microbiome—allergies and asthma 

(Fujimura and Lynch 2015), autism (Vuong and Hsiao 2017), mental health disorders (Lowry 

et al. 2016), obesity (Walters et al. 2014), IBD (Round and Mazmanian 2009), diabetes (Tilg 

and Moschen 2014), and cancer (Bultman 2016). 

Thus, provision of biodiverse urban greenspaces may promote increased microbial diversity, 

which may generate health benefits. For example, Ege et al. (2011) compared children living on 

farms with those in a reference group and linked exposure to higher microbial diversity with 

a lower prevalence of asthma and allergic sensitivity. In a separate study, Hanski et al. (2012) 

found significant correlations between exposure to highly vegetated environments and skin 

microbiota diversity, both of which were associated with lower likelihood of allergic disposition. 

These empirical studies are supported by theoretical work seeking to elucidate how the observed 
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protective effects of diverse microbial exposure might occur (Eder et al. 2006; Rook et al. 2013; 

Raison et al. 2010; Raison and Miller 2013; von Hertzen et al. 2011). Current hypotheses 

propose that particles of microbial origin, such as endotoxins, beta-glucans, polysaccharides and 

muramic acid, may play a key role in protecting against chronic and autoimmune disorders by 

signaling components of the immune system to tolerate environmental exposures (Heederik 

and von Mutius 2012). It has been suggested that one of the most important classes of microbes 

we have lost contact with are saprophytic, or soil-living, microbes and that this class may be 

particularly protective against development of allergic disorders (von Hertzen and Haahtela 

2005). The bacterial phyla Proteobacteria and Actinobacteria include many members of 

common saprophytic microbes (e.g., Acinetobacter sp., Mycobacterium vaccae), which may 

have beneficial health effects (Fyhrquist et al. 2014; Lowry et al. 2016). Vegetation and soil-

associated microbes such as these are typically enriched in farming and natural environments, 

and this could help explain why asthma and allergy are typically more prevalent in urban 

areas, since cities have largely paved over and otherwise degraded the majority of their soils. As 

an example, societies that maintain a primarily hunter-gatherer lifestyle tend to have greater 

exposure to environmental microbes and lower incidence of allergic sensitivity than modernized 

societies (Brown et al. 2013).

Evolutionary theory may help explain why humans require this exposure to microbial 

diversity to maintain good health. Humankind evolved under constant exposure to outdoor 

air containing a complex mixture of microbes originating from plants, soil, water, and other 

animals. Every day we move through a veritable ocean of microbes, and we coexist with 

countless numbers of them throughout our lives. Over the past hundred years we have 

implemented strategies of impermeable surface construction, water treatment, industrialized 

agriculture, urban inhabitation, and landscape maintenance regimes (e.g., pesticides, fertilizers, 

mowing) that have almost certainly changed our degree of exposure to the environmental 

microorganisms associated with natural elements (Brown et al. 2013). Blaser and Falkow (2009) 

describe this condition as a case of our “disappearing microbiota,” wherein we have largely lost 
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contact with the microbes that have accompanied us throughout evolutionary history. It is 

possible that urban environments comprise relatively new assemblages of microbes on Earth, 

given these environments are characterized by unique combinations of biotic and abiotic 

conditions that have not been found historically in natural habitats (McKinney 2006; Young et 

al. 2009; Kowarik 2011). 

The prevailing view of microbes as generally harmful creatures that should be eliminated 

from primary human environments (with the exception of those few microbes involved in food 

and drink fermentation processes) has begun to change as we find increasing evidence of their 

ubiquity and importance to our health. In contrast to culture-based approaches, which are only 

effective for a small percentage of microbial taxa, high-throughput genome sequencing allows 

us to “see” entire communities of microbes and begin to tease out the ecological relationships 

among microbes, their functional roles, and their interactions with larger organisms. Burgeoning 

scientific theory suggests that humans (and other macroorganisms) should be understood not 

only in terms of “self,” but also as inseparable associations of host and commensal microbes 

(Gilbert et al. 2012). This marks a shift toward a more nuanced understanding of microbial 

interactions with humans and their role in promoting health (Sachs 2007). Although our 

understanding of relationships among macrobiodiversity, microbiodiversity, and human health 

continues to grow, numerous questions remain to be answered before designers, planners, and 

policymakers can implement health-promoting urban design strategies. The following are 

among the most pressing design-relevant knowledge gaps identified in the literature (specifically 

Rook et al. 2013; Mills et al. 2017):

•	 How to determine optimal vegetation species for green spaces;

•	 Whether plant (and animal) diversity is associated with health-relevant microbes;

•	 Whether ecological restoration of degraded urban sites leads to re-establishment of a 

vegetation-associated microbiome;

•	 What are the relative contributions of soil, air, leaf surfaces, and animals or animal 

products to urban microbial communities; and
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•	 What activities promote human interaction with urban microbial communities.

With my dissertation research I sought to begin filling these gaps by exploring how nearby 

vegetation may influence the structure and dynamics of airborne microbial communities 

(collectively, the aerobiome). I focused on the aerobiome because it is a largely unavoidable 

exposure route for urban residents and its composition may be highly dependent on local 

sources, such as vegetation. To accomplish this, I first executed a pilot study on the variation 

in airborne bacterial communities across disparate urban land cover types (parks and parking 

lots), which constitutes Chapter II of this dissertation. Building on the foundations laid by 

the pilot study, for my third chapter I conducted a large-scale aerobiome sampling campaign 

of three land cover types (forest, grass, paved). In this campaign, samples were collected from 

50 sites at four time points, with the objective of unraveling the complex interactions between 

vegetation types, management regimes, and bacterial communities across space and time. In 

Chapter IV, I explored how the scientific results from Chapters II and III, as well as evidence 

from the literature, can be translated into a conceptual framework linking landscape design with 

microbial ecology and human health. 

Ultimately, my objectives were to a) discover whether the airborne bacterial communities 

vary with urban vegetation cover or structure, and b) explore how landscape design could 

effect variation in the urban aerobiome, particularly as cities continue to expand and increase 

in population density. I hope that this work will further our understanding of how and why 

vegetation might influence the microbial communities urban residents interact with every day, 

and introduce a new facet of ecological design that has been largely unrecognized by landscape 

architects and planners.

This dissertation includes previously published and unpublished co-authored material. 

Chapter II was previously published in Sci Total Environ with Bart R. Johnson, Adam E. 

Altrichter, Joshua Ladau, James F. Meadow, Katherine S. Pollard, and Jessica L. Green as co-

authors. Chapter III was prepared for submission to Environ Int with Clarisse M. Betancourt-

Román, Jessica L. Green, and Bart R. Johnson as co-authors.
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CHAPTER II

URBAN GREENNESS INFLUENCES AIRBORNE BACTERIAL COMMUNITY 

COMPOSITION

This paper was published in Science of the Total Environment in September 2016. I 

conceived the study, collected the samples, performed bioinformatics, analyzed the data, 

and wrote the paper. Assistance in experimental design, sampling, processing samples, data 

analysis, and writing the manuscript was provided by my co-authors: Bart R. Johnson, Adam E. 

Altrichter, Joshua Ladau, James F. Meadow, Katherine S. Pollard, Jessica L. Green.

1. Introduction

Human well-being in urban areas is linked to the abundance and degree of access to nearby 

greenspace (e.g., Maas 2006; Maas et al. 2009; Villenueve et al. 2012; Mitchell and Popham 

2007; Dadvand et al. 2012; Donovan et al. 2013). However, the specific mechanisms linking 

health and greenspace are not well understood. New evidence indicates that exposure to 

microbial diversity, especially from soil, plants and some animals, is an understudied pathway 

through which health benefits may arise (von Hertzen and Haahtela 2006; Hanski et al. 2012; 

Fall et al. 2015). 

Humans evolved under constant exposure to air, water, and soil containing a diversity 

of environmental microbes. However, over the past few centuries our lifestyles have shifted 

dramatically (indoor living, antibiotic use, processed food, chemical treatment of water, etc.) 

and, in the process, this has altered the abundance, diversity, and composition of the microbial 

communities to which we are exposed on a daily basis (Blaser and Falkow 2009). While 

these shifts in lifestyle have been associated with reduced incidence of many diseases, greater 

longevity, and other benefits, it is also now widely recognized that early life immunological 

experiences, including exposures to various environmental substances as well as the lack of 

exposures, are associated with the development of later life immune-mediated disease, such as 
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asthma, allergy and other inflammatory disorders (Russell et al. 2012; Rook et al. 2013; Ege et 

al. 2012). 

There is evidence that airborne microbial communities vary across major land use types, 

e.g. forest, agricultural land and urban areas (Bowers et al. 2010; Shaffer and Lighthart 1997; 

Burrows et al. 2009). At local scales, spatial proximity is an important predictor of microbial 

community similarity among outdoor samples (Adams et al. 2013; Adams et al. 2014), although 

long-range transport is also known to play a significant role in shaping airborne bioaerosol 

composition (Barberán et al. 2015). Little is known, however, about how airborne microbial 

composition varies within an urban area, nor what factors influence its variation. Beginning to 

describe fine-scale biogeographic patterns, such as distance-decay relationships (i.e., the spatial 

distance at which similarity of microbial community composition breaks down) at the scale of 

urban blocks and neighborhoods, would be a valuable contribution to the scientific knowledge 

base (Womack et al. 2010).

Vegetation structure and composition could play a role in the localized variability of 

microbial communities. Plants are important sources of airborne microorganisms (Lindemann 

and Upper 1985; Lindemann et al. 1982; Bowers et al. 2011). It is estimated that leaf surfaces 

comprise the largest biological surface type on the planet -- over a billion km2 -- and may host up 

to 108 bacteria per cm2 (Delmotte 2009; Vorholt 2012; Peñuelas and Terradas 2013). These leaf-

inhabiting microorganisms become airborne during plant processes, like evapotranspiration, 

as well as by meteorological processes, such as rain splash, wind gusts and thermal plumes 

(Lighthart et al. 2009; Whipps et al. 2008). Different species of plants are associated with 

different compositions and emission rates of microbes (Lambais et al. 2014; Jumpponen and 

Jones 2010; Lindow and Brandl 2003; Kembel et al. 2013; Vokou et al. 2012). Although 

culture-based investigations of the population dynamics of leaf-surface microbes concluded 

that, “nearby vegetation strongly influences the atmospheric microbial concentration and 

composition at a given location” (Kinkel 1997), there have been few studies using modern 

molecular techniques. A notable exception is the recent work by Lymperopoulou et al. (2016) 
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investigating the abundance and composition of airborne microbes in relation to the sample’s 

proximity to vegetated versus non-vegetated areas. Their results showed that local vegetation 

could contribute up to half of the airborne bacteria found at a distance of 50 meters downwind.

The primary goal of this study was to explore how urban vegetation, spatial proximity of 

sample sites, and other factors influence the composition of airborne microbial communities, 

specifically focusing on bacteria (fungal analysis to follow in a separate paper). We hypothesized 

that locations with large amounts of vegetation would have different airborne bacterial 

communities than areas with little or no vegetation, and that spatial proximity would have 

less influence on composition than the amount of vegetation. In the longer term, this course 

of investigation has the potential to substantially change our understanding of how to design 

healthy urban neighborhoods.

2. Materials & Methods

2.1. Field sampling

We collected air samples for an eight-hour period on July 24th, 2013, beginning at 08:00. 

Six samples from each site were collected simultaneously at five pairs of parks and nearby 

parking lots in Eugene, Oregon (Figure 2a) for a total of 60 samples. The sampling station 

consisted of a custom tray (sterilized prior to use with 99 percent isopropyl alcohol) containing 

three passive settling dishes with their lids and three vacuum pump-powered button filters 

attached to the sides of the tray (Figure 2b-2c) placed approximately 2 meters above ground 

level in a relatively open area (i.e., not directly underneath tree canopy or other obstruction). 

SKC Button Samplers and SKC AirChex XR5000 Pumps (SKC Inc., Eighty Four, PA, USA) 

were set to draw 4 l/min (~1,920 l total for the sampling period) through 25 mm-diameter 

cellulose ester filters (1.4 lm pore diameter; autoclaved prior to sample collection), and HOBO 

U52 dataloggers (Onset Corporation) were used to measure temperature and relative humidity 

at 1-minute intervals. Technicians were present at each site to monitor the sampling equipment 
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and perform hourly wind speed and direction measurements. All air samples were frozen at 

-80°C immediately following sampling and stored frozen until processing.

2.2. GIS data

Urban environmental characteristics were measured using ArcGIS 10.2 with geospatial 

data accessed from the Lane Council of Governments and the National Agriculture Imagery 

Program. All data layers were imported into a new geodatabase and re-projected to the NAD 

1983 HARN StatePlane Oregon South (Feet Intl) Coordinate System, based on a Lambert 

Conformal Conic Projection. Six primary land cover types were identified (built, paved, dirt, 

grass, trees and shrubs, and water) using supervised maximum likelihood classification of aerial 

4-band orthoimagery at 1-meter resolution. To assess the amount of surrounding vegetation, 

buffer zones of 50, 100, 200, 400, and 800 meter radii were created around each sampling point 

and the proportion of vegetated area (grass + trees and shrubs) within each buffer zone was 

calculated using the classified raster image (Figure 2d and Table 4 in Appendix A).

Figure 2. a) Map of paired park and parking lot sites; b) photo of sampling station in parking 
lot; c) photo of sampling station in park; and d) classification image showing 50-m buffer 
zones and approximate distance between park-lot pairs.
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2.3. DNA amplification and sequencing

The petri dishes and their lids were swabbed with nylon flocked swabs (copanusa.

com; 552C), and DNA was extracted directly from the swabs and filter samples using the 

MO BIO PowerWater DNA Isolation Kit (MO BIO Laboratories, Carlsbad, CA, USA) 

according to manufacturer’s instructions. Protocols followed those of Meadow et al. (2013), 

and negative controls were included at each step to evaluate potential contamination. We 

amplified the V4 region of the bacterial 16S rRNA gene using F515/R806 primers (5’ - 

GTGCCAGCMGCCGCGG - 3’ , 5’ - TACNVGGGTATCTAATCC - 3’ ) (Caporaso et 

al. 2012; Claesson et al. 2010). The samples were sequenced as paired-end reads at the Dana-

Farber/ Harvard Cancer Center DNA Resource Core (Boston, MA, USA; dnaseq.med.

harvard.edu) using the Illumina MiSeq platform.

2.4. Analyses

Raw sequences were processed using the FastX Toolkit and QIIME pipeline (Caporaso et 

al. 2010). After recombining the barcodes from paired-end reads, forward reads were used for 

analysis due to lower quality reverse reads. In quality filtering, sequences that did not meet a 30 

quality score over at least 75% of the read, or had ambiguous bases, or more than one primer 

mismatch, were removed. Sequence read lengths were trimmed to 250 bp, and taxonomy 

assignment was performed on a reference set of high-quality sequences using the open-reference 

OTU picking function in QIIME, which uses UCLUST (Edgar 2010). OTU clusters with 

a 97% similarity were identified using the Greengenes 13.5 database (DeSantis et al. 2006). 

All sequence files and metadata can be found in the FigShare data repository (FigShare DOI: 

10.6084/m9.figshare.3362344).

2.5. Statistical analyses

Plant and mitochondrial sequences, sequences occurring fewer than three times, and the 

top three most abundant potential contaminants observed in our negative control samples 



13

were removed prior to statistical analyses. The potential contaminants that were excluded 

were Alicyclobacillus sp., Bradyrhizobium sp., and Shewanella algae, altogether comprising 

slightly more than 60% of the sequences recovered from negative controls. It should be noted 

that the negative controls contained approximately 1% of the number of sequences that the 

study samples contained, therefore it is unlikely that any remaining contamination skewed 

our results. Three of the actively collected samples (two from the same park and one from a 

parking lot) did not meet the minimum criteria of 25,000 reads and were also eliminated from 

the analyses. Statistical analyses were implemented in R (R Development Core Team 2010) 

using chiefly the DESeq2, phyloseq, and vegan packages (Love et al. 2014; McMurdie and 

Holmes 2013; Oksanen et al. 2016). All analysis code is shown in Appendix B. The variance-

stabilizing transformation function in the DESeq2 package was used to adjust for unequal 

sample library sizes. The three samples for each site and sampling method were pooled before 

executing statistical analyses. We performed a Mantel test using Spearman rank correlation to 

test for spatial autocorrelation among sampling sites. The Morisita-Horn dissimilarity index was 

employed for beta diversity calculations because it has been shown to perform well when there is 

variability in sampling depth and when under-sampling is suspected (Huse et al. 2013). We used 

constrained analysis of principal coordinates (CAP), which requires the cloud of sample points 

to be plotted along orthogonal vector(s) that directly represent the explanatory variable(s). 

This method can uncover significant environmental effects on compositional differences even 

in “noisy” data (Erb-Downward et al. 2012). The adonis function from the vegan package, 

which performs Permutational Multivariate Analysis of Variance (PERMANOVA), was used to 

examine the statistical significance of compositional differences between parks and parking lots. 

Testing for differentially abundant taxa was achieved using the DESeq function in the DESeq2 

package, which adjusts for testing multiple hypotheses by applying the Benjamini–Hochberg 

method (Benjamini & Hochberg 1995). This function automatically filters out data that is 

unlikely to have statistical significance and does so independently of the factors being studied 

(Love et al. 2014). All differentially abundant taxa that distinguish parks from parking lots were 
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further identified in the NCBI 16S isolate database (http://blast.ncbi.nlm.nih.gov/Blast.cgi) to 

obtain putative species assignments.

3. Results

We collected air samples from five pairs of parks and parking lots to assess whether nearby 

vegetation influences airborne bacterial composition. After quality control and initial filtering 

there were 5,762,173 total reads, representing 16,633 operational taxonomic units (OTUs) 

from 40 unique bacterial phyla, based on 97 percent sequence similarity. The number of 

sequences recovered from each site ranged from 379,687 - 721,208. One OTU (Sphingomonas 

sp.) dominated the samples, comprising almost a quarter of all observed sequences. 

Hymenobacter, Pedobacter, Agrobacterium, and Rhodococcus spp. were also in the top ten most 

abundant OTUs and are common soil-associated bacteria (Oren 2006; Steyn et al. 1998; 

Matthysse 2006; Bell et al. 1998). About 83% of taxa were found in both parks and parking lots, 

and there was no significant difference in alpha-diversity as measured by the Shannon-Weaver 

index (Figure 24 in Appendix A; lot mean = 4.76, park mean = 4.90, t = -1.66, df = 15.1, p = 

0.12). 

3.1 Passive and active sampling methods give comparable results

At each site we collected three active and three passive samples to verify whether the passive 

settling dish method gives satisfactory results. Active samples had slightly higher alpha diversity 

than passive samples (active mean = 4.94, passive mean = 4.72, p = 0.0086), but composition 

was quite similar (Figure 25 in Appendix A). To further evaluate the correspondence of active 

versus passive collection, we used PERMANOVA to test the null hypothesis that sampling 

method does influence composition for the top 50 OTUs, representing over 68% of sequences. 

Results of this test showed that sampling method explains nearly zero percent of observed 

variation (R2 = 0.001, p = 0.89). Since the two methods were found to be comparable, all 

further analyses were performed on passive samples only. We chose to analyze the passive 
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samples instead of active samples because: a) three of the active samples failed; b) passive 

samples had higher biomass; and c) passive sampling is more cost-effective and easier to deploy 

for future studies.

3.2 Nearby vegetation influences community composition

Airborne bacterial communities from parks and parking lots were significantly different 

(R2 = 0.148, p = 0.032) in our PERMANOVA analysis. When we ran the same analysis using 

vegetation cover within 50 meters of the sampling station instead of the site type, the model 

gave a similar result (R2 = 0.15, p = 0.023). A constrained PCoA shows this result in ordination 

space (Figure 3), where the x-axis is constrained by the 50 meter vegetation cover gradient. No 

Figure 3. Constrained ordination of samples from parks (green triangles) and parking lots 
(purple circles), where the horizontal axis uses proportion of vegetated area within 50 m as a 
constraint.
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other buffer zone radius (100, 200, 400, or 800 meters) improved the model fit and, in fact, we 

found significant negative linear relationships between buffer radius and both R2 and p-value 

(Figure 4 and Table 5 in Appendix A). The potential model improvement using the 50 meter 

radius vegetation was strongly constrained because all parking lots were close to 0% vegetated 

area and all parks were close to 100% as a result of the sampling design (Table 4 in Appendix A). 

3.3 Key bacterial families differentiate parks from parking lots

Several key bacterial taxa were identified as differentially abundant either in parks or 

parking lots using a generalized linear model based on the negative binomial distribution. 

There were 23 OTUs identified as significantly more abundant in parking lots, seven of which 

were Acetobacteraceae, and 44 OTUs that were significantly more abundant in parks, 15 of 

which were Acidobacteriaceae (Figure 5 and Table 6 in Appendix A; note that some OTUs 

were unable to be matched precisely in the NCBI database and therefore taxa names may 

occur more than once). Altogether, despite accounting for only 0.4% of all OTUs, these 67 

differentially abundant OTUs for both parks and parking lots comprised 13.6% of all the 

sequences recovered from passive sampling. Individual OTUs in this group ranged from 

0.0087% - 1.62% relative abundance, which may be rare in comparison to the most abundant 
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Figure 5. Differentially abundant bacterial OTUs in parks (purples, blues, greens, yellows) and 
parking lots (reds, oranges), labeled by closest match in NCBI database. Left panel indicates 
the degree to which each OTU is differentially abundant, right panel shows the actual relative 
abundance of each OTU. 
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OTUs but are not inconsequential, especially given the fact that microbial communities tend 

to be typified by having a handful of highly abundant taxa and an extremely long ‘tail’ of low-

abundance taxa (Shade et al. 2014). Parking lots tended to have similar compositions of these 

differentially abundant OTUs, whereas parks were more variable (Figure 6). It should be noted 

that the OTUs shown in Figure 5 are only those that were found to be differentially abundant 

and do not include the entire community. The fact that the samples were paired spatially did not 

significantly influence community composition (Spearman correlation = 0.013, significance = 

0.497), suggesting that the distance to which the influence of any site-scale characteristics might 

extend is less than ~400 meters (the average distance separating park-parking lot pairs).

Figure 6. Composition of differentially abundant taxa for each site, colored same as Figure 5.
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4. Discussion

We investigated the heterogeneity of airborne bacterial communities within an urban area 

and the role of vegetation as a potential driver of variation. We found that the most prevalent 

taxa were highly abundant at all sites and were primarily comprised of plant- and soil-associated 

bacteria. The consistent abundance of this large suite of common taxa may have been influenced 

by our decision to sample only in open areas with short herbaceous vegetation but no shrub 

layer or overhanging tree canopy to influence air movement. In these open areas, it is likely that 

the larger air mass moving through the region has a stronger influence on the composition of 

urban airborne microbial communities than individual site characteristics. For example, the 

most abundant taxon observed in this study, Sphingomonas sp., comprised almost a quarter of all 

sequences collected. Sphingomonads are commonly present in soil and on plant surfaces; they 

are considered ubiquitous across numerous species of higher plants (Kim et al. 1998; Innerebner 

et al. 2011). A BLAST search identified this OTU as either S. faeni or S. aurantiaca, both of 

which had been previously observed from hay dust (Busse et al. 2003). Our sampling period 

coincided with prime grass harvesting season in the region and Linn County, colloquially 

known as “the grass seed capital of the world,” is immediately north of Eugene. As the dominant 

wind direction is from the north during the time of year in which we sampled it is perhaps likely 

that airborne microbial community composition at our sampling locations was influenced by 

upwind regional agricultural activities. In fact, earlier researchers estimated that grass harvesting 

in Linn County may contribute up to 40% of the total bacterial load in the Willamette Valley 

airshed (Lighthart 1984). 

At the same time, a relatively small component (13.6%) of the microbial communities 

clearly distinguished parks from parking lots. Related to this, each park tended to have its 

own unique bacterial signature of indicator taxa, whereas parking lots were more similar to 

each other (Figure 6). These observations may be explained by the relatively homogeneous 

environmental conditions of parking lots—they are dry, covered in asphalt, exposed to high 

amounts of solar radiation, and receive continual inputs of heavy metals and fossil fuel products 
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from automobiles. Thus, we might expect that parking lot microbial signatures are determined 

by the ability of certain taxa to persist in extreme conditions. Parks, on the other hand, vary 

widely in the plant species present, vegetation structure and layering, human management 

regimes, and landscape design. We conjecture that park microbial signatures may be governed 

by some, or all, of these factors, which would explain their wide variation. Of the five parks that 

were chosen for this exploration, one was mown and irrigated, two were undergoing prairie 

restoration, and one was sheltered from wind by a small urban forest. In particular, it seems 

likely that vegetation serves both as a source, emitting microbes, as well as a modifier of airflow, 

which could tend to retain locally emitted microbes in some situations. 

As yet, we know little about the spatial scale of such influences, but it is notable that 

the proportion of vegetated area in the smallest buffer radius (50 meters) provided the best 

separation of parks and parking lots, and successively larger buffer sizes produced poorer 

results. In terms of urban design, the distinction between the relatively strong association of 

vegetation and bacterial communities at smaller buffer sizes (50, 100, and 200 meters) and 

the weak relationship at larger buffer sizes (400 and 800 meters) suggests that the “park-

like microbiome” extends less than 400 meters. However, we also noted that, in contrast 

to the distinct separation of parks and parking lots shown in Figure 3, an unconstrained 

PCoA ordination showed two samples collected from parks (park.MAU and park.WEW) 

clustering near the parking lot samples (Figure 26 in Appendix A). These two parks had less 

vegetation in the larger surrounding area (Table 4 in Appendix A, 800 meter buffer) than 

any other site sampled, including the parking lots. Stated differently, in this study parking lot 

communities always resembled those from other parking lots, regardless of vegetation in the 

larger area; park communities were generally distinct from parking lots, but those that had 

less vegetation in their larger surrounding area were more similar to parking lots than those 

that had plentiful vegetation within the 800 meter buffer zone. Additionally, the differentially 

abundant bacterial signatures in Figure 6 show that both park.MAU and park.WEW have a 

relatively high proportion of one OTU (closest NCBI match: Acidisoma sibiricum, Accession #: 
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NR_042706.1, 95% match) that is also prevalent in all parking lots. Possibly this indicates built 

and paved environments as a distinct source of that OTU (and other OTUs identified by reds 

and browns in Figure 6).

Currently the major evidence that suggests a potential linkage between human health and 

vegetation-associated microbes comes from studies at coarse spatial scales where differences in 

vegetation are confounded with differences in land use. For example, Hanski et al. (2012) found 

a relationship among diversity of skin Gammaproteobacteria, prevalence of atopic sensitization, 

and land use (forest, agriculture, built, water bodies, and wetlands), where the spatial scale of 

measure was a 3 kilometers radius around the home. A larger follow-up study also documented 

associations among the relative abundances of several classes of Proteobacteria on the skin 

of healthy (versus atopic) individuals and land use within 2–5 kilometers around the home 

(Ruokolainen et al. 2015). It remains to be seen whether such effects are related to specific 

vegetation factors, such as biomass, structural diversity, or species composition, and whether 

fine-scale differences such as those found in cities would play a role. Our results suggest that 

if plant-associated microorganisms are shown to be beneficial for human health, planners and 

designers might consider provisioning urban residents with greenspace within 400 meters of 

their homes. 

5. Conclusion

Although we know that urban greenspace has significant health benefits, we don’t know 

the exact mechanism(s) through which those benefits arise. By 2050, the world population is 

expected to reach 9.3 billion and all population growth in the next 35 years is projected to occur 

in urban areas, bringing the percentage of people living in cities to about 66% (U.N. 2012). At 

the same time, cities are being built more densely so as to reduce their impact on surrounding 

landscapes by creating a smaller spatial footprint. This may have the side effect of reducing 

large green open spaces as well as the amount of vegetation in residential neighborhoods. We 

cannot predict how further loss of urban vegetation would affect human health, nor do we 
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know enough about the mechanisms through which vegetation influences human health and 

well-being to design urban greenspace to maximize health benefits. Here, we provide the first 

evidence of fine-scale variability in outdoor urban microbiomes due to difference in vegetation. 

Future research may be able to elucidate how urban vegetation composition and structure, 

and open space distribution, influence urban airborne microbial communities, and in turn the 

degree to which this may influence human health. The current study thus provides a foundation 

for understanding how urban greenspace design impacts microbial communities, which could 

in time provide landscape architects and other urban design professionals the ability to better 

design cities and neighborhoods to foster human health.

Bridge to Chapter III

In the foregoing chapter, I established that there is a significant compositional difference 

in airborne bacterial communities from urban parks and parking lots. I also demonstrated that 

passive collection of airborne microbes via settling dishes provided similar results to active 

collection via vacuum pumps and was a defensible method to use in the large-scale collection 

campaign that follows in Chapter III. In the next chapter I will report the results of our large-

scale study, which investigates the dynamics of airborne bacterial communities across space and 

time. This work endeavors to answer practical questions that will help designers and planners 

build healthier cities. To accomplish this, I will assess whether landscape features with which 

designers and planners work (e.g., land cover type, vegetation amount and composition, 

management activities) influence airborne bacterial diversity and/or composition. Finally, I will 

attempt to untangle factors that drive airborne bacterial community assembly across different 

scales of space and time.
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CHAPTER III

SPATIOTEMPORAL CONTROLS ON THE URBAN AEROBIOME

This paper was prepared for submission to Environment International. I conceived the 

study, collected the samples, processed the samples, performed bioinformatics, analyzed the 

data, and wrote the paper. Assistance in experimental design, sampling, processing samples, data 

analysis, and writing the manuscript was provided by my co-authors: Clarisse M. Betancourt-

Román, Jessica L. Green and Bart R. Johnson.

1. Introduction

The ethical code of landscape architecture requires practitioners to protect public 

health, safety, and welfare. In a written address on the Leadership and Governance page of 

the American Society of Landscape Architects website (2013), Richard Joseph Jackson, the 

Director of the National Center for Environmental Health says, 

The challenge is that we have limited knowledge of how to design urban environments to 

support optimal health. There is extensive evidence that vegetation is a key factor in creating 

healthy neighborhoods (Kuo 2015; Frumkin et al. 2017), but causal mechanisms and spatial 

effect sizes to support specific design recommendations remain elusive. The aerobiome (the 

consortium of airborne microbiota in a given environment) may represent a new dimension of 

environmental quality to be considered by planners and designers in much the same way as air 

pollution. A key difference, however, is that microbial exposures may have positive, as well as 

negative, health effects (Rook 2013).

Humankind evolved in the presence of airborne microbes associated with vegetation, soil, 

“Despite the United States’ expenditure of more than one of every seven 
dollars on medical care, the prevalence of chronic diseases, and the costs 
for their care in an aging population, will continue to increase. Of the 
strategies to limit these burdens, none will be as cost effective and improve 
the quality of life more than giving much more attention to how we plan 
and design our living environments.” 
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water, and wildlife. Our immune systems are not only adapted to coexist with these microbes 

but may even require those interactions to function properly (Sorci et al. 2016; Rook et al. 

2017). Indeed, it has been suggested that microbes may represent a direct pathway linking 

nature with health, since a lack of adequate childhood immune priming through exposure 

to commensal and environmental microbes has been implicated in a variety of autoimmune 

disorders later in life, including allergies, asthma, and mental disorders (Haahtela et al. 

2013; Rook 2013; Raison and Miller 2013). For instance, studies have found that children 

growing up in biodiverse rural environments, like farms and forests, tend to have higher 

exposure to extremely diverse and novel microbial communities, compared to children in 

urban environments (Ege et al. 2011; Hanski et al. 2012; Ruokolainen et al. 2014). These 

rural children are also less likely to have allergies and asthma. In particular, greater diversity 

of genera within the class Gammaproteobacteria has been found on the skin of healthy 

individuals compared with atopic individuals, and abundance of Acinetobacter spp. (class 

Gammaproteobacteria) has been associated with elevated expression of anti-inflammatory 

compounds in healthy individuals (Hanski et al. 2012). 

Human interactions with the aerobiome can occur through several different pathways—

direct skin contact, inhalation, and ingestion of inhaled microbes after they are cleared from 

airways by mucociliary action. We now know that human skin acts not only as a barrier to 

environmental threats, but can actively respond to different external conditions, including 

exposure to microbes, by producing hormones and other biological compounds that 

influence whole-body state (Prescott et al. 2017). Similarly, cells lining airway passages and 

gastrointestinal surfaces are capable of signaling both the immune system and the neurological 

system following exposure to environmental microbes (Bene et al. 2017; Naik et al. 2012; 

Mulder et al. 2009). Previous work has noted that commensal microbial colonization appears 

to differ across environmental gradients, such as urban–rural (Ying et al. 2015; Lehtimaki et 

al. 2017; Camarinha-Silva et al. 2014; Kraemer et al. 2018). In sum, it appears possible that 

elements of the external environment, such as vegetation and soil, can affect human health even 
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when no physical contact occurs, because we constantly bathe in, inhale, and ingest ambient 

airborne microbes that are associated with those environmental elements.

A number of factors have been associated with variation in the aerobiome across space 

and time, including land use type, meteorological conditions, and season. Vegetation and soil, 

for instance, are important sources of microbes to nearby air (Bowers et al. 2013; Lindemann 

and Upper 1985; Bowers et al. 2011), and different plant species host distinct microbial 

communities (Laforest-Lapointe et al. 2016). Differences in vegetation composition and soil 

conditions may thus be partially responsible for observed variation in airborne microbial 

communities across regional-scale land use types, like forest, urban, and agricultural (Bowers et 

al. 2010; Bowers et al. 2013). At a finer spatial scale, vegetation has been shown to contribute 

a significant fraction of bacteria to the air within 50 meters downwind (Lymperopoulou et al. 

2016). Mhuireach et al. (2016) suggested a link between these two spatial scales in a study of 

urban parks and parking lots: the composition of abundant airborne bacterial taxa was largely 

similar across the two land cover types, potentially indicating an influence of bacteria carried 

by the regional air mass, while differential abundances of some rare and moderately rare taxa 

suggested an effect of site-scale features, like vegetation. 

These initial studies investigated only a limited number of sites and land cover types 

at single points in time. Whether certain land cover types consistently harbor distinctive 

microbial communities that maintain a detectable signal over time remains poorly understood. 

Furthermore, although differences in microbial communities have been observed across large-

scale land uses like agricultural versus urban, few studies have examined whether there is 

substantial variation in composition across typical urban land cover types or vegetation cover 

at the scale of the city block or neighborhood. Critically, we also lack definitive mechanistic 

evidence linking variation in microbial composition to human health. Resolving these 

uncertainties is vital if urban designers and planners are to have sound evidence on which to 

base decision-making.

Importantly, the most appropriate vegetation metric(s) for capturing site-scale features 



26

that exert influence on airborne microbial communities are unknown. A key challenge is that 

the spatiotemporal dynamics of these communities are complex due to the constant interplay 

between microbes transmitted by large regional and continental air masses and those emitted 

from local sources (Seifried et al. 2015; Innocente et al. 2017). We conjecture that microbial 

composition of the regional air mass is primarily influenced by large-scale periodic events, 

human activities, biotic processes, land use/land cover types, and physical geography, as well 

as macroclimatic influences such as prevailing winds and tropospheric transport from distant 

continents (see Womack et al. 2010; Lighthart 1984; Mhuireach 2016; Smith et al. 2012). At 

individual sampling sites, however, airborne microbial composition is likely driven by fine-scale 

land cover, microclimate, management, biotic processes, and physical geography features with 

greater retention or dilution of locally-sourced microbes depending on the degree of mixing 

with the regional air mass. The latter is likely affected by both local topography and nearby 

vegetation structure (Wuyts et al. 2008), suggesting a second role for site-scale vegetation in 

shaping airborne microbial communities. Disentangling these interactions at different scales of 

time and space is critical to understanding factors that control the assembly of, and variation 

within, the urban aerobiome, and to furnishing concrete evidence about which landscape 

features are important and how to best harness them for design interventions.

A key step to discerning whether urban design has the capacity to meaningfully influence 

airborne microbial communities is to ascertain the degree to which the site-scale microbiome 

is structured based on factors occurring across a gradient of relevant spatial and temporal scales 

from local to regional influences and in relation to daily to seasonal change. The challenge of 

assessing the processes that structure airborne microbial communities is that they are similar 

to those structuring oceanic systems where localized phenomena are dramatically influenced 

by large scale mixing and movement in a soluble media. With this in mind, we organized our 

sampling design to allow us to begin to infer site-scale versus landscape-scale influences in 

relation to change over time. Over the course of the study, our results and analysis led us to 

formulate a more specific framework to organize and present our current thinking, as well as 
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proposals for future investigation (Figure 7). 

Providing a foundation for evidence-based design of urban vegetation is critical for 

contemporary urban planning, since rapid population growth and increasing density have 

decreased greenspace in many cities (Chen et al. 2017; Gan et al. 2014; Dallimer et al. 2011). 

Additionally, vegetation is often unequally distributed within urban areas and disproportionate 

vegetation loss often occurs in vulnerable and disadvantaged neighborhoods (Casey et al. 2017). 

If vegetation surrounding residents’ homes does indeed alter airborne microbial communities 

in ways that could affect health, then promoting equitable and sufficient greenspace in cities is a 

public health necessity rather than a luxury. A more complete understanding of the relationships 

Figure 7. Conceptual model of potential controls on microbial community assemblage across 
spatiotemporal scales. The scale of this study is indicated by the burgundy star, although it 
should be recognized that factors across all scales bear on our results.
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among vegetation, the aerobiome, and human health, will help urban designers, planners, 

and policymakers effectively target investments in public infrastructure projects. To optimize 

investments, we must also supply practical design guidelines, such as how much and what type 

of vegetation and at what distance from residents’ homes provides the greatest benefits.

In this study, we investigated the influences of urban vegetation on airborne bacterial 

communities across space and time. Our primary objectives were to understand: 1) whether 

common urban land cover types representing extremes of vegetation cover and structural 

diversity (i.e., forest, grassland, paved) exhibited differences in airborne bacterial richness 

or composition over time; 2) which metric(s) best captured environmental features that 

influenced bacterial community composition over time; and 3) which bacterial taxa 

contributed to differences in community composition across land cover types. We focused 

especially on landscape features that are human-controlled (e.g., land use, urban vegetation 

types, management activities), since these may represent prime lever points for influencing the 

aerobiome. As our knowledge of urban aerobiome structure and assembly grows, landscape 

architects and urban designers may be able to engineer greenspaces that help strengthen human 

immune systems, promote mental well-being, and protect against the chronic maladies that 

plague modern cities.

2. Methods

2.1. Overview and site descriptions

The study took place in the Eugene-Springfield metropolitan area of Oregon, USA, during 

July-September, 2015. Eugene-Springfield is located in the Willamette Valley, a region known 

for its agriculture, especially grass seed production. Weather during these months is typically 

warm and dry, with winds blowing primarily from the north. A total of 36 urban sites were 

selected, representing three land cover types — forest, grassland (e.g. urban turf or meadow) 

and paved. We attempted to select sampling sites such that vegetated sites (forest and grassland) 
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had greater than 75% vegetation cover within a 50-meter radius and non-vegetated sites (paved) 

had less than 25%. Within the vegetated sites, forest and grassland differed by both species 

composition and vertical structural diversity (Figure 8). Furthermore, we tried to stratify the 

sites across a broad range of vegetation cover within the greater surrounding context (i.e., within 

800 meters), so that not all vegetated sites sat within large areas of high vegetation cover and not 

all paved sites sat within large areas of low vegetation cover.

Site locations were chosen to disperse samples from each land cover type across the 

study area (Figure 9). The majority of forest and grass sites were publicly owned parks and 

natural areas, while the paved sites were all privately owned business parking lots. Samples 

were collected in 2015 on July 14 (pilot), August 4, 14, 18 and 25, and September 1, 15, 

22 and 29. The 36 sites were split into two groups of 18 to allow for set-up and take-down 

of all sampling stations within a specified time window while achieving adequate spatial 

representation. Samples were collected from each group every other sampling day during August 

and September, for a total of four samples per site, not including the July samples (Table 7 in 

Appendix C). 

PAVED GRASS FOREST

Treatments

> 75% Vegetation

High Structural DiversityLow Structural Diversity

< 25% Vegetation

Low Structural Diversity

Figure 8. Sample selection criteria for the three land cover types.
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2.2. Vegetation analysis

Vegetation analyses were performed using ArcGIS 10.3 (ESRI 2011) and FUSION 

(McGaughey 2016). Vegetation cover within 50, 100, 200, 400, and 800-meter circular 

buffer zones (i.e., radii from sampling point) around each site was measured by summing 

the proportions of trees and shrubs, green grass, and senesced grass within each buffer zone 

(Figure 10a). To do this, we differentiated land cover into six categories (trees and shrubs, green 

grass, senesced grass, dirt, and light-colored and dark-colored built surfaces) using supervised 

classification with maximum likelihood estimation of aerial 4-band orthoimagery (NAIP 2011). 

Water was lumped into the dark-colored built surface category. 

Vegetation structural diversity within 25-meter buffers for forest and grassland sites only 

was measured using LiDAR (Light Detection And Ranging) point clouds for the study area 

(Figure 10b) obtained from the Oregon Department of Geology and Mineral Industries 

(DOGAMI). We extracted vertical cylinders from the point cloud and partitioned all the points 

into 1.5-meter height bins. The number of points within each height bin was used to calculate a 
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Shannon-Weaver diversity index for each site.

2.3. Meteorological conditions

At each sampling location we measured air temperature at one-minute intervals for the 

entire sampling period using iButton dataloggers (Fondriest Environmental, #DS1921G) two 

meters above the ground. Prior to the sampling campaign iButtons were evaluated against 

a HOBO Datalogger (Onset, #U12) to ensure adequate accuracy. Results showed that all 

iButton measurements were within ±1 degree Celsius of the HOBO datalogger. Wind speed 

and direction data for the study area as a whole were obtained from the Eugene airport weather 

station after the sampling campaign ended, and the average, minimum, and maximum speeds, as 

well as dominant direction, were calculated for each sampling period.

2.4. Bacterial collection and analysis

We collected airborne bacteria at selected sites using passive settling dishes (sterile petris; 

Fisher Scientific, 100x15mm) for a 24-hour period on each sampling day. Passive settling 

dishes collect a similar sample of airborne bacteria to active methods, such as vacuum-powered 
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Figure 10. a) False color vegetation map (site AMA) with buffer zones; and b) LiDAR point 
cloud (site ABF).
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“button” samplers (Mhuireach et al. 2016; Leppanen et al. 2017). At each site, three settling 

dishes and their lids were installed two meters above the ground on portable sampling towers. 

Set-up occurred between the hours of 06:00 and 11:00 and take-down was during the same 

time period the following day. After collection, all samples were immediately placed on ice and 

transported to the lab for storage in a -80º F freezer. 

The three petri dishes and lids from each sample site were individually swabbed with 

nylon-flocked swabs (COPAN FLOQSwabs, 502CS01) and then pooled before extraction. 

Samples were processed for sequencing following protocols used in Mhuireach et al. (2016). 

Manufacturer’s instructions were used to extract DNA using MoBio PowerWater kits. 

Polymerase chain reaction (PCR) amplification was performed in triplicate using primers 

targeting the V4 region of the bacterial 16S rRNA gene (forward primer: 515; reverse primer: 

806). PCR triplicates were pooled and cleaned, then sequenced at the University of Oregon on 

the Illumina NextSeq platform, (PE-150). All bioinformatic processing was performed in R, 

using the dada2 package (Callahan 2016). The dada2 workflow automates filtering, trimming, 

dereplication, inference of sequence variants, merging of paired-end reads, sequence table 

construction, chimera removal, and taxonomy assignment. After reviewing read quality plots, 

we truncated forward reads at 140bp and reverse reads at 135bp, which still allowed a minimum 

overlap of 20. Reads were also truncated when quality score dropped to 2 or lower. Reads with 

maximum expected error greater than 2 (calculated by EE = sum(10^(-Q/10))) were discarded. 

The dada2 package outputs amplicon sequence variants (SV), which represent individual taxa 

that are resolved down to single-nucleotide differences (Callahan et al. 2016). The Ribosomal 

Database Project (RDP) Classifier was used to assign taxonomy. SVs of interest were identified 

to putative species level by querying the National Center for Biotechnology Information 

(NCBI) Basic Local Alignment Search Tool (BLAST) with exact rRNA sequences when the 

RDP-assigned taxonomy was in question. Six samples (GRA-8.04, MIC-8.04, SFC-8.18, MAU-

9.15, WEF-9.22, TEP-9.29), had fewer than our threshold of 10,000 sequence reads and were 

removed from downstream analyses, as were all the positive and negative controls. 
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Laboratory and reagent contaminations are well-documented problems that can plague low-

biomass microbiome studies (Salter et al. 2014; Glassing et al. 2016). During sample processing 

prior to sequencing we attempted to reduce the impact of potential laboratory and reagent 

contaminants through the following protocols:

•	 Negative controls were included for all steps (collection, extraction, PCR);

•	 Positive controls were included for PCR;

•	 Sample extractions and PCR steps were all randomized so that different reagent kits 

would not be confounded with sampling date or other variables of interest; and

•	 All samples were placed on the same sequencing run.

In our post-sequencing bioinformatics procedure, potential contaminants were identified by 

listing all taxa observed in any of the negative controls (sterile petri dishes, extraction reagents, 

PCR reagents). Potentially consequential contaminants were determined by plotting the relative 

abundances of all taxa found in controls against their relative abundance in experiment samples 

(Figure 27, Appendix C). We found three taxa, identified as belonging to the genera Vibrio, 

Methylobacterium, and Acinetobacter, that were above our arbitrary 0.05 threshold for relative 

abundance in controls (all three were well under 0.05 relative abundance in collected samples) 

and removed them from downstream analyses.

2.5. Statistical analyses

We used R (version 3.5.0) for all statistical analyses, specifically the following packages: 

DESeq2, ggplot2, phyloseq, and vegan. All R analysis code is shown in Appendix D. Single- 

and double-tons were included for species richness calculations and removed prior to other 

analyses. We performed rarefaction analysis to compute species richness since our sample sizes 

were unequal, which can lead to inaccurate diversity index comparisons (Gihring et al. 2011). 

To accomplish this, we used the rarefy function in the vegan package, which we set to randomly 

subsample from all samples at the minimum sample size of 26,180 to estimate expected numbers 

of species. We then tested for significant differences in expected numbers of species using the 
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Kruskal-Wallis test, followed by pairwise Wilcoxon Rank Sum Test with Bonferroni correction 

for multiple testing. 

For all beta diversity visualizations and analyses, we used the variance stabilizing 

transformation function in DESeq2, which adjusts for variation in dispersion due to differing 

sample sizes (Love et al. 2014), and the Morisita-Horn dissimilarity index. Overall temporal 

patterns in beta diversity were visualized using principal coordinates analysis (PCoA) 

ordination. We used direct gradient analysis in the form of a constrained PCoA to assess the 

amount of compositional variation attributable to land cover type. This is a useful technique for 

identifying real patterns in noisy data sets, since the ordination axes are required to be linearly 

related to the variable(s) of interest (Erb-Downward et al. 2012). To calculate statistically 

significant associations between bacterial composition and environmental variables of interest 

we used permutational multivariate analysis of variance (PERMANOVA; Anderson 2017), 

as implemented in the adonis function of the vegan package (Oksanen et al. 2018), where 

values were obtained using type III sums of squares with 9999 permutations of residuals under 

a reduced model. The PERMANOVA was performed first to test for the effect of land cover 

type while controlling for time (i.e., sampling date), followed by a post-hoc pairwise test 

also based on the adonis function (Martinez Arbizu 2017) to determine which land cover 

comparisons contributed most to observed variation. Site location, other vegetation metrics, 

and meteorological factors, were tested individually, since they were confounded in various 

ways. We performed PERMANOVA tests for land cover separately for each sampling date to 

evaluate effects that may have been obscured by the effect of time. Separately by date, we also 

executed a Mantel test based on Spearman’s rank correlation to assess whether there was an 

effect of spatial correlation (i.e., samples close together in space being similar simply due to the 

fact of being close). Finally, generalized linear models (GLMs) based on the negative binomial 

distribution were executed using DESeq2 to determine which bacterial classes, families, and 

genera contributed to differences in community composition across land cover types. To 

perform this test, we split up the dataset into pairwise groups of forest versus paved, grass versus 
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forest, and grass versus paved sites. All statistical analyses used a significance level of p < 0.05 and 

were adjusted for multiple testing using Bonferroni correction. 

3. Results

3.1. Vegetation analysis

Average vegetation cover proportion within 50 meters of each sampling site was 0.11 for 

paved sites, 0.90 for grass sites, 0.97 for forest sites (all vegetation analysis outputs shown in 

Table 8, Appendix C). Two of the forest sites were located within 50 meters of water bodies and 

thus have lower values for proportion of vegetation cover; one of the grass sites was later found 

to be artificial turf, which resulted in vegetation values similar to those of paved sites; and some 

of the paved sites were planted with individual landscaping planters, increasing their values to 

as high as 0.34. Proportion of vegetation cover within the 800-meter buffer ranged from 0.21 

to 0.85, where the averages were 0.48 for paved sites, 0.53 for grass sites, and 0.60 for forest 

sites. Shannon-Weaver index values for structural diversity of forest sites ranged from 2.33–3.35 

and values for grass sites ranged from 0.22–1.41, although two forest sites were outside the 

boundary of our LiDAR data and could not be assessed.

3.2. Meteorological conditions

Daily average temperatures across sampling dates ranged from 13.1–23.7º C (Table 9 

in Appendix C). Paved sites tended to have the highest average temperatures and greatest 

fluctuation between the daily minimum and maximum, while forested sites tended to have the 

lowest temperatures and least fluctuation. Dates earlier in the season were generally warmer 

than later sampling dates; September 15 was the coolest of all dates. Average wind speeds for 

the study area ranged from 2.1 m/s on August 25 to 5.0 m/s on September 22 (Table 10 in 

Appendix C). The prevailing wind direction for most dates was from the north, except on 

August 14, September 1, and September 29, when it blew primarily from the south. There was 
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no precipitation recorded during sampling, however, it did rain heavily on the two days prior to 

the September 1 sampling date.

3.3. Bacterial community diversity and composition

After quality filtering there were 12,830,718 total sequence reads, including singletons. 

Single- and doubletons comprised 1,385 reads, which were removed for all analyses except 

calculating species richness. After removing single- and doubletons, the number of reads per 

sample ranged from 26,180–215,283. The total number of sequence variants observed was 

34,909, comprising 30 different phyla. Across the entire study, the most abundant phyla were 

Proteobacteria (46%), Actinobacteria (26%), Firmicutes (10%), Bacteroidetes (9%), and 

Planctomycetes (3%). Within the Proteobacteria, the Alphaproteobacteria class comprised 29%, 

Gammaproteobacteria 9%, Betaproteobacteria 7%, and Deltaproteobacteria 2%. The species 

richness computed by rarefaction analysis (subsampled at 26,180 reads) ranged from 448–2,106 

expected SVs and was significantly associated with sampling date (F = 14.6, p = 4.3e-15) and 

site location (F = 1.9, p = 0.0071), but not with land cover (F = 1.8, p = 0.17). 

Investigating beta diversity among samples, direct gradient analysis indicated that land cover 

type explained a small but significant portion of variation among bacterial communities when 

assessed across all days (Figure 11). The greatest variability occurs along the first axis (CAP1), 

which accounted for the large majority of the variance explained. This result was substantiated 

by a PERMANOVA testing for the effect of land cover type while controlling for sampling date, 

which showed that land cover type was a significant but weak predictor of similarity (R2 = 0.06, 

p < 0.001) while sampling date had a stronger impact (R2 = 0.24, p < 0.001). Post-hoc pairwise 

testing of land cover types indicated that the largest difference was between forest and paved 

sites (R2 = 0.06, p < 0.001), followed by forest and grass sites (R2 = 0.04, p < 0.001), and the 

smallest difference was between grass and paved sites (R2 = 0.03, p < 0.001).

We visualized the effect of sampling date in a principal coordinates analysis (PCoA) plot 

of Morisita-Horn dissimilarity distance on the variance-stabilizing transformed counts (Figure 
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12), where samples represented by points that are closer together have more similar composition 

than points further away. In particular, samples collected in July and early August form tight and 

distinct clusters, while those collected later are more dispersed. Within each cluster, paved sites 

tend to form a discrete subgroup from the vegetated sites, especially for the September sampling 

dates, implying that paved sites were more compositionally similar to each other than vegetated 

sites, particularly during periods when urban-scale variability was high.

Closer examination of bacterial compositional patterns revealed that the effect of sampling 

date was largely due to changing relative abundances of the dominant bacterial taxa over the 

course of the sampling campaign (Figure 13). On the first two sampling dates, for example, the 

communities were dominated by the family Sphingomonadaceae, primarily an SV identified 

as Sphingomonas faeni, which had equally high relative abundance across all sites. Later in 

the campaign, Acetobacteraceae, Enterobacteriaceae, and Oxalobacteraceae comprised larger 

relative components of the community, but tended to be unequally distributed across sites. 

For example, on one sampling date (September 1) we observed a large increase in the relative 

Figure 11. Constrained PCoA ordination plot for all samples, using Morisita-Horn dissimilarity 
distance on variance-stabilizing transformed counts, colored by land cover type.
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abundance of Acidiphilium multivorum (family Acetobacteraceae), at two paved sites (SAF 

and BIM) where its relative abundance rose to over 50% of all sequences recovered from 

those sites (Figure 28 in Appendix C). Another notable feature was the high abundance of 

Enterobacteriaceae, especially Erwinia billingiae, which was found at highly maintained grassy 

sites (e.g., irrigated and mowed—cemetery CEM, park MAU, golf course LAU) across several 

dates.

When we performed individual PERMANOVA tests for the remaining variables of interest, 

site location was the dominant factor explaining compositional variation, and, in fact, was a 

stronger predictor than sampling date, while other vegetation and meteorological variables had 

significant but marginal associations (Table 1). Each of these factors was tested separately, since 

they were confounded with other factors (e.g., site location with average temperature). We also 

Figure 12. PCoA ordination plot for all samples, using Morisita-Horn dissimilarity distance on 
variance-stabilizing transformed counts, colored by sampling date. Ellipses represent 1 standard 
deviation from the mean.
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included sampling date and land cover type in these individual analyses, and found that the 

results were virtually identical to testing them in multivariate PERMANOVA.

We next analyzed samples separately by sampling date to see whether the strong effects 

of sampling date and site location were obscuring other important relationships. The results 

of this PERMANOVA test showed that the explanatory power of land cover type increased 
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Table 1. Results from individual PERMANOVA analyses on selected environmental factors, 
using Morisita-Horn dissimilarity distance on variance-stabilizing transformed counts. P-values 
with an asterisk remain significant after Bonferroni correction.

Factor R2 p
Site location 0.33 <0.001*
Sampling date 0.24 <0.001*
Land cover type 0.06 <0.001*
Dominant wind direction (entire study area) 0.05 <0.001*
Structural diversity (only vegetated sites) 0.04 <0.001*
Average temperature 0.04 <0.001*
Vegetation cover 50 m 0.03 <0.001*
Vegetation cover 800 m 0.02 <0.001*
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dramatically once the obscuring effects of sampling date and site location were removed; six 

out of the nine dates were highly significant, while the remaining three dates fell just outside 

our chosen level of significance (Table 2 and Figure 29 in Appendix C). We also tested whether 

community similarity was associated with spatial proximity for each sampling date. Despite site 

location being a strong predictor when all samples were analyzed together, the Mantel test for 

spatial correlation showed little to no effect for most sampling dates (Table 2), although two 

dates (August 18 and 25) showed strong and significant effects.

Finally, we examined whether individual taxonomic groups contributed to the observed 

compositional variation across land cover types, using a negative binomial GLM to identify 

differentially abundant taxa. We first tested at the class level and found that the relative 

abundance of 29 out of the 53 bacterial classes varied significantly across forest, grass, and 

paved sites (Figures 14a–b), with 17 of these classes present in very low abundances (<1%). 

Only three classes, all abundant, differed among all three cover types. Nine classes differed for 

paved sites compared to the other two cover types, whereas four differed for grass and two 

Table 2. Results of PERMANOVA analyses on land cover type and Mantel spatial correlation 
test for each sampling date, using Morisita-Horn dissimilarity distance on variance-stabilizing 
transformed counts.

Land cover type (PERMANOVA) Spatial correlation (Mantel)
Date R2 p statistic significance
07.14.2015 0.31 0.008* -0.01 0.49
08.04.2015 0.18 0.053 0.20 0.09
08.14.2015 0.18 0.041 0.09 0.24
08.18.2015 0.18 0.000* 0.39 0.02*
08.25.2015 0.13 0.082 0.25 0.04*
09.01.2015 0.21 0.000* -0.16 0.88
09.15.2015 0.18 0.000* 0.12 0.19
09.22.2015 0.21 0.004* 0.02 0.40
09.29.2015 0.16 0.001* -0.08 0.70
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Figure 14. a) Low-abundance (< 1%) and b) high-abundance (> 1%) bacterial classes that were 
differentially abundant across land cover types, using a negative binomial GLM. Bars show 
mean relative abundance for each land cover type, error bars indicate standard error of the mean. 
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for forest. Nine classes differed between grass and paved sites, and one each for paved-forest 

and forest-grass. Gammaproteobacteria, a high-abundance class, was enriched at vegetated 

sites (both grass and forest), while Deinococci, Thermomicrobia, and Anaerolineae, all low-

abundance taxa, were enriched at paved sites. We further tested whether generic diversity of the 

class Gammaproteobacteria was associated with land cover type because it has been suggested 

as a potential pathway for health benefits of greenspace (Hanski et al. 2012; Ruokolainen et al. 

2014). The results showed that forest sites had higher generic diversity of Gammaproteobacteria 

than grass (ANOVA; t = -2.29, p = 0.024) or paved sites (ANOVA; t = -2.99, p = 0.003).

Because comparisons at higher taxonomic levels can mask important distinctions at lower 

taxonomic levels, we performed the same test for differential abundance at the family and 

genus levels. We chose these levels in part to facilitate comparison with results from other 

studies in the literature and because in many cases taxa were not resolved to the species level, 

since individual SVs frequently could not be confidently matched to single species in the 

NCBI databases. At these levels of taxonomic resolution, we noted that within the family 

Acetobacteraceae (class Alphaproteobacteria) one genus (Granulibacter) was highly indicative 

of forests, while other genera in the same family (Gluconobacter, Rubritepida, Acidicaldus) were 

indicative of paved areas (Figure 15; family level results reported in Figures 30–32, Appendix 

C). Likewise, several genera within the family Enterobacteriaceae (class Gammaproteobacteria) 

had contrasting abundance patterns. For example, when comparing forest with paved sites, 

Arsenophonus and Erwinia were enriched in forest sites and Citrobacter was enriched in paved 

sites, but Citrobacter was enriched in grass sites when compared with either forests or paved 

sites (Figures 15–18). Interestingly, the two top differentially abundant genera in paved sites 

compared with grass sites, Frischella and Gilliamella (Figures 17–18), are both members of 

family Orbaceae and exhibit resistance to the antibiotic oxytetracycline (Engel et al. 2013).



43

Figure 15. Differentially abundant genera in forest vs. paved sites.
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4. Discussion

Urban land cover types exhibit differences in airborne bacterial community structure

We found that, while controlling for time and across all samples, land cover type had a 

significant but subtle association with community similarity, but not with species richness. An 

ordination of bacterial communities among across all days based on land cover type accounted 

for ~6% of the total variation in community composition (Figure 11). While this is a small 

amount of the total variation in communities it is notable in light of the large daily shifts in the 

Figure 16. Differentially abundant genera in forest vs. grass sites.

Halotalea
Granulibacter

Caedibacter
Gryllotalpicola

Parapedobacter
Acidisphaera

Pilimelia
Beijerinckia

Armatimonadetes
Actinomycetospora

Chthonomonas
Luteolibacter

Singulisphaera
Conexibacter

Sphingomonas
Rathayibacter

Gemmatimonas
Sporosarcina

Mycobacterium
Rhodococcus

Flavobacterium
Sphingobium

Curtobacterium
Angustibacter

Bacillus
Clostridium
Williamsia

Leucobacter
Enterococcus

Myxococcus
Shewanella

Streptosporangium
Sphingorhabdus

Citrobacter
Stigmatella

−30 −20 −10 0 10 20 30

G
en

us

GrassForest

Log2FoldChange



45

Figure 17. Differentially abundant genera in grass vs. paved sites. PavedGrass
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Figure 18. Differentially abundant genera in grass vs. paved sites (cont.).
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aerobiome (represented by all sites on a given day in Figure 12), which were not accounted for 

in this ordination. Forests were the most distinctive and the most variable, exhibiting the largest 

dispersion in ordination space, and in particular the greatest variability along Axis 1, which 

accounted for the large majority of the variance explained. The tendency for each forested site to 

be relatively unique may be a function of a forest’s dual roles as microbial source and mediator of 

air movement. As a microbial source, they have large amounts of vegetative surface area, which 

provides a substrate for plant-associated bacteria, and relatively high plant species diversity due 

to the presence of three structural layers (tree layer, shrub layer, ground layer) under low human 

management. In terms of the air movement, their greater height and structural diversity from 

the ground to the top of the canopy restricts air flow, which helps retain locally-emitted bacteria 

and reduces mixing with the regional air mass. Although we observed the hypothesized effect of 

land cover type on community composition, the association with sampling date was stronger by 

a factor of four. When samples were analyzed separately for each date, however, the association 

with land cover type increased from R2 = 0.06 to an average of R2 = 0.19 (Table 2), suggesting 

that it has an important effect on bacterial community variation that was obscured by broad 

compositional changes associated with time.

We conjecture that land cover type may serve to some degree as a “master controller” of 

the local microbial community through its influence on not only microbial sources (via total 

leaf surface area and plant species composition or the presence of non-vegetated surfaces), but 

also on microbial survival and growth (by modifying microclimatic factors such as humidity 

and temperature) and on the retention or dispersal of microbes (by its influence on airflow). 

Consistent with this idea, we note that, with one exception, bacterial communities were only 

significantly associated with vegetation cover and structural diversity on days when they were 

also associated with land cover type (Table 12 in Appendix C). In other words, when the 

effect of land cover type was significant, two of its more nuanced components were sometimes 

significant. 

The influence of cover type also changed over time. Microbial communities were only 
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consistently associated with land cover type for the last four sampling dates of the campaign, 

starting on September 1 following the first major precipitation of the rainy season. Furthermore, 

temperature was either significant (three dates) or marginally significant (three dates) for the 

first six sampling dates of the campaign when temperatures were warm; for the last three dates, 

after temperatures dropped substantially, p-values for temperature rose sharply. This suggests a 

potential seasonal shift of controls from: a) site-scale variation during the drought and heat prior 

to the rainy season along with a strong regional land use signal when winds were predominantly 

from the north, to b) land cover type and other site-scale vegetation characteristics during the 

cooler, moister conditions after the rainy season began, herbaceous vegetation began to green 

up, and winds shifted to come from the forested hills to the south.

Environmental metrics that best captured relevant site features

When all samples across all days were analyzed together, the vegetation and meteorological 

variables tested, with the exception of site location, performed poorly, each explaining 5% or 

less of the variation among bacterial communities. Individual site location was the strongest 

explanatory variable in describing community similarity, even stronger than sampling date. 

This contrasts with other culture-independent aerobiome studies (e.g., Brodie et al. 2007; 

Fierer et al. 2008; Bowers et al. 2013) that found spatial location within an urban area to be 

insignificant compared to the effect of time. We conjecture that, in our study, site location was 

a proxy variable capturing a suite of features ranging in spatial scale from the urban block to the 

neighborhood that could affect bacterial sources, dispersal capabilities, and survival rates. These 

features might include vegetation characteristics from the local land cover type to the specific 

plant species found, microclimate conditions, and landscape management regimes (Figure 7). 

Surprisingly, proximity to other sites did not appear to affect compositional similarity for most 

sampling dates (Table 2), perhaps indicating that the larger urban air mass was well-mixed and 

distributed across the study area and that unique microbial taxa originating from individual 

sites became undetectable short distances away due to rapid dilution with distance. This idea is 
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supported by the diminishing importance of the proportion of vegetation cover with increasing 

buffer size around the sampling point (Figure 33, Appendix C).

Taxonomic groups contributing to variation in community composition across land cover types

We assessed differential abundance at several taxonomic levels—class, family, and genus—to 

facilitate comparisons and uncover patterns at different levels. Overall, at the genus level the 

grass-paved contrast showed more than twice as many differences as forest-paved, and the forest-

grass contrast showed half again as many. Paved sites thus stand out as having the most unique 

bacterial composition at the genus level, and forest and grass the most similar. At the same 

time grass sites account for the 60% of “enriched” indicators in their contrasts with forest and 

paved sites, suggesting they may be the dominant sources for indicator taxa. The picture shifted, 

however when indicators were examined at the family level. At this level, the forest-paved 

contrast had the largest number of indicators and grass-paved the least, while grasslands still 

showed the greatest number of indicators for both its contrasts. At both the genera and family 

levels, paved sites were most enriched with indicators in the forest-paved contrast, suggesting 

that forests serve as sources for the smallest number of indicators. We note that these differential 

abundance tests were reported for all samples together, rather than separately by date, therefore 

the strong effect of sampling date may have concealed taxa that were differentially abundant 

only on certain dates. 

It is also possible that forest sites as a whole show fewer indicator taxa, because individual 

forest sites are characterized by different sets of indicator taxa. In support of this, we note that: 

a) different vegetation species host distinct bacterial communities; b) trees are large sources 

of bacteria, due to their large surface area; and c) forests alter microclimate (e.g., air flow, 

temperature, radiation) such that more bacteria from local sources may survive and be retained 

than at other land cover types. If this is the case, then testing for differential abundance by 

aggregating all forest sites may have resulted in fewer indicator taxa than grassland or paved 

sites. This possibility is consistent with our finding that individual site location is a stronger 
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predictor of bacterial community similarity than land cover type when all samples are analyzed 

together. Similarly, paved sites may exhibit greater numbers of indicator taxa due to the unique 

biophysical environment, which is similar across all parking lots (e.g., asphalt substrate, high 

radiation, presence of heavy metals and petroleum-based fluids, little to no vegetation). In an 

earlier study, Mhuireach et al. (2016) found that bacterial communities collected from parking 

lots tended to be similar to each other, while those from grassy parks were different both from 

other parks and from parking lots.

Indicator taxa for paved sites generally had characteristics that suggested they might 

originate from the primary surface type found there—asphalt pavement. Specific bacterial 

classes that were enriched at paved sites included Deinococci, Thermomicrobia, Anaerolineae, 

Betaproteobacteria, and Cyanobacteria. Many of these taxa, especially Deinococci, are known 

for their ability to survive very hostile conditions, such as intense radiation, desiccation, and 

heavy metal contamination, all of which are likely to characterize paved parking lots. At the 

species level, Acidiphilium multivorum (family Acetobacteraceae) was primarily found in paved 

locations across several different dates and was particularly abundant on September 1 after 

two days of heavy rain, the first major precipitation after several months of summer drought. 

A. multivorum has been previously isolated from pyritic acid mine drainage; it utilizes organic 

compounds, such as methanol, for growth (Wakao et al. 1994) and is highly tolerant to heavy 

metals (Mahapatra and Banerjee 1996). We speculate that this taxa may thrive on leaked 

automobile fluids present on paved surfaces, especially following rains. 

On the other hand, samples obtained from vegetated sites tended to have more taxa 

associated with soil and leaf surfaces. At the family level, Halomonadaceae, Armatimonadaceae, 

Beijerinckiaceae, Pseudonocardiaceae, and Planctomycetaceae were observed in higher 

abundance at forest sites, while Sphingobacteriaceae and Methylocystaceae, were abundant in 

vegetated environments generally (Figures 30–32, Appendix C). Other researchers have shown 

these families to be common phyllosphere inhabitants (Lymperopoulou et al. 2016; Laforest-

Lapointe et al. 2016; Smets et al. 2016). Our study thus provides additional evidence that 
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nearby plants are measurable sources of bacteria to the air. 

Vegetation management was also implicated as a factor influencing bacterial community 

composition. At grassland sites, we observed greater abundance of class Flavobacteriia and 

families Enterobacteriaceae, Enterococcaceae, Xanthomonadaceae, Flavobacteriaceae, 

Nocardiaceae, and Mycobacteriaceae (Figures 30 and 32, Appendix C). The high relative 

abundance of Enterobacteriaceae may have been primarily driven by a particular species, 

Erwinia billingiae, at grass sites with human management regimes—a cemetery, a golf course, 

and a public park. We speculate that this bacterium may have been released in high quantities at 

these sites during mowing or irrigation events that coincided with our sampling dates. 

We also specifically investigated the generic diversity of class Gammaproteobacteria, since 

high generic diversity of Gammaproteobacteria on the skin of healthy individuals has been 

associated with a protective effect against atopy (Hanski et al. 2012). Results showed that 

abundance was enriched in both forest and grass sites compared with paved sites (Figure 14b), 

but had greater generic diversity at forest sites, which aligns with previous work (e.g., Bowers et 

al. 2010; Hanski et al. 2012) and may have important health implications.

Temporal patterns of bacterial community change

Even the brief three-month duration of our study revealed strong temporal patterns 

and fluctuations from one sampling date to the next, which tended to mask relationships 

between bacterial community structure and fine-scale vegetation metrics, while suggesting key 

interactions across larger spatial and temporal scales. As indicated by our conceptual model 

(Figure 6), the time scale of our study encompassed several processes and events occurring 

within the range of days to months that could be expected to impact the aerobiome. In 

particular, seasonal biotic processes (e.g., vegetation senescence), changes in weather and 

dominant airflow patterns, and regional-scale human activities (e.g., agriculture) appeared to 

play roles in the observed shifts in dominant taxonomic groups, as has been noted in other 

studies (Gandolfi et al. 2015; Lee et al. 2017). For instance, we found that July samples for all 
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sites were dominated by Sphingomonas faeni. This taxa was distributed relatively equally across 

all sites, suggesting a regional rather than local source, and generally decreased over the course of 

the sampling campaign. S. faeni has been previously isolated from air in agricultural barns where 

bales of hay were being broken open (Andersson et al. 1999). Because our study area was located 

downwind of a large grass seed production region and July is a prime harvesting month, we posit 

that S. faeni originated from seasonal agricultural activities, which corroborates previous work 

(Lighthart 1984; Mhuireach 2016). Other taxonomic groups also altered abundance over the 

course of our campaign, for example, Cytophagaceae and Microbacteriaceae generally decreased, 

while Acetobacteraceae, Enterobacteriaceae, and Oxalobacteraceae increased (Figure 13). 

These changes may reflect other seasonal changes associated with late summer, such as lowering 

temperatures and precipitation events. 

The study had several limitations whose resolution could help strengthen future studies 

of the urban aerobiome. First, finding sampling sites that met our a priori criteria of <25% 

vegetation within 50 meters was challenging. Eugene-Springfield is a small metropolitan 

area with an abundance of vegetation and therefore may not have provided as wide a range 

of variation in cover type as other cities. In addition, many of the paved sites had substantial 

landscaping, in part due to city codes requiring 10% or more of the total area in parking lots to 

be landscaped with vegetation. The resulting bioswales and planter islands may have contributed 

plant- and soil-associated bacteria to the nearby air. We also stress the importance of using wind 

dataloggers at individual sites in future studies to help disentangle the dual roles of vegetation 

as microbial source and mediator of air movement. We expect that air movement at the local 

scale of individual sites may be influential on airborne microbial community dynamics and 

that nearby vegetation, especially structurally diverse forests, alters patterns of air movement. 

Therefore this would be a fruitful avenue for future research.

5. Conclusions

Understanding key factors that shape urban aerobiome assembly may be vital to designing 
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healthier neighborhoods and cities. This study contributes to that goal by indicating that human 

decisions about the configuration and management of the urban landscape, as well as the 

surrounding landscape may influence the composition of urban airborne bacterial communities 

at varying scales of space and time. Interplay among different spatial and temporal drivers of 

bacterial community assembly can begun to be understood by assessing features that range from 

fine scale (e.g., land cover type, vegetation species composition) to coarse scale (e.g., agricultural 

activities, seasonal vegetation changes), including periodic events (e.g., precipitation, irrigation, 

and mowing ). Our work suggests that different land cover types may have potential to shape the 

composition of the airborne bacterial communities to which people are exposed on a daily basis. 

The specific mechanisms through which land cover type influences bacterial communities may 

include fine-scale features, such as irrigation and mowing regimes, presence of asphalt surfaces 

and automobile use, and variation in vegetation species composition. Importantly, we have 

begun to lay a foundation for understanding how spatiotemporal factors interact across scales 

to shape the urban aerobiome, which, ultimately, may give rise to tools that help designers and 

planners manage it. 

To secure the potential health benefits we must, however, establish practical design 

guidelines, such as how much and what type of vegetation and at what distance from residents’ 

homes, and we must supply concrete evidence linking variation in aerobiome composition with 

human health. Although our work revealed that certain bacterial groups varied in abundance 

and diversity across land cover types, further research is needed to confirm whether exposure 

to these airborne bacteria can impact health. Improved knowledge of the spatial and temporal 

dynamics of the urban aerobiome could benefit long-term green infrastructure plans for 

healthier and more equitable cities.

Bridge to Chapter IV

In Chapter III, I demonstrated how urban airborne bacterial communities can be influenced 

by land cover, vegetation, and management activities—factors that can be controlled by 
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landowners and policies. I also explored the ways in which these and other factors may interact 

across different scales of space and time, suggesting that interventions ranging in scale from 

site design to regional planning could be relevant to shaping the aerobiome. Specifically, I 

confirmed that land cover type (forest, grass, paved) had a significant effect on the composition 

of urban airborne bacterial communities, although the effect was overwhelmed by the effects 

of sampling date and individual site location. I also found that forests, in particular, may have 

higher abundance and generic diversity of the bacterial class Gammaproteobacteria, which has 

been associated with reduced prevalence of atopic sensitization. The goal of the final chapter 

is to connect scientific findings from Chapters II and III, as well as other published research, 

with specific ideas that could be useful to designers and planners. The motivation behind this 

chapter is to facilitate the application of evidence-based design to test emerging evidence that 

microbial exposures in the urban landscape may benefit human health, through. I begin by 

briefly reviewing how vegetation is related to human health, how vegetation influences airborne 

microbial communities, and how microbial exposures may impact health. Then, I construct 

a conceptual framework to translate the scientific understanding of microbial ecology into 

language and processes that are more familiar to designers. Finally, I propose example design 

hypotheses and interventions at different spatial scales, as a foundation for future research.
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CHAPTER IV

VARIATION IN THE URBAN MICROBIOME ACROSS SCALES: AN INVISIBLE 

COMPONENT OF LANDSCAPE DESIGN FOR HEALTH

Introduction

We are in the midst of a health paradigm shift due to emerging recognition of the 

importance and complexity of human-microbe relationships. For the majority of the 20th 

century it has been generally accepted that exposure to microbes, such as bacteria, fungi, 

and viruses, equates to significant risk of contracting an infectious disease. However, we now 

understand that not only do we host a vast assemblage of microbiota in and on our bodies, but 

we also encounter innumerable environmental microbes, including pathogens, in our day-to-

day life. These exposures can have radically different outcomes, from health benefits to disease 

contraction (Rook et al. 2017; Gilbert and Tauber 2016).

The idea that some microbial exposures may provide health benefits is generally recognized 

to have begun with the formulation of the Hygiene Hypothesis, which posited that early 

life infections in large households might have a protective effect against allergic rhinitis, 

or “hay fever” (Strachan 1989). Graham Rook (2008) later proposed that the unavoidable 

exposure throughout most of our evolutionary history to a group of organisms dubbed 

‘Old Friends,’ which include commensal microorganisms and helminthic parasites, led to 

remodeling of the immune system to tolerate, and even require, that exposure. Similarly, the 

Biodiversity Hypothesis posited that the microbiodiversity (diversity of microbial life) of a 

given environment is dependent to a large extent on its macrobiodiversity (diversity of plants 

and animals) and, furthermore, that human health is interrelated with both (von Hertzen 

The visible is set in the invisible; and in the end what is unseen decides what happens in the 
seen; the tangible rests precariously upon the untouched and ungrasped. The contrast and 
the potential maladjustment of the immediate, the conspicuous and focal phase of things, 
with those indirect and hidden factors which determine the origin and career of what is 

present, are indestructible features of any and every experience.
� — Dewey 1958, 43-44
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et al. 2011). Building upon these ideas, the more recent Microbiome Rewilding Hypothesis 

proposed that restoring urban biodiversity may provide immune system training as an ecosystem 

service (Mills et al. 2017). Together, these theories begin to establish a compelling rationale 

for recognizing that the environments in which we spend our daily lives can have major health 

implications and, perhaps, that incorporating evolutionary theory in urban landscape design 

could have substantial health benefits (Milne 2015). In this paper, we argue that vegetation 

represents a potential linkage between health, environment, and microbes, since the health 

benefits of vegetation are increasingly acknowledged, although the mechanisms have, to a large 

degree, remained poorly understood.

Goals and organization of paper

The overarching goal of this paper is to lay a foundation for evidence-based urban landscape 

design that recognizes microbial exposures as a potential pathway for promoting health. To 

achieve this goal, we first take a brief look at historical lessons in designing the physical fabric 

of cities to improve health and reduce exposure to pathogenic microbes at the population 

scale. Second, we discuss the current state of evidence linking vegetation with health and the 

potential pathways mediating that linkage, including a newly emerging ‘immune enhancement’ 

pathway. Third, we review evidence that environmental microbial exposure can impact human 

health and may represent a specific mechanism through which immune enhancement occurs. 

Fourth, we describe factors that determine how urban microbial communities assemble, 

limiting the discussion to airborne bacterial communities. Lastly, we construct a framework to 

translate current understanding of drivers and constraints on microbial ecological dynamics into 

concepts useful for evidence-based landscape design for health.

Historical lessons in designing cities for health

For centuries, good urban design was perceived as an important way to promote human 

health. Hippocrates (circa 400 bc) may have been among the first to document how 
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environmental conditions, such as air and water quality, could impact people’s well-being. He 

suggested that to understand health conditions it was important to consider the surrounding 

landscape, “. . . whether it be naked and deficient in water, or wooded and well watered, and 

whether it lies in a hollow, confined situation, or is elevated and cold,” (Hippocrates n.d.). 

Several centuries later, these ideas were recapitulated by Roman civil engineer and architect 

Vitruvius, who suggested that, “a mild, thick air . . . strengthens and restores,” and the design 

of urban streets should be “. . . laid down on the lines of division between the quarters of two 

winds,” (Vitruvius n.d.). In this era of history, people believed in miasma theory, or the idea that 

illness was caused by noxious odors emitted by decaying organic matter. Later, during periods of 

industrialization in Europe and the US, interest in environmental quality rose to the forefront 

of public health efforts. Early industrializing cities were population sinks with shorter life 

expectancies and poorer overall health than rural areas, largely due to crowding and inadequate 

infrastructure (e.g., waste removal, clean water supply) to support the massive influx of people 

(Haines 2001; Kearns 1988; Reher 2001). As a result of high human mortality rates, several 

new approaches to combat disease gained force throughout the 19th century, including public 

sanitation, hygiene reform, and the parks movement (Porter 1999; Eisenman 2013). Historians 

largely agree that these public health efforts aimed at creating healthier living environments, 

in addition to rising standards of living, were responsible for reducing mortality rates, whereas 

advances in medical technology contributed little (Harris 2004; Haines 2001; Kearns 1988; 

Szreter 1988).

The parks movement is particularly germane, as public urban parks were proposed as a way 

to clean out “bad air” and provide places for mental respite, thus improving the well-being of 

residents (Ward Thompson 2011). In 1879, landscape architect and prior secretary of the US 

Sanitary Commission Frederick Law Olmsted designed Boston’s Back Bay Fens, whose “leading 

and only justifying purpose” was “the abatement of a complicated nuisance, threatening soon 

to be a deadly peril to the whole city as a propagating and breeding-ground of pestilential 

epidemics” (Boston Dept. of Parks 1881, 27). According to Martensen (2009), Olmsted was 
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one of the two most influential figures during this era in terms of healthy urban design, the other 

was John Rauch, a Chicago medical physician whose report, “Public Parks: Their Effect upon 

the Moral, Physical and Sanitary Conditions of the Inhabitants of Large cities; with special 

reference to the City of Chicago,” facilitated the addition of about 2,500 acres of parkland and 

one million trees in Chicago. 

Despite the tight bond between living environment and health, the ascendancy of germ 

theory near the turn of the 20th century eventually led to a disconnect between the urban 

planning and public health disciplines. Poor health came to be seen as a problem that could be 

solved through medical treatment with vaccines and antibiotics, while the planning profession 

embraced zoning as a way of reducing the ill effects of industrial pollutants (Corburn 2004). 

The education and treatment of individuals based on bacteriology was considered to be 

a cheaper and more “efficient” method for attaining better public health than improving 

environmental conditions for the entire population (Fairchild et al. 2010). A key turning point 

was the publication of The New Public Health by Hibbert Hill (1913, 10) stating: 

The old public health was concerned with the environment, the new is 
concerned with the individual. The old sought the sources of infectious 
disease in the surroundings of man; the new finds them in man himself. 
The old public health sought these sources in the air, in the water, in the 
earth, in the climate and topography of localities, in the temperature of 
soils at four and six feet deep, in the rise and fall of ground-waters ; it failed 
because it sought them, very painstakingly and exhaustively, it is true, in 
every place and in every thing where they were not.

Notwithstanding advances in medical knowledge, chronic and autoimmune disorders have 

continued to increase in step with modernization and urbanization (Sorci et al. 2016), although 

the causes are unclear. Since it is now apparent that treatment of the individual does not 

ensure good health, medical and health professionals are again looking towards environmental 

solutions (Afifi and Breslow 1994). Likewise, planning professionals are reconsidering the 

effects of urban zoning ordinances, which, although originally intended to protect urban 

residents from toxic pollutants emitted by factories, have decreased walkability and forced 
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people into automobiles, simultaneously reducing physical activity and increasing pollution. 

As the separation of health and planning has resulted in unexpected effects, researchers and 

practitioners from both disciplines have come full circle to recognize once again that external 

environmental conditions remain a crucial aspect of health promotion. They issue joint calls to 

reunite public health with urban design and planning by creating more walkable neighborhoods 

and more greenspace (Frumkin 2003).

A new “settings-based” approach to health strives to reinvigorate the historic emphasis 

on how environmental conditions impact health and lifestyle choices (Dooris 2009). Its 

emergence reveals a fundamental shift in the conception of health, indicating a new emphasis 

on salutogenic, or health-promoting, environments and recognizing the complex interactions 

of personal, social and biophysical factors that together determine individual health. This 

approach recalls famed microbiologist René Dubos, who stated, “In most situations, design 

could certainly be improved by a better knowledge of man’s nature and of the effects that the 

environment exerts on his physical and mental being,” (Dubos 1968, 131). To a large degree 

however, the link between health and environment is still a “black box of places” (Macintyre et 

al. 2002), where associations between health and environment are known but the mechanisms 

underlying those associations are not.

The vegetation-health link

Abundant research demonstrates that vegetation and natural environments are key features 

of landscape design for health (e.g., Fong et al. 2018; Nieuwenhuijsen et al. 2017; Ward-

Thompson and de Oliviera 2016; Kabisch et al. 2015; Hartig et al. 2014; Lee and Maheswaran 

2010; Tzoulas et al. 2007). In urban areas, residents who have more vegetation near their 

homes or visit natural areas tend to experience less stress and depression (Kuo 2001; Grahn and 

Stigsdotter 2003; Stigsdotter et al. 2010; Groenewegen et al. 2012; Ward Thompson et al. 2012; 

McEachan et al. 2015; Cox et al. 2017), more happiness and calm feelings (McMahan and 

Estes 2015; MacKerron and Mourato 2013; White et al. 2013; Park et al. 2007), lower rates of 
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autism (Wu and Jackson 2017), better overall health (Ulmer et al. 2016; Maas 2006; Maas et al. 

2009; Mitchell and Popham 2007), less mortality from all causes and from cardiovascular and 

respiratory disease and cancer in particular (Donovan et al. 2013; Villenueve et al. 2012; Li et 

al. 2008), better birth outcomes (Dadvand et al. 2012; Donovan et al. 2011; Hystad et al. 2014), 

improved childhood well-being (Feng and Astell-Burt 2017), lower rates of allergies and asthma 

(Alcock et al. 2017; Hanski et al. 2012; Ruokolainen et al. 2014), reduced risk of diabetes 

(Dalton et al. 2016; Dendup et al. 2018), and less obesity (Dadvand et al. 2014). Several of 

these studies report that exposure to environmental microbes may be a mediating factor of the 

benefits. 

Despite myriad health benefits, the amount of vegetation in many cities is declining due 

to population growth and urban densification (Chen et al. 2017; Gan et al. 2014; Dallimer et 

al. 2011). In the US, for example, out of 20 large cities, 16 experienced increases in impervious 

surfaces over a 5-year period, while 17 had significant decreases in tree canopy cover, translating 

to losses of about 4 million urban trees annually (Nowak and Greenfield 2012). Part of the 

problem may be that, at least in the US, there are no national regulations for how much green 

space should be provided for urban residents or how close it should be to their homes. 

Since there is a clear relationship between greenspace and health, it is troubling that its 

distribution in many urban areas is inequitable. Researchers have found that disadvantaged 

neighborhoods tend to have less vegetation, poorer access to green space, and are more likely 

to be located near sources of air pollution (Harlan et al. 2006; García and White 2006; The 

Coalition for a Livable Future 2007; Fitzpatrick and LaGory 2000; Bell and Ebisu 2012; 

Dai 2011; Jennings et al. 2012; Landry and Chakraborty 2009), potentially exacerbating 

the health burden of low-income and minority populations. Additionally, in the process of 

urban densification, disproportionate vegetation loss has been observed in vulnerable and 

disadvantaged neighborhoods (Casey et al. 2017).

As vegetation is an important factor in creating wildlife habitat, it may be unsurprising that 

urban biodiversity can also vary with socioeconomic status. In several studies, neighborhood 
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plant and bird species diversity were positively associated with household income (Strohbach 

et al. 2009; Kinzig et al. 2005; Hope et al. 2003). This effect appears to be controlled by both 

“bottom-up” and “top-down” processes, including residential yard design and maintenance, and 

city park and open-space policies, respectively (Kinzig et al. 2005), suggesting that people have 

the ability to influence their exposures to macrobiodiversity at both individual and policymaker 

levels.

Biodiverse living environments provide important health benefits, therefore ensuring 

adequate vegetation in residential neighborhoods has been recommended as a relatively low-

cost strategy for improving urban public health and combating “sick-city syndrome” (Milne 

2017; Liddicoat et al. 2016). However, there is a dearth of empirical evidence describing 

how much vegetation is needed, of what type or configuration, and within what distance of 

peoples’ homes. In response, scholars, designers, planners and policymakers have called for a 

stronger evidence base and better understanding of the mechanisms underlying that linkage 

(e.g., Frumkin et al. 2017; Markevych et al. 2017; Shanahan et al. 2015). Most studies to date 

have used observational and cross-sectional design, which suffers from the risks of bias and 

confounding factors and does not allow conclusions about causality to be drawn (Frumkin et 

al. 2017). If effective design solutions are to be conceived and reliably implemented, it is critical 

to bolster our knowledge with longitudinal and case-control intervention-based studies in the 

settings where people actually live to begin unraveling causal mechanisms. Deeper understanding 

of what underlies the vegetation-health linkage could lead to more effective, less costly and 

more sustainable public health strategies than interventions that are focused on treating the 

individual.

Potential pathways through which vegetation may affect health

Four primary pathways have been hypothesized to explain vegetation-health relationships: 

1) promotion of physical activity; 2) air quality improvement; 3) mental restoration and stress 

reduction; and 4) fostering social cohesion (Hartig et al. 2014; Markevych et al. 2017). It is 
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likely that all are important pathways and that health benefits accrue to varying degrees through 

each of them (Kuo 2015). However, many of the associated physical and mental health benefits 

have been linked to more than one pathway. For instance, having vegetation near one’s home has 

been repeatedly associated with lower levels of stress and depression (Roe et al. 2013; Stigsdotter 

et al. 2010; de Vries et al. 2013; Wood et al. 2017). Stress and depression, meanwhile, have been 

separately linked with physical activity and social cohesion, so it is unclear whether vegetation, 

physical activity, and social cohesion each have separate, additive effects on mental well-being, 

or if one of more of these pathways can be subsumed within the others.

Furthermore, these four pathways also do not consistently or fully explain the beneficial 

effects of vegetation. Different studies have found different pathways to be in play or not, with 

widely varying effect sizes and large unexplained variance (e.g. de Vries et al. 2013; Richardson 

et al. 2013; Dadvand et al. 2016; Hystad 2014; James et al. 2016; Vienneau et al. 2017; 

Dadvand et al. 2015; Triguero-Mas et al. 2017). If all these pathways are relevant but do not 

appear to singly or collectively explain the measured benefits, some other mechanism(s) must 

be in play. One candidate is immune system enhancement from exposure to beneficial microbes 

associated with vegetation.

Immune enhancement as a fifth, and possibly central, pathway

Spending time in and around vegetated areas may lead to enhanced immune function, 

which could explain the majority of observed health effects, mental and physical, across all 

four pathways (Kuo 2015). However, little is known about exactly how vegetation promotes 

immune function. Evidence has shown that immune function is affected by the other four 

vegetation-health pathways, i.e., physical activity, air quality, mental stress and social factors 

(Pedersen and Hoffman-Goetz 2000; Calderón-Garcidueñas et al. 2008; Padgett and Glaser 

2003; Uchino 2006), so it could accrue through one or more of them. On the other hand, as 

pointed out by Kuo (2015), recent studies have suggested that walking in forests may increase 

immune function through exposure to plant-produced compounds known as ‘phytoncides,’ 
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including α-pinene, ß-pinene, and ∂-limonene (Li 2010; Mao et al. 2012), while exposure to 

environmentally-derived microbes (e.g., those associated with soil, plants, water, and animals) 

may represent another under-appreciated mechanism through which natural settings foster 

well-being (Liddicoat et al. 2018; Liddicoat et al. 2016; Rook 2013; von Hertzen and Haahtela 

2006) (Figure 19). 

If conclusively demonstrated, a microbe-immune system pathway could begin to give 

measurable answers to questions of how much vegetation, of what kind, and where, is needed to 

most effectively support human health. 
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Figure 19. Pathways through which vegetation may impact health, all of which are supported in 
the literature.
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Evidence that environmental microbial exposures impact health

According to microbial ecologists, “we live in a microbial world” (Whitman et al. 1998). 

People are continuously exposed to microbial communities in ways that influence their health, 

for better or for worse, in however subtle or conspicuous a manner. In the past, our knowledge 

of these invisible cohabitants of the environment was restricted to what we could learn through 

culturing in petri dishes, which is effective for only a small fraction of microbial life. New 

technologies, such as high-throughput DNA sequencing, have enabled us to better study the 

larger microbial community that, until recently, has been relatively unknown and remains 

poorly characterized.

Although a DNA-based scientific understanding of microbial exposures may be relatively 

new, the exposures themselves are not new to our physiology. The human body has developed 

a number of ways to respond to this immersion. Skin forms a barrier, mucous membranes 

capture and immobilize intruding microbes, and the immune system identifies and battles 

against recognized enemies, but for the most part we tolerate them. This relationship with the 

microbial world has been the status quo for our entire evolutionary history. Without these 

countless interactions, particularly early in life, the human immune system does not learn 

toleration and may become biased towards inflammatory responses, not only to pathogens 

but also to environmental substances like pollen and food, and even to self, possibly leading 

to inflammatory disorders like asthma, depression and Crohn’s disease (Rook 2013). A vast 

number of microbes have been tolerated and co-evolved with for so long that they have become 

part of our own self, our commensal microbiome, without which we would almost certainly lead 

poorer lives (Gilbert and Neufeld 2014).

Dysbiosis, an imbalance of our commensal microbes, is now being recognized as a 

contributing factor to a host of chronic and autoimmune disorders, both mental and physical 

(Logan et al. 2016). Many of these disorders are the same as those implicated in vegetation-

health studies, including depression, autism, schizophrenia, allergies and asthma, and low 

birth weight. As one example among many, experimental evidence points to an important 
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bidirectional relationship between mental health and gut commensal microorganisms, termed 

the ‘gut-brain axis,’ wherein mental symptoms can be produced and/or ameliorated by altering 

the composition of the gut microbiome (Cryan and Dinan 2015; Matthews and Jenks 2013). 

The commensal gut microbiome appears to play a role in the relationships among stress, immune 

function and both mental and physical disorders, such as post-traumatic stress syndrome and 

inflammatory bowel disorder (Bharwani et al. 2016). The commensal microbiome has even 

been identified as a target for therapeutic intervention. For instance, Gur et al. (2015) state that 

“the ability of the microbiome to impact the developing CNS [central nervous system], and 

participate in the effect of psychosocial stress is an exciting concept, because it is susceptible to 

targeting with pre- and probiotics, which has vast implications for both neurodevelopment and 

other health outcomes.” 

Despite the enthusiasm and accumulating support for the health-promoting potential of 

microbial therapy, it remains a goal for the future. Before we can develop firmly-supported 

therapeutic microbial products, additional clinical and experimental evidence is needed to 

identify causal direction, internal biological mechanisms, and other potential co-factors that 

may be in play. Some researchers have proposed that the prioritization of urban greenspaces, 

like parks and community gardens, could represent a low-risk strategy for delivering small doses 

of probiotics on a community-wide scale if there is adequate evidence that humans can acquire 

microbes from their surroundings and that vegetated environments have greater abundance of 

beneficial microbes than other land use types (Rook 2013; Liddicoat 2016). Next, we explore 

the current state of knowledge with regard to these two requirements.

Interactions between humans and environmental microbes

The first and most important exposures to environmental microbes occur in utero and 

early infancy. This time window sets the trajectory of physiological systems such as the 

immune system (McDade 2005). For instance, during the prenatal period, maternal exposure 

to a diversity of farm animals has been linked with the long-term immune function of the 
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developing infant and is likely to be mediated by microbial interactions related to animal 

husbandry (von Mutius 2016). After birth and while still under the protection of maternal 

antibodies from breastmilk, infants begin learning about their physical setting almost 

immediately after exiting the womb, largely via the senses of touch and taste. Infants explore 

their surrounds by touching and placing hands and objects in their mouth; some researchers 

suggest that this helps calibrate the immune system to a best-fit trajectory suited to the pathogen 

load in the local environment (Fessler and Abrams 2004; McDade 2005). By ingesting potential 

commensal microbes this behavior may also influence the long-term composition of our 

individual microbiomes. In this early period of microbial assembly, priority effects (meaning 

that the first microbes to establish may impact the ability of subsequent taxa to colonize) can 

have lasting effects on host metabolism, immune function, and mental development (Sprockett 

et al. 2018). 

Although microbiota compositions at various body sites (e.g., skin, intranasal and lung, gut) 

are relatively stable over time (Faith et al. 2013; Oh et al. 2016; Frank et al. 2010), the adult 

commensal microbiome may be influenced by environmental exposures. For the purposes of this 

discussion, we are primarily interested in exposure to airborne microbes, which occurs primarily 

via skin contact, inhalation, and ingestion. There are typically 104–108 bacterial cells in a cubic 

meter of air (Bowers et al. 2010) and we inhale 8–20 liters of air per minute under normal 

daily activities (Adams 1993), which translates to somewhere between 115,000–2,880,000,000 

bacterial cells inhaled per day, to say nothing of fungi, viruses and other microbes. Many of 

the larger particles are cleared out of the respiratory system by mucociliary action and enter 

the gastrointestinal tract (Kish et al. 2014). Some of these exposures can lead to colonization 

by environmental microbes, as has been shown for humans and other mammals (Mulder et 

al. 2009; Seedorf et al. 2014; Brooks et al. 2014; Kraemer et al. 2018; Camarinha-Silva et al. 

2014). For example, there are rural-urban differences in skin microbial community (Ying et al. 

2015; Lehtimaki et al. 2017), and transient contact with soil-associated microbes can leave an 

imprint on the skin microbiome for at least 24 hours afterward, even after washing and bathing 
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(Fahimipour et al. in prep.). Additionally, commensal microbiota of the human nose differ 

strongly between pig farmers and cattle farmers, indicating that airborne microbes associated 

with certain environments can colonize human mucosal surfaces (Kraemer et al. 2018).

The environmental microbial composition to which humans are exposed can vary 

substantially across different land uses. Initial evidence suggests that some land use types can 

impact human health, particularly asthma and allergies, by interacting with the commensal 

microbiome ( Jatzlauk et al. 2017). One example is the work done by Ege et al. (2011), showing 

that children living on farms were exposed to greater microbial diversity and had less allergies 

and asthma than urban children. In a follow-up study, the risk of having asthma, atopy, and/or 

hay fever was inversely related to exposure to certain bacterial genera, including Acinetobacter 

and Lactobacillus (Ege et al. 2012). Other studies have indicated that growing up near farms 

and forests exerts a protective effect against childhood atopy, and may act by influencing skin 

bacterial composition, in particular Acinetobacter lwoffii (Hanski et al. 2012; Ruokolainen et al. 

2015; Fyhrquist et al. 2014). 

Several lines of experimental research suggest that variation in exposure to environmental 

microbes may affect not only physical, but also mental and emotional state. For instance, 

exposure to Mycobacterium vaccae, a soil-associated bacterium, has been shown to reduce 

stress and anxiety-related symptoms in mice (Lowry et al. 2007; Matthews and Jenks 2013) 

by increasing serotonin (a “happiness” brain chemical) levels. Although considerably fewer 

investigations have focused on the skin microbiome than on the gut, initial evidence suggests 

that commensal skin microbes affect the localized immune system (Naik et al. 2012). This 

may occur through several pathways: 1) skin cells respond to exposures to new, potentially 

commensal, microbes by accumulating greater numbers of cytokine-producing T cells; 2) 

commensal microbes respond to encounters with potentially pathogenic microbes by producing 

targeted antibiotics to inhibit pathogen survival; 3) commensal microbes signal skin cells to 

mount immune defense against pathogens; 4) commensal microbes promote accelerated wound 

healing; and 5) commensal microbes regulate expression of genes that control development and 
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differentiation of skin tissue (Naik et al. 2012; Eyerich et al. 2018; Linehan et al. 2018; Meisel et 

al. 2018). It has even been speculated that responses of human skin cells to environmental cues, 

possibly including microbes, can affect our emotional states (Prescott et al. 2017). 

This brief review of the literature suggests that exposure to environmental microbes, 

particularly associated with farms, forests, and soil, may alter the commensal microbiome and 

affect both psychological and physiological processes, including immune function. With this 

foundation in mind, we next examine design-relevant factors that may control the taxonomic 

composition of microbes we encounter in our surroundings.

Factors that determine urban airborne microbial community assembly

Landscape configuration and composition, including vegetation and built infrastructure, 

may affect aerobiome assembly at several scales of space and time (Chapter III). In some 

ways, investigation of the aerobiome may have parallels with biogeographical studies in ocean 

environments, as both types of media are dynamic and inevitably three-dimensional (Womack 

et al. 2010). As described next, we posit that airborne microbial composition may be influenced 

by landscape design through three fundamental means: 1) by determining the types and 

distribution of different sources of airborne microbes, which are contributed from virtually all 

types of surfaces, including vegetation, soil, water, and built surfaces; 2) by controlling factors 

that influence the survival and growth rates of microbial taxa; and 3) by shaping microbial 

dispersal patterns, largely through air flow through neighborhoods and across the urban 

environment as a whole (Burrows et al. 2009; Chapter III). 

Microbial sources

Most airborne microbes originate from surfaces that provide the conditions for persistence, 

growth, and reproduction (e.g., temperature, relative humidity, irradiation, nutrient availability). 

Therefore, aerobiome composition is likely related to the amount and configuration of nearby 

biotic and abiotic surfaces. Plants and soil have been noted as especially important sources of 
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microbes to the air above terrestrial environments (Lindemann and Upper 1985; Lindemann et 

al. 1982; Bowers et al. 2011; Lymperopoulou et al. 2016); here, we describe some characteristics 

of vegetation as a source and recognize that where there is vegetation there is also often unsealed 

(i.e., not paved over or built upon) soil. Soil comprises an enormously complex and influential 

source, which we will not address but refer to recent reviews (see, for example, Fierer 2017) for 

additional information. Other surface types, such as water, asphalt, and stone, are likely to act as 

substrates for different microbial communities as well.

Leaf surfaces comprise an estimated billion or more square kilometers of area—the largest 

biological surface type on the planet—and may contain between 106 and 107 bacteria alone 

per square centimeter (Lindow and Brandl 2003; Vorholt 2012). Not all leaf surfaces are alike 

from the standpoint of microbes, however. Bacterial community composition of leaf surfaces 

is influenced both by site conditions and plant species (Knief et al. 2010; Izhaki et al. 2013; 

Delmotte et al. 2009; Kembel et al. 2014; Laforest-Lapointe et al. 2016). For example, a study 

investigating tree leaf bacterial communities along an urban gradient found that bacterial 

composition varied as a function of urban intensity (i.e., a composite measure including human 

population density, roadways, built-up area, land use, and other infrastructure), tree species, 

and degree of tree isolation (e.g., individual street trees) (Laforest-Lapointe et al. 2017). In 

addition, plant leaf surfaces have been observed to host different communities depending on 

whether they are growing in urban or rural locations (Smets et al. 2016). These leaf-inhabiting 

microorganisms become airborne during plant processes like evapotranspiration, as well as by 

meteorological processes, such as rain splash, wind gusts and thermal plumes (Lighthart et al. 

2009; Whipps et al. 2008; Kinkel 1997).

Microbial growth and survival

There is great variability in the resilience of microbial taxa to environmental conditions, 

and the effects of being airborne on their ability to proliferate are poorly understood, although 

recent studies indicate that atmospheric organic compounds may support microbial metabolism 



70

and that microbes may be metabolically active while airborne (Fröhlich-Nowoisky et al. 

2016; Klein et al. 2016). For airborne bacteria, most taxa decline in growth and survival at 

temperatures above 24º C (75.2º F), while the response to relative humidity appears to be 

bimodal, with highest survival at very low and very high relative humidity (Tang et al. 2009), 

and solar radiation generally reduces survival rates (Tong and Lighthart 1997). Nutrient 

availability, pH, and salinity are also important factors controlling growth and survival, 

though a vast range of substrates, including carbon-, sulfur-, phosphorus- and nitrogen-based 

compounds, can be utilized by different microbes. Even in the face of adverse conditions many 

microbes exhibit strategies that allow them to persist, such as the ability to enter a non-growth, 

dormant, or spore phase. 

Microbial dispersal

There is constant interplay among microbial communities transported from distant 

continents via tropospheric air flow, those coming from large regional sources, and those that are 

emitted locally (Seifried et al. 2015; Innocente et al. 2017; Smith et al. 2012; Lighthart 1984; 

Mhuireach et al. 2016). The background flow of air, known as the “synoptic flow” contains 

a mixture of microbes and particles, which may have been transported from relatively short 

or very long distances away. For example, the Pacific Northwest receives particles from Asia 

(Timonen et al. 2013; Smith et al. 2012) and Saharan dust travels to the Caribbean (Monteil 

2007). 

Since airborne microbes fall within the same size range as particulate matter (Liu and 

Liptak 1997) and are assumed to follow the same principles of aerosol physics, we hypothesize 

that in open areas, microbial composition will be largely determined by conditions upwind 

because the constant air exchange tends to both dilute locally-emitted microbes with those 

from the regional air mass and to carry them downwind. Supporting this, Mhuireach et al. 

(2016) found that the overall composition of airborne microbial communities collected from 

open grass parks and parking lots was very similar when focusing on the most abundant taxa, 
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which they conjectured were part of the regional air mass originating upwind. The size and 

intensity of the local source, however, is also important in determining its contribution to site 

air composition and dispersal capability. For example, a recent study revealed that microbial 

abundance directly above vegetated areas and 50 meters downwind is 2–10 times greater than in 

upwind non-vegetated areas (Lymperopoulou et al. 2016). 

The point of this brief consideration of microbial sources, growth and survival, and dispersal 

is that it appears plausible that surrounding land uses, vegetation types, and management 

activities from the regional to the city block scale can all impact airborne microbial community 

composition (Chapter III, Figure 7) and, in turn, that many of these factors can be influenced 

by urban design and planning decisions. Figure 20 illustrates some of the linkages between 

landscape features and microbes and between microbes and health outcomes across a range 

of spatial scales that have been put forth in the literature. See the review by Hoisington et al. 

(2015) for additional microbe and health linkages. In the next section, we propose a framework 

of how design and planning of landscape features can structure microbial assemblages through 

their influences on microbial sources, growth and survival, and dispersal. We then harness this 

framework as a new building block for evidence-based urban landscape design.

A framework for evidence-based urban landscape design for health 

Although there is far from a complete picture of how microbes assemble in the urban 

environment or how environmental microbes may affect human health, we can begin building 

a framework to facilitate translation of scientific knowledge into design-relevant language. We 

hope that this will aid the development of design hypotheses and interventions that advance 

our understanding of these relationships. We propose such a framework, which consists of 

three components: 1) a conceptual model that illustrates how common landscape features 

and processes may influence airborne microbial sources, growth and survival, and dispersal; 2) 

a design process to guide landscape architects in assessing the opportunities and constraints 

presented by a given site for structuring local airborne microbial communities; and 3) a design 
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hypothesis-intervention approach to producing new knowledge about the effects of landscape 

design on microbial communities. 

Initially, the framework may be most useful for introducing the aerobiome as a novel 

facet of landscape ecology that can be shaped by designers and for developing experimental 

interventions to test hypotheses that link design, the environmental microbiome, and public 

health. As the scientific evidence base expands, we can use the same framework to manage 

our exposures through landscape design. Although protecting human health from airborne 

pathogens in indoor settings has been considered at length (e.g. Kowalski and Bahnfleth 

1998; Leung and Chan 2006), designing to promote exposure to beneficial outdoor microbial 

communities has not. To our knowledge, the sole contribution is that of Mills et al. (2017), 

which proposes an “urban microbiome rewilding” program. They suggest that environmental 
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restoration projects to increase urban biodiversity may represent a means to improve human 

immune health. With our conceptual framework we seek to extend and clarify the idea of 

promoting health through microbial exposures associated with vegetated environments. 

First, we identify landscape features that are familiar to designers and planners and that exert 

influence on microbial sources, survival and growth, and dispersal. 

Landscape features that influence microbial sources, growth and survival, and dispersal

In the outdoor environment there are likely thousands of different microbial taxa present in 

varying abundances, depending on configuration of, and interactions among, landscape features. 

The specific composition of an urban microbial community, we hypothesize, is a function of 

three interrelated features: 1) land cover, which determines the type, amount, and composition 

of biotic and abiotic surfaces that act as microbial sources and can influence growth and 

survival; 2) microclimatic conditions, which may impact microbial growth and survival and 

dispersal, and are influenced by land cover type, as well as topography, hydrology, and other 

factors; and 3) intermittent or cyclical processes and events that may affect sources, growth and 

survival, and dispersal of microbes (Figure 21). Each of these three features may be influenced 

by designers, planners, and/or policymakers, therefore, understanding how and why they are 

related to aerobiome composition could help with decision-making.

Land cover

At the coarsest scale, broad patterns of land cover and land use, in aggregate, determines 

regional microbial emissions (Burrows et al. 2009). For instance, microbial communities vary by 

major land uses, such as forested, agricultural, and urban areas (Bowers et al. 2010; Shaffer and 

Lighthart 1997), and recent studies have indicated that vegetated land cover types at the fine 

scale (e.g., city block scale) have significantly different bacterial community composition than 

non-vegetated land cover types (Chapter III). 

Urban forests may be of particular interest to designers of microbial landscapes, for several 



74

reasons. First, researchers in Colorado have found that airborne microbial communities within 

a forest were more similar to soil communities than other site types (Bowers 2010). Second, 

studies suggest that forests have higher abundance of Gammaproteobacteria than built areas 

(Hanski et al. 2012) and greater generic diversity of Gammaproteobacteria than grass areas 

(Chapter III), both of which have been linked with lower incidence of allergic sensitization 

(Hanski et al. 2012). Finally, forested areas create a different microclimate below the canopy 

than open areas, since they tend to provide shelter from sun, wind and precipitation. Not only 

would the modulation of microclimate influence which microorganisms might thrive in that 

environment, but it would also reduce the rate of air “turnover,” which, in turn, may better 

retain the microbes from local sources. 

Another example of an urban land use type that may be a source of distinct microbial 

taxa is the parking lot. Paved parking lots are characterized by temperature extremes that are 

generally outside those experienced in vegetated sites, surfaces that are desiccated and exposed 

to harsh radiation, and the presence of organic compounds (e.g., automobile fuels and fluids) 

Figure 21. Conceptual model of landscape features that can structure microbial assemblages 
through their influences on microbial sources, survival and growth, and dispersal.
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and heavy metals that are not typically found in vegetated environments. Many of the microbes 

found in these environments (e.g., Acidiphilium multivorum) are those associated with extreme 

environments, such as acid mine drainages, sewage sludge, and sulfur hot springs (Chapter III). 

It is currently unknown whether exposure to these “extremophiles” has implications for human 

health, although many of them may be useful as bioremediation agents (Auld et al. 2013).

Microclimate

Structures in the landscape, like trees and buildings, can impact microbial growth and 

survival and dispersal by creating sun and shade patterns, influencing humidity, and altering air 

flow in their immediate locale. This diversity of microclimates can make a given location more 

or less hospitable for microbes (and humans). These effects can also change over the course of a 

day or year, depending on sun angle, vegetation leaf condition, wind direction and precipitation. 

At scales larger than a city block (i.e., neighborhood, city, region), the form and 

organization of buildings, vegetation, and topography act in aggregate to affect air speed and 

turbulence, thus determining the degree of mixing among microbial assemblages from regional 

and local sources (Wuyts et al. 2008; Grimmond and Oke 1998). Specifically, the height, 

volume and “packing density” of buildings and trees act together to influence air movement 

patterns. When structures are low and sparse, turbulence is moderate and the air is generally 

well-mixed among the buildings. As the packing density grows tighter, the buildings begin to act 

in aggregate as one object forcing air flow up (i.e., “skimming flow”), reducing turbulence and 

air mixing among buildings. Around taller structures, on the other hand, turbulence is great and 

the air is thoroughly mixed (Britter and Hanna 2003). 

Buccolieri et al. (2010) introduce the idea of city “breathability,” or ability to remove and 

dilute pollutants or heat, similar to the idea of air exchange rate in buildings, which would also 

apply to microbes. According to their simulation study, the “mean age of air” increases with 

packing density and with distance downwind from the approaching air flow, suggesting that the 

urban aerobiome may be more influenced by nearby local sources when packing density is great.
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Processes and events

The composition of airborne microbes may change seasonally due to the effects of 

vegetation phenology, human activities, and weather patterns (Franzetti et al. 2010; Bowers 

et al. 2013) on microbial sources, growth and survival rates, and dispersal. For instance, an 

annually-repeating pattern of microbial succession during the growing season has been observed 

on deciduous plant leaves (Knief et al. 2010), with microbial composition clustering into early, 

mid-, and late season groups (Redford and Fierer 2009). Human management activities can be 

important at several spatial scales. At the regional scale, activities such as agricultural harvesting 

can contribute enormous amounts of biological material, including microbes, into the air, with 

subsequent dispersal to downwind areas (Lighthart 1984; Mhuireach et al. 2016; Chapter III). 

Since particular taxa may preferentially inhabit certain types of agricultural crops, the relative 

abundance of these crop-associated microbes may be greatly increased during harvesting season. 

One example is the high relative abundance of Sphingomonas faeni, a bacterium associated with 

hay dust (Andersson et al. 1999), in the air downwind of Linn County, Oregon, colloquially 

termed “the grass seed capital of the world,” in the prime harvesting month of July (Mhuireach 

et al. 2016; Chapter III). At a smaller scale, vegetated sites that were intensively maintained, 

like cemeteries, golf courses, and parks, tended to be associated with bacterial taxa (e.g., Erwinia 

billingiae) that were not prevalent in other sites (Chapter III). Such taxa may be contributed to 

the air through management activities, including irrigating and mowing. 

Design process to shape airborne microbial communities

To develop design interventions intended to shape airborne microbial communities, it is 

first necessary to assess existing landscape features that may influence how these communities 

assemble (Figure 21) across relevant scales. In particular, identifying important regional and 

site-scale sources, primary air flow patterns and microclimate conditions, and local management 

activities will provide a foundation for developing design goals and hypotheses. Following an 

initial assessment, the designer can interpret opportunities and constraints in light of explicit 
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design-based hypotheses and develop specific interventions to address them (Figure 22). For 

example, being downwind of a large waste remediation operation might be seen as a constraint 

to be blocked or diverted, whereas being downwind of a biodiverse forest might be seen as an 

opportunity to encourage the flow of potentially beneficial air. One caveat to this process is 

that we still lack adequate knowledge about which microbial assemblages might be beneficial 

or detrimental to human health. We address this challenge by proposing a design hypothesis-

intervention approach to building the scientific evidence base for what constitutes a beneficial 

urban microbiome.

Hypothesis-intervention approach to knowledge production

Studying health determinants in the settings where people live, work, and play means that 

clinical and case-control methods are often difficult or impossible to apply. This explains why 

Figure 22. Design process for assessing the opportunities and constraints presented by landscape 
features and develop design interventions to influence airborne microbial communities.
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most vegetation-health studies are observational and cross-sectional, rather than mechanistic. If 

we hope to purposefully create salutogenic landscapes by managing the urban microbiome, we 

must understand the causal mechanisms that mediate between landscape features and human 

health via microbial exposures. Since urban construction projects are occurring all the time 

and all over the world, one approach would be to use new projects as opportunities to measure 

outcomes related to both microbial communities (e.g., diversity, composition, indicator taxa) 

and human health (e.g., stress, depress, autoimmune disorders). This type of post-occupancy 

evaluation (POE) is already common in design fields as a means to assess how well the design 

achieves stated goals. Using this approach, each action taken to alter the urban environment is 

viewed as an experiment from which valuable health and microbiome data could be collected. 

POEs are critical to elucidating cause and effect and should include well-validated measures of 

well-being, ranging from subjective surveys and questionnaires to objective measures, such as 

biological markers of stress and inflammation or skin microbial communities. 

We propose several preliminary and diagrammatic examples of design hypotheses and 

interventions that attempt to influence microbial community structure and dynamics (Table 

3). These range in scale from the city block to the region, and are each based on findings 

reported in the previous sections. To test such hypotheses and interventions, one might use 

study designs ranging from before/after at a particular site to paired new developments with 

contrasting interventions. In addition to these examples, we note that a vast range of hypothesis-

intervention opportunities exist. For instance, while studies have indicated that urban land 

use types (e.g., forest, grassland, paved) differ in their microbial communities, there can be 

substantial variation in vegetation cover, species composition, and management regimes across 

a single land cover type and it is unknown whether this within-group variation influences 

microbial community structure. A fruitful research avenue might be to compare microbial 

communities from different grassland types (e.g., mowed monoculture lawn vs. diverse 

meadow) or parking lot configurations (e.g., those with bioswales and tree canopy cover vs. 

those without). In addition to collecting data about how these “designed experiments” might 
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Table 3. Design hypotheses and interventions across spatial scales for certain design goals.

Spatial Scale & 
Design Goal

Hypothesis & Intervention Visualization

Block:

Determine sources

H: The concentration of microbes from local 
soil and plants is rapidly diluted more than 
100 m from their source.

I: Establish >80% vegetation cover within 
100 m of homes to promote soil- and plant-
associated microbes rather than pavement-
associated microbes.

< 100m

Neighborhood:

Shape dispersal

H: Large upwind microbial sources can affect 
the composition of airborne microbes at the 
neighborhood scale.

I: Create windbreaks or wind funnels to 
impede or encourage air flow, thereby 
decreasing or increasing the regional 
microbial signal relative to the local signal.

Neighborhood:

Determine sources

H: Forests and areas with high plant diversity 
harbor greater abundance and diversity of 
Gammaproteobacteria.

I: In residential zones, establish biodiverse 
public parks & forests to increase abundance 
and diversity of class Gammaproteobacteria 
(may be protective against allergy).

City:

Shape dispersal

H: Upwind regional and tropospheric air 
masses influence the composition of the 
urban airborne microbiome.

I: Design gradual height transitions with 
vegetation or building structures to divert air 
flow above and reduce mixing; alternatively, 
use random height variation to encourage 
mixing with regional air mass.

Region:

Determine sources

H: Different land use types represent 
aggregate sources of particular microbial 
community compositions.

I: Evaluate regional land use for 
health implications; farms/forests 
may promote microbial diversity and 
Gammaproteobacteria, in particular.

Urban

Farm

Forest
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impact the local airborne microbial communities, assessing relationships with human health 

outcomes or markers would also be essential. Critically, we must realize that these studies are 

needed to first provide a baseline of data so that we can begin to set standards of “healthy” 

versus “unhealthy” landscape microbial communities. Once we understand what constitutes the 

baseline communities, then we can evaluate how design interventions change them.

Results from such intervention-based studies would be incorporated into the body of 

scientific knowledge to revise hypotheses, develop theories, and eventually improve subsequent 

design interventions (Figure 23). Moving iteratively from science to design to implementation 

and back to science in this way has been argued as an important pathway to ensure that science 

is informed by what works and does not work in practical application and that design is 

founded in rigorous knowledge (Nassauer and Opdam 2008; Felson and Pickett 2005; Cook 

et al. 2004)). Evidence-based design is often seen as a ‘one-way street,’ where designers can use 

scientifically-produced knowledge to create better designs, however, these types of projects are 

not always evaluated as experiments and even more rarely are the evaluations fed back into the 

ASSESS
FEATURES DESIGN INTERVENTION

INFORM
SCIENCE

EVALUATE
RESULTS

Figure 23. Iterative science-design-science process.
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scientific knowledge base through peer-reviewed journal articles. We believe that both designers 

and scientists could benefit by collaborating to improve our understanding of linkages among 

design of the built environment, microbial exposures, and human health. This iterative science-

design-science concept is well-aligned with the field of implementation science, which is used 

by many disciplines and includes a number of related strategies, such as evidence-based practice 

and practice-based evidence (medical and health fields, education, architecture) and designed 

experiments and adaptive management (ecology, forestry, fisheries). At its core, the goal of 

implementation science is to foster the flow of scientific knowledge into routine use and ensure 

that laboratory findings translate successfully to practical application. Equally importantly, 

this approach can help validate the accuracy of clinical findings and refine research questions 

based on feasibility and applicability in non-laboratory settings. Such studies can also generate 

valuable tools, including models for prediction and decision-making (Frumkin et al. 2017).

Public health and urban planning are in the midst of reuniting, although now using 

contemporary cutting-edge tools and knowledge, such as DNA sequencing and the Biodiversity 

Hypothesis, rather than the historic miasma theory. Still, much remains to be discovered. We 

must identify which microbial community types and taxa are “good” versus “bad” for human 

health, possibly differing across human life stages (e.g., immune-training during infancy, 

stress-relieving during adulthood, anti-cancer during old age), and their dominant means of 

interaction (skin contact, inhalation, or ingestion). Collaboration among scientists, designers, 

and health professionals is increasingly needed to further the development of landscape 

intervention strategies that could influence urban microbial assemblages by intentionally 

specifying elements that influence their growth and survival, or that alter the degree of mixing 

that occurs between locally- and regionally-sourced microbes. 

Conclusion

An estimated 2 billion people will be born over the next 30 years, most of whom will reside 

in urban areas (U.N. 2017; U.N. 2014). Urban infrastructure (transportation, sewer and water, 
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electricity, communication systems) is difficult and costly to alter once built, and the cities 

and neighborhoods we design now will be the places where our children and grandchildren 

live, work and play. It is thus of utmost importance to determine principles and guidelines for 

creating healthy cities. According to René Dubos (1966) it has been “established beyond doubt 

that early environmental influences affect the whole of human life—even more profoundly and 

lastingly than Hippocrates had anticipated.” Ample evidence suggests that urban vegetation 

has major health implications and should be viewed as a public health necessity rather than an 

amenity or luxury; burgeoning theories speculate that some of the health benefits may be due to 

immune enhancement properties of natural environments. If it can be rigorously documented 

that the immune enhancement pathway is mediated by microbial exposures, it could support 

measurable standards for assessing and prescribing urban vegetation and ensuring its equitable 

distribution as cities grow and become more densely populated. 

The primary contribution of this chapter was the construction of a conceptual framework 

linking the science of microbial ecology with design practice, which can be used to inform 

future scientific investigations as well as to apply the knowledge gained to design. Although we 

do not fully understand the drivers of airborne microbial assembly in the urban environment, 

there is sufficient evidence to develop initial hypotheses for shaping the urban aerobiome 

through landscape design choices that could be implemented and tested in real projects.

Although well over 90% of our time is spent inside buildings and cars (Klepeis et al. 2001), 

it should be recognized that the ultimate source of all indoor air is the immediate outdoor 

air. Outdoor microbial diversity associated with natural elements is important not only when 

we spend time outdoors, but also because it determines in large part the diversity of indoor 

microbiota (Parajuli et al. 2018). Thus, the management of microbial sources, the microclimatic 

conditions they experience in situ and as they disperse, and the ways in which air movement 

affects their retention or dispersal have the potential to become the primary tools and building 

blocks through which we can shape a salutogenic airborne urban microbiome from the outdoors 

to the indoors.
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We end with a quote from landscape architect Anne Spirn (1988, 110):

The dialogue between the human organism and the natural environment 
takes place on both an unconscious and a conscious level. Before humans 
built towns and cities, our habitat was ordered primarily by nature’s 
processes . . . The most intimate rhythms of the human body are still 
conditioned by the natural world outside ourselves: the daily path of the 
sun, alternating light with dark; the monthly phases of the moon that tug 
the tides; and the annual passage of the seasons.
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CHAPTER V

CONCLUSION

The overarching goal of this dissertation was to demonstrate the influence of vegetation 

on the urban aerobiome and its potential as a mediating factor linking vegetation and human 

health. Although the health benefits of vegetation have been widely documented, designers and 

planners continue to struggle with vague and ‘woolly’ practical implications of that research. 

Specifically, there are still no guidelines for what the best type or composition of vegetation 

is, how much of it there should be, or how far it should be from residents’ homes. Although 

my research did not answer these questions (nor did it intend to), it did show that the urban 

aerobiome may be influenced by nearby vegetation type and abundance and by human 

management activities. 

A key contribution of this dissertation was that I investigated urban microbial ecology 

from the perspective of a landscape architect, and I worked closely with designers, biologists, 

and social scientists to accomplish the research. I believe that this type of transdisciplinary 

collaboration is key to solving most of the complex problems we face due to increasing 

population growth, urbanization, and environmental uncertainty.

Summary of Results

Chapter II

While airborne microorganisms are ubiquitous in urban areas, the influence of nearby 

vegetation on the urban aerobiome remains poorly understood. In this chapter, I established 

that there is a significant compositional difference in airborne bacterial communities at fine 

spatial scales by examining two urban land cover types with the highest contrast in vegetation—

urban parks and parking lots. I also demonstrated that passive collection of airborne microbes 

via settling dishes provided similar results to active collection via vacuum pumps and was a 
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defensible method to use in the large-scale collection campaign. This work sets a foundation for 

understanding how urban vegetation may impact the aerobiome, with potential implications for 

designing neighborhoods and open space systems that foster better human health.

Chapter III

Disentangling the complex interactions that drive the assemblage of the urban aerobiome 

at different scales of space and time could benefit long-term green infrastructure plans for 

healthier and more equitable cities of the future. In our study, site location and sample 

collection date were strongly related to both richness and compositional variation of airborne 

bacterial communities. Community composition was influenced by land cover type but the 

signal was overwhelmed by compositional shifts associated with date. Certain taxa appeared to 

be indicative of land cover type (e.g., class Gammaproteobacteria) while others tended to signal 

temporal changes (e.g., Sphingomonas faeni).

Overall, we concluded that the interplay among spatiotemporal controls on microbial 

assemblage can be understood by looking at site-scale features (e.g., land cover type, vegetation 

species composition), regional-scale drivers (e.g., agricultural activities, seasonal vegetation 

changes), and periodic events (e.g., precipitation, irrigation, and mowing ). Our key message was 

that human land use decisions and management activities can and do influence the composition 

of airborne bacterial communities in ways that could potentially affect urban health, thereby 

warranting further investigation for urban design implications.

Chapter IV

Public health is (re)entering a phase where the external environment is recognized as 

important to human well-being. The new “settings-based” approach to health (i.e. considering 

individual health through a lens that includes the day-to-day living environment) strives to 

reinvigorate the historic emphasis upon environmental conditions that may impact health and 

lifestyle choices. Because urban infrastructure (transportation, sewer and water, electricity, 
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communication systems) is difficult and costly to alter once built, the cities and neighborhoods 

we are designing now will be the places where our children and grandchildren live, work and 

play. It is thus of utmost importance to determine principles or guidelines for creating healthy 

cities. 

Increasing urban vegetation constitutes a public health intervention with enormous 

potential benefits; it is associated with numerous immune-mediated and inflammatory chronic 

conditions, which may be at least partly mediated by microbial exposures. Although there is far 

from a complete picture of how microbes assemble in the urban environment, we have sufficient 

evidence to begin developing hypotheses for shaping the urban aerobiome through landscape 

design choices, implementing the hypotheses in real projects, and evaluating the resulting 

data to inform subsequent hypotheses. This iterative incorporation of scientific findings into 

experimental design practice and then evaluating whether those designed experiments provide 

the anticipated benefits is an important pathway to ensure that science is informed by what 

works and does not work in non-laboratory settings. The primary contribution of this chapter to 

the discipline was the construction of a conceptual framework linking the science of microbial 

ecology with design practice, which can be used to inform future scientific investigations as well 

as to apply the knowledge gained to design.

Future Directions

Promoting human well-being in urban areas is a grand challenge in the 21st century, which 

has been so far characterized by unprecedented changes in our environments and lifestyles. 

Although humans are extraordinarily adaptable, our underlying genetic structures and 

requirements for optimal health have not appreciably changed over the millenia. Vegetation, 

and biodiversity in general, is a vital component of our environmental life support system; it 

nourishes us, keeps us sane, awes us with its exquisite forms and, perhaps, hosts the microbes 

that educate our immune systems.

I believe that the most consequential direction for future research is further elucidation of 
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how microbes affect human health. We have demonstrated that design and management can 

alter urban aerobiome assemblage, but we don’t yet know which microbes are “good” or “bad” 

for people’s health, or whether it is more important to consider the diversity and composition 

of the entire community we encounter. It would be valuable to identify other health-relevant 

individual taxa, or particular immune-training assemblages that are associated with certain 

land uses or activities. Once we ascertain which taxa and/or assemblages are beneficial, then 

we can conceive design strategies to foster the beneficial and inhibit the detrimental. In this 

dissertation, I focused on bacteria, but fungi, viruses, and other microorganisms can also impact 

health. Future work could investigate how urban vegetation influences these other groups.

Since my dissertation demonstrated that the compositional differences in the urban 

aerobiome are measurable and significant across land cover types, future research might 

examine urban land cover types that were not studied here. For instance, exploring microbial 

communities across the gradient of compact downtown core to single-family residential zones 

to dispersed peri-urban neighborhoods and linking these exposures to human health outcomes 

would generate important knowledge about the places where people actually live. In particular, 

exploring the connections between therapeutic green environments, like gardens, and microbial 

exposures could be important. It would also be useful to evaluate the potential consequences of 

environmental microbial exposures for different demographic groups, particularly vulnerable 

populations such as the elderly, children, and those with mental disorders. 

Furthermore, a deeper exploration of the conceptual model illustrated by Figure 7 (Chapter 

IV) is warranted to advance our understanding of how interactions among spatial and temporal 

features across different scales drive aerobiome assembly. In particular, studies intended to 

elucidate whether urban design decisions at the local scale or policy decisions at the regional 

scale affect microbial communities and studies that describe microbial community change across 

the course of a year as related to landscape features would be of value. 
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Table 4. Proportion of vegetated area calculated at varying buffer sizes.

Site
Proportion of Vegetated Area (within buffer zone radii)

50 m 100 m 200 m 400 m 800 m
park-ALT 0.95 0.93 0.83 0.67 0.5
park-AMA 0.97 0.93 0.77 0.59 0.46
park-MAU 0.98 0.83 0.63 0.51 0.39
park-WES 1 0.83 0.64 0.58 0.5
park-WEW 0.96 0.97 0.7 0.56 0.36
lot-ALB 0.01 0.15 0.35 0.51 0.5
lot-LOW 0.03 0.02 0.05 0.22 0.43
lot-MOC 0.01 0.04 0.09 0.29 0.52
lot-PPN 0.02 0.08 0.11 0.37 0.49
lot-VRC 0 0.17 0.26 0.38 0.41
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Figure 24. Comparison of alpha diversity for parking lots and parks.
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Figure 25. Airborne bacterial community composition at the phylum level for active (top) versus 
passive (bottom) sampling methods
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Table 5. Change in statistical prediction value and significance of PERMANOVA model at 
varying buffer zone radii.

Buffer Zone Radii R2 p-value
50 m 0.150 0.026
100 m 0.143 0.060
200 m 0.151 0.068
400 m 0.127 0.240
800 m 0.108 0.420
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Figure 26. Unconstrained PCoA ordination of airborne bacterial communities from parks 
(green triangles) and parking lots (purple circles). 
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Table 6. Closest NCBI matches, accession numbers and match % for all OTUs that were 
identified as differentially abundant in parks or parking lots. 

Closest NCBI Match Accession Number Match %
Aerosakkonema funiforme NR_114306.1 93
Aridibacter kavangonensis NR_133698.1 87
Acidisoma sibiricum NR_042706.1 95
Lactobacillus jensenii NR_117072.1 81
Nostoc punctiforme NR_074317.1 99
Calothrix desertica NR_114995.1 94
Hymenobacter ginsengisoli NR_109449.1 96
Sediminicoccus rosea NR_132670.1 95
Calothrix sp. PCC 7507 NR_102891.1 98
Spirosoma arcticum NR_134186.1 96
Gemmatirosa kalamazoonesis NR_132675.1 89
Acidisoma sibiricum NR_042706.1 94
Acidisoma tundrae NR_042705.1 94
Frondihabitans peucedani NR_116933.1 94
Georgenia soli NR_116959.1 97
Oxynema thaianum NR_125585.1 93
Geodermatophilus nigrescens NR_109505.1 97
Acidisoma tundrae NR_042705.1 94
Frondihabitans peucedani NR_116933.1 94
Georgenia soli NR_116959.1 97
Oxynema thaianum NR_125585.1 93
Geodermatophilus nigrescens NR_109505.1 97
Sphingomonas jaspsi NR_114034.1 98
Komagataeibacter oboediens NR_113397.1 95
Telmatobacter bradus NR_115074.1 97
Roseiarcus fermentans NR_134158.1 98
Mucilaginibacter frigoritolerans NR_116979.1 100
Granulicella paludicola NR_115072.1 96
Steroidobacter denitrificans NR_044309.1 94
Burkholderia sordidicola NR_041916.1 100
Micromonospora cremea NR_108478.1 99
Rhodopila globiformis NR_037120.1 96
Burkholderia phytofirmans NR_102845.1 100
Granulicella sapmiensis NR_118023.1 99
Blastococcus jejuensis NR_043633.1 96
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Closest NCBI Match Accession Number Match %
Beijerinckia mobilis NR_042180.1 96
Granulicella pectinivorans NR_115071.1 97
Novosphingobium taihuense NR_042934.1 99
Burkholderia phenoliruptrix NR_102849.1 97
Silvibacterium bohemicum NR_135209.1 97
Rubritalea halochordaticola NR_113049.1 88
Acidicapsa borealis NR_117182.1 98
Granulicella pectinivorans NR_115071.1 97
Acidicaldus organivorans NR_042752.1 94
Nguyenibacter vanlangensis NR_125459.1 95
Granulibacter bethesdensis NR_074276.1 95
Candidatus Solibacter usitatus NR_074351.1 93
Silvibacterium bohemicum NR_135209.1 98
Granulicella tundricola NR_074295.1 98
Silvibacterium bohemicum NR_135209.1 97
Rhizobium sullae NR_029330.1 99
Conexibacter woesei NR_074830.1 91
Rhodopila globiformis NR_037120.1 96
Rhodococcus coprophilus NR_118607.1 100
Conexibacter woesei NR_074830.1 98
Blastochloris gulmargensis NR_115056.1 96
Conexibacter woesei NR_074830.1 96
Silvibacterium bohemicum NR_135209.1 94
Rhodopila globiformis NR_037120.1 95
Granulicella cerasi NR_134047.1 97
Acidocella aluminiidurans NR_114266.1 94
Granulicella pectinivorans NR_115071.1 98
Erwinia billingiae NR_102820.1 100
Acidobacterium capsulatum NR_074106.1 97
Acidipila rosea NR_113179.1 99
Brevundimonas olei NR_117268.1 96
Enterococcus hirae NR_114783.2 100

Table 6. continued
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APPENDIX B 

R ANALYSIS CODE FOR CHAPTER II

`r opts_chunk$set(cache=FALSE, tidy=FALSE, comment=’’)`

# Airborne Microbiome of Parks vs. Parking Lots: Pilot Study

#### G. Mhuireach (gwynhwyfer.mhuireach at gmail dot com)

---
title: “ParksLots_petris_SotTE”
author: “G. Mhuireach”
date: “February 1, 2016”
output: html_document
---

This document provides the code used to generate all analyses and 
figures for our pilot study of airborne microbial communities in parks 
and parking lots in Eugene, Oregon. A manuscript has been submitted for 
publication and is currently undergoing peer review.

First, prepare the workspace by setting parameters, defining the working 
directory, and loading required packages.

```{r initialSetup, echo=FALSE}
set.seed(2) # set seed for reproducible results
options(scipen=7) # curtail scientific notation
options(digits=5) # number of digits to print on output 
# The required package list:
reqpkg <- c(“phyloseq”, “ggplot2”, “DESeq2”, “ape”, “RColorBrewer”, 
“vegan”, 
      “rgdal”, “maptools”, “spdep”, “gstat”, “VennDiagram”, “reshape2”)
# Load all required packages and show version
for (i in reqpkg) {
  print(i)
  print(packageVersion(i))
  library(i, quietly = TRUE, verbose = FALSE, warn.conflicts = FALSE, 
character.only = TRUE)
}

# set ggplot2 theme
theme_set(theme_bw(base_size = 15))

## load extra functions
# function to extract OTU table from phyloseq and ensure samples are 
rows
getTab <- function(physeq) {
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 require(“vegan”)
 OTU = otu_table(physeq)
 if (taxa_are_rows(OTU)) {
  OTU = t(OTU)
 }
 return(as(OTU, “matrix”))
}

```

Load data (contains buttons & petris combined). Then clean up the data: 
identify potential contaminants from lab processing and remove them, 
remove extraction controls, remove taxa that occur only 1-2 times, 
identify and remove failed samples.

```{r importData, echo=FALSE}
# load data
load(“~/Downloads/ParksLots.RData”)

# identify potential lab contaminants
PL_ec1 <- prune_samples(sample_names(ParksLots) == “ec.1”, ParksLots)
PL_ec2 <- prune_samples(sample_names(ParksLots) == “ec.2”, ParksLots)
PL_ec3 <- prune_samples(sample_names(ParksLots) == “ec.3”, ParksLots)
PL_ec4 <- prune_samples(sample_names(ParksLots) == “ec.4”, ParksLots)
PL_contams <- merge_phyloseq(PL_ec1, PL_ec2)
PL_contams <- merge_phyloseq(PL_contams, PL_ec3)
PL_contams <- merge_phyloseq(PL_contams, PL_ec4)
PL_contams <- prune_taxa(taxa_sums(PL_contams) > 0, PL_contams)
contamAbund <- data.frame(tax_table(PL_contams))
contamAbund$Count <- taxa_sums(PL_contams)
#write.csv(contamAbund, file=”contamAbund.csv”)
# what are the 3 most abundant contaminants?
top3cont <- sort(taxa_sums(PL_contams), TRUE)[1:3]
top3cont <- prune_taxa(names(top3cont), PL_contams)
otu_table(top3cont)
tax_table(top3cont)

# remove extraction control samples
PL <- prune_samples(sample_names(ParksLots) != “ec.1”, ParksLots)
PL <- prune_samples(sample_names(PL) != “ec.2”, PL)
PL <- prune_samples(sample_names(PL) != “ec.3”, PL)
PL <- prune_samples(sample_names(PL) != “ec.4”, PL)

# see if any samples failed
sort(sample_sums(PL)) 
# 3 samples have very low counts - remove them
PL <- prune_samples(sample_sums(PL) >= 25000, PL)

# remove plant and mitochondrial sequences
get_taxa_unique(PL, “Order”)
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PL_nocont <- subset_taxa(PL, Order!=”Streptophyta”)
get_taxa_unique(PL, “Family”)
PL_nocont <- subset_taxa(PL_nocont, Family!=”mitochondria”)

# remove top 3 potential contaminants, as well as Halomonas and 
Shewanella spp.
taxa_sums(PL_nocont)[“573035”]
PL_nocont <- prune_taxa(taxa_names(PL_nocont) != “573035”, PL_nocont)
taxa_sums(PL_nocont)[“3505032”]
PL_nocont <- prune_taxa(taxa_names(PL_nocont) != “3505032”, PL_nocont)
taxa_sums(PL_nocont)[“811074”]
PL_nocont <- prune_taxa(taxa_names(PL_nocont) != “811074”, PL_nocont)
PL_nocont <- subset_taxa(PL_nocont, Genus!=”Halomonas”)
PL_nocont <- subset_taxa(PL_nocont, Genus!=”Shewanella”)

# remove taxa seen fewer than 3 times
PL_prune <- prune_taxa(taxa_sums(PL_nocont) > 3, PL_nocont) 

```

Preprocess data and apply transformations for downstream analyses. 
There has been discussion about the respective benefits of “rarefying” 
(i.e., selecting a random subsample from each sample at the level of 
the lowest sample count to adjust for differences in sample sizes) 
versus data transformation, for example, the “variance stabilizing 
transformation” (VST) method in the DESeq2 package for R (cite). We 
report the results of the VST method in this paper.

```{r preProcess, echo=FALSE}

# make new variable to merge by sampling method for each location
var1 = as.character(get_variable(PL_prune, “sample_type”))
var2 = as.character(get_variable(PL_prune, “location”))
sample_data(PL_prune)$mergeVar <- mapply(paste0, var1, var2, collapse = 
“_”)
allMerge <- merge_samples(PL_prune, “mergeVar”)
# repair values for location & site_type
sample_data(allMerge)$location <- levels(sample_data(PL_
prune)$location) 
sample_data(allMerge)$site_type[sample_data(allMerge)$site_type==1] <- 
“lot”
sample_data(allMerge)$site_type[sample_data(allMerge)$site_type==2] <- 
“park”
sample_data(allMerge)$sample_type[sample_data(allMerge)$sample_type==1] 
<- “button”
sample_data(allMerge)$sample_type[sample_data(allMerge)$sample_type==2] 
<- “petri”
sample_data(allMerge) # check to make sure it worked correctly

# subset for petris (passive)



96

PL_petri <- subset_samples(PL_prune, sample_type == “petri”)
# are there any taxa not observed in any lot samples?
any(taxa_sums(PL_petri) == 0)
sum(taxa_sums(PL_petri) == 0) # how many?
PL_petri <- prune_taxa(taxa_sums(PL_petri) > 0, PL_petri) # remove them

# merge all 3 petri samples for each site
petMerge <- merge_samples(PL_petri, “location”)
# repair values for location & site_type
sample_data(petMerge)$location <- levels(sample_data(PL_
petri)$location) 
sample_data(petMerge)$site_type[sample_data(petMerge)$site_type==1] <- 
“lot”
sample_data(petMerge)$site_type[sample_data(petMerge)$site_type==2] <- 
“park”
sample_data(petMerge) # check to make sure it worked correctly

# add a column for site labels
sample_data(petMerge)$site_label <- 
 c(“lot.ALB”, “park.ALT”, “park.AMA”, “lot.LOW”, “park.MAU”, “lot.MOC”, 
  “lot.PPN”, “lot.VRC”, “park.WES”, “park.WEW”)

# transform merged petri counts for downstream analysis using vst
petMerge_des2 <- phyloseq_to_deseq2(petMerge, ~ site_type)
petMerge_des2 <- estimateSizeFactors(petMerge_des2)
petMerge_des2 <- estimateDispersions(petMerge_des2, fitType=”local”, 
maxit=260)
# perform DESeq2 variance stabilization instead of rarefying
petMerge_vst <- getVarianceStabilizedData(petMerge_des2)
# Save the untransformed data as a separate variable so you can go back 
to it
petMerge0 <- petMerge
otu_table(petMerge) <- otu_table(petMerge_vst, taxa_are_rows=TRUE)
petMerge_vst <- petMerge
petMerge <- petMerge0
rm(petMerge0)
# Set values below zero, to zero
otu_table(petMerge_vst)[otu_table(petMerge_vst) < 0.0] <- 0
sort(taxa_sums(petMerge))[1:10]

# transform merged petri counts to relative abundance by sample
petMergeRel <- transform_sample_counts(petMerge, function(x) 100 * x/
sum(x))

# get raw OTU and sample data tables out of phyloseq, samples as rows
petTab <- getTab(petMerge)
petTab[1:5, 1:5] # check

```
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Access basic information, perform initial visualization of 
untransformed data.

``` {r basicInfo, echo=FALSE}
sum(sample_sums(allMerge)) # total number of OTUs
ntaxa(allMerge) # total number of taxa
length(get_taxa_unique(allMerge, “Phylum”)) # number of unique Phyla
siteSums <- sort(sample_sums(allMerge)) # numbers of OTUs found in each 
sample
sum(siteSums[“buttonmauriejacobs”], siteSums[“petrimauriejacobs”])
sum(siteSums[“buttonwestmoreland”], siteSums[“petriwestmoreland”])
sum(siteSums[“buttonamazon”], siteSums[“petriamazon”])
sum(siteSums[“buttonppnw”], siteSums[“petrippnw”])
sum(siteSums[“buttonaltonbaker”], siteSums[“petrialtonbaker”])
sum(siteSums[“buttonalbertsons”], siteSums[“petrialbertsons”])
sum(siteSums[“buttonlowes”], siteSums[“petrimauriejacobs”])
sum(siteSums[“buttonmoc”], siteSums[“petrimoc”])
sum(siteSums[“buttonwew”], siteSums[“petriwew”])
sum(siteSums[“buttonlowes”], siteSums[“petrivrc”])
rev(sort(taxa_sums(allMerge)))[1:10] # range of top ten OTU abundances
rev(sort(taxa_sums(allMerge)))[1]/sum(sample_sums(allMerge)) # 
proportion top 1

# top 10 taxa
pl10 <- sort(taxa_sums(allMerge), TRUE)[1:10]
pl10 <- prune_taxa(names(pl10), allMerge)
pl10_sums <- data.frame(taxa_sums(pl10))

# get taxonomic Families of top 10
pl10tax <- data.frame(tax_table(pl10Rel)[, c(“Phylum”, “Class”, 
“Order”, “Family”, “Genus”, 
                “Species”)])
pl10tax <- cbind(pl10tax, pl10_sums)
names(pl10tax)[names(pl10tax) == “taxa_sums.pl10.”] <- “Abundance”
pl10matrix$RelAbund <- 100 * pl10matrix$Abundance/sum(taxa_
sums(allMerge))
pl10matrix <- pl10matrix[order(-pl10matrix[,8]), ]

# compare shared taxa across site type
allLot <- subset_samples(allMerge, site_type == “lot”)
# are there any taxa not observed in any lot samples?
any(taxa_sums(allLot) == 0)
sum(taxa_sums(allLot) == 0) # how many?
allLot <- prune_taxa(taxa_sums(allLot) > 0, allLot) # remove them

# Subset petri-parks
allPark <- subset_samples(allMerge, site_type == “park”)
# are there any taxa not observed in any park samples?
any(taxa_sums(allPark) == 0)
sum(taxa_sums(allPark) == 0) # how many?
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allPark <- prune_taxa(taxa_sums(allPark) > 0, allPark) # remove them

# Venn diagrams for lots vs. parks (use to calculate number of shared 
taxa)
parkNames <- as.vector(taxa_names(allPark))
lotNames <- as.vector(taxa_names(allLot))
venn.diagram(x=list(“Parks”=parkNames, “Lots”=lotNames), 
       filename=”Venn-allpl.tiff”, col=”transparent”, 
       fill=c(“seagreen”, “gray”), alpha=0.50, 
       cex=1.5, fontfamily=”serif”, fontface=”bold”, 
       cat.col=c(“seagreen4”, “gray3”), cat.cex=1.5, 
       cat.pos=c(270, 90), cat.dist=0.2, cat.fontfamily=”serif”, 
       rotation.degree=0, margin=0.2)

# plot alpha diversity index 
plot_richness(allMerge, x=”site_type”, color=”site_type”, 
measures=c(“Shannon”),
       title=”Alpha Diversity”) + 
       geom_boxplot() + 
       scale_color_viridis(begin=0, end=0.7, discrete=TRUE) + 
 theme(axis.text.x=element_text(size=16), axis.text.y=element_
text(size=16), 
    axis.title=element_text(size=18), legend.position = “none” 
    )

# test diversity across sites
# first check that the data are normally distributed
sample_data(allMerge)$Shannon <- estimate_richness(allMerge)[, 
“Shannon”]
hist(sample_data(allMerge)$Shannon)
t.test(sample_data(allMerge)$Shannon ~ sample_data(allMerge)$site_type)

```

Compare passive and active collection methods in terms of species 
richness, overall composition, and relative abundances of the taxa 
comprising the top X percent of sequences.

```{r passAct, echo=FALSE}

plot_richness(allMerge, x=”sample_type”, color=”sample_type”, 
       measures=c(“Shannon”), title=””) + 
       geom_boxplot() + 
       scale_color_viridis(begin=0, end=0.7, discrete=TRUE, 
guide=FALSE) 

# test richness of petri vs. button samples 
# first check that the data are normally distributed
sample_data(allMerge)$Shannon <- estimate_richness(allMerge)[, 
“Shannon”]
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hist(sample_data(allMerge)$Shannon)
t.test(sample_data(allMerge)$Shannon ~ sample_data(allMerge)$sample_
type)

# barplots to compare proportional composition for each sample type by 
phylum
sampMerge <- merge_samples(PL_prune, “sample_type”)
# repair values for location & site_type
sample_data(sampMerge)$sample_type <- levels(sample_data(PL_
prune)$sample_type) 

sampMergeRel <- transform_sample_counts(sampMerge, function(x) x/
sum(x))
otu_table(sampMergeRel)[1:2, 1:10]
TaxobarAll_Phylum <- plot_bar(sampMergeRel, x=”Family”, fill=”Family”)
TaxobarAll_Phylum + 
 geom_bar(aes(color=Family, fill=Family, legend=””), stat=”identity”) +
 facet_wrap(~ sample_type, ncol=1) +
 scale_color_viridis(discrete=TRUE, guide=FALSE) +
 scale_fill_viridis(discrete=TRUE, guide=FALSE)

# get relative abundance for top 50 taxa
sum(sort(taxa_sums(allMerge),TRUE)[1:50])/sum(taxa_sums(allMerge))
top50 <- sort(taxa_sums(allMerge), TRUE)[1:50]
top50 <- prune_taxa(names(top50), allMerge)
top50Tab <- getTab(top50)
top50Env <- data.frame(sample_data(top50))
top50res <- adonis(top50Tab ~ sample_type, data=top50Env, perm=99999, 
method=”horn”)
top50res
Taxobar_top50 <- plot_bar(top50, x=”Genus”, fill=”Genus”)
Taxobar_top50 + 
 geom_bar(aes(fill=Genus), stat=”identity”) +
 facet_wrap(~ sample_type, ncol=1) +
 scale_fill_viridis(discrete=TRUE)

```

Explore and visualize data:

```{r dataExplore, echo=FALSE}
## ordinations
# using variance-stabilizing transformed data and Horn-Morisita 
distance metric
petPcoa <- ordinate(petMerge_vst, method=”PCoA”, distance=”horn”)
plot_scree(petPcoa)
require(ggrepel)
plot_ordination(petMerge_vst, petPcoa, type=”samples”, shape=”site_
type”, 
        color=”Green_50m”) + 
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 geom_point(size=6) + 
 geom_text_repel(aes(label=sample_data(petMerge_vst)$site_label, 
size=18), 
         box.padding=unit(0.6, “lines”)) + 
 scale_color_viridis(begin=0, end=.7) +
 theme(legend.text=element_text(size=16), 
    legend.title=element_text(size=16, vjust=1),
    axis.text=element_text(size=16),
    axis.title=element_text(size=16)
    )

# PERMANOVA for site type, veg. proportion within 50m, 100m, 200m, 
400m, 800m
petMergeTab <- getTab(petMerge_vst)
petMergeEnv <- data.frame(sample_data(petMerge_vst))

varlist <- names(petMergeEnv)[c(6,13,15,17,19,21)]
results <- list()
for (i in varlist){ 
      form <- as.formula(paste(“petMergeTab”, i, sep=”~”))
      results[[i]] <- adonis(form, data=petMergeEnv, perm=99999, 
method=”horn”)
      }  
sink(“adonisResults.txt”)
results
sink()

# show relationship between buffer size and adonis results
buffDist <- c(50, 100, 200, 400, 800)
resR2 <- c(results$Green_50m$aov.tab$R2[1], results$Green_100m$aov.
tab$R2[1], 
      results$Green_200m$aov.tab$R2[1], results$Green_400m$aov.
tab$R2[1], 
      results$Green_800m$aov.tab$R2[1])
resPr <- c(results$Green_50m$aov.tab$Pr[1], results$Green_100m$aov.
tab$Pr[1], 
      results$Green_200m$aov.tab$Pr[1], results$Green_400m$aov.
tab$Pr[1], 
      results$Green_800m$aov.tab$Pr[1])
buffAdon <- data.frame(cbind(buffDist, resR2, resPr))
p <- ggplot(buffAdon, aes(x=buffDist, y=resR2)) + geom_point() 
p + geom_smooth(method = “lm”, se = FALSE)

p <- ggplot(buffAdon, aes(x=buffDist, y=resPr)) + geom_point() 
p + geom_smooth(method = “lm”, se = FALSE)

buffR2 <- lm(buffDist ~ resR2)
summary(buffR2)
buffPr <- lm(buffDist ~ resPr)
summary(buffPr)
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# test spatial autocorrelation with Mantel test
pet.spat <- as.matrix(dist(cbind(petMergeEnv$Longitude, 
petMergeEnv$Latitude)))
pet.spat
pet.horn <- as.matrix(vegdist(petMergeTab, method=”horn”))
petMan <- mantel(pet.horn, pet.spat, method=”spearman”, 
permutations=99999)
petMan

# test hypothesis with direct gradient analysis with constrained PCoA 
ordcap <- ordinate(petMerge_vst, “CAP”, “horn”, ~ Green_50m)
plot_ordination(petMerge_vst, ordcap, type=”samples”, shape=”site_
type”, 
  color=”Green_50m”) + geom_point(size=6) + 
  geom_text_repel(aes(label=sample_data(petMerge_vst)$site_label, 
size=18), 
          box.padding=unit(0.6, “lines”)) + 
  scale_color_viridis(begin=0, end=0.7) +
  theme(
   legend.text=element_text(size=16), 
   legend.title=element_text(size=16, vjust=1),
   axis.text=element_text(size=16),
   axis.title=element_text(size=16)    
   )
  
```

Investigate abundant vs. common vs. rare taxa, as in “rare biosphere” 
papers 
(Logares et al. 2014). We used the raw counts, transformed to 
proportional abundance by sample.

```{r rareAbund, echo=FALSE}
# write.csv(taxa_sums(petMerge), file = “taxa_sums.csv”)
# define rare (< 0.1%) taxa, per Pedros Alio (2006)
petRareRel <- filter_taxa(petMergeRel, function(x) mean(x) < 0.1, TRUE)
# select rare taxa from untransformed OTU table
petRare <- prune_taxa(taxa_names(petRareRel), petMerge)
rev(sort(taxa_sums(petRare)))[1:10]
ntaxa(petRare)

# define abundant (> 0.1%) taxa
petAbundRel <- filter_taxa(petMergeRel, function(x) mean(x) > 0.1, TRUE)
# select abundant taxa from untransformed OTU table
petAbund <- prune_taxa(taxa_names(petAbundRel), petMerge)
ntaxa(petAbund)

# transform rare counts for downstream analysis using vst
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petRare_des2 <- phyloseq_to_deseq2(petRare, ~ site_type)
# calculate geometric means prior to estimate size factors
gm_mean <- function(x, na.rm=TRUE){
 exp(sum(log(x[x > 0]), na.rm=na.rm) / length(x))
 }
geoMeans <- apply(counts(petRare_des2), 1, gm_mean)
petRare_des2 <- estimateSizeFactors(petRare_des2, geoMeans=geoMeans)
petRare_des2 <- estimateDispersions(petRare_des2, fitType=”local”, 
maxit=260)
# perform DESeq2 variance stabilization instead of rarefying
petRare_vst <- getVarianceStabilizedData(petRare_des2)
# Save the untransformed data as a separate variable so you can go back 
to it
petRare0 <- petRare
otu_table(petRare) <- otu_table(petRare_vst, taxa_are_rows=TRUE)
petRare_vst <- petRare
petRare <- petRare0
rm(petRare0)
# Set values below zero, to zero
otu_table(petRare_vst)[otu_table(petRare_vst) < 0.0] <- 0

# ordinate rare taxa
petRareOrd <- ordinate(petRare_vst, “PCoA”, “horn”)
ordcapRare <- ordinate(petRare, “CAP”, “horn”, ~ Green_50m)
plot_ordination(petRare, petRareOrd, 
  type=”samples”, shape=”site_type”, color=”Green_50m”) + 
  geom_point(size=5) + geom_text(label=sample_data(petRare)$location, 
size=4, vjust=1.3) + 
  scale_colour_gradientn(colours=rainbow(10, s=0.4, v=0.75, start=0, 
end=.5, alpha=.8))

# test for statistical differences for rare taxa
petRareTab <- getTab(petRare)
petRareEnv <- data.frame(sample_data(petRare))
adonisRareSite <- adonis(petRareTab ~ site_type, petRareEnv, 
perm=99999, method=”horn”)
adonisRareSite
adonisRareVeg <- adonis(petRareTab ~ Green_50m, petRareEnv, perm=99999, 
method=”horn”)
adonisRareVeg

# plot abundant taxa
# transform petri counts for downstream analysis using vst
petAbund_des2 <- phyloseq_to_deseq2(petAbund, ~ site_type)
petAbund_des2 <- estimateSizeFactors(petAbund_des2)
petAbund_des2 <- estimateDispersions(petAbund_des2, fitType=”local”, 
maxit=260)
# perform DESeq2 variance stabilization instead of rarefying
petAbund_vst <- getVarianceStabilizedData(petAbund_des2)
# Save the untransformed data as a separate variable so you can go back 
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to it
petAbund0 <- petAbund
otu_table(petAbund) <- otu_table(petAbund_vst, taxa_are_rows=TRUE)
petAbund_vst <- petAbund
petAbund <- petAbund0
rm(petAbund0)
# Set values below zero, to zero
otu_table(petAbund_vst)[otu_table(petAbund_vst) < 0.0] <- 0

petAbundOrd <- ordinate(petAbund, “PCoA”, “horn”)
plot_ordination(petAbund, petAbundOrd, 
  type=”samples”, shape=”site_type”, color=”Green_200m”) + 
  geom_point(size=5) + geom_text(label=sample_data(petAbund)$location, 
size=4, vjust=1.3) + 
  scale_colour_gradientn(colours=rainbow(10, s=0.4, v=0.75, start=0, 
end=.5, alpha=.8))

petAbundTab <- getTab(petAbund_vst)
petAbundEnv <- data.frame(sample_data(petAbund_vst))
adonisAbuSite <- adonis(petAbundTab ~ site_type, petAbundEnv, 
perm=99999, method=”horn”)
adonisAbuSite
adonisAbuVeg <- adonis(petAbundTab ~ Green_50m, petAbundEnv, 
perm=99999, method=”horn”)
adonisAbuVeg

```

Do hypothesis testing

```{r hypTest, echo=FALSE}
# multiple test using negative binomial GLM fitting and Wald statistics 
- petris
# levels are alphabetical (i.e., lots, parks) & “untreated” is first
petMerge_glm <- DESeq(petMerge_des2, test=”Wald”, fitType=”parametric”)
# Investigate test results table
res <- results(petMerge_glm, cooksCutoff=FALSE)
alpha <- 0.05
# The following omits the NA p-values.
sigtab <- res[which(res$padj < alpha), ]
# This line then reinstates the previous NA padj values if their
# log2FoldChange was greater than for p-value threshold. 
#sigtab <- res[abs(res$log2FoldChange) > 
min(abs(sigtab$log2FoldChange)), ]
sigtab <- cbind(as(sigtab, “data.frame”), 
        as(tax_table(petMerge)[rownames(sigtab),], “matrix”),
        as(t(otu_table(petMergeRel)[,rownames(sigtab)]), “matrix”),
        as(taxa_sums(petMergeRel)[rownames(sigtab)], “matrix”)
        )
colnames(sigtab)[24] <- c(“RelAbund”)
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head(sigtab)
mcols(res, use.names=TRUE)
dim(sigtab)
sum(sigtab$RelAbund)
rev(sort(sigtab$RelAbund))[1:10]
# just the OTUs that were significantly higher in the parks
parksigtab <- sigtab[sigtab[, “log2FoldChange”] > 0, ]
parksigtab <- parksigtab[order(parksigtab[,6]),]
write.csv(as.data.frame(parksigtab), file=”pet_SigParks.csv”)
# just the OTUs that were significantly higher in the lots
lotsigtab <- sigtab[sigtab[, “log2FoldChange”] < 0, ]
lotsigtab <- lotsigtab[order(lotsigtab[,6]),]
head(lotsigtab)
write.csv(as.data.frame(lotsigtab), file=”pet_SigLots.csv”)

parkabundtaxa <- data.frame(row.names(parksigtab), parksigtab$Family, 
parksigtab$wew, 
              parksigtab$mauriejacobs, parksigtab$altonbaker, 
              parksigtab$amazon, parksigtab$westmoreland,
              parksigtab$lowes, parksigtab$vrc, parksigtab$ppnw, 
              parksigtab$moc, parksigtab$albertsons
              )
names(parkabundtaxa) <- c(“OTU”, “Family”, “park-WEW”, “park-MAU”, 
“park-ALT”, 
             “park-AMA”, “park-WES”, “lot-LOW”, “lot-VRC”, “lot-PPN”,
             “lot-MOC”, “lot-ALB”
             )
head(parkabundtaxa)
write.csv(as.data.frame(parkabundtaxa), file=”parkabundtaxa.csv”)
lotabundtaxa <- data.frame(row.names(lotsigtab), lotsigtab$Family, 
lotsigtab$wew, 
              lotsigtab$mauriejacobs, lotsigtab$altonbaker, 
              lotsigtab$amazon, lotsigtab$westmoreland,
              lotsigtab$lowes, lotsigtab$vrc, lotsigtab$ppnw, 
              lotsigtab$moc, lotsigtab$albertsons 
              )
names(lotabundtaxa) <- c(“OTU”, “Family”, “park-WEW”, “park-MAU”, 
“park-ALT”, 
             “park-AMA”, “park-WES”, “lot-LOW”, “lot-VRC”, “lot-PPN”,
             “lot-MOC”, “lot-ALB”
             )
write.csv(as.data.frame(lotabundtaxa), file=”lotabundtaxa.csv”)

parkAbu <- prune_taxa(as.character(parkabundtaxa$OTU), petMergeRel)
parkAbu.df <- as.data.frame(t(otu_table(parkAbu)))
parkAbu.df$SiteAbu <- “park”
head(parkAbu.df)
parkBLAST <- read.csv(“~/Downloads/SigParksBLAST.csv”, header=TRUE)
head(parkBLAST)
parkAbu.df$BLAST <- parkBLAST[match(row.names(parkAbu.df), 
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parkBLAST$OTU), 6]
head(parkAbu.df)
length(parkAbu.df$BLAST)
write.csv(as.data.frame(parkAbu.df), file=”parkAbu.df.csv”)

lotAbu <- prune_taxa(as.character(lotabundtaxa$OTU), petMergeRel)
lotAbu.df <- as.data.frame(t(otu_table(lotAbu)))
lotAbu.df$SiteAbu <- “lot”
lotBLAST <- read.csv(“~/Downloads/SigLotsBLAST.csv”, header=TRUE)
lotAbu.df$BLAST <- lotBLAST[match(row.names(lotAbu.df), lotBLAST$OTU), 
6]
head(lotAbu.df)
length(lotAbu.df$BLAST)
write.csv(as.data.frame(lotAbu.df), file=”lotAbu.df.csv”)

difAbund <- rbind(parkAbu.df, lotAbu.df)
difAbund$parkAbund <- difAbund$altonbaker + difAbund$amazon + 
 difAbund$mauriejacobs + difAbund$westmoreland + difAbund$wew
difAbund$lotAbund <- difAbund$albertsons + difAbund$lowes + 
 difAbund$moc + difAbund$ppnw + difAbund$vrc
difAbund$log2FoldChange <- sigplot[match(row.names(difAbund), row.
names(sigplot)), 2]
difAbund <- difAbund[order(-difAbund[,15]),]
head(difAbund)
tail(difAbund)

# create positive-negative barplot of differentially abundant taxa
sigplot <- data.frame(row.names(sigtab), sigtab$log2FoldChange, 
sigtab$Family)
sigplot$SiteType <- “park”
sigplot$SiteType[sigplot$log2FoldChange < 0] <- “lot”
names(sigplot) <- c(“OTU”, “log2FoldChange”, “Family”, “SiteType”)
sigplot$BLAST <- difAbund[match(row.names(sigplot), row.
names(difAbund)), 12]
sigplot$parkAbund <- difAbund[match(row.names(sigplot), row.
names(difAbund)), 13]
sigplot$lotAbund <- -difAbund[match(row.names(sigplot), row.
names(difAbund)), 14]
head(sigplot)
#write.csv(as.data.frame(sigplot), file=”sigplot.csv”)
sigplot <- sigplot[order(-sigplot[,2]),]
str(sigplot)
head(sigplot)
tail(sigplot)
write.csv(as.data.frame(sigplot), file=”sigplot_reorder.csv”)

pieColors <- colors()[c(384,83,656,655,652,  497,494,496, #park colors
            86,89,259,47,51,514,517,139,448,258,256,
            576,574,472,10,635,429,109,71,68,114,121,125,617,131,
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            565,491,597,435,471,468,548,99,463,452,459,
            
            372,376,33,133,555,553,630,61,569,506, #lot colors
            57,503,587,585,54,56,621,92,94,90,
            498,76,78)]
ggplot(sigplot, aes(x = reorder(OTU, -log2FoldChange), y = 
log2FoldChange, 
          fill = log2FoldChange, legend=””)) + 
    geom_bar(stat = “identity”, 
    fill=pieColors, position = “identity”) +
    coord_flip() +
    scale_x_discrete(labels=sigplot$BLAST) +
  theme(legend.position = “none”, axis.text=element_text(size=10),
   axis.title=element_text(size=16) 
   )

# create abundance plot for differentially abundant taxa
ggplot(data=sigplot, aes(fill=log2FoldChange)) + 
  geom_bar(data=sigplot, aes(x=reorder(OTU, -log2FoldChange), 
y=parkAbund, fill=pieColors, legend=””), stat=”identity”) +
  geom_bar(data=sigplot, aes(x=reorder(OTU, -log2FoldChange), 
y=lotAbund, fill=pieColors, legend=””), stat=”identity”) +
  coord_flip() +
  scale_x_discrete(labels=sigplot$BLAST) +
  theme(legend.position = “none”, axis.text=element_text(size=10),
   axis.title=element_text(size=16) 
   )

# make pie charts for each site that include only the differentially 
abundant taxa
# without taxa labels
pie(difAbund$altonbaker, col=pieColors, labels=””)
pie(difAbund$albertsons, col=pieColors, labels=””)
pie(difAbund$amazon, col=pieColors, labels=””)
pie(difAbund$lowes, col=pieColors, labels=””)
pie(difAbund$mauriejacobs, col=pieColors, labels=””)
pie(difAbund$moc, col=pieColors, labels=””)
pie(difAbund$ppnw, col=pieColors, labels=””)
pie(difAbund$vrc, col=pieColors, labels=””)
pie(difAbund$westmoreland, col=pieColors, labels=””)
pie(difAbund$wew, col=pieColors, labels=””)

# legend only
png(filename=”pieLeg.png”, width=4, height=10, units=”in”, pointsize=10,
   bg=”white”, res=150)
par(mar=c(0,0,0,0))
plot.new()
legend(“center”, as.character(difAbund$BLAST), cex=0.8, 
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fill=rainbow(length(difAbund$altonbaker)))

```
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APPENDIX C 

SUPPLEMENTARY INFORMATION FOR CHAPTER III

Figure 27. Abundance of potential contaminants in experiment samples (x-axis) versus control 
samples (y-axis).
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Table 7. Breakdown of sampling groups by site location, land cover type, and date.

Land Cover Type

Group 1 Sites Group 2 Sites
Sampling dates:

8.04, 8.18, 9.01, 9.22
Sampling dates:

8.14, 8.25, 9.15, 9.29
Code Lat. Long. Code Lat. Long.

Forest

ABF* 44.053 -123.07 AMA 44.030 -123.09
BRA* 44.092 -123.15 BLA 44.000 -123.10
JAS 44.036 -122.98 DEL 44.090 -123.09

MEL* 44.031 -123.13 HAR 44.077 -123.01
SKI* 44.059 -123.09 OAK 44.046 -123.14
WEF 44.053 -123.15 WHT 44.039 -123.02

Grass

LAU*1 44.026 -123.07 ABG 44.049 -123.05
TAF* 44.057 -123.14 CEM2 44.011 -123.10
TRA 44.069 -123.14 JAM 44.040 -123.03
TSF 44.069 -122.99 LIV 44.058 -122.92

WES* 44.037 -123.11 MAU3 44.066 -123.11
WSC 44.042 -122.98 WEG 44.053 -123.15

Paved

BIM* 44.040 -123.12 FAI 44.044 -123.11
GRA* 44.050 -123.13 MPR 44.059 -123.12
MIC* 44.082 -123.04 PET 44.035 -123.04
ORG 44.092 -123.16 STR 44.063 -123.03
SAF* 44.011 -123.09 USF 44.065 -122.98
SFC 44.071 -123.02 WIL 44.058 -122.99

* Samples also collected 7.14 for pilot testing

1 Golf course (highly maintained—mowed, fertilized, irrigated)

2 Cemetery (highly maintained—mowed, irrigated)

3 Public park (highly maintained—mowed, irrigated)
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Table 8. Land cover type, vegetation cover proportion, and structural diversity for each site.

Cover 
Type

Site 
Location

Cover 
(50 m)

Cover 
(100 m)

Cover 
(200 m)

Cover 
(400 m)

Cover 
(800 m)

Structural 
Diversity

Fo
re

st
ABF 0.98 0.98 0.93 0.68 0.58 2.59
AMA 1.00 0.96 0.81 0.65 0.58 2.33
BLA 1.00 1.00 0.96 0.87 0.85 2.79
BRA 1.00 0.79 0.71 0.65 0.53 2.86
DEL 1.00 0.83 0.57 0.53 0.54 2.47
HAR 1.00 0.93 0.77 0.86 0.79 2.94
JAS 0.82 0.82 0.73 0.79 0.66 2.61
MEL 1.00 1.00 0.74 0.69 0.69 3.16
OAK 1.00 0.89 0.57 0.48 0.40 2.55
SKI 0.80 0.64 0.52 0.49 0.53 3.35
WEF 1.00 0.98 0.90 0.78 0.53 2.35
WHT 1.00 0.92 0.83 0.69 0.59 2.74

G
ra

ss

ABG 0.99 0.99 0.98 0.77 0.60 0.58
CEM 0.97 0.92 0.90 0.80 0.73 0.51
JAM 0.93 0.78 0.56 0.47 0.51 1.28
LAU 0.97 0.98 0.93 0.83 0.76 1.41
LIV 1.00 0.99 0.94 0.90 0.82 0.32
MAU 1.00 0.94 0.74 0.53 0.43 0.58
TAF 1.00 0.93 0.73 0.36 0.30 0.69
TRA 0.92 0.78 0.53 0.38 0.37 0.69
TSF 1.00 0.79 0.71 0.65 0.53 0.22
WEG 0.87 0.90 0.74 0.55 0.40 1.03
WES 0.86 0.82 0.73 0.61 0.56 0.70
WSC 0.31 0.19 0.23 0.36 0.40 0.69

Pa
ve

d

BIM 0.02 0.16 0.40 0.55 0.55 N/A
FAI 0.00 0.09 0.20 0.47 0.54 N/A
GRA 0.02 0.01 0.03 0.06 0.24 N/A
MIC 0.11 0.10 0.18 0.25 0.39 N/A
MPR 0.12 0.10 0.18 0.19 0.21 N/A
ORG 0.04 0.04 0.16 0.29 0.44 N/A
PET 0.17 0.26 0.48 0.59 0.68 N/A
SAF 0.07 0.26 0.50 0.64 0.70 N/A
SFC 0.34 0.34 0.43 0.47 0.58 N/A
STR 0.12 0.09 0.20 0.38 0.47 N/A
USF 0.27 0.26 0.34 0.46 0.53 N/A
WIL 0.09 0.22 0.25 0.26 0.38 N/A



111

Table 9. Temperature measurements by sampling date and land cover type.

Date

Forest Grass Paved
Avg. 

Temp. 
(ºC)

Min. 
Temp. 
(ºC)

Max. 
Temp. 
(ºC)

Avg. 
Temp. 
(ºC)

Min. 
Temp. 
(ºC)

Max. 
Temp. 
(ºC)

Avg. 
Temp. 
(ºC)

Min. 
Temp. 
(ºC)

Max. 
Temp. 
(ºC)

7.14.2015 21.0 13.0 34.0 22.5 10.5 36.0 23.4 12.5 37.5
8.04.2015 21.8 14.0 32.0 23.1 9.0 36.0 23.7 12.5 41.5
8.14.2015 20.7 13.5 37.5 21.8 12.0 38.5 21.9 14.0 36.0
8.18.2015 21.8 11.5 37.5 22.4 9.0 35.5 23.6 11.0 41.0
8.25.2015 19.3 9.0 34.5 19.9 5.5 33.0 20.9 8.0 38.0
9.01.2015 19.6 12.5 31.5 20.8 11.5 31.0 21.9 12.5 36.0
9.15.2015 13.3 5.5 26.5 13.1 4.0 27.5 13.8 5.0 26.0
9.22.2015 15.7 7.0 29.5 16.2 4.5 27.5 17.9 6.0 36.5
9.29.2015 14.8 6.5 26.0 14.5 3.5 30.5 16.4 6.0 36.5

Average 18.7 10.3 32.1 19.4 7.7 32.8 20.4 9.7 36.6

Table 10. Wind measurements by sampling date.

Date Avg. Wind 
(mph)

Max. Wind 
(mph) North East South West

7.14.2015 2.2 5.7 71% 0% 5% 24%
8.04.2015 2.6 5.7 67% 5% 19% 10%
8.14.2015 3.3 7.2 4% 0% 57% 39%
8.18.2015 4.0 7.7 88% 8% 0% 4%
8.25.2015 2.1 4.6 83% 0% 6% 11%
9.01.2015 2.5 4.6 21% 0% 54% 25%
9.15.2015 3.7 7.2 52% 3% 41% 3%
9.22.2015 5.0 9.3 97% 0% 0% 3%
9.29.2015 2.5 8.2 44% 0% 50% 6%
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Figure 28. Top 25 most abundant taxa on each sampling date, colored by family.
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Figure 29. Unconstrained PCoA plots for each sampling date individually.
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Figure 30. Differentially abundant families in forest vs. grass sites.
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Figure 31. Differentially abundant families in forest vs. paved sites.
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Figure 32. Differentially abundant families in grass vs. paved sites.
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Table 11. Results of PERMANOVA analyses on other environmental factors for each sampling 
date, using Morisita-Horn dissimilarity distance on variance-stabilizing transformed counts. 
Values with an asterisk remain significant after Bonferroni correction.

Land cover type Vegetation cover 
(50 m)

Temperature 
average (ºC)

Structural 
Diversity (25 m; 
forest & grass)

Date R2 p R2 p R2 p R2 p
07.14.2015 0.31 0.008* 0.10 0.364 0.21 0.001* 0.22 0.001*
08.04.2015 0.18 0.053 0.09 0.207 0.12 0.019 0.09 0.162
08.14.2015 0.18 0.041 0.10 0.097 0.18 0.006* 0.11 0.010*
08.18.2015 0.18 0.000* 0.08 0.121 0.10 0.135 0.10 0.021
08.25.2015 0.13 0.082 0.06 0.511 0.07 0.063 0.06 0.282
09.01.2015 0.21 0.000* 0.11 0.004* 0.14 0.000* 0.15 0.000*
09.15.2015 0.18 0.000* 0.10 0.001* 0.06 0.515 0.09 0.006*
09.22.2015 0.21 0.004* 0.14 0.001* 0.09 0.106 0.14 0.001*
09.29.2015 0.16 0.001* 0.10 0.000* 0.07 0.410 0.09 0.002*
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Figure 33. Change in a) explanatory power and b) statistical significance of the PERMANOVA 
model for vegetation cover with varying buffer zone radii.
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APPENDIX D 

R ANALYSIS CODE FOR CHAPTER III

---
title: “Influence of nearby vegetation on urban airborne microbial 
communities”
author: “Mhuireach, G.A., Betancourt-Roman, C.M., Green, J.L., Johnson, 
B.R”
date: ‘`r format(Sys.time(), “%B %d, %Y”)`’
header-includes:
  - \usepackage{graphicx}
output: 
 pdf_document: default
 html_notebook:
  fig_caption: yes
---

```{r global_options, eval=TRUE, include=FALSE}
library(knitr)
knitr::opts_knit$set(root.dir=normalizePath(‘../’))
knitr::opts_chunk$set(dev=’pdf’, echo=FALSE, warning=FALSE, 
message=FALSE, error=TRUE)
```

```{r initialSetup, include=FALSE}

set.seed(2)
options(scipen=7) # curtail scientific notation
options(digits=5) # number of digits to print on output 

# install DADA2 for paired-end read assembly (instead of QIIME/Keaton’s 
pipeline)
#source(“https://bioconductor.org/biocLite.R”)
#biocLite(“dada2”)
# also install ShortRead for DADA2 workflow
#biocLite(“DESeq2”)
#biocLite(“phyloseq”)

# The required package list:
reqpkg <- c(“DESeq2”, “ggplot2”, “phyloseq”, “lubridate”, “zoo”, 
“vegan”, “ape”, 
      “xts”, “VennDiagram”, “stargazer”, “tidyr”, “plyr”, “lidR”, 
“ggmap”, 
      “tiff”, “raster”, “viridis”, “data.table”)
# Load all required packages and show version
for (i in reqpkg) {
  print(i)
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  print(packageVersion(i))
  library(i, quietly = TRUE, verbose = FALSE, warn.conflicts = FALSE, 
character.only = TRUE)
}

## load extra functions
# function to extract OTU table from phyloseq and ensure samples are 
rows
getTab <- function(physeq) {
 require(“vegan”)
 OTU = otu_table(physeq)
 if (taxa_are_rows(OTU)) {
  OTU = t(OTU)
 }
 return(as(OTU, “matrix”))
}

# set ggplot2 theme elements
theme_set(theme_bw(base_size=12))

# define palettes for coloring by family name, by Nearby_Veg, and by OTU
famPal <- read.csv(“~/Documents/PhD work/dissertation/chapter3_
urbanMicrobiome/processed data/famPal.csv”, 
          header=FALSE, stringsAsFactors = FALSE)
famPal <- structure(famPal[,2], names=famPal[,1])
famPal <- c(famPal, Other=”darkgrey”)
length(famPal)

vegPal <- c(grass=”darkgoldenrod”, forest=”turquoise3”, paved=”grey30”)

#indicTaxa <- arrange(indicTaxa, SiteType)
#sum(indicTaxa[, indicTaxa$SiteType == “forest”])
#length(which(indicTaxa[, indicTaxa$SiteType == “grass”]))
#length(which(indicTaxa[, indicTaxa$SiteType == “paved”]))

pieColors <- 

length(famPal)
length(pieColors)
pie(rep(1, length(famPal)), col = famPal) # check colors

```

```{r importDada, eval=FALSE, include=FALSE}
# import OTU tables
seqtab7.14.ec.pcr <- readRDS(“~/Documents/PhD work/dissertation/
	 chapter3_urbanMicrobiome/processed data/seqtab_nochimseqtab7.14.
ec.pcr.rds”)
seqtab8.4.8.14 <- readRDS(“~/Documents/PhD work/dissertation/
	 chapter3_urbanMicrobiome/processed data/seqtab_nochimseqtab
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	 8.4.8.14.rds”)
seqtab8.18.8.25 <- readRDS(“~/Documents/PhD work/dissertation/
	 chapter3_urbanMicrobiome/processed data/seqtab_nochimseqtab
	 8.18.8.25.rds”)
seqtab9.1 <- readRDS(“~/Documents/PhD work/dissertation/
	 chapter3_urbanMicrobiome/processed data/seqtab_nochimseqtab
	 9.1.rds”)
seqtab9.15 <- readRDS(“~/Documents/PhD work/dissertation
	 /chapter3_urbanMicrobiome/processed data/seqtab_nochimseqtab
	 9.15.rds”)
seqtab9.22 <- readRDS(“~/Documents/PhD work/dissertation/
	 chapter3_urbanMicrobiome/processed data/seqtab_nochimseqtab
	 9.22.rds”)
seqtab9.29 <- readRDS(“~/Documents/PhD work/dissertation/
	 chapter3_urbanMicrobiome/processed data/seqtab_nochimseqtab
	 9.29.rds”)

# import taxa tables
taxTab7.14 <- readRDS(“~/Documents/PhD work/dissertation/
	 chapter3_urbanMicrobiome/processed data/taxTab7.14.rds”)
taxTab8.4 <- readRDS(“~/Documents/PhD work/dissertation/
	 chapter3_urbanMicrobiome/processed data/taxTab8.4.rds”)
taxTab8.18 <- readRDS(“~/Documents/PhD work/dissertation/
	 chapter3_urbanMicrobiome/processed data/taxTab8.18.rds”)
taxTab9.1 <- readRDS(“~/Documents/PhD work/dissertation/
	 chapter3_urbanMicrobiome/processed data/taxTab9.1.rds”)
taxTab9.15 <- readRDS(“~/Documents/PhD work/dissertation/
	 chapter3_urbanMicrobiome/processed data/taxTab9.15.rds”)
taxTab9.22 <- readRDS(“~/Documents/PhD work/dissertation/
	 chapter3_urbanMicrobiome/processed data/taxTab9.22.rds”)
taxTab9.29 <- readRDS(“~/Documents/PhD work/dissertation/
	 chapter3_urbanMicrobiome/processed data/taxTab9.29.rds”)

sampdata <- as.data.frame(read.csv(“mapFile_2-23-2018.csv”, 
	 header = TRUE, stringsAsFactors = FALSE))
row.names(sampdata) <- sampdata$SampleID
sampdata[1:20,1:6]
urbair7.14 <- phyloseq(otu_table(seqtab7.14.ec.pcr, 
	 taxa_are_rows=FALSE), tax_table(taxTab7.14))
urbair8.4 <- phyloseq(otu_table(seqtab8.4.8.14, 
	 taxa_are_rows=FALSE), tax_table(taxTab8.4))
urbair8.18 <- phyloseq(otu_table(seqtab8.18.8.25, 
	 taxa_are_rows=FALSE), tax_table(taxTab8.18))
urbair9.1 <- phyloseq(otu_table(seqtab9.1, 
	 taxa_are_rows=FALSE), tax_table(taxTab9.1))
urbair9.15 <- phyloseq(otu_table(seqtab9.15, 
	 taxa_are_rows=FALSE), tax_table(taxTab9.15))
urbair9.22 <- phyloseq(otu_table(seqtab9.22, taxa_are_rows=FALSE), tax_
table(taxTab9.22))
urbair9.29 <- phyloseq(otu_table(seqtab9.29, taxa_are_rows=FALSE), tax_
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table(taxTab9.29))
urbair <- merge_phyloseq(urbair7.14, urbair8.4, urbair8.18, urbair9.1, 
urbair9.15, urbair9.22, urbair9.29)
urbair <- merge_phyloseq(urbair, sample_data(sampdata))
#is.rooted(phy_tree(urbair))
#phy_tree(urbair) <- root(phy_tree(urbair), sample(taxa_names(urbair), 
1), resolve.root = TRUE)

saveRDS(urbair, file=”~/Documents/PhD work/dissertation/chapter3_
urbanMicrobiome/processed data/urbair_dada.rds”)

# clean up
uaList <- paste(“urbair”, c(“7.14”, “8.4”, “8.18”, “9.1”, “9.15”, 
“9.22”, “9.29”), sep = “”)
rm(list = uaList)
rm(uaList)
ttList <- paste(“taxTab”, c(“7.14”, “8.4”, “8.18”, “9.1”, “9.15”, 
“9.22”, “9.29”), sep = “”)
rm(list = ttList)
rm(ttList)
stList <- paste(“seqtab”, c(“7.14.ec.pcr”, “8.4.8.14”, “8.18.8.25”, 
“9.1”, “9.15”, “9.22”, “9.29”), sep = “”)
rm(list = stList)
rm(stList)

```

```{r loadDada, include=FALSE}

urbair <- readRDS(file=”~/Documents/PhD work/dissertation/chapter3_
urbanMicrobiome/processed data/urbair_dada.rds”)

```

### Methods

```{r evalContams, include=FALSE, results=”hide”}

# identify potential lab contaminants
urbair_ec1 <- prune_samples(sample_names(urbair) == “EC-6-29”, urbair)
urbair_ec2 <- prune_samples(sample_names(urbair) == “EC-6-22”, urbair)
urbair_ec3 <- prune_samples(sample_names(urbair) == “EC-6-13”, urbair)
urbair_ec4 <- prune_samples(sample_names(urbair) == “EC-6-21”, urbair)
urbair_ec5 <- prune_samples(sample_names(urbair) == “EC-7-4”, urbair)
urbair_ec6 <- prune_samples(sample_names(urbair) == “EC-7-8”, urbair)
urbair_ec7 <- prune_samples(sample_names(urbair) == “EC-6-20”, urbair)
urbair_ec8 <- prune_samples(sample_names(urbair) == “EC-6-16”, urbair)
urbair_ec9 <- prune_samples(sample_names(urbair) == “EC-6-30”, urbair)
urbair_pn1 <- prune_samples(sample_names(urbair) == “PCR_NEG_01”, 
urbair)
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urbair_pn2 <- prune_samples(sample_names(urbair) == “PCR_NEG_02”, 
urbair)
urbair_pn3 <- prune_samples(sample_names(urbair) == “PCR_NEG_03”, 
urbair)
urbair_pn4 <- prune_samples(sample_names(urbair) == “PCR_NEG_04”, 
urbair)
urbair_pn5 <- prune_samples(sample_names(urbair) == “PCR_NEG_05”, 
urbair)
urbair_pn6 <- prune_samples(sample_names(urbair) == “PCR_NEG_06”, 
urbair)
urbair_neg1 <- prune_samples(sample_names(urbair) == “NEG-8-4”, urbair)
urbair_neg2 <- prune_samples(sample_names(urbair) == “NEG-8-14”, 
urbair)
urbair_neg3 <- prune_samples(sample_names(urbair) == “NEG-8-25”, 
urbair)
urbair_neg4 <- prune_samples(sample_names(urbair) == “NEG-9-29”, 
urbair)
urbair_contams <- merge_phyloseq(urbair_ec1, urbair_ec2)
urbair_contams <- merge_phyloseq(urbair_contams, urbair_ec3)
urbair_contams <- merge_phyloseq(urbair_contams, urbair_ec4)
urbair_contams <- merge_phyloseq(urbair_contams, urbair_ec5)
urbair_contams <- merge_phyloseq(urbair_contams, urbair_ec6)
urbair_contams <- merge_phyloseq(urbair_contams, urbair_ec7)
urbair_contams <- merge_phyloseq(urbair_contams, urbair_ec8)
urbair_contams <- merge_phyloseq(urbair_contams, urbair_ec9)
urbair_contams <- merge_phyloseq(urbair_contams, urbair_pn1)
urbair_contams <- merge_phyloseq(urbair_contams, urbair_pn2)
urbair_contams <- merge_phyloseq(urbair_contams, urbair_pn3)
urbair_contams <- merge_phyloseq(urbair_contams, urbair_pn4)
urbair_contams <- merge_phyloseq(urbair_contams, urbair_pn5)
urbair_contams <- merge_phyloseq(urbair_contams, urbair_pn6)
urbair_contams <- merge_phyloseq(urbair_contams, urbair_neg1)
urbair_contams <- merge_phyloseq(urbair_contams, urbair_neg2)
urbair_contams <- merge_phyloseq(urbair_contams, urbair_neg3)
urbair_contams <- merge_phyloseq(urbair_contams, urbair_neg4)

urbair_contams <- prune_taxa(taxa_sums(urbair_contams) > 0, urbair_
contams) # remove taxa with counts of 0
contamAbund <- data.frame(tax_table(urbair_contams))
contamAbund$Count <- taxa_sums(urbair_contams)
contamAbund$RelAbund <- contamAbund$Count/sum(sample_sums(urbair))
write.csv(contamAbund, file=”contamAbund.csv”)
# what are the 3 most abundant contaminants?
top3cont <- sort(taxa_sums(urbair_contams), TRUE)[1:3]
top3cont <- prune_taxa(names(top3cont), urbair_contams)
# examine prevalence of top 3 potential contaminants across all samples
write.csv(as.data.frame(get_sample(urbair, otu_table(top3cont))), 
file=”sampleContams.csv”)

################# THIS IS FROM JAMES’S CELL PHONE PAPER
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# plot relative abundances of potential contaminants in controls vs 
samples

cont.table <- otu_table(urbair_contams) # get otu table of potential 
contaminants
#cont.table[1:10,1:10]
cont.otus <- colnames(cont.table) # which otus are they
#cont.otus[1:10]
cont.otus.names <- tax_table(urbair_contams) # what are their names
#cont.otus.names[1:10,1:8]
# cont.taxo <- makeTaxo(taxo.in=rw.taxo.tmp$taxa.names, otu.table=cont.
table) # don’t seem to need this
cont3.otus <- which(colSums(cont.table)/sum(cont.table) > 0.05) # pick 
out some big ones
plotY <- colSums(cont.table[, cont.otus]/sum(cont.table)) # Y 
coordinates for relative abundance of potential contaminants in 
controls
rw.table.tmp <- otu_table(urbair) #??????
#rw.table.tmp[1:10,1:10]
rw.taxo.tmp <- tax_table((urbair))
#rw.taxo.tmp[1:5,1:8]
plotX <- colSums(rw.table.tmp[, cont.otus]/sum(rw.table.tmp)) # X 
coordinates for relative abundance of potential contaminants in samples
#pdf(“fig1.pdf”, height = 5, width = 7)
plot(plotY ~ plotX, 
   pch=21, bg=rgb(0,0,0,.3), cex=2, las=1,
   xlab=’Rel Abundance in Experiment’, ylab=’Rel Abundance in 
Controls’)
segments(0,0,1,1, lty=3, lwd=2, col=’gray’)
segments(0, .05, 1, .05, lty=1, lwd=2, col=’tomato’)
text(.12, .13, ‘1:1’, font=3, col=’gray30’)
text(.1, .05, ‘RA=0.05’, font=3, pos=3, col=’tomato’)
text(plotX[names(cont3.otus)[1:3]], plotY[names(cont3.otus)[1:3]], 
   rw.taxo.tmp[names(cont3.otus)[1:3], ‘Genus’], pos=c(1))
#dev.off()

# clean up
rm(cont.table, cont.otus, cont.otus.names, plotY, rw.table.tmp, 
rw.taxo.tmp, plotX)
#rm(urbair_contams)
# clean up
ecList <- paste(“urbair_ec”, 1:9, sep = “”)
rm(list = ecList)
rm(ecList)
pnList <- paste(“urbair_pn”, 1:6, sep = “”)
rm(list = pnList)
rm(pnList)
negList <- paste(“urbair_neg”, 1:4, sep = “”)
rm(list = negList)
rm(negList)
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```

```{r noFails, include=FALSE, results=”hide”}

# remove samples with < 10000 reads
sort(sample_sums(urbair))
fails <- prune_samples(sample_sums(urbair) < 10000, urbair)
urbair <- prune_samples(sample_sums(urbair) > 10000, urbair)
sample_sums(fails)
# do test ordination
UAord <- ordinate(urbair)
#pdf(“fig2.pdf”, height = 5, width = 7)
plot_ordination(urbair, UAord, type = “samples”, color = “Nearby_Veg”, 
        label = “SampleID”, title = “Only failed samples removed”)
#dev.off()

```

```{r noPosPCR, include=FALSE, results=”hide”}
# remove PCR_POS controls
UA_noneg <- prune_samples(sample_names(urbair) != “PCR_POS_01”, urbair)
UA_noneg <- prune_samples(sample_names(UA_noneg) != “PCR_POS_02”, UA_
noneg)
UA_noneg <- prune_samples(sample_names(UA_noneg) != “PCR_POS_03”, UA_
noneg)
UA_noneg <- prune_samples(sample_names(UA_noneg) != “PCR_POS_04”, UA_
noneg)
UA_noneg <- prune_samples(sample_names(UA_noneg) != “PCR_POS_05”, UA_
noneg)
UA_noneg <- prune_samples(sample_names(UA_noneg) != “PCR_POS_06”, UA_
noneg)
# do test ordination
#pdf(“fig3.pdf”, height = 5, width = 7)
UAord <- ordinate(UA_noneg)
plot_ordination(UA_noneg, UAord, type = “samples”, color = “Nearby_
Veg”,
        label = “SampleID”, title = “PCR_POS removed”)
#dev.off()

```

```{r noNegPCR, include=FALSE, results=”hide”}
# remove negative PCR controls
UA_noneg <- prune_samples(sample_names(UA_noneg) != “PCR_NEG_01”, UA_
noneg)
UA_noneg <- prune_samples(sample_names(UA_noneg) != “PCR_NEG_02”, UA_
noneg)
UA_noneg <- prune_samples(sample_names(UA_noneg) != “PCR_NEG_03”, UA_
noneg)
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UA_noneg <- prune_samples(sample_names(UA_noneg) != “PCR_NEG_04”, UA_
noneg)
UA_noneg <- prune_samples(sample_names(UA_noneg) != “PCR_NEG_05”, UA_
noneg)
UA_noneg <- prune_samples(sample_names(UA_noneg) != “PCR_NEG_06”, UA_
noneg)

# test ordination
UAord <- ordinate(UA_noneg)
#pdf(“fig4.pdf”, height = 5, width = 7)
plot_ordination(UA_noneg, UAord, type = “samples”, color = “Nearby_
Veg”, label = “SampleID”, title = “PCR_POS & PCR_NEG removed”)
#dev.off()
colnames(sample_data(UA_noneg))[1] <- “SampleID”
```

```{r noEC, include=FALSE, results=”hide”}
# remove extraction control samples
UA_noneg <- prune_samples(sample_names(UA_noneg) != “EC-6-29”, UA_
noneg)
UA_noneg <- prune_samples(sample_names(UA_noneg) != “EC-6-22”, UA_
noneg)
UA_noneg <- prune_samples(sample_names(UA_noneg) != “EC-6-13”, UA_
noneg)
UA_noneg <- prune_samples(sample_names(UA_noneg) != “EC-6-21”, UA_
noneg)
UA_noneg <- prune_samples(sample_names(UA_noneg) != “EC-7-4”, UA_noneg)
UA_noneg <- prune_samples(sample_names(UA_noneg) != “EC-7-8”, UA_noneg)
UA_noneg <- prune_samples(sample_names(UA_noneg) != “EC-6-20”, UA_
noneg)
UA_noneg <- prune_samples(sample_names(UA_noneg) != “EC-6-16”, UA_
noneg)
UA_noneg <- prune_samples(sample_names(UA_noneg) != “EC-6-30”, UA_
noneg)

# test ordination
UAord <- ordinate(UA_noneg)
#pdf(“fig5.pdf”, height = 5, width = 7)
plot_ordination(UA_noneg, UAord, type = “samples”, color = “Nearby_
Veg”, label = “SampleID”, title = “PCR_POS, PCR_NEG & EC removed”)
#dev.off()

```

```{r noNegPet, include=FALSE, results=”hide”}
# remove negative petri controls
UA_noneg <- prune_samples(sample_names(UA_noneg) != “NEG-8-4”, UA_
noneg)
UA_noneg <- prune_samples(sample_names(UA_noneg) != “NEG-8-14”, UA_
noneg)
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UA_noneg <- prune_samples(sample_names(UA_noneg) != “NEG-8-25”, UA_
noneg)
UA_noneg <- prune_samples(sample_names(UA_noneg) != “NEG-9-29”, UA_
noneg)

# test ordination
UAord <- ordinate(UA_noneg)
#pdf(“fig6.pdf”, height = 5, width = 7)
plot_ordination(UA_noneg, UAord, type = “samples”, color = “Nearby_
Veg”, label = “SampleID”, title = “PCR_POS, EC, PCR_NEG & NEG removed”)
#dev.off()
#pdf(“fig7.pdf”, height = 5, width = 7)
plot_ordination(UA_noneg, UAord, type = “samples”, color = “Date”, 
label = “SampleID”, title = “PCR_POS, EC, PCR_NEG & NEG removed”)
#dev.off()

```

```{r noExtras, include=FALSE, results=”hide”}
# remove extra samples (7/14 test samples and 9/8 Pisgah samples, 
CEM_8_14, also STE and URB bc they are in UGB)
prune <- prune_samples(sample_names(UA_noneg) != “PIC_9_8”, UA_noneg)
prune <- prune_samples(sample_names(prune) != “PIO_9_8”, prune)
prune <- prune_samples(sample_names(prune) != “CEM-8-14”, prune)
prune <- prune_samples(sample_names(prune) != “URB-9-1”, prune)
prune <- prune_samples(sample_names(prune) != “STE-9-1”, prune)
prune <- prune_samples(sample_names(prune) != “URB-9-15”, prune)
prune <- prune_samples(sample_names(prune) != “STE-9-15”, prune)
prune <- prune_samples(sample_names(prune) != “URB-9-22”, prune)
prune <- prune_samples(sample_names(prune) != “STE-9-22”, prune)
prune <- prune_samples(sample_names(prune) != “URB-9-29”, prune)

# clean up
any(taxa_sums(prune) == 0)
sum(taxa_sums(prune) == 0)
prune <- prune_taxa(taxa_sums(prune) != 0, prune)

# test ordination
UAord <- ordinate(prune)
#pdf(“fig8.pdf”, height = 5, width = 7)
plot_ordination(prune, UAord, type = “samples”, color = “Nearby_Veg”, 
label = “SampleID”, title = “Controls & extras removed”)
#dev.off()
#pdf(“fig9.pdf”, height = 5, width = 7)
plot_ordination(prune, UAord, type = “samples”, color = “Date”, label = 
“SampleID”, title = “Controls & extras removed”)
#dev.off()

# clean up
#rm(UA_noneg)
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```

```{r noContams, include=FALSE, results=”hide”}
sort(sample_sums(prune))
sum(taxa_sums(prune))
# remove potential contaminants above 0.05 relative abundance in 
controls (see contams plot), plus Halomonas and Shewanella
prune <- prune_taxa(taxa_names(prune) != names(cont3.otus)[1], prune)
prune <- prune_taxa(taxa_names(prune) != names(cont3.otus)[2], prune)
prune <- prune_taxa(taxa_names(prune) != names(cont3.otus)[3], prune)

sort(sample_sums(prune))
sum(taxa_sums(prune))

#prune <- subset_taxa(prune, Genus!=”Halomonas”)
#prune <- subset_taxa(prune, Genus!=”Shewanella”)

# remove plant and mitochondrial sequences (RDP classifier removes 
mitochondria already)
sort(get_taxa_unique(prune, “Family”)) # none are present
prune <- subset_taxa(prune, Family!=”Streptophyta”)
prune <- subset_taxa(prune, Family!=”Chlorophyta”)

# check and clean up
any(taxa_sums(prune) == 0)
sum(taxa_sums(prune) == 0)
prune <- prune_taxa(taxa_sums(prune) != 0, prune)

# test ordination
UAord <- ordinate(prune)
#pdf(“fig10.pdf”, height = 5, width = 7)
plot_ordination(prune, UAord, type = “samples”, color = “Nearby_Veg”, 
label = “SampleID”, title = “Controls, extras & contams removed”)
#dev.off()
#pdf(“fig11.pdf”, height = 5, width = 7)
plot_ordination(prune, UAord, type = “samples”, color = “Date”, label = 
“SampleID”, title = “Controls, extras & contams removed”)
#dev.off()

```

```{r noSing, include=FALSE, results=”hide”}
sum(sample_sums(prune))
sum(taxa_sums(prune))
# how many single- and doubletons?
sing <- prune_taxa(taxa_sums(prune) < 3, prune) 
sing
sum(sample_sums(sing))
sum(taxa_sums(sing))
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# remove them
nosing <- prune_taxa(taxa_sums(prune) > 2, prune) 

# test ordination
UAord <- ordinate(nosing)
#pdf(“fig12.pdf”, height = 5, width = 7)
plot_ordination(nosing, UAord, type = “samples”, color = “Nearby_Veg”, 
label = “SampleID”, title = “Controls, extras, contams & single/
doubletons removed”)
#dev.off()
#pdf(“fig13.pdf”, height = 5, width = 7)
plot_ordination(nosing, UAord, type = “samples”, color = “Date”, label 
= “SampleID”, title = “Controls, extras, contams & single/doubletons 
removed”)
#dev.off()

saveRDS(nosing, file=”~/Documents/PhD work/dissertation/chapter3_
urbanMicrobiome/processed data/nosing_dada.rds”)

saveRDS(prune, file=”~/Documents/PhD work/dissertation/chapter3_
urbanMicrobiome/processed data/urbair_sing_dada.rds”)

#clean up

```

```{r splitSamples, include=FALSE, results=”hide”}
# separate peri-urban sites
urb.sing <- prune_samples(sample_data(prune)$Urbanicity == “urban”, 
prune)
urb.sing <- prune_taxa(taxa_sums(urb.sing) != 0, urb.sing)
urb.nosing <- prune_samples(sample_data(nosing)$Urbanicity == “urban”, 
nosing)
urb.nosing <- prune_taxa(taxa_sums(urb.nosing) != 0, urb.nosing)

# separate by date, single- and doubletons removed
urb7.14 <- prune_samples(sample_data(urb.nosing)$Date==”07.14.2015”, 
urb.nosing)
urb7.14 <- prune_taxa(taxa_sums(urb7.14) != 0, urb7.14)
urb8.4 <- prune_samples(sample_data(urb.nosing)$Date==”08.04.2015”, 
urb.nosing)
urb8.4 <- prune_taxa(taxa_sums(urb8.4) != 0, urb8.4)
urb8.14 <- prune_samples(sample_data(urb.nosing)$Date==”08.14.2015”, 
urb.nosing)
urb8.14 <- prune_taxa(taxa_sums(urb8.14) != 0, urb8.14)
urb8.18 <- prune_samples(sample_data(urb.nosing)$Date==”08.18.2015”, 
urb.nosing)
urb8.18 <- prune_taxa(taxa_sums(urb8.18) != 0, urb8.18)
urb8.25 <- prune_samples(sample_data(urb.nosing)$Date==”08.25.2015”, 
urb.nosing)
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urb8.25 <- prune_taxa(taxa_sums(urb8.25) != 0, urb8.25)
urb9.1 <- prune_samples(sample_data(urb.nosing)$Date==”09.01.2015”, 
urb.nosing)
urb9.1 <- prune_taxa(taxa_sums(urb9.1) != 0, urb9.1)
urb9.15 <- prune_samples(sample_data(urb.nosing)$Date==”09.15.2015”, 
urb.nosing)
urb9.15 <- prune_taxa(taxa_sums(urb9.15) != 0, urb9.15)
urb9.22 <- prune_samples(sample_data(urb.nosing)$Date==”09.22.2015”, 
urb.nosing)
urb9.22 <- prune_taxa(taxa_sums(urb9.22) != 0, urb9.22)
urb9.29 <- prune_samples(sample_data(urb.nosing)$Date==”09.29.2015”, 
urb.nosing)
urb9.29 <- prune_taxa(taxa_sums(urb9.29) != 0, urb9.29)
dateList <- list(urb7.14=urb7.14, urb8.4=urb8.4, urb8.14=urb8.14, 
urb8.18=urb8.18,
        urb8.25=urb8.25, urb9.1=urb9.1, urb9.15=urb9.15, 
urb9.22=urb9.22,
        urb9.29=urb9.29)
saveRDS(dateList, file=”~/Documents/PhD work/dissertation/chapter3_
urbanMicrobiome/processed data/sampDate_dada.rds”)

#clean up
garbage <- paste0(“urb”, c(“7.14”,”8.4”,”8.14”,”8.25”,”9.1”,”9.15”,”9.2
2”,”9.29”))
rm(list = garbage)

# separate by site, single- and doubletons removed
ABF <- prune_samples(sample_data(urb.nosing)$SiteCode==”ABF”, urb.
nosing)
ABF <- prune_taxa(taxa_sums(ABF) != 0, ABF)
BIM <- prune_samples(sample_data(urb.nosing)$SiteCode==”BIM”, urb.
nosing)
BIM <- prune_taxa(taxa_sums(BIM) != 0, BIM)
BRA <- prune_samples(sample_data(urb.nosing)$SiteCode==”BRA”, urb.
nosing)
BRA <- prune_taxa(taxa_sums(BRA) != 0, BRA)
GRA <- prune_samples(sample_data(urb.nosing)$SiteCode==”GRA”, urb.
nosing)
GRA <- prune_taxa(taxa_sums(GRA) != 0, GRA)
LAU <- prune_samples(sample_data(urb.nosing)$SiteCode==”LAU”, urb.
nosing)
LAU <- prune_taxa(taxa_sums(LAU) != 0, LAU)
MEL <- prune_samples(sample_data(urb.nosing)$SiteCode==”MEL”, urb.
nosing)
MEL <- prune_taxa(taxa_sums(MEL) != 0, MEL)
MIC <- prune_samples(sample_data(urb.nosing)$SiteCode==”MIC”, urb.
nosing)
MIC <- prune_taxa(taxa_sums(MIC) != 0, MIC)
SAF <- prune_samples(sample_data(urb.nosing)$SiteCode==”SAF”, urb.
nosing)
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SAF <- prune_taxa(taxa_sums(SAF) != 0, SAF)
SKI <- prune_samples(sample_data(urb.nosing)$SiteCode==”SKI”, urb.
nosing)
SKI <- prune_taxa(taxa_sums(SKI) != 0, SKI)
TAF <- prune_samples(sample_data(urb.nosing)$SiteCode==”TAF”, urb.
nosing)
TAF <- prune_taxa(taxa_sums(TAF) != 0, TAF)
WES <- prune_samples(sample_data(urb.nosing)$SiteCode==”WES”, urb.
nosing)
WES <- prune_taxa(taxa_sums(WES) != 0, WES)
JAS <- prune_samples(sample_data(urb.nosing)$SiteCode==”JAS”, urb.
nosing)
JAS <- prune_taxa(taxa_sums(JAS) != 0, JAS)
ORG <- prune_samples(sample_data(urb.nosing)$SiteCode==”ORG”, urb.
nosing)
ORG <- prune_taxa(taxa_sums(ORG) != 0, ORG)
SFC <- prune_samples(sample_data(urb.nosing)$SiteCode==”SFC”, urb.
nosing)
SFC <- prune_taxa(taxa_sums(SFC) != 0, SFC)
TRA <- prune_samples(sample_data(urb.nosing)$SiteCode==”TRA”, urb.
nosing)
TRA <- prune_taxa(taxa_sums(TRA) != 0, TRA)
TSF <- prune_samples(sample_data(urb.nosing)$SiteCode==”TSF”, urb.
nosing)
TSF <- prune_taxa(taxa_sums(TSF) != 0, TSF)
WEG <- prune_samples(sample_data(urb.nosing)$SiteCode==”WEG”, urb.
nosing)
WEG <- prune_taxa(taxa_sums(WEG) != 0, WEG)
WSC <- prune_samples(sample_data(urb.nosing)$SiteCode==”WSC”, urb.
nosing)
WSC <- prune_taxa(taxa_sums(WSC) != 0, WSC)
ABG <- prune_samples(sample_data(urb.nosing)$SiteCode==”ABG”, urb.
nosing)
ABG <- prune_taxa(taxa_sums(ABG) != 0, ABG)
AMA <- prune_samples(sample_data(urb.nosing)$SiteCode==”AMA”, urb.
nosing)
AMA <- prune_taxa(taxa_sums(AMA) != 0, AMA)
BLA <- prune_samples(sample_data(urb.nosing)$SiteCode==”BLA”, urb.
nosing)
BLA <- prune_taxa(taxa_sums(BLA) != 0, BLA)
CEM <- prune_samples(sample_data(urb.nosing)$SiteCode==”CEM”, urb.
nosing)
CEM <- prune_taxa(taxa_sums(CEM) != 0, CEM)
DEL <- prune_samples(sample_data(urb.nosing)$SiteCode==”DEL”, urb.
nosing)
DEL <- prune_taxa(taxa_sums(DEL) != 0, DEL)
FAI <- prune_samples(sample_data(urb.nosing)$SiteCode==”FAI”, urb.
nosing)
FAI <- prune_taxa(taxa_sums(FAI) != 0, FAI)
HAR <- prune_samples(sample_data(urb.nosing)$SiteCode==”HAR”, urb.
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nosing)
HAR <- prune_taxa(taxa_sums(HAR) != 0, HAR)
JAM <- prune_samples(sample_data(urb.nosing)$SiteCode==”JAM”, urb.
nosing)
JAM <- prune_taxa(taxa_sums(JAM) != 0, JAM)
LIV <- prune_samples(sample_data(urb.nosing)$SiteCode==”LIV”, urb.
nosing)
LIV <- prune_taxa(taxa_sums(LIV) != 0, LIV)
MAU <- prune_samples(sample_data(urb.nosing)$SiteCode==”MAU”, urb.
nosing)
MAU <- prune_taxa(taxa_sums(MAU) != 0, MAU)
MPR <- prune_samples(sample_data(urb.nosing)$SiteCode==”MPR”, urb.
nosing)
MPR <- prune_taxa(taxa_sums(MPR) != 0, MPR)
OAK <- prune_samples(sample_data(urb.nosing)$SiteCode==”OAK”, urb.
nosing)
OAK <- prune_taxa(taxa_sums(OAK) != 0, OAK)
PET <- prune_samples(sample_data(urb.nosing)$SiteCode==”PET”, urb.
nosing)
PET <- prune_taxa(taxa_sums(PET) != 0, PET)
STR <- prune_samples(sample_data(urb.nosing)$SiteCode==”STR”, urb.
nosing)
STR <- prune_taxa(taxa_sums(STR) != 0, STR)
WEF <- prune_samples(sample_data(urb.nosing)$SiteCode==”WEF”, urb.
nosing)
WEF <- prune_taxa(taxa_sums(WEF) != 0, WEF)
WHT <- prune_samples(sample_data(urb.nosing)$SiteCode==”WHT”, urb.
nosing)
WHT <- prune_taxa(taxa_sums(WHT) != 0, WHT)
USF <- prune_samples(sample_data(urb.nosing)$SiteCode==”USF”, urb.
nosing)
USF <- prune_taxa(taxa_sums(USF) != 0, USF)
WIL <- prune_samples(sample_data(urb.nosing)$SiteCode==”WIL”, urb.
nosing)
WIL <- prune_taxa(taxa_sums(WIL) != 0, WIL)

siteList <- list(ABF=ABF, BIM=BIM, BRA=BRA, GRA=GRA, LAU=LAU, MEL=MEL, 
MIC=MIC, SAF=SAF,
         SKI=SKI, TAF=TAF, WES=WES, JAS=JAS, ORG=ORG, SFC=SFC, TRA=TRA, 
TSF=TSF, WEG=WEG,
         WSC=WSC, ABG=ABG, AMA=AMA, BLA=BLA, CEM=CEM, DEL=DEL, FAI=FAI, 
HAR=HAR, JAM=JAM,
         LIV=LIV, MAU=MAU, MPR=MPR, OAK=OAK, PET=PET, STR=STR, WEF=WEF, 
WHT=WHT, USF=USF,
         WIL=WIL)
saveRDS(siteList, file=”~/Documents/PhD work/dissertation/chapter3_
urbanMicrobiome/processed data/sampSite_dada.rds”)

#clean up
garbage <- c(“ABF”, “BIM”, “BRA”, “GRA”, “LAU”, “MEL”, “MIC”, “SAF”, 
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“SKI”, “TAF”, “WES”, “JAS”, 
       “ORG”, “SFC”, “TRA”, “TSF”, “WEG”, “WSC”, “ABG”, “AMA”, “BLA”, 
“CEM”, “DEL”, “FAI”, 
       “HAR”, “JAM”, “LIV”, “MAU”, “MPR”, “OAK”, “PET”, “STR”, “WEF”, 
“WHT”, “USF”, “WIL”)
rm(list = garbage)

## rural site list, single- and doubletons removed
BUF <- prune_samples(sample_data(nosing)$SiteCode==”BUF”, nosing)
BUF <- prune_taxa(taxa_sums(BUF) != 0, BUF)
COG <- prune_samples(sample_data(nosing)$SiteCode==”COG”, nosing)
COG <- prune_taxa(taxa_sums(COG) != 0, COG)
COW <- prune_samples(sample_data(nosing)$SiteCode==”COW”, nosing)
COW <- prune_taxa(taxa_sums(COW) != 0, COW)
DAL <- prune_samples(sample_data(nosing)$SiteCode==”DAL”, nosing)
DAL <- prune_taxa(taxa_sums(DAL) != 0, DAL)
DEB <- prune_samples(sample_data(nosing)$SiteCode==”DEB”, nosing)
DEB <- prune_taxa(taxa_sums(DEB) != 0, DEB)
KAR <- prune_samples(sample_data(nosing)$SiteCode==”KAR”, nosing)
KAR <- prune_taxa(taxa_sums(KAR) != 0, KAR)
PHY <- prune_samples(sample_data(nosing)$SiteCode==”PHY”, nosing)
PHY <- prune_taxa(taxa_sums(PHY) != 0, PHY)
PIC <- prune_samples(sample_data(nosing)$SiteCode==”PIC”, nosing)
PIC <- prune_taxa(taxa_sums(PIC) != 0, PIC)
PIO <- prune_samples(sample_data(nosing)$SiteCode==”PIO”, nosing)
PIO <- prune_taxa(taxa_sums(PIO) != 0, PIO)
#STE <- prune_samples(sample_data(nosing)$SiteCode==”STE”, nosing)
#STE <- prune_taxa(taxa_sums(STE) != 0, STE)
TEP <- prune_samples(sample_data(nosing)$SiteCode==”TEP”, nosing)
TEP <- prune_taxa(taxa_sums(TEP) != 0, TEP)
TNC <- prune_samples(sample_data(nosing)$SiteCode==”TNC”, nosing)
TNC <- prune_taxa(taxa_sums(TNC) != 0, TNC)
#URB <- prune_samples(sample_data(nosing)$SiteCode==”URB”, nosing)
#URB <- prune_taxa(taxa_sums(URB) != 0, URB)
WLF <- prune_samples(sample_data(nosing)$SiteCode==”WLF”, nosing)
WLF <- prune_taxa(taxa_sums(WLF) != 0, WLF)

RURsiteList <- list(BUF=BUF, COG=COG, COW=COW, DAL=DAL, DEB=DEB, 
KAR=KAR, PHY=PHY, PIC=PIC, PIO=PIO, 
          TEP=TEP, TNC=TNC, WLF=WLF)

#clean up
garbage <- c(“BUF”, “COG”, “COW”, “DAL”, “DEB”, “KAR”, “PHY”, “PIC”, 
“PIO”, “TEP”, “TNC”, “WLF”)
rm(list = garbage)

```

```{r noJuly, eval=FALSE, include=FALSE, results=”hide”}
# remove July samples
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nojuly <- prune_samples(sample_data(urb.nosing)$Date != “07.14.2015”, 
urb.nosing)
nojuly <- prune_taxa(taxa_sums(nojuly) != 0, nojuly)

#nojuly.des <- phyloseq_to_deseq2(nojuly, ~ Date + Nearby_Veg)
# calculate geometric means prior to estimate size factors if error 
with too many zeros
#gm_mean = function(x, na.rm=TRUE){
 # exp(sum(log(x[x > 0]), na.rm=na.rm) / length(x))
#}
#geoMeans = apply(counts(nojuly.des), 1, gm_mean)
nojuly.des <- estimateSizeFactors(nojuly.des)#, geoMeans = geoMeans)
nojuly.des <- estimateDispersions(nojuly.des, fitType=”local”, 
maxit=260)
# perform DESeq2 variance stabilization instead of rarefying
nojuly.vst <- getVarianceStabilizedData(nojuly.des)
# Save the untransformed data as a separate variable so you can go back 
to it
nojuly0 <- nojuly
otu_table(nojuly) <- otu_table(nojuly.vst, taxa_are_rows=TRUE)
nojuly.vst <- nojuly
nojuly <- nojuly0
rm(nojuly0)
# Set values below zero, to zero
otu_table(nojuly.vst)[otu_table(nojuly.vst) < 0.0] <- 0

#no july samples
UAord <- ordinate(nojuly, method = “PCoA”, distance = “horn”)
plot_ordination(urb.nosing.vst, UAord, type = “samples”, color = 
“Date”, shape = “Nearby_Veg”) +
 geom_point(size=3)
        #label = “SampleID”, title = “Quality filtered, all urban sites, 
no July (PCoA, horn)”) +
ggsave(“ordALL_nearbyveg_nojuly_horn.pdf”, device=”pdf”, width=5, 
height=3.25, units=”in”, useDingbats=FALSE)
ggsave(“ordALL_nearbyveg_nojuly_horn.png”, device=”png”, width=6.5, 
height=5, units=”in”)

```

```{r prevFilt, eval=FALSE, include=FALSE, results=”hide”}
# Prevalence filtering
# Define prevalence of each taxa
# (in how many samples did each taxa appear at least once)
prev0 <- apply(X = otu_table(urb.nosing),
        MARGIN = ifelse(taxa_are_rows(urb.nosing), yes = 1, no = 2),
        FUN = function(x){sum(x > 0)})
prevdf <- data.frame(Prevalence = prev0,
           TotalAbundance = taxa_sums(urb.nosing),
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           tax_table(urb.nosing))
write.csv(prevdf, “taxaPrevalence.csv”)
keepPhyla <- table(prevdf$Phylum)[(table(prevdf$Phylum) > 5)]
prevdf1 <- subset(prevdf, Phylum %in% names(keepPhyla))
# Define prevalence threshold as 5% of total samples
prevalenceThreshold <- 0.05 * nsamples(urb.nosing)
prevalenceThreshold

## [1] 18
# Execute prevalence filter, using `prune_taxa()` function
ps1 = prune_taxa((prev0 > prevalenceThreshold), urb.nosing)
ps1

## phyloseq-class experiment-level object
## otu_table()  OTU Table:     [ 353 taxa and 360 samples ]
## sample_data() Sample Data:    [ 360 samples by 14 sample variables ]
## tax_table()  Taxonomy Table:  [ 353 taxa by 6 taxonomic ranks ]
## phy_tree()  Phylogenetic Tree: [ 353 tips and 351 internal nodes ]

ggplot(prevdf1, aes(TotalAbundance, Prevalence, color = Phylum)) +
 geom_hline(yintercept = prevalenceThreshold, alpha = 0.5, linetype = 
2) +
 geom_point(size = 2, alpha = 0.7) +
 scale_y_log10() + scale_x_log10() +
 xlab(“Total Abundance”) +
 facet_wrap(~Phylum) +
 theme(legend.position=”none”, text=element_text(size=11))
ggsave(“prevalenceFiltered.pdf”, device=”pdf”, width=6.5, height=4, 
units=”in”, useDingbats=FALSE)

# below are taxa identified by the prevalence filter
# this is Legionella sp. (putatively L. fallonii, isolated from ship 
air conditioning) present only at BLA-9-15
get_sample(urbair, 
“TACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGAGTGCGTAGGTGGTTAATTAA
GTTATCTGTAAAATCCCTGGGCTCAACCTGGGCAGGTCAGATAATACTGGTTAACTCGAGTATG
GGAGAGGGTAGTGGAATTTCCGGTGTAGCGGTGAAATGCGTAGAGATCGGAAGGAACACCAGTG	
GCGAAGGCGGCTACCTGGACTAATACTGACACTGAGGCACGAAAGCGTGGGGAGCAAACAGG”)
# this is Collinsella	 tanakaei (isolated from human feces) present 
only at WEG-8-4
get_sample(urbair, 
“TACGTAGGGGGCGAGCGTTATCCGGATTCATTGGGCGTAAAGCGCGCGTAGGCGGCCGCGTAG
GCGGGGGGTCAAATCCCGGGGCTCAACCCCGGTCCGCCCCCCGAACCCCGCGGCTCGGGTCCGG
TAGGGGAGGGTGGAATTCCCGGTGTAGCGGTGGAATGCGCAGATATCGGGAGGAACACCGGTGG
CGAAGGCGGCCCTCTGGGCCGAGACCGACGCTGAGGCGCGAAAGCTGGGGGAGCGAACAGG”)
# Buchnera sp. (obligate endosymbionts of aphids) SKI-8-18
get_sample(urbair, “TACGGAGGGTGCTAGCGTTAATCAGAATTACTGGGCGTAAAGAG
CGCGTAGGTGGTTTTTTAAGTCAGATGTGAAATCCCTGGGCTTAACCTAGGAACTGCATTTGAA
ACTGAAATACTAGAGTATCGTAGAGGGAGGTAGAATTCTAGGTGTAGCGGTGAAATGCGTAGAT
ATCTGGAGGAATACCCGTGGCGAAAGCGGCCTCCTAAACGAATACTGACACTGAGGTGCGAAAG



135

CGTGGGGAGCAAACAGG”)
# Aeromicrobium ponti (isolated from seawater) CEM-8-14
get_sample(urbair, “TACGTAGGGTCCGAGCGTTGTCCGGAATTATTGGGCGTAAAGGG
CTCGTAGGCGGTCTGTCGCGTCGGGAGTGAAAACTCAGGGCTCAACCCTGAGCGTGCTTCCGAT
ACGGGCAGACTAGAGGTATGCAGGGGAGAACGGAATTCCTGGTGTAGCGGTGGAATGCGCAGAT
ATCAGGAGGAACACCGGTGGCGAAGGCGGTTCTCTGGGCATTACCTGACGCTGAGGAGCGAAAG
CATGGGGAGCGAACAGG”)
# Fructobacillus	 fructosus (found in fructose-rich environments 
such as flowers, (fermented) fruits, or bee guts, and are 
characterized as fructophilic lactic acid bacteria) mostly from 
CEM-9-15, a few at WLF, BUF and PIO and SAF and AMA
get_sample(urbair, “TACGTATGTCCCGAGCGTTATCCGGATTTATTGGGCGTAAAGCG
AGCGCAGACGGTTGCTTAAGTCTGAAGTGAAAGCCCACAGCTCAACTGTGGAATGGCTTTGGAA
ACTGGGCAACTTGAGTGCAGTAGAGGTAAGTGGAACTCCATGTGTAGCGGTGGAATGCGTAGAT
ATATGGAAGAACACCAGTGGCGAAGGCGGCTTACTGGACTGCAACTGACGTTGAGGCTCGAAAG
TGTGGGTAGCAAACAGG”)

#ps1.des <- phyloseq_to_deseq2(ps1, ~ Date + Nearby_Veg)
# calculate geometric means prior to estimate size factors if error 
with too many zeros
#gm_mean = function(x, na.rm=TRUE){
 # exp(sum(log(x[x > 0]), na.rm=na.rm) / length(x))
#}
#geoMeans = apply(counts(urb.nosing.des), 1, gm_mean)
#ps1.des <- estimateSizeFactors(ps1.des)#, geoMeans = geoMeans)
#ps1.des <- estimateDispersions(ps1.des, fitType=”local”, maxit=260)
# perform DESeq2 variance stabilization instead of rarefying
#ps1.vst <- getVarianceStabilizedData(ps1.des)
# Save the untransformed data as a separate variable so you can go back 
to it
#ps10 <- ps1
#otu_table(ps1) <- otu_table(ps1.vst, taxa_are_rows=TRUE)
#ps1.vst <- ps1
#ps1 <- ps10
#rm(ps10)
# Set values below zero, to zero
#otu_table(ps1.vst)[otu_table(ps1.vst) < 0.0] <- 0
#ps1.tab <- getTab(ps1.vst)

UAord <- ordinate(ps1.vst, method = “PCoA”, distance = “horn”)
plot_ordination(ps1.vst, UAord, type = “samples”, color = “Nearby_Veg”, 
        label = “SampleID”, title = “Quality filtered, urban sites, set 
1 (PCoA, horn)”) +
 scale_color_manual(values=c(“turquoise3”, “darkgoldenrod”, “grey30”))
ggsave(“ordALL_nearbyveg_prevFilt_horn.pdf”, device=”pdf”, width=6.5, 
height=5, units=”in”, useDingbats=FALSE)
ggsave(“ordALL_nearbyveg_prevFilt_horn.png”, device=”png”, width=6.5, 
height=5, units=”in”)

#try plotting with land cover types separate
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forest <- prune_samples(sample_data(urb.nosing)$Nearby_Veg==”forest”, 
urb.nosing)
prev0 <- apply(X = otu_table(forest),
        MARGIN = ifelse(taxa_are_rows(forest), yes = 1, no = 2),
        FUN = function(x){sum(x > 0)})
prevdf <- data.frame(Prevalence = prev0,
           TotalAbundance = taxa_sums(forest),
           tax_table(forest))
keepPhyla <- table(prevdf$Phylum)[(table(prevdf$Phylum) > 5)]
prevdf1 <- subset(prevdf, Phylum %in% names(keepPhyla))
prevalenceThreshold <- 0.05 * nsamples(forest)
ggplot(prevdf1, aes(TotalAbundance, Prevalence, color = Phylum)) +
 geom_hline(yintercept = prevalenceThreshold, alpha = 0.5, linetype = 
2) +
 geom_point(size = 2, alpha = 0.7) +
 scale_y_log10() + scale_x_log10() +
 xlab(“Total Abundance”) +
 facet_wrap(~Phylum) +
 theme(legend.position=”none”, text=element_text(size=11))
ggsave(“prevalenceFiltered_forest.pdf”, device=”pdf”, width=6.5, 
height=4, units=”in”, useDingbats=FALSE)

grass <- prune_samples(sample_data(urb.nosing)$Nearby_Veg==”grass”, 
urb.nosing)
prev0 <- apply(X = otu_table(grass),
        MARGIN = ifelse(taxa_are_rows(grass), yes = 1, no = 2),
        FUN = function(x){sum(x > 0)})
prevdf <- data.frame(Prevalence = prev0,
           TotalAbundance = taxa_sums(grass),
           tax_table(grass))
keepPhyla <- table(prevdf$Phylum)[(table(prevdf$Phylum) > 5)]
prevdf1 <- subset(prevdf, Phylum %in% names(keepPhyla))
prevalenceThreshold <- 0.05 * nsamples(grass)
ggplot(prevdf1, aes(TotalAbundance, Prevalence, color = Phylum)) +
 geom_hline(yintercept = prevalenceThreshold, alpha = 0.5, linetype = 
2) +
 geom_point(size = 2, alpha = 0.7) +
 scale_y_log10() + scale_x_log10() +
 xlab(“Total Abundance”) +
 facet_wrap(~Phylum) +
 theme(legend.position=”none”, text=element_text(size=11))
ggsave(“prevalenceFiltered_grass.pdf”, device=”pdf”, width=6.5, 
height=4, units=”in”, useDingbats=FALSE)

paved <- prune_samples(sample_data(urb.nosing)$Nearby_Veg==”paved”, 
urb.nosing)
prev0 <- apply(X = otu_table(paved),
        MARGIN = ifelse(taxa_are_rows(paved), yes = 1, no = 2),
        FUN = function(x){sum(x > 0)})
prevdf <- data.frame(Prevalence = prev0,
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           TotalAbundance = taxa_sums(paved),
           tax_table(paved))
keepPhyla <- table(prevdf$Phylum)[(table(prevdf$Phylum) > 5)]
prevdf1 <- subset(prevdf, Phylum %in% names(keepPhyla))
prevalenceThreshold <- 0.05 * nsamples(paved)
ggplot(prevdf1, aes(TotalAbundance, Prevalence, color = Phylum)) +
 geom_hline(yintercept = prevalenceThreshold, alpha = 0.5, linetype = 
2) +
 geom_point(size = 2, alpha = 0.7) +
 scale_y_log10() + scale_x_log10() +
 xlab(“Total Abundance”) +
 facet_wrap(~Phylum) +
 theme(legend.position=”none”, text=element_text(size=11))
ggsave(“prevalenceFiltered_paved.pdf”, device=”pdf”, width=6.5, 
height=4, units=”in”, useDingbats=FALSE)

```

```{r plotMap, include=TRUE, results=”hide”}
SFC <- prune_samples(sample_data(urbair)$SiteCode==”SFC”, urbair)
# plot the basemap using sample location long and lat
sampLong <- as.numeric(as.character(unique(sample_data(SFC)$Long)))
sampLat <- as.numeric(as.character(unique(sample_data(SFC)$Lat)))
map <- get_map(location=c(lon= sampLong, lat= sampLat), zoom = 10, 
maptype = “satellite”, source = “google”) #get map

#plot Sample Locations
sitePts <- as.data.frame(cbind(as.character(unique(sample_
data(prune)$SiteCode)), 
         as.numeric(as.character(unique(sample_data(prune)$Lat))), 
         as.numeric(as.character(unique(sample_data(prune)$Long))),
         as.character(unique(sample_data(prune)$Urbanicity))
         ), stringsAsFactors=FALSE)
colnames(sitePts) <- c(“SiteCode”, “Lat”, “Long”, “Location”)
sitePts$Veg <- sample_data(prune)$Nearby_Veg[match(sitePts$SiteCode, 
sample_data(prune)$SiteCode)]
sitePts$Lat <- as.numeric(sitePts$Lat)
sitePts$Long <- as.numeric(sitePts$Long)
sitePts$Location <- sample_
data(prune)$Urbanicity[match(sitePts$SiteCode, sample_
data(prune)$SiteCode)]
sitePts$Location <- factor(sitePts$Location, levels=c(“urban”, 
“rural”))

ggmap(map, darken=c(0.25, “black”), extent=”panel”) + 
 geom_point(data=sitePts, aes(x=Long, y=Lat, group=Veg, color=Veg, 
shape=Location), size=2, alpha=1) +
 scale_color_manual(values=c(“turquoise3”, “darkgoldenrod1”, “grey20”)) 
+
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 geom_text(data=sitePts, aes(x=Long, y=Lat, label=SiteCode, vjust=2, 
group=Veg, color=Veg), size=2, check_overlap = TRUE) +
 xlim(c(-123.25, -122.78)) +
 ylim(c(43.95, 44.27)) #+ theme(legend.position = “none”)
 
ggsave(“sitesMap_rurUrb_labels.pdf”, device=”pdf”, width=6.5, height=4, 
units=”in”, useDingbats=FALSE)

ggsave(“sitesMap_rurUrb_labels.png”, device=”png”, width=6.5, height=4, 
units=”in”)
```

### Vegetation Analysis

``` {r vegEval, include=FALSE, results=”hide”}
vegStats <- data.frame(sample_data(urb.sing)$SiteCode, sample_data(urb.
sing)$Nearby_Veg, 
            sample_data(urb.sing)$Context, sample_data(urb.
sing)$green50, sample_data(urb.sing)$green100, 
            sample_data(urb.sing)$green200, sample_data(urb.
sing)$green400, sample_data(urb.sing)$green800, 
            sample_data(urb.sing)$structDiv, sample_data(urb.
sing)$vegDiv)
vegStats <- unique(vegStats)
colnames(vegStats) <- c(“SiteCode”, “LandCover”, “Context”, “green50”, 
“green100”, “green200”, “green400”, “green800”, “structDiv”, “vegDiv”)
vegStats <- vegStats[with(vegStats, order(LandCover, green800)), ]
write.csv(vegStats, “vegStats.csv”)
min(vegStats$green50)
max(vegStats$green50)
max(vegStats$green50[vegStats$LandCover == “paved”])
min(vegStats$green800)
max(vegStats$green800)

mean(vegStats$green50[vegStats$LandCover == “paved”])
mean(vegStats$green50[vegStats$LandCover == “grass”])
mean(vegStats$green50[vegStats$LandCover == “forest”])
mean(vegStats$green800[vegStats$LandCover == “paved”])
mean(vegStats$green800[vegStats$LandCover == “grass”])
mean(vegStats$green800[vegStats$LandCover == “forest”])

se <- function(x) sqrt(var(x)/length(x))
vegMelt <- melt(vegStats[,2:8], id.vars=c(“LandCover”, “Context”))
avgs <- ddply(vegMelt, .(LandCover, Context, variable), summarize,
       mean = mean(value),
       se = se(value)
       )

# VEG COVER STATS - plot bar graph with standard deviation as error 
bars



139

ggplot(avgs) +
 geom_bar(aes(x=variable, y=mean, fill=variable), stat=”identity”, 
position=position_dodge(width=0.8), width=0.55) +
 geom_errorbar(aes(x=variable, ymin=mean-se, ymax=mean+se), 
position=position_dodge(width=0.8), width=0.5, size=0.15) +
 scale_fill_manual(labels = c(“green50” = “50m”, “green100” = “100m”, 
“green200” = “200m”, “green400” = “400m”, “green800” = “800m”), 
          values=rainbow(5, s = 0.8, v = 0.6, start = 0.2, end = 0.5, 
alpha = 1)) +
 facet_grid(LandCover ~ Context) +
 labs(x=”Buffer Size”, y=”Average Vegetation Proportion”, fill=”Buffer 
Size”) +
 scale_x_discrete(labels=c(“green50” = “50m”, “green100” = “100m”, 
“green200” = “200m”, “green400” = “400m”, “green800” = “800m”)) +
 theme(axis.text=element_text(size=11), axis.title=element_
text(size=12), 
    legend.text=element_text(size=11), legend.title=element_
text(size=12), legend.position = “none”) 

ggsave(“bar_vegStats.pdf”, device=”pdf”, width=6.5, height=4, 
units=”in”, useDingbats=FALSE)
ggsave(“bar_vegStats.png”, device=”png”, width=6.5, height=4, 
units=”in”)

# VEG STRUCTURAL & SPECIES DIVERSITY - plot bar graph with standard 
deviation as error bars
vegMelt <- melt(vegStats[,c(2:3,9:10)], id.vars=c(“LandCover”, 
“Context”))
avgs <- ddply(vegMelt, .(LandCover, Context, variable), summarize,
       mean = mean(value),
       se = se(value)
       )
avgs <- subset(avgs, LandCover %in% c(“forest”, “grass”))

ggplot(avgs) +
 geom_bar(aes(x=variable, y=mean, fill=variable), stat=”identity”, 
position=position_dodge(width=0.8), width=0.55) +
 geom_errorbar(aes(x=variable, ymin=mean-se, ymax=mean+se), 
position=position_dodge(width=0.8), width=0.5, size=0.15) +
 scale_fill_manual(labels = c(“structDiv” = “Structural”, “vegDiv” = 
“Species”), 
          values=rainbow(2, s = 0.8, v = 0.6, start = 0.1, end = 0.6, 
alpha = 1)) +
 facet_grid(LandCover ~ Context) +
 labs(x=”Diversity (Shannon)”, y=”Average Vegetation Proportion”, 
fill=”Diversity”) +
 scale_x_discrete(labels=c(“structDiv” = “Structural”, “vegDiv” = 
“Species”)) +
 theme(axis.text=element_text(size=11), axis.title=element_
text(size=12), 
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    legend.text=element_text(size=11), legend.title=element_
text(size=12), legend.position = “none”) 

ggsave(“bar_vegStats2.pdf”, device=”pdf”, width=6.5, height=4, 
units=”in”, useDingbats=FALSE)
ggsave(“bar_vegStats2.png”, device=”png”, width=6.5, height=4, 
units=”in”)

```

### Meteorological Analysis

``` {r trimTime, eval=FALSE, echo=FALSE}
####### trim time data -------- 
iButList <- list.files(“/Users/Gwynne/UO/PhD work/dissertation/raw data/
iButton/iButtonData_calibrate”) 
for (i in iButList) {
 filepath <- file.path(“/Users/Gwynne/UO/PhD work/dissertation/raw data/
iButton/iButtonData_calibrate”,
             paste(i,sep=”/”))
 temp <- read.csv(filepath, header=TRUE, skip=13)
 temp[,1] <- mdy_hms(temp[,1])
 temp.x <- xts(temp[,-1], order.by=temp[,1])
 temp.x <- temp.x[‘20150709/20150711 12:00’]
 temp <- fortify(temp.x)
 trimBut <- paste(“/Users/Gwynne/UO/PhD work/dissertation/processed 
data/iButtonData_calibrate”, i, sep=”/”)
 write.csv(temp, trimBut)
}

```

``` {r meteorEval, eval=FALSE, echo=FALSE}

foldList <- list.files(“/Users/gwynhwyfer/Documents/PhD work/
dissertation/chapter3_urbanMicrobiome/processed data/iButton_processed 
with site codes/”)

totBut <- data.frame(Index=character(),
           Unit=factor(), 
           Value=numeric(), 
           Location=factor(),
           iButton=factor(),
           Period=factor(),
           stringsAsFactors=TRUE) 
for (h in foldList) {
 foldpath <- file.path(“/Users/gwynhwyfer/Documents/PhD work/
dissertation/chapter3_urbanMicrobiome/processed data/iButton_processed 
with site codes”,
             paste(h,sep=””))
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 iButList <- list.files(foldpath)
 allBut <- data.frame(Index=character(),
            Unit=factor(), 
            Value=numeric(), 
            Location=factor(),
            iButton=factor(),
            stringsAsFactors=TRUE) 
 for (i in iButList) {
  filepath <- file.path(“/Users/gwynhwyfer/Documents/PhD work/
dissertation/chapter3_urbanMicrobiome/processed data/iButton_processed 
with site codes”,
             paste(h,i,sep=”/”))
  iBut <- read.csv(filepath, header=TRUE,
            stringsAsFactors=TRUE)
  iBut <- iBut[,-1]
  iBut$iButton <- “iButton1”
  iBut$iButton <- gsub(“iButton1”, paste(i,sep=””), iBut[,5])
  iBut$iButton <- gsub(“.csv”,””, iBut[,5])
  iBut[,1] <- mdy_hm(iBut[,1])
  allBut <- rbind(allBut, iBut)
 }
 allBut$Period <- “9-29”
 allBut$Period <- gsub(“9-29”, paste(h,sep=””), allBut[,6])
 allBut$Period <- gsub(“iButtonData_”,””, allBut[,6])
 allBut$Period <- gsub(“-2015”,””, allBut[,6])
 allBut <- subset(allBut, Location != “CONTROL”) # remove controls
 allBut <- subset(allBut, Location != “UNKNOWN”)
 pdf(paste(h, “.pdf”, sep=””), height=7, width=8.5, 
  useDingbats=FALSE)
 par(mfrow=c(1,1), pty=”m”, oma=c(0,0,0,0), mar=c(4,4,2,2))
 print(ggplot(allBut, aes(x=Index, y=Value, colour=Location)) + geom_
line())
 dev.off()
 totBut <- rbind(totBut, allBut)
}

#totBut$Location <- as.factor(totBut$Location) #don’t know if I want 
this as a factor
totBut.sub <- subset(totBut, Location != “CONTROL”) # remove controls
totBut.sub <- subset(totBut.sub, Location != “UNKNOWN”) # remove “lost” 
iButtons
meta <- read.csv(“/Users/gwynhwyfer/Documents/PhD work/dissertation/
chapter3_urbanMicrobiome/processed data/mapFile_2-15-2017.csv”)
totBut.sub$Type <- meta[match(totBut.sub$Location, meta$SiteCode), 6]
totBut.sub$iButton <- as.factor(totBut.sub$iButton)
totBut.sub$Period <- as.factor(totBut.sub$Period)

# convert to zoo/xts object to plot time series
totBut.sub$Time <- hour(totBut.sub$Index) + minute(totBut.sub$Index)/60
totBut.sub$Time <- format(as.POSIXct(totBut.sub$Time*3600, 
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origin=”2001-01-01”, “GMT”), “%H:%M”)
#totBut.sub$Time <- hm(totBut.sub$Time)
#totBut.sub$Time <- parse_date_time(totBut.sub$Time, “HM”)
write.csv(totBut.sub, “/Users/gwynhwyfer/Documents/PhD work/
dissertation/chapter3_urbanMicrobiome/processed data/totBut.csv”)
totBut.noOuts <- totBut.sub[!(totBut.sub$Location==”WEG” & totBut.
sub$Period==”8-3”), ] #remove crazy iButton
totBut.noOuts <- totBut.noOuts[!(totBut.noOuts$Value>=42), ] #and 
remove random outlier
sort(totBut.noOuts$Value)[1:10]

ggplot(totBut.sub, aes(x=Time, y=Value, colour=Period)) + geom_line() +
     facet_wrap(“Location”)
ggplot(totBut.sub, aes(x=Time, y=Value, colour=Location)) + geom_line() 
+ 
     facet_wrap(“Period”)
ggplot(totBut.noOuts, aes(x=Time, y=Value, colour=Location)) +
 geom_point() +
 scale_y_continuous(limits=c(35, 45))
ggplot(totBut.noOuts, aes(x=Type, y=Value, colour=Type)) +
 geom_boxplot() +
 facet_wrap(~Period)

iButSumm <- data.frame(ddply(totBut.noOuts, .(Location, Period), 
summarize, meanTemp = mean(Value, na.rm = TRUE),
               minTemp = min(Value, na.rm = TRUE), maxTemp = max(Value, 
na.rm = TRUE)))
write.csv(iButSumm, “/Users/gwynhwyfer/Documents/PhD work/dissertation/
chapter3_urbanMicrobiome/processed data/iButSumm.csv”)
mean(iButSumm$meanTemp) #average mean temp
min(iButSumm$minTemp)
max(iButSumm$maxTemp)

iButSumm.date <- data.frame(ddply(totBut.noOuts, .(Period), summarize, 
meanTemp = mean(Value, na.rm = TRUE),
               minTemp = min(Value, na.rm = TRUE), maxTemp = max(Value, 
na.rm = TRUE)))
iButSumm.site <- data.frame(ddply(totBut.noOuts, .(Location), 
summarize, meanTemp = mean(Value, na.rm = TRUE),
               minTemp = min(Value, na.rm = TRUE), maxTemp = max(Value, 
na.rm = TRUE)))
iButSumm.site[order(iButSumm.site$meanTemp),]
iButSumm.lc <- data.frame(ddply(totBut.noOuts, .(Type, Period), 
summarize, meanTemp = mean(Value, na.rm = TRUE),
               minTemp = min(Value, na.rm = TRUE), maxTemp = max(Value, 
na.rm = TRUE)))

write.csv(iButSumm.lc, “tempSummary.csv”)
iButSumm.melt <- melt(iButSumm, id.vars=c(“Period”, “Location”), 
measure.vars=”meanTemp”) # convert to long format
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ggplot(data=iButSumm.melt) +
 geom_line(aes(x=Period, y=value, color=factor(Location), 
group=interaction(Location))) +
 facet_wrap(~Location)

ggplot(data=iButSumm, aes(x=Period, y=meanTemp), fill=Location) +
 geom_point() +
 scale_fill_manual(values=rainbow(36))
length(unique(iButSumm$Location))
```

### Bacterial Analysis
## Overview

``` {r basicInfo, include=FALSE, results=”hide”}

# access basic info (with single/doubletons and extra samples)
sum(sample_sums(urb.sing)) # total number of reads, including single/
doubletons
sum(sample_sums(urb.nosing)) # total number of reads, excluding single/
doubletons
sum(sample_sums(urb.sing))-sum(sample_sums(urb.nosing))
sort(sample_sums(urb.nosing)) # numbers of reads in each sample
ntaxa(urb.nosing) # total number of taxa, excluding single/doubletons
length(get_taxa_unique(urb.nosing, “Phylum”)) # number of different 
Phyla represented
rev(sort(taxa_sums(urb.sing)))[1:10] # top ten OTU abundances
tax_table(urb.sing)[row.names(tax_table(urb.sing))==”TACGGAGGGAG
CTAGCGTTATTCGGAATTACTGGGCGTAAAGCGCACGTAGGCGGCTTTGTAAGTAAGAGGTGAA
AGCCCAGAGCTCAACTCTGGAATTGCCTTTTAGACTGCATCGCTTGAATCATGGAGAGGTCAGT
GGAATTCCGAGTGTAGAGGTGAAATTCGTAGATATTCGGAAGAACACCAGTGGCGAAGGCGGCT
GACTGGACATGTATTGACGCTGAGGTGCGAAAGCGTGGGGAGCAAACAGG”,]
rev(sort(taxa_sums(urb.nosing)))[1]/sum(sample_sums(urb.nosing)) # 
proportional abundance of top taxon

phyGlom <- tax_glom(urb.nosing, taxrank=”Phylum”) #agglomerate at 
phylum level
taxa_sums(phyGlom)/sum(sample_sums(phyGlom)) # proportional abundance 
of phylum
top10phy <- names(sort(taxa_sums(phyGlom), TRUE))
top10 <- prune_taxa(top10phy, phyGlom)
top10_sums <- data.frame(taxa_sums(top10)/sum(sample_sums(top10)))
# get taxonomic Families of top 10
top10tax <- tax_table(top10)[, c(“Phylum”, “Class”)]
top10matrix <- data.frame(as(top10tax, “matrix”))
top10matrix <- cbind(top10matrix, top10_sums)
names(top10matrix)[names(top10matrix) == “taxa_sums.top10.”] <- 
“Abundance”
top10matrix <- top10matrix[order(as.numeric(as.character(-
top10matrix[,3]))), ]
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write.csv(top10matrix, “phyAbund.csv”)

classGlom <- tax_glom(urb.nosing, taxrank=”Class”) #agglomerate at 
class level
taxa_sums(classGlom)/sum(sample_sums(classGlom)) # proportional 
abundance of class
top10phy <- names(sort(taxa_sums(classGlom), TRUE))
top10 <- prune_taxa(top10phy, classGlom)
top10_sums <- data.frame(taxa_sums(top10)/sum(sample_sums(top10)))
# get taxonomic Families of top 10
top10tax <- tax_table(top10)[, c(“Phylum”, “Class”)]
top10matrix <- data.frame(as(top10tax, “matrix”))
top10matrix <- cbind(top10matrix, top10_sums)
names(top10matrix)[names(top10matrix) == “taxa_sums.top10.”] <- 
“Abundance”
top10matrix <- top10matrix[order(as.numeric(as.character(-
top10matrix[,3]))), ]
write.csv(top10matrix, “classAbund.csv”)

# What about the total reads per sample, and what does the distribution 
look like?
readsumsdf <- data.frame(nreads = sort(taxa_sums(urb.nosing), TRUE), 
sorted = 1:ntaxa(urb.nosing), type = “OTUs”)
readsumsdf <- rbind(readsumsdf, data.frame(nreads = sort(sample_
sums(urb.nosing), TRUE), sorted = 1:nsamples(urb.nosing), type = 
“Samples”))
ggplot(readsumsdf, aes(x = sorted, y = nreads)) + geom_bar(stat = 
“identity”) + 
 ggtitle(“Total number of reads”) + scale_y_log10() + facet_wrap(~type, 
1, scales = “free”)
#dev.off()

#clean up
rm(readsumsdf)

```

### Alpha diversity
Richness across all urban sites is shown in Figure \ref{fig:alpha}, 
measured using the Shannon index. We found no significant pattern to 
variation in diversity by nearby vegetation type.

```{r alphaDiv, include=TRUE, results=”hide”, fig.width=5, fig.height=4, 
fig.show=”hold”, fig.align=”center”, fig.cap=”\\label{fig:alpha}Alpha 
diversity across dates by nearby vegetation type.”}
## CAN’T COMPARE DIVERSITY INDICES BC OF DIFFERENCE IN SAMPLE SIZES
## USE RAREFACTION CURVES INSTEAD per Bowers
# get raw OTU and sample data tables out of phyloseq, samples as rows
pruneTab <- getTab(urb.sing)
pruneEnv <- sample_data(urb.sing)
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pruneTab[1:5, 1:5] # check
raremin <- min(rowSums(pruneTab))
expTaxa <- data.frame(“Expected_Taxa” = rarefy(pruneTab, raremin))
expTaxa$Date <- as.factor(sample_data(urb.sing)$Date[match(row.
names(expTaxa), sample_data(urb.sing)$SampleID)])
expTaxa$SiteCode <- as.factor(sample_data(urb.sing)$SiteCode[match(row.
names(expTaxa), sample_data(urb.sing)$SampleID)])
expTaxa$Nearby_Veg <- as.factor(sample_data(urb.sing)$Nearby_
Veg[match(row.names(expTaxa), sample_data(urb.sing)$SampleID)])
expTaxa$Context <- as.factor(sample_data(urb.sing)$Context[match(row.
names(expTaxa), sample_data(urb.sing)$SampleID)])
expTaxa$Reads <- sample_sums(urb.sing)[match(row.names(expTaxa), 
names(sample_sums(urb.sing)))]

#pdf(“rarecurve_allSites.pdf”, height = 9, width = 6.5)
#rc <- rarecurve(pruneTab, step = 20, sample = raremin, col = “blue”, 
cex = 0.6)
#dev.off()
write.csv(expTaxa, “rarecurve_expTaxa.csv”)

##TEST FOR DIFFERENCES IN DIVERSITY?
min(expTaxa$Expected_Taxa)
max(expTaxa$Expected_Taxa)
hist(expTaxa) #Distribution of the alpha diversity index is close to 
normal
summary(aov(Expected_Taxa ~ Date, data = expTaxa))
summary(aov(Expected_Taxa ~ SiteCode, data = expTaxa))
summary(aov(Expected_Taxa ~ Nearby_Veg, data = expTaxa))
summary(aov(Expected_Taxa ~ Context, data = expTaxa))
#summary(aov(Expected_Taxa ~ Urbanicity, data = expTaxa))

```

```{r dateBar, include=TRUE, results=”hide”, fig.width=5, fig.height=4, 
fig.show=”hold”, fig.align=”center”, fig.cap=”\\label{fig:barAll}Barplot 
showing composition by date for all sites aggregated.”}

# transform only urban sample counts to relative abundance by sample
urb.nosingRel <- transform_sample_counts(urb.nosing, function(x) 100 * 
x/sum(x))

# top 25 taxa overall (urban sites) - output csv
top25otus <- names(sort(taxa_sums(urb.nosingRel), TRUE)[1:25])
top50otus <- names(sort(taxa_sums(urb.nosingRel), TRUE)[1:50])
top100otus <- names(sort(taxa_sums(urb.nosingRel), TRUE)[1:100])
top25 <- prune_taxa(top25otus, urb.nosingRel)
top25_sums <- data.frame(taxa_sums(top25))
# get taxonomic Families of top 25
top25tax <- tax_table(top25)[, c(“Phylum”, “Class”, “Order”, “Family”, 
“Genus”, “Species”)]
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top25matrix <- data.frame(as(top25tax, “matrix”))
top25matrix <- cbind(top25matrix, top25_sums)
names(top25matrix)[names(top25matrix) == “taxa_sums.top25.”] <- 
“Abundance”
top25matrix <- top25matrix[order(as.numeric(as.character(-
top25matrix[,7]))), ]
write.csv(top25matrix, “top25_all.csv”)

genus.merge <- tax_glom(urb.nosing, taxrank=”Genus”)
genus.mergeRel <- transform_sample_counts(genus.merge, function(x) 100 
* x/sum(x))
fam.merge <- tax_glom(urb.nosing, taxrank=”Family”)
fam.mergeRel <- transform_sample_counts(fam.merge, function(x) 100 * x/
sum(x))
order.merge <- tax_glom(urb.nosing, taxrank=”Order”)
class.merge <- tax_glom(urb.nosing, taxrank=”Class”)
class.mergeRel <- transform_sample_counts(class.merge, function(x) 100 
* x/sum(x))

## stacked barplots to compare proportional composition for all urban 
sites (family level) by Site
sort.class <- sort(tapply(taxa_sums(urb.nosing), tax_table(urb.nosing)
[, “Family”], sum), TRUE)
length(sort.class)
top.class <- sort.class[1:25] #what are the top 25 most abundant 
Families?
bottom.class <- sort.class[26:length(sort.class)]
urb.nosing1 <- subset_taxa(urb.nosing, Family %in% names(top.class)) 
#get top 25 most abundant Family
urb.nosing2 <- subset_taxa(urb.nosing, Family %in% names(bottom.class)) 
#get all other taxa
urb.nosing2 <- merge_taxa(urb.nosing, taxa_names(urb.nosing2), 
archetype=1) #merge all other taxa into Family “Other”
tax_table(urb.nosing2)[,5][is.na(tax_table(urb.nosing2)[,5])] <- 
“Other”
urb.nosing2 <- tax_glom(urb.nosing2, taxrank=”Family”)
get_taxa_unique(urb.nosing2, “Family”)

##tried it with SVs instead of merged families
#sort.sv <- sort(taxa_sums(urb.nosing), TRUE)[101:length(taxa_sums(urb.
nosing))]
#otherTaxa <- prune_taxa(names(sort.sv), urb.nosing)
#urb.nosing2 <- merge_taxa(urb.nosing, taxa_names(otherTaxa), 
archetype=1) #merge all other taxa into Family “Other”
#taxa_names(otherTaxa)[1]
#tax_table(urb.nosing2)[grep(taxa_names(otherTaxa)[1], row.names(tax_
table(urb.nosing2))),5] <- “Other”
#tax_table(urb.nosing2)[,5]

## stacked barplots to compare proportional composition for all urban 
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sites (family level) by Date
urb.nosing.m <- merge_samples(urb.nosing2, “Date”)
sample_data(urb.nosing.m)$Date <- levels(factor(sample_data(urb.
nosing2)$Date))
urb.nosing.m <- transform_sample_counts(urb.nosing.m, function(x) 100 * 
x/sum(x))
df_long <- psmelt(urb.nosing.m) # first change to long format
old.lvl <- levels(df_long$Family)
df_long$Family <- factor(df_long$Family, levels=c(“Other”, sort(old.
lvl[old.lvl!=”Other”], decreasing=F)))
ggplot(df_long, aes(x=Date, y=Abundance, fill = Family)) + 
 geom_bar(stat=”identity”, position=”stack”) + 
 ylab(“Percentage of Sequences”) + 
 scale_fill_manual(values=famPal, na.value=”darkgrey”) +
 scale_color_manual(values=famPal, na.value=”darkgrey”) + 
 theme(axis.title=element_text(size=12), legend.text=element_
text(size=8), legend.key.size = unit(0.16,”in”)) 

ggsave(“date_stackedBar_allbyFamily.pdf”, device=”pdf”, width=7, 
height=4, units=”in”, useDingbats=FALSE)
ggsave(“date_stackedBar_allbyFamily.png”, device=”png”, width=6.5, 
height=4, units=”in”)
```

### Community composition by site location
```{r siteBar, include=TRUE, results=”hide”, fig.width=6.5, fig.
height=6.5, fig.show=”hold”, fig.align=”center”, fig.cap=”\\
label{fig:barSite}Barplot showing bacterial family composition 
aggregated by site location.”}
siteList.rel <- llply(siteList, function(x){transform_sample_counts(x, 
function(x) 100 * x/sum(x))})
dateList.rel <- llply(dateList, function(x){transform_sample_counts(x, 
function(x) 100 * x/sum(x))})

RURsiteList.rel <- llply(RURsiteList, function(x){transform_sample_
counts(x, function(x) 100 * x/sum(x))})

## stacked barplots to compare proportional composition (colored at 
family level) of top 25 taxa for every site BY DATE
##FIGURE OUT HOW TO GROUP BY SITE TYPE
sort_plot <- function(x){
 top25 <- sort(taxa_sums(x), TRUE)[1:25]
 top25 <- prune_taxa(names(top25), x)
 top25_sums <- data.frame(taxa_sums(top25))
 # get taxonomic Families of top 25
 top25tax <- tax_table(top25)[, c(“Phylum”, “Class”, “Order”, “Family”, 
“Genus”)]
 top25matrix <- data.frame(as(top25tax, “matrix”))
 top25matrix <- cbind(top25matrix, top25_sums)
 # reorder levels by Nearby_Veg
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 sample_data(top25)$SampleID <- factor(
  sample_data(top25)$SampleID, levels=sample_
data(top25)$SampleID[order(sample_data(top25)$Nearby_Veg)])
 plot_bar(top25, x=”SampleID”, fill = “Family”) + 
  ylab(“Percentage of Sequences”) + 
  geom_bar(aes(fill=Family, color=Family), stat=”identity”, 
position=”stack”) + 
  scale_fill_manual(values=famPal, na.value=”darkgrey”) +
  scale_color_manual(values=famPal, na.value=”darkgrey”) +
  #scale_x_discrete(labels=c(“7.14”,”8.4”,”8.14”,”8.18”, 
“8.25”,”9.1”,”9.15”,”9.22”, “9.29”)) +
  ylim(0,80) +
  theme(legend.position = “none”, axis.text=element_text(size=11), 
axis.title=element_text(size=12))
}

siteList.25 <- llply(siteList.rel, sort_plot)
siteList.25[1:9]
for (i in seq_along(siteList.25)){
 ggsave(paste0(names(siteList.25)[i], “_stackedBar_bySite_top50.pdf”), 
plot=siteList.25[[i]], device=”pdf”, width=3, height=3, units=”in”)
}

dateList.25 <- llply(dateList.rel, sort_plot)
dateList.25[1:9]
for (i in seq_along(dateList.25)){
 ggsave(paste0(names(dateList.25)[i], “_stackedBar_byDate_top25.pdf”), 
plot=dateList.25[[i]], device=”pdf”, width=3, height=3, units=”in”)
}

RURsiteList.25 <- llply(RURsiteList.rel, sort_plot)
for (i in seq_along(RURsiteList.25)){
 ggsave(paste0(names(RURsiteList.25)[i], “_stackedBar_byDate_top50_RUR.
pdf”), plot=RURsiteList.25[[i]], device=”pdf”, width=3, height=3, 
units=”in”)
}

#clean up
rm(top25otus, top25_sums, top25tax, top25matrix)

```

``` {r transformData, results=”hide”}
# transform urban only sample counts for downstream analysis using vst
# this design measures the effect of Nearby_Veg, controlling for 
sampling Date differences. In order to benefit from the default settings 
of the package, you should put the variable of interest at the end of 
the formula and make sure the control level is the first level.
urb.nosing.des <- phyloseq_to_deseq2(urb.nosing, ~ Date + Nearby_Veg)
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# calculate geometric means prior to estimate size factors if error 
with too many zeros
#gm_mean = function(x, na.rm=TRUE){
 # exp(sum(log(x[x > 0]), na.rm=na.rm) / length(x))
#}
#geoMeans = apply(counts(urb.nosing.des), 1, gm_mean)
urb.nosing.des <- estimateSizeFactors(urb.nosing.des)#, geoMeans = 
geoMeans)
urb.nosing.des <- estimateDispersions(urb.nosing.des, fitType=”local”, 
maxit=260)
# perform DESeq2 variance stabilization instead of rarefying
urb.nosing.vst <- getVarianceStabilizedData(urb.nosing.des)
# Save the untransformed data as a separate variable so you can go back 
to it
urb.nosing0 <- urb.nosing
otu_table(urb.nosing) <- otu_table(urb.nosing.vst, taxa_are_rows=TRUE)
urb.nosing.vst <- urb.nosing
urb.nosing <- urb.nosing0
rm(urb.nosing0)
# Set values below zero, to zero
otu_table(urb.nosing.vst)[otu_table(urb.nosing.vst) < 0.0] <- 0

# transform all (urban + rural) sample counts for downstream analysis 
using vst
nosing.des <- phyloseq_to_deseq2(nosing, ~ Date + Context)
nosing.des <- estimateSizeFactors(nosing.des)#, geoMeans = geoMeans)
nosing.des <- estimateDispersions(nosing.des, fitType=”local”, 
maxit=260)
# perform DESeq2 variance stabilization instead of rarefying
nosing.vst <- getVarianceStabilizedData(nosing.des)
# Save the untransformed data as a separate variable so you can go back 
to it
nosing0 <- nosing
otu_table(nosing) <- otu_table(nosing.vst, taxa_are_rows=TRUE)
nosing.vst <- nosing
nosing <- nosing0
rm(nosing0)
# Set values below zero, to zero
otu_table(nosing.vst)[otu_table(nosing.vst) < 0.0] <- 0

```

```{r PCoA, eval=TRUE, include=TRUE, results=”hide”, fig.width=5, fig.
height=4, fig.show=”hold”, fig.align=”center”, fig.cap=”\\label{fig:pcoa}
PCoA ordination plot of all samples, colored by sampling date.”}
#use these
UAord <- ordinate(urb.nosing.vst, method = “PCoA”, distance = “horn”)
plot_ordination(urb.nosing.vst, UAord, type = “samples”, color = 
“Nearby_Veg”, 
        label = “SampleID”, title = “Quality filtered, all urban sites 
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(PCoA, horn)”) +
 scale_color_manual(values=c(“turquoise3”, “darkgoldenrod”, “grey30”))
ggsave(“ordALL_nearbyveg_horn.pdf”, device=”pdf”, width=5, height=3.25, 
units=”in”, useDingbats=FALSE)
ggsave(“ordALL_nearbyveg_horn.png”, device=”png”, width=6.5, height=5, 
units=”in”)

plot_ordination(urb.nosing.vst, UAord, type = “samples”, color = 
“Date”, shape = “Nearby_Veg”) +
 geom_point(size=3)
        #label = “SampleID”, title = “Quality filtered, all urban sites, 
no July (PCoA, horn)”) +
ggsave(“ordALL_date_horn.pdf”, device=”pdf”, width=5, height=3.25, 
units=”in”, useDingbats=FALSE)
ggsave(“ordALL_date_horn.png”, device=”png”, width=6.5, height=5, 
units=”in”)

#ordinate/plot sets separately
sample_data(urb.nosing.vst)$set <- “1”
sample_data(urb.nosing.vst)$set[sample_data(urb.nosing.vst)$Date == 
‘08.14.2015’] <- “2”
sample_data(urb.nosing.vst)$set[sample_data(urb.nosing.vst)$Date == 
‘08.25.2015’] <- “2”
sample_data(urb.nosing.vst)$set[sample_data(urb.nosing.vst)$Date == 
‘09.15.2015’] <- “2”
sample_data(urb.nosing.vst)$set[sample_data(urb.nosing.vst)$Date == 
‘09.29.2015’] <- “2”

set1 <- prune_samples(sample_data(urb.nosing.vst)$set == ‘1’, urb.
nosing.vst)
UAord <- ordinate(set1, method = “PCoA”, distance = “horn”)
plot_ordination(set1, UAord, type = “samples”, color = “Nearby_Veg”, 
        label = “SampleID”, title = “Quality filtered, urban sites, set 
1 (PCoA, horn)”) +
 scale_color_manual(values=c(“turquoise3”, “darkgoldenrod”, “grey30”))
ggsave(“ordALL_nearbyveg_set1_horn.pdf”, device=”pdf”, width=6.5, 
height=5, units=”in”, useDingbats=FALSE)
ggsave(“ordALL_nearbyveg_set1_horn.png”, device=”png”, width=6.5, 
height=5, units=”in”)

set2 <- prune_samples(sample_data(urb.nosing.vst)$set == ‘2’, urb.
nosing.vst)
UAord <- ordinate(set2, method = “PCoA”, distance = “horn”)
plot_ordination(set2, UAord, type = “samples”, color = “Nearby_Veg”, 
        label = “SampleID”, title = “Quality filtered, all urban sites, 
no July (PCoA, horn)”) +
 scale_color_manual(values=c(“turquoise3”, “darkgoldenrod”, “grey30”))
ggsave(“ordALL_nearbyveg_set2_horn.pdf”, device=”pdf”, width=6.5, 
height=5, units=”in”, useDingbats=FALSE)
ggsave(“ordALL_nearbyveg_set2_horn.png”, device=”png”, width=6.5, 
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height=5, units=”in”)

## create an ordination plot with better control over elements
# pull out axis scores from ordination
ord.scores <- UAord$vectors[, c(1, 2)]
# get map out of phyloseq object 
map.df <- data.frame(sample_data(urb.nosing.vst))
# control symbol shape & color
map.df$pch <- 17
map.df$pch[map.df$Nearby_Veg == ‘paved’] <- 16
map.df$pch[map.df$Nearby_Veg == ‘grass’] <- 15
map.df$col <- “turquoise3”
map.df$col[map.df$Nearby_Veg == ‘paved’] <- “grey30”
map.df$col[map.df$Nearby_Veg == ‘grass’] <- “darkgoldenrod”
map.df$dateColor <- “firebrick2”
map.df$dateColor[map.df$Date == ‘08.04.2015’] <- “sienna1”
map.df$dateColor[map.df$Date == ‘08.14.2015’] <- “darkgoldenrod1”
map.df$dateColor[map.df$Date == ‘08.18.2015’] <- “darkolivegreen3”
map.df$dateColor[map.df$Date == ‘08.25.2015’] <- “green2”
map.df$dateColor[map.df$Date == ‘09.01.2015’] <- “turquoise1”
map.df$dateColor[map.df$Date == ‘09.15.2015’] <- “blue”
map.df$dateColor[map.df$Date == ‘09.22.2015’] <- “darkviolet”
map.df$dateColor[map.df$Date == ‘09.29.2015’] <- “hotpink”
unique(map.df$Date)
# make a blank plot
pdf(“ordALL_vegEllipse_horn.pdf”)
plot(ord.scores[, 1], ord.scores[, 2],type=”n”, 
ylab=’PCoA Axis 2’, xlab=’PCoA Axis 1’)
legend(“right”, unique(map.df$Date), fill = unique(map.df$dateColor))
legend(“topright”, unique(map.df$Nearby_Veg), pch = unique(map.df$pch))
points(ord.scores[, 1], ord.scores[, 2], pch=map.df$pch, cex=2, 
col=map.df$dateColor) #bg=map.df$parkVlot.col, 
ellOne <- ordiellipse(ord.scores, map.df$Date, label=FALSE, kind=”se”, 
conf=0.95, col=”firebrick2”, show=’07.14.2015’, draw=’polygon’, 
lwd=0.0001, border=NA) 
ellTwo <- ordiellipse(ord.scores, map.df$Date, label=FALSE, kind=”se”, 
conf=0.95, col=”sienna1”, show=’08.04.2015’, draw=’polygon’, 
lwd=0.0001, border=NA) 
ellThree <- ordiellipse(ord.scores, map.df$Date, label=FALSE, 
kind=”se”, conf=0.95, col=”darkgoldenrod1”, show=’08.14.2015’, 
draw=’polygon’, lwd=0.0001, border=NA) 
ellFour <- ordiellipse(ord.scores, map.df$Date, label=FALSE, kind=”se”, 
conf=0.95, col=”darkolivegreen3”, show=’08.18.2015’, draw=’polygon’, 
lwd=0.0001, border=NA) 
ellFive <- ordiellipse(ord.scores, map.df$Date, label=FALSE, kind=”se”, 
conf=0.95, col=”green2”, show=’08.25.2015’, draw=’polygon’, lwd=0.0001, 
border=NA) 
ellSix <- ordiellipse(ord.scores, map.df$Date, label=FALSE, kind=”se”, 
conf=0.95, col=”turquoise1”, show=’09.01.2015’, draw=’polygon’, 
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lwd=0.0001, border=NA) 
ellSeven <- ordiellipse(ord.scores, map.df$Date, label=FALSE, 
kind=”se”, conf=0.95, col=”blue”, show=’09.15.2015’, draw=’polygon’, 
lwd=0.0001, border=NA) 
ellEight <- ordiellipse(ord.scores, map.df$Date, label=FALSE, 
kind=”se”, conf=0.95, col=”darkviolet”, show=’09.22.2015’, 
draw=’polygon’, lwd=0.0001, border=NA)
ellNine <- ordiellipse(ord.scores, map.df$Date, label=FALSE, kind=”se”, 
conf=0.95, col=”hotpink”, show=’09.29.2015’, draw=’polygon’, 
lwd=0.0001, border=NA) 
#forest.ellipse <- ordiellipse(ord.scores, map.df$Nearby_
Veg, label=FALSE, kind=’sd’, col=”turquoise3”, show=’forest’, 
draw=’polygon’, lwd=0.0001, border=NA) 
#paved.ellipse <- ordiellipse(ord.scores, map.df$Nearby_Veg, 
label=FALSE, kind=’sd’, col=”gray”, show=’paved’, draw=’polygon’, 
lwd=0.0001, border=NA) 
#grass.ellipse <- ordiellipse(ord.scores, map.df$Nearby_Veg, 
label=FALSE, kind=’sd’, col=”darkgoldenrod”, show=’grass’, 
draw=’polygon’, lwd=0.0001, border=NA) 
dev.off()

#text(ord.scores[, 1], ord.scores[, 2], map.df$SiteCode, cex=.7, pos=1, 
col=’gray30’)

## ordinate by urban vs. rural
UAord <- ordinate(nosing.vst, method = “PCoA”, distance = “horn”)
sample_data(nosing.vst)$urbRur <- “Urban”
sample_data(nosing.vst)$urbRur[sample_data(nosing.vst)$Urbanicity == 
“rural”] <- “Rural”
plot_ordination(nosing.vst, UAord, type = “samples”, color = “urbRur”, 
        label = “SampleID”, title = “Quality filtered, urban vs. rural 
(PCoA, horn)”) +
 scale_color_manual(values=c(“red”, “purple”))
ggsave(“ordALL_urb-rur_horn.pdf”, device=”pdf”, width=5, height=3.25, 
units=”in”, useDingbats=FALSE)

```

```{r capscale, eval=TRUE, include=TRUE, results=”hide”, fig.width=5, 
fig.height=4, fig.show=”hold”, fig.align=”center”, fig.cap=”\\label{fig:cap}
Constrained PCoA ordination of all samples, colored by nearby 
vegetation type.”}
## APPARENTLY NOT MUCH VARIATION IS EXPLAINED BY VEG
# test hypothesis with direct gradient analysis with constrained PCoA 
ordcap <- ordinate(urb.nosing.vst, “CAP”, “horn”, ~ Nearby_Veg)
require(ggrepel)
require(viridis)
sample_data(urb.nosing.vst)$veg50 <- as.numeric(as.character(sample_
data(urb.nosing.vst)$veg50))
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plot_ordination(urb.nosing.vst, ordcap, type=”samples”, color=”Nearby_
Veg”) + #, shape=”Nearby_Veg”
 scale_color_manual(values=c(“turquoise3”, “darkgoldenrod”, “grey30”)) 
+ #scale_color_viridis(begin=0, end=0.7, option=”plasma”) + 
 geom_point(size=3) + 
 labs(color=”Land Cover”) +
 #geom_text_repel(aes(label=sample_data(urb.nosing.vst)$Site), box.
padding=unit(0.6, “lines”)) + 
 theme(legend.text=element_text(size=11), legend.title=element_
text(size=12, vjust=1),
    axis.text=element_text(size=11), axis.title=element_text(size=12)    
    )
ggsave(“Nearby_Veg_capscale_vst_horn.pdf”, device=”pdf”, width=5.5, 
height=4, units=”in”, useDingbats=FALSE)
ggsave(“Nearby_Veg_capscale_vst_horn.png”, device=”png”, width=5.5, 
height=4, units=”in”)

```

```{r dateOrd, eval=TRUE, include=TRUE, fig.width=5, fig.height=4, fig.
show=”hold”, fig.align=”center”, fig.cap=”\\label{fig:capDate}Constrained 
PCoA ordinations separated by sampling date, colored by nearby 
vegetation type.”}
# separate by date for VST
urb7.14 <- prune_samples(sample_data(urb.nosing.
vst)$Date==”07.14.2015”, urb.nosing.vst)
urb7.14 <- prune_taxa(taxa_sums(urb7.14) > 9.4187, urb7.14)
urb8.4 <- prune_samples(sample_data(urb.nosing.vst)$Date==”08.04.2015”, 
urb.nosing.vst)
urb8.4 <- prune_taxa(taxa_sums(urb8.4) > 9.4187, urb8.4)
urb8.14 <- prune_samples(sample_data(urb.nosing.
vst)$Date==”08.14.2015”, urb.nosing.vst)
urb8.14 <- prune_taxa(taxa_sums(urb8.14) > 9.4187, urb8.14)
urb8.18 <- prune_samples(sample_data(urb.nosing.
vst)$Date==”08.18.2015”, urb.nosing.vst)
urb8.18 <- prune_taxa(taxa_sums(urb8.18) > 9.4187, urb8.18)
urb8.25 <- prune_samples(sample_data(urb.nosing.
vst)$Date==”08.25.2015”, urb.nosing.vst)
urb8.25 <- prune_taxa(taxa_sums(urb8.25) > 9.4187, urb8.25)
urb9.1 <- prune_samples(sample_data(urb.nosing.vst)$Date==”09.01.2015”, 
urb.nosing.vst)
urb9.1 <- prune_taxa(taxa_sums(urb9.1) > 9.4187, urb9.1)
urb9.15 <- prune_samples(sample_data(urb.nosing.
vst)$Date==”09.15.2015”, urb.nosing.vst)
urb9.15 <- prune_taxa(taxa_sums(urb9.15) > 9.4187, urb9.15)
urb9.22 <- prune_samples(sample_data(urb.nosing.
vst)$Date==”09.22.2015”, urb.nosing.vst)
urb9.22 <- prune_taxa(taxa_sums(urb9.22) > 9.4187, urb9.22)
urb9.29 <- prune_samples(sample_data(urb.nosing.
vst)$Date==”09.29.2015”, urb.nosing.vst)
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urb9.29 <- prune_taxa(taxa_sums(urb9.29) > 9.4187, urb9.29)
urb.dateList.vst <- list(urb7.14=urb7.14, urb8.4=urb8.4, 
urb8.14=urb8.14, urb8.18=urb8.18,
        urb8.25=urb8.25, urb9.1=urb9.1, urb9.15=urb9.15, 
urb9.22=urb9.22,
        urb9.29=urb9.29)

# ordinations by date for urban samples, VST counts (untransformed 
counts don’t plot great)
dateListVST.ord <- llply(urb.dateList.vst, function(x){
 ord <- ordinate(x, method=”PCoA”, distance=”horn”)
 plot_ordination(x, ord, type=”samples”, shape=”Nearby_Veg”, 
color=”Nearby_Veg”, label=”SiteCode”,
         title=paste0(names(x))) + 
  scale_color_manual(values=c(“turquoise3”, “darkgoldenrod”, “grey30”)) 
+ #scale_color_viridis(begin=0, end=.7)
  geom_point(size=3) +
  theme(text=element_text(size=8))}
 )
#dateListVST.ord

## NOTES: DCA/bray looks pretty good (horn looks same), NMDS not great, 
PCoA/horn also good (bray and canberra not as good)
for (i in seq_along(dateListVST.ord)){
 ggsave(paste0(names(dateListVST.ord)[i], “Nearby_Veg_PCoAhorn_
vst.pdf”), dateListVST.ord[[i]], width=4, height=3, units=”in”, 
useDingbats=FALSE)
}
for (i in seq_along(dateListVST.ord)){
 ggsave(paste0(names(dateListVST.ord)[i], “Nearby_Veg_PCoAhorn_vst.
png”), dateListVST.ord[[i]], device=”png”, width=4, height=3, 
units=”in”)
}

require(ggrepel)
require(viridis)
ord.plot <- function(x){
 ord <- ordinate(x, method=”CAP”, distance=”horn”, ~”Nearby_Veg”)
 plot_ordination(x, ord, type=”samples”, shape=”Nearby_Veg”, 
         color=”Nearby_Veg”, #label=”SiteCode”, 
         title=paste0(names(x))) + 
  geom_point(size=3) +
  scale_color_manual(values=c(“turquoise3”, “darkgoldenrod”, “grey30”)) 
+ #scale_color_viridis(begin=0, end=.7) +
  theme(text=element_text(size=8))
 }

dateList.cap <- llply(urb.dateList.vst, ord.plot)
#dateList.cap
for (i in seq_along(dateList.cap)){
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 ggsave(paste0(names(dateList.cap)[i], “capscale_Nearby_Veg_nolabels.
pdf”), dateList.cap[[i]], width=4, height=3, units=”in”)
}
for (i in seq_along(dateList.cap)){
 ggsave(paste0(names(dateList.cap)[i], “capscale_Nearby_Veg_nolabels.
png”), dateList.cap[[i]], device=”png”, width=4, height=3, units=”in”)
}

# separate by date for VST
all7.14 <- prune_samples(sample_data(nosing.vst)$Date==”07.14.2015”, 
nosing.vst)
all7.14 <- prune_taxa(taxa_sums(all7.14) > 9.4187, all7.14)
all8.4 <- prune_samples(sample_data(nosing.vst)$Date==”08.04.2015”, 
nosing.vst)
all8.4 <- prune_taxa(taxa_sums(all8.4) > 9.4187, all8.4)
all8.14 <- prune_samples(sample_data(nosing.vst)$Date==”08.14.2015”, 
nosing.vst)
all8.14 <- prune_taxa(taxa_sums(all8.14) > 9.4187, all8.14)
all8.18 <- prune_samples(sample_data(nosing.vst)$Date==”08.18.2015”, 
nosing.vst)
all8.18 <- prune_taxa(taxa_sums(all8.18) > 9.4187, all8.18)
all8.25 <- prune_samples(sample_data(nosing.vst)$Date==”08.25.2015”, 
nosing.vst)
all8.25 <- prune_taxa(taxa_sums(all8.25) > 9.4187, all8.25)
all9.1 <- prune_samples(sample_data(nosing.vst)$Date==”09.01.2015”, 
nosing.vst)
all9.1 <- prune_taxa(taxa_sums(all9.1) > 9.4187, all9.1)
all9.15 <- prune_samples(sample_data(nosing.vst)$Date==”09.15.2015”, 
nosing.vst)
all9.15 <- prune_taxa(taxa_sums(all9.15) > 9.4187, all9.15)
all9.22 <- prune_samples(sample_data(nosing.vst)$Date==”09.22.2015”, 
nosing.vst)
all9.22 <- prune_taxa(taxa_sums(all9.22) > 9.4187, all9.22)
all9.29 <- prune_samples(sample_data(nosing.vst)$Date==”09.29.2015”, 
nosing.vst)
all9.29 <- prune_taxa(taxa_sums(all9.29) > 9.4187, all9.29)
all.dateList.vst <- list(all7.14=all7.14, all8.4=all8.4, 
all8.14=all8.14, all8.18=all8.18,
        all8.25=all8.25, all9.1=all9.1, all9.15=all9.15, 
all9.22=all9.22,
        all9.29=all9.29)

# ordinations by date for all samples (urban + rural), VST counts 
(untransformed counts don’t plot great)
dateListVST.ord <- llply(all.dateList.vst, function(x){
 ord <- ordinate(x, method=”PCoA”, distance=”horn”)
 plot_ordination(x, ord, type=”samples”, shape=”urbRur”, color=”Nearby_
Veg”, label=”SiteCode”,
         title=paste0(names(x))) + 
  scale_color_manual(values=c(“turquoise3”, “darkgoldenrod”, “grey30”)) 
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+ #”red”, “purple”)) + #scale_color_viridis(begin=0, end=.7) + 
  geom_point(size=3) +
  theme(text=element_text(size=8))}
 )
dateListVST.ord

for (i in seq_along(dateListVST.ord)){
 ggsave(paste0(names(dateListVST.ord)[i], “_urbRur_byVeg_PCoAhorn_
vst.pdf”), dateListVST.ord[[i]], width=4, height=3, units=”in”, 
useDingbats=FALSE)
}

forBart <- data.frame(unique(sample_data(nosing)$SiteCode))
colnames(forBart) <- “SiteCode”
forBart$Site <- sample_data(nosing)$Site[match(forBart$SiteCode, 
sample_data(nosing)$SiteCode)]
forBart$VegType <- sample_data(nosing)$Other_Veg[match(forBart$SiteCode, 
sample_data(nosing)$SiteCode)]
forBart$Context <- sample_data(nosing.
vst)$urbRur[match(forBart$SiteCode, sample_data(nosing.vst)$SiteCode)]
write.csv(forBart, “siteList.csv”)

#clean up
garbage <- paste0(“urb”, c(“7.14”,”8.4”,”8.14”,”8.25”,”9.1”,”9.15”,”9.2
2”,”9.29”))
rm(list = garbage)
garbage <- paste0(“all”, c(“7.14”,”8.4”,”8.14”,”8.25”,”9.1”,”9.15”,”9.2
2”,”9.29”))
rm(list = garbage)

```

```{r mantel, include=TRUE, results=”hide”}
urbvstTab <- getTab(urb.nosing.vst)
urbvstEnv <- data.frame(sample_data(urb.nosing.vst))
# convert variables to factors
urbvstEnv$Nearby_Veg <- as.factor(urbvstEnv$Nearby_Veg)
urbvstEnv$Date <- as.factor(urbvstEnv$Date)
urbvstEnv$SiteCode <- as.factor(urbvstEnv$SiteCode)
urbvstEnv$Context <- as.factor(urbvstEnv$Context)
urbvstEnv$Maintenance <- as.factor(urbvstEnv$Maintenance)
urbvstEnv$windDir <- as.factor(urbvstEnv$windDir)

# test spatial autocorrelation with Mantel test
urb.spat <- as.matrix(dist(cbind(urbvstEnv$Long, urbvstEnv$Lat)))
urb.horn <- as.matrix(vegdist(urbvstTab, method=”horn”))
urbMan <- mantel(urb.horn, urb.spat, method=”spearman”, 
permutations=99999)
str(urbMan)
urbMan$statistic
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urbMan$signif
```

```{r hypTest, include=TRUE, results=”hide”, fig.width=6.5, fig.height=3, 
fig.show=”hold”, fig.align=”center”, fig.cap=”\\label{fig:hypTest}Effect 
of increasing buffer size on strength of association between amount of 
vegetation and community similarity.”}
# PERMANOVA for variables of interest

urbvstTab <- getTab(urb.nosing.vst)
urbvstEnv <- data.frame(sample_data(urb.nosing.vst)[, c(5,6,32,33,45,61
,68,71,75,77)])
urbvstEnv$structDiv[is.na(urbvstEnv$structDiv)] <- 0
colnames(urbvstEnv)
#urbvstEnv <- urbvstEnv[, c(5,6,32,33,45,61,68,71,75,77)]
varlist <- c(“SiteCode”, “Collected_By”, “Date”, “Nearby_Veg”, 
“green50”, “green800”, “windDir”, “tempAvg”) 
#, “Elevation”, “windAvg”, “windMax”, “structDiv”, “Date”, “green50”
adonisRes <- list()
#try ps1.tab instead of urbvstTab urbvstEnv
#ps1.vstEnv <- data.frame(sample_data(ps1.vst))
#ps1.vstEnv$Nearby_Veg <- as.factor(ps1.vstEnv$Nearby_Veg)
#ps1.vstEnv$Date <- as.factor(ps1.vstEnv$Date)
#ps1.vstEnv$SiteCode <- as.factor(ps1.vstEnv$SiteCode)
#adonis(urbvstTab ~ SiteCode + Nearby_Veg, data=urbvstEnv, perm=9999, 
method=”horn”)

for (i in varlist){ 
      form <- as.formula(paste(“urbvstTab”, i, sep=”~”))
      adonisRes[[i]] <- adonis(form, data=urbvstEnv, perm=9999, 
method=”horn”)
      }  
#knitr::kable(adonisRes)
sink(“adonisResults12.txt”)
adonisRes
sink()

#PERMANOVA only on forest and grass 
notPaved <- prune_samples(sample_data(urb.nosing.vst)$Nearby_Veg != 
“paved”, urb.nosing.vst)
vegvstTab <- getTab(notPaved)
vegvstEnv <- data.frame(sample_data(notPaved))
adonisRes_structDiv <- adonis(vegvstTab ~ structDiv, data=vegvstEnv, 
perm=9999, method=”horn”)
adonisRes_vegDiv <- adonis(vegvstTab ~ vegDiv, data=vegvstEnv, 
perm=9999, method=”horn”)

#multivariate test with site location & collection date
adonisRes_sitedateInt <- adonis(urbvstTab ~ SiteCode*Date, 
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data=urbvstEnv, perm=9999, method=”horn”)
adonisRes_sitedate <- adonis(urbvstTab ~ SiteCode+Date, data=urbvstEnv, 
perm=9999, method=”horn”)

# just for buffer distances and pull out R2 and P-value for each buffer 
test
varlist <- c(“veg50”, “veg100”, “veg200”, “veg400”, “veg800”, 
“veg1600”)
buffRes <- list()
for (i in varlist){ 
      form <- as.formula(paste(“urbvstTab”, i, sep=”~”))
      buffRes[[i]] <- adonis(form, data=urbvstEnv, perm=9999, 
method=”horn”)
      }  
buffAdon <- data.table(c(buffRes[[1]]$aov.tab$R2[1], buffRes[[2]]$aov.
tab$R2[1], 
          buffRes[[3]]$aov.tab$R2[1], buffRes[[4]]$aov.tab$R2[1], 
          buffRes[[5]]$aov.tab$R2[1], buffRes[[6]]$aov.tab$R2[1]),
         c(buffRes[[1]]$aov.tab$’Pr(>F)’[1], buffRes[[2]]$aov.
tab$’Pr(>F)’[1], 
          buffRes[[3]]$aov.tab$’Pr(>F)’[1], buffRes[[4]]$aov.
tab$’Pr(>F)’[1],
          buffRes[[5]]$aov.tab$’Pr(>F)’[1], buffRes[[6]]$aov.
tab$’Pr(>F)’[1]),
         c(50, 100, 200, 400, 800, 1600))
colnames(buffAdon) <- c(“R2”, “Pval”, “buffDist”)
#plot(R2 ~ buffDist, data=buffAdon)
#model <- lm(R2 ~ buffDist, data=buffAdon)
#abline(model, col = “red”)
#summary(model)
#coef(model)
ggplot(data=buffAdon, aes(x=buffDist, y=R2)) +
 geom_point() + labs(x=”Buffer Distance”)
ggsave(“buffDist_R2.pdf”, device=”pdf”, width=4, height=3, units=”in”)
ggplot(data=buffAdon, aes(x=buffDist, y=Pval)) +
 geom_point() + labs(x=”Buffer Distance”, y=”p-value”)
ggsave(“buffDist_pval.pdf”, device=”pdf”, width=4, height=3, 
units=”in”)

# haven’t figured out how to interpret simper output yet, should give 
relative contribution of each taxa to dissimilarity
# same results as DESeq2?
(sim <- with(urbvstEnv, simper(urbvstTab, Nearby_Veg)))
SIMforest_paved <- t(do.call(rbind.data.frame, sim[[1]]))
write.csv(SIMforest_paved, “SIMforest_paved.csv”)

varlist <- c(“Nearby_Veg”, “veg50”, “tempAvg”, “structDiv”) 

adonisRes <- list()
newRes <- list()
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for (i in seq_along(urb.dateList.vst)){
 tab <- getTab(urb.dateList.vst[[i]])
 env <- data.frame(sample_data(urb.dateList.vst[[i]]))
 env$Nearby_Veg <- as.factor(env$Nearby_Veg)
 env$structDiv[is.na(env$structDiv)] <- 0
 for (h in varlist){ 
      form <- as.formula(paste(“tab”, h, sep=”~”))
      adonisRes[[h]] <- adonis(form, data=env, perm=9999, 
method=”horn”)
 } 
 newRes[[i]] <- adonisRes
}

nvegRes <- cbind(unlist(lapply(1:9, function(i){newRes[[i]][[1]][[1]]
[[5]][1]})), 
         unlist(lapply(1:9, function(i){newRes[[i]][[1]][[1]][[6]]
[1]})))
veg50Res <- cbind(unlist(lapply(1:9, function(i){newRes[[i]][[2]][[1]]
[[5]][1]})), 
         unlist(lapply(1:9, function(i){newRes[[i]][[2]][[1]][[6]]
[1]})))
tavRes <- cbind(unlist(lapply(1:9, function(i){newRes[[i]][[3]][[1]]
[[5]][1]})), 
        unlist(lapply(1:9, function(i){newRes[[i]][[3]][[1]][[6]]
[1]})))
structDiv <- cbind(unlist(lapply(1:9, function(i){newRes[[i]][[4]][[1]]
[[5]][1]})), 
         unlist(lapply(1:9, function(i){newRes[[i]][[4]][[1]][[6]]
[1]})))
dateAdonis_df <- data.frame(“nveg_R2”=nvegRes[,1], “nveg_
Pval”=nvegRes[,2], “veg50_R2”=veg50Res[,1], “veg50_Pval”=veg50Res[,2], 
      “tav_R2”=tavRes[,1], “tav_Pval”=tavRes[,2], “structDiv_
R2”=structDiv[,1], “structDiv_Pval”=structDiv[,2])

row.names(dateAdonis_df) <- c(“07.14.2015”, “08.04.2015”, “08.14.2015”, 
“08.18.2015”, “08.25.2015”, 
               “09.01.2015”, “09.15.2015”, “09.22.2015”, “09.29.2015”)
write.csv(dateAdonis_df, “dateAdonis_df.csv”)

# put into inline code chunk below:
# (R^2^=`r adonisRes$Nearby_Veg$aov.tab$R2[1]`, p<)
# `r adonisRes$SiteCode` 
```

```{r structDiv, eval=TRUE, include=TRUE, results=”hide”}

#plot LiDAR cylinder example
abf.las <- readLAS(“/Users/gwynhwyfer/Documents/PhD work/dissertation/
chapter3_urbanMicrobiome/processed data/LiDARcyl/clip_ABF.las”)
plot(abf.las, size=6)
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#### test by assessing whether variability across time is less for 
structurally 
#### diverse sites (that block wind) than grassy sites
#### HOW TO QUANTIFY variability across time for each site, grouped by 
cover type
noPaved <- prune_samples(sample_data(urb.nosing.vst)$Nearby_Veg != 
“paved”, urb.nosing.vst)
noPavedEnv <- data.frame(sample_data(noPaved))
noPaved <- getTab(noPaved)
# convert variables to factors
noPavedEnv$Nearby_Veg <- as.factor(noPavedEnv$Nearby_Veg)

alphaDiv <- diversity(noPaved, index=”shannon”)
cor.test(alphaDiv, noPavedEnv$structDiv)
struct.lm <- lm(alphaDiv ~ noPavedEnv$structDiv)
summary(struct.lm)

str(dateListVST.ord[[1]][[1]])
points.df <- data.frame(rbind(dateListVST.ord[[1]][[1]][,1:2], 
dateListVST.ord[[2]][[1]][,1:2],
               dateListVST.ord[[3]][[1]][,1:2], dateListVST.ord[[4]]
[[1]][,1:2],
               dateListVST.ord[[5]][[1]][,1:2], dateListVST.ord[[6]]
[[1]][,1:2],
               dateListVST.ord[[7]][[1]][,1:2], dateListVST.ord[[8]]
[[1]][,1:2],
               dateListVST.ord[[9]][[1]][,1:2]))
str(points.df)
#list of SiteCode
#ldply
siteList <- unique(sample_data(urb.nosing.vst)$SiteCode)

dist1.2 <- ldply(siteList, function(x){
 sqrt((points.df$Axis.1[grep(paste(x), rownames(points.df))][1] - 
points.df$Axis.1[grep(paste(x), 
       rownames(points.df))][2])^2 + (points.df$Axis.2[grep(paste(x), 
rownames(points.df))][1] -
       points.df$Axis.2[grep(paste(x), rownames(points.df))][2])^2)
})

dist2.3 <- ldply(siteList, function(x){
   sqrt((points.df$Axis.1[grep(paste(x), rownames(points.df))][2] - 
points.df$Axis.1[grep(paste(x), 
       rownames(points.df))][3])^2 + (points.df$Axis.2[grep(paste(x), 
rownames(points.df))][2] -
       points.df$Axis.2[grep(paste(x), rownames(points.df))][3])^2)
})

dist3.4 <- ldply(siteList, function(x){
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  sqrt((points.df$Axis.1[grep(paste(x), rownames(points.df))][3] - 
points.df$Axis.1[grep(paste(x), 
       rownames(points.df))][4])^2 + (points.df$Axis.2[grep(paste(x), 
rownames(points.df))][3] -
       points.df$Axis.2[grep(paste(x), rownames(points.df))][4])^2)
 })

siteDist <- cbind(dist1.2, dist2.3, dist3.4)
row.names(siteDist) <- siteList
colnames(siteDist) <- c(“dist1.2”, “dist2.3”, “dist3.4”)
siteDist$totalDist <- siteDist[,1] + siteDist[,2] + siteDist[,3]
siteDist$Nearby_Veg <- sample_data(urb.nosing.vst)$Nearby_
Veg[match(row.names(siteDist), sample_data(urb.nosing.vst)$SiteCode)]

ggplot(siteDist) + 
  geom_boxplot(aes(x=siteDist$Nearby_Veg, y=siteDist$totalDist, 
color=siteDist$Nearby_Veg)) +
  # scale_y_continuous(limits=c(2,8)) +
  labs(x=””, y=””) +
  scale_color_manual(values=c(“turquoise3”, “darkgoldenrod”, “grey30”)) 
+ 
  theme(legend.position=”none”)

kruskal.test(totalDist ~ as.factor(Nearby_Veg), data=siteDist)
#pairwise.wilcox.test(urb.nosing2.relTab$Actinobacteria, urb.nosing2.
relTab$Nearby_Veg,
 #        p.adjust.method = “bonferroni”)

ggsave(“struct_alphaDiv.pdf”, device=”pdf”, width=6, height=4, 
units=”in”)

```

```{r forestGrey, include=TRUE, results=”hide”}
## split into pairwise land cover type comparisons
# try class.merge or order.merge or fam.merge or genus.merge instead of 
urb.nosing
noGrass <- prune_samples(sample_data(class.merge)$Nearby_Veg != 
“grass”, class.merge)
noGrass <- prune_taxa(taxa_sums(noGrass) != 0, noGrass)
hist(taxa_sums(noGrass))
hist(log10(apply(otu_table(noGrass), 1, var)))

noGrass.des <- phyloseq_to_deseq2(noGrass, ~ Date + Nearby_Veg)
noGrass.glm <- DESeq(noGrass.des, test=”Wald”, fitType=”parametric”)

res.noGrass.glm <- results(noGrass.glm, cooksCutoff=TRUE, alpha=0.05)
summary(res.noGrass.glm)
mcols(res.noGrass.glm, use.names=TRUE) #positive l2fc is paved
res.noGrass.glm.df <- subset(res.noGrass.glm, padj < 0.05)
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res.noGrass.glm.df <- cbind(as(res.noGrass.glm.df, “data.frame”), 
        as(tax_table(class.merge)[rownames(res.noGrass.glm.df),], 
“matrix”),
        as(t(otu_table(class.mergeRel)[,rownames(res.noGrass.glm.df)]), 
“matrix”),
        as(taxa_sums(class.mergeRel)[rownames(res.noGrass.glm.df)], 
“matrix”),
        stringsAsFactors=FALSE
        )
colnames(res.noGrass.glm.df)[length(colnames(res.noGrass.glm.df))] <- 
c(“relAbund”)
res.noGrass.glm.df$SequenceVariant <- rownames(res.noGrass.glm.df)
res.noGrass.glm.df$SiteType <- “forest”
res.noGrass.glm.df$SiteType[res.noGrass.glm.df$log2FoldChange >= 0] <- 
“paved”
res.noGrass.glm.df$SiteType <- as.factor(res.noGrass.glm.df$SiteType)
res.noGrass.glm.df <- res.noGrass.glm.df[order(res.noGrass.glm.
df$log2FoldChange),]
res.noGrass.glm.df$Genus <- gsub(“Armatimonas/Armatimonadetes_gp1”, 
“Armatimonas”, res.noGrass.glm.df$Genus)
#knitr::kable(res.noGrass.glm.df)
write.csv(res.noGrass.glm.df, file=”deseq_noGrass_class.csv”)
length(res.noGrass.glm.df[,1])
# create positive-negative barplot of differentially abundant taxa
sigplot_noGrass <- data.frame(row.names(res.noGrass.glm.df),
           res.noGrass.glm.df$Class,
           res.noGrass.glm.df$Order,
           res.noGrass.glm.df$Family,
           res.noGrass.glm.df$Genus,
           res.noGrass.glm.df$log2FoldChange,
           res.noGrass.glm.df$SiteType,
           stringsAsFactors = FALSE)
names(sigplot_noGrass) <- c(“SequenceVariant”, “Class”, “Order”, 
“Family”, “Genus”, “log2FoldChange”, “SiteType”)
sigGenusList <- sigplot_noGrass$Genus
sigFamList <- sigplot_noGrass$Family
sigClassList <- sigplot_noGrass$Class
sigplot_noGrass$Genus <- gsub(“Clostridium_sensu_stricto”, 
“Clostridium”, sigplot_noGrass$Genus)
sigplot_noGrass$Genus <- gsub(“Armatimonas/Armatimonadetes_gp1”, 
“Armatimonadetes”, sigplot_noGrass$Genus)
sigplot_noGrass$Genus <- gsub(“Chthonomonas/Armatimonadetes_gp3”, 
“Chthonomonas”, sigplot_noGrass$Genus)

ggplot(sigplot_noGrass, aes(x = reorder(SequenceVariant, 
log2FoldChange), y = log2FoldChange, 
          fill=Class, legend=””)) + 
 geom_bar(stat = “identity”, position = “identity”) +
 #scale_fill_manual(values=famPal, drop=FALSE) +
 coord_flip() +



163

 scale_x_discrete(labels=sigplot_noGrass$Class) +
 scale_y_continuous(limits=c(-2,2), breaks=c(-2, -1, 0, 1, 2)) +
 labs(x=”Class”, y=”l2FC”) +
 theme(aspect.ratio=3, legend.position=”none”, axis.text=element_
text(size=10),
    axis.title=element_text(size=12) 
 )

ggsave(“difAbund_noGrass_class.pdf”, device=”pdf”, width=5, height=9, 
units=”in”)
ggsave(“difAbund_noGrass_class.png”, device=”png”, width=5, height=9, 
units=”in”)

```

```{r grassForest, include=TRUE}
## split into pairwise land cover type comparisons
noGrey <- prune_samples(sample_data(class.merge)$Nearby_Veg != “paved”, 
class.merge)
noGrey <- prune_taxa(taxa_sums(noGrey) != 0, noGrey)
noGrey.des <- phyloseq_to_deseq2(noGrey, ~ Date + Nearby_Veg)
noGrey.glm <- DESeq(noGrey.des, test=”Wald”, fitType=”parametric”)

res.noGrey.glm <- results(noGrey.glm, cooksCutoff=TRUE, alpha=0.05)
summary(res.noGrey.glm)
mcols(res.noGrey.glm, use.names=TRUE) # to figure out which is 
upregulated, should be positive for grass
res.noGrey.glm.df <- subset(res.noGrey.glm, padj < 0.05)
res.noGrey.glm.df <- cbind(as(res.noGrey.glm.df, “data.frame”), 
        as(tax_table(class.merge)[rownames(res.noGrey.glm.df),], 
“matrix”),
        as(t(otu_table(class.mergeRel)[,rownames(res.noGrey.glm.df)]), 
“matrix”),
        as(taxa_sums(class.mergeRel)[rownames(res.noGrey.glm.df)], 
“matrix”),
        stringsAsFactors=FALSE
        )
colnames(res.noGrey.glm.df)[length(colnames(res.noGrey.glm.df))] <- 
c(“relAbund”)
res.noGrey.glm.df$SequenceVariant <- rownames(res.noGrey.glm.df)
res.noGrey.glm.df$SiteType <- “grass”
res.noGrey.glm.df$SiteType[res.noGrey.glm.df$log2FoldChange < 0] <- 
“forest”
res.noGrey.glm.df$SiteType <- as.factor(res.noGrey.glm.df$SiteType)
res.noGrey.glm.df <- res.noGrey.glm.df[order(res.noGrey.glm.
df$log2FoldChange),] # order by l2fc
#knitr::kable(res.noGrey.glm.df)
write.csv(res.noGrey.glm.df, file=”deseq_noGrey_class.csv”)
length(res.noGrey.glm.df)
# create positive-negative barplot of differentially abundant taxa
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sigplot_noGrey <- data.frame(row.names(res.noGrey.glm.df),
           as.character(res.noGrey.glm.df$Class),
           as.character(res.noGrey.glm.df$Order),
           as.character(res.noGrey.glm.df$Family),
           as.character(res.noGrey.glm.df$Genus),
           res.noGrey.glm.df$log2FoldChange,
           res.noGrey.glm.df$SiteType,
           stringsAsFactors = FALSE)
names(sigplot_noGrey) <- c(“SequenceVariant”, “Class”, “Order”, 
“Family”, “Genus”, “log2FoldChange”, “SiteType”)
sigGenusList <- c(sigGenusList, sigplot_noGrey$Genus)
sigGenusList <- unique(sigGenusList)
sigFamList <- c(sigFamList, sigplot_noGrey$Family)
sigFamList <- unique(sigFamList)
sigClassList <- c(sigClassList, sigplot_noGrey$Class)
sigClassList <- unique(sigClassList)
sigplot_noGrey$Genus <- gsub(“Clostridium_sensu_stricto”, 
“Clostridium”, sigplot_noGrey$Genus)
sigplot_noGrey$Genus <- gsub(“Armatimonas/Armatimonadetes_gp1”, 
“Armatimonadetes”, sigplot_noGrey$Genus)
sigplot_noGrey$Genus <- gsub(“Chthonomonas/Armatimonadetes_gp3”, 
“Chthonomonas”, sigplot_noGrey$Genus)

ggplot(sigplot_noGrey, aes(x=reorder(SequenceVariant, log2FoldChange), 
y=log2FoldChange, fill=Class)) + 
 geom_bar(stat = “identity”, position = “identity”) +
 coord_flip() +
 #scale_fill_manual(values=famPal, drop=FALSE) +
 scale_x_discrete(labels=sigplot_noGrey$Class) +
 scale_y_continuous(limits=c(-2,2), breaks=c(-2, -1, 0, 1, 2)) +
 labs(x=”Class”, y=”l2FC”) +
 theme(aspect.ratio=3, legend.position=”none”, axis.text=element_
text(size=10),
    axis.title=element_text(size=12) 
 )

ggsave(“difAbund_noGrey_class.pdf”, device=”pdf”, width=4, height=6, 
units=”in”)
ggsave(“difAbund_noGrey_class.png”, device=”png”, width=4, height=6, 
units=”in”)

```

```{r grassGrey, include=TRUE}
## split into pairwise land cover type comparisons
noForest <- prune_samples(sample_data(class.merge)$Nearby_Veg != 
“forest”, class.merge)
noForest <- prune_taxa(taxa_sums(noForest) != 0, noForest)
sample_data(noForest)$Nearby_Veg
noForest.des <- phyloseq_to_deseq2(noForest, ~ Date + Nearby_Veg)
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noForest.glm <- DESeq(noForest.des, test=”Wald”, fitType=”parametric”)

res.noForest.glm <- results(noForest.glm, cooksCutoff=FALSE, alpha=0.5)
summary(res.noForest.glm)
mcols(res.noForest.glm, use.names=TRUE) 
res.noForest.glm.df <- subset(res.noForest.glm, padj < 0.5)
res.noForest.glm.df <- cbind(as(res.noForest.glm.df, “data.frame”), 
        as(tax_table(class.merge)[rownames(res.noForest.glm.df),], 
“matrix”),
        as(t(otu_table(class.mergeRel)[,rownames(res.noForest.glm.
df)]), “matrix”),
        as(taxa_sums(class.mergeRel)[rownames(res.noForest.glm.df)], 
“matrix”), 
        stringsAsFactors = FALSE
        )
colnames(res.noForest.glm.df)[length(colnames(res.noForest.glm.df))] <- 
c(“relAbund”)
res.noForest.glm.df$SequenceVariant <- rownames(res.noForest.glm.df)
res.noForest.glm.df$SiteType <- “grass”
res.noForest.glm.df$SiteType[res.noForest.glm.df$log2FoldChange >= 0] 
<- “paved”
res.noForest.glm.df$SiteType <- as.factor(res.noForest.glm.df$SiteType)
res.noForest.glm.df <- res.noForest.glm.df[order(res.noForest.glm.
df$log2FoldChange),] # order by l2fc
#knitr::kable(res.noForest.glm.df)
write.csv(res.noForest.glm.df, file=”deseq_noForest.csv”)
length(res.noForest.glm.df)
# create positive-negative barplot of differentially abundant taxa
sigplot_noForest <- data.frame(row.names(res.noForest.glm.df),
           as.character(res.noForest.glm.df$Class),
           as.character(res.noForest.glm.df$Order),
           as.character(res.noForest.glm.df$Family),
           as.character(res.noForest.glm.df$Class),
           res.noForest.glm.df$log2FoldChange,
           res.noForest.glm.df$SiteType,
           stringsAsFactors = FALSE)
names(sigplot_noForest) <- c(“SequenceVariant”, “Class”, “Order”, 
“Family”, “Genus”, “log2FoldChange”, “SiteType”)
sigGenusList <- c(sigGenusList, sigplot_noForest$Genus)
sigGenusList <- unique(sigGenusList)
sigFamList <- c(sigFamList, sigplot_noForest$Family)
sigFamList <- unique(sigFamList)
sigClassList <- c(sigClassList, sigplot_noForest$Class)
sigClassList <- unique(sigClassList)
sigplot_noForest$Genus <- gsub(“Clostridium_sensu_stricto”, 
“Clostridium”, sigplot_noForest$Genus)
sigplot_noForest$Genus <- gsub(“Armatimonas/Armatimonadetes_gp1”, 
“Armatimonadetes”, sigplot_noForest$Genus)
sigplot_noForest$Genus <- gsub(“Chthonomonas/Armatimonadetes_gp3”, 
“Chthonomonas”, sigplot_noForest$Genus)
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ggplot(sigplot_noForest, aes(x = reorder(SequenceVariant, 
log2FoldChange), y = log2FoldChange, 
          fill = Class, legend=””)) + 
 geom_bar(stat = “identity”, position = “identity”) +
 #scale_fill_manual(values=famPal, drop=FALSE) +
 coord_flip() +
 labs(y=”l2FC”, x=”Class”) +
 scale_x_discrete(labels=sigplot_noForest$Class) +
 scale_y_continuous(limits=c(-2, 2), breaks=c(-2, -1, 0, 1, 2)) +
 theme(aspect.ratio=3, legend.position = “none”, axis.text=element_
text(size=10),
    axis.title=element_text(size=12) 
 )

ggsave(“difAbund_noForest_class.pdf”, device=”pdf”, width=4, height=6, 
units=”in”)
ggsave(“difAbund_noForest_class.png”, device=”png”, width=4, height=6, 
units=”in”)

```

```{r pairwiseAdonis}  
noGrass.tab <- getTab(noGrass)
noGrass.env <- data.frame(sample_data(noGrass))
adonis(noGrass.tab~Nearby_Veg, noGrass.env, permutations = 9999, method 
= “horn”)

noGrey.tab <- getTab(noGrey)
noGrey.env <- data.frame(sample_data(noGrey))
adonis(noGrey.tab~Nearby_Veg, noGrey.env, permutations = 9999, method = 
“horn”)

noForest.tab <- getTab(noForest)
noForest.env <- data.frame(sample_data(noForest))
adonis(noForest.tab~Nearby_Veg, noForest.env, permutations = 9999, 
method = “horn”)

```

```{r classBar, eval=TRUE, include=TRUE, results=”hide”}
## stacked barplots to compare proportional composition for all urban 
sites (class level) by Nearby_Veg
write.csv(unique(tax_table(urb.nosing)[,5]), “familyList.csv”)
sort.class = sort(tapply(taxa_sums(urb.nosing), tax_table(urb.nosing)[, 
“Class”], sum), TRUE)
bottom.class <- sort.class[11:length(sort.class)]
#urb.nosing1 = subset_taxa(urb.nosing, Class %in% names(top.class)) 
#get top 10 most abundant Classes
urb.nosing2 = subset_taxa(urb.nosing, Class %in% sigClassList) #get all 
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other taxa
#urb.nosing2 <- merge_taxa(urb.nosing, taxa_names(urb.nosing2), 
archetype=1) #merge all other taxa into Class “Other”
urb.nosing2 <- tax_glom(urb.nosing2, taxrank=”Class”)
get_taxa_unique(urb.nosing2, “Class”)
#tax_table(urb.nosing2)[,3] <- gsub(“NA”, “Other”, tax_table(urb.
nosing2)[,3])
#calculate standard error for errorbars
urb.nosing2.rel <- transform_sample_counts(urb.nosing2, function(x) 100 
* x/sum(x))
# convert your processed phyloseq object into a dataframe
df <- psmelt(urb.nosing2.rel) #(urb.nosing2.rel) #class.mergeRel
# group by Nearby_Veg and Class, calculate mean abundance and standard 
deviation
se <- function(x) sqrt(var(x)/length(x))
avgs <- ddply(df, .(Nearby_Veg, Class), plyr::summarize,
       mean = mean(Abundance),
       se = se(Abundance))
avgs$Nearby_Veg <- as.factor(avgs$Nearby_Veg)
# plot bar graph with standard deviation as error bars
ggplot(avgs, aes(fill=Nearby_Veg, x=Class, y=mean, group=Nearby_Veg)) + 
 geom_bar(aes(color=Nearby_Veg, fill=Nearby_Veg), stat=”identity”, 
position=position_dodge(width=0.8), width=0.6) + 
 coord_flip() + 
 geom_errorbar(aes(ymin=mean-se, ymax=mean+se), position=position_
dodge(width=0.8), width=0.5, size=0.15) +
 ylab(“Percentage of Sequences”) + 
 scale_fill_manual(values=vegPal, na.value=”darkgrey”) +
 scale_color_manual(values=vegPal, na.value=”darkgrey”) +
 theme(axis.text = element_text(size=11))
ggsave(“bar_byClassVeg.pdf”, device=”pdf”, width=6.5, height=4, 
units=”in”, useDingbats=FALSE)
ggsave(“bar_byClassVeg.png”, device=”png”, width=4.5, height=4.5, 
units=”in”)

# test for statistical significance
class.merge.relTab <- data.frame(getTab(class.mergeRel))
colnames(class.merge.relTab) <- tax_table(class.mergeRel)[,3]
class.merge.relTab$Nearby_Veg <- as.factor(sample_data(class.
mergeRel)$Nearby_Veg[match(sample_data(class.mergeRel)$SampleID, row.
names(class.merge.relTab))])
# for each of the top 10 Classes
classNames <- colnames(class.merge.relTab)[1:51]

replications(Actinobacteria ~ Nearby_Veg, data=urb.nosing2.relTab)
kruskal.test(Actinobacteria ~ Nearby_Veg, data=class.merge.relTab)

wilcoxRes <- lapply(class.merge.relTab[1:51], function(x){pairwise.
wilcox.test(x, class.merge.relTab$Nearby_Veg, p.adjust.method = 
“bonferroni”)})
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sink(“wilcoxRes.txt”)
wilcoxRes
sink()

```

```{r famBar}
# dodged barplot comparing relative abundance of significant families 
across land cover types

## split into pairwise land cover type comparisons
noForest <- prune_samples(sample_data(fam.merge)$Nearby_Veg != 
“forest”, fam.merge)
noForest <- prune_taxa(taxa_sums(noForest) != 0, noForest)
sample_data(noForest)$Nearby_Veg # check that there are no forest sites
noForest.des <- phyloseq_to_deseq2(noForest, ~ Date + Nearby_Veg)
noForest.glm <- DESeq(noForest.des, test=”Wald”, fitType=”parametric”)
res.noForest.glm <- results(noForest.glm, cooksCutoff=TRUE, alpha=0.05)
summary(res.noForest.glm)
mcols(res.noForest.glm, use.names=TRUE) 
res.noForest.glm.df <- subset(res.noForest.glm, padj < 0.05)
res.noForest.glm.df <- cbind(as(res.noForest.glm.df, “data.frame”), 
        as(tax_table(fam.merge)[rownames(res.noForest.glm.df),], 
“matrix”),
        as(t(otu_table(fam.mergeRel)[,rownames(res.noForest.glm.df)]), 
“matrix”),
        stringsAsFactors = FALSE
        )
res.noForest.glm.df$SequenceVariant <- rownames(res.noForest.glm.df)
res.noForest.glm.df$SiteType <- “grass”
res.noForest.glm.df$SiteType[res.noForest.glm.df$log2FoldChange >= 0] 
<- “paved”
res.noForest.glm.df$SiteType <- as.factor(res.noForest.glm.df$SiteType)
res.noForest.glm.df <- res.noForest.glm.df[order(res.noForest.glm.
df$log2FoldChange),] # order by l2fc
#knitr::kable(res.noForest.glm.df)
write.csv(res.noForest.glm.df, file=”deseq_noForest_fam.csv”)

noGrass <- prune_samples(sample_data(fam.merge)$Nearby_Veg != “grass”, 
fam.merge)
noGrass <- prune_taxa(taxa_sums(noGrass) != 0, noGrass)
sample_data(noGrass)$Nearby_Veg # check that there are no grass sites
noGrass.des <- phyloseq_to_deseq2(noGrass, ~ Date + Nearby_Veg)
noGrass.glm <- DESeq(noGrass.des, test=”Wald”, fitType=”parametric”)
res.noGrass.glm <- results(noGrass.glm, cooksCutoff=TRUE, alpha=0.05)
summary(res.noGrass.glm)
mcols(res.noGrass.glm, use.names=TRUE) 
res.noGrass.glm.df <- subset(res.noGrass.glm, padj < 0.05)
res.noGrass.glm.df <- cbind(as(res.noGrass.glm.df, “data.frame”), 
        as(tax_table(fam.merge)[rownames(res.noGrass.glm.df),], 
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“matrix”),
        as(t(otu_table(fam.mergeRel)[,rownames(res.noGrass.glm.df)]), 
“matrix”),
        stringsAsFactors = FALSE
        )
res.noGrass.glm.df$SequenceVariant <- rownames(res.noGrass.glm.df)
res.noGrass.glm.df$SiteType <- “forest”
res.noGrass.glm.df$SiteType[res.noGrass.glm.df$log2FoldChange >= 0] <- 
“paved”
res.noGrass.glm.df$SiteType <- as.factor(res.noGrass.glm.df$SiteType)
res.noGrass.glm.df <- res.noGrass.glm.df[order(res.noGrass.glm.
df$log2FoldChange),] # order by l2fc
#knitr::kable(res.noGrass.glm.df)
write.csv(res.noGrass.glm.df, file=”deseq_noGrass_fam.csv”)

noGrey <- prune_samples(sample_data(fam.merge)$Nearby_Veg != “paved”, 
fam.merge)
noGrey <- prune_taxa(taxa_sums(noGrey) != 0, noGrey)
sample_data(noGrey)$Nearby_Veg # check that there are no paved sites
noGrey.des <- phyloseq_to_deseq2(noGrey, ~ Date + Nearby_Veg)
noGrey.glm <- DESeq(noGrey.des, test=”Wald”, fitType=”parametric”)
res.noGrey.glm <- results(noGrey.glm, cooksCutoff=TRUE, alpha=0.05)
summary(res.noGrey.glm)
mcols(res.noGrey.glm, use.names=TRUE) 
res.noGrey.glm.df <- subset(res.noGrey.glm, padj < 0.05)
res.noGrey.glm.df <- cbind(as(res.noGrey.glm.df, “data.frame”), 
        as(tax_table(fam.merge)[rownames(res.noGrey.glm.df),], 
“matrix”),
        as(t(otu_table(fam.mergeRel)[,rownames(res.noGrey.glm.df)]), 
“matrix”),
        stringsAsFactors = FALSE
        )
res.noGrey.glm.df$SequenceVariant <- rownames(res.noGrey.glm.df)
res.noGrey.glm.df$SiteType <- “grass”
res.noGrey.glm.df$SiteType[res.noGrey.glm.df$log2FoldChange >= 0] <- 
“forest”
res.noGrey.glm.df$SiteType <- as.factor(res.noGrey.glm.df$SiteType)
res.noGrey.glm.df <- res.noGrey.glm.df[order(res.noGrey.glm.
df$log2FoldChange),] # order by l2fc
#knitr::kable(res.noGrey.glm.df)
write.csv(res.noGrey.glm.df, file=”deseq_noGrey_fam.csv”)

sigFamList <- data.frame(“Family”=res.noForest.glm.df$Family, 
“l2fc”=res.noForest.glm.df$log2FoldChange)
sigFamList <- bind_rows(sigFamList, data.frame(“Family”=res.noGrass.
glm.df$Family, “l2fc”=res.noGrass.glm.df$log2FoldChange))
sigFamList <- bind_rows(sigFamList, data.frame(“Family”=res.noGrey.glm.
df$Family, “l2fc”=res.noGrey.glm.df$log2FoldChange))
sigFamList <- sigFamList[order(abs(sigFamList$l2fc)),] # order by 
absolute value of l2fc
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sigFamList <- unique(sigFamList) # remove duplicate rows
sigFamList <- sigFamList[abs(sigFamList$l2fc) > 0.25,]

sigFam <- subset_taxa(fam.merge, Family %in% sigFamList$Family) #get 
differentially abundant Families identified by deSeq
sort.family <- sort(tapply(taxa_sums(sigFam), tax_table(sigFam)[, 
“Family”], sum), TRUE)[1:30]
top.sigFam <- subset_taxa(sigFam, Family %in% names(sort.family)) # 
take only Families > 9000 total reads

# convert your processed phyloseq object into a dataframe
df <- psmelt(top.sigFam)
# group by Nearby_Veg and Family, calculate mean abundance and standard 
deviation
se <- function(x) sqrt(var(x)/length(x))
avgs <- ddply(df, .(Nearby_Veg, Family), plyr::summarize,
       mean = mean(Abundance),
       se = se(Abundance))
avgs$Nearby_Veg <- as.factor(avgs$Nearby_Veg)
# plot bar graph with standard deviation as error bars
ggplot(avgs, aes(fill=Nearby_Veg, x=Family, y=mean, group=Nearby_Veg)) + 
 geom_bar(aes(color=Nearby_Veg, fill=Nearby_Veg), stat=”identity”, 
position=position_dodge(width=0.8), width=0.5) + 
 coord_flip() + 
 geom_errorbar(aes(ymin=mean-se, ymax=mean+se), position=position_
dodge(width=0.8), width=0.5, size=0.15) +
 ylab(“Percentage of Sequences”) + 
 scale_fill_manual(values=vegPal, na.value=”darkgrey”) +
 scale_color_manual(values=vegPal, na.value=”darkgrey”)
ggsave(“bar_byFamVeg.pdf”, device=”pdf”, width=5, height=6, units=”in”, 
useDingbats=FALSE)
ggsave(“bar_byFamVeg.png”, device=”png”, width=4.5, height=4.5, 
units=”in”)

# test for statistical significance
urb.nosing2.relTab <- data.frame(getTab(urb.nosing2.rel))
colnames(urb.nosing2.relTab) <- tax_table(urb.nosing2.rel)[,3]
urb.nosing2.relTab$Nearby_Veg <- as.factor(sample_data(urb.nosing2.
rel)$Nearby_Veg[match(sample_data(urb.nosing2.rel)$SampleID, row.
names(urb.nosing2.relTab))])
# for each of the top 10 Classes
replications(Actinobacteria ~ Nearby_Veg, data=urb.nosing2.relTab)
kruskal.test(Actinobacteria ~ Nearby_Veg, data=urb.nosing2.relTab)
pairwise.wilcox.test(urb.nosing2.relTab$Actinobacteria, urb.nosing2.
relTab$Nearby_Veg,
         p.adjust.method = “bonferroni”)

```

### Health-relevant taxa
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```{r healthTaxa, eval=TRUE}

barton <- subset_taxa(urb.nosing.vst, Family==”Bartonellaceae”) #good
barton.tab <- data.frame(getTab(barton))
barton.tab$Nearby_Veg <- sample_data(urb.nosing.vst)$Nearby_
Veg[match(row.names(barton.tab), row.names(sample_data(urb.nosing.
vst)))]
summary.lm(aov(barton.tab[,1] ~ Nearby_Veg, data=barton.tab))
barton.nograss <- subset(barton.tab, Nearby_Veg != “grass”)
summary.lm(aov(barton.nograss[,1] ~ Nearby_Veg, data=barton.nograss))
barton.noforest <- subset(barton.tab, Nearby_Veg != “forest”)
summary.lm(aov(barton.noforest[,1] ~ Nearby_Veg, data=barton.noforest))
# no significant differences

acinet <- subset_taxa(urb.nosing.vst, Genus==”Acinetobacter”) #good
acinet.tab <- data.frame(getTab(acinet))
acinet.tab$Nearby_Veg <- sample_data(urb.nosing.vst)$Nearby_
Veg[match(row.names(acinet.tab), row.names(sample_data(urb.nosing.
vst)))]
length(colnames(acinet.tab))
pairwise.wilcox.test(urb.nosing2.relTab$Actinobacteria, urb.nosing2.
relTab$Nearby_Veg,
         p.adjust.method = “bonferroni”)
summary.lm(aov(acinet.tab[,1] ~ Nearby_Veg, data=acinet.tab))
acinet.nograss <- subset(acinet.tab, Nearby_Veg != “grass”)
summary.lm(aov(acinet.nograss[,1] ~ Nearby_Veg, data=acinet.nograss))
# somewhat significant difference between forest and paved (R2=0.03, 
p=0.031), not at all between grass and paved
acinet.noforest <- subset(acinet.tab, Nearby_Veg != “forest”)
summary.lm(aov(acinet.noforest[,1] ~ Nearby_Veg, data=acinet.noforest))
acinet.nopaved <- subset(acinet.tab, Nearby_Veg != “paved”)
summary.lm(aov(acinet.nopaved[,1] ~ Nearby_Veg, data=acinet.nopaved))
# more significant difference between forest and grass (R2=0.0787, 
p=0.0033)
ggplot(acinet.tab) + 
  geom_boxplot(aes(x=acinet.tab$Nearby_Veg, y=acinet.tab[1], 
color=acinet.tab$Nearby_Veg)) +
  labs(x=””, y=””) +
  scale_color_manual(values=c(“turquoise3”, “darkgoldenrod”, “grey30”)) 
+ 
  theme(legend.position=”none”)

#diaphor <- subset_taxa(urb.nosing.vst, Genus==”Diaphorobacter”) #good
# none present

microbac <- subset_taxa(urb.nosing.vst, Genus==”Microbacterium”) #bad
microbac.tab <- data.frame(getTab(microbac))
microbac.tab$Nearby_Veg <- sample_data(urb.nosing.vst)$Nearby_
Veg[match(row.names(microbac.tab), row.names(sample_data(urb.nosing.
vst)))]
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summary.lm(aov(microbac.tab[,1] ~ Nearby_Veg, data=microbac.tab))
microbac.nograss <- subset(microbac.tab, Nearby_Veg != “grass”)
summary.lm(aov(microbac.nograss[,1] ~ Nearby_Veg, data=microbac.
nograss))
microbac.noforest <- subset(microbac.tab, Nearby_Veg != “forest”)
summary.lm(aov(microbac.noforest[,1] ~ Nearby_Veg, data=microbac.
noforest))
# no significant differences

alcal <- subset_taxa(urb.nosing.vst, Genus==”Alcaligenes”) #bad
alcal.tab <- data.frame(getTab(alcal))
alcal.tab$Nearby_Veg <- sample_data(urb.nosing.vst)$Nearby_
Veg[match(row.names(alcal.tab), row.names(sample_data(urb.nosing.
vst)))]
summary.lm(aov(alcal.tab[,1] ~ Nearby_Veg, data=alcal.tab))
alcal.nograss <- subset(alcal.tab, Nearby_Veg != “grass”)
summary.lm(aov(alcal.nograss[,1] ~ Nearby_Veg, data=alcal.nograss))
alcal.noforest <- subset(alcal.tab, Nearby_Veg != “forest”)
summary.lm(aov(alcal.noforest[,1] ~ Nearby_Veg, data=alcal.noforest))
# no significant differences

#sciuri <- subset_taxa(urb.nosing.vst, Species==”sciuri”) #good
# none present

tax_table(urb.nosing.vst)@.Data[,7][“TACGTAGGTCCCGAGCGTTGTCCGGAT
TTATTGGGCGTAAAGCGAGCGCAGGTGGTTTATTAAGTCTGGTGTAAAAGGCAGTGGCTCAACC
ATTGTATGCATTGGAAACTGGTAGACTTGAGTGCAGGAGAGGAGAGTGGAATTCCATGTGTAGC
GGTGAAATGCGTAGATATATGGAGGAACACCGGGGGCGAAAGCGGCTCTCTGGCCTGTAACTGA
CACTGAGGCTCGAAAGCGTGGGGAGCAAACAGG”] <- “lactis”
lactis <- subset_taxa(urb.nosing.vst, Genus==”Lactococcus”) 
lactis <- subset_taxa(lactis, Species==”lactis”) #good
lactis.tab <- data.frame(getTab(lactis))
lactis.tab$Nearby_Veg <- sample_data(urb.nosing.vst)$Nearby_
Veg[match(row.names(lactis.tab), row.names(sample_data(urb.nosing.
vst)))]
summary.lm(aov(lactis.tab[,1] ~ Nearby_Veg, data=lactis.tab))
lactis.nograss <- subset(lactis.tab, Nearby_Veg != “grass”)
summary.lm(aov(lactis.nograss[,1] ~ Nearby_Veg, data=lactis.nograss))
lactis.noforest <- subset(lactis.tab, Nearby_Veg != “forest”)
summary.lm(aov(lactis.noforest[,1] ~ Nearby_Veg, data=lactis.noforest))
# no significant differences

iners <- subset_taxa(urb.nosing.vst, Genus==”Lactobacillus”) 
iners <- subset_taxa(iners, Species==”iners”) #good
iners.tab <- data.frame(getTab(iners))
iners.tab$Nearby_Veg <- sample_data(urb.nosing.vst)$Nearby_
Veg[match(row.names(iners.tab), row.names(sample_data(urb.nosing.
vst)))]
summary.lm(aov(iners.tab[,1] ~ Nearby_Veg, data=iners.tab))
iners.nograss <- subset(iners.tab, Nearby_Veg != “grass”)
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summary.lm(aov(iners.nograss[,1] ~ Nearby_Veg, data=iners.nograss))
iners.noforest <- subset(iners.tab, Nearby_Veg != “forest”)
summary.lm(aov(iners.noforest[,1] ~ Nearby_Veg, data=iners.noforest))
# no significant differences

#morax <- subset_taxa(urb.nosing.vst, Genus==”Moraxella”) #bad
# none present

tax_table(urb.nosing.vst)@.Data[,7][“TACGTAGGGTCCGAGCGTTGTCCGGAA
TTACTGGGCGTAAAGAGCTCGTAGGTGGTTTGTCGCGTTGTTCGTGAAAACTCACAGCTCAACT
GTGGGCGTGCGGGCGATACGGGCAGACTAGAGTACTGCAGGGGAGACTGGAATTCCTGGTGTAG
CGGTGAAATGCGCAGATATCAGGAGGAACACCGGTGGCGAAGGCGGGTCTCTGGGCAGTAACTG
ACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGG”] <- “vaccae”
vaccae <- subset_taxa(urb.nosing.vst, Species==”vaccae”) #good
tax_table(vaccae) # check that it is correct
vaccae.tab <- data.frame(getTab(vaccae))
vaccae.tab$Nearby_Veg <- sample_data(urb.nosing.vst)$Nearby_
Veg[match(row.names(vaccae.tab), row.names(sample_data(urb.nosing.
vst)))]
summary.lm(aov(vaccae.tab[,1] ~ Nearby_Veg, data=vaccae.tab))
vaccae.nograss <- subset(vaccae.tab, Nearby_Veg != “grass”)
summary.lm(aov(vaccae.nograss[,1] ~ Nearby_Veg, data=vaccae.nograss))
vaccae.noforest <- subset(vaccae.tab, Nearby_Veg != “forest”)
summary.lm(aov(vaccae.noforest[,1] ~ Nearby_Veg, data=vaccae.noforest))
# no significant differences

gammap <- subset_taxa(urb.nosing.vst, Class==”Gammaproteobacteria”) 
#good
gammap.gen <- tax_glom(gammap, taxrank=”Genus”)
gammap.tab <- getTab(gammap.gen)
gammap.div <- data.frame(diversity(gammap.tab, index=”shannon”))
gammap.div$Nearby_Veg <- sample_data(urb.nosing.vst)$Nearby_
Veg[match(row.names(gammap.div), row.names(sample_data(urb.nosing.
vst)))]
colnames(gammap.div[1]) <- “Diversity”
gammap.div$veg50 <- sample_data(urb.nosing.vst)$veg50[match(row.
names(gammap.div), row.names(sample_data(urb.nosing.vst)))]
summary.lm(aov(gammap.div[,1] ~ veg50, data=gammap.div))
summary.lm(aov(gammap.div[,1] ~ Nearby_Veg, data=gammap.div))
ggplot(gammap.div) + 
  geom_boxplot(aes(x=gammap.div$Nearby_Veg, y=gammap.div[1], 
color=gammap.div$Nearby_Veg)) +
  scale_y_continuous(limits=c(3.6,3.8)) +
  labs(x=””, y=””) +
  scale_color_manual(values=c(“turquoise3”, “darkgoldenrod”, “grey30”)) 
+ 
  theme(legend.position=”none”)
gammap.nograss <- subset(gammap.div, Nearby_Veg != “grass”)
summary.lm(aov(gammap.nograss[,1] ~ Nearby_Veg, data=gammap.nograss))
gammap.noforest <- subset(gammap.div, Nearby_Veg != “forest”)
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summary.lm(aov(gammap.noforest[,1] ~ Nearby_Veg, data=gammap.noforest))

```
We tested for associations between vegetation cover and the following 
health-relevant environmental taxa that have been identified: 
* Bartonellaceae (Amish; Stein et al. 2016)

* Acinetobacter [lwoffii] (Ruokolainen, Hanski et al. 2012)

*	 Gammaproteobacteria, generic diversity rather than relative abundance 
(Hanski et al. 2012)

* Diaphorobacter [good], Microbacterium [bad], Alcaligenes [bad] 
(Fyhrquist et al. 2014)

* Staphylococcus sciuri [good], Lactococcus lactis [good], 
Lactobacillus iners [good], Moraxella [bad] (von Mutius 2016)

* Mycobacteria vaccae (Lowry)

### Contaminant relative abundance
```{r contamPlot, include=TRUE, results=”hide”}
################# THIS IS FROM JAMES’S CELL PHONE PAPER
# plot relative abundances of potential contaminants in controls vs 
samples
plot(plotY ~ plotX, 
   pch=21, bg=rgb(0,0,0,.3), cex=2, las=1,
   xlab=’Rel Abundance in Experiment’, ylab=’Rel Abundance in 
Controls’)
segments(0,0,1,1, lty=3, lwd=2, col=’gray’)
segments(0, .05, 1, .05, lty=1, lwd=2, col=’tomato’)
text(.12, .13, ‘1:1’, font=3, col=’gray30’)
text(.1, .05, ‘RA=0.05’, font=3, pos=3, col=’tomato’)
text(plotX[names(cont3.otus)[1:3]], plotY[names(cont3.otus)[1:3]], 
   rw.taxo.tmp[names(cont3.otus)[1:3], ‘Genus’], pos=c(1))

```

### Community composition by sampling date
```{r dateBar, include=TRUE, results=”hide”, fig.width=6.5, fig.
height=6.5, fig.show=”hold”, fig.align=”center”, fig.cap=”\\
label{fig:barSite}Barplot showing composition by individual site for 
each sampling date.”}
dateList.rel <- llply(dateList, function(x){transform_sample_counts(x, 
function(x) 100 * x/sum(x))})

## stacked barplots to compare proportional composition of top 25 
families (aggregated) for every site BY DATE
for (i in seq_along(dateList)){
 sort.class <- sort(tapply(taxa_sums(dateList[[i]]), tax_
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table(dateList[[i]])[, “Family”], sum), TRUE)
 top.class <- sort.class[1:25] #what are the top 25 most abundant 
Families?
 bottom.class <- sort.class[26:length(sort.class)]
 urb.nosing1 <- subset_taxa(dateList[[i]], Family %in% names(top.
class)) #get top 25 most abundant Family
 urb.nosing2 <- subset_taxa(dateList[[i]], Family %in% names(bottom.
class)) #get all other taxa
 urb.nosing2 <- merge_taxa(dateList[[i]], taxa_names(urb.nosing2), 
archetype=1) #merge all other taxa into Family “Other”
 tax_table(urb.nosing2)[,5][is.na(tax_table(urb.nosing2)[,5])] <- 
“AallOthers”
 urb.nosing2 <- tax_glom(urb.nosing2, taxrank=”Family”)
 urb.nosing2 <- transform_sample_counts(urb.nosing2, function(x) 100 * 
x/sum(x))
 # reorder levels by Nearby_Veg
 sample_data(urb.nosing2)$SiteCode <- factor(
  sample_data(urb.nosing2)$SiteCode, levels=sample_data(urb.
nosing2)$SiteCode[order(sample_data(urb.nosing2)$Nearby_Veg)])
 plot_bar(urb.nosing2, x=”SiteCode”, fill = “Family”, 
title=paste(names(dateList)[i])) + 
  ylab(“Percentage of Sequences”) + 
  geom_bar(aes(fill=Family, color=Family), stat=”identity”, 
position=”stack”) + 
  scale_fill_manual(values=famPal, na.value=”darkgrey”) +
  scale_color_manual(values=famPal, na.value=”darkgrey”)
 ggsave(paste0(“fam25bar_”, names(dateList)[i], “.pdf”), device=”pdf”, 
width=7, height=4, units=”in”)
}

## stacked barplots to compare proportional composition of top 25 SVs 
for every site BY DATE
for (i in seq_along(dateList)){
 top25 <- sort(taxa_sums(dateList.rel[[i]]), TRUE)[1:25]
 top25 <- prune_taxa(names(top25), dateList.rel[[i]])
 top25_sums <- data.frame(taxa_sums(top25))
 # get taxonomic Families of top 25
 top25tax <- tax_table(top25)[, c(“Phylum”, “Class”, “Order”, “Family”, 
“Genus”)]
 top25matrix <- data.frame(as(top25tax, “matrix”))
 top25matrix <- cbind(top25matrix, top25_sums)
 write.csv(top25matrix, paste0(“top25_”, names(dateList.rel[i]), 
“.csv”))
 top25rel <- transform_sample_counts(top25, function(x) 100 * x/sum(x))
 # reorder levels by Nearby_Veg
 sample_data(top25rel)$SiteCode <- factor(
  sample_data(top25rel)$SiteCode, levels=sample_
data(top25rel)$SiteCode[order(sample_data(top25rel)$Nearby_Veg)])
 plot_bar(top25rel, x=”SiteCode”, fill = “Family”, 
title=paste(names(dateList)[i])) + 
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  ylab(“Percentage of Sequences”) + 
  geom_bar(aes(fill=Family, color=Family), stat=”identity”, 
position=”stack”) + 
  scale_fill_manual(values=famPal, na.value=”darkgrey”) +
  scale_color_manual(values=famPal, na.value=”darkgrey”)
 ggsave(paste0(“SV25bar_”, names(dateList)[i], “.pdf”), device=”pdf”, 
width=7, height=4, units=”in”)
}

for (i in seq_along(dateList.rel)){
 top25 <- sort(taxa_sums(dateList.rel[[i]]), TRUE)[1:25]
 top25 <- prune_taxa(names(top25), dateList.rel[[i]])
 top25_sums <- data.frame(taxa_sums(top25))
 # get taxonomic Families of top 25
 top25tax <- tax_table(top25)[, c(“Phylum”, “Class”, “Order”, “Family”, 
“Genus”)]
 top25matrix <- data.frame(as(top25tax, “matrix”))
 top25matrix <- cbind(top25matrix, top25_sums)
 write.csv(top25matrix, paste0(“top25_”, names(dateList.rel[i]), 
“.csv”))
}

#clean up
rm(top25otus, top25_sums, top25tax, top25matrix)

```

### Relative abundances of individual taxa of interest across sites and 
sampling dates
```{r barTaxa, include=TRUE, results=”hide”, fig.width=6.5, fig.
height=6.5, fig.show=”hold”, fig.align=”center”, fig.cap=”\\
label{fig:barTaxa}Barplots showing distribution of individual taxa of 
interest across sites and sampling dates.”}

Sphingomonas <- prune_taxa(“TACGGAGGGAGCTAGCGTTATTCGGAATTACTGGGC
GTAAAGCGCACGTAGGCGGCTTTGTAAGTAAGAGGTGAAAGCCCAGAGCTCAACTCTGGAATTG
CCTTTTAGACTGCATCGCTTGAATCATGGAGAGGTCAGTGGAATTCCGAGTGTAGAGGTGAAAT
TCGTAGATATTCGGAAGAACACCAGTGGCGAAGGCGGCTGACTGGACATGTATTGACGCTGAGG
TGCGAAAGCGTGGGGAGCAAACAGG”, urb.nosing) # interesting taxa from top 25, 
associated with hay dust and observed in pilot study
# reorder levels by Date then Nearby_Veg
sample_data(Sphingomonas)$SampleID <- factor(sample_
data(Sphingomonas)$SampleID, 
                       levels = sample_
data(Sphingomonas)$SampleID[order(sample_data(Sphingomonas)$Date,
                                                sample_
data(Sphingomonas)$Nearby_Veg)], 
                       ordered=TRUE)
plot_bar(Sphingomonas, x=”SampleID”, y=”Abundance”, fill=”Nearby_Veg”) +
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 geom_bar(aes(color=Nearby_Veg, fill=Nearby_Veg), stat=”identity”, 
position=”stack”) +
 scale_fill_manual(values=c(“turquoise3”, “darkgoldenrod”, “grey30”)) +
 scale_color_manual(values=c(“turquoise3”, “darkgoldenrod”, “grey30”)) 
+
 theme(text=element_text(size=8), axis.text.x=element_text(size=6, 
vjust=0.5))
ggsave(“Sphingomonas_bar.pdf”, device=”pdf”, width=12, height=4, 
units=”in”)

A.multivorum <- prune_taxa(“TACGAAGGGGGCTAGCGTTGCTCGGAATGACTGGGC
GTAAAGGGCGCGTAGGCGGATCGGACAGTCAGGCGTGAAATTCCTGGGCTTAACCTGGGGGCTG
CGTTTGAGACGTTGGGTCTTGAGTTTGGAAGAGGGTCGTGGAATTCCCAGTGTAGAGGTGAAAT
TCGTAGATATTGGGAAGAACACCGGTGGCGAAGGCGGCGACCTGGTCCTGGACTGACGCTGAGG
CGCGAAAGCGTGGGGAGCAAACAGG”, urb.nosing) # interesting taxa from top 25, 
breaks down heavy metals
# reorder levels by Date then Nearby_Veg
sample_data(A.multivorum)$SampleID <- factor(sample_
data(A.multivorum)$SampleID, levels = sample_data(A.
multivorum)$SampleID[order(sample_data(A.multivorum)$Date, sample_
data(A.multivorum)$Nearby_Veg)], ordered=TRUE)
plot_bar(A.multivorum, x=”SampleID”, y=”Abundance”, fill=”Nearby_Veg”) +
 geom_bar(aes(color=Nearby_Veg, fill=Nearby_Veg), stat=”identity”, 
position=”stack”) +
 scale_fill_manual(values=c(“turquoise3”, “darkgoldenrod”, “grey30”)) +
 scale_color_manual(values=c(“turquoise3”, “darkgoldenrod”, “grey30”)) 
+
 theme(text=element_text(size=8), axis.text.x=element_text(size=6, 
vjust=0.5))
ggsave(“A.multivorum_bar.pdf”, device=”pdf”, width=12, height=4, 
units=”in”)

#Erwinia <- prune_taxa(“TACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAA
AGCGCACGCAGGCGGTCTGTCAAGTCAGATGTGAAATCCCCGGGCTTAACCTGGGAACTGCATT
TGAAACTGGCAGGCTAGAGTCTTGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGT
AGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACAAAGACTGACGCTCAGGTGCG
AAAGCGTGGGGAGCAAACAGG”, urb.nosing) # interesting taxa from top 25, 
associated with water and plant disease
# reorder levels by Date then Nearby_Veg
#sample_data(Erwinia)$SampleID <- factor(sample_data(Erwinia)$SampleID, 
levels = sample_data(Erwinia)$SampleID[order(sample_
data(Erwinia)$Nearby_Veg, sample_data(Erwinia)$SiteCode)], 
ordered=TRUE)
#plot_bar(Erwinia, x=”SampleID”, y=”Abundance”, fill=”Nearby_Veg”) +
# geom_bar(aes(color=Nearby_Veg, fill=Nearby_Veg), stat=”identity”, 
position=”stack”) +
# scale_fill_manual(values=c(“turquoise3”, “darkgoldenrod”, “grey30”)) +
# scale_color_manual(values=c(“turquoise3”, “darkgoldenrod”, “grey30”)) 
+
# theme(text=element_text(size=8), axis.text.x=element_text(size=6, 
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vjust=0.5))
#ggsave(“Erwinia_bar.pdf”, device=”pdf”, width=12, height=4, 
units=”in”)

#M.radiotolerans <- prune_taxa(“TACGAAGGGGGCTAGCGTTGCTCGGAATCACT
GGGCGTAAAGGGCGCGTAGGCGGCGTTTTAAGTCGGGGGTGAAAGCCTGTGGCTCAACCACAGA
ATGGCCTTCGATACTGGGACGCTTGAGTATGGTAGAGGTTGGTGGAACTGCGAGTGTAGAGGTG
AAATTCGTAGATATTCGCAAGAACACCGGTGGCGAAGGCGGCCAACTGGACCATTACTGACGCT
GAGGCGCGAAAGCGTGGGGAGCAAACAGG”, urb.nosing) # interesting taxa from top 
25, 
# reorder levels by Date then Nearby_Veg
#sample_data(M.radiotolerans)$SampleID <- factor(sample_
data(M.radiotolerans)$SampleID, levels = sample_data(M.
radiotolerans)$SampleID[order(sample_data(M.radiotolerans)$Date, 
sample_data(M.radiotolerans)$Nearby_Veg)], ordered=TRUE)

#Pantoea <- prune_taxa(“TACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAA
AGCGCACGCAGGCGGTCTGTTAAGTCAGATGTGAAATCCCCGGGCTTAACCTGGGAACTGCATT
TGAAACTGGCAGGCTTGAGTCTTGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGT
AGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACAAAGACTGACGCTCAGGTGCG
AAAGCGTGGGGAGCAAACAGG”, urb.nosing) # interesting taxa from top 25, 
commonly isolated from grain dust
# reorder levels by Date then Nearby_Veg
#sample_data(Pantoea)$SampleID <- factor(sample_data(Pantoea)$SampleID, 
levels = sample_data(Pantoea)$SampleID[order(sample_
data(Pantoea)$Nearby_Veg, sample_data(Pantoea)$SiteCode)], 
ordered=TRUE)

# clean up
rm(urb.nosing.m, top25phy)

```
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