
UNIVERSIDADE DE LISBOA
Faculdade de Ciências

Departamento de Informática

DESIGN AND IMPLEMENTATION OF A MODULAR
SCHEDULING SIMULATOR FOR AEROSPACE

APPLICATIONS

Rui Pedro Ormonde Silveira

PROJETO

MESTRADO EM ENGENHARIA INFORMÁTICA
Especialização em Sistemas de Informação

2012

UNIVERSIDADE DE LISBOA
Faculdade de Ciências

Departamento de Informática

DESIGN AND IMPLEMENTATION OF A MODULAR
SCHEDULING SIMULATOR FOR AEROSPACE

APPLICATIONS

Rui Pedro Ormonde Silveira

PROJETO

Trabalho orientado pelo Prof. Doutor José Manuel de Sousa de Matos Rufino
e co-orientado pelo Mestre João Pedro Gonçalves Crespo Craveiro

MESTRADO EM ENGENHARIA INFORMÁTICA
Especialização em Sistemas de Informação

2012

Acknowledgments

First i would like to say a great “Thank you” to my advisors Prof. José Rufino and João
Craveiro because without them this our would never be complete. Their time, patience,
guidance were crucial.

To all colleagues the friends at the university that have always been there for support,
discussions and friendship. I would like to thank Fufinha, Sandrinha, Kleo, Gil, Reizão,
Mano, Craveiro, Dias, Mac, Krypton, Ritz, Kelly, Chimy, Poli, Cabaco, S. Miguel, Azedo,
Bárbara, Rodrigo, Espanhol and many others that don’t come to mind right now but still
are in my memory.

Last but not least to all the biggest “Thank you” of all goes to my family that have
supported me in the best and the worst moments, didn’t even need to look back, i know
they have my back, now and always.

This work was partially supported by FCT/Égide (PESSOA programme), through the trans-
national cooperation project SAPIENT (Scheduling Analysis Principles and Tool for Time- and
Space-Partitioned Systems; homepage: http://www.navigators.di.fc.ul.pt/wiki/
Project:SAPIENT).

This work was partially supported by the EC, through project IST-FP7-STREP-288195 KARYON
(Kernel-Based ARchitecture for safetY-critical cONtrol; homepage: http://www.karyon-project.
eu).

This work was partially supported by FCT (Fundação para a Ciência e a Tecnologia), through
the LaSIGE research unit strategic project (PEst-OE/EEI/UI0408/2011).

iii

http://www.navigators.di.fc.ul.pt/wiki/Project:SAPIENT
http://www.navigators.di.fc.ul.pt/wiki/Project:SAPIENT
http://www.karyon-project.eu
http://www.karyon-project.eu

À familia, aos que cá estão e aos que já partiram.

Glossary

CNES Centre National d’Études Spatiales (the French nati-
onal space agency)

DAS Distributed Application Subsystem
DECOS Dependable Embedded Components and Systems

EDF Earliest Deadline First
ESA European Space Agency

HS Hierarchical Scheduling

IMA Integrated Modular Avionics

LLF Least Laxity First

PMK Partition Management Kernel

RM Rate-Monotonic

SPIRIT Strongly Partitioned Integrated Real-tIme sysTem

TSP Time- and space-partitioned systems

vii

Abstract

Real-time systems are required to produce results from each task in time, according to the

urgency of each one. Since the 1970s researchers try to obtain ways to coordinate the execution

of tasks to meet all deadline, by using scheduling algorithms. Although the majority of these

algorithms required an extensive work from those who created them, they are simple to understand.

One of the oldest is the Earliest Deadline First algorithm, which attributes higher priority to the

most urgent tasks.

Due to their characteristics, some systems obey to more complex models; this is the case of

aerospace systems. These systems require full isolation between functionalities. The functions,

composed of tasks (processes), are logically grouped into partitions. To ensure separation in the

time domain, a two level scheduling scheme is introduced. The first level determinates the time

windows to assign to each partition; in the second level, tasks in each partition compete among

them for the execution time assigned to the latter. The scheduling algorithms used in each level do

not need to be the same; in the second level, each partition may even employ a different algorithm

to schedule its tasks.

After studying what currently exists we have decided to guide our work to partitions and

hierarchical scheduling because it is where we see producing better results and solutions for future

systems. Using design patterns as well as Java properties such as inheritance and polymorphism

we were able to obtain a solution that after implemented allows users to simulate the execution

of a system defined by them. The tool allows obtaining events and showing them to the user and

giving feedback, these events represent the basic functionalities of a real-time system, such as, job

launch and jod deadline miss and others. These results can be shown in textual form or use other

applications of results visualization.

Keywords: Real-time, scheduling algorithm, partition, simulator

ix

Resumo

Sistemas tempo-real têm de produzir os resultados esperados de cada tarefa atempadamente

de acordo com a urgência de cada uma. Desde os anos 70 tentam-se obter formas de coordenar a

execução das tarefas para cumprir todos os prazos através de algoritmos de escalonamento. Na sua

maioria estes algoritmos apesar de terem requerido um extensivo trabalho por parte de quem os

criou são simples de compreender. Um dos mais antigos é o algoritmo “Earliest Deadline First”,

que consiste em dar maior prioridade às tarefas mais urgentes. Alguns sistemas devido às suas ca-

racterı́sticas particulares obedecem a modelos mais complexos. É o caso dos sistemas aeronáuticos

onde é necessário manter o isolamento entre as funcionalidades. As funções são agrupadas logica-

mente em contentores denominados partições. Para garantir essa separação no domı́nio do tempo

introduz-se um esquema de escalonamento a dois nı́veis. Um primeiro que determina as janelas

temporais a dar a cada partição e um segundo nı́vel onde estão as partições e respectivas funções.

Os algoritmos de escalonamento utilizados em cada nı́vel não tem de ser iguais; no segundo nı́vel,

cada partição pode usar um algoritmo diferente. Após estudar o que actualmente existe decidimos

orientar o nosso trabalho para partições e escalonamento hierárquico pois é de onde poderemos

vir a obter melhores resultados e soluções para sistemas futuros. Fazendo uso de padrões de de-

senho, bem como caracterı́sticas do Java, tais como herança e polimorfismo conseguimos obter

uma solução que após implementada permite aos seus utilizadores simularem a execução de um

sistema que estes definam. Permite também obter os eventos e com estes mostrar ao utilizador

o que o simulador fez em cada momento do sistema podendo estes resultados ser exibidos em

formato textual ou fazer uso de outras aplicações de visualização de resultados.

Palavras-chave: tempo-real, algoritmos de escalonamento, partição, simulador

xi

Resumo Alargado

Sistemas tempo-real têm de produzir os resultados esperados de cada tarefa atempadamente

de acordo com a urgência de cada uma. Desde os anos 70 tentam-se obter formas de coordenar a

execução das tarefas para cumprir todos os prazos através de algoritmos de escalonamento. Na sua

maioria estes algoritmos apesar de terem requerido um extensivo trabalho por parte de quem os

criou são simples de compreender. Um dos mais antigos é o algoritmo “Earliest Deadline First”,

que consiste em dar maior prioridade às tarefas mais urgentes.

Para melhor aproveitar os recursos fı́sicos dos actuais e futuros computadores, e para diminuir

o número de computadores necessários para desempenhar a mesma tarefa anteriormente desem-

penhada por diversos computadores, tem vindo a surgir formas de agregar funcionalidades dentro

do mesmo sistema.

Sendo que se está a agregar funções é necessário assegurar o que anteriormente era assegurado

pelas funções estarem fisicamente separadas pelo hardware, o isolamento no tempo e no espaço.

Estas funções anteriormente separadas fisicamente passarão agora a ser vistas pelo sistema como

componentes. O isolamento entre estes componentes é crucial, tanto ao nı́vel do tempo, em que a

execução de um deles (componente) não interfira com o tempo de execução nem com o inı́cio da

execução de outro componente e ao nı́vel do espaço que o endereçamento e espaço de memória

não coincida com o de outro componente.

Devido ao aumento constante da complexidade dos sistemas e de num futuro próximo estes

mesmos sistemas venham a possuir mais de dois nı́veis hierárquicos, a ferramenta que estamos a

construir já está equipada para que se possa simular a execução de um sistema com o número de

nı́veis que se desejar.

Para conseguir construir um número indeterminado de nı́veis, e como na análise desta fer-

ramenta decidimos concretizar esta ferramenta em Java e fazendo uso de padrões de desenho

como o padrão Composite permite ao sistema abstrair uma tarefa e uma partição como uma tarefa

abstrata denominada AbstractTask. Assim sendo, os escalonadores implementados poderão esca-

lonar tanto tarefas como partições, sem ser necessária a sua diferenciação. Com esta abstração

é possı́vel construir simulações de sistemas em que na sua árvore hierárquica tenta um número

indeterminado de nı́veis, bem como não seja necessariamente balanceada (árvore não balanceada

significa que no mesmo nı́vel hierárquico não necessita haver apenas só partições ou apenas só

tarefas, pode haver uma mixórdia de ambos). O uso do padrão de desenho Strategy permite que na

xiii

implementação de novos algoritmos de escalonamento não haja dependência de como funciona o

domı́nio da aplicação.

A solução apresentada neste trabalho faz uso de propriedades fornecidas pelo Java, tais como

polimorfismo e herança. O uso de programação orientada a objetos facilitou a concretização da

solução. Desde o inı́cio que foi nosso objetivo concretizar uma solução de perceção simples,

modular (separar, distanciar e organizar as várias partes referentes ao projeto de forma para a que

possam funcionar separadamente, que uma alteração possa ser efectuada apenas em um lugar e

que funcionem de forma independente) e flexı́vel (como estamos a trabalhar na área do tempo-real,

em que muitos outros investigadores ao mesmo tempo estão a trabalhar, é boa decisão permitir que

dentro dos possı́veis a nossa ferramenta possa interagir com outras ferramentas).

Para estruturar este projecto tivemos de começar por implementar os algoritmos simples de

escalonamento, como forma de testar. Após ter os algoritmos simples, e mais fáceis de concretizar

começamos a executar pequenas simulações para testar que a nossa implementação do algoritmo

estava correcta. Assim que tı́nhamos o funcionamento básico dos algoritmos simples testado foi

altura de começar a tentar criar um segundo nı́vel no nossa sistema. Ao conseguirmos ter a fer-

ramenta a funcionar com dois nı́veis começa o verdadeira desafio deste projecto, começa a ser

necessário abstrair as diferenças entre uma partição e uma tarefa (internamente, e para o sistema

apenas). Para conseguir o pretendido foi criada a classe abstracta AbtractTask, que é estendida por

ambas tarefas e partições e que regula o funcionamento base de ambas. Ficando apenas por definir

o que for especı́fico de ambas na própria classe. Desta forma, quando for criada uma simulação

internamente serão criadas instâncias de AbstractTask e será responsabilidade do polimorfismo em

tempo de execução diferenciar ambos através da sua tarefa “pai”a fim de executar com exatidão

os objetivos de ambos.

Criando mais nı́veis, e usando os princı́pios do escalonamento hierárquico, deparamo-nos com

o obstáculo de como fazer para determinar a execução de uma unidade de tempo e como propagar

essa informação pela hierarquia. A solução a que chegámos faz com que o tempo seja indepen-

dente da hierarquia, apenas pertencente ao sistema, sistema este que controla o nı́vel mais baixo

da hierarquia, o nı́vel zero. Assim sendo, quando o sistema notifica a passagem de uma unidade

de tempo, essa informação chega ao escalonador do nı́vel zero que vai à sua fila de instâncias de

tarefas em lista de espera (podendo estar nesta instancias de tarefas e de partições) e escolhe a que

tem maior prioridade segundo o algoritmo escolhido por este nı́vel. Esta instância escolhida vai

propagar essa informação à sua tarefa “pai” (tarefa da qual esta instância resultou), caso esta seja

instância de tarefa, reduz uma unidade à capacidade restante e o sistema passa mais uma unidade

de tempo, caso esta instância seja de uma partição não só é diminuı́do uma unidade à capacidade

restante desta partição bem como recomeça o processo de selecção da instância com maior priori-

dade neste escalonador. E assim sucessivamente até que termina numa tarefa, pois neste esquema

as “folhas” da árvore tem de ser todas instâncias de tarefas.

Agora que conseguimos executar um sistema com um número variado de nı́veis é altura de

registar os eventos mais importantes que ocorrem durante esse perı́odo de tempo. Para tal, num

xiv

pacote à parte, criámos um Logger que regista os eventos que foram notificados pelo domı́nio da

aplicação. Inicialmente, e é uma versão disponibilizada para os utilizadores perceberem que even-

tos estão a ser lançados pelo sistema, esta classe Java recebia os eventos e criava uma descrição

textual para o utilizador poder seguir a passo e passo as decisões que a aplicação estava a fazer em

cada momento da execução da simulação. Posteriormente, e querendo justificar as nossas decisões

de desenho, bem como justificar a modularidade e a flexibilidade em estender a nossa aplicação, já

um pouco fora do âmbito deste projecto foi criada uma nova classe com o nome de GraspLogger.

Esta nova classe produz como resultado um ficheiro grasp que é o necessário para a execução de

um desenhador gráfico que permite visualizar a passo e passo que tarefas e partições estão ativas

em cada momento. Quando este ficheiro é produzido, fazendo uso da aplicação Grasp podemos

visualizar os resultados da simulação que foi efectuada.

Palavras-chave: tempo-real, algoritmos de escalonamento, partição, simulador

xv

Contents

Glossary vii

List of Figures xxi

1 Introduction 1

1.1 Motivation . 1

1.2 Goals . 2

1.3 Document Outline . 2

1.4 Contributions . 2

2 State of the art 5

2.1 Real-Time Scheduling Theory . 5

2.2 Scheduling Algorithms . 5

2.2.1 Fixed task priority scheduling algorithms 6

2.2.2 Fixed job priority scheduling algorithms 6

2.2.3 Dynamic job priority scheduling algorithms 6

2.3 Time- and space-partitioned systems (TSP) . 7

2.3.1 ARINC 653 Specification . 7

2.4 Time- and Space-Partitioned Systems and Architectures 8

2.5 Hierarchical Scheduling . 9

2.6 Scheduling Simulator Tools . 10

2.6.1 Cheddar . 10

2.6.2 Schedsim . 10

2.6.3 Scheduling Simulator for Real-Time Systems 11

2.6.4 MOSS . 11

2.6.5 MAST 2 . 11

2.6.6 SPARTS . 11

2.6.7 CARTS . 11

2.6.8 Grasp . 12

2.6.9 SymTA/S . 12

xvii

3 Problem analysis and solution design 13
3.1 Introduction . 13

3.2 Analysis . 13

3.3 Design . 15

3.3.1 Composite Pattern . 16

3.3.2 Strategy Pattern . 16

3.3.3 N -level Hierarchy and Polymorphism 17

3.3.4 Observer and Visitor Patterns . 19

3.4 Summary . 19

4 Implementation and tests 23
4.1 pt.ul.fc.di.lasige.simhs.domain Package . 23

4.1.1 pt.ul.fc.di.lasige.simhs.domain.events Package 25

4.1.2 pt.ul.fc.di.lasige.simhs.domain.schedulers Package 25

4.2 pt.ul.fc.di.lasige.simhs.services Package . 25

4.2.1 pt.ul.fc.di.lasige.simhs.services.xml Package 25

4.3 pt.ul.fc.di.lasige.simhs.simulation Package . 25

4.4 com.example.hssimextensions Package . 26

4.5 Tests . 26

4.5.1 Two-level hierarchy . 26

4.5.2 Unbalanced three-level hierarchy . 27

4.6 Summary . 29

5 Conclusion 31

Bibliography 35

xviii

xx

List of Figures

2.1 ARINC 653 Architecture . 8

2.2 AIR Architecture . 9

3.1 Domain Model . 14

3.2 Traditional one-level system domain model . 15

3.3 Two-level hierarchical scheduling system domain model 16

3.4 N-level hierarchical scheduling system using the Composite pattern 17

3.5 Scheduling algorithm encapsulation with Strategy pattern 18

3.6 Sequence diagram for the schedule tickle operation 19

3.7 Logger (Observer and Visitor patterns) . 20

4.1 Packages Diagram . 23

4.2 Two-level system . 27

4.3 Results of the two-level system . 27

4.4 Three-level system . 28

4.5 Results of the three-level unbalanced system . 29

xxi

Chapter 1

Introduction

1.1 Motivation

Real-time systems, such as, Aerospace systems have strict dependability and real-time require-

ments, as well as a need to flexible resource allocation and obey to complex designs to complete

their functions. In order to improve such systems a possible solution might be to aggregate several

functions in one computer instead of several computers communicating between them. But, it is

necessary the isolation between said functions, to which logical container corresponding to each

function will be called “partition”. Time- and Space- Partitioned (TSP) systems may integrate

heterogeneous functions with different criticalities and origins. A TSP system requires isolation

on the space and time domain. To ensure space isolation we must assure that access memory

space will not interfere with other running application. To ensure time isolation a delay on one

partition can not affect the normal behaviour of the other partitions. Only by assuring these two

properties is feasible to aggregate totally different functions on the same platform, otherwise vi-

olation of deadline might occur, and on real-time systems that can be problematic. Since each

partition may have very strict requirements with the timely execution of their functions as they

run on real-time constraints, it is vital to properly simulate them before launch. Simulating the

execution of aerospace systems can help to decide how to construct and dimension the systems in

order to avoid time failures during the execution. In order to structure those systems we require

to assure the correct isolation within the system, such as, isolation of time attributed to each part

of the system, and assuring delay in one part will not cause disturbance on the remaining part of

the system. Aerospace systems are also partitioned by levels under a hierarchical scheduling (HS)

properties which assures that the lower level will be responsible for controlling the time attributed

to every part of the system directly on top of it, therefore, controlling which part shall execute on

each instant and for how long it should, assuring TSP time isolation for and indeterminate amount

of TSP systems on top of TSP systems. It is our objective to explore the application and growth

of HS with more than two levels on real-time applications such as, aerospace systems.

Most theory and practice focus on two-level hierarchies, with a root scheduler managing parti-

tions, and a local scheduler in each partition to schedule respective tasks. By task for the purposes

1

Chapter 1. Introduction 2

of this work we will understand the triple (C, T,D) where as an abstraction C is the worst-case

execution time, T is the minimum inter-arrival time (or period) and D is the relative deadline. In

our tool we will support an arbitrary number of levels in the hierarchy.

To help understand how to build systems with hard real-time properties we plan to build hsSim,

a simulation tool for the real-time research community as well as aerospace developers such as

ESA. We focus on supporting well-known and widely used models such as periodic task model.

hsSim pursues an open, reusable, extensible and interoperable tool.

1.2 Goals

The goal of this project is to design and develop a Java simulator that performs as it was a scheduler

using a scheduling algorithm observing the following properties:

• support most common scheduling algorithms and allow expansion with user-defined algo-

rithms;

• allow users to construct simulations of hierarchical scheduling systems with an arbitrary

number of levels;

• accurately simulate the behaviour of the system throughout the time by logging all the

events occurred;

• easily be extended taking advantage of Object-Oriented Analysis and Design principles

such as inheritance and polymorphism applied in this conception;

The results produced will help us and the other researchers in the field to study the implications

of using a time-and space partitioning system with hierarchical scheduling model.

1.3 Document Outline

The present report is structured as follows:

Chapter 2 - Introduction to base concepts, and description of the state of the art.

Chapter 3 - Problem analysis and solution design.

Chapter 4 - Implementation decisions and tests.

Chapter 5 - Conclusion and future work.

1.4 Contributions

With the goal of validating and disseminating the present ideas, the work of this thesis generated

the following refereed publication:

1. J. P. Craveiro, R. O. Silveira, and J. Rufino, “hsSim: an extensible interoperable object-

oriented n-level hierarchical scheduling simulator” in 3rd International Workshop on Analysis

Chapter 1. Introduction 3

Tools and Methodologies for Embedded and Real-time Systems (WATERS 2012), Pisa, Italy, Jul.

2012 [1].

Chapter 1. Introduction 4

Chapter 2

State of the art

2.1 Real-Time Scheduling Theory

Real-time scheduling systems have the capacity of executing actions within pre-specified time

intervals. In order for a system to be classified as real-time it must contain at least one real-time

application/task. For the purposes of this work, task will understand the triple (C, T,D) where as

an abstraction C is the worst-case execution time, T is the minimum inter-arrival time (or period)

and D is the relative deadline. These systems can be classified as real-time where timing failures

need to be avoided. There are two types of real-time, hard real-time where a timing failure can

be catastrophic to the good functioning of the system or soft real-time where occasional timing

failures are acceptable and will not cause major disturbances on the normal functioning of the

system [2, 3].

To schedule the tasks it is used scheduling algorithms who will be responsible to determine

which job will be executed next. A job is an infinite sequence of repetition of the task through

time with repetition according to the period. There can identified two distinct types of deadlines,

the relative deadline which is the one defined on the task and the absolute which is ready time plus

the relative deadline. The ready time it is the unitary time that a task is launched and goes to the

ready state. By resorting to scheduling simulations to check if a specific set of tasks is feasible.

2.2 Scheduling Algorithms

Scheduling is a definition of how to allocate the available resources and make use of them to

execute task timely. Even when having enough resources, they must be allocated properly to

ensure the timings of the most tasks are met. Scheduling defines how a resource is shared by

different activities in the system, according to a given policy (Algorithm) [2, 4, 5].

We will analyse below fixed and dynamic priority scheduling algorithms and give and example

of each that will be implemented in our simulation tool.

5

Chapter 2. State of the art 6

2.2.1 Fixed task priority scheduling algorithms

In fixed task priority scheduling algorithms, each task has a single fixed priority applied to all of

its jobs. The most common example is Rate-Monotonic (RM).

The RM scheduling algorithm proposed by Liu and Layland in 1973 [3] attributes priority

based on the periodicity of the tasks. The priority is inversely proportional to the periodicity of the

tasks, meaning that lower period tasks will be given higher priorities. This algorithm is considered

to be one of the best for periodic tasks.

Before execution some simple tests can be applied to the set of tasks to check the schedulabil-

ity, applying schedulability tests. This test might not be sufficient to ensure the schedulability so

there is a exact test that can be applied to the task set but requires that all the period are multiple

of each other.

2.2.2 Fixed job priority scheduling algorithms

Fixed job priority scheduling algorithms means each job of the same task may have a different

priority, which is, nevertheless fixed throughout the jobs existence. An example is the Earliest

Deadline First (EDF) [4].

EDF is a dynamic scheduling algorithm proposed by Liu and Layland in 1973 [3]. A job

priority queue is created to manage which job will execute next. The queue, as the name of the

algorithm suggests, orders the jobs by absolute deadlines, giving higher priority to the earliest

deadline. A job will be assigned the highest priority if the deadline of its current job is the earliest,

and will be assigned the lowest priority if the deadline of its current job is the latest. Such a

method of assigning priorities to the jobs is a dynamic one, in contrast to a static assignment in

which priorities of jobs do not change with time [3].

EDF is a algorithm initially thought for uniprocessor, by receiving a collection of independent

jobs characterized by an arrival time, a worst case execution time (WCET) and a deadline, the EDF

will schedule this collection of jobs such that they all complete by their deadlines. In the triple

(C, T,D) deadline corresponds to the D, the WCET corresponds to the C and the arrival time is

a math calculation based on the period, the T letter. In this specific algorithm the deadline is the

most important measure taken in consideration to decide the sequence of tasks to be executed. The

closer we get to the deadline the highest priority a task will be given in order to best try to arrange

the tasks which still need some time to finish their execution.

2.2.3 Dynamic job priority scheduling algorithms

Dynamic priority scheduling algorithms calculate the priorities during the execution of the system

and a single job may have different priorities at different times. An example is Least Laxity First

(LLF) [6].

The LLF scheduling algorithm assigns a priority to a job according to its execution laxity. The

laxity is the difference of remaining execution time to the deadline. The passage of time will cause

Chapter 2. State of the art 7

the priorities to be recalculated causing the laxity of the ready tasks to decrease with each clock

tick. A ready task is a task that have all the requirements met to execute, just awaiting CPU time

to do so.

2.3 Time- and space-partitioned systems (TSP)

Time- and space-partitioned systems (TSP) [7] are a way to integrate a heterogeneous set of func-

tions (different criticalities and origins) in a shared computing platform, fulfilling their functions

without interference. Spatial partitioning [8] ensures that it is not possible to an application to

access the memory space (both code and data, as well as execution context - stack) of another ap-

plication running on a different partition. Temporal partitioning ensures that the activities in one

partition do not affect the timing of the activities in any other partition, a delay on the execution

of a specific partition will only affect his own, the rest will execute without delays. Applica-

tions are separated into logical partitions, scheduled according to predefined partition scheduling

algorithms.

Each partition will make a request for execution of the jobs it has, never disclosing or interfer-

ing with the other partitions at any time. This assures that if for any reason some partition misses

its deadline will not interfere with the other partitions time frames or deadlines.

2.3.1 ARINC 653 Specification

The ARINC 653 specification, adopted by the Airlines Electronic Engineering Committee in 1996,

is a fundamental block from the Integrated Modular Avionics (IMA) definition, where the parti-

tioning concept emerges for protection and functional separation between applications, usually for

fault containment and ease of validation, verification, and certification.

In traditional avionics system architecture each function had his own dedicated computer re-

sources. The Integrated Modular Avionics (IMA) [9] concept emerged with a view of a partitioned

system that hosts multiple avionics functions of different criticalities on a shared computer plat-

form. The usage of IMA allowed avionics to reduce the weight and power consumption because

they were able to reduce the number of computers needed in each aircraft.

The architecture of a standard ARINC 653 system is sketched in Figure 2.1. At the application

layer is executed in a confined context, a partition. This layer may include system partitions to

manage interactions with hardware devices. Each application consists of one or more processes

and can use only the services provided by the application layer (APEX) interface.

The execution environment provided by the OS Kernel module must administrate the pro-

cess scheduling management, time and clock management, and inter-process synchronization and

communication.

Chapter 2. State of the art 8

Figure 2.1: ARINC 653 Architecture

2.4 Time- and Space-Partitioned Systems and Architec-
tures

Time- and Space-Partitioned systems (TSP) and architectures are a subject of high interests in the

research done in academic institutions since it is a recent subject on the area. Since not much is

known yet as how to better implement TSP on the systems we are trying to take better advantage of

the hardware. A lot of research it is still being done around to world to understand the capabilities

and the impact it will bring to the construction of future systems.

The Dependable Embedded Components and Systems [10] (DECOS) architecture is combin-

ing federated and integrated systems. DECOS aims for both automotive and aerospace domains.

In this architecture jobs are separated according to functionality and criticality by Distributed Ap-

plication Subsystem (DAS). These jobs may even be distributed by different components (or node

computers). Computation resources inside each node are time- and space-partitioned like any

other TSP architecture.

Strongly Partitioned Integrated Real-tIme sysTem (SPIRIT) µKernel [11] provides the core

software layer of a TSP system. Temporal partitioning is ensured by a distance constrained

cyclic partition scheduler with the help of APEX interface imposing a fixed amount of processing

time [12].

Chapter 2. State of the art 9

Xtratum [13] developed at the Polytechnical University of Valencia under a contract from

Centre National d’Etudes Spatiales (CNES, the French space agency), first started as a nanokernel

satisfying the requisites of a hard real-time system. Spatial partition is not fully guaranteed since

it is up to the partitions operating system to coordinate themselves. XtratuM was redesigned to

fulfil critical real-time requirements. It features TSP capabilities and fixed cyclic scheduling of

partitions.

AIR [9] has grown because of the interest that the space industry took on adopting TSP con-

cepts, namely the European Space Agency (ESA). The AIR architecture is shown on Figure 2.2.

The AIR Partition Management Kernel (PMK) is the unit responsible for the assigning and cyclic

rotation of the partitions (cyclic attribution of processing time to each partition), as well as com-

munication between them. At each clock tick a partition scheduler consults the scheduling table

to detect if a partition preemption point has been reached, and if it has then perform the context

switch between the active partition and the one beeing activated.

Deos [14] a real-time operating system which addresses the issues of high robustness and

formal certifiability for avionics and safety critical applications. Deos supports popular avionics

standards and other certifiable features allowing users to customize their Deos environment by

choosing from a variety of optional modules such as the ones for ARINC 653. Deos is a commer-

cial tool therefore the information we can acquire about it is not much due to the confidentiality of

its work.

Figure 2.2: AIR Architecture

2.5 Hierarchical Scheduling

Software embedded computer systems complexity is increasing each year. A way to deal with

this complexity is to subdivide the software into components where each component has its own

purpose. The difficulty when decomposing a software system into components is typically driven

by the requirement of the system or their functions because the aggregation of functionalities from

Chapter 2. State of the art 10

different sources require logical isolation. Different functions within the same system should be-

long to different components because one function should not be able to obtain information about

another component. To ease the certification process each component should not have functions

with more than one criticality level [15].

After creating the components to better execute this software system it is time to organize

them on a tree based model. This will help the users visualize how each scheduler inside each

component will chose which one will execute next and so on. Since components are independent

each one will require an inside scheduler, to scheduler their tasks. In case of having one compo-

nent inside of another component then the main component’s scheduler is responsible to attribute

execution time to his inside component.

2.6 Scheduling Simulator Tools

2.6.1 Cheddar

Cheddar [16] is a free real-time scheduling tool designed to check the task temporal constraints of

a real time application/system. Cheddar is also used for education purposes.

Cheddar is composed of two independent parts: an editor used to describe a real time appli-

cation/system, and a framework. The editor allows you to describe systems composed of several

processors which own tasks and shared resources. The framework includes many schedulability

tests and simulation tools (tools that allow users to run simulations, of specific systems they de-

fine). Schedulability tests can be applied to check if a set of tasks it is schedulable or not. When

schedulability tests results are not definitive (meaning the results obtained are not conclusive on

the schedulability of that specific set of tasks beeing analized), the studied application can be ana-

lyzed with scheduling simulations. Cheddar provides a way to define “user-defined schedulers” to

model applications/systems (e.g. ARINC 653). Although this tool allow us to divide our structure,

it still lacks some concepts of hierarchical scheduling.

2.6.2 Schedsim

Schedsim [17] is an open-source scheduling analysis tool. At present it handles periodic tasks, but

not aperiodic, nor sporadic jobs.

The current version of the tool implements the simpler scheduling algorithms like: Earliest

Deadline First (EDF) [3], Rate-Monotonic (RM) [3]. This scheduler simulator can be used for

education purposes or as a basic prototyping tool.

This tool has yet no support for hierarchical scheduling, which is one of our biggest concerns

when we are building hsSim.

Chapter 2. State of the art 11

2.6.3 Scheduling Simulator for Real-Time Systems

In 2005 Gisélia Cruz built a modular scheduling simulator tool. Built in Java, support to the

existing scheduling algorithms, but can only have one level of scheduling and do not support

TSP. The main difference from what we want to accomplish and this work it is the ability to

construct a multiple layer hierarchy and in each of those create partition to logically separate their

functionalities. The user will be able to configure how many layers he wish to build, from one to

an indeterminate number of them [18].

2.6.4 MOSS

MOSS Scheduling Simulator created in 2001 illustrates the behaviour of scheduling algorithms

against a simulated mix of process load. Allows configuration of number of process, blocking

time of each process. At the end a statistical summary will be presented of the simulation, even

allowing creation of new algorithms to be used in the simulations [19].

2.6.5 MAST 2

MAST 2 [20] uses a model that describes the timing behaviour of real-time systems which is

analysed via schedulability analysis techniques. MAST 2 introduces modelling elements for vir-

tual resources, abstracting entities that rely on the resource reservation paradigm. The focus of

resources it is not our main objective, it is however our objective to study the utilization bounds

of real-time systems with properties similar to the ARINC 653 standard but not stopping there,

always pushing forward on the complexity of those systems.

2.6.6 SPARTS

SPARTS is a real-time scheduling simulation focused on power-aware scheduling algorithms. Its

simulation engine is optimized by replacing cycle-step execution for an event-driven approach

centred on the intervals between consecutive job releases. Although a few similarities on how to

define task, the support for different scheduling algorithms the purpose of this work is the power

aware when our main purpose is to check how resources will accommodate the time needs of our

system. Hierarchical scheduling support is not mentioned, so we assume can not know for sure if

they do support it [21].

2.6.7 CARTS

CARTS is an open source compositional analysis tool for real-time systems, which automatically

generates the component’s resource interface. This tool does not perform simulation, so it relies

strongly on the author’s theoretical results. Although it is implemented in Java, does not take

advantage of latest object-oriented characteristics (inheritance, polymorphism, encapsulation - es-

pecially between the domain and user interface). Those are the main reasons why we chose not to

Chapter 2. State of the art 12

extend this tool as our project and start to develop hsSim from scratch in order to have a strong,

and well organized foundation to future development and extension of our own tool [22].

2.6.8 Grasp

Grasp is a trace visualization toolset. It supports the visualization of multiprocessor hierarchical

scheduling traces. Traces are recorded from the target system into Grasp’s own script-like format,

and displayed graphically by the Grasp Player. The Grasp toolset does not support simulation and

supports only a two-level hierarchy, where as hsSim simulates hierarchical systems with an arbi-

trary number of levels. The mention of Grasp in this work is to ensure our tool’s interoperability

features with other already existing tools, which in this case is a graphical display trace [23].

2.6.9 SymTA/S

SymTA/S is a model-based timing analysis and optimization solution with support to ARINC 653.

No specific mention is made to hierarchical scheduling, thus we can only assume it supports a

two-level hierarchy. A big amount of analysis tools seems to be available on SymTA/S but due to

its proprietary nature, we cannot fully assert its capabilities and it does not serve our purpose for

open, reusable, extensible tools for academic/scientific research [24].

Chapter 3

Problem analysis and solution design

3.1 Introduction

The focus of the creation of our tool is to create a tool which is flexible and modular, to en-

sure expansion of the work it is already done. This tool focus on the simulation of a diversified

group of real-time systems. Group of systems which include mono-processor standard one level

systems, and time- and space- partitioning (TSP) systems which have a two level hierarchy in

mono-processor platform, and now what we see as new, the ability for the user to create a mix

of the previous described systems on a single processor platform. So a system created by a user

using this tool can take advantage of TSP partitioning as well as creating an undetermined number

of levels if the user desires. This tool will allow the simulations to create totally independent par-

titions with their own task set that will be known by no one but themselves we grant the properties

required by TSP. Something that is new to this tool is the possibility of creating an undetermined

number of levels on top of each other, where each partition can have its own scheduling algorithm

associated, not being the same on all partitions. This creation of levels creates a hierarchical tree

that does not need to be balanced and which the lower level will attribute execution time to one

of the upper levels without know which jobs they have to execute allowing different criticalities

through the partitions.

Will be presented the process stages of hsSim a simulation tool for the aerospace community

with the goals of open, reusable, extensible and interoperable tool. Modularity is essential, so we

carefully used application of the object-oriented paradigm and software design patterns to reach

it. The employment of these design patterns helped us overcome some difficulties found and grant

easier ways to extend and create new modules to interact with the tool.

3.2 Analysis

Our main objective is to run simulations therefore that is our main use case scenario, where a

user introduces a set of parameters, hits run on the tool and a group of results is produced. We

understand as parameters for the tool we have as a listing of simulation time, tasks, partition and

13

Chapter 3. Problem analysis and solution design 14

scheduling algorithms, being those last ones already implemented on the tool, which are the basic

components necessary to run a simulation in our tool. The most important thing on this tool is the

passage of time, on how to view it on the perspective needed to run a simulation, we will explain

what we felt its best on the next section.

On Figure 3.1 we show the domain model we used to plan the creation of our tool, and which

were the basic connections needed to be made in order to structure the tool. A simulation will have

a scheduler on the lower level (being this scheduler one of the already implemented algorithms,

such as RM, EDF, LLF or any other implemented on the tool), which on top will have either tasks

or partitions. To schedule (choose which task or partition will execute next) partitions and tasks

we will resort to the algorithm. We also use an abstraction of SchedulableUnit that allows the

creation of multiple levels without having to specify on the code if it is a task or a partition. This

comes from using an abstraction of Explicit Deadline Periodic (EDP) resource model [25].

SimulatorUI

Simulation

SchedulableUnit

PartitionTask

Algorithm

RM EDF LLF

Scheduler

Job

...

Figure 3.1: Domain Model

A traditional real-time system is a flat (a one-level hierarchy). The UML diagram for such a

system’s domain is pictured in Figure 3.2. The system has a flat task set and a task scheduler. In

our tool capacity will represent what previously was called the worst-case execution time (WCET)

and the release time is what also was previously named ready time, the time when a job is ready

to execute and joins the ready queue and the remaining capacity is how much more time units

that job still needs to finish. This diagram shows that is not to hard create a tool to simulate the

execution of a simple and flat real-time system.

A two-level hierarchical scheduling such as those corresponding to TSP systems can be mod-

elled as seen in Figure 3.3. This model its limited to a system which has a root scheduler, on top

Chapter 3. Problem analysis and solution design 15

Figure 3.2: Traditional one-level system domain model

of that is a set of partitions and each partition has a set of tasks. This model its very strict, not

flexible to adjust to more complex and flexible systems. The system has a set of partitions and a

root scheduler coordinating which partition is active at each moment. Each partition then has a

task set of tasks and a local scheduler to schedule the jobs when time is attributed. This model

strategy thought adequate to traditional TSP systems exhibits some drawbacks: it is limited to two

levels, and it only allows homogeneous levels (i.e., partitions and tasks cannot coexist at the same

level).

3.3 Design

The design of this tool, was surrounded by two main ideas. First how to create an undetermined

level of partitions by abstracting partitions and tasks, which implications and necessities would

come from this idea. Second how should we view the passage of one unit of time, what would it

affect and how, which implications would have and how to make the internal tool clock move.

In the future where more and more complex systems should emerge, taking that in considera-

tion we envision that in a quite near future systems may require more than two levels of hierarchy

to manage their internal operations or sub-systems. The space agencies are now working on con-

verting their systems to support Time- and Space- Partitioning in order to try and reduce the costs

of space mission. To do so they will require prior verification, validation and simulation of their

systems. Since the complexity of these systems is very high a two-level hierarchy may not be

sufficient to support this new necessities, therefore we aim for an higher goal, the possibility of

creating more than two levels of hierarchy.

Since we anticipated using Java to implement hsSim, the following design decisions take

explicit advantage from facilities provided by the Java libraries.

Chapter 3. Problem analysis and solution design 16

Figure 3.3: Two-level hierarchical scheduling system domain model

3.3.1 Composite Pattern

The Composite pattern is designed to represent hierarchies of objects, and to allow the clients to

ignore the differences between the composition of objects and individual objects [26].

Figure 3.4 shows the representation of the Composite pattern as applied to our domain. Apply-

ing this pattern to our model of hierarchical scheduling allows breaking the limitation of levels of

the hierarchy and the need for the hierarchy to be balanced. The introduction to our system of the

interface AbstrackTask, which is a schedulable unit will allow us to represent tasks and partitions,

reducing the efforts in reaching a solution. Each time a partition is created, it is see by the system

as one more component therefore allowing it to have a scheduler and a task set.

3.3.2 Strategy Pattern

The Strategy pattern is a solution when we want to define a family of algorithms which should

be interchangeable from the clients point of view [26]. In designing of hsSim, we apply the

strategy pattern to encapsulate the different scheduling algorithms, as seen in Fig. 3.5. The Sched-

uler abstract class is the one that obtain the scheduling policy to this concrete execution. The

SchedulingPolicy interface extends Java Comparator interface, this way an instance of sub class

of SchedulingPolicy can be used to maintain the scheduler’s job queue ordered for the scheduling

Chapter 3. Problem analysis and solution design 17

«interface»
AbstractTask

getPeriod(): int
getCapacity(): int
getRelativeDeadline(): int
tickle()
...

Partition
getPeriod(): int
getCapacity(): int
getRelativeDeadline(): int
tickle()
...

Task
getPeriod(): int
getCapacity(): int
getRelativeDeadline(): int
tickle()
...

Scheduler
...

TaskSet
...

Component
...

System
...

root
1

1

1

*

Figure 3.4: N-level hierarchical scheduling system using the Composite pattern

algorithm to use it later. Each new Scheduler we implement will require its own scheduling policy

in order to properly execute with our domain. The remaining classes shown on the figure 3.5 like

Job or AbstractTask or Scheduler are a little more detailed, a few basic methods they will need to

provide in order for the system to execute and further detail will be given on the implementation

section.

3.3.3 N -level Hierarchy and Polymorphism

Due to the design decisions of using Composite and Strategy patterns, most operations can be

implemented without having to worry about which schedulers are present or the size of the hierar-

chy. By taking profit of the polymorphism, we can invoke methods on Scheduler and AbstractTask

without knowing their subtypes.

Lets us now see how, the most important operation of the system works. The tickle operation,

which simulates the advance of system execution by one time unit. The Figure 3.6 shows the UML

sequence diagram of the operation. The hierarchical tickle process is invoked on the root scheduler

without regards for what subtype of Scheduler it is. The right job to execute will be obtained

because the job queue is maintained accordingly ordered by the instance of SchedulingPolicy.

This selected job is then tickled, and tickles its parent AbstractTask without knowing if it is a Task

or a Partition.

The behaviour of the AbstractTask is a little different depending on which class it is repre-

senting. If it is a Partition instance, this invoke tickle on it own internal scheduler, a unit will be

reduced to the remaining capacity and will create an identical chain of polymorphic events until

Chapter 3. Problem analysis and solution design 18

Figure 3.5: Scheduling algorithm encapsulation with Strategy pattern

reach a task. When the tickle arrives to a job that is a result from a Task, same as in the other one

time unit will be reduced to the remaining capacity and the difference is that no more scheduler

will be tickled and this tickle() operation comes to an end.

It is our objective to decouple the simulation aspects (logging events) from the simulation

domain itself. On the one hand, we want changes in the simulated domain (partitions, tasks,

jobs) to be externally known of, namely by loggers, without the domain objects making specific

assumptions about these loggers behaviour or interfaces. On the other hand, we want to create new

loggers without coupling them to the domain objects or having to modify them later. the Observer

and Visitor patterns are an appropriate solution to our problem.

Chapter 3. Problem analysis and solution design 19

Figure 3.6: Sequence diagram for the schedule tickle operation

3.3.4 Observer and Visitor Patterns

The Observer pattern defines a mechanism where the observers are notified automatically of the

state changes of the objects they are watching. The observed objects have only to disseminate

their state changes to a vaguely known set of observers, in a way that is totally independent of

how many or who the observers are. The Visitor pattern defines a way to represent an operation

to be performed on a object hierarchy independently from the latter [26]. Observer pattern guides

loggers in choosing from what domain they wish to receive events, and the Visitor pattern helps

each logger define what to do with each kind of event.

Our application of these patterns in hsSim is pictured in Figure 3.7. We take advantage from

the simple Observer implementation provided by Java, with the Logger interface extending the

Observer interface. The Logger class implements the ILogger interface that extends our EventVis-

itor interface, which defines methods to process each type of event as well as Observer.

3.4 Summary

This section describes the stages, the objectives and the decisions made to the best of our possi-

bilities build an extensive and modular tool. To better understand why we aimed for an n-level

hierarchy we started by explaining the restrictions associated to the one and two level hierarchy’s

Chapter 3. Problem analysis and solution design 20

E

«interface»
Logger

E

«interface»
EventVisitor

+visit(JobReleasedEvent e): E
+visit(JobPreemptedEvent e): E
+visit(JobCompletedEvent e): E
...

JobCompletedEvent
+getJob(): Job
...

Event
+getTime(): int
+<E> accept(EventVisitor<E> visitor): E

JobReleasedEvent
+getJob(): Job
...

JobPreemptedEvent
+getPreemptedJob(): Job
+getPreemptingJob(): Job
...

Observable
addObserver(o: Observer)
removeObserver(o: Observer)
notifyObservers()
notifyObservers(arg: Object)
...

«interface»
Observer

update(o: Observable,
 arg: Object)

observers

notifyObservers(arg)
for (Observer o : observers) {
 o.update(this, arg);
}

java.util

...

Figure 3.7: Logger (Observer and Visitor patterns)

as well as their limitations. It is shown how it is possible to abstract the object to create a mul-

tiple number of layers, and how the system should work to ensure the proper propagation of the

information through the various levels.

To facilitate the abstraction within the system, and as it was decided to use Java for the devel-

opment of the tool, the use of Object Oriented Analysis and Design and Patterns will facilitate the

implementation.

We felt necessary to use the Composite pattern, to abstract partitions and tasks, cause in their

essence in the system they both will have a capacity associated, so both when time is attributed will

have to diminish one to that remaining capacity. The difference and this is where the Composite

pattern is most helpful is when the parent task is tickled as well, will be sorted if the job was a

task or a partition and if it was a partition then the partition’s internal scheduler will be tickled

and the process will be repeated. Using this abstraction we accomplish one of the main goals we

set on the beginning of this work, the ability to create multiple levels and apply them Hierarchical

Scheduling, although we must assure time and space partition not only between levels as well

within the same level.

Chapter 3. Problem analysis and solution design 21

Since another objective of this tool is modularity, the use of Strategy, Observer and Visitor

patterns makes it possible and easier. The Strategy pattern facilitates when implementing a new

scheduling algorithm to the tool, cause it is separated from the domain of the application. The

Observer and Visitor do the logging of status changes on the domain, the observer will catch them

and the visitor has a set of methods to be implemented according to the possible status changes

that are launched on the domain. Any user that implements a new class that implements the Visitor

can create a fully customizable output log, adapted to his own needs.

Chapter 3. Problem analysis and solution design 22

Chapter 4

Implementation and tests

In this chapter we describe how we have implemented the design and ideas described in the pre-

vious chapters. The Figure 4.1 shows the organization we saw fit to structure the solution to our

tool, more detailed information about each package will be given in the next sections. Will also

show some examples of simulations to test the assumptions we have proposed.

«access» pt.ul.fc.di.lasige.simhs.services.samplegen

pt.ul.fc.di.lasige.simhs.domain.events

pt.ul.fc.di.lasige.simhs.domain

pt.ul.fc.di.lasige.simhs.domain.schedulers

pt.ul.fc.di.lasige.simhs.services

pt.ul.fc.di.lasige.simhs.services.xml

pt.ul.fc.di.lasige.simhs.simulation

com.example.hssimextensions

«access»

«access»

«access»

Figure 4.1: Packages Diagram

4.1 pt.ul.fc.di.lasige.simhs.domain Package

This is our main package since the whole definition on how the application works is defined in

here, as well as all the constructors to every Java class necessary to run a simulation.

In this package the class AbstractTask is an abstract Java class that will be extended by both

Task and Partition and regulates the results to expect from them. Here is defined some of that

basic methods that need to be implemented such as, tickle(), as well as some already implemented

methods to return information about the abstract class.

23

Chapter 4. Implementation and tests 24

The Clock class that makes the time run so that the application can know that time has passed.

This clock is an ”abstraction” of what we call a real clock so it does not count seconds but does

count Units of Time, which is what we need on a simulation. This clock starts at time = -1 to

automatically create the jobs at time = 0.

The Component interface is used to represent the parent task or partition that represents each

Java object. It is this way we can differentiate one the tickle operation if the Partition scheduler

needs to be tickled or not.

The EventVisitor interface defines the methods and parameters of all the events that the do-

main can be released. The methods implemented on the simulation package will originate the

loggers of the tool.

The Job class extends the AbstractTask will generate Java objects that are the result of a new

instance of an AbstractTask on a given time of the execution, it will be here that the passage of

time will consume the remaining capacity of itself if time is attributed to it.

The JobQueue class implements an Iterable Job and it is responsible to keep this set of jobs

in order by a given policy, so when the scheduler call for the heir job it returns the first on this set.

The Partition class extends the AbstractTask and has independent TaskSet (a Set of tasks)

to be able to launch a job when its release time comes. Also has an internal Scheduler to schedule

his own jobs.

The RTSystem class creates the basic objects necessary in a simulation. It also responsible

for the lower level scheduler and for tickle the partitions or tasks on top of it.

The RTSystemEvent abstract class defines the basic behaviour of the events launched by the

domain, as well as arguments they need to carry, until they are handled.

The Scheduler is an Java abstract class that extends Observable and will regulate which job

will be executed first according to the chosen policy. It is also responsible for launching the jobs of

its taskset to the jobqueue to execute them, check if they have terminated or even if its deadline has

passed. Policies are implemented in the package with the schedulers, totally independent which

supports our modularity objective. Here will be launch some events such as, JobCompletedEvent,

JobLaunchedEvent,... that will be handled in other package.

The SchedulingPolicy interface extends Comparator that defines how the jobs are organized

on the set while waiting to be executed.

The Task class extends the AbstractTask and here is the defined how to create a task and his

behaviour through the execution of the simulation.

The TaskSet class structures the actions a task set need to have in order to create a task set.

The classes Scheduler and Job launch notifications that will be caught by the Observers (ex-

plained further ahead) of the most important actions inside the tool, such as job creations, job

execution, job termination, job deadline miss, partition execution, and partition terminate. With

this notifications users can create their own Logger classes and represent the events that happened

in the simulation as they please (see section 4.3).

Chapter 4. Implementation and tests 25

4.1.1 pt.ul.fc.di.lasige.simhs.domain.events Package

In this subsection we explain the structure of an event. An event is a Java class that extends

RTSystemEvent which on each of the different classes of events possible on their constructor there

is a reference to time of the event occurrence. The List of classes in this package are the ones

possible to be handled on the simulation extension classes users define.

4.1.2 pt.ul.fc.di.lasige.simhs.domain.schedulers Package

In this package are implemented some basic schedulers that represent their own categories, the

fixed task priority scheduling algorithms, the fixed job priority scheduling algorithms, and the

dynamic job priority scheduling algorithms. Any of this algorithms, or any new one that users

create can be used on simulations.

When extending the scheduler class, any possible algorithm imagined by the users can be

implemented. In this package is a catalogue that allows to instance the schedulers by name, to

facilitate their instantiation.

4.2 pt.ul.fc.di.lasige.simhs.services Package

The abstract classes IReader and AbsSystemsReader are the basic connection from the services

package to the domain package as shown in Figure 4.1, more specifically to the RTSystem class.

4.2.1 pt.ul.fc.di.lasige.simhs.services.xml Package

The XmlReader class that extends AbsSystemsReader is a class that allow users to create their own

simulation systems in an XML format. This class will read the XML from the file and construct

the system as specified in the file.

4.3 pt.ul.fc.di.lasige.simhs.simulation Package

The AbstractBasicSimulator abstract class structures the basic functions necessary to create a

simulation.

The BasicSimulation class is where we create tasks, partitions, schedulers, logger (will be

explained in the next paragraph) and define the amount of time we wish to simulate assuming it

starts on time equals to zero and moves one by one until the limit defined by the user.

The ILogger interface defined the behaviour of an observer to this application. Our provided

Logger prints to the screen some of the most important events such as job launch, job termination

and deadline misses. New loggers can be implemented to satisfy user needs, as simple as creating

a new class and implementing the ILogger interface.

Chapter 4. Implementation and tests 26

4.4 com.example.hssimextensions Package

To show that anyone can extend the work done by us, in this package we use the GraspLogger
class to create the structure necessary to make use of the Grasp Logger application that was not

developed by our team. This shows the objective of hsSim to be extensible by third parties that

do not need the source code to make this system grow. The use of Grasp was an example that

proved the point of extensibility which we since the beginning of this project we aimed for. Any

other tool, created by anyone else, could be used to create graphical or textual representations of

the results produced by our tool [1].

4.5 Tests

4.5.1 Two-level hierarchy

To illustrate how to create a two-level simulation we will now show an example of a creation of

a simulation read from XML and respective format. The use of XML facilitate non programmer

users to create simulations since there is no specific programming associated. The XML version

of a simulation should look like the following example.

<?xml version=”1.0” encoding=”Windows−1252” ?>
<system>

<time time=”20”></time>
<scheduler>RMScheduler</scheduler>
< partition capacity =”2” period=”10” deadline=”10”>

<scheduler>RMScheduler</scheduler>
<task capacity =”3” period=”10” deadline=”10”></task>
<task capacity =”4” period=”10” deadline=”10”></task>
<task capacity =”1” period=”5” deadline=”5”></task>

</ partition >
< partition capacity =”2” period=”15” deadline=”15”>

<scheduler>RMScheduler</scheduler>
<task capacity =”1” period=”6” deadline=”6”></task>
<task capacity =”1” period=”7” deadline=”7”></task>

</ partition >
</system>
}

To facilitate the understanding of this XML, we built a graphical representation of the system

we will simulate. The representation of the previous simulation is shown in Figure 4.2 which

represents the schematics of the system we created inside the simulator tool. In this example the

RM scheduler below is responsible for the scheduling of its abstract tasks, which in this case are

partitions that contain tasks, as they were tasks. This figure represents a two level hierarchy when

on the lower level we have a RM scheduler that will be responsible for scheduling two partitions

that are on top of it. Each partition have its own inner scheduler as well to schedule their own

tasks, which in this case are also RM schedulers. The partition represented on the left is composed

Chapter 4. Implementation and tests 27

by three tasks and the one of the right composed by two tasks.

Here we show an example of a system that is common nowadays (a two level hierarchical

system), we now show that our tool delivered the results shown in Figure 4.3 assuring it works

according to the specifications held in the XML. This representation format it is not perfect, only

an example that allows users to have some representation of the results, where on the left are the

tasks and partitions, whenever they get executed the partition time left decreases and a unit of time

in a task is used. The arrows represent the release time of each job of that task.

2, 10, 10 2, 15, 15

3, 10, 10 4, 10, 10 1, 5, 5 1, 6, 6 1, 7, 7

RM RM

RM

Figure 4.2: Two-level system

Figure 4.3: Results of the two-level system

4.5.2 Unbalanced three-level hierarchy

<?xml version=”1.0” encoding=”Windows−1252” ?>
<system>

<scheduler>EDF</scheduler>

Chapter 4. Implementation and tests 28

<partition id=”partition1” capacity=”50” period=”100” deadline=”100”>
<scheduler>EDF</scheduler>
<partition id=”partition1 1” capacity=”30” period=”100” deadline=”100”>

<scheduler>EDF</scheduler>
<task id=”task1 1 1” capacity=”10” period=”100” deadline=”100” />
<task id=”task1 1 2” capacity=”20” period=”100” deadline=”100” />

</partition>
<partition id=”partition1 2” capacity=”40” period=”200” deadline=”200”>

<scheduler>EDF</scheduler>
<task id=”task1 2 1” capacity=”25” period=”200” deadline=”200” />
<task id=”task1 2 2” capacity=”15” period=”200” deadline=”200” />

</partition>
</partition>
<partition id=”partition2” capacity=”40” period=”100” deadline=”100”>

<scheduler>EDF</scheduler>
<task id=”task2 1” capacity=”20” period=”100” deadline=”100” />
<task id=”task2 2” capacity=”40” period=”200” deadline=”200” />

</partition>
<task id=”task1” capacity=”10” period=”100” deadline=”100” />

</system>

20, 100, 100 10, 100, 100 25, 200, 200 15, 200, 200

20, 100, 100 40, 200, 200

10, 100, 100
50, 100, 100

30, 100, 100 40, 200, 200

40, 100, 100

EDF

EDF EDF

EDF

EDF

Figure 4.4: Three-level system

Figure 4.4 shows the idea that we had since the beginning, the possibility of creating a sim-

ulation of systems that were not limited to a maximum of two levels (the systems we encounter

nowadays) but allow the expansion of those systems in order to be able to simulate more complex

systems. The system represented on this figure shows that in this tool it is not required that on the

Chapter 4. Implementation and tests 29

same level are the exact same type of objects in order to execute simulations. This example shows

and two level hierarchy, similar to the one showed on the previous example, as well as, a partition

and a task on the level one of this simulation example, showing the benefits of using this tool, in

comparison with others.

As we did for the two-level system, shown in Figure 4.2 we did use the Grasp tool in order to

show the results of the simulation, said results are displayed in the Figure 4.5.

Figure 4.5: Results of the three-level unbalanced system

4.6 Summary

This chapter described how we structured out packages and what is achieved and where. The

domain package have all the classes that are needed to construct a simulation system. The events

package have all the events that can be launched by the domain. The services package allow

users to create their simulations using the XML format. Finally the simulation package where

our logger is achieved and is an example of what the “com.example.hssimextensions” package

represents. One of the goals we had when we started this project was flexibility to easily extend

this tool, which is this case as an example is done with Grasp.

Later in this chapter we show two simulations using the XML format and respective Grasp

output. The first simulation assures that we can simulate systems that are now working to test our

tool, systems complex but with room for improvement. That is why we envisioned the creation

of more than two levels, and the second example shows that, shows an example of a three level

system that is unbalanced. So any new users can just redefine the XML simulation and use the

Grasp to visualize the results of that simulation.

Chapter 4. Implementation and tests 30

Chapter 5

Conclusion

We have described the design and development of the hsSim, an n-level hierarchical scheduling

simulator. We emphasized the object-oriented analysis and design decisions, such as carefully

applying design patterns, through which we pursued the purpose of yielding an open, reusable,

extensible and interoperable tool.

Applying the Composite and Strategy patterns allows implementing system operations in-

dependently from, respectively, the hierarchy’s structure and size and the underlying scheduling

algorithms, furthermore, the application of the Observer and Visitor patterns allow great flexibility

to add new simulation loggers, since the simulation and logging aspects are decoupled from the

domain concepts.

At this precise moment we were able to build most of what we expected when we start this

project. We are able to use any scheduling algorithm existent plus any someone should invent in

the future. We can assure separation between partitions, assure only one branch of the tree can

execute at each unit of time, never more cause so far it is only focused for one CPU core. We

created separation between domain and the logging/observer which allow an easy way to create

new logger classes that users see fit.

This tool may help on the construction of systems on the verification phase. To see what can

be accomplished using our tool, we will release it under an open source license one Google Code

(http://code.google.com/p/hssim/).

Since this project has about just nine months, is safe to assume, we could not address and

create a totally complete tool, but we managed to create a good starting point for what could be a

great tool on real-time scheduling analysis for academic research. The future of this tool passes

by adapting the existing work to several cores since most of the design decisions had that in mind

it should not be to hard. The introduction of compositional analysis to assure that we never violate

the Time- and Space- Partition properties.

31

http://code.google.com/p/hssim/

Bibliography

[1] J. P. Craveiro, R. O. Silveira, and J. Rufino, “hsSim: an Extensible Interoperable Object-

Oriented n-Level Hierarchical Scheduling Simulator,” in 3rd International Workshop on

Analysis Tools and Methodologies for Embedded and Real-time Systems (WATERS 2012),

Pisa, Italy, Jul. 2012.

[2] R. I. Davis and A. Burns, “A survey of hard real-time scheduling for multiprocessor

systems,” ACM Comput. Surv., vol. 43, pp. 35:1–35:44, Oct. 2011. [Online]. Available:

http://doi.acm.org/10.1145/1978802.1978814

[3] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in a

hard-real-time environment,” J. ACM, vol. 20, pp. 46–61, January 1973. [Online]. Available:

http://doi.acm.org/10.1145/321738.321743

[4] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson, and S. Baruah, “A catego-

rization of real-time multiprocessor scheduling problems and algorithms,” in Handbook on

Scheduling Algorithms, Methods, and Models. Chapman Hall/CRC, Boca, 2004.

[5] G. Buttazzo, Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and

Applications. Kluwer Academic, 1997.

[6] W. Zhang, S. Teng, Z. Zhu, X. Fu, and H. Zhu, “An improved least-laxity-

first scheduling algorithm of variable time slice for periodic tasks,” in Proceedings

of the 6th IEEE International Conference on Cognitive Informatics. Washington,

DC, USA: IEEE Computer Society, 2007, pp. 548–553. [Online]. Available: http:

//dl.acm.org/citation.cfm?id=1524293.1524366

[7] J. Craveiro, J. Rufino, and P. Verissimo, “Time- and space-partitioned systems: History,

theory and practice,” AIR-II Tech. Rep. RT-11-03, 2011, survey, in submission.

[8] J. Rufino, J. Craveiro, and P. Verissimo, “Architecting robustness and timeliness in a new

generation of aerospace systems,” in Architecting Dependable Systems VII, ser. LNCS,

A. Casimiro, R. de Lemos, and C. Gacek, Eds. Springer Berlin / Heidelberg, 2010, vol.

6420, pp. 146–170.

33

http://doi.acm.org/10.1145/1978802.1978814
http://doi.acm.org/10.1145/321738.321743
http://dl.acm.org/citation.cfm?id=1524293.1524366
http://dl.acm.org/citation.cfm?id=1524293.1524366

Bibliography 34

[9] J. Craveiro, J. Rufino, and F. Singhoff, “Architecture, mechanisms and scheduling analysis

tool for multicore time- and space-partitioned systems,” SIGBED Rev., vol. 8, pp. 23–27,

Sep. 2011. [Online]. Available: http://doi.acm.org/10.1145/2038617.2038622

[10] B. Huber, P. Peti, R. Obermaisser, and C. E. Salloum, “Using RTAI/LXRT for partitioning

in a prototype implementation of the decos architecture,” in Proc. of the Third Int. Workshop

on Intelligent Solutions in Embedded Systems, 2005, pp. 3–16.

[11] D. Kim, Y.-H. Lee, and M. Younis, “SPIRIT kernel for strongly partitioned real-time

systems,” in Proceedings of the Seventh International Conference on Real-Time Systems

and Applications, ser. RTCSA ’00. Washington, DC, USA: IEEE Computer Society, 2000.

[Online]. Available: http://dl.acm.org/citation.cfm?id=580571.828849

[12] Y.-H. Lee, D. Kim, M. Younis, and J. Zhou, “Partition scheduling in APEX runtime

environment for embedded avionics software,” in Proceedings of the 5th International

Conference on Real-Time Computing Systems and Applications, ser. RTCSA ’98.

Washington, DC, USA: IEEE Computer Society, 1998, p. 103. [Online]. Available:

http://dl.acm.org/citation.cfm?id=600376.828716

[13] M. Masmano, I. Ripoll, and A. Crespo, “An overview of the XtratuM nanokernel,” 2005.

[14] [Online]. Available: http://www.ddci.com/products deos.php

[15] B. Andersson, “A preliminary idea for an 8-competitive, log2 dmax + log2 log2 1/u

asymptotic-space, interface generation algorithm for two-level hierarchical scheduling of

constrained-deadline sporadic tasks on a uniprocessor,” SIGBED Rev., vol. 8, no. 1, pp.

22–29, Mar. 2011. [Online]. Available: http://doi.acm.org/10.1145/1967021.1967024

[16] F. Singhoff, A. Plantec, P. Dissaux, and J. Legrand, “Investigating the usability of real-time

scheduling theory with the Cheddar project,” Real-Time Syst., vol. 43, pp. 259–295,

November 2009. [Online]. Available: http://dl.acm.org/citation.cfm?id=1644182.1644189

[17] http://sourceforge.net/projects/schedsim/.

[18] G. Cruz and G. A. Lima, “Simulador de escalonamento para sistemas de tempo real.” in IV

WTICG (Trabalho de Conclusão de Curso) - ERBASE 2006.p. 1-11, May 2006.

[19] MOSS Scheduling Simulator. [Online]. Available: http://www.ontko.com/moss/sched/

user guide.html

[20] M. G. Harbour, J. J. Gutiérrez, J. M. Drake, P. L. Martı́nez, and J. C. Palencia, “Modeling

distributed real-time systems with MAST 2,” Journal of Systems Architecture, 2012.

[Online]. Available: http://www.sciencedirect.com/science/article/pii/S1383762112000033

http://doi.acm.org/10.1145/2038617.2038622
http://dl.acm.org/citation.cfm?id=580571.828849
http://dl.acm.org/citation.cfm?id=600376.828716
http://www.ddci.com/products_deos.php
http://doi.acm.org/10.1145/1967021.1967024
http://dl.acm.org/citation.cfm?id=1644182.1644189
http://www.ontko.com/moss/sched/user_guide.html
http://www.ontko.com/moss/sched/user_guide.html
http://www.sciencedirect.com/science/article/pii/S1383762112000033

Bibliography 35

[21] B. Nikolic, M. Awan, and S. Petters, “SPARTS: Simulator for power aware and real-time

systems,” in Trust, Security and Privacy in Computing and Communications (TrustCom),

2011 IEEE 10th International Conference on, nov. 2011, pp. 999 –1004.

[22] L. T. X. Phan, J. Lee, A. Easwaran, V. Ramaswamy, S. Chen, I. Lee, and O. Sokolsky,

“CARTS: a tool for compositional analysis of real-time systems,” SIGBED Rev., vol. 8, no. 1,

pp. 62–63, Mar. 2011. [Online]. Available: http://doi.acm.org/10.1145/1967021.1967029

[23] M. Holenderski, R. J. Bril, and J. J. Lukkien, “Grasp: Visualizing the behavior of hierarchical

multiprocessor real-time systems,” July 2011.

[24] http://www.symtavision.com/symtas.html.

[25] A. Easwaran, M. Anand, and I. Lee, “Compositional analysis framework using EDP

resource models,” in Proceedings of the 28th IEEE International Real-Time Systems

Symposium, ser. RTSS ’07. Washington, DC, USA: IEEE Computer Society, 2007, pp.

129–138. [Online]. Available: http://dx.doi.org/10.1109/RTSS.2007.17

[26] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns: elements of reusable

object-oriented software. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,

Inc., 1995.

[27] A. Chandra and P. Shenoy, “Hierarchical scheduling for symmetric multiprocessors,” IEEE

Trans. Parallel Distrib. Syst., vol. 19, pp. 418–431, March 2008. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1340672.1340687

[28] J. Y.-T. Leung and J. Whitehead, “On the complexity of fixed-priority scheduling of

periodic, real-time tasks,” Performance Evaluation, vol. 2, no. 4, pp. 237 – 250, 1982.

[Online]. Available: http://www.sciencedirect.com/science/article/pii/0166531682900244

[29] I. Shin and I. Lee, “Periodic resource model for compositional real-time guarantees,” in

Proceedings of the 24th IEEE International Real-Time Systems Symposium, ser. RTSS

’03. Washington, DC, USA: IEEE Computer Society, 2003, p. 2. [Online]. Available:

http://dl.acm.org/citation.cfm?id=956418.956612

[30] G. Lipari and E. Bini, “A methodology for designing hierarchical scheduling systems,”

J. Embedded Comput., vol. 1, pp. 257–269, April 2005. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1233760.1233768

http://doi.acm.org/10.1145/1967021.1967029
http://dx.doi.org/10.1109/RTSS.2007.17
http://dl.acm.org/citation.cfm?id=1340672.1340687
http://www.sciencedirect.com/science/article/pii/0166531682900244
http://dl.acm.org/citation.cfm?id=956418.956612
http://dl.acm.org/citation.cfm?id=1233760.1233768

	Glossary
	List of Figures
	Introduction
	Motivation
	Goals
	Document Outline
	Contributions

	State of the art
	Real-Time Scheduling Theory
	Scheduling Algorithms
	Fixed task priority scheduling algorithms
	Fixed job priority scheduling algorithms
	Dynamic job priority scheduling algorithms

	Time- and space-partitioned systems (TSP)
	ARINC 653 Specification

	Time- and Space-Partitioned Systems and Architectures
	Hierarchical Scheduling
	Scheduling Simulator Tools
	Cheddar
	Schedsim
	Scheduling Simulator for Real-Time Systems
	MOSS
	MAST 2
	SPARTS
	CARTS
	Grasp
	SymTA/S

	Problem analysis and solution design
	Introduction
	Analysis
	Design
	Composite Pattern
	Strategy Pattern
	N-level Hierarchy and Polymorphism
	Observer and Visitor Patterns

	Summary

	Implementation and tests
	pt.ul.fc.di.lasige.simhs.domain Package
	pt.ul.fc.di.lasige.simhs.domain.events Package
	pt.ul.fc.di.lasige.simhs.domain.schedulers Package

	pt.ul.fc.di.lasige.simhs.services Package
	pt.ul.fc.di.lasige.simhs.services.xml Package

	pt.ul.fc.di.lasige.simhs.simulation Package
	com.example.hssimextensions Package
	Tests
	Two-level hierarchy
	Unbalanced three-level hierarchy

	Summary

	Conclusion
	Bibliography

