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A panel model for predicting the diversity of internal temperatures from 
English dwellings1

 
 

Scott Kelly1, Michelle Shipworth2, David Shipworth2, Michael Gentry3, Andrew Wright4, Michael 
Pollitt5, Doug Crawford-Brown6, Kevin Lomas7

Abstract 
  

Using panel methods, a model for predicting daily mean internal temperature demand across 
a heterogeneous domestic building stock is developed. The model offers an important link 
that connects building stock models to human behaviour. It represents the first time a panel 
model has been used to estimate the dynamics of internal temperature demand from the 
natural daily fluctuations of external temperature combined with important behavioural, 
socio-demographic and building efficiency variables. The model is able to predict internal 
temperatures across a heterogeneous building stock to within ~0.71°C at 95% confidence 
and explain 45% of the variance of internal temperature between dwellings. The model 
confirms hypothesis from sociology and psychology that habitual behaviours are important 
drivers of home energy consumption. In addition, the model offers the possibility to quantify 
take-back (direct rebound effect) owing to increased internal temperatures from the 
installation of energy efficiency measures. The presence of thermostats or thermostatic 
radiator valves (TRV) are shown to reduce average internal temperatures, however, the use 
of an automatic timer is statistically insignificant. The number of occupants, household 
income and occupant age are all important factors that explain a proportion of internal 
temperature demand. Households with children or retired occupants are shown to have 
higher average internal temperatures than households who do not. As expected, building 
typology, building age, roof insulation thickness, wall U-value and the proportion of double 
glazing all have positive and statistically significant effects on daily mean internal 
temperature. In summary, the model can be used as a tool to predict internal temperatures or 
for making statistical inferences. However, its primary contribution offers the ability to 
calibrate existing building stock models to account for behaviour and socio-demographic 
effects making it possible to back-out more accurate predictions of domestic energy demand. 
Keywords: temperature, rebound effect, buildings, domestic, energy, demand, 
behaviour, panel 
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1 Introduction 

1.1 Background 
In the UK, the built environment accounts for approximately 40% of primary energy demand 
of which 60% is used for home heating, 20% for hot water and the remaining 20% for 
lighting and appliances [1]. In 2011 almost 90% of all UK dwellings used central heating 
systems as a primary heat source. Thus a transition from individual room fires and heaters to 
more modern, controllable central heating systems has dramatically changed the way in 
which people use energy in their homes. Although modern gas central heating systems are 
arguably much more energy efficient, they also provide users with instantaneous heating1

 

 
and thus create opportunities for increased energy consumption. This is for several reasons. 
First, they benefit from advanced controls and automation giving functionality and flexibility 
that are simply not available with more traditional heating methods. Secondly, little effort is 
required to increase consumption unlike traditional wood and coal fired heating systems. 
Finally, central heating has introduced the capability to heat every room in the house through 
dedicated radiators. As will be discussed, the repercussions of modern heating systems and 
controls on internal temperature profiles are still widely disputed. For example, Shipworth 
[2] shows there is no evidence that thermostat settings have changed between 1984 and 
2007. Shipworth suggests that despite overall efficiency gains, the absence of a reduction in 
energy consumption may be explained by an increase in the total area of the dwelling now 
being heated, an increase in heating duration and an increase in the frequency of window 
openings to control temperature.  

Because home heating contributes towards a significant component of total residential 
energy consumption, it is worthwhile scrutinizing the driving forces behind demand for 
home heating. A growing body of literature suggests that home heating is just as much due to 
the behavioural and social characteristics of people and how they interact with energy 
technology as it is to do with the physical properties and efficiency of the building [3–6]. 
The idea that people matter as much as buildings was pioneered by Lutzenhiser [7] where he 
argued that psychological, social, economic and behavioural aspects must be considered 
alongside the physical properties of the building. In his seminal paper Lutzenhiser coined 
this as the ‘cultural model’ of energy use. Following Lutzenhiser, Hitchcock [8] argued the 
need for a systems based framework, able to integrate the social and technical aspects of 
energy demand into a single model. In his analysis Hitchcock asserts that “energy 
consumption patterns are a complex technical and social phenomenon” and thus to be fully 
understood must be “viewed from both engineering and social science perspectives 
concurrently”. Although both authors made the intellectual leap to bring two very distinct 

                                                 
1 “Instantaneous heating” refers to the activation of the system, central heating systems still typically take  
approximately 30-90 mins for a dwelling to reach set-point temperatures.   
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research approaches together, many of the building stock models developed over the 
following several decades have never managed to fully incorporate these early ideas [9,10].  
 
Since these early pioneers, most research has attempted to model and understand home 
energy demand through a deeper understanding of society (sociology) and human behaviour 
(psychology) [4,11–13]. Alternatively engineering models have attempted to build more 
accurate instrumentation and calculation algorithms to improve the accuracy of modelling 
heating systems and heat loss through building envelopes [14,15]. Investigations in each 
research discipline have therefore grown in both scope and scale for the type of problems 
that can be considered, but neither has fully incorporated the beneficial advances made by 
the other discipline. Some authors, however, have started to develop bottom-up engineering 
models that utilise proxy variables to represent human behaviour. For example, Brown et al 
[16] has developed a model utilising water consumption as a proxy for occupancy. Inroads 
have also been laid by Richardson et al. [17] where time of use surveys have been used to 
estimate occupancy patterns and domestic energy demand profiles of dwelling inhabitants. 
Although such studies provide a glimpse of what energy profiles might look like at the 
individual building level, such information has never been combined and integrated within a 
national building stock model requiring much larger samples from a heterogeneous building 
stock. Even today there is still not a well defined path for how human behaviour may be 
accurately incorporated in bottom-up engineering building stock models. This assertion is 
supported by Audenaert [18] who claims there is a clear gap in understanding the different 
behavioural factors that lead to an occupant’s demand for heating, and calls for more 
research that identifies these driving factors. 
 
The importance of behavioural and social factors is highlighted in a study by Gill and 
Tierney [19] where it is found that behaviour accounts for 51%, 37% and 11% of the 
variance in heat, electricity and water consumption respectively across different dwellings. 
Implicitly this suggests that models neglecting human behaviour in the estimation of home 
energy consumption can be out by as much as ±50%. However, the majority of residential 
stock models do not take social and behavioural factors into consideration. Top down models 
neglect behavioural factors, simply because it is not possible to aggregate dwelling level 
behaviour into any meaningful aggregate statistic of the entire building stock. On the other 
hand, bottom-up models are dominated by engineering building physics models that only 
consider the physical properties of the building envelope and the efficiency of the heating 
system. In both modelling approaches generalisations are made about the internal 
temperatures of dwellings. In top-down methods, internal temperatures are used to calibrate 
model estimates and adjust estimated energy consumption to match aggregate demand [20]. 
In bottom-up methods internal temperature is generally assumed constant across multiple 
dwellings or similarly adjusted as a function of the physical properties of the building 



Thursday, 26 July 2012  Scott Kelly 
 

 4 

ignoring completely the effect that different behaviours may have on energy use (BREDEM2

 

 
[21]). Both approaches therefore miss an important opportunity to capture human behaviour 
through the decisions of individuals that are known to affect heating profiles and mean 
internal temperatures. 

There have been several other important contributions that add to our knowledge of how 
people interact with home energy systems. Contrary to popular belief, Shipworth et al. [22] 
show that heating controls may not reduce average living room temperatures or the duration 
of operation. Regulations, policies and programmes that assume the addition of controls will 
reduce energy consumption may therefore need to be revised. The impact that smart meters 
will have on reducing energy and emissions is also controversial. Darby [23] maintains there 
is little evidence to suggest that smart meters will automatically lead to a dramatic reduction 
in energy demand. Instead she calls for increased focus on overall demand reduction (rather 
than peak electricity demand reduction), improvements to the ergonomic design of customer 
interfaces and on guiding occupants towards appropriate action through feedback, narrative 
and support for providing the best opportunities to reduce demand.    

1.2 The problem with existing building stock models  
Top-down models assume a single mean internal temperature for all dwellings in the 
building stock [24–26] while the remaining models (including BREDEM) attempt to 
exogenously calculate internal temperature as a function of occupancy, building fabric and 
technology [21,27,28]. Surprisingly, none of the building stock models developed for use in 
the UK include internal temperature estimates for temporal resolutions of less than one 
month. As a result internal temperature is averaged over long periods losing important 
information about the effect of external temperatures on different heating profiles. Without 
detailed information on the day to day temperature differences from a heterogeneous 
building stock it is difficult to set targeted energy policy that correctly accounts for the 
influence of behaviour. For example, the temperature profile of dwellings occupied by 
retirees will have very different energy and temperature requirements than a working couple 
or a busy family. As smart grid technologies become increasingly prevalent, modelling the 
peaks and troughs will become important for managing the dynamic loads across the 
network. For peak demand in electricity, the unit of measure is minutes or seconds but for 
gas it is usually measured in days and hours. Importantly, it is possible to predict peaks in 
aggregate gas demand using this model. Furthermore, improved understanding of such 
dynamics will help develop new strategies for reducing CO2

                                                 
2 Building Research Establishment Domestic Energy Model (BREDEM) is the foundational building model 
used for assessing domestic buildings in the UK. It is also used as the basic calculation methodology for SAP 
and RdSAP. 

 emissions. Building stock 
models that utilise temperature data at finer temporal resolutions will be much more adept at 
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predicting energy demand and therefore will be able to provide better insight for future 
policy.  
 
It is now well recognised that internal temperature remains a key determinant for explaining 
overall home heating energy demand [29]. It is therefore of some concern that internal 
temperatures are one of the least understood [30] and most generalised variables for 
modelling domestic energy consumption. All other factors being equal, home heating energy 
demand is shown to be most affected by changes to internal temperature [27,29]. In a recent 
study by Cheng and Steemers [27] it is shown that CO2

 

1.55ijσ =
emissions are most highly sensitive 

to internal temperature ( ) meaning that a 1% rise in mean internal temperature 

leads to a 1.55% increase in CO2

0.62ijσ =
 emissions. The same result was found by Firth et al [29] 

where the length of the daily heating period had the second highest sensitivity ( ) 

and external temperatures the third highest sensitivity ( 0.58ijσ = − ). Although such models 

are useful as they provide additional insight into domestic energy demand, a shortcoming is 
that they do not use empirical data and instead estimate internal temperatures using 
thermodynamic heat balance equations similar to those employed within BREDEM. Energy 
demand estimations made with such models are known to have significant discordance with 
actual energy consumption [31]. 
 
Firth et al. [29] estimate internal temperatures using the standard BREDEM steady-state 
physical equation. In this method an algorithm is employed to estimate monthly internal 
temperature from an iterative feedback process. First a mean internal temperature of 21°C is 
assumed throughout the building from which the energy lost through building fabric is 
calculated using the building heat loss parameter and mean external temperature. The heat 
loss parameter is calculated from building fabric U-values, infiltration rates and internal heat 
gains. Because overall energy loss, external temperature and thermal mass of the building are 
known a priori, it is then possible to re-estimate the mean internal temperature of the 
building. This process is repeated until internal temperature reaches equilibrium. This 
method is defective in several important respects. First, it ignores human behaviour and thus 
temperature fluctuations caused by people do not feature at all in the estimation. Secondly, 
the temperature estimates are not based on empirical temperature readings from the dwelling; 
rather, they are estimated theoretically from a set of thermodynamic equations. Thirdly, there 
is no re-evaluation or verification that the temperature estimates used and predicted by the 
engineering model are representative. Finally, as monthly mean internal temperatures are 
estimated from building thermodynamics, important information about the daily fluctuations 
of external temperatures are neglected and averaged out over long periods. Such fluctuations 
and extremes of external temperature readings are important because they act as triggers to 
occupants who may change their behaviour due to cold and hot weather events. For example, 
an early winter cold snap may cause occupants to switch on heating systems much earlier in 
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the heating season than expected, putting increased load on energy networks. Predicting the 
magnitude and duration of such events is extremely valuable for predicting loads on national 
electricity and gas networks and for meeting peak demands.  
 
Aside from engineering based approaches statistical or regression based methods can also be 
used to model energy consumption. For example, Summerfield et al [32] carried out a 
follow-up study on the 1990 Milton Keynes Energy Performance Dataset (MKEP). In this 
study 14 of the original 29 dwellings agreed to participate. All dwellings were centrally 
heated with gas. A regression model was developed that used mean daily external 
temperature as a predictor of mean internal temperature as well as daily gas and electricity 
consumption. The results focused on a longitudinal analysis of dwellings between 1990 and 
2005. From this small sample a simple bivariate regression model was developed. Due to the 
small sample size the model prohibits the prediction of internal temperatures for the building 
stock more generally, but does provide guidance for conducting similar types of analysis. 
Several other studies have used regression based statistical methods in the analysis of 
buildings [33,34]. However, none of these earlier studies managed to extend their analyses to 
utilise the much more powerful statistical properties of panel based methods as they are used 
in this paper.  
 
Three prominent UK physically based building stock models use BREDEM as the core 
calculation procedure [22]. These are the UK Domestic Carbon Model (UKDCM) [35]; 
Johnston’s model [36]; and the DeCarb model [30]. Within the descriptions of these models, 
there is no suggestion that they deviate from BREDEM’s standard assumptions or default 
calculation procedures for estimating internal temperature and heating season duration. All 
models that adopt standard BREDEM assumptions inherently ignore the effects of human 
behaviour on energy consumption. Disturbingly these models are still actively used in the 
development of national policy to curb emissions, improve fuel poverty and predict future 
trends in domestic energy demand. If emissions reductions are going to be taken seriously, 
then these models need to actively include the behaviour of individuals as a central 
component of the energy demand equation.  

2 Contribution 
A dwelling level temperature model that is capable of predicting internal temperature 
including the influence of human behaviour will be a useful tool and benefit many existing 
building stock models. This research will therefore quantify the behavioural, social and 
demographic properties associated with a building and its occupants and determine the 
influence of these factors on internal temperature. Benefiting this model is capability to 
predict internal temperature at much higher temporal resolution than what is presently used 
by other stock models and is therefore able to predict the variability of internal temperatures 
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as external temperatures fluctuate on a daily basis. Importantly the model can also be used to 
quantify the rebound effect at the individual building level.  
 
This paper therefore offers several important contributions to this research area:  

i) It represents the first known time that a panel model has been used to predict 
mean internal temperatures from a large sample of heterogeneous dwellings. 

ii) It presents a novel method for including social and behavioural variables and how 
these factors influence internal temperature over a heterogeneous building stock. 

iii) It offers a practical solution for energy demand modellers wishing to incorporate 
improved estimates of mean daily internal temperatures into bottom up models. 

iv) It allows statistical inferences to be made about different physical, behavioural, 
socio-demographic and technical factors from a heterogeneous building stock and 
the proportion of variance that these different factors contribute towards 
explaining internal temperature.  ) 

3 Comparison of relevant data sources 
With approximately 22 million heterogeneous dwellings spread across the UK, each 
dwelling has a unique energy profile due to its own set of physical properties, climatic 
conditions and behavioural characteristics of occupants. Built form may vary by date of 
construction, building typology, floor area, type of construction material and quality of 
workmanship. Energy systems within dwellings also vary markedly with differences 
between heating systems, fuel types and efficiency levels. The behavioural qualities of 
occupants range by socio-demographics, income levels, age and family type [29]. Although 
dwelling set-point temperatures maybe similar amongst dwellings (e.g. 21°C) there may be 
important differences in heating duration that result in a large divergence in mean daily 
internal temperatures.  In order to capture the complexities inherent within the residential 
building stock, it is necessary to have a dataset that contains as much information as possible 
on the many factors that are known to explain energy demand.   
 
Concerning internal temperatures, National surveys such as the 1996 English House 
Condition Survey (EHCS) [37] contain spot temperature readings taken on the day of the 
survey and therefore, cannot be used for any meaningful analysis over time, and certainly not 
for predicting internal temperature profiles. Other studies have either focused on specific 
socio-demographic groups within society or specific geographic areas thus limiting the 
applicability of temperature readings to be used to represent internal temperatures for the 
national building stock [38–40]. Thermal comfort models such as PMV [41] and adaptive 
models [42] are developed for engineers and architects for the design of buildings and 
therefore do not generally consider the temperature requirements and profiles of different 
occupants. Aside from the dataset used in this study, the most recent geographically 
comprehensive and nationally representative survey of internal temperature measurements 
was completed by Hunt and Gidman [43] between February and March in 1978. A total of 
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1000 households participated in the survey with spot temperature measurements recorded in 
all rooms of the dwelling.  As only spot measurements were taken at the time of the survey, 
it is not possible to know the specific temperature profiles for each of the dwellings, but the 
large sample of homes does provide some indication for mean internal temperatures across 
England. From this study the mean internal temperature in the living room was 18.3°C 
(p<0.001) and for the main bedroom it was 15.2°C (p<0.001). Hunt showed that the mean of 
all dwelling temperatures was most correlated with the landing or stairwell temperature 
(r=0.96), followed closely by the bedrooms (r=0.94).     
 
The use of bottom-up building physics models to estimate internal temperatures and energy 
consumption stems from a paucity of empirical data, and in particular, inadequate samples of 
high resolution internal temperature readings. In light of these shortcomings McMichael [44] 
completed a comprehensive review to catalogue all the relevant data sources and their 
potential for being used in understanding the relationship between energy consumption, 
buildings and behaviour. McMichael’s (2011) literature search involved consulting 
numerous experts in the field, literature reviews of other grants and publications as well as 
searching of online data archives hosted by the UK government such as the UK Data 
Archive. Some forty-four different data-sources were consulted, with each dataset containing 
unique information applicable to modelling and understanding building energy consumption. 
The overall conclusion of this data survey was that the CARB-HES dataset was the only data 
source to contain all the necessary data (including internal temperature readings) in a 
nationally representative sample of dwellings capable of modelling the complexities inherent 
in the UK national building stock. 

3.1 Data collection 
Crucial to estimating and modelling human behaviour as it pertains to residential energy 
consumption is securing sufficient data about the social and behavioural characteristics of the 
population being studied. It is therefore necessary to have measureable and quantifiable 
parameters that are able to relate the socio-demographic and behavioural properties of people 
to the energy consumption of the dwelling being studied. One possible method to couple the 
latent property of ‘human behaviour’ to dwelling energy consumption is through the 
intermediary variable of internal temperature. Defining internal temperature in this way 
introduces several problems. If daily internal temperatures are to reflect human behaviour 
accurately, they must be of sufficiently high temporal resolution so that important 
distinctions across multiple dwellings will not be averaged out over long time periods. 
Moreover, internal temperature is both a function of human behaviour and the physical 
properties of the building, thus it is important to include controls for as many significant 
variables as possible in the analysis.  
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The model developed uses the CARB-HES dataset collected between July 2007 and 
February 2008. Households who participated in the survey were randomly selected from a 
stratified sample drawn from a postcode address file for England. To ensure a good 
geographic and socio-demographic spread, post codes were stratified by Government office 
region and socio-economic class. Out of the 1134 addresses selected a total 427 households 
opted to participate in the study. Of those households 390 agreed to house at least one 
temperature sensor, but some households returned their sensors early, or withdrew from the 
study, or moved house; some sensors were faulty or could not be linked to a household, or 
the data could not be retrieved from them. Data was retrieved from sensors provided by 280 
households, 266 of which had both bedroom and living room data. Occupants from each 
household were asked to give face-face interviews and answered structured questions about 
their homes’ built-form, heating system, heating practices and socio-demographics. During 
the interview occupants were asked if they would be willing to accommodate temperature 
sensors in their living room and master bedroom [22]. Having two temperature loggers for 
each dwelling was useful as it allowed suspected temperature logger errors (due to incorrect 
placement or hardware error) to be checked and verified against the second temperature 
logger. This also allowed for the examination of zoning within a dwelling and to test the 
accuracy of standard BREDEM assumptions. 
 
The survey was designed for the CaRB consortium by M. Shipworth with sampling and face-
to-face interviews conducted by the National Centre for Social Research (NatCen). A wide 
range of physical characteristics for each building were collected as well as many socio-
demographic and behavioural attributes of the occupants. Internal temperatures were 
recorded in 266 dwellings using HOBO UA 001-083

( )0.19, 0.11x σ= =

 sensors which are small, unobtrusive 
and silent. Participants were instructed to place the sensor on a shelf or other surface between 
knee and head height away from any heat sources (such as radiators) and away from direct 
sunlight. The sensors are self contained data loggers and the information was only retrieved 
once the study had been completed. Temperature recordings were taken at 45 minute 
intervals between 22 July 2007 and 3 February 2008. This period was chosen as it spreads 
across different heating seasons and allows for a sufficiently long monitoring period whilst 
still capturing short term variations in temperature. The mean temperature over each 45 
minute period was recorded at a resolution of 0.1°C. The HOBO temperature sensors had a 
reported accuracy of ±0.47°C at 25°C. Calibration measurements were taken on each sensor 
before they were installed in the home and used to correct the readings once the 
measurements had been downloaded. The calibration error from all sensors was found to be 
minimal . The survey represents the first nationally representative sample 

to combine high temporal resolution temperature readings with both physical and socio-
demographic characteristics of the dwelling. A dataset containing several hundred dwellings 

                                                 
3 www.tempcon.co.uk/  
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each with temperature readings taken at 45 minute intervals over a period of 6 months 
generates a very large dataset with approximately 1.5 million temperature spot 
measurements. Datasets this large require specialist software packages for data handling and 
post-processing. In this study, MS Access, SPSS, STATA and MatLab were all used in the 
management of data.  Dataset files were imported as MDB files into Microsoft Access and 
then converted to DBF files before they could be imported and processed in SPSS, STATA 
and Matlab for further statistical analysis.  
 
Although the CARB-HES dataset covers a comprehensive array of social, behavioural and 
physical characteristics, external temperatures over the period of the study were not included 
in the original survey. In order to overcome this deficiency, an external temperature dataset 
was created containing average external daily temperature readings for each of the nine 
government office regions in England. Finer geographic-spatial resolution down to the local 
authority level was not necessary as doing so did not add significantly more variation than 
what was already captured at the regional level. The dataset was downloaded and created 
with permission from the British Atmospheric Data centre (BADC) [45]. The regional 
external temperature dataset is available for public use with appropriate recognition and 
permission from BADC [46]. Figure 1 shows the mean daily external temperatures for each 
Government Office region in England from 1st August 2007 to the 31st

 
 January 2008.  

 
Figure 1: Mean external temperatures by Government office region (Aug 2007- Jan 2008) 

 6 3 28.8 10 0.002 0.045 15T x x x−= × − + +  (1.1) 
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Equation (1.1) governs the polynomial fit of mean daily external temperature and shows the 
typical sinusoidal relationship usually associated with external temperatures.    

4 Development of the statistical model 
Several statistical procedures were reviewed for their appropriateness in modelling time-
series data. Well developed panel data methods allow cross-sectional and time-series data to 
be modelled without incurring data reduction penalties due to averaging of the temperature 
readings over time or across dwellings. Panel data methods thus have several important 
benefits over other statistical methods.  
 

i) they produce more informative results because they contain more degrees of 
freedom thus making the estimates more efficient than standard cross-sectional 
methods; 

ii) they allow the study of subject level dynamics by separating or controlling for 
different cohort effects over time; 

iii) they provide additional information on the time ordering of events; 

iv) they make it possible to capture variation occurring over time or space and how 
these two effects vary simultaneously; 

v) they allow for the control of individual unobserved heterogeneity and 
contemporaneous correlation across a sample. ) 

 

Given these advantages it is no surprise that panel methods have become widely used in 
many quantitative research disciplines. Although panel-data approaches provide many 
benefits for substantive research, the method does introduce several complications that must 
be overcome before robust statistical inferences can be made or the model used to make 
credible predictions. A typical problem arising from the use of panel data methods is that 
they often violate standard OLS assumptions about the error process4

                                                 
4 For OLS to be optimal it is necessary that all errors have the same variance (homoskedasticity) and that all the 
errors are independent of each other.   

 (see Equations 1.1 – 
1.3) [47]. In typical regression methods it is frequently assumed that errors are either normal 
or independently identically distributed (IID). In panel data this assumption is often violated 
due to the longitudinal nature of recordings (i.e. measurements over time are correlated). 
Although it is common to assume that errors are not correlated with regressors over a cross-
section of records, it is almost never the case that errors are uncorrelated within an entity 
over time, thus giving way to serial correlation. In addition, errors in panel data tend to be 
heteroskedastic such that they have changing variances over time and over panels. Panel data 
methods thus require the use of much more sophisticated estimation methods than typical 
cross-sectional or time-series dependent analyses to allow for the additional complications 
that arise. 
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Because panel methods are an extension of standard regression techniques they are still 
dependent on many of the same assumptions: 

i) ( | ) 0i iE xε =    (exogeneity of regressors)  (1.2) 

ii)  ( )2 2|i iE xε σ=  (conditional homoskedasticity)  (1.3) 

iii)  ( )| 0,   i j i jE x x i jε ε = ≠ (conditionally uncorrelated correlations)  (1.4) 

Assumption 1 is essential for consistent estimation of β  coefficients and implies that the 
conditional mean is linear and all relevant variables have been included in the regression. It 
is however possible to relax this assumption in some specific circumstances [48]. If all three 
assumptions are met then the OLS estimator is fully efficient. If in addition the errors are 
normally distributed then t-statistics are also exactly t-distributed. If Assumptions ii) and iii) 
cannot be met then OLS is no longer efficient and estimation using other methods is possible 
and generally more efficient. 
 
Specially developed statistical techniques capture the variations across individuals whilst 
also allowing for variations that occur over time. Several practical considerations arise when 
conducting panel data analysis. Estimator consistency requires that the sample-selection 
process does not lead to errors being correlated with the regressors. However, when using 
panel-data, it is very likely that model standard errors are correlated with regressors over 
time. It is also plausible that error correlation exists between cross-sections of the sample. 
Special statistical techniques have been devised to ameliorate both of these situations. 
Regardless of the assumptions being made, it is typically necessary to make corrections to 
OLS estimations for panel data (e.g. Panel Corrected Standard Errors). In addition, it is 
sometimes possible to improve the efficiency of the model by using other estimators such as 
generalised leased squares (GLS).  
 
When performing panel analysis, regression coefficient identification depends on the type of 
regressors being specified. For example, some regressors are time-invariant and thus affect 
decisions about the type of model that can be used. Moreover, it is also possible that some 
regressors covary over time and also by cross-section. Many econometric techniques 
therefore recommend the use of either fixed effects models or random effects models for 
conducting panel data analysis which depends on the structure of variables included in the 
model.  
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First, lets consider Pooled Regression (PR), also known as the population averaged model 
which is also the simplest approach for modelling panel datasets. If standard OLS 
assumptions are met (i.e. zero conditional mean of errors, homoskedasticity, independence 
across observations and strict exogeneity of covariates) then OLS techniques are efficient 
and can reliably be used to estimate parameters [49]. However, because we are using 
longitudinal data it is unreasonable to assume that errors are not correlated over time, thus 
ruling out pooled regression as an estimation technique. 
 
Second, let’s consider the Fixed Effects (FE) model. Like first differencing methods, FE 
methods use a transformation to remove any unobserved effects prior to estimation. In this 
method time invariant explanatory variables are removed [50]. In FE models it is not 
possible to draw inferences or predictions from time-invariant effects as such effects are 
averaged out and controlled for as part of the transformation process [51]. In FE models the 
researcher is primarily concerned with understanding the effect of different covariates as 
they vary with time. Any time-invariant cross-sectional heterogeneity (and unobserved time-
invariant heterogeneity) therefore drops out during the differencing transformation. The 
result is a model with different estimates for model intercepts, iν  across the panel but with 
each panel having the same slope. Time-invariant effects are of acute interest for this model5

 

. 
As FE models cannot estimate time-invariant effects, the FE model was rejected for use in 
developing this model. For completeness, the FE estimator is typically given by Equation 
(1.5).  

1  it it i ity xβ ν ε= + +  (1.5) 

In Equation (1.5) for FE estimation, ity is the predicted variable for entity, i, at time, t, 1β  is 

the common slope parameter, itx  is the covariate, iν is the subject specific error and itε is the 
idiosyncratic error. 
 
Similar to FE analysis the Least Squares Dummy Variable (LSDV) method includes dummy 
variables for every dwelling in the dataset. The LSDV method is generally not advised for 
long datasets when the number of cross-sectional variables in the data is close to the number 
of time-periods as this substantially reduces the degrees of freedom available to the model. 
This method was therefore also rejected on the basis that it would require 184 additional 
dummy variables representing each time period.  
 
For Random Effects (RE) models using standard OLS assumptions, it is possible to include 
time invariant covariates. In RE models a constant intercept is added to Equation (1.5). The 

                                                 
5 Time invariant effects are factors that do not change over time, such as how many occupants live in the 
household or whether there is temperature control inside the dwelling. 
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individual specific error, iν , is assumed IID and assumes any unobserved effects are 
uncorrelated with all explanatory variables [i.e. Cov(xitj,ai) = 0]. In addition, 

2 2~ (0, ),  ~ (0, )i itIID IIDµ µν σ ε σ  and iν  are independent of itε . The random effects model is 

an appropriate specification if the number of observations (dwellings), N , is large [52].  
Also, as the number of time periods, X →∞ , the differences between FE and RE disappear. 
Thus for a RE model Equation (1.5) becomes: 
 

 1  it it i ity xα β ν ε= + + +  (1.6) 

When data are longitudinal, positive serial correlation in the error term can be substantial, 
and as OLS standard errors ignore this correlation the estimators predicted by OLS will be 
incorrect [53]. Both RE and FE models that use OLS are best suited for short panels where 
N  is large and X  is small and errors are random. For a longer panel where N  is large and 
the number of time periods: X →∞ , much richer models can be specified using the more 
efficient General Least Squares (GLS) or Panel Corrected Standard Errors (PCSE). These 
estimators are also able to control for serial correlation [48]. 
 
After ruling out the OLS estimator, FE, LSDV and PR methods, the model was developed 
using RE and tested using a number of different estimators that allow for longitudinal serial 
correlation when errors are assumed not IID. The GLS estimator, PCSE estimator and 
XTSCC estimation methods allow the errors ( ),i itν ε  to be correlated over i, allow 

autoregressive correlation of itε over t, and allow itε  to be heteroskedastic [54,55]. The GLS 
estimator as originally proposed by Parks and Kmenta involves complex matrix algebra to be 
solved [54,55]. However, modern econometric software packages now allow this step to be 
completed automatically. For a discussion on the benefits and disadvantages of GLS over 
other procedures please refer to the following text books [51,56]  
 
The PCSE estimator uses OLS and by default assumes contemporaneous correlation between 
panels. Beck and Katz [57,58] show that the overconfidence in standard errors makes the 
Parks-Kmenta method unusable in situations when N X< and therefore they propose a new 
method. As already stated, if errors do not meet the standard OLS assumptions, the OLS 
estimates of parameter coefficients will be consistent but inefficient. Beck and Katz thus 
propose to retain the OLS parameter estimates but replace the OLS standard errors with 
Panel Corrected Standard Errors (PCSE) that take into account the heteroskedasticity and 
contemporaneous correlation between errors. As already noted the GLS and PCSE estimators 
offer some unique features, including flexibility to control for different assumptions 
concerning the distribution of standard errors [59]. However, if the model is correctly 
specified then the GLS estimator is generally more efficient than PCSE [48]. Thus, to 
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summarise, the error structure within panels for both GLS and PCSE estimators may be 
specified as having: 
 

i) no autocorrelation within panels; or 

ii) AR1 autocorrelation within panels where the coefficient of autocorrelation is 
constant across all panels, or, 

iii) AR1 autocorrelation within panels where the coefficient of autocorrelation is 
panel-specific.  ) 

 
The errors structure between panels is specified slightly differently for GLS and PCSE 
models. For GLS models the between panel correlation can be specified as:  
 

i) homoskedastic with no contemporaneous correlation, otherwise known as IID, 

ii) heteroskedastic with no contemporaneous correlation, or,  

iii) heteroskedastic with contemporaneous correlation when T N>   ) 

 
For PCSE estimation the structure of errors between panels is specified as being: 
 

i) heteroskesdatic with contemporaneous correlation between panels (default) 

ii) heteroskesdastic with no contemporaneous correlation between panels or, 

iii) independent errors between panels with a single disturbance variance common to 
all panels.  ) 

  
When the error, itε , between panels are assumed to be IID using the GLS estimator, the 

pooled OLS estimator is obtained. When panels are assumed heteroskesdastic, 2
itε , is 

specified as independent with variance 2 2( )it iE ε σ= and can be different for each dwelling. 

Because there are many measurements for each dwelling over time, 2
iσ can be consistently 

estimated [48]. When, X N> , correlation across panels can be allowed for.  
 
A third procedure developed by Driscoll and Kraay [60] generalises the PCSE method. This 
was implemented in STATA by Hoechle [61] to obtain Newey-West [62] standard errors. 
Correlation of errors between panels (spatial correlation) is assumed while auto-correlation 
within panels can be assumed to be of the general-form rather than AR1. The general 
procedure determines the most efficient number of lags, m, for the model being estimated.   
 
Several restrictions are placed on estimating these different models. If the GLS estimator is 
used with autocorrelation then time-series data must be equally spaced in time. If cross-
sectional correlation is also assumed then the panel must be balanced. A model that assumes 
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a common autocorrelation value across panels is only reasonable when the individual panel 
level correlations are almost equal and the time-series is short [59]. As the time series used in 
this analysis is represented by 184 unique days, the panel is considered too long to make this 
assumption and thus we assume that each panel has unique autoregressive properties.  

4.1 Description of dataset 
In Figure 2 the mean daily internal temperature distributions 6  for the living room and 
bedroom can be compared with the distribution for mean daily external temperature7 Figure 
3

. 
 represents a binned scatter plot of mean daily internal temperature vs. mean daily external 

temperature by dwelling and by day. The large hollow circles represent a concentration of 
observations. The plot shows large variation between dwelling internal and external 
temperatures. The scatter plot also shows bimodality in external temperatures as also shown 
in the histogram plot (Figure 2).    
 

 
Figure 2: Internal and external temperature distributions 

 
 

                                                 
6 Mean internal temperatures are calculated as the arithmetic mean of the bedroom and living room temperature 
for each dwelling over 24 hours. 
7 Mean external temperature is calculated for each government office region in England and is the arithmetic 
mean daily external temperature for all weather stations within each government office region.   



Thursday, 26 July 2012  Scott Kelly 
 

 17 

 
Figure 3: Internal temperature plotted against external temperature 

A binned scatter plot of mean internal daily temperature readings for each dwelling is given 
in Figure 4. Several observations can be made from this plot. First, as external temperatures 
drop, so do mean internal temperatures. Second, internal temperatures are widely dispersed 
around the mean with dispersal increasing in the heating season. Interestingly, it appears 
several households heat their homes to much higher temperatures in winter than in summer. 
At the colder end of the spectrum some homes do not even appear to be heated, with 
recorded temperatures well below 10°C. This possibly suggests these homes are either 
unheated or unoccupied. All observations were retained for subsequent analyses. 
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Figure 4: Temperature recordings 

 
Comparison of the CARB-HES dataset with the English House Condition Survey (EHCS 
2007) shows the CARB-HES dataset represents the English housing stock relatively well.  

Table 1: Comparing the CARB-HES dataset with national estimates 

Variable name CARB-HES Survey (%) EHCS 2007 (%)1 

Tenure type   

 Owner occupied 303 (71%) 7710 (71%) 

 Privately rented 46 (11%) 2,161 (12%) 

 Local Authority 39 (9%) 3,501 (9%) 

 Housing Association 38 (9%) 2,232 (8%) 

Dwelling type   

 Terraced 97 (23%) 4,775 (28%) 

 Semi-detached 125 (29%) 4,183 (28%) 

 Bungalow or detached 123 (29%) 3,661 (27%) 

 Flats 82 (19%) 3,598 (17%) 

Dwelling Age   

 Pre 1919 62 (15%) 3014 (21%) 

 1919 – 1944 79 (18%) 2,755 (17%) 

 1945 – 1964 98 (23%) 3,868 (20%) 

 1965 – 1980 96 (22%) 3,855 (22%) 

 Post 1980 90 (21%) 2,725 (20%) 

Total number of 
households in survey  427 15,604 

1. Weighted sample taken from the English House Condition Survey 2007-08 [63] 
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5 The model 
The aim of the model is two-fold. Firstly it can be used for the development of statistical 
inference and therefore is able to improve our understanding of the relative importance of 
different variables in explaining internal dwelling temperatures in England. Secondly, the 
model can be used to predict internal temperature at the dwelling level and is therefore 
implementable by any bottom-up engineering or statistical building stock model. Most 
building stock models would benefit from more robust estimates of internal dwelling 
temperature. Thus the model is able to provide, within known uncertainty bounds, an 
estimate of the internal temperature for any typical dwelling in England for any given day of 
the year based on the dataset described. The variables finally chosen for testing the model 
were selected for their known effect on mean internal temperatures. The variables used by 
the model are separated into three distinct groupings:  

i) Intransmutable variables (variables that cannot be influenced or changed to 
reduce energy consumption) such as external temperatures and geographic 
location; 

ii) Behavioural and socio-demographic variables such as occupancy rates, 
thermostat settings and heating duration hours; and, 

iii) Variables that represent the physical characteristics of the building.  ) 

 
The general form of the temperature model can therefore be given by Equation (1.7) … 
 

 ( )1 2 3 ;                1,....,
                                                                                  1,.....,

it it it it i itTin i N
t X

α ν ε= + + + + + =

=

Γ β Ψ β Θ β
 (1.7)   

In Equation (1.7) itTin  is the mean internal daily temperature associated with dwelling, i , at 

time period t  and is the mean of the main bedroom and living room temperature over 24 
hours; itΓ represents a matrix of intransmutable variables with a complementary array of 

parameter coefficients, 1β ; itΨ , represents a matrix of behavioural and socio-demographic 

variables and 2β is the corresponding array of parameter coefficients for each behavioural 

characteristic;  itΘ , is a matrix of physical building characteristics with a corresponding 

array, 3β , of coefficient estimates;α is a constant intercept term; iν , is the between entity 

error; itε , is the idiosyncratic error term that varies for each dwelling and each time period. 
Table 2 gives important descriptive statistics for the data.  
 

Although the model was generated using mean daily temperature data, there is no reason the 
model can not be used to predict average monthly or weekly internal temperatures if the 
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corresponding mean external temperatures over the month or season in question and other 
variables are known a priori. If mean monthly external temperatures are used instead of 
mean daily temperatures, then the model will predict the mean internal monthly temperature 
for the dwelling. 
  

6 Description of model 
This dataset is unbalanced and contains 42,723 data-points from 266 separate panels 
(dwellings) over 184 time periods (days). Relative to other panel models, the data used for 
this analysis is described as both long and wide as it has both large N  and large X . This is 
beneficial when conducting panel data analyses because the total number of data-points is 
very large and therefore the restrictions usually placed on models to maintain large degrees 
of freedom (dof) is not a limiting factor. Parsimony is however still highly valued. Parsimony 
simply requires that when two models have the same explanatory power or predictability, 
then the simpler version of the model is chosen in preference to the more complicated one.  

6.1 Description of model variables 
Dichotomous or dummy variables were created to represent nominal unordered categorical 
variables. Many of the response variables also contain multiple unordered categories. The 
dummy variable trap was avoided by creating dummy variables for each response category 
with the exception of the comparison category [64]. The comparison category is the category 
that all other dummy variables are compared against and occurs when all dummy variables 
from that category are equal to zero. Therefore, if a response variable has four categories 
then three dummy variables are chosen for three of the categories and the fourth category is 
assigned as the comparison category. In this model there are four response categories that 
represent Geographic Region, Age of Occupants, Ownership type and House typology.     
 
Average daily internal temperature, itT in , is the mean daily internal temperature and is 
calculated as the average of the bedroom and living room temperature over 24 hours. The 
mean daily temperature is calculated from 64 temperature readings taken at 45 minute 
intervals from each dwelling, i , for each day, t , from the 1st August 2007 to the 31st

itText
 January 

2008. Average daily external temperature, , is the regional external temperature on day, 

t , for the government office region where the dwelling is located. Regional dummies are 
included for each of the nine government office regions to control for any unobserved 
heterogeneity at the regional level that may affect internal temperatures. 

 

Table 2: Descriptive statistics used in the analysis 

Variable description 

1,2 

name type Mean (%) median 3 std.dev min max 

Mean internal daily temp Tint Scale it 19.61 19.64 2.47 7.05 29.92 
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Intransmutable Variables, itΓ         

Mean external daily temp Text Scale 9.71 9.43 4.59 -1.89 21.68 

Geographic location        

(A) London LON Dummy (8%) - - 0 1 

(A) North East NE Dummy (6%) - - 0 1 

(A) Yorkshire and Humberside YORK Dummy (9%) - - 0 1 

(A) North West NW Dummy (15%) - - 0 1 

(A) East Midlands EM Dummy (7%) - - 0 1 

(A) West Midlands WM Dummy (16%) - - 0 1 

(A) South West SW Dummy (15%) - - 0 1 

(A) East of England EE Dummy (13%) - - 0 1 

(A) South East SE Dummy (10%) - - 0 1 

Behavioural and socio-demographic variables, itΨ  

Room thermostat exists T_Stat Dummy (49%) - - 0 1 

Thermostat Setting T_Set Scale 19.19 19.4 3.40 0 32 

Thermostatic radiator valve only (TRV) TRV Dummy (22%) - - 0 1 

Central heating hours reported CH_Hours Scale 9.84 9 5.30 1 24 

Regular heating pattern Reg_Pat Dummy (88%) - - 0 1 

Automatic Timer Auto_Timer Dummy (60%) - - 0 1 

Household Size HH_Size Categorical 2.3 2 1.15 1 7 

Household  Income HH_Income Scale 31,570 23,833 24,191 1,940 137,500 

Age of occupants        

Child  aged < 5 Child<5 Dummy (8%) - - 0 1 

Number of children < 18 Children<18 Categorical 0.41 0 0.81 0 4 

(B) All occupants aged under 60 Age<60 Dummy (53%) - - 0 1 

(B) Oldest occupant aged 60-64 Age60-64 Dummy (14%) - - 0 1 

(B) Oldest occupant 65-74 Age64-74 Dummy (20%) - - 0 1 

(B) Oldest occupant > 74 Age>74 Dummy (13%) - - 0 1 

Tenure  type        

(C) Owner occupier Owner Dummy (82%) - - 0 1 

(C) Privately Rented Rented Dummy (5%) - - 0 1 

(C) Council tenant Council Dummy (8%) - - 0 1 

(C) Housing Association or RSL H_Assoc Dummy (5%) - - 0 1 

Weekend Properties        

Weekend heat same as weekday WE_Same Dummy (77%) - - 0 1 

Weekend temperature reading  WE_Temp Dummy (28%) - - 0 1 

Building efficiency and heating system variables, itΘ  

(D) Detached house Detached Dummy (34%) - - 0 1 

(D) Semi-detached house SemiDet Dummy (29%) - - 0 1 

(D) Terraced house Terraced Dummy (23%) - - 0 1 

(D) Not a house NotHouse Dummy (14%) - - 0 1 

Heating systems        

Gas central heating Gas_CH Dummy (84%) - - 0 1 

Non central heating is used Non_CH Dummy (64%) - - 0 1 

Electricity is main fuel Elec_Main Dummy (7%) - - 0 1 
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Gas additional heating in living area Gas_OH Dummy (33%) - - 0 1 

Electricity additional heat  in living area Elec_OH Dummy (13%) - - 0 1 

Other additional heating in living area Other_OH Dummy (13%0 - - 0 1 

Building efficiency        

Year of building construction Build_Age Categorical 5.45 5 2.18 1 10 

Roof insulation thickness Roof_Ins Categorical 3.0 4 2.1 0 7 

Extent of double glazing Dbl_Glz Categorical 4.32 5 1.32 1 3 

Wall U-Value Wall_U Scale 1.19 1.18 0.68 0 1 
1. Response categories that belonging to a group are given a letter so that is clear that these variables are part of the same group. 
2. Variables in bold represent the comparison category and are excluded from the panel model (i.e. all dummy variables in the category are calculated 
relative to this variable) 
3. For dummy variables the mean represents the proportion of the population (in percent) that are represented by that indicator. 

 
The following section describes each of the variables selected for the analysis. We start with 
a description of different heating control options.  

Room thermostat is a dichotomous variable that indicates if a room thermostat is present 
in the dwelling. 

Thermostat setting is the respondent’s declared thermostat setting for the dwelling in 
degrees Celsius and has been grouped into four categories (Table 3). 

Thermostatic Radiator Valve (TRV) is a dichotomous variable indicating if the only type 
of temperature control is with thermostatic radiator valves. 

Central heating hours reported is a continuous scale variable indicating the average 
number of central heating hours reported per day over the week including weekends. 

Regular heating pattern is a dichotomous variable indicating if the home is heated to 
regular heating patterns during the winter. 

Automatic timer is a dichotomous variable indicating that the home uses an automatic 
timer to control heating.  

There are many socio-demographic factors that contribute to internal temperature. Here we 
capture household size, household income and occupant age. Several categories are used to 
describe the Age of occupants. A response category of dichotomous variables is used to 
describe differences amongst the older population (Age64 – Age74).  

Household size is the number of occupants living in the dwelling at the time of the 
survey; 

Household income is the gross take-home income for the whole household and has been 
categorised into seven income bands; 

Child<5 is a dichotomous variable indicating if any infants under the age of five are 
present in the dwelling; 

Children<18 is a discrete scale variable indicating the number of children under the age 
of 18 living in the dwelling; 

 

Table 3: Ordered categorical variables for socio-demographic and behavioural properties 

Response 
category Thermostat setting Household size Income groups 
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Response 
category Thermostat setting Household size Income groups 

 T_Set HH_Size HH_Income 

 °C Freq (%) Occupants Freq (%) Income Freq (%) 
0 <18 12.77 - - <£5,199 2.58 
1 18-20 64.85 1 25.72 £5,200 - £10,399 13.65 
2 20-22 13.34 2 41.70 £10,400 - £20,799 26.62 
3 >22 9.04 3 15.39 £20,800 - £36,399 26.99 
4   4 12.88 £36,400 - £51,999 16.78 
5   5 3.45 £52,000 - £94,999 12.49 
6   6 0.43 > £95,000 3.88 
7   7 0.43   

 

(A) Age<64 is a dichotomous variable indicating if the oldest person living in the 
dwelling is under 64 years of age. For this analysis, this will also be the comparison 
category that other ages are compared against; 

(A) Age59-64 is a dichotomous variable that represents if the oldest person living in the 
dwelling is aged between 59 and 64; 

(A) Age64-74 is a dichotomous variable that represents if the oldest person living in the 
dwelling is aged between 64 and 74; 

(A) Age>74 is a dichotomous variable that represents if the oldest person in the dwelling 
is over 74; 

The second response category captures the tenure of the property. Tenure type is represented 
by an exhaustive list of dichotomous variables with owner-occupiers selected as the 
comparison category. 

(B) Owner occupier is a dichotomous variable and indicates the dwelling is owned by 
the occupants; 

(B) Privately Rented is a dichotomous variable and indicates the dwelling is privately 
rented by the occupants; 

(B) Council tenant is a dichotomous variable and indicates if the dwelling is leased from 
the council; 

(B)  Housing Association is a dichotomous variable and indicates if the occupants rent 
the property from a housing association or registered social landlord (RSL); 

The effect of changes to internal temperatures due to weekends was also controlled. 

Weekend heat same as weekday is a dichotomous variable and indicates a positive 
response to the question: “Do you heat your home the same on the weekend as during 
the week?”; 

Weekend temperature reading is a dichotomous variable indicating if the temperature 
reading was recorded during the weekend; 

Although we are primarily interested in drawing inferences from the behavioural variables in 
regression, it is necessary to include all factors that are known to influence the dependent 
variable (internal temperature). Therefore several building physics and energy efficiency 
variables unique to each dwelling were included in this analysis. House typology is the 
fourth and final exhaustive comparison category of dichotomous variables. A detached house 
was used as the comparison category.  
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(C) Detached House is a dichotomous variable and indicates the dwelling is detached;  
(C) Semi-Detached is a dichotomous variable indicating a semi-detached dwelling; 

(C) Terraced house is a dichotomous variable indicating a terraced house; 
(C) Not a house is a dichotomous variable used to represent flats and apartments or any 

other building not considered as a stand-alone house. 
Several variables were included to represent the type of heating system present in the 
dwelling, as these may also affect the internal temperature.  

Gas Central heating is a dichotomous variable used to represent if the dwelling has gas 
central heating; 

Non central heating is a dichotomous variable used to represent dwellings with non-
central heating systems (i.e. wood stove, electric fan heaters etc); 

Electricity is main fuel is a dichotomous variable that represents if electricity is the main 
type of heating fuel; 

Additional gas heating in living room is a dichotomous variable used to represent the 
presence of gas heating in the living room in addition to central heating. 

Additional electricity heating in living room is a dichotomous variable used to represent 
the presence of electric heating in the living room in addition to central heating. 

Additional other heating in living room is a dichotomous variable used to represent if the 
presence of additional other forms of heating in the living room. 

Several variables were chosen to represent the overall efficiency of the building fabric. These 
variables were transformed into ordered categorical variables to capture the large variety of 
different efficiency levels within the building stock. The different categories chosen for these 
variables are included in Table 4. Categories were chosen to achieve a good spread of the 
distribution in different categories. 

Year of construction is an ordered categorical variable specifying the year the building 
was constructed.  

Roof insulation thickness is an ordered categorical variable representing the thickness of 
the roof insulation.  

Extent of double glazing is an ordered categorical variable indicating the proportion of 
double glazing in the dwelling.  

Wall U-Value is an ordered categorical variable and represents the average U-Value of 
external walls.  

Table 4: Ordered categorical variables used in model to describe building fabric 

Response 
categories Year of Construction Roof insulation 

thickness 
Extent of Double 

Glazing Wall U-Value 

 Build_Age Roof_Ins Dbl_Glz Wall_U 

 Age band Freq (%) (mm) Freq (%) Fraction Freq (%) W/m2 Freq (%) .K 
0 pre 1850 5.6 None 24.46 None 9.76 ≤0.4 7.32 
1 1850-1899 4.73 0-25 2.58 less than half 5.17% 0.4-0.6 32.74 
2 1900-1918 4.31 25-50 8.15 about half 2.56% 0.6-1.6 28.66 
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Response 
categories Year of Construction Roof insulation 

thickness 
Extent of Double 

Glazing Wall U-Value 

3 1919-1944 16.73 50-75 14.57 more than 
half 7.72% >1.6 31.28 

4 1945-1964 23.65 75-100 27.42 all windows 74.79   
5 1965-1974 15.83 100-150 13.78     
6 1975-1980 9.37 150-200 3.44     
7 1981-1990 10.73 >200 5.59     
8 1991-2001 4.74       
9 2002-2006 4.31       

6.2 Missing values, nonlinearities and variable transformations  
Missing values can be problematic if not dealt with correctly. Although it is relatively 
straightforward to use panel methods when datasets are unbalanced (i.e. some values over 
time are missing) the problem becomes more serious when cross-sectional, time-invariant 
variables are missing for some of the panels (dwellings). One standard approach in 
econometrics is to use listwise deletion of the observation containing the missing variable. 
This has the negative side-effect of throwing away valuable information and reducing the 
size of the dataset, leading to less precise estimation and inference. Importantly, it may even 
lead to sample selection bias for the values that are retained. This was resolved for dummy 
variables in this analysis by giving a value of one to positive responses and giving a value of 
zero to negative responses and missing values, and therefore retaining the observation. The 
widely recognised mean substitution method was applied to scale variables [65]. When mean 
substitution is used to replace values that are missing completely at random (MCAR) the 
resulting parameter estimates are unbiased [66]. In a comparative analysis, Donner [67] 
showed that mean substitution is relatively effective when correlations between variables are 
low and the proportion of missing cases is fairly high. The main criticism of mean 
substitution is that it gives no leverage to the replaced values; and when there are substantial 
missing values it reduces the Pearson correlation coefficient (R2

 

). The approach therefore 
implies that the mean substitution does not influence the predicted response [65]. Given the 
aforementioned problems of missingness as well as the extent and randomness of 
missingness within the original dataset, mean substitution was employed to replace the 
missing scale variables before they were categorised. 

When using least squares estimates, the Gauss-Markov theorem does not require variables to 
exhibit univariate normality for the parameter coefficients to be meaningful. However, 
confidence levels and hypothesis tests will have better statistical properties if the variables 
do exhibit multivariate normality. It is typical for some distributions, such as Household 
Income, to have non-normal properties. This is shown in Table 2, where it is clear that the 
median of HH_Income is very different to the mean suggesting deviation from the normal. 
Thus to counteract this effect, HH_Income was categorised into a discrete number of bins 
(see Table 3). This has the effect of grouping extreme values situated in the tail ends of the 
distribution into discrete bins and therefore meeting standard assumptions about the 
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distribution of values. The benefit of using this method over log-transformations is that the 
final output is directly interpretable and requires no post-transformation of model variables.  
 
A further assumption of regression based estimates is that there is a linear relationship 
between dependent and independent variables. It is incorrect to assume a direct linear 
relationship between external and internal temperature. The relationship is nonlinear in this 
instance because as external temperatures increase, the power of external temperature to 
explain internal temperature increasingly dominates the equation. Said differently, as 
external temperatures rise, the need for central heating decreases nonlinearly, until internal 
temperature at least8

6.3 Testing procedures 

 reaches equilibrium with external temperature and there is no need for 
central heating at all.  This non-linear relationship was allowed for by the inclusion of the 
square of external temperature within the regression equation.  

The temperature model described above was estimated using STATA11. STATA11 
implements a library of functions for manipulating and estimating panel data using the xt 
family of commands [59]. Several statistical tests were conducted on the panel data before 
any substantive statistical modelling was undertaken. First the Breusch-Pagan Lagrange 
Multiplier (LM) test was used to decide if random effects regression was more appropriate 
than ordinary least squares (OLS) linear regression. The null hypothesis for the LM test is 
that the variance across dwellings is zero (i.e. no panel effect). This was implemented in 
STATA by first running the model using the xtreg with random effects and then running 
xttest0 [68]; 2χ  is then used to compare the two models. The test rejected the null 
hypothesis that a random effects model was not appropriate. We therefore have evidence that 
a RE panel model will produce more efficient results than standard regression using OLS.      
 
Panel level auto-correlation was tested using Druckers [69] test procedure within STATA11. 
The theory behind this test is explained by Wooldridge [56] and is able to identify serial 
correlation in panel data of the idiosyncratic error term. The only two variables in the model 
that are not time-invariant (Text and WE_Temp) were tested for serial correlation. The null 
for this test procedure was rejected (p<0.001), suggesting that the panel data structure may 
contain serial correlation. This result was expected as external temperatures are of course 
correlated over short periods of time (i.e. 1( , ) 0n ncorr Text Text − ≠ ). Serial correlation in 
longitudinal panels is not uncommon and can be correctly handled using appropriate 
statistical techniques as discussed shortly. 
 

                                                 
8 Internal temperatures may exceed external temperatures due to internal heat gains (i.e. solar gains) even after 
heating systems have been switched off. 
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A Fisher-type test and Levin-Lin-Chu test were completed to test for stationarity within the 
panels. The Fisher-type test allows hypothesis testing in unbalanced panels while the Levin-
Lin-Chu test requires strongly balanced panels [52]. Both tests rejected the null hypothesis 
that at least one of the panels had a unit root and thus it was concluded that the panels satisfy 
the condition of non-stationarity implying we may proceed with the panel analysis.  
 
Two further tests were completed to check for heteroskedasticity amongst residuals. The 
assumption of homoskedasticity across residuals when heteroskedasticity is present results in 
consistent but inefficient parameter estimates [52]. Also, the standard errors of the estimates 
may be biased. A modified Wald statistic was used to test groupwise heteroskedasticity in 
the residuals using xttest3 after running xtgls using the default panels option. The null 
hypothesis ( 2 2

0 i
H :σ σ= ) was rejected, suggesting deviation of the residuals from 

homoskedasticity. A likelihood ratio test also confirmed this conclusion. The likelihood ratio 
test requires the model to be tested while assuming homoskedastic residuals. Results are then 
compared to a second model that assumes heteroskedastic residuals. The test rejected the null 
hypothesis that there was no heteroskedasticity in the residuals ( )2 0P χ> = . For more 

details on this test, view the STATA documentation [70]. When studying the change in scale 
variance across many cross-sectional datasets it is not uncommon to find heteroskedasticity 
[71]. This is not surprising considering the increasing variance of internal temperature as 
shown in Figure 4. As with serial correlation, once heteroskedasticity is shown to be present, 
it is relatively straightforward to implement appropriate statistical techniques capable of 
overcoming these issues.  

6.4 Choice of estimators 
The tests narrow the scope of possible statistical analyses that are now possible. 
Heteroskedasticity, intragroup correlations and serial correlations all adversely affect 
parameter estimates and standard errors. Given the variables in the dataset have both 
heteroskedasticity and serial correlation it is important to use the correct estimators with 
correct assumptions. We will therefore estimate the model using several estimation 
techniques and compare the performance of these estimators. The three estimators chosen for 
this analysis were GLS, PCSE and XTSCC. All estimators are invoked using STATA11.  
 

7 Results 
Results were compared using five different models. The five different models are (1) GLS 
with heteroskedastic errors only; (2) GLS with heteroskedastic errors and serial correlation; 
(3) XTPCSE with default assumptions; (4) XTPCSE with default assumptions absent of 
panel serial correlation; (5) XTSCC with the assumption that the error structure is 
heteroskedastic and auto correlated up to some lag as well as being correlated between 
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panels.  The results of these estimations are presented in Table 5. Further details on each of 
these estimation techniques can be found in STATA11 documentation [68].  
 

Table 5: Comparison of different estimation methods 

Number Obs: 42,723 
Groups: 233 
Time periods: 184 
 

Models 

1 2 3 4 5 

Model Assumptions           
Type of estimator GLS GLS PCSE/OLS PCSE/OLS XTSCC 
Heteroskedastic errors yes yes yes yes yes 
Contemporaneous correlation no no yes no yes 
Serial correlation no yes yes no yes 
Model Variables           
Text 0.034 (5.41)*** 0.09 (21.52)*** 0.052 (2.26)* 0.107 (6.34)*** 0.052 (2.23)*   
Text 0.013 2 (40.51)*** 0.005 (23.64)*** 0.012 (10.75)*** 0.005 (5.67)*** 0.012 (7.97)*** 
(A) London - - - - - - - - - - 
(A) North East -1.303 (-30.20)*** -1.525 (-11.18)*** -1.392 (-25.06)*** -1.43 (-8.48)*** -1.392 (-11.34)*** 
(A) Yorkshire -0.637 (-15.31)*** -0.989 (-7.53)*** -0.629 (-9.38)*** -0.966 (-6.09)*** -0.629 (-4.50)*** 
(A) North West -0.916 (-24.38)*** -1.072 (-9.12)*** -1.031 (-20.57)*** -0.945 (-5.88)*** -1.031 (-11.98)*** 
(A) East Midlands -0.501 (-11.62)*** -0.847 (-6.37)*** -0.458 (-10.53)*** -0.779 (-4.93)*** -0.458 (-6.09)*** 
(A) West Midlands -0.597 (-15.76)*** -0.927 (-7.74)*** -0.828 (-13.17)*** -0.926 (-6.05)*** -0.828 (-6.69)*** 
(A) South West -0.569 (-15.99)*** -0.757 (-6.68)*** -0.765 (-16.40)*** -0.729 (-5.35)*** -0.765 (-8.74)*** 
(A) East of England -0.730 (-19.09)*** -0.852 (-6.92)*** -0.667 (-18.52)*** -0.681 (-4.50)*** -0.667 (-10.70)*** 
(A) South East -1.332 (-34.18)*** -1.352 (-10.47)*** -1.464 (-35.00)*** -1.361 (-9.82)*** -1.464 (-18.44)*** 
T_Stat -0.277 (-12.83)*** -0.338 (-5.20)*** -0.236 (-15.05)*** -0.319 (-4.42)*** -0.236 (-8.73)*** 
T_SettingResp -0.078 (-7.38)*** -0.095 (-2.81)** 0.035 (4.18)*** -0.077 (-2.33)* 0.035 (2.02)*   
TRV -0.091 (-3.62)*** -0.077 (-0.96) -0.169 (-7.76)*** -0.225 (-2.39)* -0.169 (-4.40)*** 
CH_Hours 0.055 (34.70)*** 0.055 (10.87)*** 0.069 (25.96)*** 0.055 (9.38)*** 0.069 (11.79)*** 
Reg_Pat 0.882 (19.90)*** 0.602 (3.76)*** 1.189 (23.72)*** 0.683 (4.19)*** 1.189 (11.14)*** 
Auto_Timer -0.079 (-4.53)*** -0.097 (-1.76) -0.031 (-2.53)* -0.069 (-1.34) -0.031 (-1.27)    
HH_Size 0.200 (16.72)*** 0.213 (5.21)*** 0.25 (20.07)*** 0.217 (5.65)*** 0.25 (9.19)*** 
HH_Income 0.125 (18.44)*** 0.126 (5.58)*** 0.084 (8.73)*** 0.118 (5.06)*** 0.084 (4.05)*** 
Child<5 0.752 (23.17)*** 0.829 (8.84)*** 0.495 (19.67)*** 0.765 (7.76)*** 0.495 (10.32)*** 
Children<18 0.157 (9.55)*** 0.051 (-0.95) 0.219 (26.48)*** 0.029 (-0.59) 0.219 (9.12)*** 
(B) Age<60 - - - - - - - - - - 
(B) Age60-64 0.148 (6.47)*** 0.066 (-0.85) 0.051 (2.19)* -0.033 (-0.45) 0.051 (-1.04) 
(B) Age64-74 0.486 (20.49)*** 0.406 (5.31)*** 0.37 (14.65)*** 0.409 (4.49)*** 0.37 (7.45)*** 
(B) Age>74 0.660 (23.18)*** 0.775 (7.62)*** 0.585 (22.03)*** 0.829 (7.27)*** 0.585 (11.12)*** 
(C) Owner - - - - - - - - - - 
(C) Renter 0.757 (21.16)*** 0.811 (7.09)*** 0.94 (32.59)*** 0.895 (7.73)*** 0.94 (14.75)*** 
(C) Council 1.263 (41.03)*** 1.288 (13.40)*** 1.374 (35.27)*** 1.303 (14.18)*** 1.374 (17.90)*** 
(C) H_Assoc 0.667 (15.87)*** 0.873 (6.09)*** 0.448 (15.10)*** 0.867 (6.90)*** 0.448 (8.27)*** 
WE_Same -0.572 (-22.78)*** -0.515 (-6.24)*** -0.438 (-26.95)*** -0.56 (-6.79)*** -0.438 (-12.85)*** 
WE_Temp 0.049 (3.20)** 0.083 (13.64)*** -0.038 (-0.59) 0.088 (2.82)** 0.038 (-0.68) 
(D) Detached - - - - - - - - - - 
(D) SemiDet 0.740 (34.13)*** 0.623 (8.93)*** 0.694 (29.90)*** 0.683 (8.98)*** 0.694 (13.38)*** 
(D) Terraced 0.664 (27.67)*** 0.671 (8.54)*** 0.607 (33.31)*** 0.69 (9.61)*** 0.607 (17.36)*** 
(D) NotHouse 0.621 (18.44)*** 0.428 (4.07)*** 0.541 (21.42)*** 0.327 (3.28)** 0.541 (11.93)*** 
Gas_CH -0.691 (-19.57)*** -0.566 (-5.03)*** -0.564 (-24.93)*** -0.57 (-4.71)*** -0.564 (-11.88)*** 
Non_CH 0.179 (6.58)*** 0.071 (-0.78) 0.058 (4.60)*** -0.054 (-0.63) 0.058 (2.33)*   
Elec_Main 0.140 -1.95 -0.103 (-0.42) 1.008 (13.20)*** -0.07 (-0.29) 1.008 (6.46)*** 
Gas_OH -0.094 (-3.45)*** 0.007 (-0.07) -0.071 (-4.77)*** -0.007 (-0.08) -0.071 (-2.17)*   
Elec_OH 0.081 (2.60)** 0.245 (2.51)* -0.195 (-8.14)*** 0.285 (3.09)** -0.195 (-4.32)*** 
Other_OH -1.091 (-32.00)*** -0.951 (-8.36)*** -1.016 (-32.29)*** -0.88 (-7.55)*** -1.016 (-17.69)*** 
Build_Age 0.054 (12.59)*** 0.058 (4.16)*** 0.042 (8.07)*** 0.039 (2.59)** 0.042 (4.12)*** 
Roof_Ins 0.081 (18.85)*** 0.07 (5.10)*** 0.125 (32.72)*** 0.07 (4.88)*** 0.125 (15.06)*** 
Dbl_Glz 0.190 (27.31)*** 0.206 (9.17)*** 0.188 (25.44)*** 0.225 (10.39)*** 0.188 (12.44)*** 
Wall_U 0.072 (8.48)*** 0.067 (2.88)** 0.076 (9.18)*** 0.086 (3.69)*** 0.076 (4.54)*** 
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Alpha (constant) 15.080 (170.88)*** 15.819 (58.35)*** 14.224 (79.91)*** 15.599 (44.58)*** 14.224 (46.27)*** 

Summary Statistics           
2χ  51,201*** 14,292*** 50,398*** 3,250*** - 

Log Likelihood -77,840 - - - - 
RMSE 1.87 1.95 1.84 1.93 1.84 
R - 2 - 0.45 0.88 0.45 

* p<0.05, ** p<0.01, *** p<0.001, t-statistics are in parenthesis 
 
 
It is worth noting that several other estimation techniques were also tested but not included 
in the table above. The PCSE estimator was tested with and without the assumption of 
heteroskedastic errors and within panel serial correlation. These produced very similar 
estimates as shown in Model (4), with differences in standard errors. The GLS estimator was 
also tested with the assumption that standard errors were IID and had no within panel serial 
correlation. These parameter estimates were the same as in Model (1), with differences in 
standard errors. The robust estimator was tested and provides estimates that are robust to 
autocorrelation and heteroskedasticity. It calculates the parameter estimates and standard 
errors using a linearised variance estimator instead of finding the minimum sum of squared 
errors. Results from robust regression produced the same parameter estimates as both PCSE 
and XTSCC with differences in the structure of standard errors.  
 
Due to the way these different estimation methods work they do not all report similar 
summary statistics. This makes it difficult to compare these models against each other. For 
example, when estimating a model using generalised least squares (GLS) estimation it is not 
possible to calculate an R2

y

 statistic. Similarly, it is not straightforward to calculate the log-
likelihood when OLS estimation is used. One summary statistic that is calculable by all 
estimation techniques is the root mean square error (RMSE). The root mean square error can 
be calculated using Equation (1.8). It represents the squared sum of differences between 
actual measurements, , and predicted measurements, ŷ . The sum of squared differences is 
then divided by the number of degrees of freedom in the model, where N  is the total number 
of observations and k  is the number of covariates used to estimate the model – thus it 
rewards parsimony. The smaller the RMSE value the better the model is able to predict the 
actual values.   

 
( )

( )

2ˆ
1

y y
RMSE

N k
−

=
− −

∑  (1.8)  

When reviewing Table 5 it becomes immediately clear that almost all parameters are 
statistically significant in at least one of the five models tested. This highlights the 
importance of using the correct estimation technique with good understanding of the 
assumptions that are being used for the distribution of standard errors. Given the difficulty in 
assessing the different models, Figure 5 was produced to compare how different estimation 
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methods are able to predict mean internal temperatures. The graph on the top of Figure 5 
contains a scatter plot of all mean daily internal temperatures and the line graphs represents 
the recorded mean internal daily temperature alongside the five different models used to 
predict mean internal temperature. Due to the long time scale used for this model, it is 
difficult to differentiate the predictability of the different models on a single line plot. 
Therefore three additional line plots that use shorter time periods (as indicated by the shaded 
areas) are shown below this line graph.      
 

 
Figure 5: Comparison of different estimation techniques 

 
Reviewing the three lower graphs of Figure 5 it is clear that the accuracy of model 
predictions vary over time. Studying the graph on the lower left, Model (1), Model (4) and 
Model (5) give the closest predictions for mean internal temperature and essentially overlay 
each other on the same path. For the winter period, represented by the line graph on the 
lower right of Figure 5, Model (1) appears to have broken away from the original set leaving 
Model(4) and Model(5) to be the best estimators of mean internal temperature.  
 
Another way to check how well the model is predicting actual measurements is to compare 
the distributions of the predicted values with the distributions of the recorded values. Table 6 
gives these statistics for each of the different models. The distributions of all predictive 
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models match fairly closely to the distribution of actual values. However, all modelled 
distributions predict under dispersion and have difficulty in matching minimum and 
maximum temperatures. This is not considered to be a significant problem as temperatures in 
the tail-ends of distributions happen rarely, with very low temperatures most likely due to 
dwelling vacancy.  

Table 6: Comparison of the distributions of predicted with actual temperature readings 
Model Variable x  Median σ  Min Max 
Actual readings Tiny  19.46 19.64 2.47 7.05 29.92 
Model (1) 1ŷ  19.60 19.46 1.64 14.74 26.44 
Model (2) 2ŷ  19.62 19.58 1.32 15.17 24.57 
Model (3) 3ŷ  19.51 19.36 1.72 14.39 27.06 
Model (4) 4ŷ  19.61 19.57 1.37 14.81 24.80 
Model (5) 5ŷ  19.51 19.37 1.72 14.40 27.04 

 
Given the evidence presented above, Model (5) (XTSCC) was chosen as the best model for 
predicting internal temperatures. Key statistics for this model are given in Table 7. 

Table 7: Key statistics for final panel Model (5) 

Number Obs: 38,501 
Groups: 210 
Time periods: 183 
Method: Pooled OLS 
Maximum Lag: 4 
 

β  Β  
Driscoll Kraay 

Std. Errors t-stats 95% confidence 
intervals 

Text 0.052 0.096 0.023 (2.23)* 0.006 0.098 
Text 0.012 2 0.455 0.002 (7.97)*** 0.009 0.016 
(A) London  -     
(A) North East -1.392 -0.135 0.123 (-11.34)*** -1.634 -1.150 
(A) Yorkshire -0.629 -0.07 0.140 (-4.50)*** -0.904 -0.353 
(A) North West -1.031 -0.153 0.086 (-11.98)*** -1.201 -0.862 
(A) East Midlands -0.458 -0.049 0.075 (-6.09)*** -0.606 -0.309 
(A) West Midlands -0.828 -0.123 0.124 (-6.69)*** -1.072 -0.584 
(A) South West -0.765 -0.112 0.088 (-8.74)*** -0.938 -0.593 
(A) East of England -0.667 -0.089 0.062 (-10.70)*** -0.790 -0.544 
(A) South East -1.464 -0.172 0.079 (-18.44)*** -1.620 -1.307 
T_Stat -0.236 -0.047 0.027 (-8.73)*** -0.289 -0.183 
T_SettingResp 0.035 0.011 0.017 (2.02)* 0.001 0.069 
TRV -0.169 -0.028 0.038 (-4.40)*** -0.244 -0.093 
CH_Hours 0.069 0.143 0.006 (11.79)*** 0.058 0.081 
Reg_Pat 1.189 0.158 0.107 (11.14)*** 0.978 1.399 
Auto_Timer -0.031 -0.006 0.025 (-1.27) -0.080 0.018 
HH_Size 0.250 0.114 0.027 (9.19)*** 0.196 0.304 
HH_Income 0.084 0.049 0.021 (4.05)*** 0.043 0.124 
Child<5 0.495 0.053 0.048 (10.32)*** 0.401 0.590 
Children<18 0.219 0.068 0.024 (9.12)*** 0.171 0.266 
(B) Age<60  -     
(B) Age60-64 0.051 0.007 0.049 (-1.04) -0.046 0.148 
(B) Age64-74 0.370 0.058 0.050 (7.45)*** 0.272 0.468 
(B) Age>74 0.585 0.083 0.053 (11.12)*** 0.481 0.688 
(C) Owner  -     
(C) Renter 0.940 0.088 0.064 (14.75)*** 0.814 1.066 
(C) Council 1.374 0.151 0.077 (17.90)*** 1.222 1.525 
(C) H_Assoc 0.448 0.038 0.054 (8.27)*** 0.341 0.555 
WE_Same -0.438 -0.074 0.034 (-12.85)*** -0.505 -0.370 
WE_Temp 0.038 0.007 0.056 (-0.68) -0.072 0.149 
(D) Detached  -     
(D) SemiDet 0.694 0.125 0.052 (13.38)*** 0.591 0.796 
(D) Terraced 0.607 0.103 0.035 (17.36)*** 0.538 0.676 
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(D) NotHouse 0.541 0.075 0.045 (11.93)*** 0.452 0.630 
Gas_CH -0.564 -0.083 0.047 (-11.88)*** -0.657 -0.470 
Non_CH 0.058 0.011 0.025 (2.33)* 0.009 0.108 
Elec_Main 1.008 0.108 0.156 (6.46)*** 0.700 1.315 
Gas_OH -0.071 -0.014 0.033 (-2.17)* -0.135 -0.006 
Elec_OH -0.195 -0.027 0.045 (-4.32)*** -0.284 -0.106 
Other_OH -1.016 -0.134 0.057 (-17.69)*** -1.129 -0.902 
Build_Age 0.042 0.036 0.010 (4.12)*** 0.022 0.062 
Roof_Ins 0.125 0.106 0.008 (15.06)*** 0.109 0.142 
Dbl_Glz 0.188 0.102 0.015 (12.44)*** 0.158 0.217 
Wall_U 0.076 0.029 0.017 (4.54)*** 0.043 0.108 
Alpha (constant) 14.224 - 0.307 (48.53)*** 13.618 14.830 

R 0.45 2 RMSE 1.84 Prob > F 0 

 * p<0.05, ** p<0.01, *** p<0.001, t-statistics are in parenthesis 
 
 
Each of the parameter coefficients, β , are subject to the same units as the underlying 
covariate. For example the β  value for Text is measured in °C, implying that a 1°C change 
in external temperature will result in a change of ~0.064°C to the internal temperature 
(0.052°C+0.012°C). As different covariates are measured by different units, the magnitude 
of different coefficients cannot be used to compare the overall importance of different factors 
as they relate to internal temperature. In Table 7, we therefore also include a standardised 
parameter coefficient, Β , making it possible to compare the importance of all the covariates 
in the model. The higher the Β value, the more influence or effect that variable has on 
internal temperature. After standardisation, all covariates are comparable against the 
response variable. The Β -value therefore simply represents the number of standard 
deviations change from the mean that will occur in the response variable from one standard 
deviation change (positive or negative) in the predictor variable. In sum, the standardised 
coefficients can thus be used to compare the relative importance of different variables as they 
influence internal temperature.  
 
Benefiting this study is that many of the variables used in the analysis are dummy variables. 
Because all dummy variables have the same upper and lower bounds (and unit of measure), 
it is possible to compare parameter estimates from the coefficients of the dummy variables. 
Moreover, because dummy variables are a unit response they directly indicate the predicted 
change in degrees Celsius on the response variable. Any dummy variable that does not 
belong to a multicategory group represents the direct change this variable will have on 
internal temperature. For example if a child under five is present in the dwelling then the 
mean internal daily temperature is expected be ~0.5°C warmer when compared to a home 
without a child, ceteris paribus.  
 
For dummy variables belonging to a multi-category group, the parameter coefficients 
represent the change to internal temperature with respect to that comparison category. For 
example, the regional β  coefficients are all negative indicating that the mean internal 
temperature for London dwellings is higher than all other regions. This is due to a 
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combination of factors, but most likely caused by high density housing and smaller living 
spaces making homes in London easier to heat and thus leading to higher internal 
temperatures. The result may also suggest the presence of a heat island effect. Due to the 
complexity of this phenomenon more conclusive analysis is needed, and certainly beyond the 
scope of this study.  

7.1 Model Diagnostics 
Post panel regression diagnostics were completed on all models. Residual plots remain the 
best check against violation of standard regression assumptions. The creation of several 
different residual plots confirmed that key model assumptions were upheld. Multicollinearity 
between model variables was tested post estimation using Variance Inflation Factors (VIFs). 
VIF is a measure of how much the variance of an estimated coefficient increases if the 
explanatory variables are correlated. The higher the VIF, the greater the degree of 
collinearity. Values greater than 10 suggest substantial collinearity amongst predictors and 
may lead to inflated parameter coefficients [72]. The explanatory variables used in this 
model had a combined VIF of 2.71 suggesting there is no problem with multicollinearity. 
Residual plots and histograms showed that errors were centred about the mean with 
properties closely matching a normal distribution. 

7.2 Robustness and validation checks 
The benefit of using a large random sample is that it allows a sub-sample to be withheld 
prior to estimation for use in post estimation and cross-validation. Before any model 
estimation was completed, a random sample consisting of 10% of the original sample was 
withheld (27 observations). If, on the other hand, the complete dataset was used to estimate 
the model, self-influence from data remaining in the model would distort the accuracy of 
post validation tests. Said differently, all data-points included in the estimation of the model 
pull the estimation parameters closer to these values. Therefore removing a subsample prior 
to estimation and using this for validation purposes offers a robust check of model accuracy. 
Figure 6 shows the predicted versus actual temperature readings for dwellings that were 
withheld from the estimation procedure. As shown, the predictability of the model remains 
strong and follows the peaks and troughs of the recorded internal temperature readings 
relatively well. Given the volatility of recordings, the model is particularly effective at 
predicting mean internal temperature.  
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Figure 6: Validation sample compared with actual mean internal temperature  

   
Figure 7 shows a plot of predicted versus actual temperature readings for one of the 
dwellings belonging to the subsample withheld from the original estimation. Once again, the 
close prediction between predicted and actual internal temperatures remains strong. The 
temperature profile of this particular dwelling was chosen because it shows two distinct 
periods where temperatures have dropped markedly due to insufficient heating. The cause of 
this is most likely due to the building being unoccupied over a weekend. The graph shows 
two periods of inactive heating that were not predicted by the model.     
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Figure 7: Predicted and actual internal daily temperature measurements for one dwelling 

The model diagnostics presented thus far show the model performs well and is thus relatively 
accurate at making predictions. An important next step is to show the width of precision of 
model estimates (i.e. the width of the 95% confidence intervals). There are two choices for 
forming confidence intervals around ŷ :  

i) predict a single observation that is yet to be observed and the range of values that 
this will most likely fall between (prediction interval); 

ii) predict the average value for the entire building stock and predict the range of 
values this will most likely fall between (confidence interval).  ) 

 
The bands around the prediction interval are generally much wider than the bands around the 
confidence interval. This is because confidence intervals average out extreme values, and 
therefore only requires that the average value is within the specified confidence interval. It is 
possible to calculate the standard error of the prediction interval (in percent) using Equation 
(1.9) [73].  

 

2ˆ

. 100
2

y y
y

S E
N

 −
 
 =

−

∑
 (1.9) 

Using this formula we can conclude that a future prediction for a single dwelling will deviate 
from the actual value by an average of 11.14%. Alternatively, standard errors can be 
calculated and used to represent prediction intervals. Using a 95% confidence prediction 
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interval, the predicted value for a random dwelling will be within ±3.66°C of the recorded 
temperature for that day. Alternatively, we can show the confidence interval for the mean of 
internal temperature across all dwellings deviates by an average of 1.74%. Thus we can be 
95% confident that the predicted mean internal temperature across all dwellings is within 
±0.71°C of the actual mean internal temperature for the entire building stock. 
 

8 Discussion 
The model developed and described above is the first time internal temperature has been 
predicted for a national building stock using panel-methods. The benefit of this statistical 
method is that it allows us to retain valuable information about temperature as it varies over 
time and across a heterogeneous building stock. It also allows us to combine a large number 
of different variables that are known to individually affect internal temperature. Variables 
were chosen to represent the physical properties of the building, the external climate, 
behavioural and socio-demographic properties of occupants as well as the dwelling’s 
geographic location. The model is able to predict daily mean building stock internal 
temperature to within ±0.71°C at 95% confidence. 
 
Statistical inferences drawn from the magnitude of variables offer insight into what factors 
are important for explaining internal temperature demand. As shown in Table 5 most of the 
variables included in the model are highly statistically significant. Many of the variables also 
have a large magnitude and explain between 0.01 to 0.5 standard deviations of daily internal 
temperatures. Moreover, the model is able to explain 45% of the variance (R2

8.1 Intransmutable variable effect 

 = 0.45) of 
internal temperature demand from dwellings belonging to the English residential sector.   

Intransmutable variables are variables that cannot be manipulated to have an effect on 
internal temperature. Examples include the external temperature and the geographic location 
of the dwelling. External temperatures are shown to be an important factor explaining the 
fluctuations of daily internal temperature. Moreover, it is shown that these effects are non-
linear with higher external temperatures explaining a greater proportion of the variance of 
internal temperatures. Geographic location was included to control for any remaining 
unobserved heterogeneity between dwellings. London was shown to have higher mean 
internal temperatures than any other location in England. This is most likely due to high-
density housing (e.g. smaller dwellings are easier to heat). The regions having the lowest 
mean internal temperatures were the North East and South East. The combined effect of all 
intransmutable variables explain between ~0°C and ~6.8°C of the variance amongst 
dwellings for minimum and maximum external temperatures.     



Thursday, 26 July 2012  Scott Kelly 
 

 37 

8.2 Heating control effect 
Using the model it is possible to make inferences about the effect of different forms of 
heating controls. The effects of thermostat settings and heating controls has most thoroughly 
been looked at by Shipworth [2,22]. In order to compare this research with earlier studies, 
five different forms of user control over internal temperature were analysed; these were: 

i) the presence of a thermostat; 

ii) the set point temperature of the thermostat; 

iii) whether the only type of heating control in a dwelling is with a thermostatic 
radiator valve; and, 

iv) the use of an automatic timer as opposed to control of the heating system by 
manual operation. 

 
The results suggest that the mere presence of a thermostat has the effect of reducing average 
internal temperature by ~0.24°C on average. When thermostatic radiator valves are the only 
type of heating control, they again reduce internal temperature by an average of ~0.17°C, 
compared to homes without any control at all. This result contrasts with Shipworth et al. [22] 
where they found no statistically significant difference in temperatures between homes with 
and without room thermostats. There are several important reasons for this discrepancy, even 
though the dataset used in both analyses were the same, but the periods analysed were 
different9

 

. In the analysis completed by Shipworth et al. [22] maximum daily temperatures 
were averaged over the entire survey period to give a single maximum average daily 
temperature for each dwelling (i.e. a cross sectional study). In this analysis the arithmetic 
mean daily temperature is used and it is not averaged over time thus giving a panel dataset. 
The benefit of using panel methods is that the heterogeneity in daily temperature fluctuations 
is retained. Furthermore, maximum daily temperatures only capture the highest recorded 
temperature in a day; mean daily temperatures on the other hand capture the average of 
internal temperatures recorded over the whole day, thus giving a better picture of the relative 
heating profile of a dwelling. In Shipworth et al. an analysis of variance (ANOVA) is 
performed to determine the correlation between maximum internal temperature and the 
presence of a thermostat without controlling for other substantive factors. In this analysis, a 
large number of covariates known to affect internal temperature (like external temperature) 
are controlled for, and therefore a more accurate picture of the ‘real’ effect that thermostats 
may have on internal temperatures is therefore achieved.         

The respondent specified thermostat set-point has the effect of increasing internal 
temperatures, as is expected (e.g. higher thermostat set-points lead to higher internal 
temperatures). In this model, each household’s thermostat setting was grouped into four 

                                                 
9 Shipworth et al. [22] used a three month period from 1st November 2007 – 31st January 2008. 
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discrete categories [<18, 18-20, 20-22, >22]. The analysis shows that each time a household 
increases its thermostat set-point category the mean daily internal temperature of the 
dwelling will increase by ~0.035°C. This implies that on average, the variation in 
temperature difference between a dwelling with a set-point temperature below 18°C and a 
dwelling with a set-point temperature above 22°C will be ~0.14°C, ceteris paribus. This 
shows that thermostat settings have an important role to play in reducing overall household 
energy consumption. Although this conclusion supports earlier research completed by 
Shipworth [22] we recommend more detailed analysis looking specifically at the effect of 
thermostat set-points and internal temperatures on energy demand over time. 
 
Interestingly, the use of an automatic timer does not lead to a statistically significant change 
to internal temperature when compared with a heating system that is controlled manually. In 
a similar analysis completed by Shipworth et al. [22]  it was found that the presence of an 
automatic timer has no statistically significant effect on the length of heating duration10

8.3 Human behaviour effects 

. 
These results are most likely due to the way timers are used by occupants. Manual systems 
require occupants to interact with their heating system and request heating when required – 
this requires mental and physical effort from the occupant introducing a natural threshold or 
level of discomfort that must first be overcome before the occupant can be bothered to alter 
their heating system. The corollary to this is also true. Central heating systems maybe 
switched on and then remain on long after heating is required. Automatic timers on the other 
hand are programmed to start and stop heating at predetermined periods. Some occupants 
may set their timers at the beginning of winter and leave them on for the duration of the 
heating season, regardless of occupancy or external conditions. An early winter cold snap 
may precipitate the automatic timer being set early and therefore extend the length of the 
heating season. Furthermore, automatic timers do not require additional user interaction, and 
will automatically switch on whether heating is required by the occupant or not. This result 
suggests that it is not the presence of the automatic timer per se, but how people choose to 
interact with the technology that really matters. The final result implies that on average there 
is no statistical difference in internal temperatures for homes that use an automatic timer 
compared to homes that control heating manually. The combined effect of all forms of 
heating control are able to explain up to ~0.38°C of the variance in mean internal 
temperatures across dwellings.  

In addition to the use of heating controls, behavioural variations across the building stock 
were captured using variables to measure the duration of heating periods and the regularity 
of heating patterns. Both variables were recorded from the occupants’ responses to survey 
questions. This analysis shows that for each additional hour of heating duration, mean daily 
                                                 
10 In Shipworth et al [22] the heating duration was estimated as the period of time when internal temperatures 
within a dwelling are increasing.   
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internal temperature increases by ~0.07°C. Thus a home that has its heating on for one hour 
per day, compared with home that has its heating on for four hours per day will have a 
difference in mean daily internal temperature of ~0.28°C. If a respondent answered 
positively to having a regular heating pattern, the mean internal temperature would also be 
~1.19°C higher than a home without a regular heating pattern. This implies that occupant’s 
with routine energy habits, consume more energy than those who do not have such routines. 
This result presents strong quantitative evidence in support of more qualitative studies 
completed in the fields of psychology [74] and sociology [75] where it is believed that social 
norms and habitual behaviours are important for understanding energy consumption (see 
Triandis’ Theory). This analysis goes one step further and shows that households who have 
routine energy behaviour may actually have increased energy consumption compared to 
households who do not have a fixed routine. 
 
The effect of weekends on internal temperature is also worth consideration. When a dwelling 
is occupied, we would expect weekend temperatures to be higher than average as people are 
generally more likely to be at home. However, the final effect of weekends on internal 
temperature is shown to be statistically insignificant. As previously discussed, the model is 
not able to predict when a dwelling is unoccupied and in such circumstances will lead to 
lower temperatures (assuming heating is switched off). The statistically insignificant result is 
most likely due to these two confounding effects. A second survey question asked if heating 
patterns over the weekend were typically the same as heating patterns during the week. If the 
response was positive, this had a statistically significant negative effect, reducing internal 
temperature by an average of   -0.44°C, ceteris paribus. This implies households who 
responded they had different heating patterns on the weekend, tend to heat their homes for 
longer and/or to higher temperatures. The corollary of this is that households with the same 
heating pattern all week (weekday and weekend) will have lower than average internal 
temperature on the weekend. In sum, the combined effect of heating duration and regularity 
of heating patterns may explain up to ~2.87°C of the variation in internal temperatures across 
all dwellings.  

8.4 Socio-demographic and occupancy effects 
Kelly [31] showed that the number of people living in a dwelling represents one of the most 
important determinants for explaining dwelling energy consumption. The results presented in 
this analysis support this finding. For each additional person living in a dwelling the mean 
daily internal temperature increases ~0.25°C on average. Thus a dwelling with a family of 
five would be ~1.25°C warmer than a single person household.  Kelly [31] also showed that 
income has both a direct and indirect effect on final energy consumption. For this analysis 
net household income was separated into seven discrete income bands with the lowest band 
representing household incomes less than £5,199 and the highest band representing income 
greater than £95,000. The median income was ~£24,000/annum.  For each jump in income 
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bracket, the mean household temperature increases by ~0.085°C. Therefore the mean 
difference in temperature between a household in the lowest income bracket compared to a 
household in the highest income bracket is approximately ~0.59°C. 
 
The age of different occupants is a significant driver of internal temperatures. The presence 
of a child under five years old increases the mean internal temperature by an average of 
~0.5°C compared to a home where no child is present. The number of children under 18 also 
increases the internal temperature by ~0.22°C for each additional child. It is no surprise that 
dwellings with older occupants have higher internal temperatures. The internal temperature 
for a dwelling where the oldest person is aged 60-64 is not statistically different from a 
dwelling where the oldest person is under 60. However, a home where the oldest person is 
aged 64-74 will be ~0.37°C warmer than home where everyone is under 60. And a home 
where the oldest person is over 74 will be ~0.59°C warmer. For households with occupants 
over retirement age there is a clear statistically significant trend for increasing mean internal 
temperature. This clearly shows that older people have their heating on for longer and 
require higher temperatures. In total, ~3.69°C of the variance in internal temperatures can be 
explained by socio-demographic factors alone.  

8.5 Tenure effect  
Four categories were chosen to model the effects of different tenure types on temperature. 
Owner-occupiers were chosen as the comparison category. Each of the three other categories 
(privately rented, council owned and housing association) had higher mean internal 
temperatures than owner-occupiers. The cause of this seemingly surprising result may have 
something to do with the employment status of occupants. In England, 91%11 of owner 
occupiers with a mortgage are employed. Employment reduces to 67% in the private rented 
sector, 30% for local authority tenants and 32% for RSL or housing association tenants12. 
Occupants in full-time employment spend less time at home and therefore require less 
heating, lowering the mean daily internal temperature. Employment status was not controlled 
for as it was not collected during the survey. Occupants living in a home belonging to a 
housing association will have mean internal temperatures that are on average ~0.49°C 
warmer than owner occupiers, while rented dwellings are on average ~0.94°C warmer and 
council tenants are ~1.37°C warmer. Owner occupiers also live in larger dwellings and larger 
dwellings are harder to heat. From the EHCS (2008) it can be shown that 29% of owner 
occupiers live in homes that are larger than 110 m2

                                                 
11 55% of owner occupiers in England have a mortgage. 

; compared to 13% of privately rented 
dwellings and less than 2.5% for local authority and housing association tenants. Another 
strong argument supporting the clear differences in temperatures, is the energy efficiency 
rating (EER) between different tenure types. The 2007 English House Condition Survey 
shows that 65% of owner occupiers live in a dwelling with a building efficiency grade lower 

12 These statistics were calculated from the English House Condition Survey [76]. 
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than “D”. When compared with other tenure types such as privately rented (60%); council 
owned (39%) and RSL (29%), owner occupiers have the least efficient homes in the housing 
stock. This is most likely because of government initiated programs supporting improved 
energy efficiency in social housing. Tenure therefore explains up to a maximum of ~1.37°C 
of the variance of internal temperature between dwellings.  

8.6 Heating system effects  
A variety of physical characteristics were chosen to model the efficiency of heating systems 
and the building envelope. If gas central heating is present in the dwelling this lowers mean 
internal temperature, decreasing it on average by ~0.56°C when compared to a house without 
gas central heating. Given that over 90% of dwellings in England have gas central heating, it 
is difficult to draw any more conclusive insight from this result. Households with other 
forms of heating systems (which may also include homes with central heating) have a 
marginal positive effect on internal temperature (~0.06°C), although the statistical 
significance of this result is not strong compared to the other results (p<0.05). Homes that 
use electricity as a primary heat source are on average ~1.0°C warmer than homes using 
other heat sources. This is most likely due to the effect of electric storage heaters that take 
advantage of off-peak electricity prices and slowly release heating over a long period 
maintaining regular internal temperatures.  
 
Many homes have additional heating systems in the main room of the house. The effect of 
additional heating systems on internal temperature was also studied. All fuel types used in 
additional heating systems (gas, electricity, other) have a negative effect and therefore reduce 
mean internal temperatures. Gas and electric main room heaters decrease internal 
temperatures by ~0.07°C and ~0.2°C respectively. The largest effect however comes from 
main room heaters fuelled by alternative fuels such as wood, coal or oil. The overall effect 
from these heaters reduces mean internal temperatures in the home by approximately ~1.0°C. 
The effect of main room heaters on internal temperature is therefore important. This finding 
suggests homes with living room heaters provide occupants with the opportunity to use 
different heating sources and thus the ability to heat only the main room of the house, 
reducing the need for a central heating system that would otherwise heat the whole house. 
The combined effect of different heating systems may explain up to ~2.0°C of the variance 
of mean internal temperatures.   

8.7 Building efficiency effects 
Several variables were identified to control for the effects of building efficiency on internal 
temperature. The variable representing roof insulation contains eight categories, with each 
category roughly increasing insulation by 25mm (see Table 4) and improving internal 
temperature by an average of ~0.13°C. Therefore, the temperature difference between a 
home with no roof insulation and a home with greater than 200mm of roof insulation is 
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approximately ~1.0°C on average. The efficiency of walls as indicated by its U-Value, also 
increase internal temperature. The average U-Value for the exterior walls of each dwelling 
were categorised into four discrete bins [<0.4, 0.4-0.6, 0.6-1.6, >1.6]. For each improvement 
in the U-value category, the internal temperature increased by an average of ~0.08°C. Thus 
the difference in temperature between the best and worst performing categories explains 
~0.32°C of the variation. The extent of double glazing also contributes markedly to internal 
temperature. For each dwelling the extent of double glazing was separated into five discrete 
bins [None, < ½, ~½, >½, All]. Improving the proportion of double glazing in a dwelling by 
one category has the effect of increasing the mean internal temperature of that dwelling by 
an average of ~0.19°C. A dwelling that goes from having no double glazing to having full 
double glazing will increase the internal temperature by an average of ~0.94°C.   
 
Building typology explains up to ~0.7°C of the variance of internal temperature between 
different dwellings. As expected, detached homes have the lowest internal temperature and 
are ~0.7°C colder than semi-detached dwellings; ~0.61°C colder than terraced dwellings and 
~0.54°C colder than homes not considered a house (e.g flats and apartments). The age of the 
dwelling was modelled using ten discrete categories ranging in construction period from 
prior to 1900 to post 2003. For each category improvement in the age of construction the 
mean internal temperature increases by ~0.04°C on average. Therefore, a building 
constructed after 2003 when compared to a building constructed prior to the 1900’s will on 
average be ~0.42°C warmer, ceteris paribus. When all physical building effects are 
combined, it is possible to explain up to ~3.38°C of the variance of internal temperatures 
amongst heterogeneous dwellings.     

8.8 Quantifying the rebound effect 
These results are consistent with both theory and previous empirical research. However, 
because these different effects are quantified this research has important implications for 
policy-makers. In particular this research may prove instrumental in helping understand and 
quantify the rebound effect. It is now increasingly common for government policy to allow a 
percentage of the anticipated energy savings to be lost due to the take-back13

                                                 
13 Take-back is also known as the direct rebound effect. 

 effect (usually 
estimated about 20% [77,78]). This effect is not well understood and usually arbitrarily 
applied consistently across all dwellings. This research provides researchers and policy 
makers with a simple tool to estimate the likely increase to internal temperature that will 
occur due to energy efficiency improvements on a discrete dwelling with a known set of 
socio-demographic, behavioural and physical parameters. Armed with improved 
understanding for how internal temperature may be affected by energy efficiency 
improvements, it is therefore possible to quantify the rebound effect. As this analysis allows 
for a diverse building stock with a wide range of different socio-demographic attributes, it is 



Thursday, 26 July 2012  Scott Kelly 
 

 43 

possible to model the effects that different policies will have on internal temperature and 
therefore quantify the amount of rebound expected for different dwellings. 
 

9 Conclusion 
We present a panel model for predicting and making inferences about the diversity of mean 
daily internal temperatures across the English domestic building stock. The model explains 
45% of the variance of internal temperature and can predict the daily mean building stock 
internal temperature to within ±0.71°C of actual recorded temperature with 95% confidence. 
Daily fluctuations in external temperature are shown to impact internal temperatures non-
linearly and to the second power. We show the mere presence of heating controls such as 
thermostats and thermostatic radiator valves lowers mean internal temperatures; however, 
the use of automatic timers is not statistically significant. As expected there is a clear 
positive relationship between respondent specified thermostat set-point temperature and 
internal temperature; higher thermostat set-points lead to higher internal temperatures. The 
respondent specified average number of daily heating hours increases internal temperatures 
by an average of ~0.07°C for each additional hour of heating.  
 
This research provides quantitative evidence supporting hypothesis from sociology (practice 
theory) and psychology (habitual behaviour) that routine behaviours are important drivers of 
home energy consumption. Households who responded with regular weekly heating patterns 
are on average ~1.19°C warmer than households with an irregular heating pattern. However, 
households who responded with different heating patterns over the weekend compared to the 
working week were on average ~0.44°C warmer than homes who responded they kept the 
same heating pattern for the whole week.  
 
As established by existing empirical research, both household income and household 
occupancy are important indicators and lead to an increase in mean internal temperature. 
Households with annual incomes over £95,000 in 2007-08 are ~0.59°C warmer on average 
than households with annual incomes under £5,199. For each additional occupant, internal 
temperatures are shown to increase by ~0.25°C. Socio-demographic variables such as the age 
of occupants are also important drivers of internal temperature demand. The presence of a 
child under five, is shown to increase internal temperatures by an average of ~0.5°C while 
each child under the age of 18 increases mean internal temperature by ~0.22°C for each 
additional child. The presence of an elderly person over the age of 75 increases internal 
temperature by ~0.56°C more than a home where the oldest person is under 64. On average, 
owner occupiers live in the coldest homes and council tenants live in the warmest.  
 
Heating systems also affect internal temperatures. Homes that use electricity as their primary 
heating fuel are on average ~1.0°C warmer than homes that use other fuels. Homes that have 
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secondary heating systems in the living room have lower internal temperatures when 
compared to homes that do not have secondary heating systems. This implies living room 
heaters give occupants the opportunity to just heat the main room in the house, therefore 
lowering the mean temperature in the rest of the house. Building efficiency measures such as 
cavity wall insulation, loft insulation and double glazing all have the effect of increasing the 
mean internal temperature of the dwelling. 
 
Looking at the combined effect of different variables, it is possible to gain deeper insight into 
the most important factors that explain mean internal temperatures. Intransmutable variables 
(external temperature and geographic location) explain up to ~6.8°C of the variance of 
internal temperatures when external temperatures are high. Heating controls explain ~0.38°C 
of variance, behavioural variables explain ~2.87°C and socio-demographic factors explain up 
to ~3.69°C. Differences in tenure may explain up to ~1.37°C and different heating systems 
explain ~2.0°C. Capturing the wide range of different building efficiency measures may 
explain up to ~3.38°C of the variance with double glazing and roof insulation both 
explaining about ~1.0°C each. In sum, behavioural and socio-demographic factors combined 
may explain up to ~6.56°C of the variance of internal temperatures and therefore must be 
appropriately accounted for if energy demand estimations are to be accurate.      
 
In summary, this panel model presents a unique opportunity for future building stock models 
to incorporate the dynamics of internal temperature demand. Moreover, the model can be 
adapted to quantify the take-back effect (through estimation of changes to internal 
temperatures) on discrete dwellings as combinations of different energy efficiency measures 
are applied. The model can be implemented at any scale and allows modellers to include 
behavioural and socio-demographic factors to estimate there effect on internal temperature.     
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