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À minha namorada,

por todo o apoio, amor e paciência que tiveste e tens para comigo e por seres a fonte da

minha força.

Ao meu pai, irmã e cunhado,
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Abstract

In fisheries world the knowledge of the state of the exploited resource, is vital to guar-

antee the conservation of the resource and the sustainability of the fishery itself. The

present study is focused on the Portuguese longline deep-water fishery that targets black

scabbardfish. This fish is a deep-water species and its landings have an important eco-

nomical value for Portugal. The fleet that explores the species is composed by 15 vessels

with a mean overall length of 17 m.

In the first part of this work Generalized Linear Model was used to standardize the

Capture-per-unit-effort, so the first aim is to improve the estimate of CPUE, which is

widely used as an index of stock abundance. This is done by reanalyzing the data stored

at Portuguese General Directorate from fishery industry and in particularly the logbooks,

which are used to record catch data as part of the fisheries regulation.

The second part focused on Technical Efficiency, which refers to the ability to mini-

mize the production inputs or the ability to obtain the maximum output. In this study

TE estimates were obtained through Stochastic Frontier Analysis. This methodology em-

braces two science fields, Economy and Statistics, and has been the subject of studies in

various areas but there are few applications to fisheries and the available ones are often

studied from the economic point of view rather than a statistical one.

This work aimed to analyze the quality of the logbooks and identify the relevant

factors to the CPUE estimation as the theoretical evaluation of SFA approach and the

identification of the statistical differences between several models. TE of each vessel was

estimated and was verify if the black scabbardfish fishery operating in Portugal mainland

can be considered efficient.

Keywords: Black scabbardfish, Catch-per-unit-effort, Generalized Linear Models,

Stochastic Frontier Analysis, Technical Efficiency.
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Resumo

Portugal é um páıs costeiro com cerca de 1200 km de costa, fazendo da pesca uma

das actividades mais importantes, económica e culturalmente. Uma das espécies mais

pescadas em Portugal é o peixe-espada preto, fazendo desta espécie uma das mais estu-

dadas devido ao seu impacto socioeconómico. Desde o século XVII que na Madeira, o

peixe-espada preto é pescado, mas só em 1983 foi iniciada esta pesca em Portugal con-

tinental, sendo Sesimbra a principal zona pesqueira. Assim sendo, foi de Sesimbra que

vieram grande parte dos dados que foram usados neste trabalho.

A regulação e a gestão da actividade pesqueira continuam a ser um dos maiores de-

safios, sendo assim essencial a avaliação do estado dos recursos explorados (neste caso o

peixe-espada preto). Tal avaliação é vital para procurar medidas que garantam a sus-

tentabilidade do recurso e da pesca.

Um dos ı́ndices de abundância mais utilizados é o CPUE (captura-por-unidade-esforço),

que é definido como a razão entre o total capturado e o total de esforço aplicado nessa

mesma captura. Apesar do seu frequente uso é sabido que o CPUE é influenciado por

outros factores para além do ńıvel de abundância. Assim, para minimizar essa influência,

o CPUE é estandardizado de forma a diminuir ou até remover os eventuais factores de

confusão. Para tal foram aplicados Modelos Lineares Generalizados (GLM), que não são

mais do que uma generalização dos Modelos Lineares. Essa generalização permite que a

distribuição da variável resposta pertença à famı́lia exponencial (para além da Normal),

e permite que a função de ligação entre a variável resposta e as variáveis explicativas seja

uma função monótona diferenciável.

Para estimar tal ı́ndice, a fonte de dados é frequentemente o diário de bordo. Na

União Europeia e desde a introdução de Poĺıtica Comum das Pescas, que reúne várias

medidas para garantir a sustentabilidade da pesca europeia, é obrigatório registar toda a

viagem desde a partida do porto até ao desembarque. Além disso, dado que não há dados

independentes da pesca, ou seja, não há estudos dirigidos para a recolha de dados através

de amostragem, a estimação deste tipo de ı́ndices acaba por depender quase exclusiva-

mente dos diários de bordo. Assim acabam por assumir uma importância vital quer na

monitorização quer na regulamentação da actividade pesqueira.

vii
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O preenchimento destes diários de bordo é feito pelos mestres das embarcações no

mar e é posteriormente introduzido numa base de dados pela Direcção Geral das Pescas

e da Aquicultura. Contudo há erros ou más interpretações no preenchimento dos diários

de bordo que podem de alguma forma enviesar quer os resultados quer as conclusões de

estudos neles baseados. Além de que os dados retirados dos diários de bordo reflectem

sempre imensa variedade nas espécies capturadas além da espécie alvo. Apesar disto, os

diários de bordo são a fonte de dados de vários trabalhos que visam estimar ńıveis de

abundância.

Desta forma, é necessário medir e quantificar o impacto que uma base de dados menos

cuidada pode ter na qualidade e na veracidade dos trabalhos que nela se baseiam. É este

objectivo que visa a primeira parte deste trabalho (chapter 2), usando os dados conti-

dos nos diários de bordo da frota que opera em Sesimbra e que tem como espécie alvo o

peixe-espada preto. Os factores e variáveis relevantes para a estimação do CPUE também

foram identificadas, assim como a respectiva influência.

Desta primeira parte do trabalho resultou uma análise extensiva e detalhada dos

diários de bordo, permitindo identificar os erros e até nalguns casos corrigi-los através

do conhecimento de trabalho anteriores e da comunidade pesqueira de Sesimbra. Análise

essa que recorreu a várias ferramentas estat́ısticas (p.e. Análise de Clusters, Tabelas

de Contingência, e Testes de Significância) e que foi suportada por análise gráfica (p.e.

Scatter-plots, QQ-plots e Histogramas). Foi posśıvel então comparar os resultados obti-

dos entre duas bases de dados, uma mais cuidada do que outra no que toca ao registo de

observações. Diferença essa que foi bem viśıvel na percentagem de explicação do modelo,

onde houve um decréscimo de 20 pontos percentuais.

Inspirada nestes resultados, surgiu a ideia de aplicar outra abordagem e usar outra

fonte de dados que não os diários de bordo. A sustentabilidade do recurso, para além de

outros factores, passa pela utilização eficiente de recursos de modo a garantir a renovação

constante do peixe para ńıveis óptimos. Tal eficiência só pode ser atingida minimizando o

desperd́ıcio dos recursos gastos durante a actividade pesqueira e maximizando o proveito

socioeconómico dessa mesma actividade.

Apesar deste conhecimento geral, nem todos os produtores (neste caso embarcações)

são bem sucedidos em atingir ńıveis satisfatórios de eficiência. Existem várias aborda-

gens para estimar e avaliar a eficiência duma actividade económica, em particular Análise

de Fronteiras Estocásticas (SFA), que combina dois campos da ciência, a Estat́ıstica e

a Economia. Esta metodologia foi desenvolvida por Aigner and Schmidt [1977] e por

Meeusen and van den Broeck [1977], e tem sido aplicada em vários campos e sido objecto

de várias pesquisas, sendo até considerada por alguns autores como a melhor abordagem

na presença da ineficiência. Dentro desta metodologia podem ser consideradas três tipos
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de eficiência: Técnica (Technical Efficiency), Custo (Cost Efficiency) e Lucro (Profit Ef-

ficiency).

Neste estudo apenas foi estimada a Eficiência Técnica que pode ser descrita como

a habilidade de, dado um resultado fixo (output), minimizar a quantidade de variáveis

(inputs) necessárias para obter tal resultado, ou a habilidade de maximizar o resultado

obtido de um conjunto de variáveis fixas. O conceito é simples e até tem havido um

crescente interesse em aplicar esta metodologia à actividade pesqueira, no entanto são

poucos os trabalhos realizados sobre este tema, e os poucos que há são estudados duma

perspectiva económica e não estat́ıstica. Assim este trabalho vem, de alguma forma, ten-

tar preencher esse vazio realizando esta abordagem do ponto de vista estat́ıstico.

A segunda parte deste trabalho (chapter 3) tem então o propósito de avaliar esta abor-

dagem teoricamente e verificar se é na prática uma ferramenta útil e de fácil aplicação.

Assim, dentro deste estudo, a eficiência técnica de todas as embarcações que compõem

a frota de peixe-espada preto de Sesimbra foram estimadas. Para tal foram recolhidos

dados através de inquéritos aos envolvidos nesta actividade, sendo obtido dados relativos

aos anos de 2009 e 2010.

Dos resultados foi posśıvel identificar diferenças entre várias abordagens e modelos,

avaliar a evolução da eficiência no tempo, procurando tendência e/ou sazonalidade e fi-

nalmente verificar que a pesca do peixe-espada preto desenvolvida em Sesimbra pode ser

considerada eficiente.

Palavras-chave: Peixe-espada preto, Captura-por-unidade-esforço, Modelos Li-

neares Generalizados, Análise de Fronteiras Estocásticas, Eficiência Técnica.
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Chapter 1

Introduction

On the Portuguese continental slope, in the south of ICES Division IXa, the long-

line fishery targeting black scabbardfish was initiated in 1983 at fishing grounds around

Sesimbra. In Madeira Island there is also a fishery targeting this species which dates

back to the 17th century. At present, the fleet targeting black scabbardfish in Portuguese

waters is composed by small vessels that still display artisanal features (see Figueiredo

and Bordalo-Machado [2007] for detailed description).

Longline fishery is a commercial fishing technique which uses (as the term indicates) a

long line, called mainline, with several branch-lines attached as Figure 1.1 shows. Fishing

operations usually start at dusk and two manoeuvres generally occur: the newly baited

longline gear is deployed into the sea and another longline gear, previously set in the last

24-48 hours is recovered, usually with the aid of a hauling winch. Thus the soaking time

of the fishing gear in sea is more than 24h and on average 46h. The preparation of one

single gear takes some time, since it can last more than half a day. According to the

stakeholders, in Sesimbra to preserve and guarantee the freshness of the fish, only one

fishing haul is made by trip.

At beginning, longlines had 3600-4000 hooks, however this number has been largely

increased over time, since in 2004 number of hooks ranged from 4000 to 10000. Fishing

activity takes place on hard bottoms along the slopes of canyons at depths normally rang-

ing from 800m to 1200m; though 1450m has been reached in the last years. This fishery is

also characterized by the fact that the fishing grounds are specific for each vessel, i.e. each

fishing vessel around Sesimbra has a specific and unique place to fish. This fishery takes

other deepwater species as a by-catch, i.e. during the fishery while attempting to catch

the target fish, they unintentionally end up capturing other species, being the Portuguese

dogfish and Leaf-scale gulper shark the principal species caught [Figueiredo and Gordo,

2005].

1



2 Chapter 1. Introduction

In the process of data collection, to evaluate the species abundance and the fishing

impact, there has been in EU, since the introduction of the Common Fisheries Policy

(CFP) in 1983, a requirement to record fish catches in a standard community format.

This is done by skippers that record the activity at sea and such information is contained

on the logbooks that might become an integral tool for monitoring and enforcement. In

fact, since there is no independent data from the fishery, as the one commonly collected

during directed surveys, the abundance index of black scabbardfish relies on information

collected from the fishery itself.

Therefore this knowledge, detailed in logbooks, is vital to define fishery policies and

this way to ensure a sustainable activity. Because of this importance is necessary to know,

through the logbooks (and other data sources), which variables and factors are important

in the performance of the fishery, being fundamental to this end, establish a correct mea-

surement for that performance (CPUE) and estimate the efficiency of the vessels involved

and what variables it depends.

This way in chapter 2 the quality of the logbooks data was analyzed in detail and

the significant factors for the estimation of the CPUE were identified. Whereas chapter

3 aimed apply Stochastic Frontier Analysis to estimate the Technical Efficiency of the

vessels involved in this fishery.

Figure 1.1: Longline scheme.



Chapter 2

CPUE study based on information

contained in logbooks

2.1 Introduction

Portugal is a coastal country with about 1200 km of coastline. Therefore the fishery

have been throughout history, a present activity in the culture and in the economy of this

country. This activity has become of crucial economic importance reinforcing the trade

and the related arts. For any fishery the knowledge of the state of the exploited resource

is vital for the evaluation of the fishing impact, as well as, for the proposal of management

rules that guarantee the sustainability of the resource and consequently of the fishery.

These were the motivations for this study focused on the black scabbardfish fishery,

which is the one of the most important fisheries ongoing in Portugal.

As mentioned above the data source used was the logbook. There are however errors

or misinterpretations on how to fulfil these logbooks that might hinder its use and pur-

poses related to stock status evaluation. Moreover data in logbooks sampled directly in

the field, often reflect the presence of a variety of other species or habitats targeted by

the fishermen, even within a single fishing trip. Consequently, some of the records in data

may not be relevant to evaluate the stock status of only one target species. Despite this

fact, the data contained in logbooks have been used in several working papers to calculate

measures of effort like Catch-per-unit-effort (CPUE).

CPUE is defined as the total catch divided by the total effort spent to obtain that

catch and is commonly used as an abundance index over time. That effort, in this case

fishing effort, may be measured by several variables (e.g. number of vessels, soaking time

and number of hooks) and in the recent years considerable energy has been applied by

researchers to develop reliable measures of fishing effort. Despite the frequent use, it is

3



4 Chapter 2. CPUE study based on information contained in logbooks

known that CPUE is influenced by many factors other than abundance. Thus to mini-

mize that unwanted influence CPUE is standardized, through this process the effect of

confounding factors is reduced or even removed [Maunder and Punt, 2004].

In statistic the fitted models have two main objectives, estimation of the model pa-

rameters and the prediction of the study variable values. In CPUE standardization the

appropriate modeling strategy is to build an estimation model, rather than a predictive.

To do so, it was used the Generalized Linear Model (GLM), which is recognized as a

valuable tool for the analysis of fisheries data [Maunder and Punt, 2004].

Linear Models (also known as Regression Model) are used when it is assumed that the

study variable (known as the response or dependent variable) has a linear relationship

(Y = βX + ε) with other variables (denoted as independent or explanatory variables)

and the distribution of the response variable is assumed to be Normal. However these

assumptions are rarely encountered in the real world and to overcome these restrictions

the GLM, which are a flexible form of linear models, were built.

The GLM generalizes Linear Models by allowing two new possibilities: the distribu-

tion of the response variable may come from any member of the exponential family other

than the Normal (e.g. Gamma, Poisson, Binomial...) and the link function (the link

between response variable and the independent variables) may come from any monotonic

differentiable function (e.g. inverse function, log function...) as detailed in McCullagh

and Nelder [1989]. Despite the limitations still imposed, the GLM have been acquiring

an increasingly important role in statistical analysis.

Summarizing, the first part of this work critically analyzes the data contained in the

logbooks from the Portuguese fleet operating with longline in Portugal mainland (Sesim-

bra). The quality and mainly the reliability of the logbooks and the consequences of the

absence of carefully collected data, were assessed and analyzed in detail. Finally after

being found the best way to set the CPUE, the factors relevant for the estimation of the

CPUE of black scabbardfish fishery were identified as well as their influence on the CPUE.

2.2 Materials and Methods

2.2.1 Data and Variables

Two different sets of logbook data were available: one covering the period from 2000

to 2005 and the second one covering the period from 2000 to 2008.

The first data set (covering five years) was, prior to this work, reviewed in detail.

This set included trip data on the following variables: vessel identification code (ID);

fishing gear; port and date of departure; port and date of arrival; number of fishing hauls
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(NHAUL); soaking time (ST); ICES rectangle where fishing haul took place (ERECTAN);

ICES subarea; caught species (SP); catch weight by species in kilogram (CATCH) and

number of hooks used in each fishing haul (HOOKS). This last variable was obtained by

detailed revision, so it was absent in the second data set.

This set had 9330 trips and since each trip had multiple records of different species,

they produce a total of 32136 records from 31 vessels. This means that, for the variables

SP and CATCH there were altogether 32136 observations (records) and for other variables,

since they are unique for the each trip, there were 9330 observations (trips).

The data set was then restricted to trips in which deep-water longline (LLS) was

used. This restriction was essential since the studied fishery only uses such fishing gear.

The restriction resulted in 7095 trips with 24235 records (around 75% of initial number

of records) and 28 vessels. Among these, positive catches of black scabbardfish were

only reported for 22 in a total of 5507 records, which in this case coincided with the

total number of trips, because a single species was being considered (about 60% of initial

number of trips). However information on the number of hooks used was available only

for 2514 trips (unfortunately, the fishermen do not usually fill this field in logbooks).

The second set included the data stored at the Portuguese General Directorate for

Fisheries and Aquaculture (DGPA) database. This information covered data on a trip

basis of all the variables mentioned before, except the HOOKS. In total the data set had

14319 trips with 77483 records (representing 102 vessels) but only 8764 trips with positive

catches of black scabbardfish where LLS was employed (around 61% of initial number of

trips).

Additionally information on the daily landings of vessels that landed in the Portuguese

ports were also available. However in this database each record contained only information

about the ID, port and date of arrival, fishing gear, SP and weight and selling price of

the fish landed. In this case the number of records regarding positive catches of black

scabbardfish was 52734, however due to multiple landings (in different ports) this number

was actually 52051 (see Table 2.1 for summarized information).

Table 2.1: Summary of Database about missing variables (x means present)

Database Period No of Records NHAUL ST HOOKS ERECTAN

1st Data set 2000-2005 5507 x x x x

2nd Data set 2000-2008 8764 x x x

Daily Landings 1989-2008 52051
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2.2.2 Exploratory Data Analysis

As previously stated, the analysis of both data sets was based on data restricted to

the trips where the longline was the fishing gear used (LLS) and the quantity caught of

black scabbardfish (BSF) was positive. Posteriorly three extra variables were considered.

The first one called TOTAL was added to the two data sets and corresponds to the total

weight caught per trip, i.e. the sum of the weight of all species caught in each trip.

As mentioned before the main by-catch species of the Portuguese black scabbardfish

fishery are the sharks Portuguese Dogfish - CYO and Leafscale Gulper Shark - GUQ.

Therefore the relationships between the CYO and GUQ catch values and the BSF catch

values were evaluated. To do so, catch values of CYO and GUQ were considered as well as

two new variables: i) PERC which corresponded to the percentage of BSF in the TOTAL;

ii) RATIO which gives the percentage of BSF catches in the sum of catches of BSF, GUQ

and CYO, i.e. CATCH of BSF /(CATCH of BSF + CATCH of CYO + CATCH of GUQ).

These two last variables were taking into consideration due to the fact that the weight of

the two deepwater sharks are very different from the weight of BSF.

Additionally there was also information on vessels technical characteristics, namely

length-over-all (XCOMP), gross registered tonnage (XTAB) and power of the engine in

horse power (XPOW). These features summarizes the main characteristics of the vessels

and are invariant throughout time according to stakeholders.

1st Data set

Data contained in the 1st set was analyzed to identify possible discrepancies on each

variable values, particularly on soaking time (ST), number of hauls (NHAUL) and number

of hooks (HOOKS). The analysis included i) graphical analysis (e.g. boxplots, histograms

and scatter plots) and ii) confronting the data with the knowledge on the exploitation

regime of the BSF fishery. The graphical analysis was made by plotting the CATCH

of BSF versus each of the these three variables. To clarify some of the identified dis-

crepancies, inquiries to stakeholders and to DGPA authorities responsible for database

maintenance were made.

The analysis continued by defining criteria to distinguish vessels with a regular activ-

ity targeting BSF from those for which the capture of BSF could be considered sporadic.

Such restriction was critical to eliminate confounding vessels and consequently confound-

ing observations in the data. This analysis was based on comparing the cumulative sum

of CATCH of BSF (per vessel) with the cumulative sum of total catch (of all species) and

in the estimation of the proportion of BSF in that sum.

The data set was then restricted to the subset of vessels considered as having a con-
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stant activity targeting BSF (15 vessels with 5440 records). To evaluate the relationship

between CATCH and the variables ST, NHAUL and HOOKS, Pearson’s correlation co-

efficients were estimated sustained by a graphical analysis. To exclude the potential

confounding effect of the factor vessel, similar analysis was applied separately to a subset

of three vessels selected using three criteria: i) they had the longest records; ii) they did

not have problematic observations in variables HOOKS and ST; and iii) together they

represented the majority of total records (51%).

The relationship between the two main by-catch species (GUQ and CYO) and the tar-

get species (BSF) was also evaluated using the two variables previously described (PERC

and RATIO). This analysis was done by estimating the Pearson’s correlation coefficient

between PERC (same for RATIO) and CATCH of CYO, CATCH of GUQ and CATCH

of CYOGUQ (i.e. CATCH of CYO + CATCH of GUQ).

The relation between the geographical location of fishing grounds (ERECTAN) and

the catch of BSF was also investigated. To this end, since ERECTAN is a categorical

variable, contingency tables were used to test the independence between the two variables.

In this analysis two spatially adjacent rectangles 05E1 and 05E0 were joined, because they

are next to each other and 05E1 is obviously an error since it is in the mainland (Fig.

2.1). The total catch of BSF (in kg) was discretized into the following levels: 0 – 500;

500 – 1000; 1000 – 1500; 1500 – 2000; 2000 – 2500; > 2500, which were defined taking

into account the minimum and maximum catches and to prevent further problems in the

application of independence tests. Particularly, the Pearson chi-square independency test

which requires that all expected frequencies have to be at least one and no more than

20% of the expected frequencies can be less than 5 [Zar, 1996].

Figure 2.1: ICES statistical rectangles map.
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2nd Data set

Through a crude analysis it was verified that the second data set contained a high

number of errors, as for example: i) trips with more than 10 fishing hauls (NHAUL),

such situation is impossible due to the duration of a fishing operation, when compared

with the duration of a fishing trip; ii) more than 30 times of the median value of black

scabbardfish caught per trip (CATCH of BSF), which is about 1 ton; iii) different soaking

times (ST) assigned for different species caught in the same haul and in the same trip

and iv) in some cases ST was swapped with the NHAUL (e.g. in the same trip, 12 hauls

with 1 hour of soaking time). These cases are just examples of the complexity and type

of errors that were present in a careless database. The procedure for the inspection and

correction of data was the same applied for the 1st data set, however the final result of

this correction was not so effective and efficient due to the data dimension and due to the

long time that was required for such correction.

Since this data set contained a lot of conflicting and less reliable observations, a cross-

checking was performed by comparing the BSF catches values recorded in the DGPA

database (from hereon denoted as LBSF) with the BSF catches values recorded in the

logbooks (2nd set and from hereon denoted as CBSF). Trips with extremely high discrep-

ancies were excluded from the database.

The procedure applied to this data set was similar to the one applied to the 1st set,

either in the treatment of the variables related to the by-catch species as well as in the

selection of vessels and statistical rectangles (ERECTAN).

2.2.3 CPUE standardization using Generalized Linear Model

Standardization of commercial catch and effort data is important in fisheries where

standardized abundance indices based on fishery-dependent data are a fundamental input

to stock assessments [Bishop, 2006]. In the standardization of the CPUE through GLM,

the variables to include in the model should be selected if there is an a priori reason to

suppose that they may influence catchability. However this selection must be careful,

because the inclusion of explanatory variables that are correlated should be avoided.

To avoid this problem, estimation of correlation measures and corresponding graphical

analysis were performed between some of the explanatory variables.

In GLM adjustment different combinations of explanatory variables were used and

several output models were tested to understand the relationship between the CATCH

of BSF (response variable) and the others variables. Because the 1st set contained more

detailed information on several variables, this set was used to evaluate which variables
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contribute more to explain the CATCH of BSF and to select the variables to enter in

the model adjustment of the 2nd set. The GLM can be expressed through the following

expressions:� The response variableY has a distribution that comes from a member of exponential

family, with E(YYY ) = µµµ and constant variance σ2;� The explanatory variables xxx1, ...,xxxp produce a linear predictor ηηη =
∑p

1xxxjβj, with

the βββ parameters to be estimated;� The link function g between the µµµ and ηηη may come from any monotonic differentiable

function ηi = g(µi), i = 1, . . . , n individual.

Several GLMs were adjusted to the final subset of data using a stepwise procedure and

this procedure can be summarized in the following steps:� Step 1 - Selection of the distribution (under exponential family) that best fits to

the response variable. Graphical analysis was performed and the distributions were

adjusted via the maximum likelihood method;� Step 2 - Selection of the variables to enter in the model. Maunder and Punt [2004]

suggest to always include in the model the factor year. In this case, since the tempo-

ral aspect is the major goal of the abundance analysis and given that both the year

as the quarter were available, these two variables (YEAR and QUARTER) were

always included in the models. The following explanatory variables were also con-

sidered: HOOKS, ERECTAN, XCOMP, XTAB, XPOW, PERCCYOGUG (which

represented the percentage of Leafscale Gulper Shark and Portuguese Dogfish on the

total weight caught, i.e. (CYO + GUQ) / TOTAL). The absolute values of CATCH

of CYO and GUQ were not used because, as mentioned before, their weights are very

different in scale from the weight of BSF. In the construction of this last variable

the missing values of CATCH of CYO and GUQ were replaced by zero;� Step 3 - Choice of a link function compatible with the distribution of the proposed

error for the data. This choice must be based on a set of considerations made

a priori [Turkman and Silva, 2000]. For the Gamma distribution the logarithmic

link function is recommended, whereas the identity link is recommended for the

Lognormal distribution;� Step 4 - Selection of the best model adopting a parsimonious criterion (model with

the smallest number of explanatory variables but a high fit to the data). The de-

viance function and the generalized Pearson χ2 statistic were estimated to assess
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the models quality of adjustment. Both statistics follow an approximate χ2 distri-

bution with n - p degrees of freedom, where n is the sample size and p the number

of parameters. However asymptotic results may not be specially relevant even for

large samples [McCullagh and Nelder, 1989]. The information criterion of Akaike,

denoted as AIC and based on the log-likelihood function, was also used. The lower

the value of AIC is, the better is the models adjustment. AIC is a flexible likelihood-

based approach, which is commonly used in model selection, having the advantage

of allowing the comparison of non-nested models. However has the disadvantage of

usually choose a complex model (with more variables) instead of a simpler one. To

measure the goodness of fit the adjusted coefficient of determination, which corre-

sponds to the ratio of the residual deviance with the null deviance and its respective

degrees of freedom (ρ2), was also used [Turkman and Silva, 2000];� Step 5 - Model checking by residual graphical analysis. Plots of residuals against

different functions of the fitted values, as well as residuals against an explanatory

variable in the linear predictor were performed (as suggested by McCullagh and

Nelder [1989]). Three residuals were considered and in the following expressions the

Turkman and Silva [2000] notation was used:

Standardized Pearson Residual:

RP
i =

yi − µ̂i√
v̂ar(Yi)(1− hii)

, (2.1)

where hii are the diagonal elements of the ’hat’ matrix, which describes the influence

of each observed value on each fitted value.

Anscombe Residual:

RA
i =

A(yi)−A(µ̂i)√
v̂ar(Yi)A′(µ̂i)

, A(x) =

∫
1

V 1/3(x)
dx, (2.2)

where V (x) is the variance function.

Standardized Deviance Residual:

RD
i =

sign(yi − µ̂i)
√
di√

φ̂(1− hii)
, (2.3)
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where φ̂ is the dispersion parameter estimate and di is the contribution of the i− th

observation for the deviation of the GLM.

Both the Pearson and Anscombe residuals are expected to have a distribution close

to Normal, however generally the distribution of the Pearson residuals is very asym-

metric for non Normal models. In the case of Deviance residuals, is recommended

by McCullagh and Nelder [1989] to plot against fitted values or transformed fit-

ted values (for each distribution family there is one specific transformation). It is

expected that the distribution of these residuals occurs around zero with constant

variance.� Step 6 - Identification of conflicting observations which can be categorized in three

different ways: leverage, influence and consistency.

An indicator of the influence of the i − th observation can be calculated by the

difference β̂̂β̂β(i)− β̂̂β̂β, where β̂̂β̂β(i) denotes the estimates without the extreme point i and

β̂̂β̂β with it. If this difference is high, the observation i can be considered influential

and its exclusion can produce significantly changes in the parameters estimates.

An isolated point of high leverage may have a value of hii such that nhii

p
> 2 [Mc-

Cullagh and Nelder, 1989], where hii are the diagonal elements of the ’hat’ matrix

and p is the trace of the ’hat’ matrix (i.e. the sum of diagonal elements). The ’hat’

matrix describes the influence of each observed value on each fitted value (i.e. the

influence of YYY in µµµ), therefore the leverage measures the effect of the observation in

the matching fitted value.

For the last kind of conflicting observation, an inconsistency observation can be

considered as an outlier. Williams [1987] suggests plotting the likelihood residuals

(detailed below) against i or hii to study the consistency of observation i.

RL
i = sign(yi − µ̂i)

√
(1− hii)(RD

i )
2 + hii(RP

i )
2. (2.4)

Note that RD
i and RP

i are respectively the Deviance and Pearson residuals detailed

before.
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2.3 Results

2.3.1 Exploratory data analysis

The knowledge already available for the longline fishery operation, allowed to identify

the major inconsistencies both in the 1st and the 2nd data sets. After a crude analysis the

most obvious inconsistencies corresponded to null soaking time (ST) and to more than 10

fishing hauls per trip. Other discrepancies consisted on dates of arrival earlier than date

of departure, however fortunately some of the discrepancies found were later corrected by

logbooks scrutiny and through enquiries to the fishermen. As mentioned previously, the

exploratory data analysis began to be made to the 1st set.

1st Data set

In this set the variables HOOKS was the first to be analyzed. The histogram of the

number of hooks (HOOKS) used per trip, showed the existence of a group of trips in

which the number of hooks was much smaller than the number commonly used. Note

that despite this fact, the quantity of fish caught was similar in both groups (as can be

seen in the scatter plot of Fig. 2.2). As a result it was considered only the trips in

which it was used more than 3000 hooks (taking into consideration the knowledge of the

stakeholders and the previous works on this matter).
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Figure 2.2: Histogram, Boxplot and Scatter plot of CATCH of BSF versus HOOKS.

As mentioned previously, before analyzing the other variables, it is important to dis-

tinguish between vessels with a regular activity targeting BSF and those for which the

capture of BSF can be considered sporadic. There was no value set a priori, but this
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selection was based on two variables: sum of CATCH of BSF of each vessel (Tab. 2.2)

and proportion of BSF catch values on the total catch considering the whole time period

(i.e. sum of CATCH of BSF / sum of TOTAL, for each vessel and for all trips made).

In this table vessels numbered as 2, 3, 9, 11, 14, and 19 (all in bold) had proportions of

CATCH of BSF lower than 1.6%, which is very low compared with the remaining vessels.

The vessel 5 (in bold), despite having 100% of CATCH of BSF only landed 300 kg of

BSF, which was very low when compared with other vessels. Based on these results the

subset of 15 vessels was considered for the remaining analysis resulting in a loss of only

0.5% of observations.

Table 2.2: Proportion of CATCH of BSF in the TOTAL catch from 2000 to 2005.

Vessel Total Catch of BSF Proportion

Vessel 1 507416 406747 0,802

Vessel 2 28106 44 0,002

Vessel 3 19551 129 0,007

Vessel 4 235603 204745 0,869

Vessel 5 300 300 1

Vessel 6 418782 387834 0,926

Vessel 7 1438811 1245804 0,866

Vessel 8 197534 151408 0,767

Vessel 9 6730 100 0,015

Vessel 10 232752 156885 0,674

Vessel 11 1396512 233 0,0002

Vessel 12 1050712 925657 0,881

Vessel 13 484794 457478 0,944

Vessel 14 139252 552 0,004

Vessel 15 774293 607795 0,785

Vessel 16 394740 339338 0,860

Vessel 17 436599 345385 0,791

Vessel 18 158184 132950 0,841

Vessel 19 109800 1750 0,016

Vessel 20 259081 165732 0,640

Vessel 21 862399 759973 0,881

Vessel 22 40065 23520 0,587

To evaluate the relation between CATCH of BSF and the variables ST, NHAUL and

HOOKS (potential measures of effort), Pearson’s correlation coefficients were estimated

(Tab. 2.3) sustained by a graphical analysis. All the correlations obtained were relatively

low even when different combinations of the three variables were considered (e.g. NHAUL

× ST).

Beginning with the evaluation of the variable NHAUL, for most of the fishing trips

only one fishing haul was performed, remaining only four trips in which two hauls were
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recorded (Fig. 2.3), and yet when two fishing hauls were performed the catch value of BSF

did not increased. This lack of variability did not allow to consider the number of hauls as

a variable, so NHAUL was not taken into account in the remaining analysis. Notice that

this variable was the only one, among the three variables, for which the independency

hypothesis with CATCH of BSF was not rejected, with p-value ≈ 0.8.

As for the variable ST, this had a quite large range, however using the knowledge

available on fishery, ST < 24h are almost impossible since the fishing gear stays at the

fishing ground at least 24h. Thus the values of ST lower than 24h were considered as

errors, such errors could probably resulted from a generalized misinterpretation of the

variable by fishermen. Instead of including the soaking time they introduced the travel

time to the fishing ground. Thus this variable may loose its utility in this study, however

through the Pearson’s independency test, the independency was rejected with p-value ≈
6e-06.

In the analysis of the ST it was verified, through a graphical analysis, the existence

of two main groups of records (ST < 24h and ST ≥ 24h). However in Table 2.4 the trips

with ST ≥ 24h were only registered in 107 trips and it was not possible to identify a

vessel or a group of vessels that systematically reported ST ≥ 24h. This way this variable

was not taken into account for the remaining analysis, since ST did not correspond to the

soaking time of fishing haul in sea.

The analysis of HOOKS showed that, among the three variables, this one was the most

significant (null hypothesis rejected with p-value ≈ 0), in sense that it had the highest

value on Pearson’s coefficient (Tab. 2.3) and the plot showed a slight positive trend (Fig.

2.3). Despite these facts, the variable did not achieve high indices of linear correlation

with CATCH of BSF (only 0.31).

Table 2.3: Pearson’s coefficient between CATCH of BSF and the variables HOOKS, ST and NHAUL.

Pearson’s Correlation HOOKS ST NHAUL

Catch of BSF 0.31 -0.09 0.005

Next it was considered the subset of three vessels (the choice was based on three

criteria detailed before) and it was considered only the variables HOOKS and ST (Tab.

2.5). For this subset the Pearson’s correlation coefficient, between CATCH of BSF and

HOOKS, decreased when compared with the global value. For ST the correlation coeffi-

cient increased for Vessel 3, but the improvement was not significant nor regular among

the vessels (with positive and negative values). Therefore since neither of the variables

showed significant differences in correlation with CATCH of BSF, the 15 vessels were

again considered.
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Figure 2.3: Plot of CATCH of BSF against the variables: NHAUL, ST and HOOKS.

Table 2.4: The total number of records and the number of records with at least 24h of ST per Vessel.

Vessel No of records No of records with ST ≥ 24h

Vessel 1 510 3

Vessel 2 299 0

Vessel 3 682 72

Vessel 4 693 0

Vessel 5 120 0

Vessel 6 246 1

Vessel 7 468 0

Vessel 8 316 0

Vessel 9 695 0

Vessel 10 265 30

Vessel 11 270 0

Vessel 12 90 0

Vessel 13 328 1

Vessel 14 426 0

Vessel 15 31 0

Table 2.5: Pearson’s coefficient between CATCH of BSF and HOOKS / ST for a subset of three vessels.

Vessel / Variable HOOKS ST

Vessel 1 0.14 -0.16

Vessel 2 -0.08 -0.09

Vessel 3 0.19 0.09

To study the correlation between catches of BSF (represented by RATIO and PERC)

and the main by-catch species (CYO and GUQ), the estimates of Pearson’s correlation

coefficient were estimated and are presented in Table 2.6. All the estimates were signif-

icant (p-value ≪ 0.01 for all estimates) and greater than 0.5 (in modulus). Therefore
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catch levels of sharks affects the catch levels of BSF, particularly catches of CYO as can

be observed in the variable RATIO. This analysis supported the fact that the catches of

the two deep-water sharks have significant negative correlation with CATCH of BSF.

Finally regarding the ERECTAN variable, the null hypothesis of independence be-

tween ERECTAN and the catches of BSF was rejected (X2 ≈ 1035 and p− value ≈0).

Table 2.6: Pearson’s coefficient between PERC/RATIO and CATCH of: CYO; GUQ and CYO+GUQ.

Pearson’s Coefficient CATCH of CYO CATCH of GUQ CATCH of CYOGUQ

PERC -0.53 -0.52 -0.68

RATIO -0.75 -0.65 -0.70

For the adjustment of the GLM model a new factor associated with the vessels char-

acteristics was created. It is important to note that there are different vessels, both in

characteristics and in the total catch of BSF, therefore it is necessary to quantify the

weight and the significance of these differences in characteristics on the total catch of

BSF.

Considering each vessel as a factor is clearly an exaggeration, when it comes to degrees

of freedom and because there are vessels that are similar in their main features. Therefore

the vessels were grouped by the variables that best describes them: XTAB; XPOW and

XCOMP. The levels of these factors correspond to the groups identified after a cluster

analysis was applied to the matrix of vessel’s characteristics. As those characteristics were

found to be highly correlated (Tab. 2.7), one of them should be enough to characterize

the vessels, consequently four different cases were considered and groups of vessels were

defined based on the results from the following cluster analysis (Fig. 2.4):� In the first case all the three vessels characteristics were considered at once. Due

to the high correlation between them, it was used for clustering the Mahalanobis

distance, which is the most appropriate distance function for these cases. This way

five clusters were identified with the complete-linkage approach, which resulted in

the assembly of a new discrete variable: CLUSTER-ALL with five levels.� Then it was considered a feature at a time. For the cluster analysis on XTAB,

the results were added as CLUSTER-XTAB, and for the variables XCOMP and

XPOW the procedure was similar. In all three analyzes the Euclidean distance

and the average-linkage approach were used. For all approaches four groups were

identified.
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Table 2.7: Pearson’s correlation coefficient between vessels characteristics.

Variables XTAB XCOMP

XCOMP 0.91

XPOW 0.93 0.85

Figure 2.4: Dendrogram for all characteristics (left above), for XCOMP (right above), for XTAB (left

below) and for XPOW (right below).
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Finally the empirical distribution of CATCH of BSF was analyzed through a graphical

analysis. In Figure 2.5 it appears that the variable had a positively skewed distribution

(Lognormal and Gamma characteristics) and the same figure suggests the Gamma as the

distribution that best fits to the data instead of the Lognormal (by the QQ-plot). Despite

this fact, both distributions were later considered in the models adjustment.
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Figure 2.5: Graphical analysis of CATCH of BSF (left) and logarithm of CATCH of BSF (right).

2nd Data set

This set contained much more errors than the first one, therefore the catch data on

black scabbardfish reported at the logbooks (from hereon denoted as CBSF) was compared

with the corresponding data from daily landings (from hereon denoted as LBSF). The

analysis of their empirical distributions (Fig. 2.6) clearly indicated the existence, in the

former, of extreme values, while the distribution of the LBSF seems to be much more in

agreement with the empirical distribution observed for the 1st data set (Fig. 2.5).

The corresponding difference between BSF catches registered in logbooks and daily

landings was further assessed by computing the linear regression between them (Fig. 2.7).

Although a close agreement was expected, high discrepancies were observed (Pearson’s

correlation coefficient around 0.65). To trim the data the 99% quantile of the absolute

differences between CBSF and LBSF was determined and all the observations which

exceeded that quantile were removed from the 2nd set, excluding this way the higher

differences between the two data sets. Figure 2.8 plots the empirical distribution of the

new restricted data set which become quite similar and the variability of points around

the regression line is much lower. Pearson’s coefficient correlation was higher than 0.95,

which indicates a strong linear relation between them.
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Note however that the unmatched observations, because of discrepancies in dates, were

not taken into account in this procedure. Therefore it was not possible to calculate the

differences for all trips recorded in 2nd set, this way conflicting observations still remained

in this set. After a detailed analysis of these observations, it was decided to remove the

CBSF above the 99.5% quantile and below the 0.5% quantile.

Summarizing, were applied two criteria, the first one excluded the higher discrepancies

between CBSF and LBSF, and the second one removed the extreme values of CBSF. At

the end, comparing the two empirical densities, the improvement is clearly visible and

after these restrictions 78 vessels remained in the data set (Fig. 2.9).
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Figure 2.6: Empirical Distribution of BSF from logbooks (left) and from daily landings (right).
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Figure 2.7: Catch of BSF from logbooks plotted against Catch of BSF from landings records.

The criteria adopted for the 1st data set, to differentiate vessels with a regular activity

targeting BSF, was also applied to the 2nd data set. However an additional criterium

was included, since this set had a higher number of vessels. This way, the total number

of trips was also used to avoid vessels with a very short time activity. To identify these

vessels, for each vessel the number of trips was plotted against total CBSF (Fig. 2.10).
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In the left plot it was easily identified 16 vessels, based on catches values and number

of trips (inside the superior ellipse). However on the right side (which is a zooming of the

left side of the figure) the selection becomes more difficult, because the number of trips

and the catches values are lower. Nevertheless 11 vessels were distinguished in the dashed

ellipse, which started the activity recently. Applying these criteria only 27 vessels from

78 vessels remained in the data, although this reduction just reflects a decrease of about

2.5% of number of observations (trips) and a loss of 3% of total of CBSF (sum of catch

of BSF for all vessels).
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Figure 2.8: Empirical Distribution of BSF from logbooks (left) and from landings records (right), using

the observations with differences below 99% quantile.
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Figure 2.9: Density of all observations and observations between 0.5% and 99.5% quantiles of CBSF.

Although the categorical variable ERECTAN was also available for the 2nd set, the

level of detail was much lower than in the 1st set. In fact there were about 16% of records

under the category IX, which encompass all the ERECTAN commonly frequented by the

vessels and which results in an undoubtedly great loss of information, even further in such

an important variable. This way, after this loss only 22 vessels were considered for the

application of the GLM.
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Figure 2.10: Total catch of BSF versus number of trips (left) and the same plot zoom in (right).

2.3.2 Generalized Linear Model

1st Data set

The 1st set is a subset of the 2nd set, that was fully scrutinized in a previous work.

So the GLM procedure was used first on this set as a way to identify the most relevant

explanatory variables. In the model the response variable was CATCH of BSF (not be

confounded with CBSF from 2nd set). In this method was also considered the factors

YEAR and QUARTER, the interaction between them, the factor ERECTAN, the vari-

ables HOOKS and PERCCYOGUQ and finally the group index levels identified on cluster

analysis (CLUSTER). For detailed information about the models applied in this section

see Annex 1.

The adjustment of the GLM was done through a stepwise procedure; which select

the best model by AIC criterion (minimum), which tends to choose complex models with

many variables. Several explanatory variables were essayed and the adequacy of the fit

was evaluate based on the estimated generalized Pearson statistic and on the Deviance

statistic. The p-value in both statistics was always 1, so the selected model was never

rejected and Table 2.8 summarizes the results for all models tested for this data set.

Information criterion (AIC) should not be compared across different data sets, thus the

models used for this set should all have the same response variable. Therefore it was not

possible to compare the models with Gamma distribution with model 6, which uses the

Lognormal distribution. However a substantial advantage in using information-theoretic

criteria is that they are valid for nonnested models, so it was possible to compare all

models with Gamma distribution since they have the same data set.
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Using the Gamma distribution the best model was the number 2, because it had the

lowest AIC and dispersion parameter, and the highest ρ2. In this model the variable

HOOKS, which is missing from the 2nd data set, was included. But despite this, the

model 5 (forcibly without HOOKS) showed that in fact the HOOKS was not so influen-

tial, because the values of dispersion parameter and the ρ2 remained the same and the

increase in AIC is very slight.

With Lognormal distribution, model 6 presented the highest ρ2 (0.62) among all mod-

els (including the Gamma models) but this was not greatly different from the one obtained

in model 2 (0.61). Since the two models came from different distributions and the ρ2 were

identical, the comparison relied on the dispersion parameter; which showed that model

6 (0.184) deviates much more than model 2 (0.115). This is a strong indicator of the

difference in goodness of fit.

Table 2.8: Resume of GLMs applied for 1st data set.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Distribution Family Gamma Gamma Gamma Gamma Gamma Lognormal

Link Function Log Log Log Log Log Identity

Null Deviance 423.69 423.69 423.69 423.69 423.69 538.51

Residual Deviance 174.91 161.36 170.00 166.99 163.06 202.40

ρ2 0.58 0.61 0.59 0.60 0.61 0.62

Dispersion Parameter φ 0.131 0.115 0.126 0.123 0.117 0.184

AIC 16645 16554 16612 16594 16564 1291.7

Selected Variables:

YEAR X X X X X X

QUARTER X X X X X

YEAR × QUARTER

ERECTAN X X X X X X

HOOKS X X X X

PERCCYOGUQ X X X X X X

CLUSTER X X X X X X

The residual analysis of models 2 and 6 (Fig. 2.11) presented a better fit for model 2

in relation to the hypothesis of normality of the residuals (mean around zero and constant

variance). Two normality test were applied, the Lilliefors (test 1) and the Pearson test

(test 2). For model 2, the normality hypothesis was not rejected (p-value ≈ 0.1 for test 1

and p-value ≈ 0.5 for test 2), whereas for model 6 the both tests rejected it with p-value

≈ 0. Thus according to the normality test, model 2 gave a better fit than the model 6.

Standardized deviance residuals were plotted against fitted values for the two models.

McCullagh and Nelder [1989] said that if the data are extensive, which happened in this

case, no analysis can be considered complete without this plot. The null pattern of this
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plot is a distribution of residuals with zero mean and constant range, i.e. no trend, which

is verified in Figure 2.12.
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Figure 2.11: Histogram of Pearson’s Residuals (left), QQ-plot of Pearson’s Residuals (right) from Model

2 (above) and from Model 5 (below).
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Figure 2.12: Standard Deviance Residuals plotted against Fitted Values from Model 2 (left) and from

Model 6 (right).

The residuals were also plotted against the explanatory variable PERCCYOGUQ for

both models 2 and 6 (Fig. 2.13). No trend was observed in the linear predictor for both

models, which once again was a good indicator [McCullagh and Nelder, 1989], since the

residuals are suppose to be uncorrelated with explanatory variables. Note nevertheless

greater dispersion on the residuals from model 6.
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Figure 2.13: Deviance Residuals plotted against PERCCYOGUQ from Model 2 (left) and from Model

6 (right).

Therefore, according to all the goodness of fit indices (AIC, dispersion parameter and

ρ2), considering the residual graphical analysis and the normality test, and following a

parsimonious criterion, the chosen model was model 2.

2nd Data set

As the best model from the 1st set was obtained with the vessels grouped by XCOMP,

the same cluster analysis was applied to the 2nd set. The repetition of this analysis was

necessary due to the fact that the number of vessels in this data set was higher than in

the previous one. Unfortunately, it was not possible to have access to this variable in one

vessel, however as this vessel was one of the less influential in the data set (represented

1% of total trips), it was removed, resulting on 21 vessels with 6976 observations. For

this restricted data set, the cluster analysis resulted in the identification of three groups

(Fig. 2.14).

The remaining set of explanatory variables selected by the GLM model adjusted to

the 1st set were then used in the adjustment of GLM model to the 2nd set. Both Gamma

distribution (Log link function) and Lognormal distribution (Identity link function) were

considered. The model based on Lognormal distribution was considered to verify that

the adjustment results were always worse for the 2nd set, independently of the family

distribution (Tab. 2.9).

The percentage of explanation (ρ2) declined about 33%, and the dispersion parameter

(for the model 1, with Gamma distribution) doubled, which clearly shows the significance

of this worse adjustment.

Considering from hereon only the model 1, for both estimates of the generalized Pear-

son statistic and Deviance statistic, the p-value was equal to 1. However the graphical
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analysis of the residuals suggested that the Normal assumption was not fulfilled (Fig.

2.15). Compared to the 1st set, Pearson residuals deviates a lot from a normality hypoth-

esis, while the Anscombe Residuals did not do as bad, however both residuals failed in

the normality test, i.e. the normality hypothesis was rejected with p-value ≈ 0.
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Figure 2.14: Dendrogram of XCOMP from cluster analysis.

Table 2.9: Resume of GLMs of 2nd data set.

Model 1 Model 2

Distribution Family Gamma Lognormal

Link Function Log Identity

Null Deviance 2833.6 3314.5

Residual Deviance 1662.5 1896.3

ρ2 0.412 0.426

Dispersion Parameter φ 0.227 0.273

AIC 106361 10754

Standardized deviance residuals against fitted values (µ̂) showed a wide variation of

the residuals around zero (Fig. 2.16). Since the Gamma distribution was applied, the

transformation 2log(µ̂) suggested by McCullagh and Nelder [1989] was also tried, however

the plot did not improve.
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Figure 2.15: Histogram (right above) and QQ-plot (left above) of Pearson Residuals. Histogram (right

below) and QQ-plot (left below) of Anscombe Residuals from Model 1
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Figure 2.16: Density of the Standard Deviance Residuals versus Fitted Values (left) and versus Trans-

formed Fitted Values (right)from Model 1

The analysis proceeded with the identification of isolated departures (conflicting ob-

servations). The measures suggested by McCullagh and Nelder [1989] and by Turkman

and Silva [2000] were followed. In Table 2.10 are presented the absolute frequencies for all

discordant observations for each vessel. It was chosen to focus only on influential obser-

vations, since these are the observations that can change the coefficients. Unfortunately
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were detected 600 influential observations, which represents almost 10% of the data. So

it was verify and identify the more influential vessels and there was one that stood out

from the others, the vessel 4 (in bold). This vessel had almost 100% of the influential

observations, so it was tried the same model but this time without vessel 4. However, the

improvement was insignificant (Tab. 2.11).

Table 2.10: No of conflicting observations per Vessel.

Vessel No of Observations Leverage Influential Consistency % of Influential

Vessel 1 528 65 48 18 9%

Vessel 2 94 0 5 5 5%

Vessel 3 470 2 21 24 4%

Vessel 4 104 99 100 2 96%

Vessel 5 146 0 4 8 3%

Vessel 6 502 25 74 41 15%

Vessel 7 402 1 5 4 1%

Vessel 8 415 38 50 18 12%

Vessel 9 208 1 21 30 10%

Vessel 10 425 4 11 7 3%

Vessel 11 31 12 14 4 45%

Vessel 12 615 22 21 2 3%

Vessel 13 61 1 0 0 0%

Vessel 14 376 23 28 9 7%

Vessel 15 62 2 18 16 29%

Vessel 16 501 13 18 8 4%

Vessel 17 513 12 18 9 4%

Vessel 18 443 2 72 103 16%

Vessel 19 412 3 30 19 7%

Vessel 20 321 30 33 12 10%

Vessel 21 347 2 9 10 3%

Total 6976 357 600 349 9%

Table 2.11: Resume of GLM without Vessel 4.
Model 3

Distribution Family Gamma

Link Function Log

Null Deviance 2817.8

Residual Deviance 1646.9

ρ2 0.414

Dispersion Parameter φ 0.229

AIC 104767
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2.4 Discussion

This part of the work had the ultimate purpose to identify the most important and

useful variables and information to assess stock abundance. Prior to that, it was necessary

to identify the errors and misunderstandings regarding the filling of logbooks, which are

currently the most important source of data. Such errors can lead to erroneous and biased

conclusions and the consequences are quite visible when the results from both data sets

are compared. For the first set (which was subject to revision and reintroduction of data)

the chosen model explains almost 62% whereas the same model explains less than 42% in

the second set. So the first conclusion is that a good filling of the logbooks is an essential

starting point to a good statistical analysis and in fact the data contained in logbooks is

far from the desired quality.

Regarding to the purposes related to the CPUE, the logbooks are record on trip basis

and some of the variables (such as ERECTAN and PERCYOGUQ) are trip dependent,

so this way the CPUE was defined by catch per trip. To identify the variables relevant for

the estimation of the CPUE, is important to find which variables should be considered in

the GLM procedure. After a detailed analysis, based on graphical and cluster analysis,

correlation coefficients, contingency tables and the knowledge of the stakeholders, it was

concluded that the variables such as the temporal (YEAR and QUARTER) and spa-

tial indicators (ERECTAN) are essential in understanding and assessing the abundance.

Moreover the vessels characteristics (economical variables), although many of them are

strongly correlated and biological variables, such as the presence of natural predators

(PERCCYOGUQ), are also important to assess the stock status.

All of these variables and additionally the HOOKS, which is correlated with catch

values, were considered in GLM. These same variables, based on GLM results, should be

considered in CPUE standardization. In fact, if the logbooks were correctly filled, vari-

ables such as HOOKS and ST could be more significant for the evaluation and estimation

of the stock. Nevertheless we conclude that the variables where the filling should be more

careful, is the capture of both the target species and accessory species.

As seen throughout this work, by the nature of the variables, fishing activity is a

process very complex that encompasses many branches of science (Biology, Economy, Ge-

ology). Hence, other variables should be explored such as: skipper skills and education;

number of workers in sea and in land; occurrence of technical problems and presence or

absence of marine mammals.

However, although these variables are qualitative, there is a strong possibility that

they will be erroneously filled, so the defenders of the logbooks as a valid and a reliable

source of data, must be aware of this errors and possible misleading analysis. To account
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for that source of errors, it would be important to invest in guiding stakeholders in order

to explain the importance of a proper filling of logbooks.

No less important is the filtering that the fishery regulators should do when enter-

ing the data in databases, in order to detect discordant observations and then to assess

the true facts. Taking into consideration that it might interfere with the fishing process,

it is especially important to instruct fishermen and skippers about the importance of a

correct filling of the logbooks and only combining the work of scientists with the fishing

community will the sustainability of sea and of artisanal fishing be achieved.
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Chapter 3

Fishery technical efficiency through

stochastic frontier analysis

3.1 Introduction

The management and regulation of fisheries continues to be one of the challenges of

the marine world. These issues are particularly important for Portugal, one of the coun-

tries with the highest fish consumption in the world. The sustainable management of

fish stocks and the efficient utilization of resources must guarantee the renewal of the fish

resource to optimum levels, minimize waste and maximize the social and the economic

benefits of the fishing activity [Flores-Lagunes and Schnier, 1999].

The maximization of social and economic benefits from fisheries requires the produc-

tion to be optimized, which involves maximizing the profit and minimizing the expense

associated with the exploitation. Despite this, it is known that not all producers are

equally successful in solving the optimization problems by utilizing the minimum inputs

required to produce the maximum output, i.e. not all producers are succeed in achieving

a high level of efficiency [Kumbhakar and Lovell, 2000].

Several approaches are available for the evaluation of the efficiency of an economical

activity, in particularly, Stochastic Frontier Analysis (SFA). This approach is commonly

used, since in the presence of inefficient producers, SFA emerges as the best theoretical

approach. This procedure was developed in the 70´s by Aigner and Schmidt [1977] and

by Meeusen and van den Broeck [1977] and since then has been subject to considerable

econometric research in several fields such as health, agriculture and industry.

SFA allows to estimate the efficiency of each producer, as well as, the average efficiency

of all producers involved in the production process and can be applied to estimate and

analyze Technical Efficiency (TE), as well as Cost and Profit Efficiency.

31
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In fisheries there has been a growing interest on estimating the efficiency of fishing

vessels using SFA [Flores-Lagunes and Schnier, 2007], however relatively few applications

of SFA to fisheries are available. Such deficiency may result from the complex relationship

between resources and their exploitation. Underlying dynamics of the resource is taking

place at the same time as the fishing process and changes on fish resource status might

play an important role on efficiency of the fishing vessels.

To study a process so complex and dynamic, as is the artisanal fishing, the Stochastic

Frontier Analysis embraces two science fields, Economy and Statistics. This methodology

has been applied in fishing activity, however studies are often conducted from the eco-

nomic view point, rather than a statistical one. Therefore, this work aims somehow to fill

that void and analyze the results from this perspective. To this end, several approaches

were tested and several comparisons were made, both from the theoretical and practical

perspectives.

The second part of this study aimed to theoretically evaluate the SFA approach as well

as the statistical properties of their estimators. Under this study, the Technical Efficiency

(TE) of each vessel, that compose the Sesimbra black scabbardfish fleet was estimated

and the efficiencies were compared between vessels. This chapter had also the purpose of

evaluating the evolution of technical efficiency in time, compare the results from logbooks

with the results from daily landings, identify the differences between several models and

finally verify if the black scabbardfish fishery in Sesimbra can be considered efficient.

3.1.1 Technical Efficiency

In the present study due to the type of data available, only Technical Efficiency was

analyzed. Theoretical aspects of TE will be presented using the work of Kumbhakar and

Lovell [2000] as main reference. According to them, Technical Efficiency (TE) refers to

the ability to minimize the production inputs for a given output vector, or the ability to

obtain the maximum output from a given input vector. The chapter 2 of the same book,

presents a detailed review of TE properties.

If applied to fisheries, TE can be interpreted as a way to measure the relationship

between the inputs related to fishing operation and the outputs (usually the weight of

fish caught). Several input variables have been considered in studies on fishing efficiency.

For example Pascoe and de Wilde [2001] found that characteristics of vessels can directly

affect the efficiency of individual fishing vessels. In fact, characteristics such as age and size

of vessel, have a significant impact on the level of technical efficiency according to Tingley

and Coglan [2005]. Squires and Kirkley [1999] suggested that much of the difference
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between vessels may be due to differences in skipper skill, which is one of the most

difficult variable to quantify and measure.

The TE is defined as the ratio of the observed output (yyy - response variable), to the

maximum feasible output (f(xxx;βββ)) the production frontier, which is a function of the

inputs (explanatory variables):

TETETE =
yyy

f(xxx;βββ)
. (3.1)

This way, since f(xxx;βββ) is the maximum feasible, TE ≤ 1. Two different approaches

are commonly used to estimate the parameters of the f(xxx;βββ):� Deterministic Envelopment Analysis (DEA):

yyy = f(xxx;βββ) · TETETE. (3.2)� Stochastic Frontier Analysis (SFA):

yyy = f(xxx;βββ) · exp{vvv} · TETETE. (3.3)

The first method (DEA) ignores the effect of random errors in the model, so under

this method the variation in the output is entirely attributed to the lack of efficiency, i.e.

inefficiency.

In the SFA two sources of variation on output are considered; one associated with

random noise and the other related to technical efficiency. Under SFA the stochastic

production frontier consists of two parts: a deterministic part f(xxx;βββ) common to all pro-

ducers and a producer-specific part exp{vvv}, which captures the effect of random variation

produced by the environment on each producer.

Comparing the two methods the latter method (SFA) is preferred, because when ap-

plying DEA there is a high risk of improperly attributing unmodeled random variation

to technical efficiency variation.

Two main groups of data can be used in SFA: Cross-sectional data and Panel data. In

Cross-sectional data there is only one observation of each producer and provide a snapshot

of producers and their efficiencies. Panel data provide more reliable evidence, allowing

the monitoring of each producer performance over time, since more than one observation

for producer is available. With panel data, SFA can be deal either by assuming that the

TE is time-invariant or by considering the TE time-variant.
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Cross-Sectional Data

For this type of data the model is expressed as:

yi = f(xi;βββ) · exp{vi} · TEi, (3.4)

where yi is the output (can be a vector) of producer i and xi is a vector of N inputs

(n = 1, . . . , N), for i = 1,. . .,I. The production frontier f(xi;βββ) is a function of the

inputs, βββ is a vector of parameters to be estimated while TEi is the technical efficiency of

producer i, which is usually expressed as exp{−ui}. Both exp{−ui} and exp{vi}, which
represents the random error (statistical noise), are producer-specific.

To estimate TEi, the production frontier takes the log-linear Cobb-Douglas form (log

transformation). The Cobb-Douglas form is widely used in economic studies and through

it the stochastic production frontier model can be written as:

ln yi = β0 +
∑

n

βn · ln xni + vi − ui. (3.5)

Considering εi = vi − ui, the same model can be expressed as:

ln yi = β0 +
∑

n

βn · ln xni + εi. (3.6)

Inefficiency and random errors are multiplicative, that for simplicity appear as expo-

nential functions since with logarithm transformation the errors become additive. The

inefficiency error component ui has to be nonnegative since TEi ≤ 1, thus all producers

operate under or at their stochastic production frontier, according as u > 0 or u = 0.

The estimation of TEi and ui is performed in two steps, the first one involves the

estimation of all parameters of the model and in the second step the technical efficiency

is estimated for each producer. For the first step there are two methods, the maximum

likelihood method (MLE) and a modified ordinary least squares (MOLS). In MOLS pro-

cedure the first step is divided into two parts, in the first one OLS is applied to generate

consistent estimates of all parameters of the model, apart from the intercept. In second

part of the estimation, consistent estimates of the intercept and the parameters describing

the structure of the two error components are obtained. For both methods it is necessary

to impose the following assumptions:� Noise error component vi is assumed to be iid N(0, σ2), which is an assumption

commonly imposed in other approaches.� Inefficiency error ui is assumed to be iid and can be:
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– Truncated Normal Model, particulary the Half-Normal Model (µ = 0);

– Gamma Model, particulary the Exponential Model (θ = 1).

These distributions are selected because they are flexible and appropriate for non-

negative and positively skewed variables, as in case of ui error.� The errors vi and ui are independently distributed of each other and of the regressors

(inputs).

Despite the different distributions that can be consider, there are evidences that the

producers TE rankings are insensitive to the distribution assumed. This derives from the

fact that the error distribution affects all producers and so the change in the distribution is

the same for all producers. Thus it is recommended to use a relatively simple distribution

rather than a flexible and a complex one. With this kind of data Schmidt and Sickles

[1984] noted two main drawbacks:� I) Maximum likelihood estimation of the stochastic production frontier model and

the subsequent separation of technical inefficiency from statistical noise, both require

strong distributional assumptions.� II) Maximum likelihood estimation also requires an assumption that the technical

inefficiency error component be independent of the regressors, although it is not

unlikely that inefficiency be related with the regressors.

These limitations are avoidable if the type of data is panel instead of cross section. A

panel (repeated observations on each producer) contains a lot more information than does

a single cross section. Therefore, it is to expected that access to panel data will enable

some of the strong assumptions to be relaxed or result in estimates of technical efficiency

with more desirable properties.

Panel Data

The structure of the model with panel data is similar to the cross-sectional model, but

in addition a index time t is associated with the output, inputs and random error (vvv). So

using the same notation as for the cross-sectional data, the SFA model can be written as:

ln yit = β0 +
∑

n

βn · ln xnit + vit − ui, (3.7)

if technical efficiency (associated with the uuu error term) is time-invariant, or



36 Chapter 3. Fishery technical efficiency through stochastic frontier analysis

ln yit = β0 +
∑

n

βn · ln xnit + vit − uit, (3.8)

if technical efficiency is time-variant for I producers indexed by i and by t = 1, . . . , T

time periods, with T fixed for all producers.

The assumption that TE is time-invariant (i.e. constant over time) is strong and the

longer the panel is, the more desirable it is to relax this assumption. However for a

production process where the technical changes are rare or unlikely in the time period

considered, the time-invariant approach is more suitable, since under this approach the

number of parameters to be estimated are less.

In the Time-Invariant Technical Efficiency model, the parameters can be estimated

by three different methods. Two of them do not impose any distributional assumption

for the inefficiency error term and are designated as fixed and random effects model. The

third method uses MLE and can be considered as a generalization of the method used in

cross-sectional data.� Fixed-Effects Model: In this model is allowed that the ui be correlated with the

inputs and with vi. Thus the requirements are ui ≥ 0 and as usually vi are iid

(0, σ2) and uncorrelated with regressors. The inefficiency errors are treated as fixed

effects and thus are producer-specific, consequently can be considered β0i = (β0−ui)

as producer-specific intercepts, and the model can be expressed as:

ln yit = β0i +
∑

n

βn ln xnit + vit. (3.9)

In this approach, OLS is used to estimate the parameters for any of three ways:

suppressing β0 and estimating I producer-specific intercepts; retaining β0 and esti-

mating (I - 1) producer-specific intercepts; or applying the within transformation,

in which all data are expressed in terms of deviations from producer means and the

I intercepts are recovered as means of producer residuals. Then β0 is determined

as:

β̂0 = max
i

{β̂0i}, (3.10)

and the ui as:

ûi = β̂0 − β̂0i. (3.11)
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This estimator guarantees that all ûi are nonnegative. The estimates of technical

efficiency are obtained as:

T̂Ei = exp{−ûi}. (3.12)� Random-Effects Model: The ui (still nonnegative) are treated as random. Under

this method ui are now assumed to be uncorrelated with the regressors and with vi,

the assumptions made on vi remain. No distributional assumption is made on ui.

The model may be expressed as:

ln yit = β∗
0 +

∑

n

βn ln xnit + vit − u∗
i , (3.13)

where u∗
i = [ui − E(ui)] and β∗

0 = [β0 − E(ui)]. This random-effects model fits

exactly into the one-way error components model in the panel data literature, be

estimated by the standard two-step generalized least squares. Once β∗
0 and βns have

been estimated, the u∗
i can be estimated from the residuals by means of:

û∗
i =

∑
t

(
ln yit − β̂∗

0 −
∑

n β̂n ln xnit

)

T
. (3.14)

Estimates of the ui are obtained by:

ûi = max
i

{û∗
i } − û∗

i . (3.15)� Maximum Likelihood: In this method the same assumptions as those assumed for

the cross-sectional are also imposed. The methodology to estimate the parameters

is identical to the one expressed for the cross-sectional data, which is obtained from

the present one when T=1.

Despite these different approaches to estimate parameters, comparisons on the basis

of Monte Carlo method showed that the three techniques generate similar results and are

likely to generate similar efficiency rankings (Kumbhakar and Lovell [2000]).

In Time-Variant Technical Efficiency model, as with the time-invariant model, two es-

timation approaches are available. An approach in which time-variant technical efficiency

is modeled using fixed or random effects and a MLE approach. As in other models, the

first objective is to obtain estimates of the parameters describing the structure of pro-

duction technology, and the second objective is to obtain producer-specific estimates of

TE. With an I × T panel it is not possible to obtain estimates of all intercepts βit, the N
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slope parameters and σ2
v . This way what is usually done, is write uit in a special form. In

this work it was followed the Coelli [1996] model specification, known as Efficiency Effects

Frontier (EEF) which can be expressed as:

yit = xitβxitβxitβ + vit − uit, (3.16)

where yit represents the logarithm of the output, xitxitxit the logarithm of inputs, βββ and vit

are defined as earlier. The inefficiency error term is assumed to be time-variant and

independently distributed as truncations at zero of the N(mit, σ
2
u), where mit = δzitδzitδzit.

uit = zitδzitδzitδ + wit. (3.17)

The δδδ parameter is a vector of parameters to be estimated, zitzitzit is a vector of variables

which may influence the efficiency and wit is defined by the truncation of the Normal

distribution with zero mean. It is easy to note that this model encompasses the others

models, by setting the δδδ parameters equal to zero. Then in this model the major purpose

is to test if the δδδ parameters are zero, to know if the z variables affect or not the producer

efficiency.

Despite the z variables may influence directly the producer inefficiency, has to be

noted that these variables are, by the construction of the model, hierarchically below the

explanatory variables (x variables). This approach was considered to verify if the efficiency

shows seasonality, i.e., to verify if the quarter is, as in the last chapter, a significant factor.

Although it is assumed that there are T time periods for which N observations are

available, it is not necessary that all the producers were observed for all time periods.

3.1.2 Estimation of Technical Efficiency

Cross-Sectional Data

For cross-sectional data it was said that the estimation procedure was divided in two

steps. For the first step were defined two methods (MLE and MOLS), now we describe the

second step. Note that the uuu and vvv are independently distributed and their distributions

are already known.� Step 1: Density function of vvv and uuu are considered and based on them:

◦ The joint density function of uuu and vvv is obtained as the product of the two

density functions, since they are assumed to be independently distributed;
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◦ The joint density function of uuu and εεε (εεε = vvv−uuu) is then obtained by replacing

vvv by εεε;

◦ The marginal density function of εεε is obtained by integrating the previous

function in order to uuu.� Step 2: Estimation of the expected value of technical efficiency:

◦ E(exp{−uuu}) (Lee and Schmidt [1978]), which is in agreement with the defi-

nition of TE.

◦ 1 − E(uuu) (Aigner and Schmidt [1977]), which is an approximation of the

previous estimate, since it includes only the first term of the Taylor series.� Step 3: Based on the joint density function of uuu and εεε and the marginal density

function of εεε, can be calculated:

◦ f(u|εi) = f(u,ε)
f(ε)

.� Step 4: There are two point estimators for ui:

◦ ûi = E(u|εi) (Conditional Mean);

◦ ûi = M(u|εi) (Conditional Mode).� Step 5: Finally the technical efficiency of each producer i is estimated as:

◦ TEi = exp{-ûi}, where ûi can be E(u|εi) or M(u|εi);

◦ TEi = E(exp{−u}|εi), as proposed by Battese and Coelli [1988].

The expected value estimator (step 2) proposed by Lee and Schmidt [1978] is prefer-

able since the estimator suggested by Aigner and Schmidt [1977] is an approximation. The

two point estimators of TEi (step 5) provide different results, being the second prefer-

able, based on the same grounds that support the choice on step 2. Unfortunately for this

type of data, TE estimators produces unbiased but inconsistent estimates of technical

efficiency.

As example we describe the estimation procedure for two cases, assuming Half-Normal

distribution and assuming Truncated Normal distribution, for the inefficiency error term

(ui).� Cobb-Douglas production frontier using cross-sectional data and assuming Half-

Normal distribution for the inefficiency error:

i) vi ∼ iid N(0, σ2
v),
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ii) ui ∼ iid N+(0, σ2
u).

Given the independence assumption between uuu and vvv, the joint density function of

both errors is:

f(u, v) =
2

2πσvσu
· exp

{
− u2

2σ2
u

− v2

2σ2
v

}
. (3.18)

Since εεε = vvv − uuu, the joint density function takes now the following expression:

f(u, ε) =
2

2πσvσu
· exp

{
− u2

2σ2
u

− (ε+ u)2

2σ2
v

}
. (3.19)

Thus the marginal density function of εεε, which is given by integrating f(u, ε) in

order to uuu, can be written as:

f(ε) =
2

σ
· φ
( ε
σ

)
· Φ
(
−ελ

σ

)
, (3.20)

where σ =
√

σ2
u + σ2

v and λ = σu

σv
.

The Φ(·) and φ(·) represent the standard Normal cumulative distribution and den-

sity functions. This way the conditional distribution of uuu given εεε takes the following

expression:

f(u|ε) =
exp

{
− (u−µ∗)2

2σ2
∗

}

√
2πσ∗

[
1− Φ

(
−µ∗

σ∗

)] , (3.21)

which results on the density function of a variable distributed as N+(µ∗, σ
2
∗).

The parameters can be rewritten as µ∗ = −εσ2
u

σ2 and σ2
∗ = σ2

uσ
2
v

σ2 , which determines

that, the mode of the distribution can be used as an estimator of uuu:

ûi = M(u|εi) =





−εi

(
σ2
u

σ2

)
if εi ≤ 0

0 otherwise
(3.22)

The TE estimator of each producer can be obtained from:

T̂Ei = E(exp{−u}|εi) =
1− Φ

(
σ∗ − µ∗i

σ∗

)

1− Φ
(
−µ∗i

σ∗

) · exp{−µ∗i + σ2
∗/2}, (3.23)

where µi∗ = −εiσ2
u

σ2 and σ2
∗ = σ2

uσ
2
v

σ2 .
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Normal distribution:

i) vi ∼ iid N(0, σ2
v),

ii) ui ∼ iid N+(µ, σ2
u).

Passing some steps which are analogous to those presented in the previous model,

the conditional distribution can be expressed as:

f(u|ε) =
exp

{
− (u−µ̃)2

2σ2
∗

}

√
2πσ∗

[
1− Φ

(
− µ̃

σ∗

)] , (3.24)

where µ̃i =
(−σ2

uεi+µσ2
v)

σ2 .

The ui and TEi estimators are:

ûi = M(u|εi) =
{

µ̃i if µ̃i ≥ 0

0 otherwise
(3.25)

T̂Ei = E(exp{−u}|εi) =
1− Φ

(
σ∗ − µ̃i

σ∗

)

1− Φ
(
− µ̃i

σ∗

) · exp{−µ̃i + σ2
∗/2}. (3.26)

Panel Data

For the panel data, we describe now the other procedure of estimating TE, when there

is no fixed or random effects. Although there are two different methodologies (time variant

and invariant) the steps in both procedures are identical. For both only the maximum

likelihood method was performed and the steps detailed below corresponds to the time-

invariant approach. The procedure is similar to one made in the cross-sectional data and

includes:� Step 1: The density functions of vvv = (vvv1, . . . , vvvT ) and uuu are used to estimate:

◦ The joint density function of uuu and vvv, which are independently distributed;

◦ The joint density function of uuu and εiεiεi (εiεiεi = vivivi − uuu);

◦ The marginal density function of εεε.� Step 2: The conditional distribution f(u|εεε) is calculated based on the joint density

function f(u,εεε) and the marginal density function f(εεε).
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In this case the inefficiency error term uuu is a vector of I dimension, that corresponds

to the number of producers. For each producer i the random error vivivi is a vector of T

dimension, being T the number of time periods considered (the same applies to εεε).

For this kind of data were performed two approaches. In the time-invariant approach,

the same cases considered in cross-sectional data are now described, and in time-variant

approach the EEF model was described.� Cobb-Douglas production frontier using panel data and assuming Half-Normal dis-

tribution:

i) vit ∼ iid N(0, σ2
v),

ii) ui ∼ iid N+(0, σ2
u).

The density function of vvv, which is now time dependent, is given by the following

expression:

f(vvv) =
1

(2π)T/2σT
v

· exp
{−v′

vv
′
vv

′
v

2σ2
v

}
. (3.27)

Given the independence assumption between u and vvv, the joint density function is:

f(u,vvv) =
2

(2π)(T+1)/2σT
v σu

· exp
{
− u2

2σ2
u

− v
′
vv
′
vv
′
v

2σ2
v

}
. (3.28)

The joint function of u and εεε = (v1 − u, . . . , vT − u) is given by:

f(u,εεε) =
2

(2π)(T+1)/2σT
v σu

· exp
{
−(u− µ∗)

2

2σ2
∗

− εεε′εεε

2σ2
v

+
µ2
∗

2σ2
∗

}
, (3.29)

where µ∗ = − σ2
uT ε̄

σ2
v+Tσ2

u
, ε̄ = 1

T

∑
t εit and σ2

∗ = σ2
uσ

2
v

σ2
v+Tσ2

u
.

Thus the marginal density function of εεε, which is given by integrating f(u,εεε) in

order to u, can be written as:

f(εεε) =
2[1− Φ(−µ∗/σ∗)]

(2π)T/2σT−1
v (σ2

v + Tσ2
u)

1/2
· exp

{
− εεε′εεε

2σ2
v

+
µ2
∗

2σ2
∗

}
. (3.30)

The conditional distribution of u given εεε is given by:
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f(u|εεε) = 1

(2π)1/2σ∗[1− Φ(−µ∗/σ∗)]
· exp

{
−(u− µ∗)

2

2σ2
∗

}
, (3.31)

which results on the density function of a variable distributed as N+(µ∗, σ
2
∗).

Considering the mode of this distribution as the point estimator of technical ineffi-

ciency, results on:

ûi = M(u|εεεi) =
{

µ∗i if εεεi ≤ 0;

0 otherwise
(3.32)

with µ∗i = − σ2
uT ε̄i

σ2
v+Tσ2

u
.

The point estimator µ∗i has to be nonnegative, which means − T ε̄iσ2
u

σ2
v+Tσ2

u
≥ 0. This

condition is verified if
∑

t εit ≤ 0, i.e. if for all i: εεεi ≤ 0.

The estimator of TEi for each producer i takes the following expression:

T̂Ei = E(exp{−u}|εεεi) =
1− Φ[σ∗ − (µ∗i/σ∗)]

1− Φ(−µ∗i/σ∗)
· exp

{
−µ∗i + σ2

∗/2
}
. (3.33)� Cobb-Douglas production frontier using panel data and assuming Truncated-Normal

distribution:

i) vit ∼ iid N(0, σ2
v),

ii) ui ∼ iid N+(µ, σ2
u).

Passing some steps similar to those presented above, the conditional distribution of

u given εεε is given by:

f(u|εεε) = 1

(2π)1/2σ∗[1− Φ(−µ̃/σ∗)]
· exp

{
−(u− µ̃)2

2σ2
∗

}
, (3.34)

where µ̃ = µσ2
v−σ2

uTε
σ2+Tσ2

u
and σ2

∗ = σ2
uσ

2
v

σ2 .

This conditional distribution is the density function of a variable with N+(µ̃, σ2
∗)

distribution. Thus the mode of the distribution, used as point estimator of the

inefficiency error u, corresponds to:

ûi = M(u|εεεi) =
{

µ̃i if µ̃i ≥ 0;

0 otherwise
(3.35)

with µ̃i =
µσ2

v−σ2
uTεi

σ2+Tσ2
u

.

The point estimator of TEi can be expressed as:
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T̂Ei = E(exp{−u}|εεεi) =
1− Φ[σ∗ − (µ̃i/σ∗)]

1− Φ(−µ̃i/σ∗)
· exp

{
−µ̃i + σ2

∗/2
}
. (3.36)� Efficiency Effects Frontier using the expressions detailed in Coelli and Battese [1993]:

i) vit ∼ iid N(0, σ2
v)

ii) uit ∼ iid N+(zitδ, σ
2
u)

The uit density function is:

f(u) =
exp

(
− (u−zδzδzδ)2

2σ2
u

)

√
2πσuΦ(zδzδzδ/σu)

(3.37)

The indexes i and t are omitted and Φ represents the standard Normal distribution

function. Given the independency between v and u the joint density function of ε

and u (replacing v by ε+ u) is given by:

f(u, ε) =
exp

(
−1

2

[
ε2

σ2
v
+ (zδzδzδ)2

σ2
u

+ (u−µ∗)2

σ2
∗

− µ2
∗

σ2
∗

])

2πσuσvΦ(zδzδzδ/σu)
, (3.38)

where µ∗ =
σ2
vzδzδzδ−σ2ε
σ2
v+σ2

u
and σ2

∗ = σ2
vσ

2
u

σ2
v+σ2

u
.

The marginal density function of ε is given by integrating f(u, ε) in order to u:

f(ε) =
exp

(
−1

2

[
ε2

σ2
v
+ (zδzδzδ)2

σ2
u

− µ2
∗

σ2
∗

])

√
2π(σ2

u + σ2
v)

Φ
(

µ∗

σ∗

)

Φ
(

zδzδzδ
σu

) . (3.39)

The conditional distribution of u given ε is obtained by the quotient between the

two expressions above:

f(u|ε) =
exp

(
−1

2

[
(u−µ∗)2

σ2
∗

])

√
2πσ∗Φ

(
µ∗

σ∗

) , u ≥ 0. (3.40)

The technical efficiency estimator is given by the conditional expectation of exp(−u):

E(exp(−u)|ε) = exp

(
−µ∗ +

1

2
σ2
∗

)
·
Φ
(

µ∗

σ∗
− σ∗

)

Φ
(

µ∗

σ∗

) . (3.41)
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3.2 Materials and Methods

3.2.1 Variables

The estimator of TE of fisheries requires data on inputs and outputs from fishing

process. In this study, 9 explanatory variables (inputs) were analyzed. Among these 8 of

them were collected through inquires to the stakeholders and the other collected through

the daily landings or the logbooks.

The explanatory variables (inputs) considered, can be divided into three categories:

vessels characteristics, skipper skill level and fishing activity features. The variables in

the first categoric include: XCOMP (vessel length-over-all), which was highly significant

in the previous GLM approach; vessel’s age in years (AGE) and the construction material

of the vessel (MAT). The other category is related to the skipper of fishing vessels and

the variables considered were: the skippers experience in years (XP) and the education

level (SCHOLAR), which was further divided into the following levels: primary - 1, first

cycle - 2 and so on. The last category, which is more directly related to the fishing

process, include: HOOKS (number of hooks) because, according to the stakeholders, is

constant throughout the year (and consequently throughout the quarters), and according

to the results obtained from the last chapter is a significant variable; number of workers

in land (NLAND); number of fishermen at sea (NSEA) and number of trips during the

time period considered.

Additionally the variable PERCCYOGUQ, which corresponds to the ratio of deep-

water sharks in the total catch, was also considered. This variable was only considered

in the EEF procedure detailed before as a variable which may influence the technical

efficiency (z variable), because the sharks are a by-catch and their quantities cannot be

controlled by the skipper.

Black scabbardfish catches (the output) was presented into two different ways, one

per year and another per quarter. The first option is due to the fact that all variables

are constant throughout the year (except number of trips), whereas for the quarter, is

due to the fact that the seasonality affects the catch values (as could be seen in the GLM

results).

The quality and the consistency of the data collected at the logbooks was once again

evaluated. Daily landings stored at DGPA (database used before in GLM in the 2nd data

set - LBSF) and catches registered in logbooks (CBSF) were used as output (YYY ). The

variable representing the number of trips depends on the database used, thus there are

two variables: LTRIPS - number of trips recorded in daily landings and CTRIPS - number
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of trips recorded in logbooks.

Since many of these variables have been collected through inquires to the stakeholders,

the older the data is, the harder is the access to this information and less reliable is the

information collected. So to avoid misunderstandings and biased data, both in the panel

data as in the cross-sectional data, only the most recent years were considered. In this

exercise only the consecutive and recent years (2009 and 2010) were considered. This way

it was possible to compare the results and developments of the fishery process from 2009

to 2010.

3.2.2 Computer Routines

The R package frontier was used to implement the models. This package allows to

consider two of the four possible distributions previously mentioned: Half and Truncated

Normal for the inefficiency error component u. Therefore the analysis was restricted only

to these two distributions. This routine follows the approach detailed in Coelli [1996] and

can be summarized in the following steps:� 1) Firstly OLS estimates of the function f(xxx,βββ) are obtained and all βββ estimators

with the exception of the intercept (β0) are unbiased.� 2) A two-phase grid search of γ = σ2
u

σ2 is conducted, with the βββ parameters set to the

OLS values. Possible values of γ varies from 0.1 to 0.9 with increments of 0.1. The

β0 and σ2 = σ2
u + σ2

v parameters are adjusted according to the corrected ordinary

least squares formula. At this phase other parameters such as µ or δδδ are set to zero.� 3) Finally the values resulting from the grid search are used as starting values in an

iterative maximization procedure. Davidon-Fletcher-Powell (DFP) Quasi-Newton

algorithm is applied.

The Davidon-Fletcher-Powell (FPD) method has been successfully used in a wide

range of econometric applications and was also recommended for the estimation of the

stochastic frontier production function [Coelli, 1996]. DFP belongs to the quasi-Newton

methods group, which attempt to locate a local minimum of a function f .

3.2.3 Models

The TE estimation, as mentioned before, was restricted to two distributions: Half-

Normal and Truncated Normal. Under TE estimation several models were adjusted to the
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2009 and 2010 years, to the different response variables (LBSF and CBSF) and considering

two types of data (Cross and Panel). The models adjusted were:� Model 1: Cross - LSBF - 2009 - Half Normal� Model 2: Cross - LBSF - 2009 - Truncated Normal� Model 3: Panel - LBSF - 2009 - Half Normal� Model 4: Panel - LBSF - 2009 - Truncated Normal� Model 5: Panel - CBSF - 2009 - Best distribution resulted with LSBF� Model 6: Panel - LBSF - 2010 - Efficiency Effects Frontier� Model 7: Panel - LSBF - 2009 - Efficiency Effects Frontier� Model 8: Panel - LBSF - 09/10 - Efficiency Effects Frontier

For a complete description of the models, see Annex 1. Based on the results of these

models, several comparisons were performed:� Model 1 vs Model 2 and Model 3 vs Model 4:

The two pairs of models aimed to analyze the impact of the two distributions used.

In the first pair the approach followed admitted that the data was of cross sectional

type, whereas in the second pair the data was in panel type. If the confidence interval

of µ did not included zero for some significance level, the appropriated distribution

should be the Truncated Normal (with µ 6= 0).� Model 1 vs Model 3 and Model 2 vs Model 4:

With these two pairs of models the purpose was analyze the differences in results

between the cross-sectional and panel approaches.� Model 5:

This model was performed to evaluate the differences between the two databases

(logbooks vs daily landings). This evaluation was done by comparing the results of

model 5 with the results obtained with the best fitted model among the first four.� Model 6 vs Model 7:

This comparison aimed to analyze the main differences between 2009 and 2010.� Model 8:

This model was considered to evaluate the seasonality and the trend over the two

years and to compare this approach with models 6 and 7 together.
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For these comparisons was evaluated the variables selected from the initial ones, the

estimates of technical efficiencies (and the respective rankings) and the mean of the techni-

cal efficiency. To verify if the different approaches gave different estimates and rankings of

technical efficiencies, it was performed, besides graphical analysis, the Wilcoxon signed-

rank test. This is a non-parametric statistical test used when two related samples are

compared (i.e. it’s a paired difference test). The null hypothesis is that the difference

between the two samples is zero.

A backward stepwise procedure based on the highest p-value was adopted to select

the variables to be included in the models. It has begun with the saturated model (all

variables included) and step by step the not significant variables were removed. This was

done until only remained in the model the significant ones and was assessed by likelihood

ratio test, comparing the fit of two models, to verify if the model without the removed

variable was statistically different from the model with it.

3.3 Results

We now present the results for models and we recall that σ2 = σ2
u + σ2

v and γ = σ2
u

σ2 .

Model 1 - Cross Sectional data - Half Normal - LBSF 2009 - Tab. 3.1

Table 3.1: Cross data and ui ⌢ N+(0, σ2
u
)

Estimate Std. Error z value p-value

Intercept 0.500 0.984 0.508 0.611

XCOMP 1.922 0.869 2.212 0.027

LTRIPS 1.317 0.528 2.495 0.013

σ2 0.198 0.741 0.267 0.780

γ 0.992 0.674 1.472 0.141� Variables selected: XCOMP and LTRIPS (using 0.1 as significance level);� Inefficiency parameters: σ2 and γ were not statistical significant, i.e. they were

statistically null.� Mean of technical efficiency estimates: 0.731.� Conclusions: As the large value of γ indicates, the variation in the composed error

term ε is mainly due to the inefficiency error and so it should not be ignored.

However, one should note, that the standard error of γ is so large that the null
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hypothesis for this parameter is not rejected. This uncertainty about the real relative

weight of the variation of u compared to that of v, must be originated on the small

number of observations (only 16).

Model 2 - Cross-Sectional data - Truncated Normal - LBSF 2009 - Tab. 3.2

Table 3.2: Cross data and ui ⌢ N+(µ, σ2
u)

Estimate Std. Error z value p-value

Intercept -0.169 0.633 -0.267 0.789

XCOMP 1.821 0.233 7.823 5e-15

LTRIPS 1.518 0.112 13.57 < 2e-16

σ2 0.285 0.103 2.750 0.006

γ 0.999 0.0001 19387.4 < 2e-16

µ -0.190 0.343 -0.552 0.581� Variables selected: XCOMP and LTRIPS.� Inefficiency parameters: σ2 and γ were statistical significant, i.e. they were statis-

tically different from zero.� Mean of technical efficiency estimates: 0.727.� Conclusions: In this case, the inefficiency error term was clearly present in the data

and constituted a large part of the variation of ε (due to the high significance of

gamma). Moreover, the parameter which defines the assumed distribution (µ) was

not statistically different from zero, thus the more suitable distribution for u was

the Half distribution instead of the Truncated on µ.

Model 3 - Panel data - Half Normal - LBSF 2009 - Tab. 3.3

Table 3.3: Panel data and ui ⌢ N+(0, σ2
u
)

Estimate Std. Error z value p-value

Intercept 3.123 1.292 2.417 0.016

XCOMP 1.167 0.493 2.365 0.018

NLAND 0.510 0.266 1.921 0.055

LTRIPS 0.979 0.121 8.096 5e-16

σ2 0.222 0.079 2.805 0.005

γ 0.769 0.094 8.137 4e-16� Variables selected: XCOMP, LTRIPS and NLAND (using 0.1 as significance level).
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significant.� Mean of technical efficiency estimates: 0.74.� Conclusions: As the cross sectional data results already indicated, the inefficiency

error should be present and a large parte of the error variation should be attributed

to it.

Model 4 - Panel data - Truncated Normal - LBSF 2009 - Tab. 3.4

Table 3.4: Panel data and ui ⌢ N+(µ, σ2
u)

Estimate Std. Error z value p-value

Intercept 3.113 1.367 2.278 0.023

XCOMP 1.170 0.518 2.261 0.024

NLAND 0.511 0.269 1.901 0.057

LTRIPS 0.978 0.123 7.936 2e-15

σ2 0.217 0.261 0.831 0.406

γ 0.763 0.289 2.637 0.008

µ 0.017 0.885 0.019 0.984� Variables selected: XCOMP, LTRIPS and NLAND (using 0.1 as significance level).� Inefficiency parameters: γ was statistical different from zero while the σ2 parameter

was not. This difference must be due to the fact that the parameter µ had a high

standard error (0.885).� Mean of technical efficiency estimates: 0.739.� Conclusions: The inefficiency error term could not be ignored and the Half Normal

distribution should be the one considered, since the µ was statistically null.

Model 5 - Panel data - Half Normal - CBSF 2009 - Tab. 3.5

Once found the most convenient model for the LBSF data (Model 3), the same model

was fitted to the data from the logbooks - CBSF.� Variables selected: XCOMP, CTRIPS and NLAND (using 0.1 as significance level).� Inefficiency parameters: γ and σ2 were statistical different from zero (i.e. signifi-

cant).
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Table 3.5: Panel data and ui ⌢ N+(0, σ2
u)

Estimate Std. Error z value p-value

Intercept 3.629 1.315 2.760 0.006

XCOMP 1.068 0.497 2.150 0.032

NLAND 0.485 0.267 1.816 0.069

CTRIPS 0.934 0.117 8.000 1e-15

σ2 0.264 0.094 2.806 0.005

γ 0.825 0.072 11.38 < 2e-16� Mean of technical efficiency estimates: 0.722.� Conclusions: The model shows that the inefficiency error term should be present

and the results were quite similar to those of model 3.

Model 6 - EEF 2010 - Tab. 3.6

Before running the EEF Model, it was tried for 2010 the time invariant model 3, which

proved to be the best for 2009. Unfortunately, it was not possible to run such a model

for 2010, since the algorithm did not converge. In fact, the OLS estimates given in the

first step (without inefficiency) gave a better fit than the estimates given on the second

step (with inefficiency), showing that this type of error should not to be considered in the

model. For the EEF model the convergence turned out to be reached.

Table 3.6: EEF (2010) and ui ⌢ N(mit, σ
2
u)

Estimate Std. Error z value p-value

(Intercept) -8.716 0.860 -10.13 < 2e-16

XCOMP 1.593 0.225 7.082 1e-12

HOOKS 1.461 0.165 8.864 < 2e-16

MAT-2 -0.343 0.068 -5.037 4e-07

MAT-3 0.681 0.103 6.633 3e-11

SCHOLAR -0.130 0.036 -3.634 0.0003

NSEA -0.549 0.126 -4.363 1e-05

LTRIPS 1.009 0.110 9.136 < 2e-16

PERCCYOGUQ 1.868 0.866 2.157 0.031

σ2 0.106 0.029 3.696 0.0002

γ 0.9996 0.003 362.20 < 2e-16� Variables selected: XCOMP, LTRIPS, HOOKS, MAT, NSEA and SCHOLAR.� Z variables: PERCCYOGUQ was significant, i.e. statistically different from zero.� Inefficiency parameters: γ and σ2 were statistical different from zero.
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parameter estimate, the PERCCYOGUQ had a positive impact on inefficiency.

In Table 3.7 are presented the technical efficiencies per quarter, i.e. the mean of

technical efficiencies of all 15 vessels for each time period. As can be seen there was some

tendency that the efficiency gradually increased throughout the year achieving 0.85. As

result, the mean efficiency for the four periods was 0.731.

Table 3.7: Mean of technical efficiency for each time period (model 6)

Quarter Efficiency

Quarter 1 0.62

Quarter 2 0.69

Quarter 3 0.77

Quarter 4 0.85

Model 7 - EEF 2009 - Tab. 3.8

In order to compare the results between 2009 e 2010, model 6 procedure was ran for

2009.

Table 3.8: EEF (2009) and ui ⌢ N(mit, σ
2
u
)

Estimate Std. Error z value p-value

Intercept -1.881 0.858 -2.194 0.028

XCOMP 1.036 0.205 5.046 4e-07

HOOKS 0.621 0.138 4.487 7e-06

MAT-2 0.135 0.074 1.827 0.068

MAT-3 0.104 0.139 0.748 0.455

LTRIPS 1.282 0.137 9.386 < 2e-16

PERCCYOGUQ 3.353 0.399 8.412 < 2e-16

σ2 0.126 0.033 3.884 1e-04

γ 1.000 0.000 81219.6 < 2e-16� Variables selected: XCOMP, LTRIPS, HOOKS and MAT (using 0.1 as significance

level).� Z variables: PERCCYOGUQ was highly significant.� Inefficiency parameters: γ and σ2 were statistical different from zero.� Conclusions: The results pointed at the same direction as model 6. The inefficiency

need to be considered and the PERCCYOGUQ seemed to have even a larger impact

on inefficiency.
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Table 3.9 presents the technical efficiencies per quarter of 15 vessels for each time

period and there was no positive trend throughout the year 2009. The mean of technical

efficiency ranged between 0.67 and 0.75 reaching 0.67 as average of all observations.

Table 3.9: Mean of technical efficiency for each time period (model 7)

Quarter Efficiency

Quarter 1 0.66

Quarter 2 0.63

Quarter 3 0.64

Quarter 4 0.75

Model 8 - EEF 2009/2010 - Tab. 3.10

This model comprises the two years (2009 and 2010) in the same data set, thus it was

considered not four but eight time periods, four for each year. Thus it was possible to eval-

uate in a single model the trend and the seasonality of technical efficiency along the years.

Table 3.10: EEF (2009) and ui ⌢ N(mit, σ
2
u
)

Estimate Std. Error z value p-value

Intercept -5.603 1.298 -4.318 2e-05

XCOMP 0.901 0.212 4.259 2e-05

HOOKS 1.147 0.181 6.345 2e-10

MAT-2 -0.065 0.083 -0.785 0.4323

MAT-3 0.535 0.103 5.204 2e-07

LTRIPS 1.094 0.071 15.383 < 2e-16

PERCCYOGUQ 3.089 0.399 7.747 9e-15

σ2 0.094 0.018 5.157 3e-07

γ 0.823 0.126 6.558 5e-11� Variables selected: XCOMP, LTRIPS, HOOKS and MAT.� Z variables: PERCCYOGUQ was highly significant.� Inefficiency parameters: The null hypothesis of γ and σ2 were statistical null was

rejected for all usual significance levels.� Conclusions: The inefficiency should be present in the model and once again the

PERCCYOGUQ had a positive impact on inefficiency.
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3.4 Discussion

The results concerning the technical efficiency of the black scabbarfish fishery fleet

during 2009, considering only the the two time invariant approaches, revealed no signi-

ficative differences between the two assumed distributions, Half and Truncated Normal.

In fact, in both cases (cross sectional or panel-time invariant model), the µ estimate was

not statistically significant for all the usual significance levels, and the estimates of the

mean efficiency as well as of the coefficients of the variables selected do not greatly differ.

Note that for the inefficiency parameters, (λ and σ2) analogous comparisons could not be

performed, because their estimates depend on the distribution assumed.

However, depending on the type of data, the producer (i.e. vessel) technical efficiency

estimates for both distributions differ more or less (upper plots of Fig. 3.1 and Tab.

3.11). For cross sectional data the differences were higher than for the panel data where

they were almost null. The same conclusions can be drawn from the upper plots of Fig.

3.2 where the ranking of the 16 producers technical efficiency estimates are compared

between distributions. In the panel case (right plot) there were no differences between

the rankings and in the cross sectional data (left plot) they were small. Despite these

differences, the Wilcoxon test null hypothesis of identical individual technical efficiencies

for the two distributions, was not rejected for this type of data.

Table 3.11: Summary of technical efficiencies estimates for 2009 with LBSF.

Cross - Half Cross - Truncated Panel - Half Panel - Truncated

Vessel 1 0.402 0.392 0.558 0.557

Vessel 2 0.941 0.910 0.915 0.915

Vessel 3 0.799 0.830 0.716 0.714

Vessel 4 0.636 0.612 0.601 0.601

Vessel 5 0.917 0.920 0.892 0.891

Vessel 6 0.752 0.783 0.711 0.710

Vessel 7 0.944 0.911 0.903 0.903

Vessel 8 0.586 0.602 0.753 0.750

Vessel 9 0.746 0.722 0.773 0.771

Vessel 10 0.492 0.490 0.459 0.458

Vessel 11 0.664 0.636 0.625 0.624

Vessel 12 0.710 0.697 0.898 0.897

Vessel 13 0.975 0.999 0.921 0.920

Vessel 14 0.401 0.389 0.462 0.462

Vessel 15 0.841 0.829 0.814 0.813

Vessel 16 0.892 0.918 0.843 0.841

Analyzing now the differences between the two invariant cases, for each of the dis-

tributions, one can conclude that, despite the non rejection of the Wilcoxon test null
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hypothesis, the differences between the rankings of individual technical efficiency esti-

mates are much more apparent than before for either distributions (lower plots of Fig.

3.2). Similar conclusions can be drawn about the magnitude of the differences between

the individual technical efficiency estimates coming from the two data types (lower plots

of Fig. 3.1).

In fact, one would expect such differences to occur, since in the panel data set there

were four times more observations than in the cross sectional data set and the set of the

model selected variables included one more variable in the panel data case. Finally, one

should note also that the differences in magnitude as well as in ranking are more apparent

with the Truncated Normal distribution hypothesis.
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Figure 3.1: Technical efficiencies estimates of the four Time-Invariant models for 2009.

The results obtained regarding the use of the Half or Truncated Normal distributions

showed that the distribution choice did not influence the outcome. This way, the Half

Normal is preferable, since no extra parameter needs to be estimated. Concerning the

analysis of the type of data to be used, cross sectional or panel data, the results were

not so clear. In spite of that, the second type of data should be used since for obtaining

similar consistency the cross sectional data requires a large set of producers to be observed

during one period of time, while the panel data requires a smaller set of producers to be

observed during several periods of time. The number of producers being limited, it is

more feasible to observe them longer.

Bearing in mind these conclusions, model 3 was selected to evaluate the TE of the black

scabbardfish fishery fleet, especially since the estimates for the inefficiency parameters γ

and σ2 were significant.
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Figure 3.2: Ranking vessels in relation to technical efficiencies estimates of the four first models.

Under model 3 there was a strong positive correlation (Pearson’s correlation coefficient

0.75) between the response variable (LBSF) and the technical efficiency estimates (Fig.

3.3). Also under this model no strong correlation was observed between technical efficiency

estimates and any of the explanatory variables, since the higher estimate obtained was

around 0.25 with HOOKS (Fig. 3.4). This fulfilled the independence assumptions that

enable the estimation procedure to be applied.
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Figure 3.3: Technical efficiencies per vessel vs LSBF (only for Model 3).

Comparing the estimates of technical efficiency from each vessel with the overall mean

efficiency (Fig. 3.5), two vessels (numbers 10 and 14) have a much smaller efficiency than

the others vessels. In the same figure, it can be seen that four vessels (numbers 3, 6, 8
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and 9) presented a technical efficiency similar to the overall mean.
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Figure 3.4: Technical efficiencies per vessel vs different inputs (only for Model 3).
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Figure 3.5: Distance of technical efficiencies estimates per vessel to the overall mean (only for Model

3).

The model 5 was fitted using a different response variable CBSF, but adopting the

same model with the same explanatory variables as in the model 3. No differences were

observed between the estimates of any quantities nor between the vessels rankings (Fig.

3.6). In addition, both the inefficiency parameters and the explanatory variables were

statistically significant. Thus it was concluded that the two databases lead to the same
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results. Such consistency may come from the fact that only two variables were collected

from these two databases (the output and the number of trips).
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Figure 3.6: Technical efficiency estimates of Model 3 and Model 5 (left) and respective assigned rankings

of Model 3 and Model 5 (right).

The adjustment of the EEF models gave support to the hypothesis that PERCCYO-

GUQ is related to inefficiency. The capture of deep-water sharks has a negative impact

on technical efficiency, which is in agreement with the feedback given by the stakeholders

and with our suspicions, since the presence of deep-water sharks decreases the catches of

black scabbardfish and therefore the efficiency.

The adjustment of EEF for 2009 and for 2010 data separately showed that the variable

PERCCYOGUQ was significant in both cases. The results obtained for the two years put

also in evidence:

1. differences in the variables selected;

2. differences on technical efficiencies estimates per vessel (Fig. 3.7);

3. major differences on rankings of 8 vessels in 15 (Fig. 3.7);

4. difference on the trend of technical efficiency along the quarters of the year;

5. the overall mean of technical efficiency estimate in 2009 (0.67) was lower than in

2010 (0.73).

Despite the first two items, the Wilcoxon test does not reject the null hypothesis, but

with a very low p-value (0.11). In what regards the fifth item, differences in overall mean,

they are related to the PERCCYOGUQ coefficient, since in 2009 the coefficient estimate

was almost the double of what was obtained in 2010, making 2009 less efficient than 2010.
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Figure 3.7: Model 6 vs Model 7.

The model 8 encompasses the two years and the 15 vessels, considering at the total 8

time periods; the first four time periods corresponds to 2009 while the last four corresponds

to 2010. In both years, the estimates of the technical efficiency average by quarter were

higher in the fourth quarter, so this model showed some seasonality. However, while in the

2009 no trend was detected on the technical efficiency, in 2010 there was a slight positive

trend along the year (Tables 3.12 and 3.13). The overall mean of technical efficiency was

0.7, which is the arithmetic mean of the estimates obtained for the two years separately

(0.67 for 2009 and 0.73 for 2010).

Table 3.12: Summary of technical efficiencies estimates for Model 8 (EEF 09/10).

Time Period 1 2 3 4 5 6 7 8

Vessel 1 0.603 0.56 0.452 0.449 0.587 0.51 0.692 0.902

Vessel 2 0.876 0.716 0.623 0.644 0.86 0.582 0.778 0.821

Vessel 3 0.629 0.716 0.837 0.9 0.874 0.802 0.721 0.858

Vessel 4 0.844 0.648 0.584 0.676 0.666 0.626 0.561 0.752

Vessel 5 0.628 0.623 0.645 0.872 0.487 0.74 0.769 0.794

Vessel 6 0.927 0.929 0.888 0.896 0.672 0.563 0.653 0.56

Vessel 7 0.522 0.62 0.656 0.878 0.454 0.633 0.841 0.846

Vessel 8 0.605 0.645 0.614 0.784 0.625 0.756 0.674 0.83

Vessel 9 0.244 0.307 0.533 0.724 0.764 0.575 0.77 0.783

Vessel 10 0.83 0.774 0.655 0.644 0.709 0.734 0.705 0.849

Vessel 11 0.724 0.829 0.807 0.839 0.715 0.895 0.932 0.916

Vessel 12 0.745 0.78 0.756 0.856 0.656 0.632 0.717 0.612

Vessel 13 0.484 0.331 0.308 0.376 0.439 0.469 0.446 0.55

Vessel 14 0.668 0.768 0.798 0.808 0.489 0.695 0.877 0.93

Vessel 15 0.675 0.668 0.801 0.928 0.562 0.84 0.852 0.888
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Table 3.13: Mean of technical efficiency for each time period (model 8)

Quarter Efficiency

Quarter 1 0.67

Quarter 2 0.66

Quarter 3 0.66

Quarter 4 0.75

Quarter 5 0.64

Quarter 6 0.67

Quarter 7 0.73

Quarter 8 0.79

Regarding to the methodology, it has the positive side of getting the process and

producers efficiencies through a simple, quickly and accessible procedure. The negative

side is that the implementation of the estimation methodology uses iterative processes

that may present some convergence problems. Note also that the estimation method used

in the package frontier does not provide asymptotically consistent estimates for technical

efficiency in the case of cross sectional data. For this type of data, to obtain more reliable

results a large sample of producers is required, preventing this approach to be used in

applications where only a small number of producers exists.

For the two other studies included in SFA, Cost and Profit Efficiency, their application

is extremely difficult in this area since collecting information about prices, which fluctuate

throughout the years, is presently an impossible mission in Portugal. In fact, the collection

of data, allowing a reasonable work exclusively for the technical efficiency estimation,

proved to be very difficult. The first cause is that the process is complex in itself and the

second cause is the resistance shown by some authorities to allow the full access to data.

In general, the black scabbardfish fishery in Sesimbra can be considered efficient since

over the selected models the values of technical efficiency did not differ greatly and were

quite high, around 0.70. Thought the significant variables changed with from model to

model, yet there were variables that had a constant presence: XCOMP and LTRIPS.

These two variables have a positive impact in the black scabbardfish catches which are

positively related to the efficiency.

The variable AGE and XP were never selected. While for the first variable (vessel

age in years), as the vessels are being repaired and renovated the variable loses its impact

on efficiency, for the second one (years of experience as a skipper) the experience of

the fisherman before being a skipper may somehow also remove the significance of this

variable. For future work it would be interesting to consider these two variables that

measure the fisherman experience and analyze their relative weight.

There are other ideas for future work that involve approaches that unfortunately could

not be applied this time due to the lack of data. Those require the collection of other
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variables that are less dependent on memory and were recorded in some data base, as well

as the use of economic variables, like expenses on fuel, hooks, bait and salaries. For this

purpose the information contained on the balance sheets should be thereof collected and

stored in a data base, whose access would allow a more accurate analysis of the different

types of efficiency. The last suggestion for future work would be the implementation of

the Gamma distribution for the efficiency type errors in a software package.
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Chapter 4

Final Remarks

After a long work and having reached several results, it is important to emphasize

the principal conclusions and look for the future. The logbooks are one of the most used

source of data and this way their importance is huge. Thus, errors in this data source may

have a considerable impact or assume a vital role in conclusions and in advances made

on this field. In this study, the identified discrepancies between the logbooks and other

sources of data were significant, and therefore it is of the utmost importance to instruct

and alert the fishing community about the necessity of a correct filling of the logbooks.

In reality, only combining the work of scientists with the work of the fishing community

will the sustainability of the sea life and of the artisanal fishing be achieved.

The sustainability of the fishing together with the resource, is the ultimate goal of the

fishing community, and the knowledge and management of the fishery activity efficiency

are vital for that purpose. In the present case, the black scabbardfish, our studies con-

cluded that this fishery can be considered efficient. However, there is a lot to do in future

works, such as collecting economic variables that would enable a more accurate analysis

of balance sheets and the use of other approaches as Cost and Profit Efficiency.

63
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ANNEX

Annex 1 - Models

Models used in Chapter 2 (Generalized Linear Models)

1st data set

Model 1:

Step (glm (BSF ∼ as.factor (YEAR) × as.factor(QUARTER) + as.factor (ERECTAN)+

HOOKS + PERCCYOGUQ + as.factor (CLUSTER-ALL)))

Model 2:

Step (glm (BSF∼ as.factor (YEAR)× as.factor (QUARTER) + as.factor (ERECTAN)+

HOOKS + PERCCYOGUQ + as.factor (CLUSTER-XCOMP)))

Model 3:

Step (glm (BSF∼ as.factor (YEAR)× as.factor (QUARTER) + as.factor (ERECTAN)+

HOOKS + PERCCYOGUQ + as.factor (CLUSTER-XTAB)))

Model 4:

Step (glm (BSF∼ as.factor (YEAR)× as.factor (QUARTER) + as.factor (ERECTAN)+

HOOKS + PERCCYOGUQ + as.factor (CLUSTER-XPOW)))

Model 5:

Step (glm (BSF ∼ as.factor (YEAR) × as.factor (QUARTER) + as.factor (ERECTAN)

+ PERCCYOGUQ + as.factor (CLUSTER-XCOMP)))

Model 6:

Step (glm (log (BSF)∼ as.factor (YEAR)× as.factor (QUARTER) + as.factor (ERECTAN)

+ HOOKS + PERCCYOGUQ + as.factor (CLUSTER-XCOMP)))

2nd data set

Model 1:

Step (glm (CBSF ∼ as.factor (YEAR) + as.factor (QUARTER) + as.factor (ERECTAN)

+ PERCCYOGUQ + as.factor (CLUSTER-XCOMP)))
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Model 2:

Step (glm (log(CBSF)∼ as.factor (YEAR) + as.factor (QUARTER) + as.factor (ERECTAN)

+ PERCCYOGUQ + as.factor (CLUSTER-XCOMP)))

Models used in Chapter 3 (Stochastic Frontier Analysis)

Model 1:

sfa (log(LBSF) ∼ log(XCOMP) + log(LTRIPS), ineffDecrease = TRUE, truncNorm =

FALSE)

Model 2:

sfa (log(LBSF) ∼ log(XCOMP) + log(LTRIPS), ineffDecrease = TRUE, truncNorm =

TRUE)

Model 3:

sfa (log(LBSF) ∼ log(XCOMP) + log(LTRIPS) + log(LAND), ineffDecrease = TRUE,

truncNorm = FALSE)

Model 4:

sfa (log(LBSF) ∼ log(XCOMP) + log(LTRIPS) + log(LAND), ineffDecrease = TRUE,

truncNorm = TRUE)

Model 5:

sfa (log(CBSF) ∼ log(XCOMP) + log(CTRIPS) + log(LAND), ineffDecrease = TRUE,

truncNorm = TRUE)

Model 6:

frontier (y = LBSF, x = c(XCOMP, HOOKS, MAT, SCHOLAR, SEA ,LTRIPS), z =

c(”PERCCYOGUQ”))

Model 7:

frontier (y = LBSF, x = c(XCOMP, HOOKS, MAT, LTRIPS), z = c(”PERCCYOGUQ”))

Model 8:

frontier (y = LBSF, x = c(XCOMP, HOOKS, MAT, LTRIPS), z = c(”PERCCYOGUQ”))
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Annex 2 - Demonstrations of expressions used in SFA

Cross-Sectional data and assuming Half-Normal

Demonstration of the f(ε):

f(ε) =
∫ +∞
0
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− ε2σ2

u

2σ2
vσ

2
u

}∫ +∞
0

1√
2πσuσv

exp
{

−u2(σ2
u+σ2

v)−2uεσ2
u

2σ2
uσ

2
v

}
du

= 2√
2π

exp
{
− ε2

2σ2
v

}∫ +∞
0

1√
2πσuσv

exp
{

−u2(σ2)−2uεσ2
u

2σ2
uσ

2
v

}
du

= 2√
2π

exp
{
− ε2

2σ2
v

}∫ +∞
0

1√
2πσuσv

exp
{

−(uσ+εσ2
u/σ)

2+ε2σ4
u/σ

2

2σ2
uσ

2
v

}
du

= 2√
2π

exp
{
− ε2

2σ2
v
+ ε2σ4

u/σ
2

2σ2
uσ

2
v

}∫ +∞
0

1√
2πσuσv

exp
{
−σ2(u+εσ2

u/σ
2)2

2σ2
uσ

2
v

}
du

= 2√
2π

exp
{
− ε2

2σ2
v
+ ε2σ2

u

2σ2σ2
v

}∫ +∞
0

1√
2πσuσv

exp
{
−σ2(u+εσ2

u/σ
2)2

2σ2
uσ

2
v

}
du

= 2√
2π

exp
{
− ε2

2σ2

(
σ2

σ2
v
− σ2

u

σ2
v

)} ∫ +∞
0

1√
2πσuσv

exp

{
− (u+εσ2

u/σ
2)2

2
σ2
uσ2

v
σ2

}
du

= 2√
2π

exp
{
− ε2

2σ2

(
σ2
u+σ2

v

σ2
v

− σ2
u

σ2
v

)}
· 1
σ

∫ +∞
0

1√
2π σuσv

σ

exp

{
− (u+εσ2

u/σ
2)2

2
σ2
uσ2

v
σ2

}
du

= 2√
2πσ

exp
{
− ε2

2σ2

}
·
[
1− Φ

(
εσ2

u/σ
2

σuσv/σ

)]

= 2
σ

1√
2π
exp

{
− ε2

2σ2

}
·
[
1− Φ

(
εσu

σσv

)]
= 2

σ
φ
(
ε
σ

)
Φ
(
−ελ

σ

)

Note : λ = σu

σv

(4.1)
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Demonstration of the f(u|ε):

f(u|ε) = f(u,ε)
f(ε)

=
2

2πσuσv
exp

{

− u2

2σ2
u
− (ε+u)2

2σ2
v

}

2√
2πσ

exp
{

− ε2

2σ2

}

[1−Φ( ελ
σ )]

=
exp

{

− u2

2σ2
u
− (ε+u)2

2σ2
v

+ ε2

2σ2

}

√
2π σuσv

σ [1−Φ( ελ
σ )]

=
exp

{

− u2

2σ2
u
− ε2+u2+2uε

2σ2
v

+ ε2

2σ2

}

√
2πσ∗[1−Φ( εσu

σσv
)]

=
exp

{

− u2

2σ2
u
− u2

2σ2
v
− 2uε

2σ2
v
− ε2

2σ2
v
+ ε2

2σ2

}

√
2πσ∗



1−Φ





εσ2
u

σ2
σuσv

σ









=

exp











−u2σ2
v+u2σ2

u
2σ2

vσ
2
u

+
2u

(

−ε
σ2
u

σ2

)

2
σ2
vσ

2
u

σ2

+
−ε2σ2+ε2σ2

v
2σ2

vσ
2











√
2πσ∗[1−Φ(−µ∗

σ∗ )]

=
exp

{

− u2σ2

2σ2
vσ

2
u
+ 2uµ∗

2σ2
∗
− ε2(σ2−σ2

v)

2σ2
vσ2

}

√
2πσ∗[1−Φ(−µ∗

σ∗ )]

=
exp

{

− u2

2σ2
∗
+ 2uµ∗

2σ2
∗
− ε2σ2

u
2σ2

vσ2

}

√
2πσ∗[1−Φ(−µ∗

σ∗ )]

=
exp

{

− u2

2σ2
∗
+ 2uµ∗

2σ2
∗
− ε2σ4

u
2σ2

uσ2
vσ

2

}

√
2πσ∗[1−Φ(−µ∗

σ∗ )]

=

exp







− u2

2σ2
∗
+ 2uµ∗

2σ2
∗
−

ε2σ4
u

σ4

2σ2
uσ2

v
σ2







√
2πσ∗[1−Φ(−µ∗

σ∗ )]

=
exp

{

− u2

2σ2
∗
+ 2uµ∗

2σ2
∗
− µ2∗

2σ2
∗

}

√
2πσ∗[1−Φ(−µ∗

σ∗ )]
=

exp

{

− (u−µ∗)
2

2σ2
∗

}

√
2πσ∗[1−Φ(−µ∗

σ∗ )]

Note : µ∗ = −εσ2
u

σ2 and σ2
∗ = σ2

uσ
2
v

σ2

(4.2)
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Demonstration of the M(u|ε):

f(u|ε)
du

=

(
1√

2πσ∗
exp

{

− (u−µ∗)
2

2σ2
∗

}

1−Φ(−µ∗/σ∗)

)′

= 0 ⇔

⇔
1√

2πσ∗
1−Φ(−µ∗/σ∗)

2(u−µ∗)
2σ2

∗
exp

{
− (u−µ∗)2

2σ2
∗

}
= 0 ⇔

⇔ 2(u−µ∗)
2σ2

∗
= 0 ⇔

⇔ u = µ∗ = −εiσ
2
u

σ2

(4.3)

ui ≥ 0 ⇔ −εiσ
2
u

σ2
≥ 0 ⇔ −εi ≥ 0 ⇔ εi ≤ 0 (4.4)

Demonstration of the E(exp(−u)|ε):

E(exp(−u)|ε) =
∫ +∞
0

exp(−u)f(u|ε)du

=
∫ +∞
0

exp(−u)
exp

{

− (u−µ∗)
2

2σ2
∗

}

√
2πσ∗[1−Φ(−µ∗

σ∗ )]
du

= 1

[1−Φ(−µ∗
σ∗ )]

∫ +∞
0

1√
2πσ∗

· exp
{
− (u−µ∗)2

2σ2
∗

− u
}
du

= 1

[1−Φ(−µ∗
σ∗ )]

∫ +∞
0

1√
2πσ∗

· exp
{
−u2−2uµ∗+µ2

∗+2uσ2
∗

2σ2
∗

}
du

= 1

[1−Φ(−µ∗
σ∗ )]

∫ +∞
0

1√
2πσ∗

· exp
{
−u2−2u(µ∗−σ2

∗)+(µ∗−σ2
∗)

2−(µ∗−σ2
∗)

2+µ2
∗

2σ2
∗

}
du

=
exp

{

−−(µ∗−σ2
∗)

2+µ2∗
2σ2

∗

}

[1−Φ(−µ∗
σ∗ )]

∫ +∞
0

1√
2πσ∗

· exp
{
− (u−(µ∗−σ2

∗))
2

2σ2
∗

}
du

=
exp

{

µ2∗−2µ∗σ
2
∗+σ4

∗−µ2∗
2σ2

∗

}

[1−Φ(−µ∗
σ∗ )]

[
1− Φ

(
− (µ∗−σ2

∗)
σ∗

)]

=
[1−Φ(σ∗−µ∗

σ∗ )]
[1−Φ(−µ∗

σ∗ )]
· exp {−µ∗ + σ2

∗/2}
(4.5)
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Panel data and assuming Half-Normal

Demonstration of the f(u,εεε):

f(u, ε) = 2
(2π)(T+1)/2σuσT

v
· exp

{
− (u−µ∗)2

2σ2
∗

− ε′ε
2σ2

v
+ µ2

∗
2σ2

∗

}

= 2
(2π)(T+1)/2σuσT

v
· exp

{
−u2−µ2

∗+2uµ∗+µ2
∗

2σ2
∗

− ε′ε
2σ2

v

}

= 2
(2π)(T+1)/2σuσT

v
· exp

{
− u2

2
σ2
uσ2

v
σ2
v+Tσ2

u

−
2u

Tσ2
uε̄

σ2
v+Tσ2

u

2
σ2
uσ2

v
σ2
v+Tσ2

u

− ε′ε
2σ2

v

}

f(u, v) = 2
(2π)(T+1)/2σuσT

v
· exp

{
−u2(σ2

v+Tσ2
u)

2σ2
uσ

2
v

− 2uTσ2
uε̄

2σ2
uσ

2
v
− (v1−u,...,vT−u)′(v1−u,...,vT−u)

2σ2
v

}

= . . . exp
{
− u2

2σ2
u
− Tu2

2σ2
v
− 2uT ε̄

2σ2
v
−

∑

t(vt−u)2

2σ2
v

}

= . . . exp
{
− u2

2σ2
u
+

−Tu2−2u
∑

t εt−
∑

t v
2
t−

∑

t u
2+

∑

t 2uvt
2σ2

v

}

= . . . exp
{
− u2

2σ2
u
+

−Tu2−2u
∑

t(vt−u)−v′v−Tu2+2u
∑

t vt
2σ2

v

}

= . . . exp
{
− u2

2σ2
u
+

−2Tu2+2u
∑

t u−2u
∑

t vt+2u
∑

t vt−v′v

2σ2
v

}

= . . . exp
{
− u2

2σ2
u
+ −2Tu2+2Tu2−v′v

2σ2
v

}

= 2
(2π)(T+1)/2σuσT

v
· exp

{
− u2

2σ2
u
− v′v

2σ2
v

}

(4.6)
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Demonstration of the f(εεε):

f(ε) =
∫ +∞
0

f(u, ε)du

=
∫ +∞
0

2
(2π)(T+1)/2σuσT

v
· exp

{
− (u−µ∗)2

2σ2
∗

− ε′ε
2σ2

v
+ µ2

∗
2σ2

∗

}
du

= 2

(2π)T/2σT−1
v

· exp
{
− ε′ε

2σ2
v
+ µ2

∗
2σ2

∗

}∫ +∞
0

1
σuσv(2π)1/2

· exp
{
− (u−µ∗)2

2σ2
∗

}
du

= 2

(2π)T/2σT−1
v

· exp
{
− ε′ε

2σ2
v
+ µ2

∗
2σ2

∗

}∫ +∞
0

1
(2π)1/2

1
σuσv

(σ2
v+Tσ2

u)1/2

1
(σ2

v+Tσ2
u)

1/2 · exp
{
− (u−µ∗)2

2σ2
∗

}
du

= 2

(2π)T/2σT−1
v

· exp
{
− ε′ε

2σ2
v
+ µ2

∗
2σ2

∗

}
1

(σ2
v+Tσ2

u)
1/2

∫ +∞
0

1
(2π)1/2σ∗

· exp
{
− (u−µ∗)2

2σ2
∗

}
du

= 2

(2π)T/2σT−1
v (σ2

v+Tσ2
u)

1/2
· exp

{
− ε′ε

2σ2
v
+ µ2

∗
2σ2

∗

}
·
[
1− Φ

(
−µ∗

σ∗

)]

(4.7)

Demonstration of the f(u|εεε):

f(u|ε) = f(u,ε)
f(ε)

=
2

(2π)(T+1)/2σT
v σu

·exp
{

− (u−µ∗)
2

2σ2
∗

− εεε′εεε
2σ2

v
+

µ2∗
2σ2

∗

}

2

(2π)T/2σT−1
v (σ2

v+Tσ2
u)1/2

·exp
{

− εεε′εεε
2σ2

v
+

µ2∗
2σ2

∗

}

·[1−Φ(−µ∗
σ∗ )]

= (σ2
v+Tσ2

u)
1/2

σuσv

√
2π

·
exp

{

− (u−µ∗)
2

2σ2
∗

}

1−Φ(−µ∗
σ∗ )

= 1
σ∗

√
2π

·
exp

{

− (u−µ∗)
2

2σ2
∗

}

1−Φ(−µ∗
σ∗ )

(4.8)

Demonstration of the M(u|εεε):

f(u|ε)
du

=

(
1√
2πσ∗

exp

{

− (u−µ∗)
2

2σ2
∗

}

1−Φ(−µ∗/σ∗)

)′

= 0 ⇔

⇔
1√

2πσ∗
1−Φ(−µ∗/σ∗)

2(u−µ∗)
2σ2

∗
exp

{
− (u−µ∗)2

2σ2
∗

}
= 0 ⇔

⇔ 2(u−µ∗)
2σ2

∗
= 0 ⇔ u = µ∗ = − T ε̄σ2

u

σ2
v+Tσ2

u

(4.9)
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Efficiencies Effects Frontier and assuming N(mit, σ
2):

Demonstration of the f(u, ε):

f(u, ε) =
exp

(

− 1
2

[

(ε+u)2

σ2
v

+
(u−zδ)2

σ2
u

])

2πσuσvΦ(zδ/σu)
=

exp

(

− 1
2

[

ε2+u2+2uε

σ2
v

+
u2+(zδ)2−2uzδ

σ2
u

])

2πσuσvΦ(zδ/σu)

=
exp

(

− 1
2

[

ε2

σ2
v
+

(zδ)2

σ2
u

+u2+2uε

σ2
v

+u2−2uzδ

σ2
u

])

2πσuσvΦ(zδ/σu)
=

exp

(

− 1
2

[

ε2

σ2
v
+

(zδ)2

σ2
u

+
u2(σ2

v+σ2
u)

σ2
uσ2

v
+ 2uε

σ2
v
− 2uzδ

σ2
u

])

2πσuσvΦ(zδ/σu)

=
exp

(

− 1
2

[

ε2

σ2
v
+ (zδ)2

σ2
u

+
u2(σ2

v+σ2
u)

σ2
uσ2

v
− 2u(zδσ2

v−εσ2
u)

σ2
vσ

2
u

])

2πσuσvΦ(zδ/σu)

=

exp






− 1

2







ε2

σ2
v
+

(zδ)2

σ2
u

+ u2

σ2
uσ2

v
σ2
v+σ2

u

−
2u

(zδσ2
v−εσ2

u)

σ2
v+σ2

u
σ2
vσ

2
u

σ2
v+σ2

u













2πσuσvΦ(zδ/σu)

=
exp

(

− 1
2

[

ε2

σ2
v
+ (zδ)2

σ2
u

+u2

σ2
∗
− 2uµ∗

σ2
∗

])

2πσuσvΦ(zδ/σu)
=

exp

(

− 1
2

[

ε2

σ2
v
+ (zδ)2

σ2
u

+ (u−µ∗)
2

σ2
∗

−µ2∗
σ2
∗

])

2πσuσvΦ(zδ/σu)

(4.10)

Demonstration of the f(ε):

f(ε) =
∫ +∞
0

f(u, ε)du

=
∫ +∞
0

exp

(

− 1
2

[

ε2

σ2
v
+

(zδ)2

σ2
u

+
(u−µ∗)

2

σ2
∗

−µ2∗
σ2
∗

])

2πσuσvΦ(zδ/σu)
du

=
exp

(

− 1
2

[

ε2

σ2
v
+

(zδ)2

σ2
u

−µ2∗
σ2
∗

])

√
2πσuσvΦ(zδ/σu)

∫ +∞
0

exp

(

− 1
2

[

(u−µ∗)
2

σ2
∗

])

√
2π

du

=
exp

(

− 1
2

[

ε2

σ2
v
+ (zδ)2

σ2
u

−µ2∗
σ2
∗

])

·σ∗

√
2πσuσvΦ(zδ/σu)

∫ +∞
0

exp

(

− 1
2

[

(u−µ∗)
2

σ2
∗

])

√
2π·σ∗

du

=
exp

(

− 1
2

[

ε2

σ2
v
+ (zδ)2

σ2
u

−µ2∗
σ2
∗

])

·(σuσv)

√
2πΦ(zδ/σ)·σuσv

√
σ2
u+σ2

v

∫ +∞
0

exp

(

− 1
2

[

(u−µ∗)
2

σ2
∗

])

√
2π·σ∗

du

=
exp

(

− 1
2

[

ε2

σ2
v
+

(zδ)2

σ2
u

−µ2∗
σ2
∗

])

√
2πΦ(zδ/σu)(σ2

u+σ2
v)

1/2

[
1− Φ

(
−µ∗

σ∗

)]

=
exp

(

− 1
2

[

ε2

σ2
v
+

(zδ)2

σ2
u

−µ2∗
σ2
∗

])

Φ(µ∗
σ∗ )√

2π(σ2
u+σ2

v)Φ( zδ
σu
)

(4.11)
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Demonstration of the f(u|ε):

f(u|ε) =

exp

(

− 1
2

[

ε2

σ2
v
+

(zδ)2

σ2
u

+
(u−µ∗)

2

σ2
∗

−
µ2∗
σ2
∗

])

2πσuσvΦ(zδ/σu)

exp

(

− 1
2

[

ε2

σ2
v
+

(zδ)2

σ2
u

−
µ2∗
σ2
∗

])

√
2π(σ2

u+σ2
v)

Φ(µ∗
σ∗ )

Φ( zδ
σu )

=

exp

(

− 1
2

[

(u−µ∗)
2

σ2
∗

])

√
2πσuσv

Φ(µ∗
σ∗ )√

σ2
v+σ2

u

=
exp

(

− 1
2

[

(u−µ∗)
2

σ2
∗

])

√
2πσ∗Φ(µ∗

σ∗ )

(4.12)

Demonstration of the E(exp(−u)|ε):

E(exp(−u)|ε) =
∫ +∞
0

exp(−u)f(u|ε)du

=
∫ +∞
0

exp(−u)
exp

(

− 1
2

[

(u−µ∗)
2

σ2
∗

])

√
2πσ∗Φ(µ∗

σ∗ )
du

= 1

Φ(µ∗
σ∗ )

∫ +∞
0

1√
2πσ∗

exp
(
−1

2

[
u2+µ2

∗−2uµ∗

σ2
∗

]
− u
)
du

= 1

Φ(µ∗
σ∗ )

∫ +∞
0

1√
2πσ∗

exp
(
−u2−2uµ∗+2uσ2

∗+µ2
∗

2σ2
∗

)
du

= 1

Φ(µ∗
σ∗ )

∫ +∞
0

1√
2πσ∗

exp
(
−u2−2u(µ∗−σ2

∗)+(µ∗−σ2
∗)

2−(µ∗−σ2
∗)

2+µ2
∗

2σ2
∗

)
du

= 1

Φ(µ∗
σ∗ )

∫ +∞
0

1√
2πσ∗

exp
(
− (u−(µ∗−σ2

∗))
2−(µ∗−σ2

∗)
2+µ2

∗
2σ2

∗

)
du

=
exp

(

−µ2∗−(µ∗−σ2
∗)

2

2σ2
∗

)

Φ(µ∗
σ∗ )

∫ +∞
0

1√
2πσ∗

exp

(
−1

2

[
u−(µ∗−σ2

∗)
σ∗

]2)
du

=
exp

(

−µ2∗−(µ2∗+σ4
∗−2µ∗σ

2
∗)

2σ2
∗

)

Φ(µ∗
σ∗ )

[
1− Φ

(
−µ∗−σ2

∗
σ∗

)]

=
exp

(

σ4
∗−2µ∗σ

2
∗)

2σ2
∗

)

Φ(µ∗
σ∗ )

[
Φ
(

µ∗−σ2
∗

σ∗

)]

= exp
(

σ2
∗
2
− µ∗

)
Φ(µ∗

σ∗
−σ∗)

Φ(µ∗
σ∗ )

(4.13)


