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RESUMO 

Este estudo tem como objectivo principal a análise e caracterização de cerâmicas vidradas 

(antigas) produzidas entre os séculos XVI e XVIII em Coimbra e Lisboa. Para tal recorreu-se a 

uma metodologia multianalítica de modo a fornecer informação científica a vários níveis para 

se obter parâmetros identificadores destas produções. Paralelamente, este estudo surge como 

uma oportunidade para o apuramento do conhecimento e da reconstituição da tecnologia e do 

sistema de produção usado em Coimbra, particluarmente faianças. 

De um modo geral, cerâmicas vidradas policromas são caracterizadas por três zonas: corpo 

cerâmico, vidrado e superfície decorativa. A escolha das matérias-primas bem como o processo 

de manufactura (aplicação do vidrado, temperatura de cozedura, entre outros) são factores 

que influenciam a peça final. O corpo cerâmico é composto maioritariamente por minerais 

argilosos, oxidos de silício (Si) a Alumínio (Al) e inclusões não plásticas (têmpera). Os minerais 

argilosos comferem plasticidade à pasta; silica (SiO2) tem um papel estrutural e é refractário – 

ponto de fusão alto (1600 – 1725 °C); têmperas podem ser impurezas intrísecas aos minerais 

argilosos ou adicionadas pelo oleiro para conferir as propriedades desejadas.  

O vidrado é constituído por três (ou quatro) grupos de compostos: i) formadores de rede – 

maioritariamente silica (SiO2); ii) modificadores de rede (ou fluxos) – maioritariamento oxidos 

de chumbo (ex. PbO) e minerais argilosos (para baixar o ponto de fusão da estrutura silicatada); 

iii) intermediários  - para repôr as propriedades perdidas pela introdução de fluxos; iv) agentes 

opacos – normalmente Cassiterite (SnO2).  

Os escassos estudos cerâmicos já desenvolvidos privilegiam as manufacturas de Lisboa em 

detrimento das de Coimbra, encaradas como mais periféricas e de menor qualidade. No 

entanto, este preconceito exige uma reflexão mais profunda, pois aspectos considerados pouco 

cuidados (tipo de vidrados, tonalidades mais densas dos óxidos, maior porosidade das pastas) 

poderão dever-se a constrangimentos na aquisição de matérias-primas e consequente 

improvisação do que havia disponível. O facto é que qualquer peça da produção de Coimbra é 

avidamente coleccionada, mesmo fora das fronteiras nacionais. Através de uma caracterização 

visual, têm vindo a ser intuídos pelos ceramólogos alguns aspectos potencialmente marcadores 
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das cerâmicas de Coimbra, mas faltam critérios científicos que permitam confirmar estas 

hipóteses. 

Os objectos de estudo pertecem a dois grupos de cerâmica vidrada: faianças utilitárias 

(originais de Coimbra) e azulejos (originais de Coimbra e Lisboa). Os fragmentos de faianças 

foram recolhidos do espólio existente no Mosteiro de Santa Clara-a-Velha (Coimbra) através do 

Museu Machado de Castro (MMC) em Coimbra e os fragmentos de azulejos – quer de Coimbra 

e de Lisboa – foram obtidos através do Museu Nacional do Azulejos (MNAz) em Lisboa. Tendo 

em conta o objectivo principal proposto, este estudo assenta em duas grandes vias de 

investigação: caracterização composicional de peças com origem conhecida (Coimbra e Lisboa) 

e preparação e caracterização de modelos laboratoriais. Os modelos criados em laboratório 

servirão para obter informação sobre a origem da matéria-prima utilizada, dos processos de 

fabrico, nomeadamente da temperatura de cozedura, processo de aplicação do vidrado e 

aplicação dos pigmentos. Pretende-se assim com este trabalho o desenvolvimento de um 

extenso programa analítico,  que permitirá a caracterização elementar, composicional, 

mineralógica e morfológica ao nível do corpo cerâmico, vidrado e pigmentos. Além disto, as 

zona de interface (pigmento/vidrado e vidrado/corpo cerâmico) serão também analisadas, pois 

a interacção pigmento/vidrado e vidrado/corpo cerâmico depende das matérias primas 

utilizadas bem como da temperatura de cozedura. 

Tendo em conta os objectivos propostos é necessário escolher técnicas espectroscópicas 

não destrutivas, isto é, que preservem a integridade física e química do objecto a analisar. As 

técnicas usadas neste trabalho são: espectroscopia por Fluorescência de Raios X (do inglês, 

XRF), Difracção de Raios X (do inglês, XRD), Microscopia por Varrimento Electrónico com 

sistema de espectroscopia por Fluorescência de Raios X acoplado (do inglês, SEM/EDX) e 

espectroscopia por Absorpção de Raios X (do inglês, XAFS).  

XRF permite a identificação simultânea bem como quantificação dos elementos presentes 

numa amostra, com número atómico superior a 9. O facto de esta técnica ser não destrutiva, 

faz dela um método de eleição para a análise de objects com valor histórico, artístico e 

arqueológico. Além do método convencional de XRF, foi também usada a vertente confocal (ou 
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3D) de XRF. Com esta vertente, consegue-se seleccionar volumes de amostra e efectuar 

varrimentos em profundidade, obtendo uma informação tri-dimensional elementar da amostra. 

XRD fornece informação ao nível mineralógico que constitui as amostras. Acedendo a esta 

informação consegue-se assim aceder directamente às matétrias-primas utilizada bem como a 

minerais que surgem como consequeência das transformações térmicas que ocorrem durante o 

processo de cozedura. 

SEM/EDX fornece informação ao nível morfológico, em que imagens dos cristais que 

pertencem à estrutura das matérias-primas são visualizados. Tendo esta informação disponível, 

conseguem-se estimar processos de cozedura utilizados, mais precisamente temperaturas 

utilizadas. O tamanho e a forma dos cristais é indício desta ultima propriedade.  

Por fim, XAFS, vem complementar a informação que é “perdida” com XRD. A alta 

sensibilidade química para especiação de um único átomo, vem colmatar as dificuldades 

impostas pelos artefactos experimentais em XRD. Com XAFS, consegue-se averiguar o estado e 

oxidação de um dado átomo bem como a distância a que se encontram os átomos vizinhos 

mais próximos desse átomo. Assim sendo, informação acerca da geometria da molécula em que 

o que átomo se encontra bem como tipos de ligação entre este e os seus vizinhos, consegue ser 

obtida. Estas propriedades tornam a técnica de XAFS bastante apelativa para estudos em 

objects ligados ao património cultural. A única dificuldade é ter que recorrer a um sincrotrão 

para poder efectuar tais medições. O facto de ser uma técnica altamente sensível a nível 

atómico requer o uso de fontes de radiação X com determinadas propriedades que não se 

encontram em laboratório, tais como, coerência, alto brilho e muito baixa divergência.  

Aplicando esta aproximação multianalítica aos objectos em estudo – e tendo em conta o 

objectivos propostos – foram obtidas diferenças entre as produções de Coimbra e Lisboa, 

destacando as faianças das demais. Resultados obtidos por XRF e XRD demosntram que o corpo 

cerâmico dos Azulejos é mais heretogéneo e mais poroso do que o das faianças. Mais ainda, foi 

obtido que os corpos cerâmicos de Azulejos terão sido submetidos a temperaturas de cozedura 

mais elevadas do que os de Faianças. Isto confirma-se pela presença de minerais metaestáveis 

que se formam a mais altas temperaturas, tais como a Cristobalite (um polimorfo da silica que 

se forma a alta temperatura). Foi também detectada a presença de chumbo (Pb) 
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(principalmente em Azulejos) na parte de trás do corpo cerâmico. Isto deve-se à elevada 

porosidade no corpo cerâmico de Azulejos que favorece a penetração de Pb pelos poros até ao 

fundo do corpo cerâmico. Este fenómeno está de acordo com o processo de manufactura das 

peças. Faianças são produzidas ao torno oleiro enquanto que os Azulejos são produzidos em 

placas, conferindo assim maior heterogeneidade. 

Faianças têm um vidrado mais fino (espessura máx. 180 µm) do que os azulejos (espessura 

máx. 400 µm). Através de XRF foi possível identifcar elementos-chave para vidrado e cores 

usadas para a camada decorativa: Cobalto (Co) para o azul, Antimónio (Sb) para o amarelo, 

Manganês (Mn) para o púrpura, Cobre (Cu) para o verde e Chumbo (Pb) para o vidrado.  

Através de SEM/EDX foi possível obervar que Estanho (Sn) doi adicionado intencionalmente 

pelo oleiro à mistura do pigmento azul. Isto deve-se ao facto de o azul de Co ser muito escuro 

(quase preto) e não é esse o tom de côr que se observa a olho nú. Sendo SnO2 um composto 

que confere uma côr esbranquiçada, confere-se a adição de este ao pigmento azul. Uma das 

grandes contribuições deste estudo foi verificar Co está associado a uma corrente de 5 

elementos: Fe-Co-Ni-As-Bi. Apesar de Bi ter sido detectado por XRF, este não foi detectado com 

estando associado à fonte de Co. Mais ainda, em faianças de Coimbra, as estruturas de Co são 

ricas em Ferro (Fe) enquanto que em Azulejos estas são ricas em Níquel (Ni).  

Outro resultado importante foi verificar diferenças na morfologia dos cristais que compõem 

o pigmento amarelo. Segundo fontes documentais, o pigmento amarelo mais usado e mais 

provável terá sido o Amarelo de Nápoles (Pb2Sb2O7). Através de SEM/EDX foi verificado que os 

cristais de amarelo de Nápoles em azulejos de Lisboa são hexagonos bem definidos – típico do 

pigmento em si e indicativo de uma temperatura de cozedura acima dos 1100 C. Nas faianças 

de Coimbra estes cristais têm formas mais irregulares (triângulares) em vez de hexagonais. De 

acordo com a literatura esta forma de cristais indica temperaturas de cozedura inferiores a 

1000 C. Além do mais, através de XAFS obtiveram-se diferenças na própria estrutura cristalina 

do pigmento amarelo. Amostras de Coimbra (faianças e Azulejos) o composto na forma de 

Pb2Sb2O7 terá sido usado enquanto que nas amostras de Lisboa, uma mistura de compostos de 

Pb e Sb foi identificada. 
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Este trabalho é pioneiro no estudo científico de tão valioso espólio e com a informação 

obtida surgiram 4 publicações em revistas internacionais científicas com um factor de impacto 

siginificativo na área de espectrosocpia. Foram fornececidas respostas acerca das matérias-

primas e propriedades composicionais – ao nível mineralógico e morfológico. Assim sendo, o 

campo das artes em Portugal pode ser usado como base para desenvolver metodologias de 

conservação e restauro. Este trabalho proporcionou não só nova informação acerca das 

produções de Coimbra e Lisboa mas também a abertura de horizontes para dar continuidade a 

esta investigação. O universo de amostra aqui analisado seviu para extrair diferenças entre os 

centros de manufactura cerâmica mas há fica implicita a necessidade de analisar cerâmicas de 

outros centros, como por exemplo Porto ou Alcobaça. 

 

Palavras-chave: Faianças de Coimbra; Azulejos; Investigação multianalítica; Caracterização 

composicional; Diferenças entre técnicas de manufactura;   
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ABSTRACT 

Polychrome glazed ceramics (faiences and wall-tiles) originally produced in the two main 

manufacturing centers between the XVI and XVIII centuries, Coimbra and Lisbon (Portugal), 

were object of study.  In order to overcome mislabeling of objects which are not properly 

identified – e.g. by potters marks – this investigation addresses to gain knowledge concerning 

manufacturing technological aspects by a multianalytical (non-destructive) approach. Since no 

scientific data was found regarding faiences produced in Coimbra, this serves as a contribution 

for the classification of “Faience from Coimbra”.  

The samples are characterized by ceramic support, a glaze and surface decoration. 

Depending on the raw materials as well as the manufacturing process involved – e.g. firing 

temperature – these three main regions will interact with each other differently. Therefore, 

information obtained at the interface-areas is important. 

Considering the objectives of this work, the chosen analytical methods were: X-ray 

Fluorescence (XRF), X-ray diffraction (XRD), Scanning Electron Microscopy / Energy Dispersive X-

ray System (SEM/EDX) and X-ray Absorption Fine Structure (XAFS). It was shown that faiences 

are a unique kind of glazed ceramics and differences between the productions from Coimbra 

and Lisbon arose. Faiences have thinner glazes (max. 180 µm) than wall-tiles (max. 400 µm). 

Key elements are: Co for blue, Mn for purple, Cu for green, Sb for yellow, Pb for glaze. 

Elemental and morphological features have shown that Sn is mixed in the blue to lighten the 

final hue and Co-structures are in a Fe-rich environment in faiences and in a Ni-rich 

environment in wall-tiles.  

Regarding the yellows, the hexagonal shape found for wall-tiles from Lisbon indicates that a 

higher temperature was used ( 1100 C), in comparison to the samples from Coimbra (faiences 

and wall-tiles), which shape is irregular and triangular-like (from 950 C). Furthermore, the 

compound used for yellow pigments is different between Coimbra and Lisbon. 

 

Keywords: Coimbra faiences; Wall-tiles; Multianalytical investigation; Compositional 

characterization; Differences in manufacturing techniques. 
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CHAPTER 1 – INTRODUCTION TO GLAZED CERAMICS 

Pottery-wares are magnificent and complex objects carrying intrinsic historical, cultural and 

traditional values. Their high resistance to weathering mechanisms allows us to infer about past 

traditions through direct and indirect evidences on manufacturing techniques, raw materials 

and decoration employed, characteristic of a culture, region or country. 

Features like the chemical composition (dependent on the raw materials and recipes used) 

and the firing stages applied, will dictate the type, or class of object. Nowadays there is huge 

variety of ceramics, including the traditional pottery for domestic use and decorative ware, 

porcelains, sanitary, bricks and tiles. Moreover, modern ceramic materials are used for example 

as thermal insulators, with high thermal and mechanical resistance, for medical proteases and 

even for computer memory devices.  

Based on the properties of the processed products, traditional ceramics can be divided into 

two groups: porous (or permeable) and non-porous (or impermeable). The former are 

characterized by their ability of absorbing water and the latter by having practically no porosity, 

resulting in new crystalline phases during the firing process, at high temperature. Examples of 

porous bodies are faiences and refractory clays (with a melting point of > 1600 C) while non-

porous bodies are typical in porcelain [1]. 

Ceramic objects can be classified according to body’s porosity and firing range as resumed in 

Table 1.1 [2]. Based on this taxonomy all objects under consideration in this work are 

earthenware.  

 

Table 1.1 – General taxonomy of the ceramic bodies [2]. 

Body Porosity Firing Range 

Terracotta High:  10% < 1000 C 

Earthenware 3% - 10% 900 – 1200 C 

Stoneware 0.5% - 3% 1200 – 1350 C 

Porcelain 0% - 1% 1300 – 1450 C 
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Another feature that has been used to define the type of ceramic objects is surface 

treatment. Depending on it other object designations became known and accepted as 

definition for the pieces. Surface treatments have appeared to embellish the ceramic body and 

to reduce the permeability to fluids. They can cover the ceramic body partially or entirely, 

applied before or after firing [2]. The most common surface treatments are slips and glazes. 

Glazes are vitreous substances, having in its constitution a mixture of materials, which then are 

applied onto fired ceramic bodies (bisque) and submitted to a firing procedure, at high 

temperature. This was a great breakthrough in the history of ceramics manufacture, as it forms 

an impermeable, shiny, smooth layer, which is ideal for surface decoration application. 

The origin of glazes production dates back to around 2000 B.C. in Mesopotamia. The 

development of glazes are interesting to observe and well documented by Gustav Weiss [3]. 

The glaze technology has evolved and improved. Until 550 A.D. glazes were of the alkali-lime-

silica type, with similar composition to the contemporary glass, as the study on several glazed 

pottery from this period shows, reported by M. S. Tite [4]. Such studies have proven that there 

were no changes in the chemical composition of the glazes for a 2000-year period, and the glass 

and glaze content at this time was very similar, suggesting that glass ground to a powder (frit) 

and applied onto the bisque was used as glaze. The next important step on this path was the 

introduction of lead (Pb) into glazes’ composition, with values between 45-60% (high-lead 

glazes), in the oxide form, during the I century B.C in Anatolia. 

The introduction of Pb as one of the major components in the glaze has brought advantages 

like easier application due to its inherent insolubility, reduced possibility of cracking due to its 

low thermal expansion (0.106 x 10-6/C) and it offers a higher optical brilliance. 

A milestone in glaze’s history was the introduction of tin (Sn) to their composition, around 

the IX century A.D. in Iraq, to imitate the white porcelain from China. Due to its high refractive 

index, small particle size and surface irregularity, tin oxide is an excellent opacifier. Later on, tin-

opacified glazes started being produced in Egypt between the X – XI centuries A.D. At this time 

the glazes were lead-alkali type, with lead oxide concentrations ranging 25-30% and 5-10% 

alkali [4]. From this point on, this glaze technology spread through the Islamic world in North 

African and south European countries covering a big part of the Iberian Peninsula (Portugal and 
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Spain). To Italy it reached via the island Mallorca, and, therefore, the Italian named Maiolica (or 

Majolica) to the type of glazed ceramics based on the tin-opacifying technology. The spreading 

to other European countries such as France was from Faenza (in the north of Italy) and the 

French named this type of objects Faience. In principle, both names are valid to classify them.  

This is an important point to turn to the objects under investigation in this work – 

Portuguese glazed ceramics. 

 

1.1 Glazed ceramics in Portugal – historical context 

From art historian point of view, the Islamic influence (661-750 A.D.) on Portuguese glazed 

ceramics is well noticed particularly in the recipes for ceramic production. Azulejos (wall tiles) 

and faiences are two examples with this technical influence.  

From all the glazed ceramics in Portugal, the most famous ones are Azulejos (from Arabic: al 

zulayj, meaning “polished stone”). These Azulejos, Portuguese wall tiles, characterized by their 

square shape and elaborated decorative motifs are used in many (old) buildings in Portugal. The 

decorative motifs evolved between the Gothic and the Renaissance styles. Although these wall-

tiles are also found in other countries like, Spain, Italy, Netherlands, Turkey, Morocco and Iran, 

they have assumed a special charisma in Portugal due to: i) their longevity in use (five centuries 

with no interruption); ii) its application mode, as element that supports the architecture, 

covering entire inner- and outer-walls; iii) the way it has been understood, not just as 

decorative art but also as support for taste renovation and as creativity proof [5]. A brief 

chronology of the development of Azulejos in Portugal is given in annex 1.1 [6]. 

In figure 1.1, a set of examples of the different uses for Azulejos in Portugal is shown. 
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Figure 1.1 – Examples of the use of Azulejos in Portugal: a) “Armillary Sphere” motif at the Carranca 

courtyard in Sintra Palace [7]; b) pattern style at the main Church in Argoncilhe (Aveiro) [7]; c) Rococo 

style at the garden in Queluz palace [7]; d) Baroque style at the Congregados church in Porto (A. 

Guilherme, 2010); e) Publicity panel and street name in Abrantes [7]; f) Publicity panel in Bom Jesus 

(Braga) (A. Guilherme, 2010). 

 

Given the development of Azulejos in Portugal, an important stage was in the mid XVI 

century, where a change of artistic taste in this matter was experienced. The embossed work in 

Azulejos became “old-fashioned” and a new wave of manufacturing appears. Pieces with flat, 

fine glazed surfaces (faiences) turned to be the “modern” style of glazed ceramics. This is the 

time where the first Azulejos with painted decoration (by Portuguese artists) appeared [6]. 

Other types of objects hereby investigated are utility faiences for domestic use, such as 

plates, vases, bowls, etc. Regarding faiences, Portugal has a big variety of factories (or 

potteries) and based on documental (non-scientific) proofs, the possibility that the different 

manufacturing centers adopted slightly different techniques has emerged [8]. One of the most 
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intriguing production centers is Coimbra. However, the lack of (scientific) data has raised 

mislabeling questions, which will be better explained in the next sections. Moreover, this 

investigation serves as a contribution to the missing scientific information. Just by 2007, a 

complete documental (and partially scientific) compilation about the Coimbra glazed ceramic 

production was published (in Portuguese) [9], but a good overview (in English) of the 

importance of faiences in Portugal is given in [10]. 

Still regarding the book of Pais et al. [9] one can find a detailed insight about the chronology 

related to faience production within Coimbra district. A whole list of potters and families 

protagonist of this type production is given, as well as stylist changes that have taken place 

between the XVI and XIX centuries. One of the most interesting facts is the lack of production 

indicatives before the ceramic factories appeared in this region. This is a strong hint that until 

that time, the ceramic objects were produced by craftsmen, mainly illiterate, who were not 

even aware of the craft and at that time the value of their productions was inexistent. Due to all 

of these difficulties, and as a first step for investigation, excavations at the places connected to 

“ancient” pottery workshops were executed, namely at the Convento de Santa Clara-a-Velha 

and at the Museu Machado de Castro (MMC). The retrieved fragments there represent a 

concrete set of “ancient” samples. The term “ancient” is here connected to the fact that they 

are in the context of the earliest known Portuguese faience pieces (and therefore the oldest) 

produced in Portugal. 

A brief chronology of art historical development regarding faiences from Coimbra is given in 

annex 1.2 [9]. From this description the main features characteristic of the faiences from 

Coimbra are: glazes more mate than the ones from Lisbon (for example); the use of earthy 

mate tones in which yellows tend to orange and blues tend to violet; the dark purple contours; 

embossed decorative motifs, which together with their lack of brightness suggest a third firing 

stage; and as a final remark the less use of oriental motifs, as it is known for the pieces from 

Lisbon [8, 9]. 

Another interesting fact is the strong influence of Spanish and Italian tin-glazes 

earthenwares in Portugal, especially from the quantity of faience produced in the XVII century. 

The most characteristic pieces from this period are decorated based on the exported Chinese 
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porcelain style. In fact, the Portuguese were the first Europeans to manufacture imitations of 

Chinese export porcelain in faience, preceding the Dutch with their ‘Kraak’ porcelain [10]. 

Citing the Portuguese ceramist, Joaquim de Vasconcelos, on faiences from Coimbra: “The 

only one in Portugal representing the oriental tradition and preserving characteristics from the 

Islamic style”. The colored motifs (…) produce a unique effect at ones sight, gives to this 

ceramics an archaic aspect, which is impossible to confuse it with any other region” [9]. Figure 

1.2 shows some examples of utility faience objects produced in Coimbra. 

 

 

Figure 1.2 – Examples of faiences from Coimbra: a) Tray from mid XVII century, 6 x  27 cm (present 

location: Museu Municipal de Viana do Castelo – MMVC – in Viana do Castelo); b) Plate from late XVII 

century, 5.3 x  33.6 cm (present location: Museu Nacional de Arte Antiga – MNAA – in Lisbon);c) Plate 

1st half of XVIII century, 6.2 x  39 cm (present location: MMVC – in Viana do Castelo); d) Plate from late 

XVIII century, 4.8 x  27.4 cm (present location: MMVC – in Viana do Castelo); e) Bottle from late XVIII 
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century, 25.2 x  16 cm (present location: Museu Nacional Machado de Castro – MNMC – in Coimbra; f) 

Wall deposit from late XVIII century, 36.8 x 24 cm (present location:  MNAA – in Lisbon) [9] (all photos by 

A. Guilherme, 2008).  

 

1.2 Description of the analyzed samples – origin and features 

The sample set chosen for this investigation comprises two ceramic production centers: 

Coimbra and Lisbon. All samples belong to the class of Majolica (or faience) and two types are 

included: Azulejos (from Coimbra and Lisbon) and utility faiences (from Coimbra). All belong to 

the time period of XVI-XVIII centuries. The assignation to the manufacturing centre is based on 

the stylistic features that the pieces exhibit, according to documental proofs. Some of the 

pieces, at least the most erudite ones, have even potter trade-marks, which makes it easier to 

compare the artistic styles and assign the samples to Coimbra or to Lisbon. 

The Azulejo samples (produced in Coimbra and Lisbon) were provided by the Museu 

Nacional do Azulejo – MNAz (Wall-tile National Museum in Lisbon), while the collection of 

utility faience samples (produced in Coimbra) were retrieved from the Mosteiro de Santa Clara-

a-Velha (Santa Clara-a-Velha Monastery) in Coimbra. A list of the analyzed samples, describing 

their origin, estimated date of production and features observed by naked-eye, is presented in 

annex 1.3. In technical terms all of these pieces are characterized by three main parts: i) 

ceramic support (body); ii) glaze; iii) surface decoration, as indicated in figure 1.3. The 

micrograph of the cross-section was taken with a Scanning Electron Microscope (SEM) at the 

Federal Institute for Materials Research and Testing (BAM – Bundesanstalt für 

Materialforschung und –prüfung, Berlin, Germany – division 6.8:  Surface Analysis and 

Interfacial Chemistry) (cf. chapter 3, section 3.3). 
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Figure 1.3 – Scanning Electron Microscopy micrograph of a ceramic sample in cross-section taken at 

BAM (division 6.8 – Surface Analysis and Interfacial Chemistry). The three main parts characteristic of all 

samples are observable: surface decoration, glaze and ceramic support. 

 

1.2.1 Ceramic support / body 

The ceramic support is characterized mainly by clay minerals, Silicon (Si) and Aluminum (Al) 

oxides (with particle size  2 µm in diameter) and non-plastic inclusions (temper). Clay minerals 

confer plasticity, which is necessary for molding the material [2]. These are basically alumina-

silicate hydrated minerals (Al2O3SiO2H2O) with lower quantities of other oxides, such as TiO2, 

Fe2O3, MgO, CaO, Na2O and K2O. Silica (SiO2) has a structural role in the body and it is the 

refractory component, as it has a very high melting point (1600 – 1725 °C). The temper 

inclusions can be natural impurities within the clay minerals or added by the potter in order to 

change the properties of the ceramic material so that it could be easier to shape it and become 

more consistent [11]. 

The elements (or compounds) that hold a more informative character are the ones which are 

formed from igneous rocks and this is strongly dependent on the geology of the region [12]. 

Important minerals for the formation of igneous rocks are feldspars, quartz, olivines, 

pyroxenes, amphiboles and micas.  



15 
 

Feldspars are alumina-silicates (SiO2 and Al2O3) and constitute 39% of the earth´s crust. 

Potassium (K), sodium (Na) and calcium (Ca) are other elements which are present in feldspars 

as well. They are responsible for the division between potash or alkali feldspars (with K: 

orthoclase and microcline) and soda-lime feldspars (different relative quantities of Na and Ca: 

Albite, Oligoclase, Andesine, Labradorite, Bytownite and Anorthite) namely plagioclases. During 

the process of weathering, all the minerals in igneous rocks form clays, and different kinds of 

decomposition procedures form different clays [2]. There are still other elements (so-called 

“accessory” elements) that can either positively or negatively alter the properties of the paste, 

such as metallic sulphides, carbonates, sulphates, other salts and organic matter [13]. 

Apart from the chemical interactions within the water/clay system, physical and chemical 

characteristics are altered when the paste is submitted to a firing process. These alterations are 

function of three variables: firing cycle, temperature and atmosphere [2]. The atmosphere 

refers to the gases that are present while the paste is being heated and cooled down. If the 

whole process is taken place under a free air circulation and oxygen to bind with the elements, 

the atmosphere is said oxidizing; while if oxygen is lacking, the atmosphere is said reducing. 

This is important since the atmosphere during the firing affects the final product in terms of 

color, hardness, porosity and shrinkage [2, 13]. 

Regarding some of the most common components of the body, the first phenomenon under 

the first heat action (below 300C) is the loss of water which was not expelled during the drying 

process. The second important stage, between 300 – 600 C, is the dehidroxilation, which 

means that, at the end of this stage, the loss of plasticity is irreversible. Organic components 

start oxidizing at 200 – 300 C, which increases exponentially at temperatures around 600 – 800 

C and together with the water elimination there is an increase in porosity that allows an intake 

of air into the piece. At 573C there happens the so-called “quartz inversion”. From 800 C the 

pores start closing and the material starts contracting. Between 800 – 950 C the 

decomposition of calcium and magnesium carbonates takes place and from 900 C vitrification 

phenomena starts occurring, which confers resistance to the material. So, in clayey materials 

the mechanical resistance is owed to the formation of glassy phases, mainly due to the fuser 

materials within the paste [1, 13-15]. 



16 
 

All these transformations occur with the variation of temperature (or volume), which allows 

to infer about these phenomena, for example using X-ray Diffraction (XRD) (cf. chapter 3, 

section 3.2).In the case of faiences the firing temperature used for the ceramic body goes up to 

950 – 1200 C. The bisque (after firing) has a dim and opaque appearance, with low 

deformation, owed to the lower content in fuser elements. Faience ceramic bodies have a 

higher mechanical resistance in comparison to the ball-clay ones. They have also an early 

vitrification phase, which makes it more difficult to have a good fit between body and glaze. 

 

1.2.2 Glaze 

Glazes are composed by three main categories of components: i) network formers, ii) 

network modifiers (fluxes) and iii) intermediates. Every one of these components is important 

for the properties of the final product.  

The network formers, as the name itself suggests, create the structure and this is achieved 

by silica (SiO2). The network modifiers (fluxes) are oxides that are introduced in the tetrahedral 

structure of silica. These oxides have longer ionic radii than the ones of silica, which weakens 

the network connections, lowering the melting point of the system. The most common fluxes 

are Na2O, K2O, PbO, CaO and MgO. The intermediates are oxides that substitute part of silica 

and have one or both of the functions: 

- Increase the glaze viscosity, which was lost by the introduction of fluxes; 

- Strengthen the glaze during the firing process, avoiding fissures. 

Common intermediates are Al2O3, PbO, ZnO, ZrO2 and CdO. There is also a fourth category, 

the opacifiers, which make the glaze more opaque. As it was mentioned previously tin (Sn) is 

one of the best opacifiers and it is commonly found in the composition of Maiolica objects. The 

introduction of such components promotes the application of surface decoration onto the 

glazed pieces. 

During the firing process these components react with each other and fuse to form the glaze 

layer. It can be fired simultaneously with the body (mono-firing) or fired after applied onto the 

bisque (bi-firing). In the case of the samples hereby studied, all glazes were applied onto the 

fired ceramic support and fired in an own stage. The surface decoration could have been 
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applied together with the base glaze onto the bisque or applied onto the glazed piece 

submitted to own firing stage, where the whole piece undergoes a third firing procedure. This is 

still an open question.  

The glazes used for ceramics are a kind of glass, which is a non-crystalline substance cooled 

rapidly. Glazes are viscous coatings that are fused at high temperatures over a ceramic body 

and during the cooling process they solidify without the formation of a crystalline structure and 

retain some characteristics of a liquid. In fact glazes represent a mixture between amorphous 

and crystalline phases [2, 16] (figure 1.4). 

 

Figure 1.4 – Illustration of a crystalline material with theoretical composition of A2O3 (left) and 

amorphous arrangement of A2O3 (right) if the material is cooled down rapidly. The dashed lines 

surround 24 black dots and 36 open circles, representing the same chemical composition in both figures. 

The amorphous structure occupies a larger volume in comparison to the crystalline one [16]. 

 

Figure 1.5 shows what happens to a material with the insertion of network modifiers. 
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Figure 1.5 – Insertion of network modifiers cations (larger grey filled circles) in the glass structure 

[17].  

  

Glazes are normally applied in an aqueous suspension form either by submersion, or with a 

brush. After the water is absorbed through the pores of the body a sort of dusty layer remains 

on the surface [16, 17]. Once fired at sufficiently high temperature this layer forms an 

impermeable, more or less shiny glassy surface. During the firing process several phenomena 

occur, such as the decomposition of the raw materials (which were not fritted before) by the 

release of carbon dioxide (CO2) from the carbonates; dissolution of some compounds and 

separation of non-mixable phases. During the cooling process some substances crystallize and 

the glaze hardens. 

The properties of glazes depend, of course, on the chemical composition. The higher the 

amount of silica the harder the glaze is but it needs a higher firing temperature. The oxides that 

act as fluxes have a stronger effect the shorter the cation is. Level of fusibility or fusing power 

varies using different alkaline oxides in the following order: 

LiO2> PbO > Na2O > K2O > BaO > CaO > SrO > MgO > ZnO 
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Yet, the presence of these oxides can be harmful since it diminishes the mechanical and 

chemical resistance of glazes and increase the thermal expansion coefficient2. Here the 

introduction of the so-called “network stabilizers” is necessary. 

Taking all of these issues into account, glazes should have the following properties: 

 Moderate viscosity, to avoid differences in thicknesses especially in irregular surfaces; 

 The reaction between ceramic paste and glaze should be moderate in order to 

minimize the compounds exchange. 

 The relationship between expansion coefficient and elasticity module (Young)3 of the 

glaze should be towards a maximal resistance. 

 It should be chemically stable, homogeneous, and abrasion resistant. 

After applying the glaze either by submersion, or with a brush, onto the ceramic body, the 

piece is fired.  

 

1.2.3 Surface decoration 

From all the analyzed samples, and from documental proofs [9], the base colors used for the 

surface decoration in Portuguese glazed ceramics are: blue, dark purple, yellow (and brown) 

and green – in rare cases. Different mixtures and concentrations (pigment to volume ratio) of 

the raw materials for the pigments result in different hues. For example different hues of blue 

and yellow were found among the sample set. Based on the colors used, the palette of 

inorganic pigments is broad as it is described in table 1.2. 

  

                                                           
2
 Thermal expansion coefficient: Thermal expansion is the tendency of matter to change in volume in response to a 

change in temperature. The degree of expansion divided by the change in temperature is called the material's 

coefficient of thermal expansion. 
3
 Young´s module: For the description of the elastic properties of objects, which are either stretched or 

compressed, a convenient parameter is the ratio of the stress to the strain, a parameter called the Young's 
modulus of the material. 
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Table 1.2 – Inorganic pigments with their chemical formula as well as key-elements. 

Color Pigment name Chemical formula Key-element(s) 

Blue 

Azurite 2CuCO3·Cu(OH)2 Cu 

Cerulean blue CoO·SnO2 Co, Sn 

Cobalt blue CoO·Al2O3 Al, Co 

Cobalt violet Co3(PO4)2 Co 

Egyptian blue CaO·CuO·4SiO2 Si, Ca, Cu 

Manganese blue BaSO4·Ba3(MnO4)2 Mn, Ba 

Prussian blue Fe4[Fe(CN)6]c3 Fe 

Smalt Co-glass (K2O,SiO2,CoO) Si, K, Co 

Ultramarine Na8–10Al6Si6O24S2–4 Na, Al, Si, S 

Yellow 

Auripigment As2S3 As 

Cadmium yellow  CdS Cd 

Chrome yellow  2PbSO4·PbCrO4 Cr 

Cobalt yellow  K3[Co(NO2)6]·1.5H2O K, Co 

Lead-tin yellow  Pb2SnO4/PbSn12xSixO7 Sn 

Massicot  PbO Pb 

Naples yellow  Pb(SbO3)2/Pb3(SbO4)2 Sb, Pb 

Strontium yellow  SrCrO4 Cr, Sr 

Titanium yellow  NiO·Sb2O3·20TiO2 Ti, Ni, Sb 

Yellow ochre  Fe2O3·nH2O (20–70%) Fe 

Zinc yellow  K2O·4ZnO·4CrO3·3H2O Cr, Zn 

Green 

Basic copper 
sulphate 

Cux(SO4)y(OH)z Cu 

Chromium oxide  Cr2O3 Cr 

Chrysocolla CuSiO3·nH2O Cu 

Cobalt green  CoO·5ZnO Co, Zn 

Emerald green  
Cu(CH3COO)2·3Cu(AsO2

)2 
Cu, As 

Guignent green  Cr2O3·nH2O + H3BO3 Cr 

Malachite  CuCO3·Cu(OH)2 Cu 

Verdigris  Cu(CH3COO)2·nCu(OH)2 Cu 

Black; purple 

Black iron oxide  FeO·Fe2O3 Fe 

Cobalt black  CoO Co 

Ivory black  C + Ca3(PO4)2 P, Ca 

Manganese oxide  MnO + Mn2O3 Mn 

 

 During the XVIII century it was common that each workshop prepares its own colors and 

hues and kept it as a secret [9]. This is a challenge for such investigations, as there is a need for 

finding adequate strategies for reconstructing manufacturing procedures used.  
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From table 1.2 one can see that at a first approach, having elemental information only can 

be difficult in assigning the pigment that has been used. Nonetheless, given the time of 

manufacture and resources available, some hints can be given about the pigments used for 

surface decoration. For example, the source for the blue may have been Smalt, for the yellow 

the Naples Yellow and for the purple the Manganese oxide [9], as highlighted in table 1.2. 

However, the mixture of pigments to obtain the desired hues can be dependent on the 

production center and the special case of the Naples Yellow seems to require a deeper 

understanding on the type which was used [18, 19].  

Naples yellow is a synthetically generated pigment produced by initial raw materials, which 

could have been sulphides, oxides or metals. Dik et al. [20] investigated whether the yellow 

pigment was produced from sulphides, oxides or metals. Three mixtures of Naples Yellow were 

calcinated4 at 900 C: (1) minium (Pb3O4) + Stibnite (Sb2S3); (2) Pb3O4 + Sb2O3; and (3) Pb 

metallic + Sb metallic. The tests showed advantage of the oxides mixture (2) over the other two, 

as it produced almost pure lead antimonate yellow.  

The work of Maggetti et al. [19] resumes the topology of four yellow mixtures used in glass 

manufacturers as well as in paintings, based on previous investigations on each one. These 

mixtures are: (1) cubic lead antimonate yellow (mineral: bindheimite), Pb2Sb2O7; (2) 

orthorhombic lead-tin yellow I, Pb2SnO4; (3) cubic lead-tin yellow II, PbSn1-xSixO3; and (4) cubic 

lead-tin antimonate yellow (a Pb-Sn-Sb solid solution), Pb2Sb2-xSnxO6.5. In most ceramic glazes, 

lead antimonate is commonly found as coloring and opacifying agent [21, 22]. However, hints 

about the recipes used for this pigment production can be analytically identified by tracing the 

presence of other elements such as Al, Si, Fe or Zn. One way of predicting which of the four 

yellow mixtures was used is by the Sb/Pb weight ratio. If no other minor compounds are 

present in the yellow crystal structure, a stoichiometric composition of 58 wt% PbO and 42 wt% 

Sb2O5 is expected, if Pb2Sb2O7 was used as yellow pigment. This corresponds to a PbO/Sb2O5 

ratio of 1.38 [19]. Further important informations are related to pigment thermal stability. 

Yellow mixtures (2) and (3) are thermally stable only up to 900 – 950 C firing temperature 

                                                           
4
 Calcination: a thermal treatment process in which the compounds are heated below their fusing point, causing 

decomposition of carbonates, among others. 



22 
 

while mixtures (1) and (4) are thermally stable up to 1100 C. The latter two would easily 

withstand temperatures of a second firing process (950 – 1050 C) [19]. 

Another important factor that serves as a manufacturing production hint is the way the 

pigment was obtained. Such opaque glazed ceramic pigments could have been produced in two 

different ways according to Maggetti et al. [19], as shown in figure 1.6. 

 

 

Figure 1.6 – Production steps of opaque glazed ceramic colors [19] 

 

Differences at the microscopic level are expected whether method A or B is chosen. In 

method A the pigments were subjected to high temperatures for an extended period and 

dissolution phenomena should have taken place; hence, more spherical or rounded-edge 

pigments grains are expected. In method B the pigments were fixed into the glassy matrix in the 

high temperature firing only – which implies that the pigment has less time left to react with 

glassy matrix; and the original pigment grain  shape is preserved [19].  

At this point one expects to have two main possible configurations regarding the base-

glaze/color system. In figure 1.7 a schematic representation of both is shown.  
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Figure 1.7 – Schematic representation of the two possible stratigraphic arrangements: a) three 

distinct layers (body, base glaze and color) or b) two layers (body and glaze+color). 

 

For the particular case of opacified-colors, they were probably prepared as a frit (cf. figure 

1.6) and therefore submitted to a third firing stage, which could lead to the situation in figure 

1.7a. Conversely, pigment and base-glaze were submitted to the same firing stage (second), 

which would lead to the case in figure 1.7b. 
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CHAPTER 2 – OBJECTIVES OF THE WORK 

This work deals with polychrome glazed ceramics originally produced in the two main 

Portuguese manufacturing centers (Coimbra and Lisbon) between the XVI and XVIII centuries.  

With the premise of overcome mislabeling of objects that are not properly identified – either by 

potters marks or clear manufacturing tracers with unambiguous assignation – this investigation 

addresses to gain knowledge concerning manufacturing technological aspects by a 

multianalytical (non-destructive) approach. Literature survey shows a gap in scientific 

investigations concerning faiences produced in Coimbra, therefore a special output of this 

research work is to serve as a contribution – if not a basis – for the classification of “Faience 

from Coimbra”.  

An important aspect is the choice of various analytical methods for the sough answers. For 

this purpose it is crucial to understand the advantages and limitations of each analytical 

method in order to extract results and conclusions as accurate as possible. This is briefed in the 

last section of this chapter. 

 

2.1 The necessity for investigation 

According to the Portuguese history and traditions, glazed ceramics hold great artistic value 

based on the descriptions above and many more. This type of art has represented not only 

beauty to one’s eye but also a symbol of the influence from other nations as it has changed 

through times. Moreover, it has been a symbol of wealth for some and due to the importance 

in developing new manufacturing processes it has became a symbol of secrecy between 

different production centers. Taking this into account, information about the manufacturing 

processes is missing and from this point of view this investigation is important in order to fill 

the existing gaps.  

Another issue is related to ceramic production in Coimbra, in particular. As it has been stated 

[9], there was always a difference between the two main ceramic production centers (Lisbon 

and Coimbra), at least in stylistic terms. In addition, Lisbon being the capital city, the monetary 

resources for such industry were larger and Coimbra has been known as a less wealthy 
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production center. Therefore, it has been thought that the expensive raw materials were 

spared as much as possible, which would imply a much broader range of materials in order to 

produce a single color or hue. One example is given by the blue pigments, in which the source 

of cobalt; smalt (a ground blue containing Cobalt), is the main and the most expensive mineral. 

In the samples from Coimbra, additional elements can be found, such as manganese (Mn) to 

spare the cobalt source. 

An additional point is the fact that there are many pieces found with no labeling, which 

facilitates the erroneous assignation to a production center. Hence, the intrinsic value of a 

piece is put at stake, as based on historical and art historical facts “only” several opinions have 

been developed about e.g. the use of raw materials and manufacturing processes. 

Regarding all the information above, it is of primary importance to have samples with 

unequivocal origin (pottery labels) to serve as a reference group for the whole investigation. 

This way one can validate a group and find similarities or dissimilarities between the samples 

from different production centers. This work is pioneer in terms of scientific criteria for such 

valuable pieces, improving the knowledge about Portuguese Cultural Heritage. 

 

2.2 Analytical requirements 

The field of natural sciences applied to Cultural Heritage objects (also known as 

Archaeometry) has grown tremendously in the past decades, indicated by the big number of 

publications available. Concerning ceramic studies only, some examples can be found [21, 23-

39]. 

 The fact that most of the times the object cannot be taken away from its place (museum, 

building, etc.), triggered the fast development of portable equipment – as it is the case of X-ray 

Fluorescence (XRF) setups. In comparison to stationary equipment, portable XRF setups 

comprise low power X-ray tubes and X-ray detectors with a technology without external cooling 

(cf. chapter 3). Another issue is the growing demand for smaller spot sizes of analysis in order 

to resolve details in the sub-millimeter range. Hence, for example, the development of micro-

focus X-ray tubes together with optical X-ray elements is evident, enabling beam focusing down 
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to the micrometer scale. Nowadays, several optical systems providing analysis at these ranges 

are found (cf. chapter 3).  

Yet, the information obtained by the methods that allow portable setups is most of the 

times not enough for conclusive investigations. Information at other levels is also required and 

in that case only stationary systems are possible so far due to technical constrains. In this case a 

compromise has to be found and minimal sampling can be performed. Regarding this matter, X-

ray Absorption (XAS) techniques became also very popular among Cultural Heritage (CH) 

objects [23]. This specific method is optimal for samples with high heterogeneity, as it provides 

high-sensitive chemical information (atom specific) irrespective of the complexity of the 

system. However, for this purpose the use of a high-brilliant X-ray source is required, such as in 

a synchrotron. The drawback of using synchrotron radiation is that one requires a beamtime 

application and, if accepted, the allowed beamtime is rather limited – most of the times not 

enough to have sufficient results. The tendency nowadays is to try to produce such high 

brilliant sources on a laboratory scale, allowing an “uncomplicated” use. This is, for example, 

one of the goals of BLiX – Berlin Laboratories for innovative X-ray technologies (at the Technical 

University of Berlin). It is still in a development process, but for example XAS measurements are 

already feasible for certain types of samples – mainly biological (http://www.blix.tu-berlin.de/). 

The objects hereby investigated have great compositional variability, so there is a need for a 

multi-analytical approach. The analytical methods chosen have to be able to provide 

information about the chemical (or compositional) nature of the different parts of these 

artefacts, in order to identify raw materials. It is important here to remark that this approach is 

used for the objectives of this research work, and although it can be part of a scientific 

approach for provenance purposes but it should not be exclusively consider for this purpose. 

Even if the samples under investigation are fragments, these are artistic and historical objects 

playing a significant role in the context of Portuguese Cultural Heritage. Therefore the analytical 

requirements can be numbered in the following way: 

 Non-destructive: in terms of keeping the physical integrity of glaze and surface decoration; 

the ceramic body (when exposed) is quite thick and if sampling is required for this part it would 

not represent a problem; 

http://www.blix.tu-berlin.de/
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 Sensitive: in terms of the sough analytical answers; each method does not have to provide 

“all” the information required but it should be sensitive to the specific need. 

 Versatile: in order to obtain information at different scales using the same technique, 

which in this case would be from millimeter (mm) down to micrometer (µm) scale, and if 

possible, being able to analyze objects with different sizes, shapes and surface morphology.  

All spectroscopic methods used for studying CH material based on X-ray, ultraviolet (UV), 

visible (VIS) and infrared (IR) radiation tend to be non-destructive. In many of CH objects a 

detailed surface decoration is visible, so one should aim for analytical systems that provide 

enough lateral resolution (< 1 mm2) [40]. Furthermore, these objects have somewhat a layered 

system (or better explained, an interface system) and this is with most of the techniques a 

challenge for investigation. Therefore, depth resolved methods would provide useful 

information in this case and cancel out information overlap obtained in the conventional way. 

Taking the above into account (and also based on the expected variability in these samples), 

within the group of non-destructive techniques, methods providing elemental, compositional, 

mineralogical and textural information are also needed. 

As a good practice, one should start with the method that provides a fast and broad range of 

elemental information. An example that fulfills quite well these requirements is X-ray 

Fluorescence (XRF) spectrometry (cf. chapter 3, section 3.1). It is a well-established method for 

innumerous applications and, although there is a vast number of publications using this 

technique, a recent work by Tsuji et al. [41] gives an excellent overview about such applications. 

As a complement, techniques that provide mineralogical and textural information are 

required. For this purpose, X-ray Diffraction (XRD) and Scanning Electron Microscopy with an 

attached Energy Dispersive X-ray System (SEM/EDX) are suitable (cf. chapter 3, section 3.2 and 

3.3). The latter will be especially useful for cross-section analyses that comprise 

body/glaze/color in order to evaluate the interaction between these interfaces. This provides 

hints about the glazing process. At last, one must consider that changes in the chemical 

environment of some compounds may occur, which are indicative for differences in the 

manufacturing processes. Therefore X-ray Absorption Fine Structure (XAFS), a method sensitive 
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to the chemical environment of a certain atom, was also chosen for this investigation (cf. 

chapter 3, section 3.4) 
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CHAPTER 3 – METHODS OF ANALYSIS 

 

Considering the objectives of this work, the chosen analytical methods were: X-ray 

Fluorescence (XRF), X-ray diffraction (XRD), Scanning Electron Microscopy / Energy Dispersive X-

ray System (SEM/EDX) and X-ray Absorption Fine Structure (XAFS). Therefore, this chapter is 

divided into four sections, each one dedicated to each of the mentioned techniques, pointing 

out the physical concepts and analytical features – enhancing advantages and limitations for 

the present investigation. Furthermore, a description of the experimental setup used is also 

provided in each section.  

 

3.1 X-ray Fluorescence Spectroscopy (XRF) 

As previously explained, XRF has innumerous advantages for the investigation of CH-related 

objects. XRF has undergone huge advances in the last decades improving both excitation and 

detection conditions, as well as the environment in which the whole analysis take place. One of 

the most significant upgrading resulted by the advent of X-ray optics devices, allowing XRF 

analysis at the micrometer scale. Concerning CH-related objects this was a great improvement, 

as it resolves tiny details both lateral and in depth. Several textbooks cover the fundamentals of 

this method – in its variants – in detail [42, 43].  

In the course of this work two variants of energy-dispersive XRF were used, conventional- 

and 3D Micro-XRF. Each of which will be covered in the second and third sub-sections, 

respectively. 

 

3.1.1 XRF principles 

When interacting with matter and given their energy range (< 1 MeV), X-rays undergo mainly 

absorption (photoelectric absorption) or scattering phenomena (Compton and Rayleigh), both 

of which will be described in the following sub-sections.  Considering a parallel monochromatic 

X-ray beam of intensity I0 that impinges on a given homogeneous material (absorber), the 

transmitted beam – after passing through the absorber of thickness x – will have a reduced 
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intensity Ix due to absorption and scattering phenomena [44]. This attenuation process is 

described by the Lambert-Beer law according to: 

                                             (3.1) 

 

Figure 3.1 – Schematic representation of the attenuation of X-rays through a material (absorber). 

 

where      is the linear attenuation coefficient of the material for a specific wavelength. 

Knowing the density of the material, , the mass of material in a unit section (white circle on 

figure 3.1) becomes       . So, equation 3.2 can be re-written in the following way: 

             
    

 
                          (3.2) 

and for          , equation 3.3 becomes: 

                                              (3.3) 

µ is the mass attenuation coefficient, as it refers to the mass of the material per unit section 

and it is expressed in cm2.g-1 [44].  

If one atom covers an area of μAtom (cm2) within a beam of monochromatic photons with a 

cross-section of 1 cm2, the practical unit is (10−24 cm2) = (barns/atom) (figure 3.2). 

 

Figure 3.2 – Atomic cross-section, mass attenuation, linear attenuation [45]. 

The total atomic cross-section comprises all three possible ways of interaction and is thereby 

an attenuation coefficient given by: 

                                                      (3.4) 

Each of these terms will be described in the following sub-sections. 
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3.1.1.1 Photoelectric absorption 

When X-rays of suitable energy impinge onto a sample, energy is transferred to core 

electrons and these can be ejected resulting in an excited atom with a vacancy in the inner 

orbital shell. The atom then reorganizes itself by successive vacancy-filling processes until it 

returns to its fundamental state. This means that a potential loss takes place and can be 

released by emission of fluorescent photons or by Auger transitions [42, 46]. The energy of 

each emitted photon equals the energy difference between the levels in which the transition 

has occurred. These fluorescent X-rays are characteristic for each transition in each atom 

(figure 3.3). The allowed transitions – according Hund´s rules – are organized in many tables 

according their intensity. For example, the most intense characteristic line corresponds always 

to the transition between L3 – K (according the IUPAC notation), which is denoted as K1, 

under the Siegbahn notation.  

 

Figure 3.3 – Schematics of the transitions between the atomic energy levels that give rise to the 

characteristic XRF lines. Both Siegbahn and IUPAC notations are displayed [47].  

 

For the X-rays energy range considered (< 1 MeV), the photoelectric absorption coefficient 

accounts for at least 95% of the whole attenuation coefficient (µAtom, total) [44]. This means that 
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the experimental values of the attenuation coefficient reflect majorly the properties of the 

photoelectric coefficient. For a given element,  increases, i.e. the probability of a photon 

ejecting an electron from an atom increases with decreasing energy, within certain limits – 

which are characterized by sharp discontinuities that can be observed in any absorption curve 

[44]. An example is shown in figure 3.4 – photoelectric absorption coefficient of Pb. 

 

Figure 3.4 – Photoelectric absorption coefficient of Pb as a function of photon energy [48]. 

 

3.1.1.2 Scattering 

As previously mentioned, there are two types of scattering processes taking place in the 

photon-atom interaction: Compton (incoherent or inelastic) and Rayleigh (coherent or elastic) 

scattering. In the former energy and momentum are not conserved, which means that there is 

a change in energy and phase of the photon, while in the latter energy and momentum are 

conserved. The probability for Compton scattering increases for higher photon energies and 

lower atomic number (Z) of the scattering atom, while the probability for Rayleigh scattering 

behaves exactly vice-versa. 

 

Incoherent scattering 

It results from the interaction between an incident photon (     ) and a free electron – 

weakly bound to the atom (figure 3.5).  
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Figure 3.5 – The Compton Effect. 

 

An inelastic interaction takes place, which means that incident photon is deflected in the OB 

direction with lower energy (E´) – at  <  - and the electron recoils in the OA direction – at  < 

/2. This effect obeys to the laws of relativistic dynamics, so the principle of conservation of 

momentum implies that the wavelength change of the scattered photon is [44]: 

          
 

   
                            (3.5) 

with m0 being the mass of the electron at rest. Equation (3.5) is valid for all incident energies 

and any scattering atom. The pre-collision motion of the bound electron causes, due to the 

Doppler effect [49], a broadening of  the Compton peak, compared with the fluorescence 

peaks, which can be and described by: 

          
 

 
                                                  (3.6) 

with      . 

 

Coherent scattering 

It is a process in which a photon interacts with a bound atomic electron without energy 

transfer. The scattered photon has the same energy as the incoming photon and only the 

direction is changed, leaving the atom neither ionized nor excited. The intensity of the radiation 

scattered by an atom is determined by summing the amplitudes of the radiation coherently 

scattered by each of the electrons bound in the atom. In Rayleigh scattering the coherence 

extends only over the Z electrons of individual atom and the interface is always constructive as 

long as the change over the diameter of the atom is less than one-half of a wavelength [42] : 

  

 
     

 

 
                                     (3.7) 

where    is the effective radius of the atom. 
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Rayleigh scattering is dominant at low energy incident photons and high-Z atoms. 

 

3.1.2 Conventional XRF 

In a simple form, in order to perform XRF analyses one needs an X-ray source and a suitable 

detector. Nowadays a big variety of XRF setups are found, according to the requirements for 

the investigations purposes. These setups can differ in the X-ray source, detector and some 

other devices used. 

As previously explained, in addition to the emission of the characteristic radiation, several 

other X-ray interactions also occur. These interactions alter the overall appearance of the XRF 

spectrum, so it is vital to understand how these interactions occur when analyzing XRF spectra. 

Moreover, experimental artifacts mainly related to the detectors used for this purpose are 

visible in XRF spectra as well. Both qualitative and quantitative information can be withdrawn 

from performing XRF analysis. However, as no quantitative treatment was performed in this 

investigation by means of XRF, focus will be only given to the qualitative information. 

XRF became possible due to the correlation between the energy of the fluorescence 

radiation E and the atomic number of the emitting element Z, proposed by Moseley, given as: 

                                                                 

Z and  are constants related to the observed fluorescent line. 

  XRF measurements performed in the so-called “conventional” way are referred to bulk 

analysis, as it is shown in figure 3.6. 

 

Figure 3.6 – Sketch of a conventional XRF setup. 
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3.1.2.1 Experimental setup and methodology 

The spectrometer used for conventional XRF measurements belongs to the Atomic Physics 

Centre (Faculty of Sciences, University of Lisbon). Conventional XRF measurements were carried 

out in a 45° tube-detector geometry setup enclosed in a chamber submitted to a 10 mbar 

vacuum (figure 3.7a). The X-ray tube is a Be sided-window (125 µm thick) model with a Mo-

anode and take-off angle of 20, from Oxford Instruments (California, USA); the detector is a 

Vortex-60EX Silicon Drift Detector (SDD) with a 50mm2 Si-area and 12.5 µm thick Be-window, 

from HITACHI USA Inc. (California, USA). 

 

Figure 3.7 – a) General view of the XRF experimental setup and b) the inside of the chamber [50] . 

 

Inside the vacuum chamber (figure 3.7b) there is a motor stage which allows the incident 

radiation to be transmitted by means of a polycapillary full-lens from XOS (New York, USA) or a 

collimator made out of brass.  The chamber is equipped with two laser pointers which overlap 

at the same position as the focus of the polycapillary and the detector axis. This allows 

positioning the sample at the proper distance of about 1.5 mm in front of the KaptonTM 

window. Due to this small distance the laser points as well as the spot of analysis can only be 

observed with the built-in camera. 

The efficiency of an X-ray tube is very low (between 0.1 – 1%), due to the high thermal 

energy dissipation at the anode. The total irradiated X-ray power can be       can be 

estimated according to: 
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where              ,   is related to the anode material,       is the anode current and 

      is the applied voltage. The maximum electric power of X-ray tubes can reach several kW 

for most operations and up to 100 kW in a pulsed mode – like for medical applications [43]. This 

implies that for many laboratory X-ray tubes a proper cooling system is crucial – in this case an 

air-cooling system was provided.  

Silicon Drift Detectors (SDD) represent the latest technologic developments in collecting the 

charge (electron-hole pairs) created in the semiconductor material by the interaction of X-rays. 

The advantages of SDD compared to conventional energy dispersive detectors are lower 

electronic noise and capacitance, shorter shaping times, considerably higher pulse 

throughoutput and a pre-amplifying FET onto the detector chip. The energy-resolution is 

nowadays comparable to Si(Li) detectors and considerably high pulse throughput is achieved 

without detector cooling. The advantage of the Si(Li), nevertheless Si(Li) are still necessary 

because of their much higher detection efficiency – due to their thicker crystals – for high 

energy photons (up to 50 keV). 

For the present investigation all measurements were performed with the collimator – in 

order to access larger areal information of at once – except when the decorative motifs were 

too close to each other and only by means of polycapillary they are laterally resolved [36-38]. 

As it was necessary to excite Sn- and Sb-K lines, the measuring conditions were always: 50 kV, 1 

mA, 300 s and 10 mbar. Spectra were collected using a multichannel (4096 channels) and 

recorded in ASCII data mode in order to perform their evaluation using the PyMCA software 

code [51]. 

For beam-size measurements, a knife-edge scan with a snap-off blade was performed for the 

polycapillary, while an iron wire was used to perform the scans for the collimator. The step-size 

was 10 µm for the polycapillary and 0.5 mm for the collimator.  Figure 3.8 shows the scans 

performed for beam emitted with a) a polycapillary and b) a collimator. For the energy of Fe-Ka 

(6.49 keV) the beam emitted with the polycapillary has a focal spot size of about 54 µm and the 

collimator produces a beam of about 1.2 mm in diameter. One must keep in mind that the focal 
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spot of polycapillary lenses are energy dependent (explained further on) – assessed by the Full 

Width at Half Maximum (FWHM) of the profile obtained by such step-sized scans. 

 

 

Figure 3.8 – Scans performed for beam emitted with a) a polycapillary and b) a collimator. For the 

energy of Fe-K (6.49 keV) the beam emitted with the polycapillary has a focal spot size of about 54 µm 

and the collimator produces a beam of about 1.2 mm in diameter, both given by the Full Width at Half 

Maximum (FWHM) of the Gaussian fitted curves. 

 

X-ray polycapillary optics 

The field of X-ray optics has grown tremendously in the past decades [52]. The necessity in 

analyzing samples with a high lateral or spatial resolution became evident to help 

understanding their properties or phenomena. This was the motivation for developing optical 

systems, which can focus or collimate an X-ray beam for the desired application.  Nowadays we 

have at our disposal several optical systems, which provide different spot sizes for almost every 

requirement. Further information on the properties of the most common X-ray optics as well as 

their applications can be found in the review articles from Snigirev et al. [53], MacDonald [54] 

and Guilherme et al. [55] 

Polycapillaries work under the principle of total reflection. It is meanwhile well-known that 

the interaction of X-rays with matter can be macroscopically described by an index of 

refraction. It can be derived from the interaction between a photon and a bound electron using 

the forced oscillator model, where an elastically bound electron is forced to oscillate in the 

electric field of the impinging photon. The whole derivation of the refraction index can be 
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found in James, 1962 [56]. An important result of this theory is that it leads to a complex index 

of refraction for X-rays, given by: 

     
  

  
  

   

 
                                                     

with the wavelength of the photon , the scattering length   , the density of the matter , 

the Avogadro constant   , the molar mass   and the atomic scattering factor: 

                     
   

      
   

                                  

where      is the scattering vector between incident and scattered beam. Since only scattering 

in the forward direction is beneficial – while the rest accounts for attenuation – the atomic 

scattering factor (using the Z of the scattering element), can be re-written as: 

       
   

      
   

                                                 

Hence, equation (3.10): 

With    
  

  
  

   

 
      

   
       and        

  

  
  

   

 
   

 
                        

can be rearranged in the following way:                                   

 

The value of the decrement δ is in the order of 10-5 to 10-7 describes the refractive properties 

and depends on the energy of the X-rays (λ2/2π), the number of relevant electrons per atom 

      
   

  and the density of atoms  
   

 
. If    

   

 
 , and  is given in         , an 

approximation can be found as:             

 
                                     

The imaginary part, , describes the absorption of radiation in a medium and can be related 

to the linear attenuation coefficient µ as: 

   
   

 
                                                       

The small difference of the refraction index from the unit implies low reflection and 

refraction abilities of matter in the X-ray energy range. An important outcome from this 

derivation is that the real part of the refraction index is smaller than 1. This means that the 

optical density of any substance in the X-ray range is smaller than that of vacuum and the 

phenomenon of total external reflection can take place at grazing angles of incidence [43, 56]. 
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Considering the scheme in figure 3.9 that represents the law of refraction formulated by Snell, 

it can be written as follows: 

        

       
  

  
  

                                                 

 

Figure 3.9 – Representation of the law of refraction. 

 

If 2 = 90 and n1 = 1, this leads to:                          
  
 

 
             

with c being the critical angle for total reflection. If one compares equation 3.17 with 

equation 3.14 – and having in mind         – one obtains: 

                         
  

 
                                

with E in keV,  in g/cm3 and c in mrad. 

 

In the present case, focusing polycapillary half-lenses were used. They consist of consists of 

thousands of bundles of hollow glass capillaries with different curvatures, as indicated in figure 

3.10a. 
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Figure 3.10 – a) Representation of focusing polycapillary half-lenses [57]; b) total reflection condition 

for X-ray photons [58] and c) Radiation capture for a bent capillary [58]. 

 

As the angle of the X-ray beam incident on the glass surface decreases from relatively high 

angles, the refracted beam in the glass will approach the critical angle (c) and the increased 

probability of propagating along the channel by multiple reflections (figure 3.10b). Photons 

with  > c will not propagate and a shading effect happens (figure 3.10c). For a borosilicate 

glass, one has: 

          
  

       
                                                   

Since the critical angle and the energy of the photon are inversely proportional, the 

transmission of a polycapillary has generally a maximum for medium-range energies and it 

decreases for both low-range and high-range energies. At higher energies, the angle of 

acceptance becomes smaller and the total reflection condition is not fulfilled anymore, while at 

lower energies, the reflectivity decreases.  

 

 

 



41 
 

3.1.3 3D Micro-XRF 

A new mode of performing XRF analyses in depth was presented in 2003 by Kanngiesser et 

al. [59], where the first experimental applications were performed. The method consists in 

having two polycapillary lenses aligned in a confocal geometric arrangement, so 3D depth 

resolved analyses are feasible (figure 3.11). The model for this geometry was proposed by 

Malzer et al. [60] in 2005. Radiation from an X-ray source is focused by a polycapillary full or 

half-lens onto a sample. The resulting characteristic fluorescence radiation is transported with a 

second polycapillary half-lens to an energy-dispersive detector. The overlap of the foci of the 

two optics forms a probing volume from which information is derived. Due to the finite size of 

this probing volume information can be obtained three-dimensionally by moving the micro-

volume through the sample. Absorption of exciting and fluorescence radiation limits the 

possible information depth and the extension of the probing volume affects the shape of the 

profiles [61].  

Both qualitative and quantitative analyses can be performed by means of 3D Micro-XRF. A 

review article published recently by Mantouvalou et al. [62] gives an overview of the work on 

3D Micro-XRF. 

 

Figure 3.11 – 3D Micro-XRF sketch; the overlap of the foci from the two polycapillary half-lenses 

ensure three-dimensional resolution (sketch by I. Mantouvalou [61]). 

 

 

When working with polycapillary X-ray optics some new features have to be taken into 

account. One of them is the energy-radiation dependence. The transmission and spot size of a 

polycapillary lens are functions of the radiation energy. The spot size decreases with increasing 
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transported energy, which means that the size of the probing volume also decreases with 

increasing fluorescence energy (figure 3.12). The transmission of a polycapillary lens can be 

described by an asymmetric peak function, thus limiting the range of detectable elements 

through its decrease to higher and lower energies. Additionally, the absorption of radiation 

through matter is energy dependent and increases with decreasing energy. 

 

 

Figure 3.12 – Depth profile simulation on a 200 μm thick glass samples with 50 ppm of CaO, Fe2O3, 

PbO and SrO homogeneously distributed in the sample matrix. Left: Sketch of the setup with respective 

attenuation depths xi; right: normalized depth profiles (sketch by I. Mantouvalou [62]). 

 

3.1.3.1 Experimental setup and methodology 

3D Micro-XRF measurements were carried out with a tabletop setup from the Institute for 

Optics and Atomic Physics at the Technical University of Berlin. This system is a commonly 

development with ifG (Institute for Scientific Instruments). The X-ray tube is from Rtw Röntgen-

Technik (Neunhagen, Germany); the polycapillary optics are from IfG (Berlin, Germany); and the 

detector is from Bruker nano (Berlin, Germany). 
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Figure 3.13 – a) General view of the 3D Micro-XRF spectrometer; b) Spectrometer´s gauge head; c) 

view of the polycapillary half-lenses and sample holder (left-hand side) (pictures by C. Seim [63]). 

 

With the aim of checking the stratigraphy of the samples in a non-destructive way, the 

choice of depth resolved XRF at the micrometer regime was justified. Therefore, a 

characterization of the spectrometer used was performed. Here the concept of probing volume 

plays a central role when using the confocal XRF – as explained above. Hence features such as 

beam resolution have to be known at front in order to properly evaluate information obtained 

from the scans performed on the samples. 

In order to evaluate the probing volume size, depth scans on thin single-element foils were 

carried out. As the thickness of each foil is 2 µm, self absorption effects can be neglected since 

the probing volume will be larger than the foils thickness. Depth scans in steps of 5 µm were 

performed and the sum of the most intense peak – characteristic of each foil – was collected 
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and plotted. The measuring time at each position was 10 s. In figure 3.14a the data collected 

from the depth scans performed with the Cu-foil are plotted. A Gaussian fit applied to the data 

spread showed a FWHM of ~ 34.6 µm for Cu-Ka energy (8.05 keV). Figure 3.14b displays the 

FWHM for all analyzed elements (foils) with respect to the energy. 

 

 

Figure 3.14 – a) Determination of the FWHM for Cu-K (8.05 keV): ~ 34.6 µm; b) dependence of the 

FWHM as function of the energy. An exponential decrease of the FWHM is observed with increasing 

energy. 

The leading feature of this system is the ability to perform depth-resolving analysis, as 

described above. However, due to the high amount of lead in the samples, strong absorption 

effects took place. In figure 3.15 an example of a depth scan performed perpendicular to the 

surface of a sample – with a stratigraphy (from top to bottom) of yellow-glaze-body – is shown.  

 

Figure 3.15 – Depth profile from a faience sample from Coimbra. The Pb-L and Sb-L lines are 

characteristic from the glaze and yellow color, respectively. 
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From figure 3.15 one sees that the Full Width at Half Maximum (FWHM) for the Sb-L line is 

larger than the one for the Pb-L, which is due to the difference between probing volume sizes 

for different energies (cf. figure 3.14). At 10 keV, a probing volume size of ca. 27 µm is 

expected, while at 3 keV a size of ca. 57 µm is obtained, for the used lenses. This leads to a 

difference in about 30 µm, which means that the existing 21 µm difference between the Pb-L 

and Sb-L profiles gives no information about a possible layered system. This leads to an 

information depth of several tens of micrometers, only, which prevents further depth 

resolution. 

Nevertheless, we took advantage of another feature of the confocal geometry, which is 

probing site selection – on the cross-section (figure3.16). The probing volume created in the 

confocal geometry allows selective analysis in a certain volume in the micrometer regime, 

which reduces the amount of detected scattered radiation considerably. Therefore, scans just 

on the surface of the polished cross section of each sample were performed, in steps of 5 μm 

(each during 60 s) through a length that varied according to the thickness of the relevant part of 

the sample [37] . The operating conditions were the maximum for this system: 50 kV and 600 

μA.  

 

Figure 3.16 – Schematic representation showing how the 3D Micro-XRF cross-section scans were 

performed.  

 

3.1.4 High-resolution Micro-XRF 

High-resolution Micro-XRF scans were performed at the synchrotron. More precisely, at the 

BAMline at BESSY-II (Berliner Elektronen Speicherring für SYnchrotronstrahlung) in Berlin, 
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Germany. The fact that a 1 µm X-ray beam size is achieved was appealing for performing lateral 

cross-section scans to trace key-elements along the different “layers” of the samples.  

Synchrotron radiation (SR) together with Compound Refractive Lenses (CRL) allowed having 

a 1 µm beam, which provides information about the diffusion of the pigments throughout the 

glaze and the glaze throughout the ceramic support. The following sub-sections summarize the 

properties of SR and CRLs. 

 

3.1.4.1 Synchrotron Radiation 

Synchrotron radiation (SR) is produced whenever electrons travelling at relativistic velocity 

(    ) are accelerated for example by forcing them to deviate from a straight line of motion. 

SR possesses unique features such as: 

 High brilliance (photons/sec/mm2/mrad2 in 0.1% bandwidth) 

 Highly collimated (divergence in the mrad range) 

 Polarization  

 Time structure (pulse lengths down to 100 ps) 

 Broad spectral range (IR to hard X-ray region) 

 Small source size (size and divergence of the electron beam) 

Due to the high energy     of the electrons, in the range of GeV, and the corresponding high 

velocity, close to  , the relativistic version of the total radiated power   of an accelerated 

electron (calculated by Larmor) has to be used to calculate the emitted radiation: 

    
    

   
                                         

with        
  and the orbit radius      . Further insight about SR properties can be 

found, for example, in Duke [64]. A 3rd generation synchrotron source consists basically of an 

electron gun, a microtron, the synchrotron and the storage ring (figure 3.17). 
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Figure 3.17 – Main components and dimensions of the Berliner Elektronen Speicherring für 

SYnchrotronstrahlung (BESSY-II) in Berlin, Germany [65].  

 

Electrons emitted by an electron gun are first accelerated in a linear accelerator (Microtron) 

and then transmitted to a circular accelerator (booster synchrotron) where they are 

accelerated to reach an energy of 1.7 billion electron volts (1.7 GeV) – in the case of BESSY-II. 

These high-energy electrons are then injected into a large storage ring where they circulate in a 

vacuum environment, at a constant energy, for many hours. Each time these electrons pass 

through a magnetic device, they emit X-rays (SR), which are directed along beamlines. 

SR radiation can be emitted either by a bending magnet (BM) – which makes the electron 

beam to undergo in circular trajectory – or by an insertion device, which comprise rows of 

magnets with alternating polarity, installed in straight sections of the electron path. Insertion 

devices are: wigglers (W), undulators (U) or wavelength shifters (WLS).  

Each device provides different radiation features, being one of them related with the cone of 

divergence in which more or less brilliance is obtained (figure 3.18). Generally: BM: When 

stored electrons encounter a BM, they bent and emit SR in a continuous spectrum; W:  the 

electron beam wiggles with a large deviation angle and, as a result, bright a spectral continuous 

light with short wavelengths is obtained; U: The electron beam wiggles with a small deviation 

angle and, as a result, highly bright and quasi-monochromatic light is obtained by the 

interference effect; WLS: The electron beam passes a three dipole magnet array with 
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alternating magnetic field directions. The radiation is emitted at the central dipole of the 

wavelength shifter. The other two dipoles only compensate the deflection of the electron beam 

from its orbit, so that the electrons leave the device in the same direction as they entered. 

 

 

Figure 3.18 – a) comparison of brilliance vs photon energy obtained with different magnetic devices 

at the synchrotron and X-ray tubes (from Spring 8 [66]); b) Spectral Photon Flux of a 1.3T bending 

magnet and a 7T wavelength shifter. In the upper right corner, a schematic view of the electron 

trajectory in a WLS is shown (adapted by G. Buzanich [67]). 

 

3.1.4.2 Compound Refractive Lenses (CRL) 

CLRs belong to the group of refractive optics, in which the X-rays undergo refraction at the 

surfaces between different materials, as shown in figure 3.19. Since one lens only provokes a 

small change in the direction of the X-ray, an array of such lenses (therefore Compound 

Refractive Lenses) is necessary to obtain acceptable focal distances [68].  
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Figure 3.19 – Example of a CRL and its working principle. 

 

For thin lenses, the focal length   can be calculated as: 

   
 

   
                                      

with the radius of curvature   and the number of lenses elements  . When the lens length   

is in the range of the focal length, the formula for thick lenses can be applied [68]: 

   
 

   
 
 

 
                                

Due to their simple design and alignment, CRLs are one of the most popular X-ray focusing 

devices. The important features are: i) focusing in the region of 100 nm; and ii) focusing of X-

rays with energies in the range from 5-200 keV is possible. The energy bandwidth of this kind of 

lenses (ca. 100 eV) is very small, meaning that for every energy an own lens has to be 

manufactured. The fact that the CRL´s require a monochromatic and also parallel beam makes 

them suitable for synchrotron beamlines only. 

As an example, the CRL plate designed for the BAMline is shown in figure 3.20.  
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Figure 3.20 – CRL @BAMline (from KIT: www.x-ray-lenses.de  pictures by G. Buzanich). 

 

3.1.4.3 Experimental setup and methodology 

The schematic of the BAMline @BESSY-II is shown in figure 3.21. In figure 3.22 the layout of 

the µ-XRF experiment at the BAMline and a sketch of the sample composition (wall-tile) in 

terms of its layers is shown to illustrate how the scans were performed. For these 

measurements two lenses were used: one with a nominal energy of 33.2 keV and another with 

a nominal energy of 20.0 keV. This choice was taken due to the elemental variability present in 

the decorative motifs as well as in the glaze. For the pieces which have yellow (Sb: Ec(K) = 30.491 

keV) the 33.2 keV lens was ideal and for the pieces which have blue (Co: Ec(K) = 7.709 keV), 

green (Cu: Ec(K) = 8.979 keV) and purple (Mn: Ec(K) = 6.539 keV; Fe: Ec(K) = 7.112 keV) colors 

together with the glaze (Pb: Ec(L3) = 13.035 keV) the 20 keV lens was used. Although the lens 

with a nominal energy of 33.2 keV would have been able to excite the medium-low range, the 

20 keV lens was used for the measurements. This lens, due to its bigger aperture, provides 

more flux at the sample and the absorption efficiency is higher for this elemental range.  

 

 

Figure 3.21 – Scheme of the BAMline. X-ray source is a 7T WLS (Wave Length Shifter) installed at the 

storage ring BESSY II. The optical elements are a Double Multilayer Monochromator, a Double Crystal 

Monochromator and the CRL (sketch by G. Buzanich [39, 67]). 

http://www.x-ray-lenses.de/
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Figure 3.22 – (a) Layout of the µ-XRF experiment at the BAMline; (b) a sketch of the sample 

composition (wall-tile) in terms of its layers. The scans were performed up to a maximum of 500 µm 

thickness of ceramic body [39]. 

 

3.2 X-ray Diffraction (XRD) 

 

3.2.1 XRD principles 

When a monochromatic incident X-ray beam interacts with a material in which a regular and 

periodic arrangement of atoms (or molecules) exists – crystalline structure – diffraction of the 

beam takes place in definite directions. This phenomenon can be seen as reflection of the 

incident beam by interior planes of a crystal (Bragg reflection) and it follows the Bragg 

equation, in fist approximation [42]: 
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where n is the order of reflection, d is the interplanar spacing and n/2 is the angle of 

reflection (Bragg´s angle), which is defined by the angle between the reflecting plane of the 

crystal and incident or reflected beam (figure 3.23). The first order of reflection is the strongest 

and the reflected intensity decreases as n increases.  

As previously described one of the types of interaction between X-rays and matter is elastic 

scattering of the X-rays (Rayleigh scattering). Diffraction is one example of elastic scattering – 

the wavelength  of the diffracted X-ray beam is conserved. A detailed theoretical development 

of the scattering occurring in a group of atoms can be found elsewhere [69]. 

 

Figure 3.23 – Visualization of the Bragg equation. Maximum scattered intensity is only observed 

when the phase shifts add to a multiple of the incident wavelength λ [69]. 

 

One obtains, therefore, information about the minerals that constitute the sample. 

However, due, the sample preparation process as well as instrumental background it can hinder 

some diffracted peaks – for example due to preferred crystallographic arrangement. 

 

The /2 scan 

One is interested in the measurement of Bragg reflections, i.e. their position, shape, 

intensity, in order to derive microstructural information from them. The intensity variation that 

is associated with the reflection is included in the interference function developed in [69], while 

the scattered intensity depends on the distance from the sample to the detection system R. 

Therefore the instrument should be configured such that one can scan the space around the 
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sample by keeping the sample–detector distance R constant. This measure ensures that any 

intensity variation observed is due to the interference function and is not caused by a 

dependency on R. The detector should accordingly move on a sphere of constant radius R with 

the sample in the center of it – performed by a goniometer. In addition, the sphere reduces to a 

hemisphere above the sample, since we are only interested in the surface layer and data 

collection will be performed in reflection mode (figure 3.24). 

 

Figure 3.24 – Schematic representation of a θ/2θ scan from the point of view of the sample 

reference frame [69]. 

 

The sample is positioned in the center of the instrument and the probing X-ray beam is 

directed to the sample surface at an angle θ. At the same angle the detector monitors the 

scattered radiation. The sample coordinate vectors S1 and S3 lie in the scattering plane defined 

by K0 and K. During the scan the angle of the incoming and exiting beam are continuously 

varied, but they remain equal throughout the whole scan: θin=θout. The θ/2θ scan can also be 

understood as a variation of the exit angle when this is determined with respect to the 

extended incoming beam and this angle is 2θ for all points in such a scan. The quantity 

measured throughout the scan is the intensity scattered into the detector. The results are 

typically presented as a function of I(2θ) type [69]. 
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3.2.2 Experimental setup and methodology  

XRD analyses were performed at the GeoBioTec from the University of Aveiro (Portugal). The 

equipment used was a Philips X'Pert PW 3040/60 goniometer, using Cu-Kα radiation (λ = 1.5405 

Å), 50 kV and 30 mA, automatic divergent notch graphite monochromator and a step size of 

1°/2θ/min in the 4–65° 2θ range, with data acquisition by Philips X’Pert-Pro Data Collector v1.2.  

The sample preparation is the following: a small amount (6 – 8 grams) of sample is removed 

and dried at around 40 C and then grinded, which id then passed through a sieve of 63 µm. 

The obtained powder is mounted on a sample holder under a slight pressure – in order to 

minimize preferred crystallographic arrangement. This sample holder is then placed inside the 

diffractometer. Identification of crystalline phases by XRD was carried out using the 

International Centre for Diffraction Data Powder Diffraction Files (ICDD PDF). 

  

3.3 Scanning Electron Microscopy / Energy Dispersive X-ray System 

(SEM/EDX) 

 

3.3.1 SEM/EDX principles 

Electron beam-specimen interaction 

This is a versatile technique, through which one obtains both morphological (SEM) and 

compositional (EDX) information about the sample. The latter has developed into an own field – 

so to say – often referred as Electron Probe Micro-Analysis (EPMA). The primary reason for 

SEM´s usefulness is the high resolution that can be obtained when bulk objects are examined. 

The principle of this method consists in bombarding target atoms (of a sample) with an 

electron beam. In figure 3.25a a scheme of the electron-beam solid interactions as well as the 

range and spatial resolutions for each one is shown (figure 3.25b). 



55 
 

 

Figure 3.25 – (a) Electron beam solid interactions; (b) summary of range and spatial resolutions of 

electrons and X-rays produced in SEM [71]. 

 

The primary effects by impinging a high-voltage electron beam on the electrons of a target 

material are elastic scattering – change of direction with negligible energy loss – and inelastic 

scattering – energy loss with negligible change in direction. Elastic scattering is mainly caused 

by interactions with the nucleus, through which significant deviations from the incident 

direction occur. Inelastic scattering is caused by two mechanisms: (i) inelastic interaction with 

the atomic nucleus and (ii) inelastic interaction with the bound electrons. Inelastic scattering is 

mainly responsible for producing signals than backscattered electrons. Inelastic interactions 

with the nuclei of atoms are characterized by loss of energy in the Coulomb field of the nuclei 

and continuum X-radiation is emitted. Inelastic collisions between loosely bound outer 

electrons of the target atoms provoke the ejection of these. Typically these ejected electrons 

will have energy of about 50 eV and are called secondary electrons (SE). If these secondary 

electrons are produced close to the surface and their energy is enough to overcome the surface 

barrier (2-6 eV) they have high probability of escaping. However, these electron will be strongly 

absorbed if they are produced much below the surface ( 100  ) and the probability of escape 

is lowered drastically [71]. One other result of inelastic collisions is the production of 

characteristic X-ray lines. The dissipation of energy from an impinging electron during inelastic 

scattering is quite complex to determine. From the quantum theory, Bethe obtained an 
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expression which described the stopping power of an electron (S) and can be simplified in the 

following form: 

    
 

 

   

  
                                                  

and indicates the energy loss per unit mass thickness.  is the physical density. S increases 

with decreasing Z, being about 50% greater for Al than for Au at 20 keV. 

Elastic scattering – by the nucleus – is by far the most probable large-angle scattering 

mechanism. The cross-section for inelastic scattering into angles greater than 10-2 rad is much 

smaller than for elastic scattering for all elements except for the ones of low-Z. Elastic 

scattering should be seen in two parts: (i) Rutherford scattering – which occurs in the Coulomb 

field of the nucleus and is characterized by a large change in direction (even greater than 90); 

and (ii) multiple scattering – composed of many small scattering events, in which in each of 

these events the electron passes through the electron cloud of the atom and act as a screening 

field for the nucleus. It may also results in large change of direction. In sum, beam electrons 

may change directions in a series of events, travel back to the surface and escape – process of 

backscattering (figure 3.25) [71]. Backscattered electrons (BSE) leave the sample with reduced 

energy due to inelastic processes. From a certain depth in the target material, the original 

direction of the electron beam is lost and the electrons diffuse through the material randomly. 

The depth from which this happens can be seen as the depth of complete diffusion (xd – figure 

3.25b).  

The scattering cross-section at constant energy varies with Z2 and the probability of 

scattering through a given angle varies as Z2/E2. The mean free path between scattering events 

at 30 keV decreases with increasing Z from 528   for Al to 131   for Cu and to 50   for Au 

(figure 3.26) [71].  
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Figure 3.26 – Electron trajectories calculated for Al, Cu and Au, E0 = 30 keV at normal (0) and 45 

incidence [71]. 

 

For low-Z samples, most electrons penetrate deeply into the target before changing 

direction by more than 90 and are absorbed in the sample. For high-Z samples the amount of 

scattering will increase and a state of complete diffusion will occur. In case of a heavy element, 

such as Au, diffusion happens much nearer the surface than for a light element, and most of the 

backscattered electrons are caused by multiple rather than single scattering [71]. From figure 
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3.26 it can be observed that, at the same energy, the electron appear to penetrate more deeply 

into the low-Z element and the electron distribution seems to be more pear-shaped.  

There are two electron beam-solid interactions which lead to X-rays production: (i) core 

scattering – that results in the emission of continuous spectrum – and (ii) inner shell ionization 

– yielding characteristic lines. In (i) impinging electrons are inelastically scattered by the nucleus 

which results in a continuous spectrum of X-rays – similar to what happens in an X-ray tube, 

where Bremsstrahlung is produced. These X-rays assume a maximum energy value of incident 

electron E0. The relationship between wavelength and energy of the X-ray photos is: 

             
 

    
            

   

       
 

    

       
                          

 

The X-ray ranges can be summarized with the help of figure 3.27. 

 

Figure 3.27 – Comparison of X-ray production regions from specimen with densities of 3 g/cm3 (Al) 

(left) and 10 g/cm3 (Cu) (right) [71]. 

 

The X-ray range for Al-K in Al is much greater than that for Cu-K in Cu. Moreover, the Cu-

K in Al comes from a depth closer to the surface in Al than it does the Al-K. However, Cu-K 

radiation in Al comes from much deeper in the sample than it does the Cu-K in Cu. For light 

elements measured in high-Z matrices, the beam size is larger.  

Summarizing, electron-beam interactions are responsible for the signals that can be used to 

reveal the topography and the local chemistry of the sample. 
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Image formation 

The quality and resolution of SEM images are function of three major parameters: (i) 

Instrument performance, (ii) selection of imaging parameters, and (iii) nature of the specimen. 

One of the most surprising aspects of scanning electron microcopy is the apparent ease with 

which SEM images of three-dimensional objects can be interpreted by any observer with no 

prior knowledge of the instrument. The main components of a typical SEM are electron column, 

scanning system, detector(s), display, vacuum system and electronics controls (figure 3.28). 

 

Figure 3.28 – Main components of a typical SEM: electron column, scanning system, 

detector(s), display, vacuum system and electronics controls [72].  

 

The electron gun generates free electrons and accelerates these electrons to energies in the 

range 1-40 keV in the SEM. The purpose of the electron lenses is to create a small, focused 

electron probe on the specimen. In order to produce images the electron beam is focused into 

a fine probe, which is scanned across the surface of the specimen with the help of scanning 

coils (figure 3.29). Each point on the specimen that is struck by the accelerated electrons emits 

signal in the form of electromagnetic radiation. Selected portions of this radiation, usually 

secondary (SE) and/or backscattered electrons (BSE), are collected by a detector and the 

resulting signal is amplified and displayed on a TV screen or computer monitor. The resulting 
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image is generally straightforward to interpret, at least for topographic imaging of objects at 

low magnifications. The electron beam interacts with the specimen to a depth approximately 1 

μm and complex interactions of the beam electrons with the atoms of the specimen produce 

wide variety of radiation – as previously explained.  

Unlike optical or transmission electron microscopes no true image exists in the SEM. The 

particularity of SEM is that the image is generated and displayed electronically, where no 

optical transformation takes place, and no real of virtual optical images are produced. 

The primary signal carriers in SEM used to form images are secondary (SE) and backscattered 

electrons (BSE). SE are low energy particles with typical energy of about 5 eV. BSE are high 

energy particles with energies approaching the energy of the incident electron beam, e.g. 

several thousand eV. Compositional contrast or atomic number contrast arises because the 

intensity of the signal generated from areas with different composition is proportional to the 

difference in the average atomic number of the respective areas. The most efficient way to 

image compositional contrast is by using backscattered electrons because of the nearly 

monotonic increase of the BSE coefficient η with atomic number [71, 72]. Regions of high 

average atomic number will appear bright relative to regions of low atomic number. The 

magnitude of the atomic number contrast can be predicted. If a detector sensitive to the 

number of BSE is used, then the detected signal is proportional to the backscatter coefficient. 

The contrast between two regions 1 and 2 can be calculated as the difference between the 

backscatter coefficients (η1 and η2): 

   
     

  
                                         

Elements separated by one unit of atomic number produce low contrast; for example, Al and 

Si yield contrast of only 6.7%. For elements widely separated in atomic number, the contrast is 

much larger; for example, Al and Au produce contrast of 69%. Contrast above 10% is relatively 

easy to image in the SEM, contrast in the range 1 –10% requires careful strategy, and contrast 

<1% requires extreme measures to successfully image it. 

Topographic contrast includes all effects by which the shape and morphology of the 

specimen can be imaged. Most of applications of the SEM involve studying shapes. Topographic 

contrast is the most important imaging mechanism. Topographic contrast arises because the 
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number and trajectories of BSE and the number of SE depend on the angle of incidence 

between the beam and the specimen’s surface. The angle of incidence varies because of the 

local inclination of the specimen. At each point the beam strikes, the number of BSE and SE 

detected gives direct information on the inclination of the specimen.  

 

Sample requirements 

Since the SEM is operated under high vacuum the specimens that can be studied must be 

compatible with high vacuum (~ 10-5 mbar). This means that liquids and materials containing 

water and other volatile components cannot be studied directly. Also fine powder samples 

need to be fixed firmly to a specimen holder substrate so that they will not contaminate the 

SEM specimen chamber. Non-conductive materials need to be attached to a conductive 

specimen holder and coated with a thin conductive film by sputtering or evaporation. Typical 

coating materials are Au, Pt, Pd, their alloys, as well as carbon.  

 

3.3.4 Experimental setup and methodology 

The experiments have been carried out in two specialized institutions: 

A. At the GeoBioTec – University of Aveiro (Aveiro, Portugal); 

B. At BAM, Federal Institute for Materials Research and Testing, Division 6.8 

Surface Analysis and Interfacial Chemistry (Berlin, Germany). 

A – In this case, measurements were carried out with a Hitachi S4100 system, equipped with 

Quantax 400 EDS system of Bruker AXS (XFlash Silicon Drift Detector). A 15 kV acceleration 

voltage and a current intensity of 32 µA were applied. The chemical information by EDS was 

taken from an area of 300x400 µm2 selected regarding its homogeneity and lack of voids, with 

spectrum acquisition times of minimum 60 s. The semi-quantitative results were based on a 

peak-to-background ZAF evaluation method (P/B-ZAF), being ZAF a matrix correction, mainly 

based on analytical expressions for atomic number (Z), X-ray yield, self-absorption (A) and 

secondary fluorescence enhancement (F), provided by the Esprit software. 

B – In this case measurements were performed by a scanning electron microscope (SEM) 

Zeiss Supra 40 with a Schottky field emitter having attached a silicon drift detector energy 
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dispersive X-ray spectrometer (SDD-EDS) Quantax 400 from Bruker as well as a Si(Li)-EDS from 

Thermo Fisher Scientific (see [73-75] for more details). Various beam voltages from 5 to 30 kV 

have been applied. EDX spectra have been taken mostly in the “point and shoot” mode in order 

to pick up as much as possible information from representative structural features observed 

with the SEM. 

Both “top” observations of the specimen surface and in the cross-section one through the 

thick coating(s) have been employed. Depending on the size of the structural features selected 

for investigation various magnifications have been used, for the real magnification (periodically 

calibrated) see the micrometer marker on each SEM micrograph. Note that some micrographs 

have been taken in the conventional (high-resolution) mode of the SEM and some micrographs 

having associated selected areas for EDX “point and shoot” analyses have been taken over the 

EDS system in the low-resolution mode. This lies in the need of increasing the efficiency of 

analysis for the rather high number of samples and investigated areas of interest. 

 

3.4 X-ray Absorption Fine Structure (XAFS) 

 

3.4.1 XAFS principles 

XAFS settles under the physical principle of X-ray Absorption, which is a consequence of the 

photoelectric effect. One obtains variations of the absorption coefficient of a certain element 

while the energy of the incident photons is tuned around the absorption edge of that element. 

XAFS can be divided in two parts, X-ray Absorption Near Edge (XANES) and Extended X-ray 

Absorption Fine Structure (EXAFS) (figure 3.29).  
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Figure 3.29 – Scheme enhancing XANES and EXFAS regions of an absorption edge. 

 

XANES or NEXAFS is related to transitions from core levels to unoccupied levels of the 

probed atom, which correspond to the edge fine structure. The interpretation of XANES is 

extremely complicated as there is no simple physical description for it. However, the features of 

absorption at this region are governed by the density of final states (DOS). Hence, 

measurements at the XANES region allow the determination of the oxidation state and local 

coordination number (related to the crystal structure) of the analyzed element.  

EXAFS is related to the interference between the outgoing wave (transition from core level 

to the continuum) and the incoming wave (backscattered from neighboring atoms) (figure 

3.30). The variations in the absorption coefficient, µ(E), emerge from the interference between 

these waves in a probabilistic way and because of this it can only be described quantum-

mechanically. As the absorption process represents the transition between two quantum 

states, one can describe µ(E) with Fermi’s Golden Rule: 

                                                                             

 with      and      being the initial and final states, respectively and   is the operator that 

describes the process of changing between two energy and momentum states. By the presence 

of a neighboring atom, the photoelectron can be scattered by the electrons of the neighboring 

atom and return to the absorbing atom, hence the final state will carry this contribution as well 

[76]. Based on the considerations for the quantum wave theory, the equation for EXAFS can be 

written as: 
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As in real samples more than one neighbor atom is found, equation (3.29) comprises the 

sum of the contribution of each scattering atom type (also denominated coordination shell). 

Hence, j corresponds to the individual coordination shells at approximate distance from the 

probed atom; N is the coordination number; 2 is the mean square displacement within the 

inter-atomic distance (R);  is the mean free path of the photo-electron and k the wave-

number. 

Some remarks about equation (3.29) are for example: from the terms (k) and R-2 the 

information obtained is local, in the range of 5 Angstroms away from the absorber atom [76]; 

the amplitude of the EXAFS signal is proportional to the coordination number; the 2 dampens 

exponentially and the sine factor implies that longer inter-atomic distances result in higher 

frequency oscillations; this equation breaks down at low-k, which makes it complicated to 

interpret XANES.  In sum, measurements at the EXAFS region provide information about the 

local surrounding environment (neighbors) of the probed atom. 

Examples for further insight on the XAFS theory and properties are given by Rehr et al. [77] 

and by Yano et al. [78].  

 

Figure 3.30 – Scheme for single scattering (in blue) and multiple scattering (in red) in the 

EXAFS region [79]. 
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3.4.2 Data handling 

Once the spectra are recorded, column ASCII raw data files have to be stored in order to be 

processed by proper developed software that handle XAFS data. All data were prior normalized 

to the Ionization Chamber (IC), so that variations in the primary beam intensity are taken into 

account. For processing the experimental XAFS data ATHENA (v. 0.8.056) was used [80]. This 

GUI program belongs to the main package IFEFFIT (v. 1.2.11) [80].  

The first step for treating a XAFS spectrum is to perform background subtraction by 

normalization to the edge step, which was carried out automatically using ATHENA.  This 

comprises the pre-edge normalization range (at the very beginning) and post-edge 

normalization region (at the far energy region). After normalization the pre-edge and post-edge 

regions become parallel and the automatic background subtraction takes into account the 

regions previously defined.  

For the XANES measurements, the use of materials with known crystal structures is most of 

the time the best approach to infer about the unknown samples. XANES scans were performed 

on the original samples as well as on reference materials (known valence and coordination) and 

prepared replicas. Using the ATHENA program a linear combination fitting routine was 

performed taking all reference spectra into account in order to compare with the ‘unknown’ 

spectra. A weight of the contribution that each reference has on the ‘unknown’ spectrum gives, 

therefore, a hint of the possible valences and coordinations.  

Regarding the EXFAS region, measurements were performed on original samples, reference 

materials and replicas. With ATHENA one can plot  (k) against R(Å) and the oscillations 

represent different frequencies, which correspond to the different distances for each 

coordination shell. Hence, Fourier transforms (FT) are necessary for the analysis process. The FT 

from the k-space to R-space was performed with a Hanning-type window with a range of 2 Å to 

14 Å. However, if one keeps just comparing the oscillations between spectra, the reliable 

knowledge obtained is limited, since accurate results are given for the first two or three 

neighbor shells only. Software codes such as FEFF [81] provide accurate scattering factors which 



66 
 

are taken into account for multiple scattering phenomena and assist the conclusions about the 

neighboring environment of the probed atom.  

 

3.4.3 Experimental setup and methodology 

XAFS measurements at the Sb-K edge and at the Pb-L3 edge were performed, and for this 

case two beamlines with different experimental specifications were used: µSpot beamline and 

BAMline. Even if both beamlines – at the BESSY-II storage ring (Berlin, Germany) – use the same 

7 T wavelength shifter as insertion device, they have very different qualities. The advantage of 

the µSpot beamline is the higher photon flux – due to a focusing mirror – in the energy region 

from 1 keV to about 25 keV (>1011 ph/s), while at the BAMline the flux in this energy range is 

about two orders of magnitude lower. Above 25 keV the photon flux of the µSpot drops rapidly 

under 108 ph/s, while at the BAMline this mark is only reached at about 75 keV.  Furthermore, 

µSpot beamline allows a depth resolved speciation of a certain chemical state of a given 

element (by means of 3D Micro-XAFS), with a reliable reconstruction procedure recently 

developed by Lühl et al. [82]. This beamline uses a seven-element Si(Li) detector (from e2v, 

Sirius model, UK) with and active area of 30 mm2 each, and a polycapillary half-lens was placed 

in front of one of them. At the excitation channel, a polycapillary half-lens was also used, having 

a FWHM 18 μm for Cu-K (∼9 keV). Furthermore, the transmission function of this les has a 

maximum at around 15 keV. 

Both beamlines use a double crystal monochromator (DCM) with Si (311) crystals at the 

µSpot (energy resolution E/ΔE ≈ 25000) and Si (111) crystals at the BAMline (E/ΔE ≈ 5000).  

Further detailed descriptions of the µSpot beamline can be found in [83] and further technical 

data for the BAMline can be found in [84]. Furthermore, the radiation detection at the BAMline 

was carried out by means of a Si(Li) detector from e2v as well but this one is a single-element 

detector with an active area of 30 mm2. 

Both conventional and confocal measurements were performed in order to evaluate the 

usefulness of the latter geometry for the samples hereby described. It was proven that given 

the thickness and high-Z matrix of the samples, no significant alteration of the signal was 

obtained by measuring in conventional mode. At the µSpot conventional Pb-L3 XANES 
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measurements were performed on both yellow and glaze surfaces, while at the BAMline both 

conventional Pb-L3 EXAFS and Sb-K XANES and Sb-K EXAFS measurements were performed.  

All measurements were performed in fluorescence mode, as the samples are thick and 

contain high Z matrix. Furthermore, thin sections could not have been obtained because one is 

dealing with Cultural Heritage (CH) related objects and a non-destructive approximation is a 

requisite for this investigation. 

The experimental setup at the BAMline is the same as shown before (cf. figure 3.22), except 

that instead of the CRL lenses, a slit with an aperture of 3x1 mm, was used. The experimental 

setup at the µSpot is depicted in figure 3.31. 

 

 

Figure 3.31 – Optical layout of the MySpot beamline. Energy range of 4.5 keV–30 keV. Angular  

acceptance of 1.5 mrad (h) × 0.2 mrad (v) [83]. 

 

Pictures of both setups are shown is figure 3.32a (for the µSpot) and 3.32b (for the BAMline). 
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Figure 3.32 – left-hand side: setup at the µSpot beamline with possibility of 3D Micro-XRF and –XAFS 

by the lenses mounted on the upper detector element (picture by I. Mantouvalou [61] ; right-hand side: 

setup at the BAMline for XAFS measurements (picture by A. Guilherme). 

 

3.5 Statistical data handling 

When performing scientific studies, the sough for patterns among the analytical data 

becomes necessary to assist the conclusions. For this purpose, statistical data handling is 

essential. The only remaining question is what kind of treatment is suitable for the present 

study.  

Statistical studies can be separated into two big groups: parametric and nonparametric 

methods. Parametric studies follow well-known distributions, such as the Gaussian distribution 

where individual data are specified by assigning constant values to two parameters (normally 

these are the mean - µ - and the variance - 2). However, to perform a parametric inference on 

any population of data is most of the times unreasonable, even if one has precise 

measurements, as one is implying a certain normality within the data (mean, median and 

mode) that may not exist [85].  

Based on the aims of this investigation, finding correlations can be quite useful to determine 

relationships between the data and aid the conclusions. Correlation is a measure of the 

relationship between two variables. This can be performed using the Pearson correlation 

coefficient, denoted by  (rho), which – in the parametric context – estimates the degree of 

linearity between two variables. This coefficient can assume values between -1 and +1. When  

= -1, there is a negative correlation between the variables (they are inversely proportional), 
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when  = +1 there is a positive correlation (they are directly proportional), and when  = 0 

there is no linear correlation (they are either independent or there is a non-linear relationship 

between them) [85]. In figure 3.33 a representation of the different correlation values of  is 

given. 

 

 

Figure 3.33 – Examples of different Pearson correlation coefficient values () [86].  

 

However, the limitation of this method is being sensitive to linear dependence only. Other 

more robust correlation coefficients have been developed, which are sensitive to nonlinear 

relationships as well, such as the Spearman rank correlation coefficient. This coefficient 

denoted by rs, is a nonparametric measure of the statistical dependence between two 

variables, inferring on how well the relationship between these variables can be described 

using an order function (monotonicity) [85]. The Spearman’s coefficient can be calculated by 

equation 3.25: 

     
          

   

       
 (3.30), 

where          
    represents the sum of the squares of the difference between the ranks 

of each sample pair and n is the number of individuals for the sample. Here the raw data 

variables         are replaced by their ranks        . If the x and y ranks are all equal for each 

individual one obtains         , then the sum term becomes zero and       For the opposite 

situation one obtains        If there is no correlation between ranks,      [85]. Figure 3.34 
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shows some examples of possible correlations obtained with the Spearman correlation 

coefficient [87]. 

 

 

Figure 3.34 – Examples of different Spearman correlation coefficient values (rs): a) rs = 1 when two 

variables are monotonically related, even when their relationship is not exactly linear (proven by the 

Pearson coefficient () as well); b) there is not an obvious relationship between the variables and the 

coefficients assume values close to zero (also from ); c) there seems to exist a linear correlation 

between the variables but rs is not so sensitive to outliers than the ; d) in this case a negative rs 

corresponds to a decreasing monotonic tendency between the two variables [87]. 

 

When using such methods one should determine its significance – that is, how stable the 

relationship found between the data is. This is provided by the p-value – the probability of error 

that is involved in accepting the observed result as valid. This directs to a statistical hypothesis 

test that consists in two hypotheses:  the null hypothesis (H0), which is going to be tested and 

the alternative hypothesis (H1) that corresponds to the sample observations. For the present 

case, the used test was the so-called two-tailed test, which means that H0 is equal a certain 

value and H1 assumes any other value different from H0 [85]. In the presented studies, using the 
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Spearman correlation method, H0 – represents no correlation and H1 – represents a correlation. 

H0 will be rejected if p  0.05 and for these cases a correlation between variables is found. 

Another important tool for the present investigation is cluster analysis (CA). CA provides 

meaningful taxonomies, groups or clusters of data based on combinations of instrumental 

variables (IV), which maximizes the similarity of cases within each cluster while maximizing the 

dissimilarity between groups that are initially unknown [88]. As the number of groups or 

clusters that will emerge is unknown, this technique follows two stages: 

1) Carry out a hierarchical cluster analysis using the Ward´s method applying 

squared Euclidean Distance as the distance or similarity measure; 

2) Rerun the hierarchical cluster analysis with a selected number of clusters, which 

enables to allocate every case in ones sample to a particular cluster. 

Euclidean distance is an ordinary distance between two points that can be measured with a 

ruler, which is the simpler way of computing distances between objects in a multi-dimensional 

space, as they represent an extension of the Pythagoras’ theorem. Moreover, the squared 

Euclidean distance is used more often than the simple Euclidean distance in order to place 

progressively greater weight on objects that are further apart [88]. 

The next important topic is to choose the clustering algorithm, i.e. the rules that govern 

between which points distances are measured to determine cluster membership. Among all the 

possible clustering methods, the Ward´s method will be used. This method uses an analysis of 

variance5 approach to evaluate the distances between clusters. Cluster membership is 

evaluated by calculating the total sum of squared deviations from the mean of a cluster. The 

cluster criterion should produce the smallest possible increase in the error sum of squares. 

A dendrogram is a graphical representation of hierarchical cluster analyses. It is a branching 

diagram that represents the relationships of similarity among a group of entities. Figure 3.35 

shows an example a dendrogram in horizontal display. 

                                                           
5
 A measure of how far the set of numbers is spread out. 
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Figure 3.35 – Example of a dendrogram. The blue circles represent the branches (or clades) and the 

dark red filed circles mark the so called leafs.  

 

The height of the vertical lines indicates the degree of difference between branches – the 

longer the line, the larger the difference. For example, cases 3 and 4 are more similar to each 

other than cases 1 and 2 because the height of the vertical lines of the former is smaller than 

the latter. One can find clusters at any height of the dendrogram, as at each clade a new cluster 

appears. It is just a matter of choosing a distance between clusters. 

The software used for the statistical data handling was SPSS (Statistical Package for Social 

Sciences), version 20.0. 
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CHAPTER 4 – RESULTS 

 

4.1 – Suitability of XRF for glazed ceramics analyses 

Due to high heterogeneity among glazed ceramic objects, one must primarily distinguish the 

scale at which differences in the composition occur especially if the chosen techniques are 

providing reliable information at that scale. This is intrinsically related to the resolution and the 

sensitivity of the technique and in order to evaluate this and other crucial technical features, 

the suitability of the XRF setup for the present case study was evaluated.  The following topics 

were considered: 

i) Analysis of standard reference materials with two emission modes: polycapillary lens 

and collimator; 

ii) Performance tests: linearity through calibration curves; 

iii) Estimation of the mass attenuation coefficient of the specimen based on the Compton 

peak intensity. 

Two groups of standard reference materials are presented:  the silicates group to infer on 

the ceramic body and the glasses group to infer on the glaze.  

The silicates group was provided by I. Queralt from the Spanish National Research Council 

(CSIC) in Barcelona, Spain.  All of them are Geochemical Certified Reference Materials (CRM’s), 

with data reported in the Govindaraju’s compilation [89]: Basalt (BE-N), Diorite (DR-N), Granite 

(GS-N), Anorthosite (AN-G), Granite (MA-N), Granite (AC-E), Dolerite (WS-E), Microgabbro (PM-

S); Potash Feldspar (BCS-376), Firebrick (BCS-315) and Sillimanite (BCS-309). The glasses group 

belongs to CFAUL and the CRM´s are: SRM-612 (from NIST – National Institute of Standards and 

Technology), Fluoride Opal Glass SGT-4, Soda-Lime-Magnesia-Silica Glass SGT-5, Soda-Lime-

Silica Glass SGT-7, Lead-Oxide-Potassium Oxide-Silica Glass SGT-8 (Standard Glass Technology). 

The silicates group represents prepared pressed powder pellets with a nominal mass of 5 g. 

In the glasses group only the SRM-612 is a pressed pellet. SGT-4 was supplied as white pieces; 

SGT-5, SGT-7 and SGT-8 as colorless glass pieces. 
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Some characteristics and distinctive features of different ceramics can be found among 

relationships between chemical elements playing similar roles in the structure (network 

formers, modifiers, nucleating agents, etc.) in ceramic production process. Hence, the linearity 

between several elemental ratios was checked and is displayed in figure 4.1. The x-axis 

represents the net peak area ratios between neighbor elements and the y-axis represents oxide 

composition found in the sheets from the certifying company. Through this relationship one is 

able to retrieve directly the ratio between the respective oxides (usual form in ceramic 

chemical assemblages). 

 

 

Figure 4.1 – Linearity response with net peak area ratios of neighboring elements and respective 

tabled oxide composition for all the silicate standard reference materials. 

 

Since Compton scattering increases with decreasing average atomic number (cf. chapter 3, 

sub-section 3.1.2), a way of estimating the matrix effects is to evaluate the Compton scatter 

peak from the characteristic X-ray lines of the tube anode material (cf. chapter 3, section 3.2).   



75 
 

Since the intensity of the Compton peak (Is) is inversely proportional to the mass attenuation 

coefficient (µs) of the specimen, 

        
 

     
                        (4.1) 

 it can be used to estimate the absorption coefficient of the sample at the wavelength (or 

energy) of the scattered photons [90]. 

The analyzed spectra of the silicates and glass standards were fitted and the Compton net 

peak areas were used to estimate the mass attenuation coefficient (µs) in the specimen, using 

(4.1). Figure 4.2 shows the order of magnitude for the µs in each standard. In figure 4.2a one 

sees that the values for µs are of the same order of magnitude for the different standards, 

which means that the matrix average atomic number (Z) does not vary significantly among the 

different silicates. Conversely, in figure 4.2b a difference of two orders of magnitude for the µs 

between the glass standard SGT-8 and the rest is observed. This can be explained by the high 

lead oxide (PbO) content present in the SGT-8 standard (about 31%), while in the other glass 

standards PbO is a minor or trace compound.  

 

Figure 4.2 – Mass attenuation coefficient (µs) estimation by calculating the inverse of the Compton 

scatter intensity (Is) at the wavelength of Mo-K, for a) silicates standards and b) glass standards. 

 

Since µs and Is are inversely proportional, it becomes clear that the higher the average 

atomic number (Z) of the sample the lower the Compton peak and the stronger the mass 

attenuation coefficient. 
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One of the most important aspects is the fact that the features hereby presented are at a 

qualitative level and can provide significant information about the samples by comparing 

elemental ratios. Quantification was not performed in this investigation, due to compositional 

heterogeneities and irregularities in the thickness of layers.  

 

4.2 – Original samples: fragments 

The structure of this section is based on the comparison between the two ceramic 

production centers to enhance differences and/or similarities between the technological 

aspects of these objects. This study corresponds to analyses performed on fragments from 

faiences from Coimbra and wall-tiles both from Coimbra and Lisbon (cf. Annex 1.3). A shorter 

version of this study for whole museum objects is presented further in section 4.4 – In situ 

analysis of whole Museum objects. 

As previously described (cf. chapter 1, section 1.2) these objects are composed by three 

main zones: body, glaze and surface decoration. Hence, a subsection focused on each part of 

the samples is created in order to compare their features.  

 

4.2.1 – Ceramic body  

 

X-ray Fluorescence (XRF) 

Conventional XRF measurements were performed in the ceramic body of all available pieces. 

In figure 4.3 an example of the elemental variability found in the ceramic support is shown.  
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Figure 4.3 – XRF spectrum of the ceramic body of faience from Coimbra, obtained in conventional 

mode.  

 

From the spectrum depicted in figure 4.3 one sees that apart from the expected (main) 

presence of Al and Si, the major elements are K, Ca and Fe. These are a hint for the (expected, 

as well) presence of feldspars, more precisely potash-feldspar (microcline or orthoclase) and 

calcium plagioclase (Anorthite). Another important element, which comes normally in 

association to feldspars, is sodium (Na). This, however, could not be detected by the used 

spectrometer, as its quantity lies below the detection limit.  

Another important aspect to discuss about is the thickness of the samples. The fragments 

from faience samples are all thin (max. 2 mm thick body). XRF analyses on the ceramic body 

were performed on the back side (non-glazed). As previously described (cf. chapter 1, sub-

section 1.2.1) the elemental variability within the ceramic support is strongly dependent on the 

geological resources of the region as well as the manufacturing techniques employed. For this 

reason, a comparison of the most significant elements within the ceramic body composition 

between the different samples (faiences from Coimbra, wall-tiles from Coimbra and from 

Lisbon) was carried out (figure 4.4).  
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Figure 4.4 – Comparison of most significant elements that constitute the ceramic body (Al, Si, K, Ca, 

Ti, Fe, Rb, Sr) between faiences from Coimbra (Coimbra F), wall-tiles from Coimbra (Coimbra T) and wall-

tiles from Lisbon (Lisbon T). 

 

From figure 4.4 one extracts that a difference between some elements, such as Ca and Fe, 

exists. Faiences from Coimbra (Coimbra F) show higher Fe count rate than Ca, which does not 

happen for the wall-tiles from Coimbra (Coimbra T) and Lisbon (Lisbon T). Moreover, there is a 

one order of magnitude difference for the Fe count rate between wall-tiles and faiences. In 

general, the elemental variability is much more constant for the faience samples, than for the 

wall-tile samples, which is intrinsic to the manufacturing process (cf. chapter 5). 

 

X-ray Diffraction (XRD) 

As complementary information to the so far presented results, XRD measurements were also 

performed on the ceramic support of some of the samples (figure 4.5). At this point it is 

important to highlight that this is a destructive procedure and, therefore, just some pieces were 

able to be analyzed. To these results, specifically the ones from faiences from Coimbra, the 

work developed by M. J. Fonseca [91] was taken into account. 
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Figure 4.5 – Diffractograms of the ceramic bodies of 4 faiences from Coimbra (blues), 3 wall-tiles 

from Coimbra (greens) and 3 wall-tiles form Lisbon (red-oranges). The crystalline phases are marked on 

the top, assigned with initials: G – Gehlenite; Gy – Gypsum; Q – Quartz; M – Microcline; C – Cristobalite; 

Ca – Calcite; A – Anorthite; Go – Goethite; W – Wollastonite.  

 

In general, quartz (SiO2) and alkali feldspars (Microcline (M): KAlSi3O8  - K-rich) are the 

crystalline phases identified among all samples, as well as Gypsum (CaSO4.2H2O, denoted as Gy) 

but with a much lower significance. Other feldspars that are Ca-rich, such as Anorthite: 

CaAl2Si2O8 (denoted as A) are identified with higher significance among the samples from 

Coimbra – faiences and wall-tiles – with more intense diffraction peaks for faiences. Calcite 

(CaCO3, denoted as Ca) and Gehlenite (Ca2Al(AlSiO7), denoted as G) are identified with higher 

significance among the wall-tiles from Lisbon. In addition, Wollastonite (CaSiO3, denoted as W) 

and Goethite (FeO(OH), denoted as Go) are identified only in the wall-tiles from Lisbon. At last, 

Cristobalite (denoted as C) – which is a high-temperature polymorph of silica (same chemical 
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formula but different crystal structure) – is pronounced among the samples from Coimbra 

(faiences and wall-tiles) only, at around 2 = 22. 

 

 

Figure 4.6 – a) Phase equilibrium diagram of CaO-Al2O3-SiO2 [92]. Cristobalite (in yellow), Anorthite 

(in blue) and Gehlenite (in green) are some of the crystalline phases identified by the diffractograms; b) 

Phase-diagram of SiO2 [93]. 

 

Regarding Cristobalite, its presence in XRD diagrams is a strong hint of the cooling process 

occurred. As the firing temperature increases, silica undergoes the so-called “quartz inversion” 

– from quartz- to quartz- - and when the pressure increases, polymorph phases such as 

Tridymite and Cristobalite are formed (figure 4.6b). If the cooling process is made rapidly 

enough, typical high-temperature phases keep in the structure along with some thermal 

tensions, which leads to a more fragile object.  

 

4.2.2 – Glaze  

 

X-ray Fluorescence (XRF) 

Conventional XRF measurements were performed on the glazed surfaces (white areas) of all 

samples in order to compare the elemental content. In this case, the incident beam was 
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conducted through the collimator and the analyzed areas of about 1.2 mm2 give reliable 

information of the whole glazed white parts of the samples, due to their intrinsic heterogeneity. 

Yet, three measurements on each sample in different spots were carried out and averaged for 

each sample. Figure 4.7 is an example of the elemental diversity found in such glazes, and in 

this case it corresponds to a faience and a wall-tile from Coimbra as well as a wall-tile from 

Lisbon.  

 

Figure 4.7 – XRF spectra of the glaze of a faience and a wall-tile from Coimbra and wall-tile from 

Lisbon, obtained in conventional mode. Elemental recognition indicates a lead-tin-based glaze.  

 

From figure 4.7 one sees that the elemental distribution of the glazes is quite similar among 

the three different groups of samples. From the spectra the only differences identified are 

higher concentrations of Ca, Zn and Pb and lower of Sn in the faience sample in comparison to 

the wall-tiles from Coimbra and Lisbon. The four peaks assigned as “Mo-inc” and “Mo-coh” 

correspond to the incoherent (Compton) and coherent (Rayleigh) lines characteristic from the 

anode material (Mo) of the X-ray tube, respectively. 

The elemental variability in these samples is broad and it is important to mention here that 

there are elements present, such as B, Na and Mg, which cannot be detected by this 

experimental system.  
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In order to assign possible groups regarding the chemical information of the different types 

of ceramic objects here investigated, statistical clustering methods were a choice for such 

purposes. The input data for the dendrogram in figure 4.9 are the net peak areas of the 

elements that mostly characterize the glazes: Al, Si, K, Ca, Ti, Mn, Fe, Cu, Zn, Sn and Pb.  

 

Figure 4.8 – Dendrogram representing the clusters formed with the elemental data obtained from 

conventional XRF. Three clusters are unambiguously formed. 

 

From the dendrogram (figure 4.8) one sees that three clusters can be clearly identified. 

Cluster 1 comprises Coimbra samples only, cluster 2 has a mixture of both Coimbra and Lisbon 

samples and cluster 3 includes samples from Lisbon only.  

One of the most characteristic features of the presented samples is opacifying character of 

the glazes, owed to introduction of cassiterite (SnO2) in the chemical composition. A ternary 

diagram between silicon (Si), lead (Pb) and tin (Sn) is plotted in figure 4.9. The data points 

correspond to net peak areas from the fitted XRF spectra (in conventional mode). These 

elements were chosen due to their role in glazes, as previously described (cf. chapter 1). Si has 

a structural role in the glaze as is a network-forming agent; Pb has a network-modifier nature 

and Sn was introduced as an opacifier agent. Differences between these three elements (or 
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compounds) will provide a first-approach confirmation about the use of these raw materials 

and, hence, about the manufacturing processes. 

 

Figure 4.9 – Ternary diagram Si-Sn-Pb with net peak areas obtained by conventional XRF on glazes of 

all analyzed samples: utility faiences from Coimbra (), wall-tiles from Coimbra () and wall-tiles from 

Lisbon ().  

 

From figure 4.9 one can identify two distinct groups of data. The faience samples (Coimbra) 

are emphasized by lower counts of Sn and higher counts of Pb in comparison to the wall-tile 

samples (Coimbra and Lisbon). At this point finding correlations between elemental data will be 

useful to trace the choice of raw materials for both manufacturing centers as well as different 

types of objects (faiences and tiles). For this purpose, Spearman correlation tests were 

performed for the different groups of samples (faiences and tiles). Table 4.1 shows the 

correlation coefficients between the elements that constitute the glazes of faiences from 

Coimbra. 
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Table 4.1 – Spearman correlation coefficient () for net peak areas of the elements that most 

characterize the glazes of faiences from Coimbra (N = 18). ´**´ indicates that the correlations are 

significant at the p<0.01 level; ´*´ indicates that the correlations are significant at the p<0.05 level. 

 Al Si S K Ca Ti Mn Fe Cu    Zn      Sn Pb 

 

 Al 
  -.440 .293 -.688

**
 .435 -.034 -.071 -.150 .243 .160 -.209 -.244 

 Sig. (2-tailed)  .077 .254 .002 .081 .896 .788 .567 .348 .541 .420 .344 

     

Si 

 -.440  -.490
*
 .625

**
 -.162 .136 .071 .107 -.134 .060 .328 -.051 

 Sig. (2-tailed) .077  .046 .007 .535 .604 .786 .684 .609 .819 .199 .846 

 S 
 .293 -.490

*
  -.392 -.044 -.356 -.461 -.439 -.309 -.389 -.339 .123 

 Sig. (2-tailed) .254 .046  .119 .866 .161 .062 .078 .228 .123 .184 .639 

 K 
 -.688

**
 .625

**
 -.392  -.248 .245 .015 .248 -.284 .009 .329 -.135 

 Sig. (2-tailed) .002 .007 .119  .338 .343 .955 .338 .269 .974 .197 .605 

    

Ca 

 .435 -.162 -.044 -.248  .272 .499
*
 .412 .588

*
 .195 .114 -.023 

 Sig. (2-tailed) .081 .535 .866 .338  .290 .041 .101 .013 .453 .663 .929 

 Ti 
 -.034 .136 -.356 .245 .272  .342 .560

*
 -.170 -.343 .094 -.224 

 Sig. (2-tailed) .896 .604 .161 .343 .290  .179 .019 .513 .178 .720 .387 

Mn 
 -.071 .071 -.461 .015 .499

*
 .342  .671

**
 .660

**
 .331 .346 .114 

 Sig. (2-tailed) .788 .786 .062 .955 .041 .179  .003 .004 .194 .173 .662 

   

Fe 

 -.150 .107 -.439 .248 .412 .560
*
 .671

**
  .225 .239 .189 -.179 

 Sig. (2-tailed) .567 .684 .078 .338 .101 .019 .003  .384 .355 .468 .491 

    

Cu 

 .243 -.134 -.309 -.284 .588
*
 -.170 .660

**
 .225  .598

*
 .485

*
 .284 

 Sig. (2-tailed) .348 .609 .228 .269 .013 .513 .004 .384  .011 .049 .270 

    

Zn 

 .160 .060 -.389 .009 .195 -.343 .331 .239 .598
*
  .257 .156 

 Sig. (2-tailed) .541 .819 .123 .974 .453 .178 .194 .355 .011  .319 .550 

    

Sn 

 -.209 .328 -.339 .329 .114 .094 .346 .189 .485
*
 .257  .277 

 Sig. (2-tailed) .420 .199 .184 .197 .663 .720 .173 .468 .049 .319  .283 

    

Pb 

 -.244 -.051 .123 -.135 -.023 -.224 .114 -.179 .284 .156 .277  

 Sig. (2-tailed) .344 .846 .639 .605 .929 .387 .662 .491 .270 .550 .283  

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 

 

Both  and p are important to conclude about the existent correlation between two 

elements.  indicates the strength and direction () of correlation – the bigger the absolute 

value the better and p indicates the tendency for the given correlation if one would add more 

data to group (i.e. its significance).  

Given the particular case presented by table 4.1, one realizes that there is a negative 

correlation between Al-K with a significance at the p<0.01 level and a positive correlation 

between Si-K with a significance at the p<0.01 level. Furthermore there is a positive correlation 

between Mn-Fe and Mn-Cu with a significance at the p<0.01 level. 
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Table 4.2 – Spearman correlation coefficient () for net peak areas of the elements that most 

characterize the glazes of tiles from Lisbon (N = 16). ´**´ indicates that the correlations are significant at 

the p<0.01 level; ´*´ indicates that the correlations are significant at the p<0.05 level. 

 Al Si S K        Ca      Ti      Mn        Fe        Cu       Zn        Sn       Pb 

 

Al 
  .467 .418 .297 .539 .445 .321 .347 .333 .261 -.091 .115 

Sig. (2-tailed)  .174 .229 .405     .108 .197 .365 .327 .347 .466 .802 .751 

Si 
 .467  -.200 .867

**
      .588 .823

**
 .055 .632

*
 .139 -.261 .182 -.273 

Sig. (2-tailed) .174  .580 .001       .074 .003 .881 .050 .701 .466 .614 .446 

S 
 .418 -.200  -.030       .261 -.262 .612 .055 .248 .505 .146 .430 

Sig. (2-tailed) .229 .580  .934       .467 .464 .060 .881 .489 .137 .688 .214 

K 
 .297 .867

**
 -.030  .661

*
 .451 .212 .723

*
 -.127 -.444 .170 -.382 

Sig. (2-tailed) .405 .001 .934  .038 .191 .556 .018 .726 .199 .638 .276 

Ca 
 .539 .588 .261 .661

*
  .287 .224 .863

**
 -.055 -.249 -.219 -.321 

Sig. (2-tailed) .108 .074 .467 .038  .422 .533 .001 .881 .487 .544 .365 

Ti 
 .445 .823

**
 -.262 .451      .287  -.067 .257 .482 .113 .183 .006 

Sig. (2-tailed) .197 .003 .464 .191      .422  .854 .474 .159 .756 .612 .987 

Mn 
 .321 .055 .612 .212      .224 -.067  .231 .515 .511 .511 .345 

Sig. (2-tailed) .365 .881 .060 .556      .533 .854  .521 .128 .132 .132 .328 

Fe 
 .347 .632

*
 .055 .723

*
 .863

**
 .257 .231  -.188 -.354 .116 -.365 

Sig. (2-tailed) .327 .050 .881 .018 .001 .474 .521  .602 .316 .750 .300 

Cu 
 .333 .139 .248 -.127 -.055 .482 .515 -.188  .729

*
 .413 .564 

Sig. (2-tailed) .347 .701 .489 .726 .881 .159 .128 .602  .017 .235 .090 

Zn 
 .261 -.261 .505 -.444 -.249 .113 .511 -.354 .729

*
  .409 .875

**
 

Sig. (2-tailed) .466 .466 .137 .199 .487 .756 .132 .316 .017  .241 .001 

Sn 
 -.091 .182 .146 .170 -.219 .183 .511 .116 .413 .409  .505 

Sig. (2-tailed) .802 .614 .688 .638 .544 .612 .132 .750 .235 .241  .137 

Pb 
 .115 -.273 .430 -.382 -.321 .006 .345 -.365 .564 .875

**
 .505  

Sig. (2-tailed) .751 .446 .214 .276 .365 .987 .328 .300 .090 .001 .137  

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 

 

From table 4.2, there is a positive correlation between Si-K, Si-Ti, Ca-Fe and Zn-Pb with a 

significance at the p<0.01 level. 

The color application as well a possible third firing stage (for the decoration only) may have 

taken place is still an open question (cf. figure 1.6). Further developments on this part will be 

given further on (cf. section 4.2.3).  

As complementary information, it is important to investigate the stratigraphy of the samples 

for estimating the thickness of each layer and especially the elemental distribution in depth. 

Therefore, 3D Micro-XRF analyses were performed (cf. chapter 3, sub-section 3.1.3).  
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Three cross-section scans on glaze + body were carried out for each sample. Figures 4.10a 

and 4.10b shows the elemental profiles for a faience from Coimbra and a wall-tile from Lisbon, 

respectively. A key element for each important region in the stratigraphy of the samples was 

inspected – Pb and Sn for the glaze and Ca for the ceramic body.  

 

 

Figure 4.10 – 3D Micro-XRF cross section scans performed on glaze + ceramic support on: a) a faience 

from Coimbra and b) a wall-tile from Lisbon [37]. 

 

Following the Pb-L profiles for all analyzed sample it was realized that faiences have glaze 

thickness between 150 – 250 µm, while the glaze of wall-tiles (both from Coimbra and Lisbon) is 

between 300 – 400 µm thick. Although glazes also contain Ca, this element is mostly 

characteristic for the ceramic body as it is depicted in figure 4.10. A very interesting point is the 

region where the connection between two main parts of the sample occurs (what it will be 

called ´interface area´ from this point forth). Comparing the profiles between figure 4.10a and 

4.10b (plotted over the images obtained by the microscope inside the confocal setup) one sees 

that at the glaze/body interface the elemental exchange for the faience samples from Coimbra 

happens in a smoother way (approximately 50 μm) than for the wall-tiles from Lisbon (less than 

30 μm).  
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Scanning Electron Microscopy/Energy Dispersive X-ray Spectrometry (SEM/EDX) 

In order to prove the assumptions above, the use of techniques that provide compositional 

and morphological information is a requirement. Hence, SEM/EDX analyses were performed 

onto the glazes of some samples.  At this point it is important to emphasize that given the 

heterogeneity among these objects, quantitative results obtained with EDX will be here 

presented just as an estimation of the content at a specific area. Hence, these will not be 

considered as providing representative quantitative information of the whole piece/area.  

Figure 4.11 shows two examples of the elemental distribution on the glaze surfaces of one 

faience form Coimbra (a) and one wall-tile form Lisbon (b). The image contrast provides 

information about the atomic number (Z) of a certain area/spot. Dark sots/areas correspond to 

low-Z compounds and bright ones to high-Z compounds. 

 

 

Figure 4.11 – SEM micrographs taken on the glaze surface of a faience sample from Coimbra (a) and a 

wall-tile sample from Lisbon (b).  

 

Observing figure 4.11a one can identify quartz phases (dark spots) confirmed by the EDX 

spectrum (#3, in orange) due the presence of Si and O only. Areas #1 and #2 represent a more 

uniform contribution of all compounds present in the glaze, where Na, Al, Si, K, Ca, Fe, Sn and 

Pb are identified by the EDX spectrum.  

Sodium is a key element for glaze characterization, which could not be detected by XRF. In 

table 4.3, quantities for the elements in glaze surfaces detected by EDX for all analyzed samples 



88 
 

are presented. These measurements were taken under a low magnification (wide-area) and the 

morphology of the cross-section was taken into account in order to better estimate the 

concentrations. 

 

Table 4.3 – Elemental composition of glazes of the samples (N is the number of samples analyzed) 

from Coimbra and Lisbon (in wt-%) obtained with standardless EDX (wide-area). Note the need of 

careful dealing with the values as rough estimates serving primarily to distinguish between the various 

types of samples. 

Samples    Na2O MgO Al2O3    SiO2   K2O CaO Fe2O3     PbO    SnO2 

Coimbra 

faiences 

(N = 11) 

      1 < 1 2 – 3 31 – 32 8 – 9    3 4 40 – 41 10 – 11 

Coimbra 

& Lisbon 

Wall-tiles 

(N = 9) 

   3 – 4 < 1 3 – 4 29 – 30 4 – 6  1 2 – 3 45 – 46 9 – 10 

 

Glazes from faiences (Coimbra) reveal relatively higher amounts of CaO (3 wt%) than the 

ones from wall-tiles from Coimbra and Lisbon (CaO:  1 wt%). Although faiences show higher 

content of K2O (8 – 9 wt%) and lower content of Na2O ( 1 wt%) when compared to the wall-

tiles from Coimbra and Lisbon (4 – 6 wt% of K2O and 3 – 4 wt% of Na2O) the total alkali content  

is practically the same (~10 wt%). In addition, the PbO content is lower in the glazes from 

faiences than from wall-tiles. In order to evaluate the morphology of the glazes, a series of 

micrographs is presented in figure 4.12. 
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Figure 4.12 – SEM micrographs: a) cross-section of a faience from Coimbra (low-mag.); b) cross-

section of a faience (interface glaze/body is observed at the bottom); c) enhancement of the same 

sample, where the deposition of cassiterite crystals is observed; d) high magnification on the cassiterite 

crystals, supported by the EDX results. 

  

General features of the glazes: 

- From the micrograph in figure 4.12a one realizes how smooth the interface 

glaze/body is, meaning that there was a good adhesion between glaze and ceramic 

support; 

- The brightness of the glaze (also confirmed by figure 4.12b) indicates that the 

matrix average atomic number is medium-high.  

- The quartz grains are observable as dark spots, which shape varies from sphere-

like to more oblong, with sizes up to around 60 µm (figures 4.12b and 4.12c);  

- Feldspars are identified with sizes up to 5 µm;  
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- Cassiterite (SnO2) crystals are typically found in this type of ceramic glazes and 

the crystals size is around 1 µm and less; With a high magnification (figures 4.12c and 

4.12d) one can see that these crystals form agglomerates and are well distributed in the 

glaze.  

 

As a last example of the morphology of the glazes figure 4.13 exhibits two micrographs, one 

from a faience form Coimbra (a) and one from a wall-tile from Lisbon (b). One can see how well 

distributed the tin oxide crystals are within the glassy matrix. Their length varies between for 1 

and 2 μm for the former (a) and between 0.5 and 0.8 μm for the latter (b). 

 

 

Figure 4.13 – SEM micrographs taken on the glaze surface of a faience sample from Coimbra (a) and a 

wall-tile sample from Lisbon (b), with high magnification [37]. 

 

4.2.3 – Surface decoration 

Concerning polychrome glazed ceramics, some facts must be taken into account. The colors 

employed on the pieces were usually obtained from metallic oxides, which could have been 

used in a “raw” state or in a mixture called frit, which is a pre-melting of the pigment together 

with fluxes, such as Pb, Na, and sometimes even Sn (to make it more opaque). After cooling 

down, this mixture (frit) was grinded until a powder was obtained and then applied over the 

“base glaze” (cf. figure 1.7). The brilliance or opacity and the migration ability of the elements, 

which grant the color, are some factors that help assign the way the pigment was applied 

onto/within the glaze [33, 37]. 
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In figure 4.14 XRF spectra from the four most used colors (blue, purple, green and yellow) 

are plotted. 

 

Figure 4.14 – XRF spectra – obtained in conventional mode – correspondent to blue, purple, green 

and yellow colors respectively.  

 

From these spectra key elements – that characterize each color – can be identified: Cobalt 

(Co) for blue, Manganese (Mn) (and possibly Barium (Ba)) for purple, Copper (Co) for green and 

Antimony (Sb) for yellow.  

 

4.2.3.1 – Blue pigment 

 

X-ray Fluorescence (XRF) 

Blue is without a doubt the most common color for (Portuguese) glazed ceramic decoration. 

Its common association with majesty made it the most required color for this purpose. 

From figure 4.14 the typical elements detected are Fe, Co, Ni and As (Smalt).  According to 

the literature [27], the use of Co-pigments until about the 12th century AD is related to two 

mineral ores only:  i) Qamsar and Anarak in Persia and ii) the Erzgebirge – Ore Mountains – at 
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the border between Saxony (Germany) and Bohemia (Czech Republic). These were geologically 

rich enough to support a trade route over Europe, North Africa and the East (till China). The 

main mining industry in the Erzgebirge was Silver (Ag), whose minerals were found admixed in 

the so-called ´five-element´ veins (Ni-Co-As-Ag-Bi). Since then, the Erzgebirge has supplied the 

Co-pigment market to a large extent.  

The decorative motives as well as the hues used, make the difference. Measurements with 

the conventional XRF setup were performed on blue areas, and in order to identify the 

elements from the color a spectra from the glaze next to these areas was subtracted. In figure 

4.15, spectra – obtained by conventional XRF – from blue areas in faiences from Coimbra and 

wall-tiles from Coimbra and Lisbon are presented.  

 

Figure 4.15 – XRF spectra from blue regions from faiences from Coimbra and wall-tiles from Coimbra 

and Lisbon. 

 

From figure 4.15 a difference in the shape of the spectra between faiences and wall-tiles is 

observed. Since blue painted regions were much smaller in faiences than in wall-tiles, X-ray 
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excitation was performed using the polycapillary lens for faiences. This way one restrains the 

desired analyzed and has no overlap with adjacent colors. The shape of the background in the 

spectrum corresponding to the faience in figure 4.15 is in agreement with the theory of 

polycapillary lenses (cf. chapter 3, sub-section 3.1.2)  

An interesting feature detected on these spectra is that there seems to appear a peak on the 

right side of the Pb-L line, which energy would correspond to Bismuth (Bi-L). Given the 

inherent instrumental limitations in terms of energy resolution, long measurements (of 30 min.) 

were carried out on the blue areas of each sample.  For this purpose (and to assure that the 

upper layer is selected), 3D Micro-XRF measurements were performed placing the probing 

volume on the upper layer (blue). 

  

Figure 4.16 – Comparison between blue and glaze spectra, performed with 3D Micro-XRF on the 

upper layer of each area. The shoulder appearing on the right side of both Pb-L and Pb-L indicates the 

presence of Bismuth (Bi) in the blue. 

 

Figure 4.16 shows that with long measuring time, both lines of Bismuth (L and L) become 

emphasized, when compared with respective glaze. In order to evaluate whether the presence 

of the elements that are “linked” to Cobalt is found in all samples or not, net counts for these 

elements were compared between the different kinds of samples. 
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Figure 4.17 – a) Plot of the elemental net counts for Al, K, Mn, Fe, Co, Ni, As, Bi for faiences from 

Coimbra (Coimbra F), wall-tiles from Coimbra (Coimbra T) and wall-tiles from Lisbon (Lisbon T); b) 

comparison elemental ratios (Mn/Co, Fe/Co, Ni/Co, Bi/Co) between faiences from Coimbra (Coimbra F), 

wall-tiles from Coimbra (Coimbra T) and wall-tiles from Lisbon (Lisbon T). 

 

From figure 4.17a one sees that the wall-tiles (Coimbra T and Lisbon T) show higher count 

rates for Ni and Bi and lower count rates for Mn in comparison to the faiences (Coimbra F). This 

is easier to observe by the ratio plot in figure 4.17b, where an increase of the Ni/Co (light-blue 

line) and Bi/Co (orange line) and a drop of the Mn/Co (red line) for the wall-tiles are observed 

(right hand-side of the grey dashed line). The ratio Fe/Co (blue line) keeps more or less 

unchanged between faiences and wall-tiles. Furthermore, the fact that the source of Co has 

“contaminant” elements such as Fe, Ni, As and Bi, allows inferring about the time at which 

these objects were manufactures. According to Van der Linden et al. [28], the more recent the 

object is, the higher the “purity” of the Co-source that was employed is. In figure 4.18, the 

As/Ni ratio is plotted against the Co/Fe ratio. 
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Figure 4.18 – As/Ni square-root net counts ratio plotted against Co/Fe square-root net counts ratio, 

for both faiences (Coimbra) and wall-tiles (Coimbra & Lisbon). 

 

From figure 4.18 one sees a negative linear relationship between As/Ni and Co/Fe for both 

faiences (Coimbra) and wall-tiles (Coimbra & Lisbon). However, looking at both scales, the 

difference with the Co/Fe and As/Ni ratio does not vary much, which means that the whole set 

of pieces belongs to the same period.  

In order to assign possible groups regarding the chemical information of the blue used in the 

different pieces, statistical clustering methods were chosen (cf. chapter 3, section 3.5 – 

statistical data handling). The input data for the dendrogram in figure 4.19 are the net peak 

areas of the elements that mostly characterize the blue color together with the respective 

glaze: Al, Si, K, Ca, Ti, Mn, Fe, Co, Ni, As, Sn, Bi and Pb.  
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Figure 4.19 – Dendrogram showing the clusters formed with the elemental data of the blue. Two 

clusters are unambiguously formed: cluster 1 – faiences from Coimbra (Coimbra F); cluster 2 – wall-tiles 

from Coimbra and Lisbon (Coimbra T and Lisbon T). 

 

From figure 4.19 one realizes two distinct clusters – one for faiences from Coimbra (Coimbra 

F) and one for wall-tiles (Coimbra T and Lisbon T) – with a big distance. However, cluster 2 could 

be sub-divided into two clusters, as there is a smaller distinct division between wall-tiles from 

Coimbra (Coimbra T) and wall-tiles from Lisbon (Lisbon T). 

Spearman correlation tests were performed for the different groups of samples (faiences 

and tiles). Table 4.4 shows the correlation coefficients between the elements that characterize 

the blue of faiences from Coimbra, table 4.5 the blue of wall-tiles from Coimbra and table 4.6 

the blue of wall-tiles from Lisbon. For further insight on this statistical treatment, see please 

chapter 3, section 3.5 – statistical data handling. 
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Table 4.4 – Spearman correlation coefficient () for net peak areas of the elements that most 

characterize the blue in faiences from Coimbra (N = 16). ´**´ indicates that the correlations are 

significant at the p<0.01 level; ´*´ indicates that the correlations are significant at the p<0.05 level. 

 Mn Fe Co Ni As Bi 

 

     Mn 
  .916** .819* .964** .042 .060 

Sig. (2-tailed)  .001 .013 .000 .921 .887 

     Fe 
 .916**  .786* .929** .084 .286 

Sig. (2-tailed) .001  .021 .001 .844 .493 

     Co 
 .819* .786*  .810* .048 -.071 

Sig. (2-tailed) .013 .021  .015 .910 .867 

     Ni 
 .964** .929** .810*  .263 .214 

Sig. (2-tailed) .000 .001 .015  .528 .610 

     As 
 .042 .084 .048 .263  .359 

Sig. (2-tailed) .921 .844 .910 .528  .382 

     Bi 
 .060 .286 -.071 .214 .359  

Sig. (2-tailed) .887 .493 .867 .610 .382  

**- Correlation is significant at the 0.01 level (2-tailed). 

*- Correlation is significant at the 0.05 level (2-tailed). 

 

From the results in table 4.4 it becomes clear that there is a significant positive correlation 

among the elements Mn-Fe-Co-Ni. The correlation between Mn-Fe, Mn-Ni and Fe-Ni is positive 

significant at a p<0.01 level and the Co shows a positive significant correlation at the p<0.05 

level with Mn, Fe and Ni.  As has a tendency for positive correlation with all elements (higher 

with Bi) but not very consistent (proved by the high p-values). Moreover, Bi and Co have no 

consistent correlation (p=0.867).  
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Table 4.5 – Spearman correlation coefficient () for net peak areas of the elements that most 

characterize the blue in Wall-tiles from Coimbra (N = 12). ´**´ indicates that the correlations are 

significant at the p<0.01 level; ´*´ indicates that the correlations are significant at the p<0.05 level. 

 Mn Fe Co Ni As Bi 

 

     Mn 
  -.500 -.500 -.500 -.300 -.800 

Sig. (2-tailed)  .391 .391 .391 .624 .104 

     Fe 
 -.500  1.000** 1.000** .900* .900* 

Sig. (2-tailed) .391  . . .037 .037 

     Co 
 -.500 1.000**  1.000** .900* .900* 

Sig. (2-tailed) .391 .  . .037 .037 

     Ni 
 -.500 1.000** 1.000**  .900* .900* 

Sig. (2-tailed) .391 . .  .037 .037 

     As 
 -.300 .900* .900* .900*  .700 

Sig. (2-tailed) .624 .037 .037 .037  .188 

     Bi 
 -.800 .900* .900* .900* .700  

Sig. (2-tailed) .104 .037 .037 .037 .188  

**- Correlation is significant at the 0.01 level (2-tailed). 

*- Correlation is significant at the 0.05 level (2-tailed). 

 

From the results in table 4.5 it becomes clear that there is a positive significant correlation 

between Fe-Co-Ni at the p<0.01 level. As and Bi have a positive significant correlation with all 

elements (except with Mn) at the p<0.05 level. Mn has a tendency for a negative correlation 

with all elements, but not very consistent – proved by the p-values.  
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Table 4.6 – Spearman correlation coefficient () for net peak areas of the elements that most 

characterize the blue in Wall-tiles from Lisbon (N = 14). ´**´ indicates that the correlations are significant 

at the p<0.01 level; ´*´ indicates that the correlations are significant at the p<0.05 level. 

 Mn Fe Co Ni As Bi 

 

  Mn 
  -.086 -.086 .086 -.086 -.200 

Sig. (2-tailed)  .872 .872 .872 .872 .704 

    Fe 
 -.086  1.000** .943** .886* .257 

Sig. (2-tailed) .872  . .005 .019 .623 

    Co 
 -.086 1.000**  .943** .886* .257 

Sig. (2-tailed) .872 .  .005 .019 .623 

    Ni 
 .086 .943** .943**  .943** .314 

Sig. (2-tailed) .872 .005 .005  .005 .544 

    As 
 -.086 .886* .886* .943**  .429 

Sig. (2-tailed) .872 .019 .019 .005  .397 

    Bi 
 -.200 .257 .257 .314 .429  

Sig. (2-tailed) .704 .623 .623 .544 .397  

**- Correlation is significant at the 0.01 level (2-tailed). 

*- Correlation is significant at the 0.05 level (2-tailed). 

 

From the results in table 4.6 it becomes clear that there is a positive significant correlation 

between Fe-Co-Ni and Ni-As at the p<0.01 level, and a positive correlation between Fe-As and 

Co-As at the p<0.05 level. Bi has a tendency for a positive correlation with all elements (except 

with Mn), but not very consistent – proved by the p-values. Mn has a tendency for a negative 

correlation with all elements, but not very consistent – proved by the p-values.  

 

In order to check the elemental distribution in depth, specifically the pigment dissemination 

throughout the glaze, 3D Micro-XRF scans on the cross-section were carried out.  The results 

reported here correspond to an average of three measurements per analyzed cross-section. 
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Figure 4.20 – 3D Micro-XRF cross section scans performed on blue + glaze + ceramic support on: a) a 

faience from Coimbra and b) a wall-tile from Lisbon [37]. 

 

Figure 4.20 shows an example of the elemental dispersion in depth for a faience from 

Coimbra (a) and wall-tile from Lisbon (b). 

From the elemental profile two main differences are observed: i) the glaze of the faience 

from Coimbra is thinner (ca. 150 µm) than the one from the wall-tile from Lisbon (ca. 400 µm), 

as previously shown; ii) by monitoring the Co K-line, the pigment is distributed throughout the 

whole glaze in the faience sample (figure 4.20a) while in the wall-tile the pigment dissemination 

is about 100 µm in depth. On one hand, either there is no interface between color/glaze in the 

sample from Coimbra or is less than the resolution allowed for the 3D Micro-XRF. This may 

indicate that glaze and pigment were applied together, as it is also proved by the Co-K and Pb-

Lα profiles (figure 4.20a). On the other hand, there is an interface color/glaze in the sample 

from Lisbon (figure 4.20b). However, the pigment disseminates quite well through the glaze, 

which is also proved by the profiles obtained for Co-K and Pb-Lα. In both cases Sn is more 

abundant in the lower part of the glaze, being dominant in the sample from Coimbra (figure 

4.20a). This is in agreement with the assumption that tin crystals are very dense and deposit on 

the lower part of the glaze. 

In order to complement the information above, these scans were performed with high 

lateral resolution (1 µm) at the BAMline @ BESSY-II (Berlin, Germany) [39]. For focusing the 

incident X-ray beam Compound Refractive Lenses (CRLs) were used. Further technical details of 

the experiment are previously described (cf. chapter 3, sub-section 3.1.4). The scans were 
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performed, in the same way as the ones for 3D Micro-XRF. The results reported here 

correspond to an average of three measurements per analyzed cross-section. 

 

 

Figure 4.21 – Cross-section scans were performed through the blue/glaze/body of two samples from 

Coimbra – (a) faience and (b) wall-tile – and a wall-tile from Lisbon (c) [39]. 

 

Pictures taken with the incorporated microscope, in which the different areas of each 

sample are easy to observe, are also displayed in figure 4.21. The red line in these pictures gives 

an idea of how the scans were accomplished, from the top of the surface down to the ceramic 

body.  

The scans compare the Co-K, Pb-L and Fe-K signals, which characterize blue, glaze and body, 

respectively. Tracing the Co signal in the faience sample, one sees that the glaze and surface 

decoration exist as one layer together. The glaze is thin and the pigment was applied together 

with the glaze in one firing stage. Comparison of the Co-signal between the two tiles shows that 

its maximum is broader in the sample from Coimbra (ca. 150 µm – figure 4.21b) than in the one 

from Lisbon (ca. 125 µm – figure 4.21c). Another point is that the Pb-signal in the wall-tiles from 

Coimbra (figure 4.21b) has an abrupt drop in the interface glaze/body. There is a smooth drop 
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of the Pb-signal when reaching the body of the sample from Lisbon (figure 4.21c), allowing a 

higher intake of the glaze throughout the body. In addition, the Fe-signal (mainly characteristic 

of the ceramic body) is higher at the interface glaze/body in the sample from Lisbon than in the 

sample from Coimbra.  

 

Scanning Electron Microscopy/Energy Dispersive X-ray Spectrometry (SEM/EDX) 

It is known that in addition to the choice and preparation of the materials, the firing and 

cooling conditions play an important role in the granularity and differences in the spatial 

distributions of the finished composition [27]. Therefore, it is crucial to infer about the 

stratigraphy of these objects, as there is no typical expected layered-system in such items. 

Hence, it becomes necessary to gain knowledge about the morphology not only of the glazes 

but also of the pigments. In the case of blue pigments although Co is the color-carrier, a linkage 

between several elements exists: Fe-Co-Ni-As-Bi, as mentioned above. Moreover, tracing the 

Co-signal throughout the glaze one realizes how diffused this pigment is.  

In figure 4.22a a cross-section of the blue-colored glaze from a faience sample from Coimbra 

is presented. Several Cassiterite (SnO2) agglomerates throughout the whole glaze – from top to 

bottom (marked by white circles) - are observed. Figure 4.22b represents an enlargement of 

one of the areas containing SnO2 agglomerates. 
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 Figure 4.22 – SEM micrographs on the “blue” sample areas: a) cross-section of a faience sample 

from Coimbra (low magnification) with visualization of Cassiterite (SnO2) agglomerates (white marks) 

and Fe-Co-Ni structures (blue marks); b) enlargement of one area of the SnO2 agglomerates and c) EDX 

spectrum taken from the area shown in (b) demonstrating the massive presence of Sn. 239x87mm (150 

x 150 DPI) [94]. 

 

The presence of Sn in the agglomerates as those in figure 4.22b is clearly proven by the EDX 

spectrum shown in figure 4.22c. The Fe-Co-Ni structures (marked by blue circles) are rather 

scarce in the whole region, plus they are found somewhat “buried” in the glaze (around 100 µm 

in depth according to figure 4.22a), in agreement with Zucchiatti et al. [27]. This means that 

given the heterogeneity in these objects, together with the fact that the excitation volume of 

the X-ray electron probe microanalysis in such matrices (at the high-voltages employed) is 

about 1-3 µm (cf. chapter 3, sub-section 3.3.1), the EDX analyses of the Fe-Co-Ni structures 

become a real challenge in this case. 

From the structures found in figure 4.22, the amount of Sn-agglomerates in the blue regions 

is a hint for a particular manufacturing process. Co-blue is in its natural state a very strong and 

dark blue, which is not the hue in the blue surface motifs, by naked-eye observation. So, since 

Sn is a natural white-opacifier, one can deduce that the potter added it intentionally to the 

pigment in order to obtain a lighter blue hue. 
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The micrograph in Figure 4.23a corresponds to a blue-painted surface of a faience sample 

from Coimbra. Some needle-like structures (figure 4.23b) correspond to As-compounds, which 

markedly were found in blue regions only. 

 

 

Figure 4.23 – SEM micrographs of a surface area of a faience from Coimbra (low magnification (a) 

and high magnification (b)) with visualization of Arsenic needle-like structure; c) EDX spectra 

correspondent to the areas marked in a) demonstrating the presence of As in the bright needle-like 

structures; Note that a Fe-Ni-rich structure could be also identified (see point #1 in c) by EDX. 

238x80mm (150 x 150 DPI) [94]. 

 

The EDX spectra from figure 4.23c correspond to the areas marked in figure 4.23a. The 

analytical challenges described above are here demonstrated. The EDX spectra taken from the 

area #1 and area #2 in figure 4.23a show no significant Co peaks (K @ 6.93 keV and L @ 0.77 

keV). However, the presence of other elements that are linked with the Co-structure, such as 

Fe, are observed. Moreover, the L-line of As is well detected, especially in the spectrum 

corresponding to area #3. This is easily observed by the higher concentration of “bright” As-

structures (needle-like). Figure 4.23b corresponds to an enlargement of area #3 from figure 

4.23a. Point #1 in figure 4.24c is is obviously rich in Fe – shown by the correspondent EDX 

spectrum. Furthermore, this structure is presumably rather thin in comparison to the needle-

like structures, as one can see by the “shade” it provokes on the As-structure in figure 4.23b. 

The EDX spectra of points #2, 3 and 4 show the presence of As-L line (1.28 keV), while for point 

#1 the line which partially overlaps this one is Mg-K (1.25 keV). 
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A comparison between micrographs taken with high magnification on blue painted regions 

from samples from the two locations, Coimbra and Lisbon, is made. Figure 4.24 shows 

examples of blue surfaces from two faiences from Coimbra. 

 

Figure 4.24 – SEM micrographs: a) surface of a faience from Coimbra with visualization of the mixture 

between Sn-crystals and Fe-Ni-rich structures; b) EDX spectra correspondent to the point analysis 

marked in a); c) surface of a faience from Coimbra with visualization of Fe-Ni-rich structures, dispersed 

throughout the whole colored area; d) EDX spectra corresponding to the points marked in c). 168x90mm 

(150 x 150 DPI) [94]. 

 

In figure 4.24a a smooth mixture of dark and bright zones is observable, which corresponds 

to the Fe-containing structures and Sn-crystals, respectively (figure 4.24b). Figure 4.24c 

corresponds to another Coimbra faience sample and in this case, the Fe-containing structures 

are more dispersed at the surface level. 
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Regarding wall-tile samples, figure 4.25 shows a micrograph taken onto the surface of a wall-

tile from Lisbon, at a low magnification. 

 

 

Figure 4.25 – SEM micrographs of two Lisbon wall-tile samples in the blue painted areas together 

with EDX spectra (b and d) on selected spots demonstrating the presence of Fe-Mn-rich or Ni-rich micro-

structures. 175x80mm (150 x 150 DPI) [94]. 

  

In figure 4.25a darker and brighter relatively large regions are observed. Comparing this 

surface micrograph with the one from figures 4.23a and b (faience from Coimbra), As-structures 

(needle-like) are not observable in the wall-tile sample at similar magnifications. This is also 

confirmed by the EDX spectra in figure 4.25b, where As-lines were not detected. According to 

Zucchiatti et al. [27], As is found in the glaze with connection to Ca and Pb only and in fact there 

is a lower intensity for Pb-M and Ca-K lines in the spectrum of figure 4.25b. There is, however, a 

higher areal concentration of Sb-compounds – see e. g. area #3 in figure 4.23a and the 

respective EDX spectrum in red (figure 4.25b) – in comparison to the faience surface in figures 
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4.23a and b, which indicates the presence of yellow painted regions close to the blue regions. 

Figure 4.25c is an enlargement of area #3 in figure 4.25a. Some micro- and submicro-structures 

are observed and the blurry appearance indicates that these are somewhat “buried” in the 

depth of the blue-glaze. However, one of these structures seems to “touch” the surface (blue 

point in figure 4.25c), see the respective EDX spectrum in figure 4.25d. Ni, Co and Mn were 

clearly detected in this structure. By the count rate ratio between these elements, a Ni-rich 

structure encloses the Co-blue pigment, in comparison to the ones from Coimbra, where a Fe-

rich environment is found. 

 

4.2.3.2 – Yellow pigment 

 

X-ray Fluorescence (XRF) 

By naked eye observation, faiences from Coimbra exhibit bright yellow decoration (except 

one sample); the wall-tiles from Coimbra show a mate yellow-orange hue and the wall-tiles 

from Lisbon have relatively bright yellow decorations (cf. Annex 1.3).  

Surface analyses with conventional XRF were performed on all yellow regions on the samples 

and in figure 4.26 spectra from: one faience (Coimbra) and wall-tiles (one from Coimbra and 

one from Lisbon) are plotted. 
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Figure 4.26 – XRF spectra: a) yellow regions from faiences from Coimbra (Coimbra F) and wall-tiles 

from Coimbra (Coimbra T) and Lisbon (Lisbon T); b) comparison between yellow and glaze of a faience 

from Coimbra; c) comparison between yellow and glaze of a wall-tile from Lisbon. 

 

From the spectra in figure 4.26a one sees that the color yellow is owed to the presence of 

Antinomy (Sb). Along with this element, Pb and Sn seem to be in strong association – by the 

strong count rate in both Coimbra and Lisbon samples (figures 4.26b and 4.26c). The lead-

antimonate pigment – also known as Naples Yellow (Pb2Sb2O7) – was commonly used for the 

yellow motifs [22]. Samples from Coimbra show higher count rates for Mn and Fe than the ones 

from Lisbon (figure 4.26a), which may justify the more orange hue in the former. Additional 

considerations about the chemical environment related to the yellow pigment are presented 

further on. 
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On a first approach to complement the consideration so far made, 3D Micro-XRF scans on 

the cross-section of samples from Coimbra and Lisbon are presented. The results here reported 

correspond to an average of three measurements per analyzed cross-section. 

 

 

Figure 4.27 – 3D Micro-XRF cross section scans performed on yellow + glaze + ceramic support on: a) 

a faience from Coimbra and b) a wall-tile from Lisbon [37]. 

 

From figure 4.27 one realizes that the yellow pigment is distinguished from the base glaze, 

whether in Coimbra or in Lisbon samples. Tracing the Sb-Ka line, a thickness of about 30 µm is 

obtained for the yellow layer in the faience from Coimbra (figure 4.27a) and about 80 µm for 

the yellow layer in the wall-tile from Lisbon. Tracing the Pb-La line, a thickness of about 150 µm 

is obtained for the glaze of the faience from Coimbra (figure 4.27a) and a thickness of ca. 300 

µm is obtained for the wall-tile from Lisbon (figure 4.27b) [37]. In agreement to the results 

above, the Fe-signal was detected in the yellow layer from the sample from Coimbra (red line in 

figure 4.27a) while in the sample from Lisbon it starts just at the base glaze (red line in figure 

4.27b). Furthermore, in the sample from Coimbra both Pb- and Sn-signal start approximately at 

the same place as the Sb-signal (figure 4.27a) and in the sample from Lisbon the Pb-signal starts 

just about 30 µm after the Sb-signal, while the Sn-signal accompanies the Sb-signal (figure 

4.27b). 
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In order to complement the information above, these scans were performed with high 

lateral resolution (1 µm), again at the BAMline @ BESSY-II (Berlin, Germany) [39]. The scans 

were performed, in the same way as the ones for 3D Micro-XRF. The results reported here 

correspond to an average of three measurements per analyzed cross-section. 

 

Figure 4.28 – Cross-section scans were performed through the blue/glaze/body of two samples from 

Coimbra – (a) faience and (b) wall-tile – and a wall-tile from Lisbon (c) [39]. 

 

In figure 4.28a one sees that the pigment layer (30 µm) is not completely dispersed into the 

glaze (ca. 180 µm). One can also see that Pb keeps throughout the whole glaze until the first 

tens of micrometers of the body. Comparing the profiles of figures 4.28b and 4.28c, it is obvious 

that the pigment layers of both samples have about the same thickness (about 100 µm); 

Conversely to what happens in figure 4.28a, the Pb signal accompanying the pigment in wall-

tiles from Coimbra and Lisbon drops (figures 4.28b and 4.28c), being more abruptly for the 
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former. Moreover, the Pb-signal does is not observed in the first tens of micrometers of the 

body [39]. 

 

Scanning Electron Microscopy/Energy Dispersive X-ray Spectrometry (SEM/EDX) 

Representative SEM micrographs taken on the “yellow” surface of one of each type of object 

are displayed in figure 4.29. 
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Figure 4.29 – SEM micrographs of yellow painted areas of the surface of (a) a Coimbra faience 

sample, (d) a Coimbra wall-tile sample, and (g) a Lisbon wall-tile sample. On the right side EDX spectra 

on selected spots and further high-mag micrographs are shown. 153x160mm (150 x 150 DPI) [94]. 

 

The faiences from Coimbra exhibit localized very bright areas (for example area #3 in figure 

4.29a), which correspond to the local higher density of Sb-crystals – as shown by the respective 

EDX spectra in figure 4.29b. The wall-tiles from Coimbra appear in figure 4.29d relatively darker 

in general with lower local density of Sb-compounds – as indicated by the EDX spectra (figure 

4.29e). The wall-tiles from Lisbon shows, in figure 4.29g, a more uniform mixture of bright and 

darker regions, which indicates a quite homogeneous distribution of the Sb-crystals – shown by 

the EDX spectra of all marked regions on the micrograph (figure 4.29h). High-magnification 

micrographs (figures 4.29c, 4290f and 4.29i) were also taken onto the yellow surface areas from 

the samples together with the respective EDX spectra.  

The rough concentration of the elements present in yellow regions as detected by EDX for all 

analyzed samples were calculated by using the commercial standardless quantification routines 

offered by one of the EDS systems employed (NSS 300 Thermo Fisher Scientific). The 

corresponding measurements were taken at a low magnification, i. e. integrating over larger 

areas, and the morphology of the cross-section was checked as well in order to better evaluate 

the concentrations.  
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Table 4.7 – Elemental composition of the yellow regions of the samples (N is the number of samples 

analyzed) from Coimbra and Lisbon (in wt-%) obtained with standardless EDX (wide-area). Note the 

need of careful dealing with the values as rough estimates serving primarily to distinguish between the 

various types of samples [94]. 

Samples Na Mg Si K Ca Fe Sn Sb Pb O 

Coimbra 

faiences 

(N = 4) 

1 – 3  1 13 – 15 2 – 4 1 – 2 2 – 4 2 – 4 11 – 14 36 – 39 25 – 27 

Coimbra 

Wall-tiles 

(N = 2) 

1 – 2 < 1 16 – 17 1 – 3 2 – 3 1 – 3 3 – 4 6 – 8 35 – 37 25 – 27 

Lisbon 

Wall-tiles 

(N = 4) 

1 – 2 < 1 12 – 16 3 – 4  1 4 – 6 1 – 2 4 – 6 12 – 15 45 – 48 

 

 

The analyses with wide-area mode on yellow decorations (table 4.7) reveal that the wall-tiles 

have a lower content of Sb, in comparison to faiences. Furthermore, the presence of Sn 

indicates that the Sn-ions may participate in the crystalline structure that forms the yellow 

pigment – possibly by replacing Sb [95]. Other elements, which are embedded in the glaze 

matrix, such as Si, are also identified in these spectra due to the rather large analyzed volume. 

Another interesting perspective to observe the way the Sb-crystals are spread through the 

glaze is shown in figure 4.30. Clearly the Sb-crystals keep at the first tens of micrometers 

beneath the surface – marked in yellow circles.  
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Figure 4.30 – a) SEM micrograph of a cross-sectioned Coimbra faience sample in an yellow painted 

area; b) EDX spectrum corresponding to the areas marked with yellow in a) demonstrating the presence 

of Sb. 219x91mm (150 x 150 DPI) [94]. 

 

Figure 4.31 shows the differences between the morphology of the Sb-crystals between wall 

tiles from Coimbra and Lisbon. 

 

 

Figure 4.31 – a) SEM micrographs showing Sb-crystals at the surface a wall tile from Coimbra (a) and 

a wall tile from Lisbon (b) 234x91mm (150 x 150 DPI) [94]. 
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The size of the crystals is smaller in the sample from Coimbra (faiences and wall-tiles – 

figures 4.30a and 4.30b) than in the samples from Lisbon (figure 4.30c). The crystal size is about 

1-2 μm for the former and about 5-10 μm for the latter. Furthermore the crystal-shape is 

different: in faiences and wall-tiles from Coimbra they are triangular-like while in wall-tiles from 

Lisbon they have a well-formed hexagonal shape (figures 4.31a and 4.31b). 

 

X-ray Absorption Fine Structure (XAFS)  

Regarding the yellow pigment used for decoration in glazed ceramic objects, questions about 

the structural nature of the most common yellow pigment – Naples Yellow (Pb2Sb2O7) – 

emerged. This lead-antimonate yellow pigment is a synthetic pigment, normally obtained by 

calcination of a mixture of ore compounds. This is a thermal treatment process in which the 

compounds are heated below their fusing point, causing decomposition of carbonates, among 

others. In order to obtain Naples yellow, lead compounds (metallic lead, lead monoxide and 

lead white) were calcinated together with antimony compounds (metallic antimony, antimony 

trioxide and potassium antimonate or antimony sulfide). A more detailed description about the 

used compounds for calcination as well as their possible ratios is presented by Dik et al. [96]. 

During the calcination process other elements, such as Al, Si or Zn, were added and therefore 

they serve as hint for the recipes used. 

The pyrochlore-type lead-antimonate was commonly used as pigment for the yellow hues, 

however previous investigations on the yellow decorated parts have indicated the presence of 

other elements such as Sn or Zn [37]. This suggests either the use of other compounds or 

changes in the original pyrochlore-type. Four distinct yellow components were mostly used in 

paintings and glass manufacture: 1) the orthorhombic lead-tin yellow I (Pb2SnO4); 2) the cubic 

pyrochlore lead-tin yellow II (PbSn1-xSixO3); 3) the cubic pyrochlore lead-antimonate (Pb2Sb2O7); 

4) the cubic pyrochlore lead-tin antimonate yellow (Pb2Sb2-xSnxO6.5) [18, 19, 22]. A detailed 

description about recipes used to obtain these pigments as well as the crystal structure 

characterization is given by Clark et al. [97].  

In order to distinguish such fine details, a chemically-sensitive technique is required. 

Information about the coordination geometry and local environment of the investigated 
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element are sought and therefore X-ray Absorption Fine Structure (XAFS) analyses were carried 

out on both Pb-L3 and Sb-K edges. For this purpose, a set of original samples, some prepared 

replica and reference materials were analyzed. In addition, theoretical simulations 

(modulations) of the Pb and Sb XAFS spectra, assuming different valences, were performed.  

With the aim of finding differences in manufacturing techniques of the two main glazed 

ceramic production centers in Portugal (Coimbra and Lisbon),  it is of great importance to learn 

about the Sb and Pb chemical environment and understand the role of these cations within the 

pigment and the glassy matrix [98]. The electron configuration of Sb: [Kr2 4d105s25p3 allows the 

formal valences of (+3) and (+5). The electron pair 5s2 of Sb(III) is strongly localized and induces 

an asymmetric coordination and the three bonds point away from this lone electron pair, 

forming a trigonal pyramidal coordination (figure 4.32). Conversely, Sb(V) is octahedral 

coordinated to 6 oxygen atoms, in line with the symmetric 4d10 electron configuration (figure 

4.32) [99]. 

 

Figure 4.32 – Coordination of Sb(III) and Sb(V) in oxide minerals. Oxygen atoms are indicated by the 

smaller balls. For both oxidation states Sb-O distances largely overlap (1.92-2.04   for Sb(III) and 1.98-

2.10   for Sb(V)) [99]. 

 

The same happens for Pb, with an electron configuration: [Xe] 4f145d106s26p2 and formal 

valences of (+2) and (+4). The electron pair 6s2 in Pb(II) induces the coordination asymmetry 

and the 5d10 electrons in Pb(IV) will account for the energy perturbation [100]. It is of great 

importance to raster these structural differences in order to provide answers about the raw 

materials used as well as hints for firing processes used. 
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Sample preparation: 

- A set of thirteen original samples from both production centers (Coimbra and Lisbon) was 

gathered. Six faience samples from the Museu Machado de Castro (MMC), in Coimbra, and five 

wall tile samples (originally produced in Lisbon) as well as two wall tile samples (originally 

produced in Coimbra) from the Museu Nacional do Azulejo (MNAz), in Lisbon, were granted for 

non-destructive analysis. The limited number of samples is due to the fact that yellow surface 

decorations are quite ‘rare’ and difficult to find. 

- A set of reference lead- and antimony-based compounds were purchased from Kremer 

Pigmente©: PbO (litharge); Pb2Sb2O7 (Naples yellow); Pb3(SbO4) (lead antimonate); Pb(SbSn)O3 

(lead tin antimony from Paris). PbO2 (lead dioxide), Pb3O4 (lead tetroxide, Red lead) and PbCO3 

(lead carbonate, White lead) were provided by BAM. Furthermore, XAFS spectra from several 

Sb-based compounds were kindly provided by Andreas C. Scheinost (Beamline BM20 at the 

ESRF, Grenoble, France): Sb2O5 Fluka, Sb2O3 (Senarmonite), Sb2O3 (Valentinite), Sb3O6(OH) 

(Stibiconite), SbSbO4 (Cervantite) and Sb2O5 synth [99].  

- Aside from the list above, some replicas were produced at the Department of Arts, 

Conservation & Restoration from the Polytechnic Institute of Tomar (Portugal). The 

manufacturing procedure for the replicas is described further in detail (cf. section 4.3, sub-

section 4.3.1.2 – Surface decoration: yellow). 

 

Note: Self-absorption (SA) effects were not taken into account in the following results. SA 

effects should be considered, especially when measuring in fluorescent mode (which is the 

present case). Although one would expect different SA for standards and original samples, the 

amount of Pb or Sb present in the latter reaches almost 40 % in most of the cases. This assigns 

the samples with high-Z matrix and theoretically not much difference between SA-effects on 

standards and originals should be expected. However, further investigations are in course, 

considering this aspect. The results here presented serve as comparative basis between 

oxidations states and post-edge features between standards and unknown only. 
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Sb-K speciation: standards 

In order to investigate the absorption behavior of Sb at the K-edge (30491 eV), the XAFS 

spectra were measured with a step width of 10 eV in the pre-edge region (from 30391 eV to 

30461 eV) and from there over the edge in 2 eV steps until 30595 eV. From 30595 eV until 

31488 eV in 220 equidistant steps in the k-space. All measurements were performed in 

fluorescence mode, as the samples are thick and have high-Z matrix. A Sb-foil was used to 

calibrate the monochromator for the energy of the atomic Sb-K absorption edge, at 30491 eV. 

In figures 4.33a and 4.33c, the XANES region for the Sb-K edge from all reference materials is 

plotted. Apart from Pb(SbSn)O3 compound, the white lines are broad and the oscillations on the 

post-edge region reveal that multiple scattering at low kinetic energies takes place. The 

transition in the case of a K-edge (1s) occurs between sp orbitals and the final state may have 

mixing with other orbitals (hybridization) that change the absorption profile.  
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Figure 4.33 – a) & c) XANES spectra of Sb-based reference materials @ Sb-K edge. Differences in the 

edge positions as well as on the post-edge oscillations can be observed, owed to the contribution of 

different electronic shells; b) & d) Fourier transform of  (R) of experimental Sb-K edge EXAFS  (k)  for 

different reference compounds. 

 

The absorption features at the XANES region (figures 4.33a and 4.33c) reveal that the edge 

position for cubic crystalline compounds with just one valence state (Sb2O5, Sb2O3 Fluka, 

Pb2Sb2O7 and Pb3(SbO4)2) is at 30494 eV. Moreover, the absorption edge of compounds with 

orthorhombic crystalline structure (Cervantite, Stibiconite and Valentinite) is at 30496 eV. 

Senarmonite (a cubic crystalline phase of Sb2O3) assumes the lowest edge position at 30493 eV. 

XANES spectroscopy is extremely sensitive to the local coordination chemistry and the 

differences in the post-edge features suggest that the 4d10 electrons in the SbV state are 

responsible for these perturbations.  
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Figures 4.33b and 4.33d show the Fourier transform of  (R) of experimental Sb-K edge EXAFS 

 (k) for the reference compounds. With EXAFS one is able to identify differences at other levels 

(environment of the probed atom), such as coordination and symmetry – that cannot be 

attained by the XANES region. Here, the peaks represent resonant frequencies – resulting from 

the interference between the outgoing and the incoming scattered waves (cf. chapter 3, section 

3.4). The higher the amplitude of these peaks, the higher the coordination number (CN) and the 

structural symmetry. From figures 4.33b and 4.33d, one can observe several differences 

between the EXAFS spectra of the Sb-reference compounds. First of all, differences arise 

between compounds with the same molecular formula but different crystalline structures 

(Valentinite and Senarmonite – figure 4.33b). This is owed mainly to symmetry issues: the cubic 

arrangement reveals higher symmetry – higher amplitude – while the opposite happens for 

orthorhombic crystallographic arrangements.   

Looking at figure 4.33d, a large difference between the Pb(SbSn)O3 and the rest exists. The 

small amplitude peaks from this compound reveal that there is a low CN – low number of 

neighbors – and also low symmetry. The first neighbor in all Sb-reference compounds is at 

about 1.7   and it corresponds to the Sb-O1 path of interference. Then at about 2.8   another 

Sb-O2 happens, which is just observable for the Pb2Sb2O7 compound. At about 3.4   and 3.8   

the interference paths Sb-Sb1 and Sb-Sb2 occur, which are observed for all compounds except 

Pb(SbSn)O3. 

 

Sb-K speciation: original samples 

XANES measurements were performed onto the yellow surface decorations from original 

samples and in figure 4.34, a spectrum of each type of sample is plotted . 
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Figure 4.34 – XANES spectra of some of the original samples @ Sb-K edge.  

 

From figure 4.34 one sees that the edge position of all Sb-K XANES spectra is slightly shifted. 

Faiences from Coimbra reveal Sb-K edge @ 30494 eV, wall-tiles from Coimbra @ 30496 eV and 

wall-tiles from Lisbon @ 30493 eV. The post-edge features seem quite similar among all spectra 

from original samples but the shift in energy suggests differences in the crystalline structure. 

According to figures 4.33a and 4.33c, edges @ 30494 eV can represent different oxidations 

states but a cubic crystalline structure is expected. If the edge is at 30496 eV an orthorhombic 

crystallographic arrangement is present and the edge position at 30493 eV is in agreement with 

the Sb(III) state in Senarmonite.  

A linear combination fitting (LCF) procedure was performed for each spectrum with all the 

Sb-reference compounds, in order to find similarities in the composition of the unknown 

spectra from the original samples. In figure 4.35 spectra from the three different types of 

samples are shown together with the spectra obtained by LCF with standards. 
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Figure 4.35 – Linear combination fitting (LCF) with Sb-reference compounds adjusted to the unknown 

XANES spectra of yellow of a) faiences from Coimbra, b) wall-tiles from Coimbra and c) wall-tiles from 

Lisbon. (Note: the difference in height between original (black) and LCF (dashed-red) in c) is merely due 

to an exportation fault from ATHENA.) 

 

From figure 4.35 one realizes that Pb2Sb2O7 adjusts practically entirely to the features of the 

XANES spectra of all samples. However, the yellow from the samples from Lisbon (figure 4.35c) 

reveals a mixture of valences for Sb, where 58% adjusts to Pb2Sb2O7 and 33% to SbSbO4. It is 

important to realize that this process of LCF does not necessarily mean that, when a result of 

100% suitability with a certain compounds arises, the unknown spectrum corresponds exactly 

to that compound. For the edge position and post-edge features it is in good approximation a 

valid result but one must (if possible) always confirm with the EXAFS region. 
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Figure 4.36a shows the EXAFS spectra of each type of original samples: faiences from 

Coimbra and wall-tiles from Coimbra and Lisbon. Figures 4.36b, 4.36c and 4.36d show overlap 

between EXAFS spectra of each original sample and all the Sb-reference compounds. 

 

 

Figure 4.36 – Fourier transform of  (R) of experimental Sb-K edge EXAFS  (k) for different types of 

original samples: a) Faiences and Wall-tiles (Coimbra) and Wall-tiles (Lisbon); together with the 

reference compounds: b) Faiences from Coimbra, c) Wall-tiles from Coimbra, d) Wall-tiles form Lisbon. 

  

From figure 4.36a one realizes clear differences between the EXAFS profiles of different 

samples. For both faiences and wall-tiles from Coimbra, EXAFS signals adjust quite well to 

Naples Yellow (Pb2Sb2O7) and Cervantite (SbSbO4) compounds (figures 4.36b and 4.36c). The 

wall-tiles from Lisbon have shown further details, in which the shape of the frequencies seems 

to distinguish from any other Sb-compound (figure 4.36c). For example the first peak reveals an 
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overlap of three different interference paths – by the presence of “shoulders” on the left- and 

right-side of the peak (at about 1.8  ). Furthermore, the succession of peaks around 3   does 

not have a match with any of the Sb-reference compounds. Probably a mixture of other Sb-

based compounds exists and the available reference materials are not enough to testify this 

assumption.  

Between the different samples one can observe a higher symmetry and CN among the wall-

tiles from Lisbon (figure 4.36a) – owed to the higher amplitude of the first peak.  Further 

information obtained by EXAFS is how far the closest neighbors from Sb are found at about 

1.5   and 3.5  .  

 

The next step was to verify if there are differences in the molecular structure on the yellow 

pigment depending on the manufacturing process used. For this purpose replicas were 

manufactured in laboratory according to procedure explained ahead in section 4.3, sub-section 

4.3.1.2. The pigment used was the so-called “conventional” Naples Yellow (Pb2Sb2O7). Figure 

4.37 shows XANES (a) and EXAFS (b) spectra for the three replicas together with the Pb2Sb2O7 in 

powder.  

 

 

Figure 4.37 – a) XANES and b) spectra of the three replicas together with the Pb2Sb2O7 in powder. 

 

Whether the pigment was applied mixed with water (P+H2O) or with glaze (P+G) or with 

glaze and submitted to a third firing stage (P+G+3rd F) does not affect the structural role of Sb – 
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as one can observe by the strong resemblance between all spectra in the XANES region (figure 

4.37a) and EXAFS region (figure 4.37b). 

 

Pb-L3 speciation: standards 

Since the yellow pigments are also Pb-based, a similar approach was also carried out for 

lead. The chemical speciation was performed at the Pb-L3 edge.  In figure 4.38a an overlap of 

the XANES spectra collected for all the reference materials is presented in order to evaluate the 

differences in absorption.  

 

Figure 4.38 – a) XANES spectra of Pb-based reference materials @ Pb-L3 edge. Differences in the 

edge positions as well as on the post-edge oscillations can be observed, owed to the contribution of 

different electronic shells; b) Fourier transform of  (R) of experimental Pb-L3 edge EXAFS  (k)  for 

different reference compounds. 

 

According to what was already mentioned (at the beginning of this section) the electronic 

configuration of Pb allows formally the +2 and +4 valences. The atomic absorption edge for Pb-

L3 is 13035 eV. According to the XANES spectra in figure 4.38a, the differences in the edge 

position are not significant in comparison to the clear differences in the pre- and post-edge 

details. The edge positions range between 13040 – 13041.5 eV for all compounds except for 

Pb3O4 (13043.8 eV), owed to the fact that it comprised both Pb(II) and Pb(IV) oxidation states. 

The energy perturbation of the 5d10 electrons due to the chemical bonding in Pb(IV) induces 

intensity variations in the XANES post-edge [101]. 
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In contrast to the Sb-K EXAFS spectra, the Pb-L3 EXAFS region revealed huge differences in 

the frequencies domain which can be observed in figure 4.39b. Comparing the EXAFS signals 

emerging from PbO massicot and litharge, the difference between the crystalline structures 

(orthorhombic and tetragonal) is translated in huge differences. The former shows higher CN 

number and symmetry (by the higher peaks), while the low-amplitude peaks in the latter 

indicate the opposite. In general, probing Pb-L3 at the EXAFS regions revealed a lower CN and 

symmetry. 

 

Pb-L3 speciation: original samples 

XANES measurements were performed on both glaze and yellow surfaces of each sample 

and, at first approach, a comparison between the two XANES spectra is made. Figure 4.39 

shows spectra from Coimbra (faiences and wall-tiles) and from Lisbon samples (wall-tiles). 

 



127 
 

Figure 4.39 – XANES spectra of some of the original samples @ Pb-L3 edge on both glaze (black) and 

yellow surfaces (orange) from faiences from Coimbra (a), wall-tiles from Coimbra (b) and wall-tiles from 

Lisbon (c). 

 

In all cases, a 1 eV difference between the edges of glaze and yellow spectra was identified – 

with higher edge energy for the yellow spectra. The glazes have an absorption edge at 13040 eV 

and the yellows at 13041 eV – which represents a 5 eV shift for the former and 6 eV for the 

latter in comparison to the atomic value (13035 eV). Most noticeable are the post-edge 

differences existing between glaze and yellow absorption spectra, where two maxima are 

observed for the latter as well as opposite absorption coefficients for the energy range of 

13070 – 13100 eV. 

 

A linear combination fitting (LCF) procedure was performed for each spectrum with all the 

Pb-reference compounds, in order to find similarities in the composition of the unknown 

spectra from the original samples. In figure 4.40 spectra from the three different types of 

samples (on glaze) are shown together with the spectra obtained by LCF with Pb-standards. 
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Figure 4.40 – Linear combination fitting (LCF) with Pb-reference compounds adjusted to the 

unknown XANES spectra of glazes of a) faiences from Coimbra, b) wall-tiles from Coimbra and c) wall-

tiles from Lisbon.  

 

From figure 4.40 one realizes different contributions from different Pb-reference materials 

emerge for each type of sample. In glazes from faiences from Coimbra Pb3O4, PbO (massicot) 

and PbCO3 are the main compounds found with higher affinity from the LCF procedure (figure 

4.40a). In wall-tiles from Coimbra a contribution from Pb2Sb2O7 (with 28%, figure 4.40b) and in 

wall-tiles from Lisbon a contribution of the Pb(SbSn)O3 (with 38% - figure 4.40c) was found, 

both significant, which could suggest a mixture of yellow to the glaze to look yellowish. PbO 

(litharge) is the main component in the glazes from wall-tiles from Coimbra (figure 4.40b) and 

the second main in glazes from wall-tiles from Lisbon (figure 4.40c). The main conclusion from 

these LCFs is that Pb coexists in several forms within the glazes, intentionally added by the 

potter. 
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The same treatment was performed for the yellow regions and spectra from the three 

different types of samples (on glaze) are shown together with the spectra obtained by LCF with 

Pb-standards (figure 4.41). 

 

Figure 4.41 – Linear combination fitting (LCF) with Pb-reference compounds adjusted to the 

unknown XANES spectra of yellow of a) faiences from Coimbra, b) wall-tiles from Coimbra and c) wall-

tiles from Lisbon. 

 

From figure 4.41 one realizes that the results obtained from the LCF for Sb-K (cf. figure 4.35) 

are in agreement with these ones. In samples from Coimbra (faiences and wall-tiles) the yellow 

pigment is mainly characterized by the Naples Yellow (Pb2Sb2O7) with percentages of 33% for 

faiences (figure 4.41a) and 35% for wall-tiles (figure 4.41b). Furthermore, in faiences from 

Coimbra the form Pb(SbSn)O3 is the second most significant (with 22%), while for wall-tiles 

from Coimbra other Pb-based forms are the next most significant (19% Pb3O4 and 16 % PbCO3). 

The yellows from Lisbon are different (as shown before for the Sb-K speciation), since the most 
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significant compound is Pb(SbSn)O3 (with 48%), followed by Pb2(SbO4)2 (with 24% - figure 

4.41c). According to both Sb-K and Pb-L3 speciation Lisbon yellows revealed different 

composition, which suggests different manufacturing recipes and even different raw-materials 

used. 

At last, EXAFS spectra were also acquired on both glaze and yellow from all samples and are 

presented below.  

 

 Figure 4.42 – Fourier transform of  (R) of experimental Pb-L3 edge EXAFS  (k) of the glazes of 

different types of original samples: a) Faiences from Coimbra, b) Wall-tiles from Coimbra, c) Wall-tiles 

form Lisbon, all together with the two most compatible compounds (PbO litharge and massicot).  

 

From figure 4.42 one sees a huge resemblance from the composition among the glazes from 

all samples. In the case of Pb-compounds, all glazes show high compatibility with the PbO 

compounds in both arrangements (tetragonal in litharge and orthorhombic in massicot). 
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However, the glazes in faiences from Coimbra show higher compatibility with PbO massicot 

(figure 4.42a), while wall-tiles from Coimbra show higher compatibility with PbO litharge (figure 

4.42b).  

Further EXAFS measurements were performed onto yellow decorated regions on the three 

types of samples and are plotted in figure 4.43. 

 

Figure 4.43 – Fourier transform of  (R) of experimental Pb-L3 edge EXAFS  (k) of the yellow regions 

for different types of original samples: a) Faiences from Coimbra, b) Wall-tiles from Coimbra, c) Wall-

tiles form Lisbon. 

 

By evaluation of the EXAFS profiles, the results are in agreement with the LCF performed for 

the XANES region (cf. figure 4.41).The yellow pigment on both faiences and wall-tiles from 

Coimbra are compatible with the Naples Yellow pigment (Pb2Sb2O7) (figures 4.43a and 4.43b), 

while the yellow pigment on wall-tiles from Lisbon showed practically no resemblance to the 
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conventional Naples Yellow pigment. Instead a compatibility between the EXAFS profiles of two 

other Sb-compounds (Pb(SbSn)O3 and Pb2(SbO4)2) is found for the yellow in wall-tiles from 

Lisbon (figure 4.43c). 

 

4.2.3.3 – Purple pigment 

 

X-ray Fluorescence 

Analyses performed with conventional XRF showed similar chemical composition in all 

purple colors from both production centers (figure 4.44).  

 

 

Figure 4.44 – XRF spectra – obtained in conventional mode – from purple regions from faiences from 

Coimbra and wall-tiles from Coimbra and Lisbon. 

 

The dominant element that confers the purple color is Manganese (Mn), and the presence of 

Barium (Ba) in the spectra indicates that the mineral Psilomelane [(Ba,H2O)2Mn5O10] may have 

been used as source of Mn. It is known that in Portugal (specifically in the Alentejo region) 

Psilomelane is quite abundant and this means that the source for Manganese may be local 

[102]. 
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In order to evaluate the consistence of the presence of Barium connected to Manganese, net 

counts for these elements was taken into account and compared between faiences and wall-

tiles (from Coimbra and Lisbon) (figure 4.45). 

 

 

Figure 4.45 – Plot of the elemental net counts for Mn, Fe and Ba for faiences from Coimbra (Coimbra 

F), wall-tiles from Coimbra (Coimbra T) and wall-tiles from Lisbon (Lisbon T); b) comparison of elemental 

ratios (Fe/Mn, Ba/Mn) between faiences from Coimbra (Coimbra F), wall-tiles from Coimbra (Coimbra T) 

and wall-tiles from Lisbon (Lisbon T). 

 

From figure 4.45a one sees that the wall-tiles (Coimbra T and Lisbon T) show higher count 

rates for Ba-L lines and in comparison to the faiences (Coimbra F). This is proved by the ratio 

plot in figure 4.45b, where an increase of the Ba/Mn (light-purple line) is observed (right hand-

side of the grey dashed line). The ratio Fe/Mn (orange line) keeps more or less unchanged 

between faiences and wall-tiles. 

In order to check the elemental distribution in depth, specifically the pigment dissemination 

throughout the glaze, high-resolved Micro-XRF scans on the cross-section were carried out.   
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Figure 4.46 – Cross-section scans performed through purple/glaze/body of a) a faience from 

Coimbra, b) a wall-tile from Coimbra, and c) a wall-tile from Lisbon [39]. 

 

In figure 4.46 the elemental profiles of samples containing purple decorative motifs are 

compared. Cross-section scans were performed through purple/glaze/body from a faience from 

Coimbra (figure 4.46a) a wall-tile from Coimbra (figure 4.46b) and a wall-tile from Lisbon (figure 

4.46c). 

Again, in the pictures taken with the microscope it is indicated how the scans were 

performed. The scans compare the Mn-K, Pb-L and Fe-K signals, which characterize purple, 

glaze and body, respectively. Once again one can see that the faience sample (figure 4.46a) 

reveals no interface between color/glaze. The glaze thickness is approximately 150 µm and the 

pigment was applied to the glaze and both have been submitted to one firing stage. There is, 

however, a moderate connection between glaze and body in this sample, to observe by the 
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smoothly decreasing and increasing of the Pb and Fe profiles, respectively. Comparing the tiles 

from Coimbra and Lisbon it is to see that the pigment (Mn) is equally well dispersed through 

the glaze in both samples (figures 4.46b and 4.46c). However, the Mn profile in the sample 

from Coimbra (figure 4.46b) reveals a broader maximum at the surface (~50 µm) than in the 

sample from Lisbon (< 25 µm – figure 4.46c). The Copper (Cu) signal was also plotted because 

the purple motifs were applied together with a green colored layer (observable on the picture). 

The glazes from both tiles have thicknesses of about 250 and 300 µm for the Coimbra and 

Lisbon cases, respectively. Again one observes a smoother elemental exchange at the interface 

glaze/body in the sample from Lisbon (figure 4.46c) than in the sample from Coimbra (figure 

4.46b). 

 

Scanning Electron Microscopy/Energy Dispersive X-ray Spectrometry (SEM/EDX) 

At this point, knowledge about the morphological properties of this pigment is also a 

requirement in order to complement and support the data so far presented. Hence, SEM/EDX 

analyses were performed on the purple areas of some samples (from both production centers).  

Again, it is important to emphasize the heterogeneity among these objects. Therefore, 

quantitative results obtained with EDX will be here presented just as an estimation of the 

content at a specific area. Hence, these will not be considered as providing representative 

quantitative information of the whole piece/area.  

EDX results were obtained by wide-area analyses onto the purple surfaces (figure 4.47 and 

table 4.8). 
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Figure 4.47 – SEM micrographs taken on the purple surface of a faience from Coimbra (a) and a wall-

tile from Lisbon (b). 

 

Table 4.8 – Elemental composition of the purple regions of the samples (N is the number of samples 

analyzed) from Coimbra and Lisbon (in wt-%) obtained with standardless EDX (wide-area). Note the 

need of careful dealing with the values as rough estimates serving primarily to distinguish between the 

various types of samples. 

Samples Na Mg Al Si K Ca Mn Fe Sn Ba Pb O 

Coimbra faiences 

(N = 4) 
  1 < 1 2 – 3 15 – 17 3 – 4 2 – 3 7 – 9 1 – 2 1 – 2  1 30 – 32 33 – 34 

Coimbra & Lisbon 

Wall-tiles 

(N = 3) 

  1 < 1 1 – 2 11 – 13 1 – 2  1 19 - 20 1 – 2 1 – 2  1 9 – 11 43 – 44 
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Figure 4.48 – SEM micrographs (high magnification), with visualization of purple pigment crystals and 

the respective EDX spectra. a) Faience from Coimbra; b) wall-tile from Coimbra; c) wall-tile from Lisbon. 

 

Interesting to observe is the difference in the amount of glaze components such as Pb, Si, K 

and Ca which is higher in the faiences than in wall-tiles. Particularly Pb which is much higher in 

faiences (ca. 30 wt%) than in wall-tiles (ca. 10 wt%). Furthermore, for the analyzed the amount 

of Mn is lower in faiences (ca. 10 wt%) than in wall-tiles (ca. 20 wt%). High magnification 

analyses have revealed that the crystals in the purple layer could be observed from both 

centers of production (figure 4.48). 
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4.2.3.4 – Green pigment 

 

X-ray Fluorescence 

Green was found to be rather scarce as color used for decoration purposes, among this type 

of objects. Within all analyzed samples, green was found in 2 faiences, 2 wall-tiles from Coimbra 

and 3 wall-tiles from Lisbon. Analyses performed with conventional XRF showed similar 

chemical composition in all green colors from both production centers, except for one wall-tile 

from Lisbon (figure 4.49).  

 

 

Figure 4.49 – XRF spectra – obtained in conventional mode – from green regions from faiences from 

Coimbra and wall-tiles from Coimbra and Lisbon. 

 

First of all the difference in the shape of the background between the spectrum of the 

faience (green) and the spectra from both wall-tiles (grey and black) is due to the fact that the 

former was obtained by means of a polycapillary lens and the latter by means of a collimator. 

This choice was due to the fact that the green areas in the faiences from Coimbra were much 

smaller than in the ones from the wall-tiles (figure 4.49), and in order to avoid overlap of 

information from adjacent areas, the polycapillary was more suitable.  
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Figure 4.50 – Samples in which green was found for the decoration: a) faience from Coimbra (green 

stripes with ca. 1 mm thickness), b) wall-tile from Coimbra, c) wall-tiles from Lisbon (two different hues).  

 

One can see – from figure 4.49 – that the dominant element is Copper (Cu). However, for 

one the wall-tiles from Lisbon the green hue is obtained by an intentional mixture between 

blue (Co-Ni-As) and yellow (Sb), seen in the light green spectrum in figure 4.49. This spectrum 

corresponds to the sample AZLX6, exhibited in figure 4.50c (right-hand side) and in fact a 

particular green hue is noticeable, when observing the other green hues from the other 

samples in the same figure. 

In order to evaluate the consistence of the presence of Copper within the green decorated 

regions, net counts for these elements used and compared between faiences and wall-tiles 

(from Coimbra and Lisbon) (figure 4.51). 
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Figure 4.51 – Plot of the elemental net counts for Mn, Fe, Co, Cu and Sb, for faiences from Coimbra 

(Coimbra F), wall-tiles from Coimbra (Coimbra T) and wall-tiles from Lisbon (Lisbon T); b) comparison 

elemental ratios (Mn/Cu, Fe/Cu, Co/Cu and Sb/Cu) between faiences from Coimbra (Coimbra F), wall-

tiles from Coimbra (Coimbra T) and wall-tiles from Lisbon (Lisbon T). 

 

From figure 4.51a one sees that in faiences and wall-tiles from Coimbra (Coimbra F and 

Coimbra T) the green color is due to a Cu-based pigment, while in wall-tiles from Lisbon (Lisbon 

T) the color green emerges from the mixture of a Co-based pigment (blue) and a Sb-based 

pigment (yellow). This is confirmed by the ratios plot in figure 4.51b. The Mn/Cu, Fe/Cu and 

Co/Cu ratio is relatively low in faience and wall-tiles from Coimbra (Coimbra F and Coimbra T), 

which means that Copper is the key-element for the green color. Conversely, the same ratios 

are relatively high in wall-tiles from Lisbon (Lisbon T), together with the Sb/Cu ratio, which 

indicated that the green color is mainly due to the overlap of blue and yellow. 

In order to check the elemental distribution in depth, specifically the pigment dissemination 

throughout the glaze, high-resolved Micro-XRF scans on the cross-section were carried out [39].   
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Figure 4.52 – Cross-section scans performed through green/glaze/body of a) a wall-tile from 

Coimbra, and b) a wall-tile from Lisbon [39]. 

 

Cross-section scans were performed through the green/glaze/body of a wall-tile from 

Coimbra (figure 4.52a), and a wall-tile from Lisbon (figure 4.52b). Evaluating the Cu-signal, the 

intake of pigment into the glaze seems to be higher in the sample from Lisbon than in the 

sample from Coimbra. However, a broader maximum of the Cu-signal at the surface from the 

sample from Coimbra (ca. 50 µm – figure 4.52a) than in the sample from Lisbon (ca. 25 µm – 

figure 4.52b) is observed [39]. Also, the elemental exchange between the glaze and the body 

seems to be more pronounced in the sample from Lisbon than in the sample from Coimbra. The 

justification is the same as previously explained (cf. 4.2.3.3 – Purple). 
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4.3 – Replicas 

One of the goals of this investigation was trying to carry out a non-destructive approach, as 

one is dealing with CH-related objects. The samples used for this work are fragments – and 

there is quite considerable available amount of such fragments in Portugal – so, some of these 

objects could undergo minor physical invasion. For example, an application of Carbon-layer to 

perform SEM measurements and also a small amount of ceramic body removal was allowed in 

order to perform XRD analyses. The ceramic body is not so crucial to keep intact, as it is quite 

easy to remove part of it while keeping the integrity of the whole piece.  

For all these “difficulties” the need of recreating analogues to the original samples became 

necessary in order to understand some features obtained by the experimental analyses.   

All replicas were produced by Ricardo Triães from the Department of Arts, Conservation & 

Restoration from the Polytechnic Institute of Tomar (Portugal). 

 

4.3.1 – Manufacturing processes 

 

4.3.1.1 – Glaze 

It is important to know the mineralogical features of glazes and possibly to estimate the 

firing temperature to which they were submitted. For this purpose, three different types of 

glazed surfaces were produced. Using these glazes – with known chemical and mineralogical 

composition – one can observe the phase differences and mineralogical changes after each 

thermal transformation. Following the identification of the mineralogical changes in the 

prepared samples, one can correlate the obtained results for the original glazes, allowing 

estimating the production firing temperature [36]. The manufacturing procedure is explained in 

the following steps, with the help of figure 4.53: 
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Figure 4.53 – Manufacturing procedure for the glazed surfaces. 

 

1) Industrial ceramic support was used as base; 

2) Three different glazes (frit) – in powder – were used. Glaze A and B are two types 

of ancient glaze (XVII century) and Glaze C is a rustic glaze (figure 4.53a);  

3) Each powder was diluted in water on a proportion of 1:3 (figure 4.53b); 

4) The ceramic support was then submersed for 5 seconds in the glaze (figure 

4.53c).  

5) The pieces were put to “rest” just shortly in order for them to dry (figure 4.53d); 

they were marked with a designation which corresponds to the type of glaze (A, B or C) 

and to the temperature to which they were submitted (8 – 800 C, 9 – 900 C and 10 – 

1000 C). A total of four pieces were prepared for each glaze and temperature. 

6) Al last they were placed in the oven (figure 4.53e) and the firing sequence was 

the following:  

i. 15 min. until 110 C; 
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ii. 15 min. at the 110 C stage; 

iii. 90 min. until 550 C; 

iv. 30 min. until 600  C; 

v. 90 min. until maximum temperature (800, 900 or 1000 C) 

7) After the pieces are fired, the oven has to cool down to a temperature below 

100 C in order to open it. 

In figure 4.54 a picture of how the pieces look like after fired is presented. 

 

Figure 4.54 – Three different types of glazes (A, B and C) submitted to three different firing 

temperatures (800 C, 900 C and 1000 C) [36]. 

 

From figure 4.54 some aspects are noticeable by naked-eye observation. Features like color, 

brightness and integrity are obviously susceptible to changes according to the chemical 

composition and firing temperature used. Glaze A (figure 4.54a) has a mate appearance and it 

has experienced a change in the hue for higher firing temperature (from pinkish to grayish). 

Moreover, it has kept its integrity and smoothness under different firing temperatures. Glaze B 

(figure 4.54b) has a shiny appearance and the color has changed from yellow to light-yellow 

(from 800 C to 1000 C); plus, it has kept its integrity under different firing temperatures but it 
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shows a certain surface roughness with increasing temperature. Glaze C (figure 4.54c) has a 

shiny appearance as well and it has not changed its color. However, it has not kept its integrity 

with increasing firing temperatures: at 900 C it has began to crack and for 1000 C one sees 

quite high amount of holes in the glaze surface. 

All these differences were mainly due to the glaze composition. Glaze A is more similar in 

composition to the ones used at the time the original pieces were manufactures, and one sees 

it kept intact even when submitted to 1000 C. Glaze C is more modern and therefore, has less 

lead content which promotes the loss of integrity under “extreme” firing conditions. 

  

4.3.1.2 – Surface decoration – yellow 

Further replicas were prepared in laboratory in order to understand how the decorative 

motifs were applied to the glaze. This was especially investigated for the yellow pigments. As 

shown before, this pigment is a combination of Sb and Pb and it forms a quite compact “layer” 

on the upper part without much diffusion throughout the glaze (cf. sub-section 4.2.3.2 – 

yellow). In order to better evaluate whether the pigment was applied over the base glaze and 

the whole piece was submitted to a third firing stage (for the surface decoration), replicas with 

variable parameters were produced in laboratory.  

The manufacturing procedure of these replicas is explained in the following steps: 

1) Industrial ceramic support was used as base; 

2) Glaze A (ancient-like, XVII century) was used and applied in the same way as 

described above, for the previous replicas (figure 4.53); 

3) Naples Yellow (Pb2Sb2O7) – NY – purchased at the Kremer Pigmente© was used 

in all the variations of manufacture: 

a.  NY mixed with water and applied onto the base glaze – both fired at the 

same time; 

b. NY mixed with water and applied onto the previously fired base glaze – 

third firing stage for the whole piece (which means, own firing stage for 

NY+water mixture); 
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c. NY mixed with glaze and applied onto the previously fired base glaze – 

third firing stage for the whole piece (which means, own firing stage for the 

NY+glaze mixture). 

All replicas were then cut along the painted areas in order to have polished cross-sections 

having color/base glaze/body. 

 

4.3.2 – Chemical and mineralogical characterization 

 

4.3.2.1 – Glaze 

The use of raw glazes on traditionally fired products is a well-established practice. However, 

documental facts of the ceramic production in Coimbra report both raw and fritted applications 

on the bisque [9]. During the firing process of raw glazes, different processes can occur, such as: 

decomposition of raw materials, chemical reactions giving either crystalline or glassy products, 

and melting followed by nucleation and crystallization of the melt [103]. The glazes used for the 

replicas are commercially obtained frits. 

XRF analyses on each type of glaze were performed and in figure 4.55 the respective spectra 

are shown. 

 

Figure 4.55 – XRF spectra of the three types of glaze used for the replicas. 
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From figure 4.55, differences between the glazes elemental variability are observed. Glaze A 

corresponds to a more ancient type and Glaze C corresponds to a rustic modern one. This 

difference is mainly realized by the much lower count rate for Pb-lines in Glaze C, when 

compared with Glaze A. This decrease is Pb must be compensated by another flux agent, which 

in this case is Zirconium (Zr) – with higher contribution – and Titanium (Ti) – with lower 

contribution, to obtain similar glaze properties. 

Glaze B – assuming an intermediary-age position between Glaze A and C – shows lower Pb 

and higher Zn concentration, when compared with Glaze A. 

It is known that Pb is an excellent flux-acting agent in the glassy matrix conferring properties 

that no other element can offer (cf. chapter 1, section 1.2.2). However, it has a huge drawback: 

it is highly toxic. Therefore, the use of other fluxes in the glazes became necessary. 

After submitting all three types of glaze to the above firing conditions – for three different 

temperatures – XRF analyses were performed on the three pieces and for the three different 

temperatures, ten points were studied. The obtained results are displayed in figure 4.56 and 

correspond to an average of all measurements.  
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Figure 4.56 – Net counts plot of the elements that compose the three glazes for three different firing 

temperatures: 800, 900 and 1000 C [36]. 

 

As expected, no elemental changes occured for the three glazes having different firing 

temperatures. More interesting is to observe whether there are or not changes in the 

mineralogical composition depending on the firing temperature used. For this purpose, XRD 

analyses were carried out and tables 4.9, 4.10 and 4.11 exhibit the mineralogical content of 

Glazes A, B, C, respectively for the three firing temperatures used together with the mineralogy 

of the glaze in powder before applied to the ceramic body.  
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Table 4.9 – Mineralogical firing temperature dependence obtained by XRD for the glaze A, submitted 

to 800 C, 900 C and 1000 C, respectively. 

Compound 

---------- 

Firing 

temp. (ºC) 

Kaolinite 

[Al2Si2O5(

OH)4] 

Zirc

on 

(ZrSi

O4) 

Sodiu

m 

Alumino-

trisilicate 

(NaAlSi

3O8) 

Qu

artz 

(Si

O2) 

Cristobal

ite 

(polymor

ph of SiO2) 

Skuterru

dite 

(CoAs3) 

Illite 

(K,H3O)

(Al,Mg,Fe)

2(Si,Al)4O10

[(OH)2,(H2

O)] 

Powder        

800        

900        

1000        

 

Table 4.10 – Mineralogical firing temperature dependence obtained by XRD for the glaze B, 

submitted to 800 C, 900 C and 1000 C, respectively. 

    Compound 

---------- 

Firing 

temp. (ºC) 

Kaolinite 

[Al2Si2O5(O

H)4] 

Zirco

n 

(ZrSiO

4) 

Cassiterit

e 

(SnO2) 

Quar

tz-low 

(SiO2) 

Cristobalit

e 

(polymorp

h of SiO2) 

Anorthite 

(CaAl2Si2O8

) 

Powder       

800       

900       

1000       
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Table 4.11 – Mineralogical firing temperature dependence obtained by XRD for the glaze C, 

submitted to 800 C, 900 C and 1000 C, respectively. 

Compound 

----------- 

Firing temperature 

(ºC) 

Cristobal

ite 

(polymor

ph of SiO2) 

Zircon 

(ZrSiO4) 

Powder   

800   

900   

1000   

 

All glazes (A, B and C) were obtained by commercial frits and the similarity with old glazes 

elemental content is decreasing from A to C (Tables 4.9, 4.10 and 4.11). The simulation of old-

like glazes production is performed by introducing Quartz and clay minerals to the frit, as it is 

exhibited in the XRD profile of glazes A and B. Moreover, in glazes A and B, kaolinite becomes 

amorphous at 550 °C and vanishes after the firing process is finished and at 1000 °C the 

changes are basically due to mineral orientation, rather than thermal modifications (Tables 4.9 

and 4.10). Additional important aspects are the fact that Glaze A exhibits more Kaolinite and 

Illite than the other two and after the firing process is finished, it reveals a more matte 

appearance than glaze C (figure 4.54). Glaze C is mainly composed by zircon (ZrSiO4), which 

assigns it as a modern one. In its profile is also shown a peak of Cristobalite, characteristic from 

a high-temperature polymorph of Quartz—this means that is has the same chemistry as Quartz 

but a different structure (Table 4.11). Some of the compounds are only formed after the glaze 

reaches the so called “working point”. This is the stage where all components have melted and 

this liquid matrix state of the glaze originates the formation of some mineralogical components 

such as Skuterrudite (CoAs3), Anorthite (CaAl2Si2O8) and sodium aluminium-trisilicate 

(NaAlSi3O8). Furthermore, Cassiterite (SnO2) crystallizes from 800 °C. Depending on the amount 

and on the original components from the raw frit, the “working point” can be reached at 
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different temperatures for each kind of glaze [104].  Another interesting fact is that 

Skuterrudite appears only due to the initial presence of cobalt oxide in the raw frit. This 

compound causes an interesting optic effect on the glaze and it was commonly used to confer 

some bluish-hue to the glaze in order to reduce the typical commercial yellowish nature from 

the glazes. From an esthetical point of view, in general people tended to prefer the less 

yellowish glazes. One can even prove this fact by observation of the three different glazes 

applied on the ceramic pieces (figure 4.54), where glaze A is less yellow than the other two. 

 

4.4 – In situ analysis of whole Museum objects 

A set of forty-seven (47) glazed ceramic objects – faiences –, originally produced in Coimbra 

(Portugal), were submitted to elemental analysis, having as premise the manufacture 

production recognition. According to the literature [9] these objects are marked with the 

potters labels and a correct date assignation was possible. Objects from the XVII, XVIII and XIX 

centuries were analyzed. 

Although having been produced in Coimbra, their location changed as time passed due to 

historical reasons. An exhibition celebrating the glazed ceramics production in Coimbra took 

place at the Museu Machado de Castro (Coimbra) in 2008, and shortly after – before the 

objects were deported to their current locations – in situ XRF analyses were able to be carried 

out. Annex 1.4 resumes a description of all analyzed objects and figure 4.58 an example of 

some objects. 

With the aim of tracing differences between objects from different centuries, Micro-XRF 

analyses on whole Museum ceramic objects were performed. Of course the only viable 

methods of analyses are in situ and therefore information on the elemental level only was 

possible.  
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Figure 4.57 – Examples of faiences from Coimbra: (a) polychrome piece “Prato Vascomselos”: 6×Ø27 

cm (b) the use of purples in “Prato Mulher Pássaro”: 4.8×Ø27.4 cm; (c) plate: decorative motives used in 

these pieces only in blue, such as laces (marked in the picture), typical from Coimbra “Prato Flôr”: 

5.3×Ø33.6 cm; (d) Micro-XRF in situ analysis of a barrel (“Pote”) from Coimbra: 14.5×24×Ø15 cm [9, 38]. 

 

4.4.1 – Blue pigment 

The XRF spectra of the blue regions in all objects were deconvoluted, fitted and the net peak 

areas of the characteristic elements were considered for comparison between the different 

dates. In figure 4.58 net peak areas for Mn, Fe, Co, Ni, As and Bi are presented, together with 

the ratios Mn/Co, Fe/Co, Ni/Co and Bi/As.  
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Figure 4.58 – a) Plot of the elemental net counts of Mn, Fe, Co, Ni, As, Bi for faiences from Coimbra 

from the XVII, XVIII and XIX centuries; b) comparison elemental ratios (Mn/Co, Fe/Co, Ni/Co, Bi/Co) of 

faiences from Coimbra from the XVII, XVIII and XIX centuries; c) As/Ni square-root net counts ratio 

plotted against Co/Fe square-root net counts ratio, for faiences objects (Coimbra). 

 

From figure 4.58a one sees that there is no significant elemental variability between objects 

from the XVII, XVIII and XIX. This is also confirmed by the ratios depicted in figure 4.58b. 

Bismuth has a week presence among the blue in faiences from Coimbra (also previously 

confirmed by the plots in figure 4.17 for the fragments). Although the ratio changes are more or 

less stable Ni/Co and Bi/Co have the lowest change among all objects, while Fe/Co and Ni/Co 

show sharper changes – though in a small scale ( 0.5). Furthermore – as already mentioned 

before (cf. figure 4.17) – there is no significant difference between objects from the XVII, XVIII 

and XIX centuries regarding the contaminant association to the Co-ore. In figure 4.58c the As/Ni 

ratio against Co/Fe ratio is plotted and one sees no distinguished groups for the different 
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production dates. One could assume a possible separation for the objects from the XIX century 

in terms of Co-purity, as two of the samples reveal higher values for Co.  

In addition, Spearman correlation test was performed and table 4.12 shows the correlation 

coefficients between the elements that characterize the blue of faiences from Coimbra. 

 

Table 4.12 – Spearman correlation coefficient () for net peak areas of the elements that most 

characterize the blue in faiences from Coimbra – museum objects (N = 37). ´**´ indicates that the 

correlations are significant at the p<0.01 level; ´*´ indicates that the correlations are significant at the 

p<0.05 level. 

 Mn Fe Co Ni As Bi 

 

Mn 
  .337* .134 .178 .264 .059 

Sig. (2-tailed)  .041 .428 .293 .114 .730 

Fe 
 .337*  .552** .504* .660** .568** 

Sig. (2-tailed) .041  .000 .001 .000 .000 

Co 
 .134 .552**  .630** .519** .483** 

Sig. (2-tailed) .428 .000  .000 .001 .002 

Ni 
 .178 .504* .630**  .236 .491** 

Sig. (2-tailed) .293 .001 .000  .159 .002 

As 
 .264 .660** .519** .236  .297 

Sig. (2-tailed) .114 .000 .001 .159  .075 

Bi 
 .059 .568** .483** .491** .297  

Sig. (2-tailed) .730 .000 .002 .002 .075  

** - Correlation is significant at the 0.01 level (2-tailed). 

* - Correlation is significant at the 0.05 level (2-tailed). 

 

 

From the results in table 4.12 it becomes clear that there is a significant positive correlation 

among the elements Fe-Co-Ni-As-Bi. Co-Fe, Co-Ni Co-As and Co-Bi show a positive significant 

correlation at the p<0.01 level.  

Taking all the above into account, no significant differences are observed with respect to the 

source of Co for the blue. There is definitely a connection to the five element vein related to Co 

itself (Fe-Co-Ni-As-Bi), as it was previously identified.  
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4.4.2 – Yellow pigment 

XRF measurements on the yellow regions revealed the presence of Sb together with strong 

peaks of Pb, which is in agreement with the use of Naples Yellow pigment – as previously 

explained.  

Although Pb is connected to the structure of the yellow pigment, conventional in situ Micro-

XRF measurements carry the uncertainty from how deep the fluorescent signal comes and 

therefore, one cannot estimate whether Pb is owed to the yellow “layer” only or to the base 

glaze as well. The same is valid for Sn – which is possible to be part of the crystal structure as 

well (cf. 4.2.3.2 – Yellow). However, the ratios of the elements that mostly characterize the 

yellow pigment are displayed in figure 4.59. 

 

 

Figure 4.59 – a) Plot of the elemental net counts of Mn, Fe, Zn, Sn, Sb and Pb of yellow regions of 

faiences from Coimbra from the XVII, XVIII and XIX centuries; b) comparison elemental ratios (Mn/Sb, 

Fe/Sb, Zn/Sb and Sn/Sb) of faiences from Coimbra from the XVII, XVIII and XIX centuries. 

 

Other hues such as orange-like and brownish were also analyzed and in these cases the 

obtained spectra show mainly Mn and Fe. This suggests the use of ochres of these elements 

mixed with Naples yellow. These results are in agreement with the documented hypothesis that 

manganese oxides and iron oxides and hydroxides were responsible for the orange and brown 

colors [38]. From figure 4.59b one sees for example a decrease in the Fe/Sb and Zn/Sb from the 

XVII to the XIX centuries, which indicates a less use of other ochres in the yellow regions in the 

more recent objects. 
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4.4.3 – Purple pigment 

As previously described (cf. 4.2.3.3 – Purple), Mn is the dominant element for conferring the 

purple hue. The source of Mn is highly probable to be Portuguese as the mineral Psilomelane 

[(Ba,H2O)2Mn5O10] is quite abundant in the country [102]. Once again the connection between 

Mn and Ba is observed for known faiences from Coimbra. In figure 4.60 the ratios of the 

characteristic elements conferring this hue is presented as well as the Fe/Mn and Ba/Mn ratios. 

 

Figure 4.60 – Plot of the elemental net counts for Mn, Fe and Ba for faiences from Coimbra; b) 

comparison of elemental ratios (Fe/Mn, Ba/Mn). 

 

From figure 4.60a one realizes little change in the Mn net counts. The possible changes are 

due to a denser painted area, in which more pigment was used. Observing the ratios in figure 

4.60b a very constant Ba/Mn relationship is kept which indicates a strong association between 

Mn and Ba – this was also observed for the analyzed purple regions in faience fragments (cf. 

figure 4.45). Fe – although constant in all spectra – seems to have little participation in the 

purple color, as there is not a strong association between Mn and Fe (figure 4.60b). 

The ceramic production in Coimbra is also distinguished by another feature, which is the fine 

and detailed contours between the painted areas, usually in purple. In figure 4.61 one can 

observe that the contours are more dense colored areas and this is evidenced by the increase in 

Mn and the decrease of Pb (characteristic from the glaze), due to a thicker layer of purple color 

[38]. 
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Figure 4.61 – Left-hand side: Faience from Coimbra “Prato” with two marked regions (yellow) 

enhancing purple contour and painted area; right-hand side: XRF spectra correspondent to purple 

contour and painted area, respectively [38]. 

 

 

4.4.4 – Green pigment 

According to the literature, green was just started to appear as decoration in faiences from 

mid. XVIII century [9]. Moreover it was not a very common color to find in such applications. It 

has been seen before (cf. 4.2.3.4 – Green), that differences in the green pigments from faiences 

and wall-tiles exist. In faiences the pigment used is Cu-based while in wall-tiles from Lisbon a 

mixture between blue and yellow was made in order to obtain the desired green hue. In this 

case, no original green pigment was used. 

In figure 4.62 ROIs of the possible green-conferring elements are presented as well as useful 

ratios for the case. 
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Figure 4.62 – Plot of the elemental net counts for Mn, Fe, Co, Cu, Zn and Sb of green regions of 

faiences from Coimbra; b) comparison of elemental ratios (Co/Cu, Sb/Cu). 

 

A difference between the elemental recognition in green regions is observed between 

objects from the XVIII and XIX centuries. Clearly, the ones from the XVIII century are Cu-based – 

with little contribution of blue or yellow components– while the ones from the XIX century 

reveal higher contribution of blue and yellow elements (figure 4.62a). The Co/Cu and Sb/Cu 

ratios are relatively low for the XVIII objects (left-hand side from the dashed-grey line in figure 

4.62b), justified by the higher count rates of Cu. On the other hand these ratios are rather 

unstable for objects from the XIX century (right-hand side from the dashed-grey line in figure 

4.62b), which means that Cu is no longer the only color-giving element but rather a mixture 

between blue (Co) and yellow (Sb).  

These results are in agreement with the ones obtained for the faience fragment (cf. figure 

4.51), which indicated that the whole analyzed fragments belong to the period until the XVIII 

century.  
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CHAPTER 5 – DISCUSSION, CONCLUSIONS and OUTLOOK 

In this chapter a discussion about the results presented in the previous chapter is made. 

General features obtained by various analytical methods are summarized and conclusions are 

withdrawn. Differences between Coimbra and Lisbon arose, regarding the ceramic body, glaze, 

blue and yellow regions. The discussion is, therefore, presented according to this division. 

At the end perspectives for future work are presented. 

 

5.1 Ceramic body  

Information obtained by XRF has shown that elemental variability is less for faiences than for 

wall-tiles. This is in agreement with the manufacturing process behind faiences and wall-tiles. 

Faiences are formed using potter´s wheel – which confers higher uniformity among the raw-

materials – while wall-tiles are made in plaques (which induce a higher material heterogeneity). 

Together with the results obtained by XRD, wall-tiles from Lisbon revealed several Ca-based 

compounds – which justify the higher Ca count rate from XRF data. Conversely, faience samples 

revealed two types of feldspars (Microcline and Anorthite), while wall-tiles (both from Coimbra 

and Lisbon) have revealed just K-rich feldspars (Microcline). Although they are both feldspars, 

there are some differences between the presence of Microcline and Anorthite in the pastes. 

Microcline belongs to the raw materials, while Anorthite is a mineral that emerges from a 

thermal transformation. 

Gehlenite is found mainly in wall-tiles, from Coimbra and Lisbon, being Fe its main element 

and it is mostly used in wall-tiles, as it confers a darker-reddish hue to the body. This is not 

desired in faiences – where whitish pastes are required.  

Furthermore, the presence of Cristobalite in the samples from Coimbra and not in the 

samples from Lisbon is a hint of different cooling processes used for the ceramic support. The 

ones from Coimbra have undergone rapid cooling processes, allowing keeping phases such as 

Cristobalite in the structure, as well as thermal tensions which lead to a more fragile body. 

The presence of Pb in all spectra from the body has to do with a capillarity effect that occurs 

during the drying process. According to [105], lead is water-soluble and when applied over the 
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ceramic body – together with other glaze components – the solution penetrates into the 

porous body allowing lead migration until the bottom of the body, favored by its high porosity. 

This effect happens for both types of samples, being more pronounced in wall-tiles from Lisbon 

due to their higher porosity in comparison with faiences (Coimbra). 

 

5.2 Glaze 

Glazes in all samples are characterized by similar compound-groups: network-forming agent 

(Silica), network-modifiers or fluxes (Pb, Zn, Ca, K, Na) and opacifiers (Sn, Ti). Further coloring 

agents were added to the glaze (Mn, Fe, Cu). However the strong presence of Pb and Sn confers 

the designation lead-tin-based glazes. The addition of Pb was a very important step in glazes 

manufacture, as it lowers the melting point of the whole glassy structure and therefore it can 

be formed at lower firing temperatures. However, differences in the proportions of these and 

other important elements provide hints for manufacturing techniques.  

The positive correlation between Si-K for both faiences and wall-tiles suggests that the 

higher the network-forming agents the higher the need for fluxes addition (such as K).  

Moreover, the positive correlation between Pb-Zn in wall-tiles from Lisbon suggests the use of 

more fluxes than in faiences (Coimbra), which implies then a lower melting point for the glazes 

in samples from Lisbon than from Coimbra. This was also supported by the SEM/EDX analyses, 

in which the glazes from wall-tiles have more fusibility (higher content in network modifiers – 

fluxes) than the ones from faiences.  Pb and Na act as dominant fluxes within the glassy matrix 

and lower the melting temperature [37].  

By the inspection of original documents that contain some recipes used to produce glazes, 

they were applied as frits. This process comprises at least two stages: i) roasting a mixture of 

lead and tin, which is mixed further with sand and then melted. In accordance with this step, 

analyses of medieval frits always yielded a PbO–SiO2 melt with SnO2 particles. ii) The frit is 

ground down and applied in a water suspension or mixed with a gum on the ceramic surface. 

However, regarding the inclusion of Sn-crystals not much is found. Previous investigations 

reported by Molera et al. [34] have shown that SnO2 particles react during the glaze formation. 

This study has revealed that SnO2 particles are in the order of several hundred nanometers in 
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size that show crystallization faces in tin-opacified glazes. Several reference materials with 

varying amounts of SiO2, PbO and SnO2 were prepared and the heating and cooling processes 

were monitored by means of High-temperature XRD (XRD-HT). Results have shown that SnO2 

reacts with Pb at temperatures > 600 C and a metastable phase is formed (PbSnO3). As the 

temperature increases this and other Pb-phases melt and, as the liquid phase starts forming, 

SnO2 re-crystallizes [34]. Furthermore, higher numbers of larger-sized particles were observed 

as the annealing temperature is increased. 

Taking the above into account, SEM micrographs shown in the previous chapter reveal the 

presence of higher amount of slightly larger Sn-crystals in glazes from Lisbon which suggests 

higher firing temperature for Lisbon samples. 

The fact that glazes in faiences are thinner (about 150 – 250 µm) than glazes from wall-tiles 

(300 – 400 µm) is in agreement with the nature of these objects. Faiences are technologically 

“finer” and one of the reasons is the fact that a thinner piece is desired, as most of their utility 

is at home both for decoration and functional purposes. Wall-tiles are more robust as they are 

used as outer decoration for buildings, which are then subject to all atmospheric conditions. 

Furthermore, the cross-section scans provided by 3D Micro-XRF have shown that a smother 

connection between glaze and ceramic body exists for faiences (Coimbra), in comparison to the 

wall-tiles (Lisbon) – where an abrupt drop of Pb occurs between glaze and body. This is due to 

the capillary effect – described above – that transfers Pb into lower parts of the ceramic body. 

Higher porosity in bodies promotes lead diffusion, which consequently induces a stronger 

elemental separation at the interface glaze/body.  

 

5.3 Surface decoration 

According to documental proofs [9] Coimbra was a less wealthy center of production, when 

compared to Lisbon and, hence, the expensive raw materials were spared as much as possible. 

Therefore, one would find a broader range of elements used to confer the intended color. 
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5.3.1 Blue 

A higher Mn/Co ratio found in faiences (Coimbra) than in wall-tiles reinforces the hypothesis 

that Mn was intentionally added by the potter in order to spare the expensive Co-source. On 

the other hand, a higher purity in Co-content was found for faiences by the lower Ni/Co and 

Bi/Co ratios, in comparison to wall-tiles. Still, the slight increase in both Co/Fe and As/Ni ratios 

for faiences (Coimbra) indicates that there was an intention of preparing the pigments with a 

higher level of purity. Moreover, there are positive correlations between Mn-Fe, Mn-Ni, Fe-Ni, 

Mn-Co, Fe-Co and Co-Ni for the blue in faiences. These correlations were also obtained for wall-

tiles but no correlation between Co and Mn exists, which support the theory of the 

intentionally added Mn to the blue pigment used in faiences (Coimbra) but not in wall-tiles. 

Cluster analyses have shown that regarding the blue pigment composition, two distinct 

groups are formed: one for faiences and one for wall-tiles. In this case the difference is made 

between types of object rather than between production centers.  

Regarding the cross-section scans performed by high-resolved XRF, some differences in the 

pigment diffusion throughout the glaze appeared. A higher intake of the blue pigment was 

observed for samples from Coimbra than for samples from Lisbon. There are several factors 

that allow a higher intake of the pigment particles through the glaze: (i) a higher content of 

fluxes  in the glaze; (ii) a higher firing temperature of the glaze; and (iii) more refractory 

pigment particles, meaning that particles do not undergo physical changes when they are 

submitted to a higher temperature [106]. Since the pigment sources used should be the same, 

the factors which can promote a higher penetration of the pigment in the glaze are (i) and (ii). 

Concerning SEM/EDX measurements, one was able to identify Sn-agglomerates throughout 

the whole blue+glaze cross-section among all samples, which is a hint for a certain 

manufacturing process. Co-blue is in its natural state a very strong and dark blue, which is not 

the hue one sees in the blue surface motifs. So, since Sn is a natural opacifier the potter 

intentionally added it to the pigment in order to obtain a lighter blue hue. By inspection of the  

The expected connection between Fe-Co-Ni-As-Bi was not easy to investigate. Co was 

difficult to observe but the other elements that participate on the pigment structure were 

investigated. Co was found in Fe- or Ni-rich structures but with no structural connection to As 
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or Bi. However, the As-needle-like structures were always identified in blue regions. A 

difference between faiences and wall-tiles was observed: in faiences Co is found in Fe-rich 

structures while in wall-tiles Co is found in Ni-rich structures [94]. 

 

5.3.1 Yellow 

Yellow pigments used in the analyzed samples are Sb-based with connection to Pb as well.  

SEM micrographs have shown that the Sb-crystals are mainly concentrated at the surface of 

the samples (only going deep over the first tens of micrometers in depth). Moreover, 

differences noticed in the crystal shape and size are indicatives for the same firing cycle the use 

of different firing temperatures used [22]. The rather hexagonal shape found for the 

microstructures in the wall-tiles from Lisbon indicates that, in this context, a higher firing 

temperature was used ( 1100 C), in comparison to the samples from Coimbra (from 950 C) 

(faiences and wall-tiles), whose micro-structure shape is rather irregular and triangular-like. 

Thus, one can conclude that the firing cycle plays an important role in this simple linear model, 

which means that similar crystal-morphologies could be obtained for both short-firing cycles at 

high temperatures and for long-firing cycles at lower temperatures [94]. 

Further information obtained by XAFS revealed differences between manufacturing centers 

(at a first approximation) regarding the yellow pigment. By Sb-K speciation, it has been shown 

that the yellow compound is different between Coimbra and Lisbon. In samples from Coimbra, 

the yellow fits quite well to the Naples Yellow (Pb2Sb2O7), while is samples from Lisbon a 

mixture of Sb-based compounds has been used. It is important to stress again that these results 

are merely in a comparative basis and no definite conclusion is should be withdrawn. Further 

investigations are already in course in order to conclude more accurately about the chemical 

environment of Pb and Sb. For this purpose, tests that involve inclusion of self-absorption (SA) 

effects are being developed in order to evaluate their influence in this kind of samples – or 

better said, matrices. 
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Table 5.1 – Summary of the properties of Lisbon and Coimbra productions, from this investigation. 

Faiences are a unique type of glazed ceramics. 

 Coimbra Lisbon 

 Faiences Wall-tiles Wall-tiles 

  Glaze Thickness: max. 180 µm Thickness: max. 400 µm Thickness: max. 400 µm 

Blue 

Pigment (Co) completely 

dispersed into the glaze; 

Positive correlation 

between Mn and Co; 

Presence of Sn-

agglomerates; Co-structures 

are in Fe-rich environment. 

Pigment (Co) diffused down 

~150 µm into the glaze; No 

correlation between Mn and Co; 

Presence of Sn-agglomerates; 

Co-structures are in Ni-rich 

environment. 

Pigment (Co) diffused down 

~125 µm into the glaze; No 

correlation between Mn and Co; 

Presence of Sn-agglomerates; 

Co-structures are in Ni-rich 

environment. 

Yellow 

Pigment (Sb) thickness: 

~30 µm; 

Sb-crystals rather 

irregular shaped 

(triangular-like)   

< 1000 C firing 

temperature; 

Naples Yellow 

(Pb2Sb2O7) confirmed by 

XAFS. 

Pigment (Sb) thickness: ~100 

µm; 

Pb signal strong drop 

together with Sb signal; 

Sb-crystals rather irregular 

shaped (triangular-like)   

< 1000 C firing temperature; 

Naples Yellow (Pb2Sb2O7) 

confirmed by XAFS. 

Pigment (Sb) thickness: ~100 

µm; 

Pb signal slight drop after the 

pigment layer (Sb); 

Sb-crystals more regular 

shaped (hexagonal)   

 1100 C firing temperature; 

Mixture of Sb-based 

compounds confirmed by XAFS. 

Purple 

Pigment (Mn) completely 

dispersed into the glaze;  

Presence of Ba indicates 

the use of (Ba,H2O)2Mn5O10 

as source – high abundance 

in Portugal; relatively low 

Ba/Mn ratio  pureness of 

the source. 

Pigment (Mn) completely 

diffused into the glaze; Mn 

maximum at the surface ~50 µm 

broad; 

Presence of Ba indicates the 

use of (Ba,H2O)2Mn5O10 as 

source – high abundance in 

Portugal; relatively high Ba/Mn 

ratio.  

Pigment (Mn) completely 

diffused into the glaze; Mn 

maximum at the surface  <25 µm 

broad; 

Presence of Ba indicates the 

use of (Ba,H2O)2Mn5O10 as source – 

high abundance in Portugal; 

relatively high Ba/Mn ratio. 

Green 

Pigment (Cu) completely 

dispersed into the glaze; 

 

Pigment (Cu) well diffused 

into the glaze; Cu maximum at 

the surface ~50 µm broad. 

Higher pigment (Cu) intake into 

the glaze; Cu maximum at the 

surface ~25 µm broad; two 
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samples in which green was 

obtained by mixing blue (Co) and 

yellow (Sb). 

Gerenal 

features 

No color/glaze interface, 

except for yellow 

decorations; 

Smoother elemental 

exchange at the glaze/body 

interface  less porous 

bodies; 

Pigments analysis: 

Constant elemental ratios  

manufactured in potter´s 

wheel (more refined 

manufacturing process) 

Broader maximum of the 

pigment signal. Slightly lower 

intake of the pigment through 

the glaze; 

Pigments analysis: Irregular 

elemental ratios  rougher 

manufacturing process. 

Slightly higher intake of the 

pigment into the glaze. Sharper 

elemental exchange at the 

glaze/body interface  higher 

porous bodies; 

Pigments analysis: Irregular 

elemental ratios  rougher 

manufacturing process. 

 

 

Outlook  

This investigation (including the methodology) was pioneer regarding Portuguese glazed 

ceramics, especially the information obtained for faiences from Coimbra. With the hypothesis 

that the productions from Coimbra are unique, this has been confirmed by scientific data. In 

the field of Cultural Heritage it is important to understand the complexity of the objects in 

order to use the proper analytical tools for the sough answers. With the released scientific data, 

answers about raw materials and compositional features, at a mineralogical and morphological 

level, are provided. This has enriched the field of Arts in Portugal and can be used as basis for 

developing conservation and restoration methodologies. 

This work has not only provided new information about ceramic productions from Coimbra 

and Lisbon but has also brought the need for carrying out further investigations. The sample 

universe available for this work was good in order to have a comparison basis between these 

two main ceramic manufacturing centers but analyses on samples from other centers are now 

required. Although Coimbra and Lisbon were considered the main centers, other centers such 

as Porto or Alcobaça have played an important role as routes for raw materials and this could 
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be a connection string for enriching the knowledge about Portuguese ceramic productions. 

New doors are open for further investigations. 
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ANNEX 

 

Annex 1.1 – Chronological development of Azulejos (Wall-tiles) in Portugal. 

Period Historical data Style / Influences 
Techniques / 

Chromatics 

XIII-XIV centuries 

First applications in 

Al-Andalus1 (Seville, 

Valence, Malaga and 

Toledo) 

 

Hispano-Moresque-

ware: Islamic motifs 

(the Muslim star is 

frequent) that tangle 

themselves in repeated 

geometric schemes, 

forming a pattern. 

Cuerda-seca – 

engraving the drawings 

on the ceramic plate 

still humid. The sulks 

were filled with 

manganese mixed with 

some fat, ensuring the 

separation of the 

different colored smalts 

during firing. 

XV-XVI centuries 

King D. Manuel I 

contacts Seville to order 

those Azulejos and 

decorate the Sintra 

Palace. The tiles from 

Seville start being used 

in Portugal. 

More freedom: 

inspiration in Gothic 

decorative elements, 

such as vegetables. The 

use of Azulejos as 

architect support starts. 

 

Embossing: graving 

of motifs on the bisque 

through wood or metal 

moulds.  

 

XVI century 
Azulejos start being 

produced in Portugal. 

Italian Renaissance – 

grotesque: decorative 

painting based on 

motifs from Classic 

Rome in ruins. The 

appearance of humane 

figures, other beings, 

birds, flowers, fruits, 

 

Maiolica (or 

faience): Azulejos 

covered with a white 

smalt. Painted motifs 

could be applied on the 

surface without having 

the colors mixed. 
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pots, shells, etc., with 

no logic. 

Technique introduced 

in Seville by Francesco 

Niculoso. 

 

XVII century 

Increase of the 

Portuguese production: 

Lisbon is the biggest 

production center. The 

big wall panels 

manufactured by 

craftsmen with typical 

patterns. 

Oriental influence 

(fauna and flora) exotic 

figures of the oriental 

spirituality. 

Most used colors: 

cobalt blue, yellow over 

white, brownish-

orange, olive green, 

purple, blue contours.  

XVII-XVIII centuries 

The paintings on the 

surface of Azulejos 

become a task for 

masters in this field 

only. 

After the earthquake 

in 1755, tile factories 

are settled in Lisbon 

Learning how to 

represent in 

perspective. Illusionism. 

New motifs appear: 

vases, birds, laces, … 

Influences from the 

Dutch tiles on which 

cobalt blue and purples 

with manganese are 

used. Brush strokes 

become fancy. 

XIX century 

Use of Azulejos in 

frontages. New 

factories are built in 

Lisbon, Aveiro and 

Oporto.  

 

Mechanical 

stamping of the 

drawings. 

XX century 

Use of Azulejos in 

train stations, 

mercantiles, stores, 

housings. 

 
Mechanical pressing 

of the clay. 

1
Al-Andalus - the territory occupied by the Muslim empire in Southern Iberian Peninsula. 
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Annex 1.2 – Chronological development of faiences from Coimbra. 

Period Historical data Style / Influences 
Techniques / 

Chromatics 

XVI 

century 

In 1514 the fees for 

earthenwares became public; 

First reference to glazes.  

 

Ceramic pastes obtained 

from two localities in Coimbra 

and the firing process was made 

under jury observation. 

Two firing stages for 

lead glazes and one for 

the ones with lead 

sulphide.  

1st 

half of 

XVII 

century 

Confirmation of pottery-

making prior to 1623;  

Objects with simple 

decoration; circles and spirals 

 

Developments in the 

technological aspects of 

manufacturing. 

2nd 

half of 

XVII 

century 

It becomes explicit three 

crafts: 1) white-ware (faience), 

2) green- and yellow-ware, 3) 

unglazed earthenware. 

The employed decoration 

characterizes the Coimbra 

products, like the dark purple 

contours in manganese; 

The colored curves as well as 

details to fill the decoration 

space; laces in blue with dark 

purple contours. 

The embossed 

contoured areas reveal 

the possibility of a third 

firing stage; Glazes less 

bright and mate earthy 

tones; Blue tones tend 

to violet and yellow 

tones tend to orange. 

 

1st 

half of 

XVIII 

century 

Enormous increase of the 

registered potters – increase 

in the production;  

Some decorative models 

characteristic of the faiences 

from Coimbra were defined. 

Acanthus leafs interspersed 

with vegetation motifs  

No information 

available 

2nd 

half of 

XVIII 

century 

Ceramics from the Brioso 

family gain importance and 

the initials C.B. are found in 

some plates. 

Scratches, grids and laces as 

decoration motifs; 

Dark purple and blue lines 

interspersed with each other 

No information 

available 



177 
 

domain the decoration models. 

1st 

half of 

XIX 

century 

Painting by stamping 

introduced by Vandelli 

becomes common but 

expensive; 

Less expensive style is 

developed, called “Ratinha”  

Flowers and wreaths of 

flowers accompanied by a 

yellow strip, typical from 

Vandelli. 

“Ratinha” should 

have lower amounts of 

Sn and colors always 

applied with brush and 

sponge. 

2nd 

half of 

XIX 

century 

First district ceramic 

exhibition. 

Flowers and wreaths of 

flowers. 

Modern kilns and 

new pastes are used. 
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Annex 1.3 – Description of the analyzed fragments. 

Sample Type Origin 
Surface 

decoration1 
Remarks 

C23 

 

utility 

faience 
Coimbra G, B 

Bright 

glaze and 

mate colors 

C24 

 

utility 

faience 
Coimbra G, B, DP 

Bright 

glaze and 

mate colors 

C26 

 

utility 

faience 
Coimbra G, DP 

Bright 

glaze and 

mate colors 

C29 

 

utility 

faience 
Coimbra G, DP 

Mate 

glaze and 

mate colors 

C34 

 

utility 

faience 
Coimbra G, B 

Mate 

glaze and 

mate colors 

C37 
utility 

faience 
Coimbra G 

Mate 

glaze  
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C41 

 

utility 

faience 
Coimbra G, Y 

Mate 

glaze and 

mate colors 

C50 

 

 

utility 

faience 
Coimbra G, B, Y 

Bright 

glaze and 

bright 

colors 

C51 

 

utility 

faience 
Coimbra G, B, Y 

Bright 

glaze and 

bright 

colors 

C52 

 

utility 

faience 
Coimbra G, B, Y 

Bright 

glaze and 

bright 

colors 

C53 
utility 

faience 
Coimbra G, B, Y 

Bright 

glaze and 
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bright 

colors 

C54 

 

utility 

faience 
Coimbra G, B, DP 

Mate 

glaze and 

mate colors 

C55 

 

utility 

faience 
Coimbra G, B 

Mate 

glaze and 

mate colors 

C56 

 

utility 

faience 
Coimbra G, B, DP 

Mate 

glaze and 

mate colors 

C57 

 

utility 

faience 
Coimbra G, B 

Bright 

glaze and 

mate colors 

C58 utility Coimbra G, B Bright 
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faience glaze and 

mate colors 

C59 

 

utility 

faience 
Coimbra G, B 

Bright 

glaze and 

mate colors 

AZCO1 

 

Wall-

tile 
Coimbra G, B, Y, Br 

Mate 

glaze and 

mate colors 

AZCO2 

 

Wall-

tile 
Coimbra G, B, DP. Y 

Partially 

bright 

colors 

AZCO3 
Wall-

tile 
Coimbra G, DP, G 

Partially 

bright 

colors 
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AZCO4 

 

Wall-

tile 
Coimbra G, B 

Mate 

glaze and 

mate colors 

AZCO5 

 

Wall-

tile 
Coimbra G, B 

Mate 

glaze and 

mate colors 

AZCO6 

 

Wall-

tile 
Coimbra G, DP 

Mate 

glaze and 

mate colors 

AZCO7 

 

Wall-

tile 
Coimbra G, B 

Mate 

glaze and 

mate colors 
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AZLX1 

 

Wall-

tile 
Lisbon G, B, Y 

Bright 

glaze and 

bright 

colors 

AZLX2 

 

Wall-

tile 
Lisbon 

G, B, DP, Y, 

Gr 

Bright 

glaze and 

bright 

colors 

AZLX3 

 

Wall-

tile 
Lisbon DP, G 

Bright 

colors 

AZLX4 

 

Wall-

tile 
Lisbon 

G, B, DP, Y, 

Br 

Bright 

glaze and 

bright 

colors 

AZLX5 
Wall-

tile 
Lisbon G, B, DP, Y 

Bright 

glaze and 

bright 

colors 
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AZLX6 

 

Wall-

tile 
Lisbon G, DP, Gr 

Mate 

glaze and 

mate colors 

AZLX7a 

 

Wall-

tile 
Lisbon G, B, DP, Y 

Mate 

glaze and 

mate colors 

AZLX7b 

 

Wall-

tile 
Lisbon G, DP 

Mate 

glaze and 

mate colors 

AZLX8a 

 

Wall-

tile 
Lisbon G, B 

Bright 

glaze and 

bright 

colors 

AZLX8b Wall- Lisbon G, B Bright 
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tile glaze and 

bright 

colors 

AZLX8c 

 

Wall-

tile 
Lisbon G, B 

Bright 

glaze and 

bright 

colors 

AZLX8d 

 

Wall-

tile 
Lisbon G, B 

Bright 

glaze and 

bright 

colors 

AZLX8e 

 

Wall-

tile 
Lisbon G, B 

Bright 

glaze and 

bright 

colors 

AZLX9 

 

Wall-

tile 
Lisbon 

G, B, DP, Y, 

Gr 

Partially 

bright glaze 

and colors 

1 Designation: G – Glaze; B – Blue; DP – Dark purple; Y – Yellow; Gr – Green; Br - Brown. 
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Annex 1.4 – Description of the analyzed museum objects original from 

Coimbra. 

 Size (cm) Date 
Primary 

glaze 
Decoration 

 

5.4 x  32.5 
XVIII 

 
White B, P 

 

15 x 24 x 14.5 XVIII Light yellow G, P 

 

30 x 18 XVIII White B, P 



187 
 

 

31.5 x 10.5 x 17.4 XVIII White B, G 

 

36.8 x 24 XVIII Light blue 
B, G, Y, 

P 

 

18.2 x 20.5 x 17 XVIII Light yellow B 

 

17.3 x 16 x 15 XVIII White B 
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24 x 15.5 XIX White 
B, G, Y, 

O 

 

36.8 x 24 XVIII Light blue 
B, G, Y, 

P 

 

4 x  34 XVIII White B, P 

 

4.8 x  27.7 XVIII Light yellow B, P 



189 
 

 

25 x 18.6 XVIII Light blue 
B, G, Y, 

BR 

 

25.2 x  16 XVIII Light Yellow B, G, P 

 

29.5 x 24 XIX White B 

 

13.5 x  10.5 XVII White B, Y, P 
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12.2 x 13.7 XVII White B 

 

6 x  26.6 XVII White B, Y, P 

 

5.9 x  40.3 XVII Light yellow B, Y, P 

 

 41 XVIII White B 
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3.8 x  39 XVIII White B, P 

 

4 x  33.5 XVIII White B, P 

 

4.3 x  38 XVII Light yellow B, P 

 

3.7 x  42 XVIII Light blue B, BR 
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5.3 x  33.6 XVII White B 

 

5 x  33.3 XVIII White B, P 

 

32.5 x 41 XIX White B 

 

 29.3 XIX Light blue B, G, O 
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4 x  33 XVII White B, P 

 

5.5 x  34.6 XVIII White B, P 

 

4 x  19.4 XVII White B, Y 

 

6 x  39 XVIII White B 
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3.6 x  34 XVIII White B 

 

5 x  35 XIX White B, G, P 

 

5 x  38.4 XVIII White B, P 

 

5 x  33.8 XVIII White B 
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32.5 x 39 XIX White B, G, BR 

 

 34.5 XIX White 
B, G, Y, 

P 

 

26.5 x  19 XVII Light yellow B, BR 

 

26.5 x 8.7 x 9.5 XVIII White B, P 
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20 x 28 XIX White 
B, G, Y, 

P 

 

19.5 x 10.5 x 9.8 XVIII White B, G 

1 Designation: G – Glaze; B – Blue; DP – Dark purple; Y – Yellow; Gr – Green; Br - Brown. 
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Annex 1.5 – Papers published in peer reviewed international scientific 

journals in the framework of the present thesis. 
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Synchrotron micro-XRF with Compound Refractive Lenses (CRLs) for
tracing key elements on Portuguese glazed ceramics
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and M. L. Carvalho*a
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Several glazed ceramic fragments (XVIth to XVIIIth centuries) from two production centers in Portugal

(Coimbra and Lisbon) were the object of this study. The ones from Coimbra comprise two sets of

samples: faiences and tiles. The ones from Lisbon are only tiles (azulejos, in Portuguese). The three main

divisions of such pieces are the ceramic support (body), glaze and surface decoration. The system

decoration/glaze is not easy to investigate, due to the high heterogeneity resulting from the mixing

procedures and firing temperatures used. Moreover, the ability of the pigment to diffuse into the base

glaze varies depending on the composition of both the pigment and the glaze in terms of fusibility. In

order to raster these effects, high resolution techniques are required. In this work, synchrotron micro-

X-ray fluorescence (m-XRF) analysis was performed to monitor the profiles of the characteristic

elements from the colors used and the glaze in well prepared cross-sections of the samples. Key elements

are: Co for blue, Mn for purple, Cu for green, Sb for yellow, Pb for the glaze and Fe for the body. The

major difference observed is that faiences have glaze thicknesses between 150 and 200 mm and tiles have

glaze thicknesses between 350 and 400 mm. Furthermore, in faiences all the pigments except the yellow

ones are well dispersed into the glassy matrix, while in tiles, all of them are just partially diffused

throughout the glaze. However, differences between the tiles from Coimbra and Lisbon were observed.

In the samples from Lisbon, a higher intake from the pigment throughout the glaze is observed.
1. Introduction

To gain knowledge about Cultural Heritage (CH) objects,

a physical–chemical characterization is required. A better

understanding about the technologies used in the past is valuable

for accurate object assignation as well as for conservation and

restoration purposes.

For several years now there have been numerous references to

different investigations bridging science and art. The use of

different analytical techniques has been revealed to be the proper

methodology for the study of CH. However, one must be aware

of the advantages and limitations of each chosen method. This is

the reason why one should always use a multianalytical approach

in order to better characterize the given objects/samples.
aAtomic Physics Centre, University of Lisbon, 1649-003 Lisbon, Portugal.
E-mail: luisa@cii.fc.ul.pt
bBAM Federal Institute for Materials Research and Testing, 12200 Berlin,
Germany
cInstitute of Atomic and Subatomic Physics, Vienna University of
Technology, 1020 Vienna, Austria
dDept. Arts, Conservation & Restoration, Polytechnic Institute of Tomar,
2300-313 Tomar, Portugal
eGIAN, Physics Department, University of Coimbra, 3004-516 Coimbra,
Portugal
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With regard to ceramics studies (pigments, glazes, ceramic

supports), several manuscripts can be found that describe the use

of various analytical methods, for example, X-ray fluorescence

(XRF),1–5 X-ray diffraction (XRD),2,4,6 Scanning Electron

Microscopy (SEM),1,6–10 Raman spectroscopy and Fourier

Transform Infrared (FT-IR) spectroscopy4,11,12 and also X-ray

Absorption Fine Structure (XAFS).2,4,5,13,14

In the universe of CH studies, glazed ceramic objects are

recognized by their high degree of complexity. In this case,

fragments from the XVIth to XVIIIth centuries were retrieved

from two important production centers in Portugal, namely

Coimbra and Lisbon.

When analyzing glazed ceramic pieces, one has to consider

three important areas that comprise these objects: (1) the ceramic

support (or body), (2) the glaze and (3) the surface decoration

(color). The way these layers interfere with each other is strongly

dependent on the raw materials chosen and on the

manufacturing process used by the craftsman. Based on an

ongoing investigation, this manuscript offers complementary

information about the possible techniques used to produce such

pieces. The analyzed glazed ceramic objects belong to a class

called Majolica, produced mainly between the XIVth and XVth

centuries in the Iberian Peninsula, based on Islamic traditions –

the so-called Hispano-Moresque wares.15 Previous investigations
This journal is ª The Royal Society of Chemistry 2012
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Table 1 Set of significant analyzed samples from each production
centre, their types and a summary of their characteristics, and the
elemental composition obtained previously by XRF. The key elements
correspond to the ones which were used as a tracer for each colour in the
scans

Sample Origin Type Colour Detected elements Key elements

C34 Coimbra Faience Blue Fe, Co, Ni, As Co
AZCO7 Coimbra Tile Blue Fe, Co, Ni, As Co
AZLX1 Lisbon Tile Blue Fe, Co, Ni, As Co
C29 Coimbra Faience Purple Mn, Fe, Ba Mn
AZCO3 Coimbra Tile Purple Mn, Fe, Ba Mn

Green Cu Cu
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have revealed some information about these pieces.16–18 They are

polychrome lead-based glazed objects featuring tin-opacifica-

tion. The aim of the craftsman was to have a white glaze as the

base for surface decoration, and opacifying it with tin oxide

inclusions was discovered to be the most favorable technique,

even though opacification with other more ancient methods, such

as inclusion of bubbles, is still found in these pieces.

An important piece of information for better understanding

these objects is the amount of each compound present in the

glazes. Previous analyses performed by Scanning Electron

Microscopy with an Energy Dispersive System (SEM-EDS)16

revealed that the glazes from the Coimbra pieces reveal relatively

high amounts of K2O (8.1–9.3 wt%) andCaO (3.1–3.2 wt%) when

comparedwith theones fromLisbon (K2O: 4.3–5.8wt%andCaO:

0.8–1.1 wt%). In addition, the amounts of Na2O (0.8–1 wt%) and

PbO (40.1–40.5 wt%) in Coimbra are lower than the ones in

Lisbon (Na2O: 3.5–4.2 wt%, and PbO: 45.5–45.9 wt%).

As for the pigment composition, by X-ray fluorescence tech-

niques we were able to retrieve the basic elemental profiles from

each color used.16 Blue: the typical elements detected were Fe, Ni,

Co and As (Smalt) with the presence of Mn and Ba in certain

cases, mainly from Coimbra. Purple: the dominant element is

Mn, and the presence of Ba indicates that the mineral Psilome-

lane [(Ba,H2O)2Mn5O10] was used as the raw material to obtain

Mn. Green: Cu-based pigment. Yellow: the presence of Pb and

Sb indicates the use of lead-antimonate (Pb(SbO3)2).

Knowing all these premises, monitoring the profiles of the

characteristic elements from the three main ‘‘layers’’ is of interest:

Co for blue, Mn for purple, Cu for green, Sb for yellow; Pb for

the glaze; and Fe for the body. For clarifying the production

techniques used in both centers (Coimbra and Lisbon), impor-

tant issues to investigate are the system glaze/surface decoration

and the ability of the pigment to diffuse into the base glaze. In

order to understand these issues, we performed m-XRF analysis

with a Compound Refractive Lens (CRL) on polished cross-

sections. Synchrotron radiation together with exceptional optics

allows us to have a 1 mm beam, which provides information

about the diffusion of the pigments throughout the glaze and the

glaze throughout the ceramic support.

Given the fact that one of the major compounds forming the

glaze is lead, strong absorption effects can always take place

when one performs investigation with X-rays. However, as

previously shown,16 cross-section scans are one of the best

methods to monitor the elemental profiles in depth. This brings

valuable information about system color/glaze/body. The high

lateral resolution offered by the experiment described here

allowed us to obtain detailed elemental information, which is

rarely achieved by most of the laboratory experimental

techniques.

Furthermore, surface elemental mappings with a Color X-ray

Camera (CXC) were also performed to get complementary

information and knowledge about the pieces. With this technique

it is easy to visualize the elements which characterize each color

used as surface decoration.
AZLX3 Lisbon Tile Purple Mn, Fe, Ba Mn
Green Cu Cu

C41 Coimbra Faience Yellow Fe, Sb, Pb Sb
AZCO1 Coimbra Tile Yellow Fe, Sb, Pb Sb
AZLX2 Lisbon Tile Yellow Fe, Sb, Pb Sb
2. Experimental methodology

Several fragments from each production site were analyzed and

characterized. Table 1 summarizes the set of samples and their
This journal is ª The Royal Society of Chemistry 2012
main characteristics. The main division throughout the whole

investigation is between Coimbra and Lisbon. Since for this

study there are only tiles available for Lisbon, the differences

between faiences and tiles are only considered as a subgroup of

this work. The main goal of this study was to monitor the profiles

of the characteristic elements from each part of the ceramic

pieces. Since some lines of these elements overlap with each

other,16 after collecting the XRF data the spectra were fitted with

PyMCA22 and the fitted values were used for plotting the

elemental profiles.

The capabilities for high resolution XRF analysis, provided at

BAMline,19 BESSY II electron storage ring, were the reason to

perform this investigation there. The schematic of the BAMline

@BESSY-II is shown in Fig. 1.

In the present work, two techniques were applied: (a) m-XRF

analysis on the polished cross-sections of the samples and (b)

surface elemental mappings obtained with a Color X-ray Camera

(CXC).

To focus the incident X-ray beam for experiment (a),

Compound Refractive Lenses (CRLs) were used. CLRs are one

of several types of focusing X-ray optics devices and belong to

the group of refractive optics, in which the X-rays undergo

refraction at the surfaces between different materials. An

example is displayed in Fig. 2. Since each lens only provokes

a little change in the direction of the X-ray, an array of such

lenses (i.e. Compound Refractive Lenses) is necessary to obtain

acceptable focal sizes and distances.20 Due to their simple design

and alignment, CRLs are one of the most popular X-ray focusing

devices. The important features are: (i) focusing in the region of

100 nm; and (ii) focusing of X-rays with energies in the range

from 5–200 keV is possible. The energy bandwidth of these kinds

of lenses (ca. 100 eV) is very small, meaning that for every energy

value, a separate lens has to be manufactured. The fact that the

CRLs require a monochromatic and parallel beam makes them

suitable for synchrotron beamlines only.

An example of oneCRLused@BAMline is shown inFig. 3. For

this beamline designed optics, a beamof 1 mmdiameter is feasible.

In Fig. 4 the layout of the m-XRF experiment at the BAMline and

a sketch of the sample composition (tile) in terms of its layers is

shown to illustrate how the scans were performed. For these

measurements two lenses were used: one with a nominal energy of
J. Anal. At. Spectrom., 2012, 27, 966–974 | 967
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Fig. 1 Schematics of the BAMline @BESSY-II. The X-ray source is a 7T WLS (Wave Length Shifter) installed at the storage ring BESSY II. The

optical elements are a Double Multilayer Monochromator, a Double Crystal and the CRL.
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33.2 keV and another with a nominal energy of 20.0 keV. This

choice was made due to the elemental variability present in the

decorative motifs as well as in the glaze. For the pieces which had

yellow (Sb: Ec(K) ¼ 30.491 keV) the 33.2 keV lens was ideal, and

for the pieces which had blue (Co: Ec(K) ¼ 7.709 keV), green (Cu:

Ec(K) ¼ 8.979 keV) and purple (Mn: Ec(K) ¼ 6.539 keV; Fe:

Ec(K) ¼ 7.112 keV) colors together with the glaze (Pb: Ec(L3) ¼
13.035 keV) the 20 keV lens was used. Although the lens with

a nominal energy of 33.2 keV would have been able to excite the

medium–low range, the 20 keV lens was used for the measure-

ments. This lens, due to its bigger aperture, provides more flux at

the sample and the absorption efficiency is higher for this

elemental range. As a supplement to this investigation, surface

elemental mappings were performed. For such data collection,

a beam with a size of 20 mm � 5 mm was impinged onto the

sample and a so-called Color X-ray Camera (CXC) together with

1 : 1 polycapillary optics was used. The CXC records 264 � 264

spectra simultaneously with a spatial resolution of 50 mm and an

energy resolution of 152 eV@Mn-Ka.21The first prototype of the

camera, the SLcam, was provided by the Institute for Scientific

Instruments GmbH.
3. Results and discussion

3.1. Micro-XRF cross-section scans

The results reported here correspond to an average of three

measurements per analyzed area.

3.1.1. Glazes with blue decorations. In Fig. 5 the elemental

profiles of samples containing blue decorative motifs are
Fig. 2 An example of a CRL and its working principle.
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compared. Cross-section scans were performed through the blue/

glaze/body of two samples from Coimbra, a faience (C34,

Fig. 5a) and a tile (AZCO7, Fig. 5b), and one sample from Lis-

bon, a tile (AZLX1, Fig. 5c). Pictures taken with the incorpo-

rated microscope, in which the different areas of each sample are

easy to observe, are also displayed in this figure. In red one can

see how the line scans were accomplished from the top of the

surface down to the ceramic body. These scans were repeated in

three different regions of the cross-sections.

The scans compare the Co-K, Pb-L and Fe-K signals, which

characterize blue, glaze and body, respectively. The first differ-

ence highlighted by these scans is the thickness of the glazes.

With regard to the faience sample C34 (Fig. 5a), the glaze is

approximately 120 mm thick, while the tile samples (AZCO7 and

AZLX1) have similar glaze thicknesses (between 350 and

400 mm) (Fig. 5b and c). Tracking the Co signal in sample

C34, one sees that the glaze and surface decoration exist as

one layer together. The glaze is too thin and the pigment was

applied together with the glaze in one firing stage. Comparison

of the Co signal between the two tiles (AZCO7 and AZLX1)

shows that its maximum is broader in the sample from
Fig. 3 CRL @BAMline (from KIT: www.x-ray-lenses.de).

This journal is ª The Royal Society of Chemistry 2012
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Fig. 4 (a) Layout of the m-XRF experiment at the BAMline; (b) a sketch

of the sample composition (tile) in terms of its layers. The scans were

performed up to a maximum of 500 mm thickness of ceramic body.

Fig. 5 Cross-section scans were performed through the blue/glaze/body of two

one sample from Lisbon, (c) a tile (AZLX1).

This journal is ª The Royal Society of Chemistry 2012
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Coimbra (�150 mm – Fig. 5b) than in the one from Lisbon

(�125 mm – Fig. 5c). There are several factors which allow

a higher intake of the pigment particles through the glaze: (a)

a higher content of fusible components in the glaze (lead oxides

and alkaline compounds); (b) a higher firing temperature of the

glaze; and (c) more refractory pigment particles, that is, the

particles do not undergo physical changes when they are

submitted to a higher temperature.23 Since the pigment sources

used should be the same, the factors which can promote a higher

penetration of the pigment in the glaze are (a) and (b).

Another interesting fact is that the Pb signal in sample AZCO7

(Fig. 5b) has an abrupt drop in the interface glaze–body. This is

not found to happen in sample AZLX1 (Fig. 5c). There is

a smooth drop of the Pb signal when reaching the body of the

sample from Lisbon, allowing a higher intake of the glaze

throughout the body. In addition, the Fe signal (mainly char-

acteristic of the ceramic body) is higher at the interface glaze/

body in the sample from Lisbon than in the sample from

Coimbra. These two aspects lead to the preliminary conclusion

that the glaze and the ceramic body have undergone a higher

chemical exchange in the interface during the firing procedure.
samples fromCoimbra – (a) a faience (C34) and (b) a tile (AZCO7) – and

J. Anal. At. Spectrom., 2012, 27, 966–974 | 969

http://dx.doi.org/10.1039/c2ja30030c


D
ow

nl
oa

de
d 

by
 T

U
 B

er
lin

 -
 U

ni
ve

rs
ita

et
sb

ib
l o

n 
13

 J
ul

y 
20

12
Pu

bl
is

he
d 

on
 0

4 
A

pr
il 

20
12

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/C

2J
A

30
03

0C

View Online
3.1.2. Glazes with purple decorations. In Fig. 6 the elemental

profiles of samples containing purple decorative motifs are

compared. Cross-section scans were performed through the

purple/glaze/body of two samples from Coimbra, a faience (C29,

Fig. 6a) and a tile (AZCO3, Fig. 6b), and one sample from Lis-

bon, a tile (AZLX3, Fig. 6c).

Again, in the pictures taken through the microscope, it is

indicated how the scans were performed. Mn is the monitored

element for the purple decoration since its source is a compound

highly abundant in Portugal: Psilomelane [(Ba,H2O)2Mn5O10].

Once again one can see that the faience sample (Fig. 6a) reveals

no interface between color and glaze. The glaze thickness is

approximately 150 mm and the pigment was applied to the glaze

and both had been submitted to one firing stage. There is,

however, a moderate connection between the glaze and the body

in this sample, as observed from the smooth decrease and

increase of the Pb and Fe profiles, respectively.

On comparing the tiles from Coimbra and Lisbon, it seems

that the pigment (Mn) is equally well dispersed through the

glaze in both the samples (Fig. 6b and c). However, the Mn

profile in the sample from Coimbra (Fig. 6b) reveals a broader

maximum at the surface (�50 mm) than in the sample from
Fig. 6 Cross-section scans were performed through the purple/glaze/body of

and one sample from Lisbon, (c) a tile (AZLX3).

970 | J. Anal. At. Spectrom., 2012, 27, 966–974
Lisbon (<25 mm – Fig. 6c). The Cu signal was also plotted

because the purple motifs were applied together with a green

colored layer (as observed in this picture).

The glazes from both the tiles have thicknesses varying

between 250 and 300 mm for the Coimbra and Lisbon samples,

respectively. Again one observes a smoother elemental exchange

at the interface glaze–body in the sample from Lisbon (Fig. 6c)

than in the sample from Coimbra (Fig. 6b).

3.1.3. Glazes with green decorations. In Fig. 7 the elemental

profiles of samples containing green decorative motifs are

compared. Cross-section scans were performed through the

green/glaze/body of one sample from Coimbra, a tile (AZCO3,

Fig. 7a), and one sample from Lisbon, a tile (AZLX3, Fig. 7b).

These samples are the same as the ones where Mn for the

purple color was monitored, but here Cu for the green color was

under investigation. On evaluating the Cu signal, the intake of

pigment into the glaze seems to be higher in the sample from

Lisbon than in the sample from Coimbra. However, a broader

maximum of the Cu signal at the surface from the sample from

Coimbra (�50 mm – Fig. 7a) than in the sample from Lisbon

(�25 mm – Fig. 7b) is observed. Also, the chemical exchange
two samples from Coimbra – (a) a faience (C29) and (b) a tile (AZCO3) –

This journal is ª The Royal Society of Chemistry 2012

http://dx.doi.org/10.1039/c2ja30030c


Fig. 7 Cross-section scans were performed through the green/glaze/body of one sample from Coimbra, (a) a tile (AZCO3), and one sample from

Lisbon, (b) a tile (AZLX3).
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between the glaze and the body seems to be more pronounced in

the sample from Lisbon than in the sample from Coimbra. The

justification is the same as previously explained.

3.1.4. Glazes with yellow decorations. In this section, the

elemental profiles of samples containing yellow decorations are

compared. Fig. 8 corresponds to the cross-section scans carried

out through the yellow/glaze/body of two samples from Coim-

bra, a faience (C41, Fig. 8a) and a tile (AZCO1, Fig. 8b), and one

sample from Lisbon, a tile (AZLX2, Fig. 8c).

Conversely to what has been said regarding the faiences’

features, when one is dealing with yellow pigment, new aspects

arise. The yellow pigment found in these ceramic objects is

a lead–antimony composite. This has large sized crystals, which

makes it difficult for the pigment itself to be dispersed

throughout the glaze as a principle. Furthermore, a single firing

stage just for the pigment (mixed with glaze) could have

occurred. In Fig. 8a one sees that the pigment layer (30 mm) is not

completely dispersed into the glaze (�180 mm). At the interface

glaze–body, once again a smooth decrease of the Pb signal and

a smooth increase of the Fe signal is observed.

Now, by comparing the profiles of Fig. 8b and c, some features

are explained. The pigment layers of both samples appear to have

the same thickness (�100 mm); however, the Pb signal accom-

panying the pigment (in Fig. 8b) has a high drop at the interface

color–glaze, indicating the possibility of a separate firing stage

just for the pigment. This effect is not observed in the sample
This journal is ª The Royal Society of Chemistry 2012
from Lisbon. At the interface glaze/body, the Pb and Fe signals

are smoother in the sample from Lisbon (Fig. 8c) than in the

sample from Coimbra (Fig. 8b).
3.2. Elemental mappings with a Color X-ray Camera (CXC)

Several images corresponding to elemental surface mappings are

presented. These images were taken with the so-called Color

X-ray Camera (CXC), and detailed explanation about the

associated software can be found in ref. 7.

For these measurements, samples with a broad range of

surface decorations were chosen in order to obtain a bigger

elemental variety on these mappings. In Fig. 9 one can observe

the pictures taken of 4 tile samples: AZCO3 (Fig. 9a), AZCO2

(Fig. 9b), AZLX9 (Fig. 9c) and AZLX2 (Fig. 9d). The red square

marks the area of the image taken with the CXC. For each

element a color was arbitrarily assigned. In both samples from

Coimbra (Fig. 9a and b), the analyzed areas have a green base

decoration together with purple motifs on top of it. This explains

the abundant presence of Cu and Mn. The Cu signal is stronger

in sample AZCO3 since it has a thicker layer of green than

sample AZCO2.

For the sample from Fig. 9c (Lisbon), the examined area

corresponds to green, blue and purple motifs over a white glaze

base. One can see the characteristic Cu, Co and Mn signals from

the respective colors. At last the sample from Fig. 9d (Lisbon)

was examined in an area where three different parts are seen:
J. Anal. At. Spectrom., 2012, 27, 966–974 | 971
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Fig. 8 Cross-section scans were performed through the yellow/glaze/body of two samples from Coimbra – (a) a faience (C41) and (b) a tile (AZCO1) –

and one sample from Lisbon, (c) a tile (AZLX2).

Table 2 Summary of the properties of the Lisbon and Coimbra pieces for this set of samples. Differences in the pigment diffusion throughout the glaze
between Lisbon and Coimbra tiles are observable

Coimbra Lisbon

Faiences Tiles Tiles

Glaze Thickness: max. 180 mm Thickness: max. 400 mm Thickness: max. 400 mm
Blue Pigment (Co) completely dispersed

into the glaze (Pb)
Pigment (Co) diffused down �150
mm into the glaze (Pb)

Pigment (Co) diffused down �125
mm into the glaze (Pb)

Purple Pigment (Mn) completely dispersed
into the glaze (Pb)

Pigment (Mn) well diffused into the
glaze (Pb). Mn maximum at the
surface �50 mm broad

Pigment (Mn) well diffused into the
glaze (Pb). Mn maximum at the
surface <25 mm broad

Green Pigment (Cu) completely dispersed
into the glaze (Pb)

Pigment (Cu) well diffused into the
glaze (Pb). Cu maximum at the
surface �50 mm broad

Higher pigment (Cu) intake into the
glaze (Pb). Cu maximum at the
surface �25 mm broad

Yellow Pigment (Sb) thickness: �30 mm. Pigment (Sb) thickness: �100 mm.
Strong drop in Pb signal together
with Sb signal

Pigment (Sb) thickness: �100 mm.
Slight drop in Pb signal after the
pigment layer (Sb)

General features No color–glaze interface, except for
yellow decorations

Broader maximum of the pigment
signal. Slightly lower intake of the
pigment through the glaze

Slightly higher intake of the pigment
into the glaze. Smoother elemental
exchange at the glaze–body interface
0 higher firing temperature

972 | J. Anal. At. Spectrom., 2012, 27, 966–974 This journal is ª The Royal Society of Chemistry 2012
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Fig. 9 Surface elemental mappings were performed with a Color X-ray Camera (CXC) in two samples from Coimbra (a and b) and two samples from

Lisbon (c and d).
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yellow, glaze and purple. By the elemental mapping shown in this

picture, one can see perfectly the characteristic Pb signal from the

glaze lying underneath the Sb signal from yellow and the Mn

signal from purple. An interesting feature is that the darker

purple line in this area has less contribution from Pb than the

brighter part of the purple decoration, where Mn is completely

disseminated with the Pb, throughout the glaze.
4. Conclusions

This study is part of an ongoing investigation, and the number of

samples used here was chosen to be representative of each type of

ceramic as well as the centre of production. The results reported

are given as an example of application and the archaeometric

conclusions hereby presented have a strong support from

previous studies as mentioned throughout this manuscript.

The most important conclusion one can draw from this work is

the usefulness of this method of investigation, and its potential in

studying these types of CH objects is shown.

Cross-section elemental scans with a 1 mm lateral resolution

were performed and general features were extracted. In Table 2,

a summary of the properties of the Lisbon and Coimbra samples

is presented. The major difference is related to the glaze thick-

nesses of faiences and tiles. Faiences revealed a glaze thickness of

up to 180 mm, and tiles revealed a glaze thickness of up to

400 mm.

In general, the maximum of each pigment’s characteristic

signal is broader in the tile samples from Coimbra than in the

ones from Lisbon. However, a slightly higher intake of the

pigment throughout the glaze in the tile samples from Lisbon is

observable.

Another feature is that the tile samples from Lisbon seem to

have a broader glaze/body interface than the ones from Coimbra.
This journal is ª The Royal Society of Chemistry 2012
This means that the chemical exchange between some elements

from the glaze and some elements from the body took place in

a more pronounced way in the samples from Lisbon. Taking

these results into account, several points must be discussed.

There is a high possibility that the glaze was applied raw,

meaning that it had not undergone a previous firing process

before being applied onto the bisque (fired ceramic body).23 This

conclusion derives from the fact that the glazes show defects like

voids or cracks on naked eye inspection. This would have been

much less probable if the glaze had been applied as a frit (pre-

firing process) before application onto the bisque. The raw glaze

is then mixed with water and applied onto the bisque to be fired.

The lead compounds are water soluble and during the firing

process, water is highly absorbed by the ceramic support and this

process drags the lead compounds to the lower part of the glaze.

This migration may also occur with other compounds, such as

Fe. The fact that there is a smoother chemical exchange between

Pb and Fe in the samples from Lisbon, as already mentioned,

leads to the conclusion that Pb migrated further down the glaze

and the samples from Lisbon were subjected to a higher firing

temperature. This last conclusion is also supported by the fact

that the pigment intake in the sample from Lisbon is higher than

that in the samples from Coimbra.

Furthermore, the faiences reveal a typical thin glaze together

with pigment application in a single firing stage. This conclusion

comes from the fact that the signal from Pb and the element

which typifies the color have similar profiles. However, the

yellow decorations do not reveal this. The yellow pigment is

much denser than the other ones (blue, green, purple) making its

dissemination throughout the glaze difficult. Moreover, this

could also be indicative of a single firing stage for the yellow

pigment (mixed with glaze), which was then applied over the base

glaze layer.
J. Anal. At. Spectrom., 2012, 27, 966–974 | 973
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With regard to the elemental mappings provided by the CXC,

it was interesting to visualize how the important elements, which

characterize each color or glaze, are distributed. The character-

istic elements that confer each color are clearly identified by these

pictures. Some of the motifs are applied on top of other colors, as

observed in Fig. 9a and b. The lead in sample AZLX2 (Fig. 9d) is

clearly well distributed throughout the whole glaze layer and

mixed with the pigments as well. This is an indication that the

pigment was applied with glaze, even if a base glaze layer existed

in the sample.

The information about tracing manufacturing techniques used

to fabricate these pieces and the raw materials and mixtures used

complements former investigations. In addition, it is of great

importance for the Portuguese Cultural Heritage field to increase

the knowledge about glazed ceramics.
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This work shows the first analytical results obtained by X-Ray Fluorescence (XRF) (conventional and 3D) and
Scanning Electron Microscopy with Energy Dispersive System (SEM-EDS) on original Portuguese ceramic
pieces produced between the 16th and 18th centuries in Coimbra and Lisbon. Experts distinguished these
productions based only on the color, texture and brightness, which originates mislabeling in some cases.
Thanks to lateral and spatial resolution in the micrometer regime, the results obtained with μ-XRF were
essential in determining the glaze and pigment thicknesses by monitoring the profile of the most abundant
element in each “layer”. Furthermore, the dissemination of these elements throughout the glaze is different
depending on the glaze composition, firing temperature and on the pigment itself. Hence, the crucial point of
this investigation was to analyze and understand the interfaces color/glaze and glaze/ceramic support.
Together with the XRF results, images captured by SEM and the corresponding semi-quantitative EDS data
revealed different manufacturing processes used by the two production centers. Different capture modes
were suitable to distinguish different crystals from theminerals that confer the color of the pigments used and
to enhance the fact that some of them are very well spread through the glassy matrix, sustaining the theory of
an evolved and careful procedure in the manufacturing process of the glaze.
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1. Introduction

Glazed ceramics are very challenging objects of study. By naked
eye inspection, there are several characteristics about a certain piece,
which one can extract immediately: the brightness of a glaze and the
color palette, among others. Although these characteristics give hints
about how the piece was produced, they are not sufficient to
characterize it.

To extend knowledge about the manufacturing procedures
involved in the glazing and surface decoration is the main goal of
this investigation. The items, which served as object of study, were
originally produced between the 16th and 18th centuries in two main
centers in Portugal: Coimbra and Lisbon.

A glazed ceramic object can be divided in three main parts: (1) the
ceramic support, (2) the glaze and (3) the surface decoration (Fig. 1).
The areas marked in red correspond to the interface color/glaze and
glaze/ceramic support. Interface is defined here as an area where a
mixture of two distinctive “layers” can be found. The surface
decoration can be more or less dispersed within the glassy matrix,
depending on the kind of glaze (in terms of chemical composition)
and/or the firing temperature used. Information about the historical
background of the pieces as well as the chemical composition that
characterizes each part, including the pigments composition, is
available in previously published works [1,2].

According to the limited documentation about the possible
manufacturing procedures involved in Portuguese glazed ceramics
based on historical facts [3], several opinions have been developed
about the raw materials, the glaze and color application as well as the
firing stages and temperatures used at different centers of production,
such as Coimbra and Lisbon.

It is known that Coimbra was a less wealthy center of production,
when compared to Lisbon and, hence, the expensive raw materials
were spared as much as possible. Therefore, one would find a broader
range of elements used to confer the intended color. One example is
given by the blue pigments, in which the source of cobalt (Smalt: a
ground blue containing Co) is the main and expensive element. In the
samples from Coimbra, additional elements can be found, such as Mn
to spare the cobalt source. For that reason, in the samples from
Coimbra the blue color has a kind of old-“pinkish” tone mixed to it.
Further assumptions are related with the history of the country itself,

http://dx.doi.org/10.1016/j.sab.2011.02.007
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Fig. 1. Model of a polychrome glazed ceramic. The areas marked in red correspond to
the interface color/glaze and glaze/ceramic support.
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particularly that Lisbon had more influence from the Muslim
occupation than Coimbra, so the recipes may have kept rather
different from each other [4].

There are several possibilities to obtain the final piece. In all cases,
a firing process for the ceramic support took place and then, it may
have happened just one firing process for the base glaze together with
the decorative motives or a separate firing process for the decorative
motives, after the firing for the base glaze. [5]. So, the piece may have
been submitted to either two or three firing processes.

Regarding this study, we are interested in the interfaces: surface
decoration/glaze and glaze/ceramic support, which helps us to
distinguish differences in the manufacturing methods, as well as
the chosen rawmaterials for the glaze formation in both production
centers. Hence, a detailed study of the elemental profiles through-
out the interface areas was carried out, by using laboratory X-Ray
Fluorescence Spectroscopy techniques (conventional XRF and 3D
Micro-XRF). To complement such qualitative data, elemental
content of the surface decoration as well as the glaze beneath/
within were also obtained by means of Scanning Electron
Microscopy with an Energy Dispersive Spectroscopy system
(SEM-EDS).

2. Experimental methodology

A set of fragments from pieces originally produced in Coimbra (11
samples) and in Lisbon (9 samples) (Fig. 2) was collected for
investigation. The art historians made the assignation to Coimbra
and Lisbon on a stylistic basis. All of the fragments were cut with a
diamond saw and polished in order to obtain flat cross sections for
SEM and μ-XRF analyses.

The experimental approach was the following:

i) Conventional XRF measurements were carried out with a 45°
tube-detector geometry setup enclosed in a chamber submit-
ted to a 10 mbar vacuum, belonging to the Atomic Physics
Centre of the University of Lisbon, and fully described in Refs.
[1,2]. The X-ray tube is from Oxford Instruments (California,
USA); the polycapillary optics are from XOS (New York, USA);
and the detector is a Vortex-60EX from SII NanoTechnology
USA Inc. (California, USA). The measurements were performed
using a collimator, which allows an excitation area of about
1.2 mm2, when the sample is placed at a 1.5 mm distance from
the Kapton window, through which the excitation and
fluorescence beams pass. The operating conditions were
50 kV and 1 mA, in order to excite the K-lines of such elements
as Sn and Sb. Each spectrum was acquired for 300 s. Spectra
were collected using a multichannel (4096 channels) and
recorded both in binary mode and in ASCII data mode in order
to perform their evaluation using the PyMCA software code [6].
With this spectrometer, measurements were performed
perpendicular to the surface of each sample on each color
and on the glaze. By using the collimator, a large area of
analysis is obtained, which is more representative of the
whole sample. Decoration and glaze areas are in all cases
larger than 1.2 mm2.
The purpose of this investigation is to have intensity ratios
for specific elements, which will provide us fingerprints of
both production centers.

ii) 3D Micro-XRF measurements were carried out with a tabletop
setup from the Institute for Optics and Atomic Physics at the
Technical University of Berlin. This system is a common
development with ifG (Institute for Scientific Instruments).
The X-ray tube is from Rtw Röntgen-Technik (Neunhagen,
Germany); the polycapillary optics are from IfG (Berlin,
Germany); and the detector is from Bruker nano (Berlin,
Germany). The leading feature of this system is the ability to
perform depth-resolving analysis as is fully described in Ref.
[7]. Due to the high amount of lead in the samples, strong
absorption effects took place. This leads to an information
depth of several tens of micrometers, only, which prevents
further depth resolution. Nevertheless, we took advantage of
another feature of the confocal geometry, which is probing site
selection. The probing volume created in the confocal geometry
allows selective analysis in a certain volume in the micrometer
regime, which reduces the amount of detected scattered
radiation considerably. Therefore, scans just on the surface of
the polished cross section of each sample were performed, in
steps of 5 μm (each during 60 s) through a length that varied
according to the thickness of the relevant part of the sample.
The operating conditions were the maximum for this system:
50 kV and 600 μA. The Full Width at Half Maximum (FWHM) of
the probing volume obtained for Cu–Kα (8.04 keV) was
approximately 42 μm.
In addition to the measurements in confocal geometry (3D),
Micro-XRF measurements (2D — with lenses in the excitation
path only) were carried out at the same cross sections.
Comparing scans along the same cross section obtained by
the two methods, the confocal geometry enables a better
resolving of the elemental profiles along the cross sections, as is
shown in Fig. 3. In this figure we see two scans performed along
the cross section of the same sample (C29) capturing the
pigment (purple), glaze and ceramic support, in 3D mode (a)
and in 2Dmode (b). In 3Dmode, we can clearly see that there is
an interface layer between the pigment and the base glaze,
while with the 2D mode the transition is not so clear. This may
lead to wrong conclusions about the pigment application on
the glaze (see Results and discussion section).
With these results, we are able to monitor the profiles of
certain elements through the interface color/glaze and glaze/
ceramic support. It enables conclusions about the diffusion
ability of elements, which give color, and about the fusibility
of the glaze for these elements. These results also contribute to
revelations on firing temperatures used in both manufactur-
ing centers.

iii) Examinations by SEM were carried out with a Hitachi S4100
system from Bruker (Tokyo, Japan), equipped with Quantax
400 EDS system of Bruker AXS (XFlash Silicon Drift Detector)
(Berlin, Germany). A 15 kV acceleration voltage and a current
intensity of 32 μA were applied. The chemical information by
EDS was taken from an area of 300×400 μm2 selected
regarding its homogeneity and lack of voids, with spectrum
acquisition times at a minimum of 60 s. The semi-quantitative
results were based on a peak-to-background ZAF evaluation
method (P/B-ZAF), being ZAF amatrix correction, mainly based
on analytical expressions for atomic number (Z), X-ray yield,
self-absorption (A) and secondary fluorescence enhancement



Fig. 2. Some analyzed samples: fragments from Coimbra and Lisbon.
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(F), provided by the Esprit software from Bruker AXS
microanalysis. With these measurements, we obtain the
distribution and morphology of certain compounds, which
Fig. 3. Comparison between 3D (a) and 2D (b) cross-section scans of the same sample (C
(characterized by a drop on both line scans) while with the 2D mode this drop is not so cle
are crucial in the manufacturing process determination. In
addition, the composition of color layer and glaze was obtained
with the EDS coupling unit.
29). In 3D mode, we can an interface layer between the pigment and the base glaze
ar.

image of Fig.�3
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3. Results and discussion

The results we present, are representative of the whole set of
samples analyzed from both production centers. The measurements
performed with all methods were carried out in all samples, and
repeated in at least three spots.

3.1. The (white) glaze

In a common way, the glazes from both production centers belong
to a class of “tin opacified lead glazes”, in which the main components
are SiO2, PbO and SnO2. What differentiates the productions is the
ratio between the amounts of these and other important oxides, such
as Na2O, K2O and CaO.

With SEM-EDS, the uniform distribution of cassiterite crystals
(SnO2) throughout the glazes was evident. Tin and lead were usually
burnt together and then added to the glaze. This way, tin oxide was
first dissolved in a silica and lead vitreous matrix and during the firing
process of the glaze, at a temperature of 650 °C, it recrystallized in the
cassiterite structure (SnO2). Once in this form, SnO2 becomes
insoluble in the glaze [8].

As an example, Fig. 4 displays an image taken perpendicular to the
surface of the glaze (not colored) from the pieces (a) C41 from
Coimbra and (b) AZLX1 from Lisbon. One can see howwell distributed
the tin oxide crystals are within the glassy matrix. Their length varies
between 0.5 and 0.8 μm for the former (a) and between 1 and 2 μm for
the latter (b). Furthermore, the EDS results (from SEM-EDS) in Table 1
reveal some differences between the two production centers worth to
discuss. The glazes produced in Coimbra reveal relatively high
amounts of K2O (8.1–9.3 wt.%) and CaO (3.1–3.2wt.%) when
compared with the ones from Lisbon (K2O: 4.3–5.8wt.% and CaO:
0.8–1.1wt.%). This in addition to the amounts of Na2O (0.8–1wt.%)
and PbO (40.1–40.5wt.%) in Coimbra compared to the ones in Lisbon
(Na2O: 3.5–4.2wt.%, and PbO: 45.5–45.9wt.%), leads us to the
preliminary conclusion that the glazes of Lisbon have more fusibility
Fig. 4. SEM image perpendicular to the glaze surface of a sample from Coimbra (a: C41)
and a sample from Lisbon (b: AZLX1).
than the ones from Coimbra. The higher amounts of Na2O and PbO
indicate that the melting point of the glaze is lower than the ones
where higher amounts of K2O and CaO are present. It is already known
that Na and Pb compounds, acting as dominant fluxes in the glaze,
lower the fusion temperature [9].

Other significant results are the ones obtained with the cross
section lateral scans performed with the 3D Micro-XRF setup. Fig. 5a
and b exhibits the profiles for one glaze from Coimbra (a: C41) and
one from Lisbon (b: AZLX1), respectively, for the elements Pb, Sn and
Ca. Scans performed in all the pieces from Coimbra showed that the
glaze thicknesses vary between 150 and 350 μm, whereas the ones
from Lisbon vary between 300 and 400 μm, by monitoring the energy
line of the element, which mainly characterizes the glaze: Pb–Lα
(10.54 keV). These scans also support the results obtained by SEM-
EDS: tin (Sn) is well distributed within the glassy matrix and the
glazes from Coimbra reveal a higher concentration of Ca than the
Lisbon ones, when compared to the other elements in the glaze of the
same sample. Together with the images obtained by the microscope
inside the confocal system, one can easily observe a very well defined
interface glaze/ceramic support, being approximately 50 μm for the
Coimbra sample and smaller than 30 μm for the Lisbon one.

3.2. Colors and pigments

Concerning polychrome glazed ceramics, some facts must be taken
into account. The colors employed on the pieces were usually
obtained by metallic oxides, which could have been used in a “pure”
state or in a mixture called frit, which is a pre-melting of the pigment
together with fluxes, such as Pb, Na, and sometimes even Sn (to make
it more opaque). After cooling down, this mixture (frit) was grinded
until a powder was obtained and then applied over the “base glaze”.
The brilliance or opacity and the migration ability of the elements,
which grant the color, are some factors that help assign the way the
pigment was applied onto/within the glaze [10].

3.2.1. Blue
In general, blue is the most common color in glazed ceramics. The

decorative motives as well as the tones used, make the difference.
Measurements performed with the conventional XRF setup gave us
the possibility analyzing bigger areas (due to the collimator) of the
blue color from both production centers. These analyses were
performed on the surface and, in order to identify the spectra from
the blue color, spectra from the glaze next to these areas were
subtracted. The typical elements detected were Fe, Ni, Co and As
(Smalt) with the presence of Mn and Ba in certain cases mainly from
Coimbra, as it was already discussed [2].

In Fig. 6we can observe: a) comparison between spectra obtained on
the blue color and the respective glaze of a sample from Coimbra (C34);
b) comparison between spectra obtained on the blue color and on the
respective glaze of a sample from Lisbon (AZLX1); c) comparison
between the spectra obtained for the blue colors in Coimbra (C34) and
Lisbon (AZLX1) and d) intensity ratios for the elements associated to the
blue pigment (Smalt). From Fig. 6a and b, we can see the elements that
are associated to the blue color: Mn–Fe–Co–Ni–As are free from
interference coming from the glaze, except Fe, which is also present in
the glaze. Fig. 6c shows that the samples from Coimbra have higher
content of Mn and Ba and less of Co than the ones from Lisbon, which
supports the assumption that Coimbra was a less wealthy center
compared to Lisbon. However, as we can see from Fig. 6d not only the
ratiosMn/Co are higher for Coimbra, but also the ratios Fe/Co, due to less
pronounced values for Co in these samples.

In addition to these results, we present also cross section scans by
3D μ-XRF together with pictures taken with the microscope. Fig. 7a
and b shows an example of the different profiles obtained for a
fragment from Coimbra (a: C34) and one from Lisbon (b: AZLX1). Due
to the images provided by the microscope we clearly see two main

image of Fig.�4
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differences: 1) the glaze of the piece from Coimbra is thinnerTable 1

Composition of the glazes from Coimbra and Lisbon (in% wt.). Analysis perpendicular to the surface obtained with SEM-EDS. The uncertainty varies between 0.1 and 2.8% (for the
lowest and highest values, respectively). The uncertainties represent a Relative Error (in %) reported automatically by the software. The bold numbers give important information
about the glaze properties. The glazes, which have higher amounts of Na2O and PbO are more fusible than the ones, which have higher amounts of K2O and CaO.

Local Na2O MgO Al2O3 SiO2 K2O CaO Fe2O3 PbO SnO2

Coimbra (N=11) 0.8–1 0.2–0.3 2.8–3 31.3–31.9 8.1–9.3 3.1–3.2 3.6–3.7 40.1–40.5 10.4–10.8
Lisbon (N=9) 3.5–4.2 0.6–0.8 3.1–3.7 28.9–29.4 4.3–5.8 0.8–1.1 2.1–2.5 45.5–45.9 9.8–10.3
(~150 μm) than the one from Lisbon (~400 μm); 2) by monitoring
the Co K-line, the pigment distribution throughout the glaze is less in
the Coimbra samples (~50 μm) than the ones from Lisbon (~100 μm).
On one hand, either there is no interface between color and glaze in
the sample from Coimbra or is less than the resolution allowed for the
3DMicro-XRF. This may indicate that glaze and pigment were applied
together, as it is also proved by the Co–Kβ and Pb–Lα profiles (Fig. 7a).
On the other hand, there is an interface color/glaze in the sample from
Lisbon (Fig. 7b). However, the pigment seems to disseminate quite
well through the glaze, which is also proved by the profiles obtained
for Co–Kβ and Pb–Lα. In both cases the fact that Sn appears to bemore
abundant in the lower part of the glaze is noticeable (Fig. 7). In the
case of the sample from Coimbra, it is evident that Sn is the dominant
element on the lower part of the glaze (Fig. 7a). This is in agreement
with the assumption that tin crystals are very dense and tend to
deposit on the lower part of the glaze [8].

3.2.2. Purple
Analyses performed with conventional XRF showed similar

chemical composition in all purple colors from both production
centers (Fig. 8). The dominant element to give the purple color is Mn,
and the presence of Ba in both spectra indicates that the mineral
Psilomelane [(Ba,H2O)2Mn5O10] was used as raw material to obtain
Mn [11].

Further analyses performed by SEM-EDS perpendicular to the
purple surface revealed that the crystals in the purple layer could be
Fig. 5. 3D μ-XRF cross section scans performed on glaze+ceramic sup
observed from both centers of production. However, the Mn crystals
from Coimbra (Fig. 9a: C29) are more noticeable in comparison to the
ones from Lisbon (Fig. 9b: AZLX2). The crystals formed on the sample
from Lisbon appear to be more dispersed into the glaze matrix. The
EDS results from these two samples were obtained by micro-spot
analyses and are displayed in Table 2.

Furthermore, interesting results were also obtainedwith 3D μ-XRF.
The profiles in Fig. 10 correspond to cross-section scans made on the
same samples. In Fig. 10a, the Mn profile is similar to the one of Pb,
where in the left side of the scan Mn corresponds to the purple color
and in the right side it corresponds to the ceramic support. It is also
evident that there is a drop in the Mn and Pb depth profiles between
pigment and base glaze. This was a common result in all analyzed
samples from Coimbra and it leads to the conclusion that the pigment
was applied as a frit. The interface frit/“base glaze” clearly remained
after the firing process and the two “layers” (frit and base glaze) were
practically kept individualized from each other, indicating that the
glaze has low fusibility (due to the presence of Ca also). When we
compare these profiles with the ones from Lisbon (Fig. 10b), we see
that the pigment is well dispersed into the glaze matrix. Furthermore,
there is no accentuated drop in the Pb profile, revealing that the glaze
is more fusible than the one in Coimbra, as it was already explained in
Section 3.1: The (white) glaze. This allows a better dissemination of
the frit in which the pigment was applied through the base glaze.
Although we cannot compare the profiles of Ca obtained in both
centers directly, when we evaluate the profiles Pb and Ca in each
production center, the base glaze from Coimbra (Fig. 10a) has the
port on a sample from a) Coimbra (C41) and b) Lisbon (AZLX1).
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Fig. 7. 3D μ-XRF cross section scans performed on blue+glaze+ceramic support of a sample from a) Coimbra (C34) and b) Lisbon (AZLX1).

Fig. 6. a) Comparison between spectra on blue and glaze of a sample from Coimbra (C34); b) comparison between spectra on blue and glaze of a sample from Lisbon (AZLX1); c)
comparison between spectra on the blue of the two samples; The samples from Coimbra have higher content of Mn and Ba and less of Co than the ones from Lisbon, which supports
the assumption that Coimbra was a less wealthy center compared to Lisbon. d) intensity ratio of Fe and Mn with respect to Co, obtained on the blue in the set of samples from
Coimbra and Lisbon.
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Fig. 8. Comparison of spectra obtained with conventional XRF for a) Coimbra (C29) and b) Lisbon (AZLX2) samples on the purple color.

Fig. 9. SEM images perpendicular to the purple surface of a sample from Coimbra (a: C29) and a sample from Lisbon (b: AZLX2).
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same intensity in Pb and Ca. Conversely, the base glaze from Lisbon
(Fig. 10b) has much less Ca in comparison to the Pb signal. This is in
agreement with the higher fusibility of the glazes from Lisbon.
3.2.3. Yellow/orange
From all the colors used in glazed ceramics, the yellow or orange

comes out to be the most interesting one. By naked eye observation, we
noticed that inCoimbra, this color tends tobeorange and in Lisbonyellow.

The first results were obtained by conventional XRF, where
different samples were analyzed from both centers and some
differences are already noticed. Fig. 11 shows a spectrum of glaze
and yellow from Coimbra (a: C41) and from Lisbon (b: AZLX1). From
the spectra, we see that this pigment comes from the same compound,
which is a lead–antimony (Pb2Sb2O7) composite called Naples yellow
[12]. In Fig. 11c, we can see that the samples from Coimbra appear to
have higher Fe andMn count rate than the ones from Lisbon. This may
be a justification for the orange tone exhibited by the samples from
Coimbra. Furthermore, the ones from Lisbon revealed higher count
rates in Sn and lower in Sb, which possibly indicates that Sn4+, may
have replaced the ion Sb3+ in the lead–antimony compound,
provoking changes in the molecular structure [13].
Table 2
Comparison between the purple chromophore phases from Coimbra (C29) and from Lisbo
crystals (MnO) formed on the sample from Lisboa are more dispersed into the glaze matr
represent a Relative Error (in %) reported automatically by the software.

Sample Na2O MgO Al2O3 SiO2

C29 Coimbra 1.6±0.1 0.6±0.1 3.3±0.2 28.4±1.0
AZLX2 Lisbon 0.7±0.1 0.9±0.1 3.2±0.1 36.3±1.1
Other relevant results are the ones we could obtain with SEM-EDS.
Fig. 12a and b shows images taken perpendicular to the surface of the
yellow color in one sample from Coimbra (a: C41) and one sample
from Lisbon (b: AZLX2). Fig. 12c and d displays images taken
perpendicular to the cross section of the samples in order to evaluate
the interfaces in Coimbra (c) and in Lisbon (d).

The crystals identified in both images (a and b) have a triangular
and hexagonal shape, which is typical for the Naples yellow pigment
[12,14]. Additionally, the shape of the crystals is also a hint to estimate
the firing temperature. According to Ref. [12], from 950 °C up some
crystals start to form agglomerates, but in an irregular way (as it
might be recognized in Fig. 12a, in Coimbra), and only from 1100 °C
the nice hexagonal phase starts to appear (as it is shown on Fig. 12b, in
Lisbon). In sample C41 (from Coimbra) (Fig. 11a) the crystals are
somehow irregular and still very small (b1 μm) in comparison to the
crystals in sample AZLX2 (Lisbon) (Fig. 12b), where they are very well
shaped, having already a hexagonal shape.

Furthermore, the semi-quantitative results obtained from EDS
(Table 3) on these samples lead to the assumption that different firing
temperatures were used. The values of Sb2O5 and SiO2 obtained for
Coimbra and Lisbon show great discrepancy. This is because in
Coimbra, the values represent the yellow chromophore phases within
n (AZLX2). Analysis perpendicular to the surface obtained with SEM-EDS. The purple
ix. This suggests the higher amount of MnO detected with the EDS. The uncertainties

K2O CaO MnO Fe2O3 PbO

5.8±0.2 2.9±0.1 10.8±0.3 4.0±0.1 42.6±2.6
5.4±0.2 10.4±0.3 24.7±0.6 1.2±0.1 18.3±1.0
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Fig. 10. 3D μ-XRF cross section scans performed on purple+glaze+ceramic support on a sample from a) Coimbra (C29) and b) Lisbon (AZLX2).

Fig. 11. a) Comparison between spectra on yellow and glaze of a sample from Coimbra (C41); b) comparison between spectra on yellow and glaze of a sample from Lisbon (AZLX2);
c) comparison between spectra on the yellow in the two samples.
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Fig. 12. SEM images perpendicular to the yellow surface of a sample from Coimbra (a: C41) and a sample from Lisbon (b: AZLX2). SEM images perpendicular to the cross section of
sample C41 (c) and sample AZLX2 (d).
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the glassy matrix (small crystals) and in Lisbon, the values represent
the yellow chromophore phase (just onto the crystal: hexagonal).
These semi-quantitative data are an indication that in fact some
differences between the chromophore phases exist whenwe compare
the two production centers.

Now, looking to Fig. 12c and d there are also some considerations.
They both represent cross section images from sample C41 (c) and
AZLX2 (d). The one from Coimbra (c) shows clearly an interface
between color/glaze and glaze/ceramic support. These are character-
ized by a certain amount of bubbles, some of them contain cerussite
(lead carbonate: PbCO3) due to weathering. The picture from the
Lisbon piece (Fig. 12d) is a magnification of the possible interface
color/glaze and in this case, it is not as evident as in the case of the
sample from Coimbra. These are all indicative of different firing
temperatures.

In complement to the results, we present also, the ones obtained
with 3D μ-XRF relative to the cross section scans. Fig. 13a represents a
scan of the sample C41 (Coimbra) and Fig. 13b the sample AZLX2
(Lisbon). Once again, theprofiles fromthe sample fromCoimbra reveal a
drop in the Pb–Lα profile, which indicates non-homogeneity between
base glaze and the frit in which the pigmentwas applied. The profiles of
Table 3
Comparison between the yellow chromophore phases from Coimbra (C41) and from Lisbon (AZLX2). Analysis perpendicular to the surface obtained with SEM-EDS. The EDS analysis
on the sample from Lisbon were performed onto a single crystal which confers the yellow color. This justifies the higher amount of Sb2O5 and a lower amount of SiO2 when
compared with the sample from Coimbra. The uncertainties represent a Relative Error (in %) reported automatically by the software.

Sample Na2O Al2O3 SiO2 K2O Fe2O3 PbO Sb2O5

5.1±0.2 6.7±0.4 47.9±1.6 16.7±1.4
– 3.7±0.2 47.5±2.8 40.1±2.3
the sample fromLisbon showahigher homogeneitywithin all elements.

C41 Coimbra 0.8±0.1 1.9±0.1 20.8±0.1
AZLX2 Lisbon 2.5±0.2 1.6±0.1 4.1±0.2
However, the fact that the profile of Sb ismore isolated fromPb suggests
once again that the glaze inwhich the pigment is applied ismore fusible
than the one from Coimbra. In contrast, the Pb tends to go down the
glaze due to its higher density. The Sn profiles indicate once again that
the SnO2 crystals tend to deposit on the lower part of the glaze.

4. Conclusions

It is clear that Portuguese polychrome glazed ceramics have an
intrinsic value by the way they were produced: the broad poly-
chromic pallet, the obtained tones or even the careful manufacturing
procedure in order to achieve such slight differences.

Comparing the data obtained for the twomain important production
centers, Lisbon and Coimbra, new results about the rawmaterials used
as well as the possible manufacturing techniques have been achieved.
Due to the lack of archaeometric information on Portuguese ceramic
production, we used the knowledge frompreviousworks performed on
Spanish and Italian glazed ceramics [4,8,10,12–14], sincewe are dealing
with similar types of samples. Hence, this work presents the first
archaeometric results about Portuguese glazed ceramics produced in
Coimbra and Lisbon as a comparative study.
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Fig. 13. 3D μ-XRF cross section scans performed on yellow+glaze+ceramic support on a sample from a) Coimbra (C41) and b) Lisbon (AZLX2).
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The compositional and microtextural data obtained for both
groups of samples revealed differences in the properties of the glazes:
the ones from Coimbra are less fusible than the ones from Lisbon. This
was noticeable by all the results obtained with the different
techniques. Glazes with a higher content of Na and Pb have a lower
melting point than the ones with a higher content of K and Ca. This
was also evident when the pigments were applied to the glaze in the
form of frit. For this manufacture procedure, a more pronounced
interface between pigment and glaze was found in the SEM images.
However, when the frit and the base glaze onto which the pigment
was applied had higher fusibility and/or if the firing temperature was
higher than in other cases, the interfaces were not so distinguishable.
This could be detected by the 3D Micro-XRF scans. In all images
correspondent to the samples from Coimbra the elements are less
disseminated throughout the glaze than the ones from Lisbon. This
means that the element that gives the color (Co in the case of blue, Mn
in the case of purple and Sb in the case of yellow) is more
concentrated on the surface of the sample from Coimbra than the
ones from Lisbon. This lack of ability in going further down into the
glaze is more related with the glaze composition than with the
pigment itself. However, blue and purple pigments have in principle
more ability of diffusion than the yellow ones when applied to the
same glaze. This is due to the molecule size and ability in
homogenizing themselves into the glassy matrix.

Another conclusion can be drawn from the analysis of the yellow
pigment. Not only the dissemination of the pigment throughout the
glaze is less in the samples from Coimbra but also the irregularity of
the crystals in the yellow seen in these samples is higher in
comparison to the hexagonal shaped crystals from Lisbon. This
indicates that the samples from Lisbon were submitted to a higher
temperature than the ones in Coimbra.

Summarizing, in this study, some questions mainly related to the
glaze properties have been clarified by comparing the manufacturing
centers of Coimbra and Lisbon as well as the pigment application and
possible firing temperatures used.

As a next step of the project, it becomes necessary to evaluate the
surface composition of all samples with μ-XRD together with μ-Raman
in order to know the local composition of the pigments, and their
evolution along the time.
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Several glazed ceramic pieces, originally produced in Coimbra (Portugal), were submitted to elemental
analysis, having as premise the pigment manufacture production recognition. Although having been
produced in Coimbra, their location changed as time passed due to historical reasons. A recent exhibition in
Coimbra brought together a great number of these pieces and in situ micro Energy Dispersive X-ray
Fluorescence (µ-EDXRF) analyses were performed in order to achieve some chemical and physical data on
the manufacture of faiences in Coimbra.
A non-commercial µ-EDXRF equipment for in situ analysis was employed in this work, carrying some
important improvements when compared to the conventional ones, namely, analyzing spot sizes of about
100 µm diameter. The combination of a capillary X-ray lens with a new generation of low power microfocus
X-ray tube and a drift chamber detector enabled a portable unit for micro-XRF with a few tens of µm lateral
resolution. The advantages in using a portable system emphasized with polycapillary optics enabled to
distinguish proximal different pigmented areas, as well as the glaze itself.
These first scientific results on the pigment analysis of the collection of faiences seem to point to a unique
production center with own techniques and raw materials. This conclusion arose with identification of the
blue pigments having in its constitution Mn, Fe Co and As and the yellows as a result of the combination
between Pb and Sb. A statistical treatment was used to reveal groups of similarities on the pigments
elemental profile.
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1. Introduction

The presence of coloration in an art object is one of the first
characteristics to draw our attention and sometimes a starting point
to make some cataloging about it. In fact, color has played an
important role since ancient societies dated back to Egyptian times
[1].

When the first Egyptians used color they believed it had magical
abilities related with healing. They created the “Blue frit” by grinding
down blue grass. The “Blue frit”, also known as “Egyptian blue”, is
made from quartz, lime, a copper compound, and an alkali flux, all
heated to a temperature between 850 and 1000 °C [2]. Frit is a
ceramic composition that has been fused, quenched to form a glass,
and granulated. Frits form an important part of the batches used in
ceramic glazes; the purpose of this pre-fusion is to render any
soluble and/or toxic components insoluble by causing them to
combine with silica and other added oxides and also to form a more
uniform glaze surface on which the pigments can be applied more
easily [3,4].

Color still creates an impact in our perception to define a certain
object, regarding the cultural heritage of a country. For example, in
Portuguese ceramic manufacture there was a marked preference for
bluish glazes rather than yellowish in the decorative ceramic pieces.
The ones which tend more to yellow-like color were seen as more
commercial and not so fine as the blue-like ones [5].

In order to improve the knowledge of Portuguese glazed ceramics,
this work aims to identify the colors used on this special type of
pottery, which intend to identify “faiences of Coimbra”. Therefore, we
quantify the kind of used pigments, as a key to classify the museum
pieces. This investigation brings additional information regarding a
former study already published by the authors [6], where the ceramic
support and glaze of the same kind of pottery were characterized.

Historical and documental research based on examination of style,
decorative motives and manufacture techniques provide a crucial
set of information regarding typological and provenance matters. In
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addition to this classification method we will provide scientific
results, in particular through the use of in situmicro Energy Dispersive
X-ray Fluorescence (µ-EDXRF).

Many special features like providing a good elemental coverage,
high sensitivity for a wide range of elements and non-destructiveness,
have labeled the XRF technique themost popular and the best starting
point of a detailed scientific investigation [7–11]. These features
together with a good quantification method and accomplished with a
good statistical data treatment are in many cases enough to
characterize the kind of objects at stake.

2. Materials

2.1. Provenance context

The type of pottery we study in this investigation is influenced
by Northern Africa cultures especially from Maghreb. During the
Renaissance, the tin glaze method applied to the ceramic body was
manufactured in that region, which was rapidly spread to the
southern European countries [3].

The ceramic pieces with this kind of glaze may have two
designations: majolica or faience. The designation is associated to
the place from where they were exported: from Majorca (Spain) or
from Faenza (Italy), respectively. The faiences according to this
technique were for the first time produced in Portugal in potteries
from Lisbon on the second half of the XVI century [12].

At this time (end of the 16th century until beginning of the 17th)
the Portuguese ceramic production consisted on common objects
with “fast-made” decorative motives, which made this faience pro-
duction the cheapest one and the preferred one from the middle class
to use in their daily life.

In the first half of the XVII century we witness a reduction of the
people involved in the ceramic production, maybe due to outcome of
many cases of Pest diseases.
Fig. 1. Examples of glazed ceramics from Coimbra: (a) polychrome piece “Prato Vasconselos”
decorative motives used in these pieces only in blue, such as laces (marked in the picture), t
piece from Coimbra: 14.5×24×Ø15 cm.
In the second half of the XVII century, an increase of production in
Coimbra was noticeable. At this time there was an offspring of new
designations for this kind of activities (porcelain painters, oil painters
and ceramic tileworks—Portuguese azulejo).

From the polychromic patterns used in the pieces produced in
Coimbra, it is possible to distinguish, in a clearly divergent way, the
production of this region from the pieces produced in other big
production centers. To the production in Coimbra we can assign
several features, such as the colors used as contours (Fig. 1). These
varied from purple manganese to blue cobalt, enhancing a better
definition of the limits between different decorative motives.

Under these conditions and based on historical and documental
research, supported by examination of the style, the polychromic
pieces having a mate vitreous surface, covered by dense and earthy
decorative tones, seem to be characteristic from Coimbra. However,
some doubts are still remaining concerning the pieces where the only
chromatic tone is the blue. Furthermore, in these pieces two other
characteristics can be allocated. The first one is that a mold from
which all these pieces were manufactured might be existed, and the
second one is that these pieces were performed prior in white, and
following the glaze firing process some of them have been painted.
Other characteristics rely on the decorative motives used in these
pieces only in blue, such as laces.

2.2. Sample set

The analyzed pieces belong to a period between the XVI and
XIX centuries and they are thought to be originally produced in
Coimbra.

Nowadays these pieces belong to different museums in different
locations in Portugal but a recent exhibition, aiming to show a large
set of Coimbra ceramic manufacture, brought them together.
The micro-EDXRF analyses were carried out in situ at the Museu
Machado Castro in Coimbra. So, from the large number of pieces and
: 6×Ø27 cm (b) the use of purples “Prato Mulher Pássaro”: 4.8×Ø27.4 cm; (c) old plate:
ypical from Coimbra “Prato Flor”: 5.3×Ø33.6 cm; (d) µ-EDXRF in situ analysis of an old



Table 1
Description of the 49 analyzed pieces.

Designation Primary glaze Color decoration

Prato 1739 White B, P
Bica Light yellow G, P
Bispo azul e branco White B, P
Bispo azul e verde White B, G
Caco amarelo White Y
Caco verde e amarelo White G, Y
Depósito Light blue B, G, Y, P
Esfinge amarela Light yellow B
Esfinge branca White B
Estatueta White B, P
Estatueta rapariga White B, G, Y, O
Lavabo Light blue B, G, Y, P
Prato “macaco” White B, P
Prato “mulher-pássaro” Light yellow B, P
Placa de Sto. António Light blue B, G, Y, BR
Pote Light yellow B, G, P
Pote “Agva Bendita” White B
Pote com asas White B, Y, P
Pote azul White B
Prato “vascomselos” White B, Y, P
Prato “Apalpar” White B
Prato “brazão amarelo” Light yellow B, Y, P
Prato “brazão azul” White B
Prato “brazão leão” Light yellow B, P
Prato “caçadores” White B, P
Prato “Anto Da Rocha” White B, P
Prato “cara” White B, P
Prato “coelho” Light yellow B, P
Prato “caravelas” Light blue B, BR
Prato “D. Quixote” Light blue B, G, Y, P
Prato “flor” White B
Prato “história” White B, P
Prato “Joaquim Pessoa” White B
Prato “laranja” Light blue B, G, O
Prato “leão” White B, P
Prato “lobo” White B, P
Prato “menina” White B, Y
Prato “menina pavão” White B
Prato “mocho” White B, P
Prato “MPerêra” White B
Prato “rainha” White B, G, P
Prato “rainha santa” White B, P
Prato “roza” White B
Prato “sétimo centenário” White B, G, BR
Prato “soldado” White B, G, Y, P
Prato “capacete” Light yellow B, BR
Estatueta “Sto. António” White B, P
Terrina White B, G, Y, P
Virgem White B, G

B—Blue; P—Purple G—Green; Y—Yellow; BR—Brown; O—Orange.

Fig. 2. Overlapping of spectra from three different colored
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after a careful tracking from the historical point of view, 49 pieces
have been chosen for analysis. Looking at Table 1 we see that blue is
in 46 pieces, purple in 27 pieces, green in 15 pieces, yellow in 13 and
brown and orange in just 6 pieces. These are the colors to be
characterized.

3. Experimental

3.1. µ-EDXRF method

For elemental determination, an Energy Dispersive X-ray Fluores-
cence (EDXRF) spectrometer, with micro beam capabilities was used.

The µ-EDXRF system consists of a sided-Be window with a Mo
anode OXFORD XTF5011 X-ray tube and a Silicon Drift Detector (SDD)
Thermoelectrically Cooled (TEC) Vortex-60EX® (FWHM at 160 eV at
Fe–Kα line energy) with an active area of 50 mm2 and a 25 µm
thickness Be window. The instrumentation is on a 45 degree detector
to tube XRF geometric arrangement.

The characteristic radiation and Bremsstrahlung were emitted by
means of polycapillary focusing optics [13], allowing a focal spot of
100 µm for Fe–Kα. The distance positioning was accomplished owed
to two laser points and the analyzed spot could be visualized due to a
camera. The X-ray beam as well as the detector snout is housed in a
vacuum chamber, down to a 10 mbar pressure [14]. These measure-
ments were performed in situ directly on the pieces (Fig. 1d).

Each spectrum was collected during 300 s by a digital pulse
processor with PI-SpecA software application and the spectral
qualification and further quantitative results obtained by using the
PyMCA software code [15].

3.2. Statistical data handling

After quantifying the elements from the several analyzed pieces,
we tried to find some correlations between the elements character-
istics to each color used in the decoration of the pieces. In order to
accomplish those correlations we resorted to two statistical applica-
tions, the Pearson test and the Scatter Matrix Plot.

The Pearson Correlation Coefficient is usually signified by r (rho),
and can have the values from−1.0 to 1.0. A perfect negative (inverse)
correlation corresponds to −1.0; 0.0 means no correlation, and 1.0
corresponds to a perfect positive correlation.

Another interesting tool is the Scatter Matrix Plot. A scatter matrix
is a pair-wise scatter plot of several variables presented in a matrix
format. It can be used to determine whether the variables are
areas (purple, yellow and blue) in a polychrome piece.



Table 2
Correlation matrix performed for the blue color. In bold are the significant correlations.

Cl K Ca Ti Mn Fe Co Ni Cu Zn As Pb

Cl 0.304 0.129 0.291 0.013 0.297 0.372 0.400 −0.037 −0.014 0.285 0.104
K 0.246 0.333 0.329 0.423 0.229 0.148 −0.068 0.010 0.230 0.032
Ca 0.062 0.449 0.157 0.019 0.044 0.015 0.098 −0.036 −0.114
Ti 0.240 0.582 0.486 0.232 0.111 0.049 0.512 −0.026
Mn 0.152 0.065 −0.056 −0.089 0.083 −0.107 −0.221
Fe 0.681 0.621 0.125 0.053 0.725 0.041
Co 0.812 0.030 −0.056 0.714 0.229
Ni 0.075 −0.126 0.496 0.248
Cu 0.237 −0.053 0.206
Zn −0.103 0.171
As 0.045
Pb
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correlated and whether the correlation is positive or negative1 [16]. If
one draws the line Y=x in the square of the relation between two
elements, and the dots seem to tend to this line, their relation is
positive; If they tend to Y=−x, their relation is negative.

4. Results and discussion

In each piece all colors were analyzed in several points and some
pattern arose from the evaluation of the spectra.

We started by noticing which elemental profile arises from the
kind of pieces that definitely characterize the ceramics from Coimbra.

In the blue painted areas (Fig. 2) the elements Fe, Co Ni and As are
present. Furthermore, the Pearson test (Table 2) revealed strong
positive correlation between these elements which is indicative of its
use to produce the blue pigment, like ground cobalt glass (Co(SiO2)n)
namely smalt, which is a blue glassmatrix where tetrahedral holes are
partly filled with Co2+ ions. The high correlation between Co and Ni
(0.812) and Co and As (0.714) and also Fe and As (0.725) and Co and
Fe (0.621) indicates that the raw material is related with cobaltite
groupmix minerals mainly Cobaltite a Cobalt Arsenic Sulfide ((Co, Fe)
AsS) and Gersdorffite a Nickel Arsenic Sulfide NiAsS, or the related
weathered mineral erythrite (Co3(AsO4)2.8H2O), more common as a
blue pigment [17].

The purple (Fig. 2) was the second most used color. Through µ-
EDXRF spectra inspection we could testify that its characteristic
element is Mn, which indicates that it was obtained by the use
of ground manganite mineral originating Manganese Oxide Hydrox-
ide MnO(OH). From the Scatter Matrix Plot (Fig. 3a) for the purple
color we can see a positive relation with Fe since manganite is
Fig. 3. Scatter matrix plots. (a) P
commonly related with iron hydroxides (goethite) and iron carbo-
nates (siderite) in surface sedimentary deposits.

The spectra corresponding to the green areas revealed Cu as the
characteristic element for this pigment. An exception was revealed by
the piece Prato “sétimo centenário”, containing high amounts of Ti
and Zn and a very low content of Cu. This might be indicative that the
piece is a recent one, maybe belonging to the XIX century. In fact, the
motives and color densities are different than the rest of the set. In
addition, the piece has some writings regarding the celebration at the
year 1895. The performed tests did not reveal any correlations
between the elements present in the green areas (Fig. 3b).

Themeasurements in the yellow colors revealed the presence of Sb
together with very strong peaks of Pb. This suggests a crystalline
phase of antimony and lead like the synthetic yellow pigment of
Naples yellow (Pb3(SbO4)2) [18].

Nevertheless a positive correlation for these elements was not
found (Table 3). This can be explained considering that the pieces are
lead-based glazes, so the measurements of Pb are always affected by
the Pb of the glaze.

Other colors such as orange and brownwere also analyzed and the
obtained spectra present mainly Mn and Fe in their composition. This
suggests the use of ochres of these elements. These results are in
agreement with the documented hypothesis that manganese oxides
and iron oxides and hydroxides were responsible for the orange and
brown colors [5].

The ceramic production in Coimbra is also distinguished by
another characteristic which is the careful and detailed contours
between the painted areas, usually in purple. In Fig. 4 we can observe
that the contours are more dense colored areas and this is evidenced
urple color b) green color.



Table 3
Correlation matrix performed for the yellow color. In bold are the significant correlations.

Cl K Ca Ti Mn Fe Ni Cu Zn Sb Pb

Cl −0.375 −0.133 0.090 −0.449 0.611 −0.324 0.137 −0.135 −0.102 −0.010
K −0.112 0.382 0.584 −0.066 0.317 0.112 −0.213 −0.340 0.554
Ca 0.350 0.416 0.460 0.274 0.469 −0.153 0.216 0.236
Ti 0.537 0.525 −0.010 0.339 −0.355 −0.006 0.397
Mn −0.089 0.655 0.428 −0.334 0.021 0.578
Fe −0.320 0.432 −0.185 −0.213 0.148
Ni 0.291 −0.360 0.208 0.449
Cu −0.783 0.146 0.028
Zn −0.109 −0.165
Sb −0.484
Pb
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by the increase in manganese and the decrease of lead (characteristic
from the glaze), due to a thicker layer of purple color.

5. Conclusions

From this work we can conclude that the glaze decoration
performed after the primary glaze was obtained mainly by cobalt
oxide pigments that confer the blue tones, the iron oxides and
hydroxides responsible for the colors between orange and brown, the
purple out of manganese oxides (typically used for contours), the
green pigments essentially out of copper, and the yellows are a
pigment based on antimony and lead. The remaining colors or tones
result from the “chromatic density” and the combination of these
pigments application.

This work is a successful application of a polycapillary lens in
EDXRF portable equipment in order to study the colors, ornaments
and contours in these exceptional pieces. Furthermore, this also
emphasizes the use of a non-destructive in situ technique, which is a
requisite to study valuable pieces that cannot be removed from the
museums.

As a final remark we would like to end this work citing an old
description of the ceramics from Coimbra belonging to Joaquim de
Vasconcelos:

“The only one in Portugal representing the oriental tradition and
preserving characteristics from the Arabic style. This paint,
simulating birds, peacock tails, traced over a background formed
by green areas, produces a unique effect at one sight, gives to this
ceramics an archaic aspect, which is impossible to confuse it with
any other region” [5].
Fig. 4. Comparison of purple colors betwe
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Abstract Chemical, mineralogical and textural character-
izations were performed on glazed pieces prepared in
laboratory as well as on faiences fragments collected from
the existing remains in “Santa Clara-a-Velha” monastery
(Coimbra, Portugal). The chemical investigation was
carried out using micro X-ray fluorescence (µ-EDXRF)
and wavelength dispersive X-ray fluorescence (WDXRF);
the mineralogical results using X-ray diffraction (XRD) and
the textural profile was obtained by scanning electron
microscopy coupled with an energy dispersive spectroscopy
system (SEM-EDS). Attention has been drawn to the glaze
mineralogical changes during the firing temperature pro-
cess, where three different types of glazes were submitted
to three different firing temperatures (800 °C, 900 °C and
1,000 °C). Under these conditions, it is possible to relate
the mineralogical content of the fragments to their firing
temperature. Furthermore, we focused our purposes on
identifying the technological aspects of the ceramic
production in Coimbra, such as the raw materials, manu-
facture techniques and firing temperature adopted for the
glaze. The latter aspect is highly dependent on the ceramic
materials. In the framework of a more general project, this
survey has as premise the recognition of a pattern, which is
thought to be exclusively typical from the region of
Coimbra. The perspective developed in the present work is

towards reliable archaeometric criteria, which can be used to
characterise scientifically the ceramics from Coimbra.

Keywords Portuguese faiences . Glaze characterization .

Spectrometry techniques . Authenticity . X-ray spectroscopy
(XPS | XRF | EDX) . Diffraction methods (LEED | X-ray) .

Archaeometry/fine arts

Introduction

Many ceramic studies are easily found through the
inspection of scientific international journals [1–6]. How-
ever, there is an apparent lack of scientific results
concerning the ceramic Portuguese cultural Heritage.

Several faience fragments, out of a large number,
collected originally from the “Santa Clara-a-Velha” monas-
tery remains, were examined through spectroscopic techni-
ques to obtain their chemical and mineralogical profile.
With this statement, we aim to perform consistent criteria
that lead to scientific results and define a group of glazed
ceramics (faiences), produced in Coimbra from the six-
teenth to nineteenth centuries.

Between the sixteenth to nineteenth centuries, the
production of ceramics in Portugal was based on three big
production centres: Coimbra, Lisbon and Alcobaça. How-
ever, the different productions of these workshops cannot,
nowadays, be easily separated.

The classification of these pieces is exclusively based on
the inscriptions associated to the label of the workshop
manufactures. It is essential to establish scientific tracers, like
physical, chemical, mineralogical, textural and technological
ones, which allow to distinguish these productions centres.

The importance of the ceramic production in Coimbra is
very well documented [7–11]. However, in most of the
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cases, it is difficult to combine documental and material
information, taking into account that most of the documents
rely on unassigned pieces, which were produced in
Coimbra.

A recent exhaustive documental work [12] describes
clearly and in detail the manufacture from Coimbra, but
such a complete study is still missing for other locations.
The development of a scientific methodology can after-
wards be applied to other manufacture centres, opening the
path for the identification and characterization of the
Portuguese ceramic production.

Taking these assumptions into account, this article
presents chemical, mineralogical and textural data,
concerning the glaze coatings used in the type of Coimbra
faiences. For this purpose, two parallel approaches were
considered: first, we studied the glaze coatings applied in
the bisque (fired ceramic body) in simulated pieces
prepared in laboratory. These model samples intend to
reproduce the composition of the old ones (Fig. 1). We
submitted these samples to three different temperatures,
selected according to the range of temperatures that might
be used in the original production of the sixteenth to
nineteenth centuries. The glazes applied in the laboratory
were obtained commercially in the form of frit, which
means that the raw materials are pre-melted, then cooled
down and grinded until obtain a uniform powder. With this
process, the glaze acquires a bigger uniformity (concerning
density and granularity) and the toxicity is reduced [13].

These pieces were analysed by several spectrometric
techniques in order to obtain the data.

In parallel, we analysed by the same techniques, some
original faience fragments from Coimbra in order to identify
characteristic tracers from this production centre (Fig. 2).

The existing recognised studies on these faience frag-
ments is supported basically by their chromatic and
decorative characteristics, and were based on detailed
descriptions of the ceramic production of Coimbra [12].
From this reference, important information can be
extracted, namely, from the geologic point of view: (1)
the ceramic support is generically characterised by a fine
texture, light colour and sometimes red spots where non
plastic elements are millimetric or eye visible, long pores
oriented parallel to the surface are dispersed in the matrix.
These aspects reveal the use of several raw materials and
carelessness in the paste preparation.

(2) The glaze that is often associated to the ceramics
from Coimbra is mostly characterised by a typical layer,
which is used to masquerade the natural colour from the
bisque (fired ceramic body), resulting in a matte aspect due
to its textural composition.

The studied fragments were identified as belonging to
the class of the majolica ceramics (sixteenth to nineteenth
centuries).

Some of the most important aspects of majolica
produced in Coimbra can be summarised: in 1514 is
primarily established the price list of each kind of ceramic,
but still no information about the used production tech-
nique. In this period, the glazed objects start to be frequent
in Coimbra, due to the bad quality of the clay used for the
ceramic body. In the seventeenth century, for the first time,
appeared the reference to three different types of ceramic
produced in Coimbra—the white one, the green, the yellow
one and the red clay. The oxides could eventually be
applied in a third firing process, which can explain the
revealed chromatic density, and also the matte appearance
and small white areas. In the eighteenth century, the ceramic
from Coimbra reached the highest point. During this century,
some of the masterpieces of the faience from Coimbra were
created and became famous all over the world through the
Portuguese trade market with colonies from India, China,
etc. In the nineteenth century, a new kind of faience was
produced in Coimbra called “Ratinha”. It is characterised by
having a coarser paste aspect and a yellowish glaze, due to
the bigger amount of tin included in the mixture.

The selected techniques for this study were: µ-EDXRF,
WDXRF, XRD and SEM-EDS. EDXRF and XRD are non-
destructive and give elemental and chemical composition of
the glaze. SEM-EDS allows mostly to identify the
homogeneity of the material and WDXRF, besides being
destructive, was used in this study as a complementary
technique of µ-EDXRF, for quantitative analysis.

All are well-established techniques and especially EDXRF,
due to its portability, have been used successfully to study
several characteristics in cultural heritage objects [14–16].

Experimental

Experimental setup

The experimental techniques at our disposal were: µ-
EDXRF, WDXRF, XRD and SEM-EDS. With these
techniques we were able to extract the desired information:
chemical, mineralogical and textural profiles.

The chemical profile of the prepared glazed pieces as
well as the faience fragments was undertaken by µ-EDXRF
and WDXRF.

The µ-EDXRF system consists on a sided-Be window
with a Mo anode OXFORD XTF5011 X-ray tube and a
silicon drift detector thermoelectrically cooled Vortex 60EX
(FWHM≈160 eV at Fe-Kα line energy) with an active area
of 50 mm2 and a 25 µm thickness Be window. The
instrumentation is on a 45° detector to tube X-ray
fluorescence spectrometer (XRF) geometric arrangement.

The characteristic radiation and Bremsstrahlung can be
emitted whether by means of a polycapillary lens or by a
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collimator, allowing a focal spot of 100 µm for the former
and 1.2 mm for the latter. The distance positioning was
accomplished owing to two laser points and the analysed
spot could be visualised by a camera.

The X-ray beam as well as the detector snout is housed
in a vacuum chamber, down to a 10 mbar pressure [17].
These measurements were performed through a non-
destructive method.

The WDXRF system consists on an XRF spectrometer
Philips PW 1410/00, using a Cr-Kα radiation. Lost on

ignition (LOI) values were obtained by heating samples at
1,000 °C for 3 h.

The mineralogical results were obtained through XRD.
These analyses were performed with a Philips X'Pert PW
3040/60 goniometer, using Cu-Kα radiation, 50 kV and
30 mA, automatic divergent notch graphite monochromator
and a step size of 1°/2θ/min in the 4–65° 2θ range, with data
acquisition by Philips X’Perta Data Collector v1.2. After
samples have dried at 60 °C, were grinded and pulverised in
an agate mortar. Identification of crystalline phases by XRD
was carried out using the International Centre for Diffraction
Data Powder Diffraction Files (ICDD PDF).

The surface microchemistry and texture profile of the
analysed materials were obtained using SEM-EDS. The
specification of this system is a Hitachi S4100, equipped
with micro-analysis. The operating conditions were a 25 kV
accelerating voltage and a 16 mm working distance.

For all the µ-EDXRF measurements, the working
conditions were: 40 kV, 1 mA, 10 mbar and 300 s
acquisition time. The X-rays were emitted through the
polycapillary lens mode, in order to obtain a detailed
mapping area of each piece.

Sample collection and preparation

As previously referred, two parallel studies were undertak-
en in this work.

1. Pieces of three different types of glaze were prepared in
laboratory (Fig. 1), labelled: A—“old-like” glass
(seventeenth century), B—“old-like” glass (eighteenth
century), C—rustic glass.

Fig. 1 Glazes A, B and C
(8 submitted to 800 °C, 9 sub-
mitted to 900 °C, 10 submitted
to 1,000 °C)

Fig. 2 Faience fragments from the “Santa Clara-a-Velha” monastery
(Coimbra, Portugal)
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Each type was previously mixed with water, applied on
nine fired ceramic bodies (bisques) via submersion and then
submitted to three different firing temperatures (800 °C,
900 °C and 1,000 °C, respectively). The purpose of this
survey using the three different glazes with known
chemical and mineralogical composition is to observe the
phase differences and mineralogical changes after each
thermal transformation. Following the identification of the
mineralogical changes in the simulated samples, we can
correlate the obtained results for the old glazes, allowing to
estimate the production firing temperature. These temper-

atures were chosen considering the possibilities of working
conditions for the original production.

These pieces were analysed by µ-EDXRF and WDXRF
in order to appraise the elemental characteristics of each
glaze type, and the influence of firing temperature on
morphological changes.

2. Faience fragments, C-23, C-24 and C-26 (Fig. 2),
collected from the “Santa Clara-a-Velha” Monastery
remains were analysed by µ-EDXRF, WDXRF, XRD
and SEM-EDS.

Fig. 3 Elemental firing temperature dependence obtained by µ-EDXRF for the glazes A, B and C submitted to 800 °C, 900 °C and 1,000 °C,
respectively

Table 1 Mineralogical firing temperature dependence obtained by XRD for the glaze A, submitted to 800 °C, 900 °C and 1,000 °C, respectively

Firing
temp.
(°C)

Compound

Kaolinite
[Al2Si2O5(OH)4]

Zircon
(ZrSiO4)

Sodium aluminium-
trisilicate (NaAlSi3O8)

Quartz
(SiO2)

Cristobalite
(polymorph of
SiO2)

Skuterrudite
(CoAs3)

Illite (K,H3O)(Al,Mg,
Fe)2(Si,Al)4O10[(OH)2,
(H2O)]

Powder ✓ ✓ ✓ ✓

800 ✓ ✓ ✓

900 ✓ ✓ ✓ ✓

1000 ✓ ✓ ✓ ✓
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The use of raw glazes on traditionally fired products is
a well-established practise. However, the documental facts
of the ceramic production in Coimbra [12] report a general
carelessness in the production procedure, as it was
mentioned previously, and those facts together with
archaeological research leads us to believe that the
universe of glazed ceramic production in Coimbra is
based on both raw and fritted applications on the bisque.
During the firing process of raw glazes, different process-
es can occur, such as: decomposition of raw materials,
chemical reactions giving either crystalline or glassy
products, and melting followed by nucleation and crystal-
lisation of the melt [18].

Results and discussion

Glazed pieces prepared in laboratory

The µ-EDXRF analyses were performed on the three pieces
and for the three different temperatures and for each
sample, ten points were studied. The obtained results are
displayed in Fig. 3 and correspond to an average of all
measurements. As expected, no elemental changes were
obtained for the three glazes having different firing temper-
atures (Fig. 3). The confirmation of this fact was necessary
considering that the penetration of the glaze into the
ceramic body could be temperature dependent.

Furthermore, from the semi-quantitative results, consid-
ering that the thickness and matrix composition of the

pieces are similar, we can conclude that the three types of
glazes are different in terms of elemental composition. Both
A and B are richer in Pb and poorer in Zr, while the rustic
one presents a very high concentration in Zr. Type B,
simulating the eighteenth century, is richer in Zn. These
three elements are crucial to characterise the type of the
glaze. Besides these three elements, Sn is also characteristic
of old glazes, which is not present in the commercial ones.

All glazes (A, B and C) were obtained by commercial
frits and the similarity with old glazes elemental content is
decreasing from A to C (Tables 1, 2 and 3). The simulation
of old-like glazes production is performed by introducing
quartz and clay minerals to the frit, as it is exhibited in the
XRD profile of glazes A and B . Moreover, in glazes A and
B, kaolinite becomes amorphous at 550 °C and vanishes
after the firing process is finished and at 1,000 °C the
changes are basically due to mineral orientation, rather than
thermal modifications (Tables 1 and 2).

Additional important aspects are the fact that glaze A
exhibits more kaolinite and ilite and after the firing process
is finished, it reveals a more matte appearance than glaze C
(Fig. 1).

Glaze C is mainly composed by zircon (ZrSiO4), which
assigns it as a modern one. In its profile is also shown a
peak of cristobalite, characteristic from a high-temperature
polymorph of quartz—this means that is has the same
chemistry as quartz but a different structure (Table 3).

Some of the compounds are only formed after the glaze
reaches the so called “working point”. This is the stage
where all components have melted and this liquid matrix
state of the glaze originates the formation of some

Firing temperature (°C) Compound

Cristobalite (polymorph of SiO2) Zircon (ZrSiO4)

Powder ✓

800 ✓

900 ✓ ✓

1000 ✓ ✓

Table 3 Mineralogical firing
temperature dependence
obtained by XRD for the glaze
C, submitted to 800 °C, 900 °C
and 1,000 °C, respectively

Table 2 Mineralogical firing temperature dependence obtained by XRD for the glaze B, submitted to 800 °C, 900 °C and 1,000 °C, respectively

Firing temp.
(°C)

Compound

Kaolinite
[Al2Si2O5(OH)4]

Zircon
(ZrSiO4)

Cassiterite
(SnO2)

Quartz-low
(SiO2)

Cristobalite (polymorph of
SiO2)

Anorthite
(CaAl2Si2O8)

Powder ✓

800 ✓ ✓ ✓ ✓

900 ✓ ✓ ✓ ✓

1000 ✓ ✓ ✓
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mineralogical components such as skuterrudite (CoAs3),
anorthite (CaAl2Si2O8) and sodium aluminium-trisilicate
(NaAlSi3O8). Furthermore, cassiterite (SnO2) crystallises
from 800 °C. Depending on the amount and on the original
components from the raw frit, the “working point” can be
reached at different temperatures for each kind of glaze
[19].

At this point, an interesting fact should be mentioned.
Skuterrudite only appears due to the initial presence of
cobalt oxide in the raw frit. This compound causes an
interesting optic effect on the glaze and it was commonly
used to confer some bluish coloration to glaze in order to
reduce the typical commercial yellowish nature from the
glazes. From an esthetical point of view, in general people
tended to prefer the less yellowish glazes. One can even
prove this fact by observation of the three different glazes
applied on the ceramic pieces (Fig. 1), where glaze A is less
yellow than the other two.

From the textural point of view, the SEM analyses
confirm a certain homogeneity in the glaze composition, as
one can see in Fig. 6. The obtained thickness for the glaze
is approximately 200 µm.

Faience fragments (from the sixteenth to nineteenth
centuries)

The general mineralogical composition of the ceramic
supports associated to the decorative faiences (C-23, C-24
and C-26), obtained by XRD is formed by the crystalline
phases of quartz (SiO2) and minerals of the melillite
(calcium silicates) (Table 4).

The glazed surface was obtained, like for the model
ones, during the second firing process by a method that
allows the reaction between the various raw materials, in
order to promote the glass formation, which gives rise to
the glaze, as well as the used pigments. The firing

temperature in an oxidant atmosphere for these glazes must
have been approximately 950 °C. This conclusion arises
from the presence of diopside (MgCaSi2O6), due to its
particular sensitivity for temperatures above 900 °C and
analcime (CaAl2Si2O8) being weakly electrostatic when
heated at higher temperatures [20].

Calcite and ilite are of great help to determine the firing
temperature at which the pieces were submitted. Complete
thermal decomposition of calcite can go up to 850 °C and
the presence of augite [(Ca,Mg,Fe)SiO3] indicates precisely
that the primary calcite was decomposed [21].

The chemical composition obtained by WDXRF
revealed the content of the major elements, as well as the
loss values at 1,000 °C, which are exhibited in Table 5. The
water absorption of this material is (about 20 %), which
from the technological point of view helps the glaze
application.

The elemental profile from the glaze of each fragment
obtained by µ-EDXRF is exhibited in Fig. 4 and shows
great similarity between several analysed pieces, suggesting
that the used raw material might be the same. Actually,
existing documents corroborate this result stating that
during this period (sixteenth to nineteenth centuries) the
raw material was identical. The glaze is chemically
characterised as a tin glaze, typical from the majolica type
of ceramic, as it is confirmed by the presence of Sn in the
spectra of Fig. 4.

The SEM-EDS measurements were performed via two
operation modes: wide-area (where inclusions can be
visualised) and spot-sized-area (where particular structure
details are observed).

Through lateral observation of the fragments we could
calculate the thickness of the glaze, which was approxi-
mately 400 µm.

Furthermore, SEM-EDS observations allowed us to
access not only the glaze texture but also its semi-

Table 4 Mineralogical composition obtained by XRD for the fragments C-23, C-24 and C-26

Fragment Compound

Quartz (SiO2) Anorthite (CaAl2Si2O8) Diopside (MgCaSi2O6) Analcime (NaAlSi2O6·H2O) Augite (Ca,Mg,Fe)SiO3

C-23 ✓ ✓ ✓ ✓

C-24 ✓ ✓ ✓ ✓

C-26 ✓ ✓ ✓ ✓ ✓

% SiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O TiO2 P2O5 Loss

C-23 51.10 18.72 3.72 0.04 4.77 16.35 1.24 2.23 0.79 0.14 0.90

C-24 52.82 17.35 3.75 0.04 4.57 15.52 1.71 1.21 0.81 0.11 2.10

C-26 50.59 18.43 3.78 0.04 4.79 16.21 1.60 2.02 0.79 0.15 1.60

Table 5 Major elements com-
position obtained by WDXRF
(%) and loss at 1,000 °C of the
ceramic body from the C-23, C-
24 and C-26 fragments (± 5%
error analysis)
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Fig. 4 Elemental profile obtained by µ-EDXRF for the fragments C-23, C-24 and C-26

Fig. 5 EDS spectrum from the
glaze of the C-24 fragment,
where the number of counts is in
arbitrary units
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quantitative elemental composition especially for the light
elements: Na, Mg and Al not detected by EDXRF. From
the obtained results, we conclude that the glaze main
composition is micrometric-sized quartz grains, amor-
phous particles, rich in SiO2 and Al2O3 which result from
the de-hydroxylation of the clay minerals and closed pores
(bubbles). All together, they confer an earthy and mate
aspect to these glazes.

These features indicate that the glazes would be an
aqueous suspension of its respective raw materials, namely
clay minerals, which contribute to the glaze network
formers (SiO2) and the network stabilisers (Al2O3). The
chemical composition of the glazes from Coimbra confirms
the presence of these components and reveals that the
fusing agents, the network modifiers were basically PbO,
K2O and Na2O, as we could confirm by the EDS spectra

corresponding to the C-24 fragment (Fig. 5). Tin, in the
cassiterite crystal structure (SnO2), which accumulates in
the lower part of the glaze (close to the body), was used as
an opaque agent, giving a white aspect, as we can see for
the C-23 and C-26 pieces (Figs. 7 and 8).

Conclusions

This work proposes a reliable scientific methodology to
identify and characterise the Portuguese ceramics. The
employment of EDXRF, with the advantage of its portabil-
ity and non-destructiveness of the sample provided ele-
mental identification. This allowed to characterise the raw
materials used in the glaze preparation of the old fragments
and hence to assign the type of ceramic: in this case, lead-
and tin-based (majolica).

Another issue is the mineralogical identification, which
gave rise to the second stage of our approach. Through
XRD, we were able to identify the minerals existent in the
analysed samples in the several stages we performed. This
technique has also the advantage of being non-destructive
even when bigger sized pieces had to be studied. To
corroborate the analyses previously mentioned, we also
performed SEM analyses to evaluate the textural content of
the samples, which aid the mineralogical identification.

This work is a successful combination of several
techniques: µ-EDXRF, WDXRF, XRD and SEM-EDS, in
order to achieve the chemical, mineralogical and the
textural profiles of ceramics.

The two parallel studies carried out in this work allowed
us to obtain important results showing the dependence of
the firing temperature process on the mineralogical
composition. These results are also extremely important

Fig. 7 SEM image from the glaze of the C-23 fragment showing
cassiterite crystals (SnO2) included in the vitreous matrix. Magnifica-
tion ×4.0e+03

Fig. 6 SEM image from the modern glaze A (frit) applied to the
bisque. Magnification ×2.0e+03

Fig. 8 SEM image from the glaze of the C-26 fragment, showing
cassiterite crystals (SnO2) included in the vitreous matrix. Magnifica-
tion ×15.0e+03
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in conservation–restoration ceramic processes. In addi-
tion, this work emphasises the possibility to distinguish-
ing the main features of Coimbra production centre,
scarcely mentioned or even misdated due to non-existing
information.

By a careful visual analysis of the SEM pictures for each
kind of glaze, we could testify that one of the major
characteristics relies on the in-homogeneity for old
ceramics and homogeneity for the recent ones (Fig. 6, 7,
and 8). This is related to the manufacturing process. Glazes
from original pieces are obtained with “raw” materials
which, after the firing process, create a more heterogenic
pattern than the ones from the simulated pieces, where the
glazes were obtained through a fritting process with pre-
melted material. This also highlights the big importance of
this study in identification of old and modern glazing
processes.
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