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Sérgio Lúıs Ganhão Vicente

Dissertação orientada por:

Prof. Doutora Maria Isabel Fraga Alves

Prof. Doutora Maria Ivette Leal de Carvalho Gomes

Dissertação

Mestrado em Estat́ıstica

2012





Acknowledgements

First of all, I would like to thank my beloved sister, for her unconditional support,

understanding and great patience during my period of isolation and inaccessibility, nec-

essary for writing this master thesis.

This thesis would not have been possible without all the help, support, patience and

endeavour of my principal supervisor, Professora Doutora Maria Isabel Fraga Alves, who

never stopped believing in me and who became progressively more than a teacher, acting

like a mother and a good friend.

I also thank my second supervisor, Professora Doutora Maria Ivette Leal de Carvalho

Gomes, whose advices and meticulous corrections were beneficial to improve the quality

of my exposition.

I would like to express my very special thanks to Professora Doutora Maria Antónia

Amaral Turkman for all my current knowledge and achieved level with the R software, a

masterpiece of this thesis.

I am specially grateful to my Swiss friends and teachers from Geneva, my beloved and

wonderful native city, for their importance in my life since my childhood and for all their

support during this master thesis.

I would like to express a particular warm thanks to my friends Helena Avelar and Lúıs
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Abstract

Extreme Value Theory can be applied to several areas, where the existence of extreme

events is a daily reality. Characterized by constant record breaks such as minimal times

or maximal speeds, Sports can obtain benefits from Extreme Value Theory, when used

as indicator of records’ quality. In particular, the 100 metres race, whose current lowest

record of 9.58 seconds is held by Usain Bolt, requires an exceptional cardiorespiratory

capacity, monitored by the Maximal Oxygen Uptake, or V̇ O2max, which measures the

maximal amount of oxygen used during intense efforts, in millilitres per bodyweight and

per minute (ml/kg/min). The highest V̇ O2max (96 ml/kg/min) was recorded for the

skiers Bjørn Dæhlie and Espen Harald Bjerke. What is the probability of exceeding the

aforementioned records? Is there a finite limit for these quantities?

Extreme Value Theory is the most appropriate tool to answer these questions, offering

two possible approaches: a parametric and a semi-parametric one. The former focuses on

estimating the parameters of a proposed underlying model, using the Maximum Likelihood

or the Probability Weighted Moments methods. In particular, the Block Maxima method

proposes the Generalized Extreme Value distribution as a suitable model to be fitted to

the whole dataset and the POT method proposes the Generalized Pareto distribution

as a suitable one to be fitted only to observations above a fixed level. Concerning the

semi-parametric approach, there is no distribution proposal. Assuming only that the

underlying distribution’s tail satisfies Gnedenko’s Theorem, the goal is to estimate the

shape parameter of the underlying distribution, known as Extreme Value Index, which

determines the weight of its tail. All the inference is based on a portion of the sample

above a random level to be determined.

With the obtained estimates, both approaches answer the previous questions comput-

ing exceedance probabilities and endpoint estimates.

Keywords: Extreme Value Theory, Block Maxima method, POT method, Semi-parametric

approach, Sports.
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Resumo

A Teoria dos Valores Extremos tem as suas origens na década de 1920, com o trabalho

pioneiro de Leonard Tippett, ao qual foi solicitado que encontrasse uma forma de tornar

os fios de algodão produzidos pela indústria algodoeira britânica mais resistentes. Nos

seus estudos, rapidamente se apercebeu de que a resistência dos fios estava directamente

relacionada com a força das fibras mais fracas. Surgiu então a necessidade de criar uma

teoria probabiĺıstica que permitisse lidar com situações em que a quantificação e mode-

lação de acontecimentos ditos extremos passasse a ser o alvo de interesse do investigador,

uma vez que a Teoria Clássica era insuficiente para fornecer respostas às questões que

se colocavam. Com a ajuda de Sir Ronald Fisher, Leonard Tippett lançou as bases de

todo um corpo probabiĺıstico teórico que viria a adqurir uma importância fundamental

e crescente em ramos onde a existência de acontecimentos extremos acaba por ser uma

condição sine qua non, podendo colocar sérios problemas e entraves se não houver uma

compreensão e controlo do fenómeno que os origina. Dada a escassez de dados que carac-

teriza tais fenómenos, pela sua natureza extrema, e mesmo até rara, a Teoria dos Valores

Extremos adquire um papel crucial no sentido de expurgar informação estat́ıstica a partir

dos elementos dispońıveis.

Desde então, são inúmeras as áreas que, cada vez mais, recorrem à Teoria dos Valores

Extremos no sentido de obter uma maior compreensão acerca do mecanismo de produção

dos fenómenos extremos que regem e justificam a existência dessas áreas. Encontramos

assim a sua presença em áreas como a Hidrologia, onde a constante ameaça de cheias,

ruptura de diques e elevação do ńıvel das águas do mar pode pôr em risco inúmeras vidas

humanas. O Mercado Financeiro, assolado pela flutuação constante dos indicadores finan-

ceiros, vê na Teoria dos Valores Extremos uma ferramenta preciosa para poder lidar com

as graves consequências económicas que podem surgir quando tais indicadores atingem

ńıveis extremos. O aumento da temperatura global do planeta, cujos ńıveis extremos po-

dem ameaçar a sobrevivência de muitas espécies, obriga a área do Ambiente a socorrer-se

e obter respostas junto da Teoria dos Valores Extremos.
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A área do Desporto não foge à regra. Em particular, o Atletismo é caracterizado por

um constante aperfeiçoamento dos atletas, onde a prossecução e manutenção de recordes

acaba por ser um factor determinante e um objectivo comum, no sentido de alcançarem

prest́ıgio, reconhecimento e realização profissional. Variáveis como tempos mı́nimos, al-

turas máximas e comprimentos máximos caracterizam por si só as diversas modalidades

que compõem as provas atléticas. Uma das mais famosas modalidades do Atletismo, pelo

interesse crescente que suscita e pela natureza excpecional dos recordes alcançados, é sem

dúvida a prova dos 100 metros. Nomes tais como Carl Lewis, Ben Johnson ou, mais recen-

temente, Usain Bolt são indissociáveis desta modalidade, onde o talento do atleta é medido

pelo tempo mı́nimo que demora a percorrer uma distância de 100 metros. Actualmente, o

recorde mundial é detido pelo jamaicano Usain Bolt, que conseguiu percorrer 100 metros

em 9.58 segundos, no Campeonato Mundial de Atletismo de 2009, em Berlim. Face a este

recorde, quais são as possibilidades actuais de vencer este recorde? Qual a probabilidade

de manter este ńıvel ou então de reduzi-lo para um ńıvel inferior? Ou então, será que

se chegou a um patamar abaixo do qual um atleta não consegue descer mais? Quais-

quer que sejam as respostas a estas perguntas, é consenso universal que a prestação dum

atleta de corrida de alta competição está directamente relacionada com a sua capacidade

cardiorespiratória. É precisamente a monitorização e aperfeiçoamento dessa capacidade

que conduz um atleta no caminho do sucesso, permitindo-lhe, assim, atingir ńıveis ex-

tremos, quer em termos de tempo, quer em termos de velocidade. Uma das variáveis

usadas na medição da capacidade cardiorespiratória dum atleta é o consumo máximo de

oxigénio, mais conhecido por V̇ O2max, que representa a quantidade máxima de oxigénio

que o corpo humano consegue assimilar, transportar e usar durante um exerćıcio f́ısico

intenso, medida em mililitros por quilo de peso corporal e por minuto (ml/kg/min). O

controlo permanente desta variável é de importância vital não só em atletas de corrida

de velocidade, como também em ciclistas de alta competição e esquiadores de fundo. A

manutenção dum ńıvel elevado do VO2max acaba por ser um factor de preocupação con-

stante por parte deste tipo de atletas, dada a sua ligação ı́ntima com um alto desempenho

durante as provas atléticas. O V̇ O2max mais elevado até à actualidade foi registado nos

esquiadores noruegueses Bjørn Dæhlie e Espen Harald Bjerke, que atingiram um ńıvel de

96 ml/kg/min. Qual a probabilidade de um atelta de alta competição ultrapassar este

valor? Será que o corpo humano tem a possibilidade de exceder muito mais este limite?

Qual o valor mais elevado do V̇ O2max que, nas circunstâncias actuais, pode ser atingido

por um atleta de alta competição?
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Para responder a todas as questões colocadas no parágrafo anterior, a Teoria dos

Valores Extremos é sem dúvida a ferramenta mais adequada. As respostas podem ser

então obtidas seguindo duas perspectivas: uma perspectiva paramétrica e uma perspec-

tiva semi-paramétrica. A perspectiva paramétrica tem por pressuposto base a existência

dum modelo paramétrico subjacente à obtenção dos dados provenientes de acontecimentos

extremos, em que o objectivo central passa pela estimação dos parâmetros desse modelo

por métodos de estimação pontual, tais como o método da Máxima Verosimilhança e

o método dos Momentos Ponderados de Probabilidade. A partir dessas estimativas, as

perguntas anteriormente colocadas encontram as suas respostas em parâmetros estima-

dos, tais como o limite superior (ou inferior) do suporte do modelo subjacente aos dados

ou ainda a probabilidade de excedência de ńıveis elevados (ou baixos). A adopção dum

modelo paramétrico adequado é então a questão-chave da abordagem paramétrica. Uma

vez que esse modelo é evidentemente desconhecido, surgem então várias propostas dentro

do âmbito paramétrico. O método dos Máximos por Blocos (vulgo método dos Máximos

Anuais, quando os dados são obtidos de forma anual) propõe um ajustamento da famı́lia

Generalizada de Valores Extremos aos dados dispońıveis, considerando que estes são répli-

cas independentes duma variável aleatória que selecciona apenas o máximo de cada bloco

previamente definido. Por outro lado, o método POT (do inglês Peaks-Over-Threshold)

propõe o ajustamento da famı́lia Generalizada Pareto às observações que excedem um

determinado ńıvel fixado a priori, considerando que essas observações representam uma

amostra proveniente da cauda direita (ou esquerda) do modelo subjacente aos dados

dispońıveis.

A perspectiva semi-paramética não propõe nenhum modelo paramétrico para ajus-

tar aos dados e centra a sua atenção na estimação do parâmetro de forma do modelo

subjacente desconhecido, que se designa por Índice de Valores Extremos, e que está di-

rectamente relacionado com o peso da cauda direita (ou esquerda) do modelo. Para

essa estimação ser então posśıvel, a cauda do modelo subjacente deve obedecer a certas

condições, uniformizadas e formalizadas por Boris Gnedenko em 1943, que, de acordo

com a abordagem semi-paramétrica, são assumidas como estando satisfeitas pelo modelo

desconhecido. A estimação do parâmetro de forma é então feita seleccionando as obser-

vações da amostra que se encontram acima dum determinado ńıvel aleatório, que não está

fixo à partida e que depende do tamanho da amostra em causa, uma vez que se consid-

era que as observações de topo transportam a informação necessária acerca da cauda do

modelo subjacente. A determinação do ńıvel aleatório óptimo a considerar perante uma

determinada amostra é então uma questão de importância central, sem a qual a obtenção

duma estimativa para o Índice de Valores Extremos fica seriamente comprometida. Uma

vez obtida a estimativa desse parâmetro, a abordagem semi-paramétrica também permite



responder às questões atrás colocadas, focando-se na estimação do limite superior (ou in-

ferior) do suporte do modelo subjacente ou na obtenção de probabilidades de excedência

de ńıveis elevados (ou baixos).

Palavras-chave: Teoria dos Valores Extremos, Método dos Máximos por Blocos, Abor-

dagem POT, Abordagem semi-paramétrica, Desporto.
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Chapter 1

Introduction

Extreme Value Theory has its roots in the 1920s, with the pioneering contributions of

Leonard Tippett, who was requested to find a way of strengthening the cotton threads of

the British cotton industry. During his studies, he soon discovered that the strength of the

threads was ruled by the resistance of the weakest fibres. It was then necessary to create a

probabilistic theory to be applied in situations where quantifying and modelling extreme

events was the main focus of the investigator, as the Classical Statistical Theory was

insufficient to find answers to the emerging questions. With the help of Sir Ronald Fisher,

Leonard Tippett laid the foundations of a theoretical probabilistic framework, which would

quickly become important in areas where the existence of extreme phenomena is a sine

qua non condition, as the misunderstanding and lack of control of such phenomena can

lead to severe damages and problems. Because of their extremal, or even rare, nature, the

investigator frequently faces data scarcity. Therefore, Extreme Value Theory is a valuable

tool that makes it possible to deal with such situations. The decisive step is taken in 1943,

when Boris Gnedenko synthesized and formalized all the knowledge to date about extreme

events in his famous theorem, known as the first theorem of Extreme Value Theory.

Since then, we assist to an increasing demand coming from areas where the existence

of extreme phenomena is a raison d’être, forcing them to understand the underlying

mechanisms responsible for the emergence of extreme events. We find the presence of

Extreme Value Theory in areas such as Hydrology, where flood threats, dam bursts and

high sea levels may put human lives at risk. The Financial market, characterized by

constant fluctuations of financial indicators, can use the Extreme Value Theory as a

powerful tool to prevent catastrophic economic damages caused by extreme levels of their

indicators. The so called global warming, whose extreme levels can jeopardize the survival

of several species, is a serious environmental problem that can find some answers in

Extreme Value Theory.

1



2 Chapter 1. Introduction

Even Sports do not escape from the influence of Extreme Value Theory. In particu-

lar, Athletics is characterized by a constant improvement of athletes, where achieving and

maintaining records is the basic rule of all its modalities. Variables such as minimum time,

maximum speed, maximum length and maximum height define completely each modal-

ity. One of the most famous athletics’ events is the 100 metres race, where the athletes

are distinguished by their capacity of running 100 metres in the shortest possible time.

Currently, the record is hold by the Jamaican Usain Bolt, who ran the aforementioned

distance in 9.58 seconds, at the 2009 Berlin World Championships. In the present cir-

cumstances, what are the possibilities of breaking this record? Have we achieved a steady

state with no possibility of reducing Bolt’s record? Independently from the answers, it is

universally accepted that the performance of a runner is directly related to his cardiores-

piratory capacity and the constant enhancement of this capacity is a matter of eternal

concern for every athlete. One of the variables that can be used to monitor this capacity

is the Maximal Oxygen Uptake (shortly, V̇ O2max), which represents the maximum quan-

tity of oxygen that can be assimilated and used by the human body during an intense

effort, measured in millilitres per kilogram of bodyweight and per minute (ml/kg/min).

The maintenance of a high V̇ O2max level is then one of the keys for success, not only for

runners, but even for cyclists or cross-country skiers. To date, the highest V̇ O2max was

recorded for the Norwegian skiers Bjørn Dæhlie and Espen Harald Bjerke, who attained

a high level of 96 ml/kg/min. In the present circumstances, is is then possible to surpass

this value? What is the maximal V̇ O2max that a current top athlete can achieve?

To answer all the previous questions, the Extreme Value Theory is undoubtedly the

most suitable tool. In Chapter 2, we present the Extreme Value Theory, as the result of

the works of Leonard Tippett, Sir Ronald Fisher and Boris Gnedenko, enriched by the

more recent contributions of Emil Gumbel and Laurens de Haan. Chapter 3 covers the two

main approaches of Extreme Value Theory used to answer the aforementioned questions:

the parametric approach and the semi-parametric approach, discussing the main tools

that characterize each approach. In Chapter 4, we turn back to the V̇ O2max variable

and to the 100 metres race, in order to seek answers for the aforementioned questions, by

means of the methodologies presented in Chapter 3. Finally, in Chapter 5, we close this

thesis extracting some conclusions from Chapter 4 and letting space for open problems

and unanswered questions. Finally, Appendix A includes the software R scripts used

for all the computations in the V̇ O2max analysis. Since the 100 metres analysis follows

exactly the same paths as the V̇ O2max, the scripts for the 100 metres analysis will not be

presented. They are exactly the same, changing only variables names and some numbers.



Chapter 2

The Extreme Value Theory

2.1 Introduction

Extreme Value Theory (EVT) is a statistical and theoretical framework, which deals

with modelling the behaviour of sample extremes, such as the sample minimum and the

sample maximum. The behaviour of such order statistics may be assessed by their exact

distribution function (d.f.) or by their limiting distribution function, the asymptotic

distribution function, if we increase the sample size towards infinite.

Let (X1, X2, ..., Xn) be a sample of n independent and identically distributed (i.i.d.)

random variables (r.v.’s), with d.f. F . The corresponding ordered sample in non-decreasing

order is denoted by (X1:n, X2:n, ..., Xn:n), where Xi:n, i = 1, ..., n, stands for the i-th order

statistic. In particular, X1:n and Xn:n represent the sample minimum and the sam-

ple maximum, respectively. In this thesis, we will focus only on the results about the

sample maximum, since the corresponding results for the sample minimum can be ob-

tained from those of the sample maximum. Then, consider the sequence of maxima

M1 = X1,Mn = Xn:n = max(X1, X2, . . . , Xn), for n ≥ 2, obtained from the above sample.

As mentioned, all the results for the sample minimum can be obtained from those of the

sample maximum, since mn = min(X1, X2, . . . , Xn) = −max(−X1,−X2, . . . ,−Xn).

The exact distribution of Mn can be obtained from the d.f. F . Indeed, for all x ∈ R,

FMn(x) = P (Mn ≤ x) = P (X1 ≤ x,X2 ≤ x, ..., Xn ≤ x) =
n∏
i=1

P (Xi ≤ x) = F n(x).

But the interest of this thesis is the behaviour of the sample maximum, when the

sample size increases towards infinity:

3



4 Chapter 2. The Extreme Value Theory

Theorem 2.1 Let F be the underlying d.f. of a sequence of r.v.’s and xF its right endpoint,

i.e., xF = sup{x : F (x) < 1}, which may be infinite. Then

Mn
p−→

n→∞
xF ,

where
p−→

n→∞
means convergence in probability.

Proof. We know that a sequence of r.v.’sX1, X2, ..., Xn, ... converges in probability towards

the r.v. X, if and only if, ∀ε > 0,

lim
n→∞

P (| Xn −X |≥ ε) = 0.

So,

P (|Mn − xF |≥ ε) = P (Mn ≥ xF + ε ∨ Mn ≤ xF − ε)

= P (Mn ≥ xF + ε) + P (Mn ≤ xF − ε)

= 0 + P (Mn ≤ xF − ε)

= F n(xF − ε).

We know that xF = sup{x : F (x) < 1}. Consequently,

lim
n→∞

P (|Mn − xF |≥ ε) = lim
n→∞

F n(xF − ε) = 0,

since F (xF − ε) < 1.

On the same way, we have

Mn
d−→

n→∞
D,

where D is a r.v. with a degenerate distribution in xF and
d−→

n→∞
means convergence in

distribution. Indeed,

FMn(x) = F n(x) −→
n→∞

0, if x < xF ,

1, if x ≥ xF .

Therefore, Mn has a degenerate asymptotic distribution. So, in order to do some kind

of inference, we need to have a non-degenerate behaviour for Mn. Then, as with the

Central Limit Theorem, a normalization is required. This theorem is concerned with the

asymptotic behaviour of the sequence of sums X1, X1 +X2, ...,
∑n

i=1 Xi, ... , as n→∞:



2.2 The extremal limit problem 5

Theorem 2.2 Consider a sequence of i.i.d. r.v.’s, X1, X2, ..., Xn, ..., with E(Xi) = µ and

V ar(Xi) = σ2 < +∞. Therefore,∑n
i=1 Xi − nµ√

nσ

d−→
n→∞

Z _ N (0, 1).

In order to look for an appropriate non-degenerate limiting distribution for the se-

quence of sample maxima, we need a similar theorem; that is, we look for normalizing

sequences an > 0 and bn real such that

Mn − bn
an

d−→
n→∞

W _ G, (2.1)

with W non-degenerate, i.e.,

lim
n→∞

P (Mn ≤ anx+ bn) = lim
n→∞

F n(anx+ bn) = G(x),

for every continuity point x of G.

2.2 The extremal limit problem

The first problem is to determine which d.f.’s G may appear on the limit in (2.1).

These distributions are called extreme value distributions. In order to provide the answer

to this question, we need to introduce two important concepts:

Definition 2.3. (max-domain of attraction) A d.f. F belongs to the max-domain of

attraction of G, if there exist sequences {an > 0} and {bn} real, such that

lim
n→∞

P (Mn ≤ anx+ bn) = lim
n→∞

F n(anx+ bn) = G(x), (2.2)

for all the continuity points x of G and we write F ∈ D(G).

Definition 2.4. (distribution functions of the same type) Two d.f.’s F1 and F2 are

said to be of the same type if there exist constants a > 0 and b ∈ R such that

F2(ax+ b) = F1(x). (2.3)

It means that F1 and F2 are the same, apart from location and scale parameters, i.e., they

belong to the same location-scale family.

In addition to these concepts, we need to invoke the Convergence to Types Theorem

from Khinchin:
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Theorem 2.5 (Convergence to Types Theorem - Khinchin)

1. Let W and W̃ be two r.v.’s with non-degenerate d.f.’s G and G̃, respectively. Suppose

that {Xn}n∈N is a sequence of r.v.’s with d.f. Fn and that we have real sequences

an, ãn > 0 and bn, b̃n ∈ R, such that Xn−bn
an

d−→
n→∞

W _ G and Xn−b̃n
ãn

d−→
n→∞

W̃ _ G̃.

Then, there exist constants A > 0 and B ∈ R such that,

ãn
an

−→
n→∞

A and
b̃n − bn
an

−→
n→∞

B (2.4)

and

G̃(x) = G(Ax+B), (2.5)

for every continuity point x of G and G̃.

2. Conversely,

if
ãn
an

−→
n→∞

A,
b̃n − bn
an

−→
n→∞

B and
Xn − bn
an

d−→
n→∞

W _ G, then

Xn − b̃n
ãn

d−→
n→∞

W −B
A

_ G̃,

with G̃(x) = G(Ax+B) and for every continuity point x of G and G̃.

Important conclusions can be drawn from this Theorem for the sample maximum:

(i) According to (2.3) and (2.5), G and G̃ are of the same type. Therefore, Mn−bn
an

has

an asymptotic distribution of the same type as Mn−b̃n
ãn

.

(ii) The choice of the sequences an and bn is not unique: if we choose normalizing

sequences an and bn or ãn and b̃n that are asymptotically equivalent, i.e. such that

(2.4) holds, the d.f. F will belong to the max-domain of attraction of two d.f.’s of

the same type. So, a d.f. F cannot be in the max-domain of attraction of two d.f.s

of different types.

The problem of finding the extreme value distributions has been solved by Fisher

and Tippett (1928), completed by Gnedenko (1943) and later revived and streamlined by

de Haan (1970). They demonstrate that, if (2.2) holds, the limiting distribution G must

be one of just three types. Formally,

Theorem 2.6 (Asymptotic Distribution of the Sample Maximum, Fisher and

Tippett, 1928, Gnedenko, 1943) If F ∈ D(G), the limiting d.f. G of the sample

maximum, suitably normalized, is of the same type of one of the following distributions:
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(i) Type I: G(I)(x) = Λ(x) = exp(− exp(−x)), x ∈ R;

(ii) Type II: G(II)(x|α) = Φα(x) =

0, x ≤ 0,

exp(−x−α), x > 0, α > 0;

(iii) Type III: G(III)(x|α) = Ψα(x) =

exp(−(−x)α), x < 0, α > 0,

1, x ≥ 0;

where the shape parameter α of G(II) and G(III) describes the tail’s behaviour of the

underlying d.f. F .

Theorem 2.6 shows us that, in contrast with the Central Limit Theorem, the limiting

distribution is non-normal and depends on F only through its tail behaviour.

The three types can be generalized, with the introduction of a location (λ) and scale

(δ) parameters:

Λ(x|λ, δ) = Λ

(
x− λ
δ

)
; Φα(x|λ, δ) = Φα

(
x− λ
δ

)
; Ψα(x|λ, δ) = Ψα

(
x− λ
δ

)
,

(2.6)

for λ ∈ R, δ > 0.

Over the years, each type was labelled with a name, as a tribute to the work of their

authors EVT. Therefore, Λ(x|λ, δ) is known as max-Gumbel-type d.f., Φα(x|λ, δ) as

max-Fréchet-type d.f. and Ψα(x|λ, δ) as max-Weibull-type d.f. The max-Weibull

distribution must be distinguished from the classical and well-known Weibull distribution,

used in survival analysis and in reliability theory, among other areas,

F (x|λ, δ, α) = 1− exp

(
−
(
x− λ
δ

)α)
. (2.7)

The Weibull distribution was originally developed to address problems for minima

arising in material sciences and this form of the distribution is commonly used in practice.

For this reason, the max-Weibull distribution Ψα(x|λ, δ), related to EVT, is commonly

called the Reversed Weibull Distribution.

The three types of d.f.’s above seem unrelated. However, Jenkinson (1955) identified

them as the only members of the following family:

G(x|γ) = Gγ(x) =

exp
(
−(1 + γx)−

1
γ

)
, 1 + γx > 0 if γ 6= 0,

exp(− exp(−x)), x ∈ R if γ = 0,
(2.8)
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where the shape parameter γ is known as the extreme value index (EVI).

The parametrization in (2.8) is due to von Mises (1936) and Jenkinson (1955) and

is known as the Generalized Extreme Value distribution (GEVd) or the von

Mises-Jenkinson family , which unifies all possible non-degenerate weak limits of the

maximum Mn:

(i) for γ = 0, taken as the continuity limit for γ → 0+ and for γ → 0−,Gγ and G(I) are

of the same type.

This case is proved calculating the limit of Gγ(x) at γ = 0:

lim
γ→0+

Gγ(x) = lim
γ→0+

exp
(
−(1 + γx)−

1
γ

)
= exp

(
− lim

γ→0+
(1 + γx)−

1
γ

)
.

Now, define τ = 1
γ
. For γ → 0+, we have τ → +∞.

Using the well-known limit result lim
k→+∞

exp
(

1 +
x

k

)k
= exp(x), we have

exp

(
− lim

γ→0+
(1 + γx)−

1
γ

)
= exp

(
− lim

τ→+∞

(
1 +

x

τ

)−τ)
= exp(− exp(−x)).

We obtain the same result with lim
γ→0−

Gγ(x) and, therefore, lim
γ→0

Gγ(x) = G(I)(x). In

order to grant the continuity of Gγ(x) for γ = 0, me must then define Gγ(x) =

exp(− exp(−x)).

(ii) for γ > 0 and taking γ = 1
α

,Gγ and G(II) are of the same type.

Indeed, following de Haan and Ferreira (2006) and (2.3), since γ > 0, we have:

Gγ

(
1

γ
x− 1

γ

)
= exp

{
−
(

1 + γ

(
1

γ
x− 1

γ

))− 1
γ

}
= exp

(
−(1 + x− 1)−

1
γ

)
= exp

(
−x−

1
γ

)
= exp(−x−α)

= G(II)(x|α).

(iii) for γ < 0 and taking γ = − 1
α

,Gγ and G(III) are of the same type.
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Following the same references, but this time, with γ < 0, we have:

Gγ

(
−1

γ
x− 1

γ

)
= exp

{
−
(

1 + γ

(
−1

γ
x− 1

γ

))− 1
γ

}
= exp

(
−(1− x− 1)−

1
γ

)
= exp−

(
−x−

1
γ

)
= exp(−(−x−α))

= G(III)(x|α).

This way, the GEVd is the unified version of the three types Λ, Φ and Ψ. So, taking

up (2.1), we have

Mn − bn
an

d−→
n→∞

W _ Gγ ⇐⇒ F ∈ D(Gγ).

As we did for the three types above, we can obtain a more general version of the

GEVd, by incorporating a location parameter (λ) and a scale parameter (δ):

Gγ(x|λ, δ) = Gγ

(
x− λ
δ

)
, λ ∈ R, δ > 0. (2.9)

The shape parameter γ (the EVI) is directly related with the right tail of the d.f. F : it

determines the weight of the right tail of the underlying d.f. F . For this reason, the shape

parameter is also known as tail index .

Definition 2.7. Let F be a distribution function. We define the right tail of a distri-

bution function as the following function:

F (x) = P (X > x) = 1− F (x).

which may be represented graphically in Figure 2.1

The tail index γ tells us how the tail function F (x) decays to zero as x→ xF :

(i) For γ = 0, we are in the max-Gumbel-type domain of attraction, which contains

exponential right-tailed distributions, with finite or infinite right endpoint xF . In

this case, all moments exist. The Gumbel domain contains distributions such as

Normal, Exponential, Gamma, Lognormal and Gumbel itself;
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Figure 2.1: Right tail of a distribution function

(ii) For γ > 0, we are in the max-Fréchet-type domain of attraction, which contains

heavy right-tailed distributions, with polynomial decay and infinite right endpoint

xF . Moments of order greater than or equal to 1
γ

do not exist. The Fréchet domain

contains distributions such as Pareto, Cauchy, Student’s and Fréchet itself;

(iii) For γ < 0, we are in the max-Weibull-type domain of attraction, which contains

light right-tailed distributions, with short decay and finite right endpoint xF . The

Weibull domain contains distributions such as Uniform, Beta and Weibull itself.

In their article, Fisher and Tippett (1928) deduced the three types of extreme value

distributions by an ingenious and important argument: the maximum of a sample of size

kn may be regarded as the largest element of a sample of k maxima obtained from samples

of size n. So, consider k independent samples (X1, X2, ..., Xn) of size n, extracted from

a population with d.f. F , with k ∈ N. For each sample (X1, X2, ..., Xn), if the limiting

distribution exists, we know that lim
n→∞

F n(anx+ bn) = G(x). Thus, for the k independent

replicated samples, we have lim
n→∞

F kn(anx+ bn) = Gk(x). If we consider the whole sample

of size kn, the same argument is valid and we have lim
n→∞

F kn(aknx + bkn) = G(x), where

new normalizing sequences {akn > 0} and {bkn} real are chosen such that F kn converges

to G. But following Fisher and Tippett (1928), the two perspectives are equivalent, so the

two limiting distributions must be of the same type and the normalizing constants must

be asymptotically equivalent. Then, by the Convergence to Types Theorem (cf. Theorem

2.5), there exist Ak > 0 and Bk ∈ R such that,

akn
an
−→
n→∞

Ak ,
bkn − bn
an

−→
n→∞

Bk
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and

G(x) = Gk(Akx+Bk). (2.10)

The functional equation (2.10) is known as stability equation and the solutions for

G(x) in this functional equation give all the possible limiting distributions for sequences

of sample maxima suitably normalized. The distribution functions G satisfying (2.10) are

called max-stable distribution functions.

Fisher and Tippett (1928) determined all the possible solutions for this equation: the

only solutions of this functional equation are precisely the types G(I), G(II) and G(III) from

Theorem 2.6. This important result has the following meaning: the largest observation of

a sample of k independent observations drawn from an extremal d.f. G must itself have

G as limiting distribution, after a suitable normalization. It means that the three types

G(I), G(II) and G(III) belong to their own max-domain of attraction. So, the limiting

distribution G must be a max-stable distribution and the classes of extreme value and

max-stable d.f.’s actually coincide.

The asymptotic theory for minima, mn = min(X1, X2, . . . , Xn), is a direct consequence

from the EVT for maxima, as noted at the beginning of this chapter:

Theorem 2.8 (Asymptotic Distribution of the Sample Minimum) Suppose there

exist sequences a∗n > 0 and b∗n real, such that

mn − b∗n
a∗n

d−→
n→∞

W ∗ _ G∗,

with G∗ a non-degenerate d.f. Then, G∗ must be one of the following types:

(i) Type I*: G(I∗)(x) = 1−G(I)(−x) = Λ∗(x) = 1− exp(− exp(x)), x ∈ R;

(ii) Type II*: G(II∗)(x|α) = 1−G(II)(−x|α) = Φ∗α(x) =

1− exp(x−α), x < 0, α > 0,

1, x ≥ 0;

(iii) Type III*: G(III∗)(x|α) = 1−G(III)(−x|α) = Ψ∗α(x) =

0, x ≤ 0,

1− exp(−x)α, x > 0, α > 0.

As for the sample maximum, we can unify the three cases with the correspondent

GEVd for minima:

G∗(x|γ) = G∗γ(x) = 1−Gγ(−x) =

1− exp
(
−(1− γx)−

1
γ

)
, 1− γx > 0 if γ 6= 0,

1− exp(− exp(x)), x ∈ R if γ = 0,
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which includes the three min-stable types Λ∗, Φ∗ and Ψ∗ for γ = 0, γ > 0 and γ < 0,

respectively, as for the maxima. Additionally, we can obtain more general forms of the

distributions above, including a location parameter, λ ∈ R, and a scale parameter, δ > 0:

Λ∗(x|λ, δ) = Λ∗
(
x− λ
δ

)
; Φ∗α(x|λ, δ) = Φ∗α

(
x− λ
δ

)
; Ψ∗α(x|λ, δ) = Ψ∗α

(
x− λ
δ

)
,

for the three types distributions and

G∗γ(x|λ, δ) = G∗γ

(
x− λ
δ

)
, λ ∈ R, δ > 0,

for the GEVd for minima. Λ∗ is known as min-Gumbel-type d.f., Φ∗ as min-Fréchet-

type d.f. and Ψ∗ as min-Weibull-type d.f.

The min-Weibull distribution Ψ∗ corresponds to the classical Weibull distribution men-

tioned in (2.7). The max-Gumbel and max-Fréchet distributions are commonly used in

practice for maxima, as they were developed to deal with such problems. For this reason,

the correspondent distributions for minima, Λ∗ and Ψ∗, are known as Reversed Gumbel

and Reversed Fréchet distributions.

2.3 The max-domain of attraction problem

Now that we have solved the first problem of determining which d.f. G may appear

as a limiting distribution for a suitably normalized sequence of maxima, we have to solve

another problem: assuming G as a possible limiting d.f. for the sequence Mn−bn
an

, what are

the necessary and sufficient conditions that F must satisfy in order to belong to the max-

domain of attraction of G? von Mises (1936) provided a set of conditions that ensures

that F belongs to the domain of attraction of G. These conditions are known as von

Mises’ conditions.

Theorem 2.9 (von Mises’ sufficient conditions for F ∈ D(Gγ), von Mises, 1936)

Let F be an absolutely continuous d.f. Existing the probability density function (p.d.f.),

f(x) = F ′(x), and the second derivative, F ′′(x), let h(x) = f(x)

F (x)
represent the hazard

function or hazard rate from Reliability Theory.

(i) Suppose h(x) 6= 0 and differentiable for x next to xF (or for large x, if xF =∞). If

lim
x→xF

d

dx

(
1

h(x)

)
= 0,

then F ∈ D(G(I)).
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(ii) Suppose xF =∞ and F ′ exists. If, for some γ > 0,

lim
x→∞

xh(x) =
1

γ
= α,

then F ∈ D(G(II)).

(iii) Suppose xF <∞ and F ′ exists for x < xF . If, for some γ < 0,

lim
x→xF

(xF − x)h(x) = −1

γ
= α,

then F ∈ D(G(III)).

The proof of this theorem may be found in de Haan (1976).

These three conditions may be unified in a unique sufficient condition for F to belong

to any of the only three max-domain of attraction, also derived in von Mises (1936).

Theorem 2.10 (von Mises’ sufficient conditions for F ∈ D(Gγ)) Under the condi-

tions of Theorem 2.9, if

lim
x→xF

(
1

h(x)

)′
= γ,

we have

F ∈ D(Gγ).

Von Mises’ conditions are very easy to check, requiring only the existence of the first or

second derivative of F , but are only applicable to absolutely continuous d.f.’s F . Besides,

they are only sufficient conditions, and not necessary.

We have to wait for Gnedenko (1943) for a set of necessary and sufficient conditions

for maximal attraction to the three types of limit laws:

Theorem 2.11 (Gnedenko’s necessary and sufficient conditions for F ∈ D(Gγ))

(i) F ∈ D(G(I)) if and only if

xF ≤ ∞ and lim
t→xF

F (t+ xg(t))

F (t)
= exp(−x),∀x ∈ R, (2.11)

where g(t) is a continuous and monotone positive function.

(ii) F ∈ D(G(II)) if and only if, for γ > 0 and α = 1/γ,

xF =∞ and lim
x→∞

F (tx)

F (x)
= t−1/γ = t−α,∀t > 0. (2.12)
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(iii) F ∈ D(G(III)) if and only if, for γ < 0 and α = −1/γ,

xF <∞ and lim
x→0−

F (xF − tx)

F (xF − x)
= t−1/γ = tα, ∀t > 0.

According to Theorem 2.11, the max-Fréchet-type distribution Φα only attracts d.f.’s

where F (x) < 1,∀x, i.e., where xF =∞, and the max-Weibull-type distribution Ψα only

attracts d.f.’s where F (xF ) = 1, for xF <∞, and F (x) < 1,∀x < xF . However, Gnedenko

refers that the conditions for the Gumbel domain are neither definitive nor convenient for

practical use. For this case, the von Mises’ condition is better, but not necessary, as seen.

We must emphasize one important detail about Gnedenko’s conditions: they do not

grant the existence of a limiting distribution for the sequence of suitably normalized

maxima. They only ensure that, if this limiting distribution exists, it must be one of the

three types mentioned.

Laurens de Haan brought important improvements to the domain of attraction condi-

tions. In order to examine such improvements, we have to define some concepts.

Definition 2.12. (Tail quantile function) Let F be a continuous function with inverse

F−1(u) = inf{x : F (x) ≥ u}.

We define the tail quantile function as

U(t) = F−1

(
1− 1

t

)
, t ∈ [1,∞[

or equivalently

U(t) =

(
1

1− F

)−1

(t), t ∈ [1,∞[.

In particular, we have

(i) U(t) is non-decreasing over the interval [1,∞[;

(ii) U(1) = inf{x : F (x) ≥ 0} = xF , where xF stands for the left endpoint of the d.f. F ;

(iii) U(∞) = lim
t→+∞

U(t) = inf{x : F (x) ≥ 1} = sup{x : F (x) < 1} = xF .

Definition 2.13. (Regular Variation) A ultimately positive (for large x) and measur-

able function f : R+ → R is said to be of Regular Variation (RV) (at infinity) with

index α, if and only if, for some α ∈ R,

lim
t→∞

f(tx)

f(t)
= xα, x > 0. (2.13)

We write f ∈ RVα and we call α the index of regular variation. A function satisfying

(2.13) with α = 0 is called slowly varying.
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It may be useful to examine a more general class of functions, that represents a gen-

eralization of the RVα class of functions. For that, we need an additional Theorem that

weakens the conditions of Definition 2.13 (see Appendix B of de Haan and Ferreira, 2006):

Theorem 2.14 Suppose f : R+ → R is measurable, eventually positive, and

lim
t→∞

f(tx)

f(t)

exists, is finite and positive, for all x in a positive measurable set. Then f ∈ RVα.

With this result, we can reformulate the RV property in a different way.

Definition 2.15. A measurable function f : R+ → R is said to be of Regular Variation

if it is possible to find a real function a > 0 such that the limit

lim
t→∞

f(tx)

a(t)

exists and is positive, for all x > 0.

The more general class of functions mentioned above may now be defined.

Definition 2.16. (Extended Regular Variation and Π-class) Suppose f : R+ → R

is measurable and there exists a real function a > 0 such that

lim
t→∞

f(tx)− f(t)

a(t)
= τ(x), ∀x > 0, (2.14)

where τ(.) is a non-constant function defined as

τ(x) =

cx
γ−1
γ
, if γ 6= 0,

c log x, if γ = 0,

with c 6= 0. Moreover, (2.14) holds if a ∈ RVγ.
It is also possible to incorporate the c constant into the a function. In particular, a

measurable function f : R+ → R is said to be of extended regular variation (ERV),

if there exists a function a > 0 such that

τ(x) =

xγ−1
γ
, if γ 6= 0,

log x, if γ = 0,

for all x > 0.

We write f ∈ ERVγ and a is called an auxiliary function for f . For the case γ = 0, we

say that f belongs to the class Π and write f ∈ Π or f ∈ Π(a). The results for functions

satisfying (2.14) are similar to those satisfying (2.13).
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We are now able to expose some improvements presented by Laurens de Haan. All

the results and proofs may be found in de Haan and Ferreira (2006).

A first result is an alternative formulation of the limit relation (2.2):

lim
n→∞

F n(anx+ bn) = G(x)⇔

⇔ lim
n→∞

n logF (anx+ bn) = logG(x)⇔

⇔ lim
n→∞

n(− logF (anx+ bn)) = − logG(x).

Considering the first order Mac Laurin’s expansion of the function f(x) = − log(1−x),

we get

− log(1− x) ' x,

and rewriting logF (x) = log{1− (1− F (x))}, we have

lim
n→∞

n(− logF (anx+ bn)) = − logG(x)⇔

⇔ lim
n→∞

n{− log{1− (1− F (anx+ bn))}} = − logG(x)⇔

⇔ lim
n→∞

n(1− F (anx+ bn)) = − logG(x)⇔

⇔ lim
n→∞

1

n(1− F (anx+ bn))
= − 1

logG(x)
.

Using now the tail quantile function from definition 2.12, we can write

lim
n→∞

1

n
U−1(anx+ bn) = − 1

logG(x)
. (2.15)

To simplify this identity, we need the following Lemma, from de Haan and Ferreira

(2006):

Lemma 2.17 Suppose fn is a sequence of nondecreasing functions and g is a nondecreas-

ing function. Suppose that for any x in some open interval ]a, b[ that is a continuity point

of g,

lim
n→∞

fn(x) = g(x).

Let f−1
n and g−1 be the left-continuous inverses of fn and g. Then, for each x in the

interval ]g(a), g(b)[ that is a continuity point of g−1, we have

lim
n→∞

f−1
n (x) = g−1(x).

From this lemma, it follows that (2.15) can be written as

lim
n→∞

U(nx)− bn
an

= G−1(exp(−1/x)) = D(x), ∀x > 0,
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which can be written in a continuous version:

lim
t→∞

U(tx)− b(t)
a(t)

= G−1(exp(−1/x)) = D(x), ∀x > 0,

where a(t) = a[t] and b(t) = b[t] (with [t] the integer part of t).

All the results about the limit relation (2.2) can now be summarized:

Theorem 2.18 (de Haan and Ferreira, 2006, Theorem 1.1.2) Let an > 0 and bn be

two real sequences and consider a d.f. G, non-degenerate. The following statements are

equivalent:

(i)

lim
n→∞

F n(anx+ bn) = G(x), (2.16)

for each continuity point x of G.

(ii)

lim
t→∞

t{1− F (a(t)x+ b(t))} = − logG(x),

for each continuity point x of G for which 0 < G(x) < 1, a(t) = a[t] and b(t) = b[t]

(with [t] the integer part of t).

(iii)

lim
t→∞

U(tx)− b(t)
a(t)

= D(x), (2.17)

for each continuity point x > 0 of D(x) = G−1(exp(−1/x)), a(t) = a[t] and b(t) =

b[t].

From Section 2.2, we know the form of the function G(x): if relation (2.16) holds,

G(x) is given by (2.8) and we have G(x) = Gγ(x). We can obtain the inverse function of

G−1
γ (x) easily:

G−1
γ (x) =

 1
γ(− log x)γ

− 1
γ

if γ 6= 0,

− log(− log x) if γ = 0,

for 0 < x < 1. Therefore, the function D(x) of (2.17) may be calculated:

D(x) = G−1
γ (exp(−1/x)) = Dγ(x) =

 1
γ{− log(exp(−1/x))}γ −

1
γ

= xγ−1
γ

if γ 6= 0,

− log{− log(exp(−1/x))} = log x if γ = 0,

(2.18)

for all x > 0.

We can now reformulate Theorem 2.18 with the knowledge of G.
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Theorem 2.19 (de Haan and Ferreira, 2006, Theorem 1.1.6) Let be γ ∈ R and

consider the d.f. Gγ in (2.8). The following statements are equivalent:

i. There exist two real constants an > 0 and bn, such that

lim
n→∞

F n(anx+ bn) = Gγ(x), (2.19)

for each continuity point x of Gγ. Recall that, if this relation holds, we say that the

d.f. F belongs to the max-domain of attraction of Gγ;

ii. There exists a positive function a such that, for x > 0

lim
t→∞

U(tx)− U(t)

a(t)
= Dγ(x) =

xγ − 1

γ
, (2.20)

where, for γ = 0, the right-hand side is interpreted as log x;

iii. There exists a positive function a such that

lim
t→∞

t{1− F (a(t)x+ U(t))} = − logG(x) = (1 + γx)−1/γ,

for each continuity point x of G, where 1 + γx > 0;

iv. There exists a positive function g such that

lim
t→xF

F (t+ xg(t))

F (t)
= (1 + γx)−1/γ, (2.21)

for each x, where 1+γx > 0. Moreover, (2.19) holds with bn = U(n) and an = a(n).

Also, (2.21) holds with g(t) = a
(

1
F (t)

)
.

Taking a closer look at condition (2.20), we notice we can relate it with condition

(2.17). Indeed, from relation (2.17), we have

lim
t→∞

U(tx)− b(t)
a(t)

= D(x),

for D(x) = Dγ(x), defined in (2.18). Therefore,

lim
t→∞

U(tx)− U(t)

a(t)
= lim

t→∞

U(tx)− b(t) + b(t)− U(t)

a(t)

= lim
t→∞

U(tx)− b(t)
a(t)

− U(t)− b(t)
a(t)

= Dγ(x)−Dγ(1).

From (2.18), we have Dγ(1) = 0. Then

lim
t→∞

U(tx)− U(t)

a(t)
= Dγ(x).
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Another interesting point about condition (2.20) is its correspondence with our defi-

nition of ERVγ class of functions in (2.14). So, a necessary and sufficient condition for

F ∈ D(Gγ) is that U ∈ ERVγ. This condition is known as first order extended regu-

lar variation property (de Haan, 1984) and we will refer to this condition as first order

condition.

Laurens de Haan also worked on the von Mises’ sufficient conditions, using a formula-

tion with the tail quantile function, U(t):

Theorem 2.20 Under the conditions of Theorem 2.9, if

lim
x→xF

1

h′(x)
= γ

or equivalently

lim
x→xF

1

h(x)

f ′(x)

f(x)
= −γ − 1 (2.22)

or, using the tail quantile function,

lim
t→∞

tU ′′(t)

U ′(t)
= γ − 1,

then

F ∈ D(Gγ).

The sufficient conditions for the three types were also reformulated by Laurens de

Haan:

Theorem 2.21 Under the conditions of Theorem 2.9,

(i) If

lim
x→xF

1

h(x)

f ′(x)

f(x)
= −1, (2.23)

then, F ∈ D(G(I)).

(ii) If

lim
t→∞

tU ′(t)

U(t)
= γ,

then, F ∈ D(G(II)).

(iii) If

lim
t→∞

tU ′(t)

U(∞)− U(t)
= −γ,

then, F ∈ D(G(III)).
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Condition (2.23) is obtained from (2.22) with γ = 0.

Finally, it is important to refer that the alternative versions of Gnedenko’s necessary

and sufficient conditions, created once again by Laurens de Haan, brought some comple-

tion to Gnedenko’s work. Theorem 2.11 can be reformulated in a more uniform way, using

statement (2.21) as a definition of max-domain of attraction:

Theorem 2.22 The d.f. F is in the max-domain of attraction of the extreme value

distribution Gγ if and only if, for some positive function g,

lim
t→xF

F (t+ xg(t))

F (t)
= (1 + γx)−1/γ, (2.24)

for each x, where 1 + γx > 0. If (2.24) holds for some g > 0, then it also holds with

g(t) =


∫ xF
t F (s)ds

F (t)
= E(X − t|X > t), if γ = 0,

γt, if γ > 0,

−γ(xF − t), if γ < 0.

(2.25)

As we can see, Laurens de Haan suggests a function g for the Gumbel-domain of

attraction, in condition (2.11) of Theorem 2.11:

g(t) =

∫ xF
t

F (s)ds

F (t)
= E(X − t|X > t), for t < xF and

∫ xF

t

F (s)ds <∞. (2.26)

In the reliability literature, this particular function g is known as mean residual life or

mean excess function.

The necessary and sufficient conditions were also rewritten using the tail quantile

function U . But before presenting the reformulated version of Gnedenko’s necessary and

sufficient conditions, it is pertinent to introduce a useful Lemma, using also the concepts

defined in Definitions 2.13 and 2.16:

Lemma 2.23 If F ∈ D(Gγ) or equivalently, if U ∈ ERVγ, for γ ∈ R, we can state the

following conditions on the tail of the underlying d.f. F :

(i) For γ = 0, or identically, for U ∈ Π,

lim
t→∞

U(tx)

U(t)
= 1⇐⇒ U ∈ RV0, for all x > 0, and lim

t→∞

a(t)

U(t)
= 0.

Moreover, if U(∞) <∞,

lim
t→∞

U(∞)− U(tx)

U(∞)− U(t)
= 1⇐⇒ U(∞)− U ∈ RV0, for all x > 0,
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and

lim
t→∞

a(t)

U(∞)− U(t)
= 0.

The function a is then a slowly varying function, i.e.,

lim
t→∞

a(tx)

a(t)
= 1⇐⇒ a ∈ RV0, for all x > 0.

(ii) For γ > 0, we have

U(∞) =∞ and lim
t→∞

U(t)

a(t)
=

1

γ
.

(iii) For γ < 0, we have

U(∞) <∞ and lim
t→∞

U(∞)− U(t)

a(t)
= −1

γ
.

In particular, this implies that lim
t→∞

a(t) = 0.

We can still state the following:

1. For γ > 0, relation (2.20) is equivalent to

lim
t→∞

U(tx)

U(t)
= xγ ⇐⇒ U ∈ RVγ, for all x > 0.

2. For γ < 0, relation (2.20) is equivalent to U(∞) <∞ and

lim
t→∞

U(∞)− U(tx)

U(∞)− U(t)
= xγ ⇐⇒ U(∞)− U ∈ RVγ, for all x > 0.

The proofs may be found in de Haan (1976) and de Haan and Ferreira (2006).

With this Lemma, we can now reformulate Gnedenko’s conditions for γ > 0 and γ < 0:

Theorem 2.24 F ∈ D(Gγ), for γ 6= 0, if and only if

1. for γ > 0 and for x > 0,

lim
t→∞

U(tx)

U(t)
= xγ ⇐⇒ U ∈ RVγ;

2. for γ < 0 and for x > 0,

lim
t→∞

U(∞)− U(tx)

U(∞)− U(t)
= xγ ⇐⇒ U(∞)− U ∈ RVγ.

The proofs may also be found in de Haan (1976) and de Haan and Ferreira (2006).
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2.4 The choice of the normalizing sequences an and

bn

The last problem that needs to be solved is the choice of suitable normalizing sequences

an and bn for the basic limit relation (2.2). As we have seen in Theorem 2.5, this choice

is not unique. Moreover, the choice of such sequences depends on the G function that

appears on the limit. The most common choices are indicated in the following Theorem:

Theorem 2.25 (Normalizing constants for F ∈ D(G(I)), F ∈ D(G(II)) and

F ∈ D(G(III)), Gnedenko, 1943, and de Haan and Ferreira, 2006) If F ∈ D(Gγ),

then,

(i) for γ = 0,

lim
n→∞

F n(anx+ bn) = exp(− exp(−x)) = Λ(x)

holds for all x ∈ R, with

an = F−1

(
1− 1

ne

)
− F−1

(
1− 1

n

)
= U(ne)− U(n) or an = g(U(n))

and

bn = F−1

(
1− 1

n

)
= U(n),

with g defined as in (2.25) for γ = 0;

(ii) for γ > 0,

lim
n→∞

F n(anx+ bn) = exp
(
−x−

1
γ

)
= Φ1/γ(x)

holds for all x > 0, with

an = F−1

(
1− 1

n

)
= U(n)

and

bn = 0;

(iii) for γ < 0,

lim
n→∞

F n(anx+ bn) = exp
(
−(−x)−

1
γ

)
= Ψ−1/γ(x)

holds for all x < 0, with

an = xF − F−1

(
1− 1

n

)
= xF − U(n)

and

bn = xF .
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Von Mises’s sufficient conditions also include normalizing sequences an and bn for the

general case F ∈ D(Gγ), rewritten by Laurens de Haan, with the tail quantile function

U(t).

Theorem 2.26 (Normalizing constants for F ∈ D(Gγ)) Under the conditions of

Theorem 2.20, we have

bn = F−1

(
1− 1

n

)
= U(n)

and

an =
1

h(bn)
=

1

nf(bn)
= nU ′(n).

It must be emphasized that these latter sequences are distinct from the normalizing

sequences presented in Theorem 2.25. They are used to normalize the sample maximum

Mn, when F belongs to the domain of attraction of the GEVd. However, the sequences

presented in Theorem 2.25 are used to normalize the sample maximum when F belongs

to the domain of attraction of one of the three standard types of Theorem 2.6.
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Chapter 3

Estimation of parameters in Extreme

Value Theory

Estimating the GEVd parameters (γ, λ, δ) constitutes an important task in EVT,

since it is a starting point for statistical inference about extreme values of a population.

In particular, the EVI, the shape parameter γ in (2.9), measures the right tail’s weight

of the underlying d.f. F , allowing us to understand and describe the behaviour of the

extreme values of a population. With the estimated EVI, it is possible to estimate other

parameters of extreme events like the right endpoint of the underlying d.f. F , extremes

quantiles, the return period and the probability of exceedance of a high level. We can

follow basically two approaches in order to obtain estimates for the GEVd parameters, a

parametric approach and a semi-parametric approach .

3.1 Parametric approaches

3.1.1 Introduction

Following a parametric approach, the main assumption is that we can use the limiting

distribution of the sample extremes as an exact distribution that can be fitted to data, i.e.,

the data in hand form an i.i.d sample coming from an “exact” GEVd defined in (2.9). As

already said, the focus of this thesis is on the sample maximum, Mn = max(X1, . . . , Xn),

and in this chapter, we will continue with the same line. As we are dealing with extreme

events, in particular with maxima, every kind of inference must be carefully done, be-

cause of the extremal nature of such events and the serious consequences of a misleading

inference. Specifically, EVT usually deals with estimating the probability of severe shocks

that are more extreme than any other that has been observed until now.

25
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In Chapter 2, we saw that the right tail of the underlying d.f. F governs the max-

domain of attraction. Then, we must focus only on the behaviour of the high-order

statistics and, consequently, the remaining data are not so essential. So, in order to per-

form a correct inference about extreme events from the available data, it is important

to consider which of them are considered extremes, under some criterion. Parametric

approaches are distinguished according to how many specific observations are picked up

among the available sample data. Within EVT framework, there are two primary ap-

proaches to select such observations: the Gumbel’s approach or the Block Maxima

method and the Peaks over Threshold method (shortly, POT). The first approach

chooses the largest observation from successive periods, defining an appropriate length of

the periods as the blocks; the second approach focuses on the observations that exceed a

fixed (high) threshold.

3.1.2 The Gumbel’s approach or Block Maxima method

Under this approach, the sample of size n is divided into m sub-samples of size k or m

blocks of size k, with n = m× k and k sufficiently large. Usually, a block corresponds to

a period of one year, with k observations per year. Thus, this method is also called the

Annual Maxima method . In each block, the largest observation is selected, so that

we obtain a sample of m independent sample maxima. Formally, let Y be the r.v. that

represents the maximum of a block of size k, i.e.

Y ≡Mk = max(X1, . . . , Xk). (3.1)

Considering now m blocks, we obtain a collection of m sample maxima, (Y1, . . . , Ym).

Consequently, we can fit a parametric GEVd given by (2.9) and obtain estimates of the

EVI (γ), as well as the location (λ) and the scale (δ) parameters, which replace the

attraction coefficients bn and an in (2.1), respectively. This way, the Gumbel’s method

can be used whenever our dataset consists of independent samples maxima. Several

estimation methods for the GEVd are available in the literature; the most popular are

the Maximum Likelihood (ML) method and the Probability Weighted Moments (PWM)

method. With the parameters estimates in hand, we can then obtain estimates of the

other parameters mentioned at the beginning of this Chapter and make some inference

with confidence intervals.

3.1.2.1 Maximum Likelihood Estimation

Since we are in a traditional parametric estimation environment, the first method we

bear in mind is obviously the ML method. Let (Y1, . . . , Ym) be a random sample of the
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r.v. Y defined in (3.1), taken from a GEVd. For γ 6= 0, the log-likelihood function of an

observed random sample (y1, . . . , ym) is given by

`(γ, λ, δ|y1, . . . , ym) = −m log δ−
(

1

γ
+ 1

) m∑
i=1

log

(
1 + γ

yi − λ
δ

)
−

m∑
i=1

(
1 + γ

yi − λ
δ

)− 1
γ

,

(3.2)

for 1 + γ yi−λ
δ

> 0, i = 1, . . . ,m.

When γ = 0, the log-likelihood function reduces to

`(0, λ, δ|y1, . . . , ym) = −m log δ −
m∑
i=1

exp

(
−yi − λ

δ

)
−

m∑
i=1

yi − λ
δ

. (3.3)

The ML estimator (γ̂, λ̂, δ̂) for the unknown parameters (γ, λ, δ) is obtained by max-

imization of (3.2) or equivalently (3.3). Differentiating these expressions, we obtain the

likelihood system of equations, which has no explicit solution. Thus, such a system must

be solved iteratively, by numerical methods. Details on computational methods can be

found in Prescott and Walden (1980), Prescott and Walden (1983), Hosking (1985), Smith

(1985) and Macleod (1989).

Despite its attractiveness, the ML method can have some problems in EVT. The

asymptotic properties of ML estimators are valid only under the known regularity con-

ditions of ML theory (Cox and Hinkley, 1974). However, as the GEVd support depends

on unknown parameters, the regularity conditions are not satisfied and, although we have

reliable numerical processes to find ML estimates, they lack for the usual asymptotic prop-

erties of ML estimators. Smith (1985) showed that the usual asymptotic properties of ML

estimators for the GEVd depend on the value of the unknown EVI (γ). He proved that

the ML estimator exists for γ > −1, but was only able to demonstrate that the classical

asymptotic properties of consistency and asymptotic normality hold for γ > −0.5, letting

the case −1 < γ ≤ −0.5 unsolved. In particular, the author stated that, for γ > −0.5, we

have
√
m((γ̂, λ̂, δ̂)− (γ;λ; δ))

d−→
m→∞

Z _ N (0, I−1),

where I−1 is the inverse of the Fisher Information matrix.

For γ ≤ −1, the ML procedure is not applicable, since the log-likelihood function

has no local maximum. The density is J-shaped and the corresponding log-likelihood

function always tends to +∞ along some path in the log-likelihood space. Many authors,

defending ML estimation, state that this disadvantage is of little practical importance,

since distributions with γ ≤ −1 have a very light upper tail, situation which is rarely

encountered in typical cases of EVT. More recently, Zhou (2009) and Zhou (2010) solved
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the open problem let by Smith (1985), proving that the ML estimators fulfill the two

asymptotic properties mentioned for γ > −1.

Another problem with ML estimation is the convergence of the iterative process of

maximization: sometimes, the computational process does not converge and we may not

be able to find a suitable estimator.

Despite its drawbacks, ML estimation can handle with missing data, non-stationarity

and temporal dependence, with only a few modifications, while this task is very tedious

or even impossible with other estimation methods.

3.1.2.2 Probability Weighted Moments Estimation

The PWM method is also very popular for fitting the GEVd to the available data

sample, (y1, . . . , ym). This method is a generalization of the usual method of moments, but

with an increasing weight for tail observations, and its application to GEVd is explained

in detail by Hosking et al. (1985). Generally speaking, the PWM of a r.v. X with d.f. F

are given by the quantities

Mp,r,s = E{Xp(F (X))r(1− F (X))s}, for p, r, s ∈ R. (3.4)

Consider now a sample (Y1, . . . , Ym) of GEVd i.i.d. r.v.’s. In this context, we can use

PWM with the form

M1,r,0 = E{Y (F (Y ))r}, for r = 0, 1, . . . . (3.5)

For γ 6= 0, Hosking et al. (1985) derived the quantity in (3.5), with F (y) = Gγ(y|λ, δ):

M1,r,0 =
1

r + 1
{λ− δ

γ
(1− (r + 1)γΓ(1− γ))}, for γ < 1, (3.6)

where Γ(.) stands for the gamma function, Γ(t) =
∫ +∞

0
xt−1e−xdx, t ≥ 0.

As we can see, the PWM for the GEVd exist only for γ < 1, but, according to Hosking

et al. (1985), this is not a problem, because in hydrology, the field they work on, the EVI

lies generally between −1
2

and 1
2
. Thus, the PWM estimator (γ̂, λ̂, δ̂) for the unknown

parameters (γ, λ, δ) is obtained solving the following system of equations resulting from

(3.6), with r = 0, 1, 2: 
M1,0,0 = λ− δ

γ
(1− Γ(1− γ)),

2M1,1,0 −M1,0,0 = δ
γ
Γ(1− γ)(2γ − 1),

3M1,2,0−M1,0,0

2M1,1,0−M1,0,0
= 3γ−1

2γ−1
,
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leading to 
λ = M1,0,0 + δ

γ
(1− Γ(1− γ)),

δ = γ(2M1,1,0−M1,0,0)

Γ(1−γ)(2γ−1)
,

3M1,2,0−M1,0,0

2M1,1,0−M1,0,0
= 3γ−1

2γ−1
.

(3.7)

For the r.v. Y _ GEV d, Landwehr et al. (1979) demonstrate that an unbiased

estimator for M1,r,0 is given by

M̂1,r,0 =
1

m

m∑
i=1

(
r∏
j=1

(i− j)
(m− j)

)
Yi:m. (3.8)

Thus, replacing M1,r,0 in (3.7) by its unbiased estimator given by (3.8), for r = 0, 1, 2, we

obtain the PWM estimator, (γ̂, λ̂, δ̂):
λ̂ = M̂1,0,0 + δ̂

γ̂
(1− Γ(1− γ̂)),

δ̂ = γ̂(2M̂1,1,0−M̂1,0,0)

Γ(1−γ̂)(2γ̂−1)
,

3M̂1,2,0−M̂1,0,0

2M̂1,1,0−M̂1,0,0
= 3γ̂−1

2γ̂−1
.

(3.9)

Note that, to obtain γ̂, the last equation of (3.9) has to be solved numerically.

For the Gumbel-case, γ = 0, the PWM defined in (3.5) are given by

M1,r,0 =
1

r + 1
{λ+ δ(log(1 + r)− ψ(1))}, (3.10)

where ψ(x) = d
dx

log Γ(x) stands for the digamma function, with Γ(x) defined in (3.6),

giving in particular −ψ(1) ' 0.57721567, the Euler-Mascheroni constant.

As for the case γ 6= 0, the PWM estimator (λ̂, δ̂) for the unknown parameters (λ, δ)

results from the following system of equations, obtained from (3.10) for r = 0, 1:

λ = M1,0,0 + δψ(1),

δ = 2M1,1,0−M1,0,0

log 2
.

(3.11)

Following the same reasoning and replacing M1,r,0 in (3.11) by its unbiased estimator

defined in (3.8) for r = 0, 1, the PWM estimator results inλ̂ = M̂1,0,0 + δ̂ψ(1),

δ̂ = 2M̂1,1,0−M̂1,0,0

log 2
.
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As for the ML estimator, the PWM estimator is asymptotically Normal, after a suit-

able normalization. For details, see Hosking et al. (1985).

Despite the popularity and attractiveness of ML estimation due to its asymptotic prop-

erties, this method looses its primacy in a small-sample context, where it is outperformed

by the PWM estimation. Indeed, Hosking et al. (1985) showed that, in small samples, the

PWM estimator has lower variance than the ML estimator. The weak performance of this

latter estimator in small samples, making it a poor competitor to the PWM estimator,

remains a serious criticism, since it is not unusual to make inference about extremes with

only a few data, if we are dealing with rare extreme events. Nevertheless, ML is the

preferred parametric estimation method because of its flexibility of modification, to incor-

porate more complex problems, as mentioned above. On the opposite, PWM estimation

has a serious difficulty in dealing with more complex structures.

3.1.2.3 Estimation of other parameters of extreme events

Let Y1−p be the extreme quantile of order (1−p) of the GEVd underlying the r.v. Y ,

defined in (3.1), with p sufficiently small. Estimates of extreme quantiles can be obtained

inverting the GEVd. Straightforward calculations lead us to the following expression:

Y1−p = G−1
γ (1− p|λ, δ) =

λ+ δ
γ
{(− log(1− p))−γ − 1}, if γ 6= 0,

λ− δ log(− log(1− p)), if γ = 0,
(3.12)

where we can replace (γ, λ, δ) by its corresponding ML or PWM estimator.

We can express extreme quantiles in terms of the quantile function, given in Definition

2.12, defining t = 1
p
:

UGγ

(
1

p

)
= G−1

γ (1− p|λ, δ) = Y1−p. (3.13)

In particular, dealing with Annual Maxima, we define the T-period level, U(T ), as

the (high) level exceeded on average by the r.v. Y , for every period of length T . For this

reason, T is called the return period of the level u:

T =
1

1−Gγ(u|λ, δ)
=

1

P (Y > u)
, (3.14)

where the denominator is called exceedance probability.

The return period T can be seen as the mean value of a geometric r.v. Let Nu be the

number of periods needed to exceed the level u for the first time. So, Nu is a geometric

r.v. with mean value 1
pu

, with pu = P (Nu > u). Therefore, we have T = E(Nu).
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If our objective is to obtain the quantiles of the original data X and make some

inference about the population underlying the m blocks of observations X1, . . . , Xk, with

X _ F , we know that the r.v. Y defined in (3.1) is distributed as

FY ≡ FMk
= F k ' Gγ, (3.15)

where k is the block length. As for the r.v. Y , we denote by X1−p the quantile of order

(1 − p) of the d.f. F underlying the r.v. X, i.e., a quantity such that F (X1−p) = 1 − p.
Using now relation (3.15), we have:

F k(X1−p) = (1− p)k ' Gγ(X1−p|λ, δ).

Then,

X1−p ' G−1
γ ((1− p)k|λ, δ) =

λ+ δ
γ
{(− log(1− p)k)−γ − 1}, if γ 6= 0,

λ− δ log(− log(1− p)k), if γ = 0.
(3.16)

Again, estimates of (3.14) and (3.16) are obtained replacing (γ, λ, δ) by its ML or PWM

estimator.

From Chapter 2, we know that, if γ < 0, the right endpoint of the GEVd is finite.

Therefore, we can estimate the finite right endpoint of the respective underlying d.f. F

by

xF = UGγ (∞) = Y1 = X1 = λ− δ

γ
, (3.17)

replacing again (γ, λ, δ) by its ML or PWM estimator.

3.1.2.4 Inference: confidence intervals for the extreme value index

Since ML and PWM estimators are asymptotically normal, we can construct Confi-

dence Intervals (CI’s) and make other forms of inference on the GEVd parameters (γ, λ, δ).

For instance, denoting by θ any of the three parameters of the GEVd, we can obtain a

95% CI for θ by the traditional way:

θ̂ ± 1.96

√
v̂θ̂
m
,

where θ̂ is the ML or PWM estimate of θ and v̂θ̂ denotes the respective diagonal ele-

ment of the covariance-matrix of the limiting Normal distribution, replacing the unknown

parameters by their estimates.

However, Beirlant et al. (2004) suggest another way to construct such CI, since using

the Normal distribution as an approximation to the true sampling distribution of the ML
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or PWM estimators may result in a poor inference. To improve the quality of the CI, it

is preferable to use the profile likelihood function.

Definition 3.1. (profile likelihood function) The profile likelihood function for γ,

Lp(γ), is given by

Lp(γ) = max
λ,δ|γ
L(λ, δ|γ, y1, . . . , ym),

i.e., for each value of γ, the profile likelihood function gives the maximized likelihood

function in order to the other parameters, λ and δ.

The profile likelihood ratio statistic

Lp =
Lp(γ0)

Lp(γ̂)

is used, as the classical likelihood ratio statistic, for testing the hypotheses

H0 : γ = γ0 vs H1 : γ 6= γ0.

So, under H0,

−2 logLp
d−→

m→∞
V _ χ2

(1).

For the asymptotic confidence level α, H0 is then rejected if −2 logLp > χ2
(1)(1 − α)

and the profile likelihood-based 100(1− α)% CI for γ is

CIγ = {γ : −2 logLp ≤ χ2
(1)(1− α)} =

{
γ : logLp(γ) ≥ logLp(γ̂)−

χ2
(1)(1− α)

2

}
.

Profile likelihood-based CI for the other GEVd parameters can be constructed follow-

ing the same reasoning.

3.1.2.5 Statistical choice of extreme value models

As we have seen, the choice of the log-likelihood function depends on the EVI value.

Therefore, the following hypotheses test has been widely used in this approach for testing

the Gumbel hypothesis as a d.f. of {Yi}i=1,...,k, defined in (3.1):

H0 : γ = 0 vs H1 : γ 6= 0. (3.18)

The Gumbel type d.f. is a favorite one among statisticians because of the great simplic-

ity of statistical inference associated to Gumbel populations. The particular case γ = 0

can be considered as a transition point: for γ < 0, data come from a d.f. with finite right
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endpoint and for γ > 0, the d.f. has an infinite right endpoint. For this reason, it is a

common practice to separate extreme value models, with the Gumbel-type d.f. playing

a central role. The Gumbel-type d.f. is of particular interest, too, because of the great

variety of distributions possessing an exponential right-tail, with finite or infinite right

endpoint.

The literature about this subject is prolific and we cannot build an exhaustive list

covering all the works. Among the articles concerned with this test, we can mention

Van Montfort (1970), Tiago de Oliveira (1981), Tiago de Oliveira and Gomes (1984),

Hosking (1984) and Marohn (2000). The problem in (3.18) may also be assessed with

goodness-of-fit tests for the Gumbel model. The most popular are based on the following

goodness-of-fit statistics: Kolmogorov-Smirnov, Cramér-von Mises and Anderson-Darling

statistics. Details about this subject can be found in Stephens (1976), Stephens (1977)

and Stephens (1986).

3.1.3 The Peaks Over Threshold (POT) method and the Gen-

eralized Pareto distribution

This approach focuses on and selects only the observations of the whole sample that

exceed a given high and fixed threshold, fitting the appropriate parametric model to

the excesses over that high level. Attention is then restricted to a random number of

observations exceeding a deterministic level, admitting that sufficient data are available

above the chosen threshold. If this can be assumed, we have to look for the convenient

conditional distribution of these excesses. For fitting such a distribution to available data,

we use the ML method or the PWM method, as for the Block Maxima method.

3.1.3.1 Generalized Pareto distribution

Given a random sample (X1, . . . , Xn), with X _ F , and a high and deterministic

threshold u, smaller than the right endpoint of the support of F , let

Nu = ]{i : Xi > u, i = 1, . . . , n}

be the number of Xi among (X1, . . . , Xn) which exceed the threshold u. Notice that, Nu

is a r.v. with Binomial distribution, i.e. Nu _ B(n, 1 − F (u)). We define exceedances

over u or Peaks Over Threshold (POT) u as

{Wi}Nui=1 = {Xi : Xi > u, i = 1, . . . , Nu}. (3.19)
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We say that an exceedance occurs if the observed value is larger than the threshold u.

We can, hence, represent the exceedances by the r.v. X|X > u. The conditional d.f. of

X|X > u is given by

FX|X>u(x) = P (X ≤ x|X > u) =
F (x)− F (u)

F (u)
, for x ≥ u. (3.20)

Balkema and de Haan (1974) and Pickands III (1975) proved that, for a sufficiently

high threshold u and under adequate conditions, the conditional d.f. FX|X>u(x) may be

well approximated by the Generalized Pareto distribution (GPd). More specifically,

they proved that the GPd is the limiting distribution of suitably normalized exceedances.

Definition 3.2. (Generalized Pareto distribution) The Generalized Pareto distribu-

tion is defined by

Hγ(x) =

1− (1 + γx)−1/γ, 1 + γx > 0, x ≥ 0, if γ 6= 0,

1− exp(−x), x ≥ 0, if γ = 0.
(3.21)

We can obtain a full parametric model family adding location and scale parameters, λ ∈ R
and δ > 0, respectively:

Hγ(x|λ, δ) = Hγ

(
x− λ
δ

)
.

For γ < 0, γ = 0 and γ > 0, GPd reduces to Beta, Exponential and type II Pareto d.f.,

respectively.

The strong connection between GPd and EVT comes from condition (2.21) of Theorem

2.19 or from condition (2.24) of Theorem 2.22. If we pay more attention to these condi-

tions, which define a necessary and sufficient condition for the max-domain of attraction,

we see that the left-hand side of the conditions can be rewritten as follows:

F (t+ xg(t))

F (t)
= P (X > t+ xg(t)|X > t) = FX|X>t(t+ g(t)x).

Therefore, the left-hand side of the aforementioned conditions can be interpreted as

the conditional survival function of the exceedances over the threshold t, taken at t+g(t)x.

So, according to (2.21) or (2.24),

lim
t→xF

FX|X>t(t+ g(t)x) =

(1 + γx)−1/γ, 1 + γx > 0, if γ 6= 0,

exp(−x), if γ = 0,
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or equivalently,

lim
t→xF

FX|X>t(t+ g(t)x) = Hγ(x)⇐⇒ lim
t→xF

FX|X>t(x) = Hγ

(
x− t
g(t)

)
,

which gives a distributional approximation for the exceedances over the (high) threshold

t by the GPd, where g(t) > 0 is a scaling factor. We can, then, interpret t as a location

parameter and g(t) as a scale parameter, which will be called σt. Note that the limit

function Dγ(x) in (2.20) is the tail quantile function of the GPd, showing that the upper

tail of F is, in some sense, close to the upper tail of the GPd.

Recall that our goal is modelling the exceedances d.f., FX|X>t(x), over high thresholds

and, hence, it only make sense to consider thresholds that tend to the right endpoint of

the underlying d.f. F . Making use from our previous notation in (3.20) , we can restate

Theorem 2.22 as follows:

Theorem 3.3 F ∈ D(Gγ) if and only if FX|X>u(x) ' Hγ(x|u, σu), where

Hγ(x|u, σu) =

1− (1 + γ x−u
σu

)−1/γ, 1 + γ x−u
σu

> 0, x ≥ u, if γ 6= 0,

1− exp(−x−u
σu

), x ≥ u, if γ = 0,
(3.22)

or equivalently

Hγ(x|u, σu) =


1− (1 + γ x−u

σu
)−1/γ, x ≥ u, if γ > 0,

1− exp(−x−u
σu

), x ≥ u, if γ = 0,

1− (1 + γ x−u
σu

)−1/γ, u ≤ x ≤ u− σu
γ
, if γ < 0.

We can summarize the results by the Pickands-Balkema-de Haan Theorem

(Balkema and de Haan, 1974 and Pickands III, 1975) , often called the second theorem of

EVT, after Fisher-Tippett-Gnedenko Theorem:

Theorem 3.4 (Pickands-Balkema-de Haan Theorem) F ∈ D(Gγ) if and only if

lim
u→xF

|FX|X>u(x)−Hγ(x|u, σu)| = 0, (3.23)

for some GPd with shape, location and scale parameters γ, u and σu > 0, respectively. If

(3.23) holds, we say that F belongs to the POT-domain of attraction of the GPd, Hγ.

This important Theorem makes the connection between GPd and EVT: a continuous

d.f. F has a Generalized Pareto upper tail if and only if it belongs to the max-domain of

attraction of some extreme value distribution. The GPd is, hence, an important paramet-

ric family as it gives the asymptotic behaviour of the upper tail of a d.f. F . The shape
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parameter γ, as for the GEVd, is closely related to the upper tail heaviness of the d.f.

F : γ = 0 refers to exponential right tails, γ > 0 to heavy right tails with no finite right

endpoint and γ < 0 to light right tails with finite right endpoint. The shape parameter

γ ∈ R is the EVI and is the same in both Hγ and Gγ approximations.

Instead of working with the exceedances, we can work with the excesses. Excesses

can be represented by the r.v. Y = X − u. We can rewrite Theorems 3.3 and 3.4 as

follows:

Theorem 3.5 F ∈ D(Gγ) if and only if FY |Y >0(y) ' Hγ(y|0, σu), where

Hγ(y|0, σu) =

1− (1 + γ y
σu

)−1/γ, 1 + γ y
σu
> 0, y ≥ 0, if γ 6= 0,

1− exp(− y
σu

), y ≥ 0, if γ = 0,
(3.24)

or equivalently

Hγ(y|0, σu) =


1− (1 + γ y

σu
)−1/γ, y ≥ 0, if γ > 0,

1− exp(− y
σu

), y ≥ 0, if γ = 0,

1− (1 + γ y
σu

)−1/γ, 0 ≤ y ≤ −σu
γ
, if γ < 0.

Theorem 3.6 (Pickands-Balkema-de Haan Theorem) F ∈ D(Gγ) if and only if

lim
u→xF

|FY |Y >0(y)−Hγ(y|0, σu)| = 0,

for some GPd with shape and scale parameters γ and σu > 0, respectively. In this case,

the GPd is the limit distribution of the scaled excesses.

3.1.3.2 Maximum Likelihood estimation

Let (X1, . . . , Xn) be the original random sample of the r.v. X, with X _ F . Given a

value of the threshold u, let m be the number of exceedances of this sample. We obtain,

then, a collection of m excesses, denoted by Yj = Xi − u|Xi > u, for i = 1, . . . , n and

j = 1, . . . ,m. In order to pursue a parametric approach, we assume that the actual excess

d.f., FY |Y >0, can be replaced by some GPd, as defined in (3.24). We can also work with

the exceedances Xj = Xi|Xi > u, fitting the parametric family defined in (3.22). In both

cases, the problem is the estimation of the parameters γ and σu. In this Section, this

estimation will be performed through the ML method.
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For γ 6= 0, the log-likelihood function for a given random sample (y1, . . . , ym) of the

r.v Y with GPd is given by

`(γ, σu|y1, . . . , ym) = −m log σu −
(

1

γ
+ 1

) m∑
i=1

log

(
1 +

γyi
σu

)
, (3.25)

where 1 + γyi
σu

> 0, i = 1, . . . ,m.

For γ = 0, the log-likelihood function reduces to the following expression:

`(0, σu|y1, . . . , ym) = −m log σu −
1

σu

m∑
i=1

yi .

Usually, for computational purposes, we prefer a reparametrization of the log-likelihood

function in (3.25). Defining τ = γ
σu

, the log-likelihood function may be rewritten as

`(γ, τ |y1, . . . , ym) = −m log γ +m log τ −
(

1

γ
+ 1

) m∑
i=1

log(1 + τyi),

where 1 + τyi > 0, i = 1, . . . ,m.

The ML estimator (γ̂, τ̂) of the parameters (γ, τ) follows then from

1

τ̂
−
(

1

γ̂
+ 1

)
1

m

m∑
i=1

yi
1 + τ̂ yi

= 0, (3.26)

where γ̂ = 1
m

m∑
i=1

log(1 + τ̂ yi).

The main objective of this reparametrization, introduced by Davison (1984), is to

get γ̂ explicitly as a function of τ̂ , obtained numerically through (3.26), but after the

replacement of γ̂ by 1
m

m∑
i=1

log(1 + τ̂ yi). For γ = 0, we have the classical case of the

exponential distribution, yielding σ̂u = Y .

As discussed in Section 3.1.2.1, Zhou (2009) and Zhou (2010) established the asymp-

totic normality and consistency of the ML estimators in the EVT framework, for γ > −1.

In particular, Smith (1987) specified the following result:

√
m((γ̂, σ̂u)− (γ, σu))

d−→
n→∞

Z _ N (0, V ),

with V =

[
(1 + γ)2 −σu(1 + γ)

−σu(1 + γ) 2σ2
u(1 + γ)

]
.
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3.1.3.3 Probability Weighted Moments estimation

As the ML estimators can be numerically hardly tractable for the case γ 6= 0, Hosking

and Wallis (1987) suggest the use of PWM estimators. Recalling the definition of PWM

in (3.4), we consider, for the GPd, Mp,r,s with p = 1, r = 0 and s = 0, 1, . . . , yielding

M1,0,s =
σu

(s+ 1)(s+ 1− γ)
, for γ < 1. (3.27)

As for the case of fitting a GEVd, in the Block Maxima method, we can replace M1,0,s

by its empirical counterpart

M̂1,0,s =
1

m

m∑
i=1

(
s∏
j=1

m− i− j + 1

m− j

)
Yi:m

and solving (3.27), for s = 0, 1 with respect to γ and σ, we obtain the PWM estimators

γ̂ = 2− M̂1,0,0

M̂1,0,0−2M̂1,0,1
,

σ̂u = 2M̂1,0,0M̂1,0,1

M̂1,0,0−2M̂1,0,1
.

Note that, in the GPd case, the r-th moments only exist for γ < 1/r.

As for the ML estimation, the PWM estimators are asymptotically Normal-distributed.

For details, we refer to Hosking and Wallis (1987). In particular, they showed that, for

the GPd with shape parameter in the range 0 ≤ γ ≤ 0.4 and specially for small samples,

the PWM estimators perform better than the ML estimators, since they exhibit small

dispersion. The difference is less pronounced as the sample size increases. They also

noted that the traditional Method of Moments is preferable when γ < 0. Nevertheless,

the PWM estimation has some problems: on one hand, for γ ≥ 1, PWM estimators do

not exist and on the other hand, we can obtain estimates that can be inconsistent with

the data, in the sense that some of the observations may fall above the estimate of the

right endpoint, xF .

3.1.3.4 Estimation of other parameters of extreme events

We can now estimate the same quantities defined in Section 3.1.2.3 but under the

POT method. Defining, once again, Y1−p as the extreme quantile of order (1 − p) of

the GPd underlying the excesses Y , with p sufficiently small, we can obtain estimates of

extreme quantiles inverting the GPd given by (3.24), yielding

Y1−p = H−1
γ (1− p|0, σu) =

σu
γ

(p−γ − 1), if γ 6= 0,

−σu log p, if γ = 0,
(3.28)
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and replacing (γ, σu) by its ML or PWM estimator.

We can use, instead, the tail quantile function of Definition 2.12, with t = 1
p
, to express

extreme quantiles of the GPd:

UHγ

(
1

p

)
= H−1

γ (1− p|0, σu) = Y1−p.

If γ < 0, the right endpoint of the GPd is finite and is given by

UHγ (∞) = Y1 = −σu
γ
,

which can be estimated replacing again (γ, σu) by its ML or PWM estimator.

One important point has to be noted: provided that, under this parametric approach,

FY |Y >0(y) ' Hγ(y|0, σu), the quantiles estimates obtained from (3.28) are the estimated

quantiles of the d.f. FY |Y >0(y). However, if we want to estimate the extreme quantiles

of the original and unknown d.f. F , associated with the r.v. X, we can use the identity

(3.20). Provided that Y = X − u, we have

FY |Y >0(y) = P (Y ≤ y|Y > 0)

= P (X ≤ u+ y|X > u)

= FX|X>u(u+ y)

=
F (u+ y)− F (u)

F (u)
.

Therefore, we can establish the following identities:

FY |Y >0(x− u) =
F (x)− F (u)

F (u)
⇔

⇔ F (x) = FY |Y >0(x− u)(1− F (u)) + F (u),

or, equivalently, in terms of the tail quantile function,

1− F (x) = 1− FY |Y >0(x− u)(1− F (u))− F (u)⇔

⇔ F (x) = F (u)(1− FY |Y >0(x− u)).

As FY |Y >0(y) ' Hγ(y|0, σu), we have

F (x) ' F (u)(1−Hγ(x− u|0, σu)).

Estimating F (u) by the sample frequency of the observations that exceed u in the

original sample (X1, . . . , Xn), m
n

, and replacing the parameters of Hγ by their ML or

PWM estimators, we get

F̂ (x) =
m

n
(1−Hγ̂(x− u|0, σ̂u)). (3.29)
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Defining X1−p as the extreme quantile of order (1−p) of the d.f. F underlying the r.v.

X, i.e., a quantity such that F (X1−p) = 1 − p, with p sufficiently small, we can estimate

these quantiles, for instance for γ 6= 0, using (3.29):

X̂1−p = Û

(
1

p

)
= F̂−1(1− p) = u+

σ̂u
γ̂

[(np
m

)−γ̂
− 1

]
,

and, in particular for γ < 0, an estimate for the right endpoint of the d.f. F is given by

x̂F = Û(∞) = u− σ̂u
γ̂
. (3.30)

3.1.3.5 Inference: confidence intervals for the extreme value index

Following the same reasoning as in Section 3.1.2.4, we can construct CI’s for the

parameters of the GPd, on the basis of the asymptotic normality of the ML and PWM

estimators.

As for the case of Block Maxima, Beirlant et al. (2004) recommend the use of the

profile likelihood function to construct better CI’s. In the case of the GPd, the profile

likelihood-based 100(1− α)% CI for γ is

CIγ =

{
γ : logLp(γ) ≥ logLp(γ̂)−

χ2
(1)(1− α)

2

}
. (3.31)

Profile likelihood-based CI’s for the other GPd parameters can be constructed by the

same way.

3.1.3.6 Statistical choice of GPd models

In the POT method, the following hypotheses test is mainly considered, for the same

reasons seen in the case of the GEVd fitting:

H0 : γ = 0 vs H1 : γ 6= 0.

This test gives priority to the Exponential d.f. for modelling the excesses above a high

threshold and received some attention in the literature, specially from hydrologists. We

can find the test procedures in Gomes and van Monfort (1986), Marohn (2000), Reiss and

Thomas (2007) and Kozubowski et al. (2009), among the great variety of literature. The

problem of goodness-of-fit for the GPd model was studied by Choulakian and Stephens

(2001), among others, and Lilliefors (1969) presented the special case of the Kolmogorov-

Smirnov test, applied to the Exponential distribution with unknown parameters.
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3.1.3.7 The choice of the threshold

The choice of the threshold u is still an unsolved problem and in the literature of

the POT method, not so much attention has been given to this issue. The choice of

the threshold is not straightforward; indeed, a compromise has to be found between high

values of u, where the bias of the estimators is smaller, and low values of u, where the

variance is smaller.

Davison and Smith (1990) suggest the use of the Mean Excess function defined in

(2.26). In the GPd case, this function is given by:

e(u) = E(X − u|X > u) = E(Y |Y > 0) =
σu + γu

1− γ
, for γ < 1. (3.32)

If the GPd assumption is valid, the plot of e(u) versus u, called Mean Excess plot

(or shortly ME-plot), should follow a straight line with intercept σu
1−γ and slope γ

1−γ . In

practice, based on a sample of size n, (x1, x2, . . . , xn), e(u) is estimated by its empirical

counterpart, the sample Mean Excess function :

ên(u) =

∑n
i=1 xiI]u,+∞[(xi)∑n
i=1 I]u,+∞[(xi)

− u, where I]u,+∞[(xi) =

1, if xi ∈]u,+∞[,

0, if xi ∈]−∞, u].
(3.33)

To view this function, we generally construct the sample ME-plot

{(Xn−k:n, ên(Xn−k:n)) : 1 ≤ k ≤ n− 1},

where Xn−k:n denotes the the (k + 1)-th largest observation and where ên(u) may be

rewritten as

ên(xn−k:n) =
1

k

k∑
j=1

xn−j+1:n − xn−k:n. (3.34)

If the data support a GPd over a high threshold, we would expect the sample ME-plot

to become linear in view of (3.32). At least, this is the ideal situation. But even for

data that are genuinely GP-distributed, the sample ME-plot is seldom perfectly linear,

particularly toward the right-hand end, where we are averaging a small number of large

excesses. In fact we often omit the final few points from consideration, as they can severely

distort the plot. Consequently, the threshold u is chosen at the point to the right of which

a rough linear pattern appears in the plot.

Another procedure consists in choosing one of the sample points as a threshold, i.e.

u = Xn−k:n, k = 1, . . . , n − 1. With such a random threshold, we work then with the

k+1 top order statistics associated to the whole sample of size n, Xn:n, Xn−1:n, . . . , Xn−k:n.
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This procedure has given rise to the semi-parametric approaches and to the Peaks Over

Random Threshold (PORT) methodology, which will be discussed in the next Section. In

these methods, the choice of k is an important issue.

Finally, another approach is to try different levels u. If the model produces very

different results for different choices of u, the results should be viewed with caution.

3.2 Semi-Parametric Inference

3.2.1 Introduction

The use of parametric approaches has been raising some questions and doubts about

the validity of its assumptions. Since we are using an approximate d.f. like the GEVd

or the GPd instead of the exact d.f. F for the data, subjecting them to an asymptotic

parametric model, just like an exact model, may seem very rigid and somehow unrealistic.

Moreover, in many applications of EVT, the main interest is not to describe the data at

the expense of a theoretical and unrealistic model, but to describe the “behaviour” of

extreme values.

During the seventies, we assist to the birth of another type of approach for statistical

inference in EVT, with the pioneering works of Pickands III (1975) and Hill (1975), among

others. This new approach is known as semi-parametric approach. This term reflects

the fact that our main interest remains in the estimation of parameters of extreme events,

specially the EVI, but at the expense of only partial assumptions about the unknown d.f.

F . The subsequent development of this area is due once again to Laurens de Haan and,

currently, the estimation of parameters of extreme events is often developed under this

framework.

Following a semi-parametric approach, there is no fit of a specific parametric model

depending on a location parameter (λ), a scale parameter (δ) and a shape parameter

(γ), as in a parametric approach. No assumption is then made about the global form of

the underlying d.f. F . The only assumption is about its tail behaviour, where we want

do make some inference. Therefore, in this approach, the only assumption is that the

d.f. F belongs to the max-domain of attraction of some extreme value distribution, i.e.,

F ∈ D(Gγ).

From condition (2.21) of Theorem 2.19, we known that

F ∈ D(Gγ)⇐⇒ lim
t→xF

F (t+ xg(t))

F (t)
= (1 + γx)−1/γ,
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for any x, where 1 + γx > 0.

In Section 3.1.3.1, it was seen that

F (t+ xg(t))

F (t)
= FX|X>t(t+ g(t)x),

and also that

lim
t→xF

FX|X>t(t+ g(t)x) = Hγ(x) =

(1 + γx)−1/γ, 1 + γx > 0, if γ 6= 0,

exp(−x), if γ = 0,

or equivalently

lim
t→xF

FX|X>t(x) = Hγ

(
x− t
g(t)

)
,

where Hγ(.) is the GPd and g(t) a scaling factor, as seen before.

From relation (3.20) and Section 3.1.3.4, we know that we can rewrite this last condi-

tion as

F (x) ' F (t)

{
1−Hγ

(
x− t
g(t)

)}
, (3.35)

which means that, from some high threshold t onwards, i.e. for X > t, the tail of the d.f.

F may be well approximated by relation (3.35). Then, inference about the tail of the d.f.

F can be drawn from observations above the threshold t.

As said in Section 3.1.3.7, the threshold is chosen at one of the random sample point

Xn−k:n. The inference is then based on the k + 1 top order statistics and not only on the

sample maximum Mn. Indeed, it would be unrealistic to consider that only the sample

maximum (one single observation) contains valuable information about the tail of the

d.f. In many extreme situations, we have only a finite sample and we cannot use only the

largest observation for inference. It is thus plausible to base inference on a set of top order

statistics, since it is only these that lie in the region of F we believe it has the specified

form.

Intuitively, as n increases, so should k, or we can miss the benefit of an increasing

sample size. The choice of k is then intimately related with the sample size n, i.e.

k = kn, where k = kn →∞ as n→∞, (3.36)

but at a slower rate than n such that

kn
n
→ 0 as n→∞. (3.37)

A sequence of integers kn is said to be intermediate if it satisfies (3.36) and (3.37).

Consequently, order statistics Xn−k:n, with k satisfying (3.36) and (3.37) are called in-

termediate order statistics.
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Determining k is then an important issue in a semi-parametric approach. However,

the choice of k is not an easy task and several authors have suggested many solutions,

but none of them have been universally adopted. The choice of k is a problem parallel to

the determination of the threshold u in Chapter 3.1.3.7.

Chosen the threshold t = Xn−k:n, we can expect the approximation (3.35) to hold

for intermediate order statistics. Let then X1, X2, . . . , Xn be i.i.d r.v.s with d.f. F . The

simplest unbiased estimator for F is the empirical distribution function, Fn, given by

Fn(x) = n−1

n∑
i=1

I]−∞,x](xi), (3.38)

with I(.) defined in (3.33).

Using the approximation (3.35) for the random threshold t = Xn−k:n and choosing

k = kn →∞, k
n
→ 0 and n→∞, we get

F (x) ' F (Xn−k,n)

[
1−Hγ

(
x−Xn−k:n

g(Xn−k:n)

)]
, x > Xn−k:n.

and provided that F (Xn−k,n) ' F n(Xn−k,n) = k
n

and that g(Xn−k,n) = a
(

1
F (Xn−k,n)

)
(see

(2.21)), it follows that

F (x) ' k

n

{
1−Hγ

(
x−Xn−k:n

a
(
n
k

) )}
, x > Xn−k:n. (3.39)

Therefore, in order to concretize this latter approximation, we need to estimate the

parameter γ and the normalizing scaling constant a
(
n
k

)
. This approximation is valid for

any x larger than Xn−k,n and even for x > Xn:n, i.e., outside the range of the observations,

which is the key behind EVT. Consequently, γ is the main parameter of extreme events

to be estimated, using a set of top observations and an adequate methodology.

In Section 3.2.3, we present some of the most well-known semi-parametric estimators

for the EVI, ranging from the first pioneering contributions to more recent progresses.

Since the semi-parametric approach is a very vast field, it is impossible to cover all the

works developed in this area. So, it is not our objective to present an exhaustive list

of all the existent estimators. As mentioned before, the main parameter of interest in

this approach is γ, as it is the basis for the estimation of other parameters of extreme

events. Therefore, we must obtain estimators for γ with desirable properties in order to

do proper inference. While some properties are only dependent on the behaviour of k
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and on the first order extended regular variation property defined in expression (2.21)

of Theorem 2.19, other properties, namely the asymptotic normality of the estimators,

require that the underlying d.f. F satisfies another condition, apart from those mentioned.

This additional condition is known as the second order extended regular variation

property and as for the first order condition, we will refer to this new property as the

second order condition.

3.2.2 The second order extended regular variation property

In a semi-parametric approach, apart from the first order condition, we often need a

second order condition, to guarantee desirable properties for the estimators of the EVI.

The only assumption in this approach is that F ∈ D(Gγ), which is equivalent to assume

that the first order extended regular variation property is satisfied, i.e., from Theorem

2.19, we have

F ∈ D(Gγ)⇐⇒ lim
t→∞

U(tx)− U(t)

a(t)
= Dγ(x) =

xγ−1
γ
, γ 6= 0,

log x, γ = 0,

for every x > 0 and some positive measurable auxiliary function a, where necessarily we

have a ∈ RVγ, according to definition of extended regular variation (see Definition 2.16).

As mentioned before, an increase of the sample size implies an increase of k, the

number of intermediate order statistics used to estimate γ. However, this rise of k may

introduce some bias in the EVI-estimators, which can be controlled if we have additional

information about the tail of F , in order to control the speed of convergence in the first

order condition, i.e., the speed of convergence of maximum values, linearly normalized,

towards the limit law Gγ. This condition is known as the second order extended regular

variation property. Therefore, the choice of k will also be decided by this second order

condition. We must then quantify the speed of convergence, imposing a precise rate.

For that, we merely need to assume that there exists a function A(t), not changing sign

eventually, such that lim
t→∞

A(t) = 0, which measures not only the speed of convergence of

the sequence of maximum values to a non-degenerate limit law but also the bias of the

estimators. This function A(t) may be either positive or negative. As A(t) measures the

speed of convergence of U(tx)−U(t)
a(t)

towards Dγ(x),

lim
t→∞

U(tx)−U(t)
a(t)

−Dγ(x)

A(t)
(3.40)

must exist, for all x > 0. Let be H(x) the limit function of (3.40). We can now define the

second order condition as follows:
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Definition 3.7. (Second order condition) The function U (or the associated d.f. F )

is said to satisfy the second order condition if, for some positive function a and for some

positive or negative function A, with lim
t→∞

A(t) = 0,

lim
t→∞

U(tx)−U(t)
a(t)

−Dγ(x)

A(t)
= H(x), x > 0. (3.41)

As for the function a of the first-order condition, we call A the second order auxiliary

function.

We need now to determine which functions H(x) are eligible for the limit relation in

(3.41). Following de Haan and Ferreira (2006), we can then state the following result for

the function H(x):

Theorem 3.8 (de Haan and Ferreira (2006), Theorem 2.3.3 and Corollary 2.3.4)

Suppose relation (3.41) holds and the function H is not a multiple of Dγ and is not

identically zero. Then, there exist functions a, positive, and A, positive or negative, and

a parameter ρ ≤ 0 such that

lim
t→∞

U(tx)−U(t)
a(t)

−Dγ(x)

A(t)
= Hγ,ρ(x) =

1

ρ

(
xγ+ρ − 1

γ + ρ
− xγ − 1

γ

)
, (3.42)

for x > 0.

ρ is a second order parameter controlling the speed of convergence of the first order condi-

tion. For the cases γ = 0 and/or ρ = 0, Hγ,ρ(x) is understood to be equal to the respective

limit in (3.42), by continuity arguments.

Moreover, A(t) is such that

lim
t→∞

A(tx)

A(t)
= xρ,

that is, |A| ∈ RVρ.

The function A, describing the rate of convergence of the first order condition, is

regularly varying with index ρ. So, if ρ < 0, we have an algebraic speed of convergence

and if ρ = 0, the speed of convergence is slower (logarithmic, for example). Therefore, the

rate at which the intermediate sequence kn tends to infinity must be in accordance with

the rate of convergence in the first order condition, as quantified by the rate function A.

Note that the second-order condition implies the domain of attraction condition.

Dekkers and de Haan (1989) showed that the second order condition holds for most of

well-known d.f.’s (Normal, Gamma, GEVd, Exponential, Uniform, Cauchy).
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3.2.3 Estimation of the extreme value index

To unify notation and avoid confusion with the number of intermediate order statistics

involved in the following estimators of the EVI, let (X1, . . . , Xn) be a random sample of size

n taken from a d.f. F , such that F ∈ D(Gγ), for some γ ∈ R, with Gγ defined in (2.8). We

denote by X1:n ≤ X2:n ≤ ... ≤ Xn:n the corresponding order statistics in non-descending

order and by X(i) = Xn−i+1:n, i = 1, . . . , n the descending order statistics. The purpose

of this Section is the estimation of the parameter γ, considering a random threshold

Xn−k:n, k = 1, . . . , n − 1, and basing the estimation on the k + 1 top order statistics,

Xn:n, Xn−1:n, . . . , Xn−k:n or equivalently X(1), X(2), . . . , X(k+1). It is very important to

stress that, in this Section, k+1 represents the top-portion of the sample which is selected

in order to estimate the EVI and not the number of observations used on the computation

of the estimate. Some estimators select a top-portion of the sample but use only a few

observations from this portion. This is the case for the first EVI estimator presented

below: the Pickands estimator.

3.2.3.1 The Pickands estimator

Pickands III (1975) was the first to present a semi-parametric estimator for a real EVI,

γ ∈ R. The Pickands estimator for γ ∈ R, γ̂Pn,k, is given by

γ̂Pn,k =
1

log 2
log

(
X([ k+1

4 ]) −X(2[ k+1
4 ])

X(2[ k+1
4 ]) −X(4[ k+1

4 ])

)
, k = 1, . . . , n, (3.43)

where [x] stands for the integer part of x. Notice that this estimator involves k+ 1 of the

top observations, for k ≥ 3.

The properties of γ̂Pn,k were studied by Pickands III (1975) and extended by Dekkers

and de Haan (1989). In particular, they proved that this estimator is strongly consistent

(and therefore weakly consistent as well) and asymptotically Normal-distributed. We refer

to those authors for the proofs.

Theorem 3.9 (Weak consistency, Pickands III, 1975) Let X1, X2, . . . , Xn, . . . be a

sequence of i.i.d. r.v.’s with d.f. F . If F ∈ D(Gγ) and k is an intermediate sequence of

integers defined in (3.36) and (3.37), then

γ̂Pn,k
p−→

n→∞
γ,

where
p−→

n→∞
means convergence in probability.
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Theorem 3.10 (Strong consistency, Dekkers and de Haan, 1989) Let X1, X2, . . . ,

Xn, . . . be a sequence of i.i.d. r.v.’s with d.f. F . If F ∈ D(Gγ) and kn is an intermediate

sequence of integers defined in (3.36) and (3.37) such that kn
log(logn)

→∞, then

γ̂Pn,k
a.s.−→
n→∞

γ,

where
a.s.−→
n→∞

means almost sure convergence.

The Pickands estimator is very appellative because of its relative simplicity, its

scale/location invariance and its applicability to the general case γ ∈ R. However, this es-

timator is characterized by a large asymptotic variance and a high volatility as a function

of k, since it is very sensitive to the choice of intermediate order statistics that are used

for the estimation. All these features motivated more recent modifications and proposals

for the Pickands estimator. Among recent improvements, we can refer Pereira (1994),

Fraga Alves (1995), Drees (1995) and Segers (2005).

Pereira (1994) and Fraga Alves (1995) proposed a generalization of the Pickands estimator,

with the introduction of a tuning or control parameter M , defined as follows:

γ̂Pn,k,M =
1

logM
log

(
X([ k+1

M2 ]) −X(M[ k+1

M2 ])

X(M[ k+1

M2 ]) −X(M2[ k+1

M2 ])

)
, k = 1, . . . , n and M ∈ N \ {1},

which involves k + 1 of the top observations, for k ≥ M2 − 1. The traditional Pickands

estimator corresponds to γ̂Pn,k,2. This generalized estimator was defined since, according

to Fraga Alves (1995), there seems to be no particular reason for the choice of M = 2 in

the classical Pickands estimator. γ̂Pn,k,M is proved to be consistent (weakly and strongly)

and asymptotically Normal, permitting the construction of CI’s for γ.

Drees (1995) also presents a refined version of γ̂Pn,k, consisting in a mixture of Pickands

estimators, which has been generalized later by Segers (2005).

3.2.3.2 The Hill estimator

A few months after the publication of the Pickands estimator, Hill (1975) proposed

another estimator for γ, restricted however, to heavy tails d.f.’s, which belong to Fréchet

max-domain of attraction (γ > 0). We will denote this estimator by γ̂Hn,k, so that the Hill

estimator for γ > 0 is given by

γ̂Hn,k =
1

k

k∑
i=1

(logX(i) − logX(k+1)), (3.44)

which involves k + 1 of the top order statistics.
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The properties of the Hill estimator have been studied by many authors and we may

find many references in the literature. We can find condensed results in de Haan and

Ferreira (2006) and Embrechts et al. (1997):

Theorem 3.11 (Weak consistency) Let X1, X2, . . . , Xn, . . . be a sequence of i.i.d. r.v.’s

with d.f. F . If F ∈ D(Gγ), with γ > 0, and k is an intermediate sequence of integers, as

defined in (3.36) and (3.37), then

γ̂Hn,k
p−→

n→∞
γ.

Theorem 3.12 (Strong consistency) Let X1, X2, . . . , Xn, . . . be a sequence of i.i.d.

r.v.’s with d.f. F . If F ∈ D(Gγ), with γ > 0, and kn is an intermediate sequence of

integers, as defined in (3.36) and (3.37), such that kn
log(logn)

→∞, then

γ̂Hn,k
a.s.−→
n→∞

γ.

The Hill estimator obtained a high degree of popularity since it can be derived and

interpreted from different points of view and because it has appealing theoretical prop-

erties. Despite these advantages, this estimator presents some problems: first, unlike the

Pickands estimator, the Hill estimator is not invariant to shifts of the data, while the

scale invariance remains. On the order hand, as for many estimators, the Hill estimator

is sensitive to the growth speed of k with respect to n. In several instances, a severe bias

can appear, depending on the rate of increase of kn.

As for the Pickands estimator, the Hill estimator caught the attention of many authors

in an attempt to look for modifications. As examples, we can mention Peng (1998) and

Fraga Alves (2001).

3.2.3.3 The Moment estimator

The Moment estimator , which will be denoted by γ̂Mn,k, was developed by Dekkers

et al. (1989) as an extension of the Hill estimator for γ ∈ R and not only for γ > 0.

Define, for j = 1, 2,

M
(j)
n,k =

1

k

k∑
i=1

(logX(i) − logX(k+1))
j, (3.45)

and also

γ̂+
n,k = M

(1)
n,k = γ̂Hn,k and γ̂−n,k = 1− 1

2

1−

(
M

(1)
n,k

)2

M
(2)
n,k


−1

. (3.46)
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The Moment estimator for γ = γ+ + γ− is defined by the following expression:

γ̂Mn,k = γ̂+
n,k + γ̂−n,k,

where γ+ = max(0, γ) e γ− = min(0, γ). As for the previous estimators, the Moment

estimator deals with k + 1 top observations.

We observe that the Moment estimator has two pieces: γ̂+
n,k, which is the Hill estimator

defined in (3.44), valid for γ > 0, and γ̂−n,k, which will be called the Negative Moment

estimator, valid for γ < 0.

As the Moment estimator is an extension of the Hill estimator for the more general

case γ ∈ R, it satisfies the properties of weak and strong consistency as well:

Theorem 3.13 (Weak consistency) Let X1, X2, . . . , Xn, . . . be a sequence of i.i.d. r.v.’s

with d.f. F . If F ∈ D(Gγ) and k is an intermediate sequence of integers, as defined in

(3.36) and (3.37), then

γ̂Mn,k
p−→

n→∞
γ.

Theorem 3.14 (Strong consistency) Let X1, X2, . . . , Xn, . . . be a sequence of i.i.d.

r.v.’s with d.f. F . If F ∈ D(Gγ) and kn is an intermediate sequence of integers, as

defined in (3.36) and (3.37), such that kn
(logn)η

→∞, for some η > 0, then

γ̂Mn,k
a.s.−→
n→∞

γ.

As for the Hill estimator, the Moment estimator is not location invariant, conserving

the scale invariance property.

3.2.3.4 The Negative Hill estimator

Apart from the Negative Moment estimator defined in (3.46), the Negative Hill

estimator, γ̂NHn,k , is another estimator for γ < 0, introduced by Falk (1995), as an al-

ternative for the POT-ML estimator discussed in Section 3.1.3.2, which was seen to have

desirable properties only for γ > −0.5, until the recent works of Zhou (2009) and Zhou

(2010), who extended its properties for γ > −1. Nevertheless, the Negative Hill estimator

was developed at a time when the desirable properties for the POT-ML estimator were

only proved for γ > −0.5. Therefore, it is intended to be used only for γ < −0.5.

As we know from Chapter 2, if F ∈ D(Gγ) and γ < 0, then the right endpoint of

F, xF , is finite. Consequently, according to de Haan and Ferreira (2006), the distribution

function of

X̃ =
1

xF −X
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is in the max-domain of attraction of G−γ. We can thus apply the Hill estimator to X̃,

but, since xF is unknown, it has to be estimated, in order to produce a statistic. As γ < 0,

the right endpoint is finite and can be well approximated by the sample maximum, Xn:n.

We obtain finally, the Negative Hill estimator:

γ̂NHn,k =
1

k

k−1∑
i=1

log(X(1) −X(i+1))− log(X(1) −X(k+1)),

which involves again k + 1 top order statistics. Unlike the Hill estimator, the Negative

Hill estimator is shift invariant and scale invariant as well.

As for the others estimators, the Negative Hill estimator is consistent for γ < −0.5.

de Haan and Ferreira (2006) enunciate the conditions for weak consistency:

Theorem 3.15 (Weak consistency, de Haan and Ferreira (2006),Theorem 3.6.4)

Let X1, X2, . . . , Xn, . . . be a sequence of i.i.d. r.v.’s with d.f. F . If F ∈ D(Gγ) and k is

an intermediate sequence of integers, as defined in (3.36) and (3.37), such that kη

logn
→∞

for η → 0, then

γ̂NHn,k
p−→

n→∞
γ.

3.2.3.5 The Generalized Hill estimator

The Generalized Hill estimator , γ̂GHn,k is a scale but not location invariant estimator

introduced by Beirlant et al. (1996), as another attempt to generalize the Hill estimator

for the case γ ∈ R and is defined as follows:

γ̂GHn,k = γ̂Hn,k +
1

k

k∑
i=1

(log γ̂Hn,i − log γ̂Hn,k),

where γ̂Hn,k stands for the Hill estimator defined in (3.44). Since this estimator is based on

γ̂Hn,k, it involves k + 1 top observations.

The Generalized Hill estimator is consistent for γ ∈ R, provided that kn is an inter-

mediate sequence of integers defined in (3.36) and (3.37). For a complete study of its

properties, we refer to Beirlant et al. (2005).

3.2.3.6 The Mixed Moment estimator

More recently, the Mixed Moment estimator , γ̂MM
n,k , was developed by Fraga Alves

et al. (2009) from a combination of Theorems 2.6.1 and 2.6.2 of de Haan (1970), again for

the general case γ ∈ R:

γ̂MM
n,k =

ϕ̂n(k)− 1

1 + 2 min(ϕ̂n(k)− 1, 0)
,
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where

ϕ̂n(k) =
M

(1)
n,k − L

(1)
n,k(

L
(1)
n,k

)2 ,

with

L
(1)
n,k =

1

k

k∑
i=1

(
1−

X(k+1)

X(i)

)
,

and M
(j)
n,k defined in (3.45), for j = 1. As its predecessors, this estimator works with k+ 1

top observations.

Since the Mixed Moment estimator is not location invariant, Fraga Alves et al. (2009)

propose an alternative estimator, dependent on a tuning parameter q, 0 ≤ q < 1. This

alternative estimator is based on transformed data obtained from the original sample

(X1, . . . , Xn). Each value of the original sample is then replaced by

X∗i = Xi −X[nq]+1, 0 ≤ q < 1, 1 ≤ i ≤ n,

where [x] stands for the integer part of x.

We can then obtain the corresponding Mixed Moment estimator, γ̂
MM(q)
n,k , which will

be location invariant. This methodology, known as the PORT-methodology, whose ter-

minology was introduced by Araújo Santos et al. (2006), is discussed in the next Section.

As for the other estimators, the Mixed Moment estimator was proved to be consistent for

any γ ∈ R.

3.2.3.7 The Peaks Over Random Threshold (PORT) Methodology

It was seen that some of the presented semi-parametric estimators for γ are not location

invariant: the Hill and the Moment estimators suffer from this drawback. In order to fill

this gap, recent methodologies try to introduce some modifications in those estimators,

in order to induce the location invariance property.

The most well-known modification was introduced in Araújo Santos et al. (2006) and

consists in working with a sample of excesses over a random threshold Xnq :n,

X˜ (q) = (Xn:n −Xnq :n, Xn−1:n −Xnq :n, . . . , Xnq+1:n −Xnq :n), (3.47)

where nq = [nq] + 1, with

(i) 0 < q < 1, for d.f.’s with finite or infinite left endpoint xF = inf{x : F (x) > 0}, and,

consequently, the random threshold is an empirical quantile,
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(ii) q = 0, for d.f.’s with finite left endpoint xF and the random threshold can then be

the sample minimum.

As already seen, q is called a tuning parameter.

Therefore, a methodology based on a sample of excesses X˜ (q), as defined in (3.47) is

called a PORT-methodology , with PORT standing for Peaks Over Random Threshold.

With this methodology, we can obtain consistent estimators for the EVI from any of the

classical estimators, made location/scale invariant using the transformed sample in (3.47).

For more details, we refer to Araújo Santos et al. (2006). These authors base the classical

Hill and Moment estimators on the transformed data X˜ (q), obtaining the PORT-Hill ,

γ̂
H(q)
n,k = γ̂Hn,k(X˜ (q)), and the PORT-Moment , γ̂

M(q)
n,k = γ̂Mn,k(X˜ (q)) estimators, respectively.

An exhaustive study of their asymptotic properties is also performed.

The choice of a convenient value for q is crucial because a misleading value can conduct

to an inconsistent PORT-estimator. The choice q = 0 is tempting, but it must be used

with some care, as it is the case for the PORT-Hill estimator, where the use of the

minimum as a threshold produces an inconsistent estimator for γ, whenever the model

underlying the data has an infinite left endpoint (see Gomes et al., 2007).

In Fraga Alves et al. (2009), the same methodology is applied to the Mixed Moment

estimator, producing the PORT-Mixed Moment estimator, γ̂
MM(q)
n,k = γ̂MM

n,k (X˜ (q)).

3.2.4 Semi-parametric estimation of other extreme events

As in Sections 3.1.2.3 and 3.1.3.4, related to parametric approaches, we can obtain

semi-parametric estimates of other parameters of interest, based on the EVI-estimators.

Extreme quantiles are one of those parameters and they were properly estimated fol-

lowing parametric approaches, in Section 3.1.

Defining again X1−p = U(1
p
) as the extreme quantile of order (1− p) of the underlying

d.f. F of the r.v. X, with p small, and following now a semi-parametric approach, the

only assumption is that F ∈ D(Gγ). Therefore, from relation (2.17) of Theorem 2.18, we

have

F ∈ D(Gγ)⇐⇒ lim
t→∞

U(tx)− b(t)
a(t)

= Dγ(x),

with Dγ(x) defined in (2.18). Then, for a high t, we have

U(tx)− b(t)
a(t)

' Dγ(x)⇔

⇔ U(tx) ' b(t) + a(t)Dγ(x)⇔

⇔ U(x) ' b(t) + a(t)Dγ

(x
t

)
.
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We can use this approximation to estimate extreme quantiles X1−p, but, in order to

make this approximation applicable, we need to estimate γ and the normalizing constants

a(t) and b(t), under a semi-parametric framework.

Regarding the location attraction coefficient, b(t), Theorem 2.19 states that (3.48)

holds for b(t) = U(t), with U(.) defined in Definition 2.12. The same result can be obtained

from Theorem 2.26 for the choice of the normalizing constants. As inference is made with

k+1 intermediate order statistics, we can choose t = n
k
, with k = kn →∞, k

n
→ 0,n→∞,

yielding

U

(
1

p

)
' U

(n
k

)
+ a

(n
k

)
Dγ

(
k

np

)
. (3.48)

The quantity U(n
k
) can be estimated by an intermediate order statistic, as it represents

the extreme quantile of order
(
1− k

n

)
of the d.f. F . Since the empirical d.f. Fn defined

in (3.38) is the natural estimator of the d.f. F , we get, for a large t = n
k
,

b̂
(n
k

)
= Û

(n
k

)
= F̂−1

(
n− k
n

)
= F−1

n

(
n− k
n

)
= Xn−k:n. (3.49)

Concerning the scale coefficient a(n
k
), Ferreira et al. (2003) and de Haan and Ferreira

(2006) present a suitable estimator for a(n
k
), based on the Moment estimator and for the

general case γ ∈ R:

â
(n
k

)
= Xn−k:nM

(1)
n,k(1− γ̂

−
n,k), (3.50)

with M
(j)
n,k given in (3.45) for j = 1 and γ̂−n,k defined in (3.46).

Consequently, taking back (3.48), we can define the following estimators for the ex-

treme quantiles U
(

1
p

)
:

1. for γ 6= 0,

Û

(
1

p

)
= Xn−k:n + â

(n
k

) ( k
np

)γ̂
− 1

γ̂
; (3.51)

2. for γ = 0,

Û

(
1

p

)
= Xn−k:n + â

(n
k

)
log

(
k

np

)
,

with â
(
n
k

)
given by (3.50) and γ̂ standing for any of the EVI-estimators of Section 3.2.3.

In particular, for the simpler case of heavy tails (γ > 0), a straightforward estimator of

the extreme quantile X1−p = U(1
p
) results from (3.48). From condition (2.21) of Theorem

2.19, it was seen that a(t) is linked to g(t). More specifically,

g(t) = a

(
1

F (t)

)
.
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Therefore, for t = Xn−k:n, we have

g(Xn−k:n) = a

(
1

F (Xn−k:n)

)
' a

(n
k

)
,

since we know that F (Xn−k:n) ' F n(Xn−k:n) = k
n
.

On the other hand, from (2.25), we have g(t) = γt for γ > 0. Therefore, after replacing

γ by any of the EVI-estimators valid for γ > 0, we get

â
(n
k

)
= γ̂Xn−k:n

and taking back (3.48), we get the estimator of U(1
p
), for γ > 0:

Û

(
1

p

)
= Xn−k:n

(
k

np

)γ̂
,

which is called the Weissman estimator (Weissman, 1978).

From (3.51), we can also estimate the right endpoint of the d.f. F . If F ∈ D(Gγ),

for γ < 0, the right endpoint xF is finite. Replacing p by zero in (3.51), we get

Û(∞) = x̂F = Û
(n
k

)
+ â

(n
k

)
Dγ(∞) = Xn−k:n −

Xn−k:nM
(1)
n,k(1− γ̂

−
n,k)

γ̂
, (3.52)

where the normalizing constants were replaced by their respective estimators, given in

(3.49) and (3.50), and γ was replaced by any of the previous EVI-estimators, valid for

γ < 0, or by γ̂−n,k. But, as we have the obvious restriction Xn:n ≤ xF , incorporating this

restriction in (3.52), we can define a more accurate estimator for the right endpoint:

x̂F = max

(
Xn:n, Xn−k:n

(
1−

M
(1)
n,k(1− γ̂

−
n,k)

γ̂

))
. (3.53)

Note that, with the normalizing constants estimates, we can obtain a tail probability

estimator using condition (3.39):

F̂ (x) =
k

n

(
1−Hγ̂

(
x−Xn−k:n

â
(
n
k

) ))
, x > Xn−k,n. (3.54)

This latter estimator may be used as an indicator of “excellence” of any value above

Xn−k:n, since it measures the exceedance probability mentioned in (3.14). In partic-

ular, it can be used to measure the “quality” of the sample maximum Xn:n, through the

probability of finding another sample maximum “better” than the current one.
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3.2.5 The asymptotic normality of the estimators of the extreme

value index and corresponding confidence intervals

All previous EVI-estimators enjoy the property of consistency. This property depends

only on the behaviour of the intermediate sequence k = kn as n → ∞. But in order

to do some proper inference such as finding CI’s for γ, we need to assume some distri-

butional characterization for these estimators. However, the existence of an asymptotic

non-degenerate distribution requires that the underlying d.f. F satisfies the second order

condition discussed in Section 3.2.2.

Let γ̂En,k be an arbitrary estimator of γ, like those presented in Section 3.2.3. From

de Haan and Ferreira (2006), we obtain the following Theorem:

Theorem 3.16 Suppose that the d.f. F satisfies the second-order condition in Theorem

3.8. Consequently, for an intermediate sequence k = kn such that (3.36) and (3.37) hold

and also such that

lim
n→∞

√
kA
(n
k

)
= λ, (3.55)

with λ finite, ∃υE ∈ R and σE > 0, such that

√
k(γ̂En,k − γ)

d−→
n→∞

Z _ N (λυE, σ
2
E). (3.56)

Some specific extra mild conditions may be needed for some estimators γ̂En,k.

The values υE and σ2
E are components of the asymptotic bias and of the asymptotic

variance of γ̂En,k, respectively. Estimating these quantities allows us to establish CI’s for

γ, based on any estimator γ̂En,k. We can find expressions for υE and σ2
E in Chapter 3

of de Haan and Ferreira (2006) or in Chapters 4 and 5 of Beirlant et al. (2004), for the

general case of the auxiliary function A(t) such that |A(t)| ∈ RVρ. For instance, in the

case of the Hill estimator, we have:

υH =
1

1− ρ
and σ2

H = γ2

and, consequently,

√
k(γ̂Hn,k − γ)

d−→
n→∞

Z _ N
(

λ

1− ρ
, γ2

)
.

The construction of approximate CI’s requires then the choice of k and the knowledge

of ρ, from the auxiliary function A(t), and of γ itself! In many applications of EVT, it is

often assumed the special case A(t) = βtρ for the auxiliary function, since A(t) ∈ RVρ,
valid only for ρ < 0. But this assumption introduces one more parameter to be known if
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we want to construct proper CI’s. The presence of unknown parameters in the asymptotic

Normal distribution is a not problem only for the Hill estimator, since it is a common

characteristic in every estimator of γ.

The estimation of ρ and β is not an easy task. Among the articles concerned with

the estimation of ρ, we can refer Gomes et al. (2002) and Fraga Alves et al. (2003).

Suitable estimators for β can be found in Gomes and Martins (2002) and Caeiro and

Gomes (2006). As mentioned, the estimation of the second-order parameters is complex

and some questions are still open in this estimation. For the calculus of CI’s for γ, de Haan

and Ferreira (2006) recommend the assumption λ = 0 in (3.55), i.e. lim
n→∞

√
kA
(n
k

)
= 0,

so that the limiting distribution in (3.56) has zero mean. This avoids then the bias

estimation, υE, which usually is a function of ρ and β (and possibly γ). The 100(1−α)%

approximate CI for γ is then given by

γ̂En,k − z1−α/2

√
σ2
E

k
< γ < γ̂En,k + z1−α/2

√
σ2
E

k
, (3.57)

where zε is the ε-quantile of the Normal distribution.

As σ2
E is a function of γ, it is replaced by its estimator σ̂2

E, which is obtained replacing

γ by its estimate in the expression of σ2
E.

Under the conditions of the Theorem 3.16, we can also obtain a CI for the right

endpoint of the underlying d.f. F (c.f. de Haan and Ferreira, 2006):

Xn:n < xF < x̂FE + z1−α
â
(
n
k

)
(γ̂En,k)

2

√
σ̂2
E

k
, (3.58)

with x̂FE given by (3.53) for the respective estimator γ̂En,k and â
(
n
k

)
given by (3.50). Re-

member that the right endpoint xF cannot lie under the sample maximum and, as a matter

of fact, the left-hand side of the CI must be limited by Xn:n. Therefore, the confidence

level of the interval is undetermined, but lower than 1− α.

We can define the following expressions of σ2
E for each estimator discussed in Section

3.2.3:
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σ2
P =


γ2 (22γ+1 + 1)

(log 2)2 (2γ − 1)2 , if γ 6= 0,

3
(log 2)4

if γ = 0;

σ2
H = γ2, if γ > 0;

σ2
M =


γ2 + 1 if γ ≥ 0,

(1− γ)2(1− 2γ)(1− γ + 6γ2)

(1− 3γ)(1− 4γ)
, if γ < 0;

σ2
NH = γ2, if − 1 < γ < −0.5;

σ2
GH =


γ2 + 1 if γ ≥ 0,

(1− γ)(1 + γ + 2γ2)

1− 2γ
if γ < 0;

σ2
MM =


(1 + γ)2 if γ ≥ 0,

(1− 2γ)4 (1− γ)2(6γ2 − γ + 1)

(1− 2γ)3(1− 3γ)(1− 4γ)
if γ < 0;

σ2
H(q) = σ2

H ;

σ2
M(q) = σ2

M ;

σ2
MM(q) = σ2

MM .

(3.59)

All these expressions can be found in de Haan and Ferreira (2006), for Pickands, Hill,

Moment and Negative Hill estimators. For the Generalized Hill estimator, we refer to

Beirlant et al. (2005) and for the Mixed Moment estimator, our reference is Fraga Alves

et al. (2009). Finally, the identities for the PORT versions of the estimators are found in

Araújo Santos et al. (2006) and Fraga Alves et al. (2009).

It must be remembered that these variances are only valid if Theorem 3.56 is satisfied

and if extra specific conditions for each estimator are fulfilled, too. All these conditions

will be assumed in this thesis.

The choice of k still remains and will be discussed in Section 3.2.7.

3.2.6 Testing the extreme value index sign

All the results for the semi-parametric approach rely on the extreme value condition,

i.e., assume that the underlying d.f. F belongs to the max-domain of attraction of the

GEVd, or equivalently, that the tail of the underlying d.f. F is close to the tail of the

GPd, in some sense. As we have seen, some of the semi-parametric estimators require

the knowledge about the tail’s type of the underlying d.f., described by the sign of the
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EVI. Therefore, if we can do some a priori assumptions about the most appropriate

type of decay of the d.f.’s tail, then, every kind of statistical inference will be greatly

improved. For γ < 0, we know that the underlying d.f. has a light right tail, with a

finite right endpoint xF , and for γ > 0, it has a heavy right tail with an infinite right

endpoint. A previous conjecture about the sign of γ help us to select a specific procedure

of estimation, more reliable than procedures valid for a general γ ∈ R. Note, for instance,

that the estimator of the right endpoint is only applicable if γ < 0.

The case γ = 0 is of particular interest, as it can be seen as a transitional value of

the EVI, separating light right tails with finite right endpoint from heavy right tails with

no finite right endpoint. As mentioned, this case is also attractive because the Gumbel

max-domain attracts a great variety of d.f.’s having an exponential type of right tail’s

decay and because of the great simplicity of inference within the Gumbel max-domain.

Therefore, as well as in a parametric context, separating statistical inference procedures

according to the most appropriate max-domain of attraction has gained much interest in

a semi-parametric context. With the rise of the PORT methodology, tests for Gumbel

versus non-Gumbel max-domain have received recent attention from statisticians.

This subject was covered by several articles since the eighties, specially within a para-

metric framework, and some of the tests presented were treated in Section 3.1. The tests

developed under a semi-parametric approach are based on the k excesses over the random

threshold Xn−k:n, with k satisfying (3.36) and (3.37):

Zi = Xn−i+1:n −Xn−k:n, i = 1, · · · , k. (3.60)

In this Section, we present the articles of Neves et al. (2006), Neves and Fraga Alves

(2007) and Neves and Fraga Alves (2008), which present three statistics for the following

test:

H0 : F ∈ D(G0) vs. H1 : F ∈ D(Gγ)γ 6=0 (3.61)

or against one-sided alternatives:

H0 : F ∈ D(G0) vs. H1 : F ∈ D(Gγ)γ>0 (3.62)

or

H0 : F ∈ D(G0) vs. H1 : F ∈ D(Gγ)γ<0. (3.63)

The designed three statistics for testing (3.61) (or the one-sided alternative versions)

are based on the k excesses defined in (3.60) and presented below:
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(i) the Greenwood test statistic, Rn(k):

Rn(k) =
k−1

∑k
i=1 Z

2
i(

k−1
∑k

i=1 Zi

)2 , (3.64)

(ii) the Hasofer-Wang test statistic, Wn(k):

Wn(k) = k−1

(
k−1

∑k
i=1 Zi

)2

k−1
∑k

i=1 Z
2
i −

(
k−1

∑k
i=1 Zi

)2 =
1

k

1

Rn(k)− 1
, (3.65)

(iii) the Ratio test statistic, Tn(k):

Tn(k) =
Z1

k−1
∑k

i=1 Zi
. (3.66)

The three test statistics are location/scale invariant, since they are based on ratios

and spacings of high order statistics.

The Greenwood test statistic was introduced in 1946, turning out to be useful for

detecting the presence of heavy-tailed distributions, while the Hasofer-Wang test statistic

dates back to 1992 and was built on the Shapiro-Wilk goodness-of-fit statistic, being the

most powerful of the three, for tests concerning alternatives in the Weibull max-domain

of attraction.

Neves and Fraga Alves (2007) reformulated the asymptotic properties of these two

statistics, when k = kn behaves as an intermediate sequence, rather than remaining fixed

when the sample size n increases (as it was the case originally). The Ratio test statistic

was introduced by Neves et al. (2006), as a complementary test statistic, motivated by

the different contributions of the sample maximum to the sum of the k excesses above

the random threshold. Since the test based on this statistic tends to be conservative but

with a reasonable power, it is seen as a good complement to the remainder statistics. Its

asymptotic properties are properly exposed in the aforementioned article.

The normalized versions of (3.64), (3.65) and (3.66) are, respectively:

R∗n(k) =

√
k

4
(Rn(k)− 2) , (3.67)

W ∗
n(k) =

√
k

4
(kWn(k)− 1) , (3.68)

T ∗n(k) = Tn(k)− ln k. (3.69)
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Under the null hypothesis that F ∈ D(G0) and under extra second order conditions

on the right tail of F and on the growth of convergence of the intermediate sequence kn

to infinity, the normalized statistics converge in distribution according to:

R∗n
d−→

n→∞
Z1 _ N (0, 1),

W ∗
n

d−→
n→∞

Z2 _ N (0, 1),

T ∗n
d−→

n→∞
Z3 _ Λ.

The critical region of asymptotic size α, for the two-sided test (3.61), is given by

V ∗n < υα/2 or V ∗n > υ1−α/2, (3.70)

where V has to be conveniently replaced by T , R or W and υε denotes the ε-quantile of

the corresponding limiting distribution.

Following a one-sided alternative approach, the critical regions of asymptotic size α,

for the one-sided tests (3.62) and (3.63), are:

1. for the Fréchet max-domain of attraction (H1 : γ > 0)

R∗n(k) > z1−α, W ∗
n(k) < zα, T ∗n(k) > G1−α; (3.71)

2. for the Weibull max-domain of attraction (H1 : γ < 0)

R∗n(k) < zα, W ∗
n(k) > z1−α, T ∗n(k) < Gα, (3.72)

where zε and Gε are the ε-quantiles of the standard Normal and Gumbel distributions,

respectively.

3.2.7 The adaptive selection of the tail sample fraction

As mentioned in Section 3.2.1, an important issue in semi-parametric approaches is the

consideration of k, which defines the tail sample fraction. Its “correct choice” is crucial

for the semi-parametric estimators to have desirable properties in order to do proper

inference. It was seen that the choice of k must be indexed to the sample size n, so that

when the sample size increases, so does the value of k. At least, a correct choice must

satisfy the following properties:

k = kn →∞,
k

n
→ 0 when n→∞.
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Therefore, k must be large enough, but not too large: it must increase moderately as

the sample size increases. If k is sufficiently low, we stay close to the sample maximum

and few order statistics will be used, resulting in estimators with large variances. If k

is sufficiently high, the number of order statistics used increases, allowing a decrease of

estimators’ variances but resulting in a larger bias, since we are using observations which

do not actually converge to the hypothesized limiting d.f. Indeed, from de Haan and

Ferreira (2006), we have the following result:

Theorem 3.17 (de Haan and Ferreira, 2006, Theorem 2.2.1) Suppose von Mises’

conditions for the max-domain of attraction of an extreme value distribution Gγ are ful-

filled (cf. Theorem 2.10). Then, if k = kn →∞, kn → 0 when n→∞,

√
k
Xn−k:n − U(n

k
)

n
k
U ′(n

k
)

d−→
n→∞

Z _ N (0, 1).

The optimal value is then a result of balancing bias and variance, which is not so

trivial. Several methods have been proposed, most of them by the authors of the articles

that introduce estimators for extreme value parameters. For example, in his article,

Pickands III (1975) suggests a specific criterion for choosing k, together with his estimator,

but that method was never widely adopted, contrary to the estimator itself. Embrechts

et al. (1997) proposed a more practical way for the choice of k: the Pickands-plot. For

each value of k = 1, 2, . . . , n, we calculate the Pickands estimator and plot it against k.

The range of k’s that corresponds to a plateau, i.e. those values of k that correspond

to a reasonable horizontal plot, is considered for an elective value of the estimator. The

same strategy is proposed for the Hill estimator, but Embrechts et al. (1997) warn us that

the results of Hill-plots can be very misleading. They refer to these plots as “Hill-horror

plots”: due to the high volatility in Hill-plots, they are far from being constant and it may

be very difficult to choose the range where a stable plot is evident. Drees et al. (2000)

proved that Hill-plots are most effective only when the underlying d.f. is Pareto or very

close to it.

One of the most serious objections raised against semi-parametric methods is their

sensitivity towards the choice of k. Consequently, in the literature, many efforts have

been made to find the optimal k that achieves the best compromise between bias and

variance. An important criterion, very popular among statisticians and used in most

of the articles, is choosing k in order to minimize the Asymptotic Mean Squared

Error (AMSE). However, as we will see, this criterion is mainly dependent on the

second order assumptions about the underlying d.f. F discussed in Section 3.2.2. The

optimal k can be determined when the underlying d.f. F is known, provided that F has a

second order expansion involving extra parameters. But in practice, we do not know the
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exact analytical form of the underlying d.f. and the extra parameters are very difficult to

estimate. Still, Dekkers and de Haan (1989) proved that the second order conditions hold

for most of the well-known d.f.’s.

For an arbitrary estimator of γ, γ̂En,k, like those presented in Section 3.2.3, we define

the AMSE as follows:

AMSE(γ̂En,k) = AV ar(γ̂En,k) +
(
ABias(γ̂En,k)

)2
,

where AVar and ABias stand for Asymptotic Variance and Asymptotic Bias, respectively.

In Section 3.2.5, we saw that any arbitrary estimator γ̂En,k has a limiting Normal

distribution and that σ2
E and υE are components of AVar and ABias, respectively. So,

from (3.56), we get

AV ar(γ̂En,k) = E∞
(
(γ̂En,k − γ)2

)
=
σ2
E

k

and

ABias(γ̂En,k) = E∞(γ̂En,k − γ) =
λυE√
k
,

where E∞ stands for the asymptotic mean value. Then, as an optimality criterion for k,

we search for the value which minimizes the AMSE plot {(k,AMSE(γEn,k))}.

Unfortunately, as it was also seen in Section 3.2.5, σ2
E is a function of γ and υE may

eventually depend on γ. We can replace γ by its estimator γ̂En,k, but this latter presumes

that the value of k has already been chosen, which is precisely our problem now! The

choice of k can then be made recursively, but it induces a high volatility in its estimate and

an important loss of efficiency. In order to avoid such issue, other methods of determining

k have been recently used, such as bootstrapping methods (cf. Gomes and Oliveira, 2001)

and regression methods (cf. Beirlant et al., 2004) for an optimal adaptive choice of k.

In this thesis, we will follow the heuristic methodology proposed by Henriques-Rodrigues

et al. (2011). Let γ̂
(i)
n,k, i ∈ E = {1, 2, 3, 4, 5, 6, 7}, be the set of the seven EVI-estimators

of Section 3.2.3. Then consider

kopt = arg min
k

∑
(i,j)∈E:i 6=j

(
γ̂

(i)
n,k − γ̂

(j)
n,k

)2

(3.73)

the optimal value chosen for k, as we expect that there will be a region where all the

estimators are concordant, i.e., a region where all the estimates have close values and the

smallest value possible for (3.73). According to Henriques-Rodrigues et al. (2011), (3.56)

still holds if we replace k with kopt.

The same procedure can be used for the estimation of the right endpoint xF or for the

exceedance probability.
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Chapter 4

Case Studies

4.1 The Maximal Oxygen Uptake or V̇ O2max

The maximal oxygen uptake, or V̇ O2max, represents the maximum amount of oxygen

an individual can absorb and use during an intense physical exercise, per unit time. It can

be expressed either as an absolute value, in litres of oxygen per minute (l/min), or as a

relative value, in millilitres of oxygen per kilogram of bodyweight per minute (ml/kg/min).

This latter unit is the most commonly used in sports for athletes’ comparisons. V̇ O2max

is a useful quantitative measure for the capacity of sports’ practitioners, since it is directly

related to the ability of realize a high intensity exercise at a high effort’s level, for extra

four or five minutes. When the V̇ O2max is attained during an intense physical effort, any

additional increment of the exercise’s intensity has no effect (or only a residual one), on

the consumption of oxygen.

The knowledge of this quantity is crucial in sports where “pain tolerance”, “obstinacy”

or“fight capacity”are essential to surpass discomforts of exhaustive exercises. A very high

level of V̇ O2max results in a better cardiorespiratory capacity and subsequent ability

to produce energy at high levels of efforts. It is, then, more useful as an indicator of

personal aerobic potential, rather than a predictor of success in high efforts exercises.

Other factors are identically important to obtain a better performance, such as efficiency,

recovery, confidence, genetics, among others. Thus, taken on its own, V̇ O2max is a rough

guide of an athlete’s potential. However, it remains one of the indicators most studied

and of most interest for athletes.

In an average sedentary and healthy adult male, the V̇ O2max runs around

45 ml/kg/min, but in a high level athlete, it can reach values between 80 and 90 ml/kg/min.

For women, the same measure rounds 35 ml/kg/min in sedentary and healthy adult fe-

65
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males, attaining scores around 75 ml/kg/min in high level female athletes. Athletes who

attain the highest levels of V̇ O2max are the cross-country skiers, the cross-country run-

ners and the road racing cyclists. V̇ O2max is then highly related to sex and to sports

modality. Typically, women achieve V̇ O2max scores 15 to 30% below those of men of

the same category. The sport’s category is also an important variable, which is highly

correlated with the level of V̇ O2max, depending on the amount of oxygen solicited per

unit time, dictated by the sport’s category involved. A common soccer player, for in-

stance, reach levels between 42 and 60 ml/kg/min, while a typical cross-country skier

can rise his V̇ O2max beyond 90 ml/kg/min. In sports where endurance is an important

component, athletes usually have higher levels of V̇ O2max. Currently, the world’s record

belongs to the Norwegian cross-country skiers Bjørn Dæhlie and Espen Harald Bjerke,

with a V̇ O2max of 96 ml/kg/min. However, according to the physiologist Erlend Hem,

Dæhlie’s score was obtained out of season and he believes that the skier can exceed 100

ml/kg/min at the peak of his physical form.

In this thesis, we have no intention to conduct a regression analysis on V̇ O2max, in

order to study the effect of the most important factors affecting its levels. Instead, the

scope of this Section is to apply EVT to a random sample of V̇ O2max, obtained from a

population of world athletes. To reduce as much as possible the impact of “confounding

variables” and respect the i.i.d rule, we focus only on masculine athletes picked up in three

categories: cross-country skiing, cross-country running and road racing cycling. As seen,

these modalities produce the highest levels of V̇ O2max, which are of great interest, since

we are dealing with extremes, in particular, maxima. Our intention is to work with a

population as homogeneous as possible and obtain a collection of i.i.d random variables.

The dataset consists of a list of 74 observations collected from several fonts, such as

Saltin and Åstrand (1967), Bangsbo and Larsen (2001), Noakes (2003) and McArdle et al.

(2009). Apart from the aforementioned works, the data were also gathered from a set of

websites listed below:

1. http://www.letsrun.com, with the data available in the following pages:

� http://www.letsrun.com/forum/flat_read.php?thread=4691852

� http://www.letsrun.com/forum/flat_read.php?thread=1477013

� http://www.letsrun.com/forum/flat_read.php?thread=1477013&page=2

� http://www.letsrun.com/forum/flat_read.php?thread=4858418

2. http://www.brianmac.co.uk/vo2max.htm

3. http://www.topendsports.com/testing/records/vo2max.htm

http://www.letsrun.com
http://www.letsrun.com/forum/flat_read.php?thread=4691852
http://www.letsrun.com/forum/flat_read.php?thread=1477013
http://www.letsrun.com/forum/flat_read.php?thread=1477013&page=2
http://www.letsrun.com/forum/flat_read.php?thread=4858418
http://www.brianmac.co.uk/vo2max.htm
http://www.topendsports.com/testing/records/vo2max.htm
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4. http://www.cyclisme-dopage.com/portraits/armstrong.htm

5. http://www.sportvital.cz/sport/trenink/vo2-max-meritko-nasi-kondice/

Each observation represents the highest V̇ O2max obtained by an athlete, picked up

from one of the three categories mentioned above. We assume then homogeneity between

these categories. In sports measures, it is very frequent to obtain repeated values for

several measurements. This occurs because of the lack of precision of the measurement’s

instruments. So, in order to avoid estimation problems due to values’ discretization, we

use the same smoothing technique than Einmahl and Magnus (2008) and Einmahl and

Smeets (2011). For instance, when r athletes have a V̇ O2max of 84 ml/kg/min, these r

results are smoothed equally over the interval ]83.95, 84.05[ as follows:

V̇ O2maxj = 83.95 + 0.1
2j − 1

2r
, j = 1, . . . , r.

4.1.1 Parametric data analysis

The first parametric approach we will follow on this first case study is the Gumbel’s

Block Maxima method, presented in Section 3.1.2. Under this methodology, we can con-

sider each athlete as an individual block. For each athlete, we pick up his highest V̇ O2max

and, therefore, we obtain a collection of several maxima, as much as the number of blocks

considered, in this case, 74 blocks, provided that we have 74 athletes. However, it is im-

portant to clarify one essential point. The observed sample is a sample of maxima, since

we keep only the highest value of each athlete. Recalling the notation of Section 3.1.2, we

represent the characteristic under study by the r.v. X, which represents the maximum

amount of oxygen consumed per unit time (our V̇ O2max), with unknown d.f. F . As this

quantity can be observed repeatedly on the same athlete, for every individual, we can

observe a collection of k V̇ O2max, possibly with a high level of correlation. Considering

m athletes, we have then m blocks of k observations. But, provided that we keep only

the highest result of each athlete, represented by the r.v. Y defined in (3.1), each block

consists only of one observation. Therefore, our observed random sample (y1, . . . , ym) is

formed by m = 74 blocks of one individual observation. It should be noted that we do

not have access to the k observations of each athlete and, therefore, we cannot accede to

the original r.v. X. Every kind of inference is then solely made in terms of the r.v. Y ,

which represent a maximum itself: the maximal V̇ O2max of an athlete of our population

under study.

The second parametric approach presented in Section 3.1.3, the POT methodology,

may seem unapplicable in this case study, provided that our sample has a modest size

http://www.cyclisme-dopage.com/portraits/armstrong.htm
http://www.sportvital.cz/sport/trenink/vo2-max-meritko-nasi-kondice/
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of 74 observations and that the consideration of a threshold will exclude observations,

reducing the size of the available sample. Conscious of this handicap and of the modest

size of our sample, we still decided to conduct a POT approach, as a matter of comparison

with the Gumbel’s approach and to see what this methodology has to tell us in a modest

sample context. We will use exactly the same sample as for Gumbel’s approach, since

the POT methodology is only valid if we are working with a random sample. Since each

athlete has only one observation, his current highest V̇ O2max, we can then assume that

the i.i.d rule is satisfied on the construction of our sample. But before proceeding further

with the POT methodology, it is important to emphasize a noticeable difference between

the two parametric approaches, namely concerning the definition of the r.v. Y . The

Gumbel’s approach considers the available sample as a realization of the r.v. Y , defined

in (3.1). Therefore, the random sample at hand is considered as a sample of m maxima,

replicas of the r.v. Y , which is assumed to follow a GEVd. The POT methodology

considers that the sample at hand is a realization of the r.v. X under study, which follows

a d.f. F . Consequently, this methodology assumes that the available data are replicas

of X taken from the d.f. F , in particular from the right tail of F , since we are working

with top results. Therefore, focusing on the observations above some high threshold u,

we assume we can fit a GPd to the excesses over that threshold, represented by the r.v.

Y , discussed in Section 3.1.3.1. Since the choice of the fixed threshold u is the central

point of the POT approach, we can use the sample ME-plot described in Section 3.1.3.7

to select the most appropriate threshold. This plot can be seen in Figure 4.1, obtained

with the R software (see Appendix A.1).

Remember from (3.32), that for the GPd, defined in (3.24), the mean excess function

is given by

e(u) = E(X − u|X > u) = E(Y |Y > 0) =
σu + γu

1− γ
, γ < 1.

Therefore, if we assume correctly the GPd as the underlying parametric model for the

excesses defined by the r.v. Y , the ME-plot should follow a straight line with intercept
σu

1−γ and slope γ
1−γ . Since e(u) is estimated by its empirical counterpart, ên(u), defined in

(3.34), we expect the sample ME-plot to conserve the linear property, exhibiting a linear

pattern of its path. Consequently, according to Davison and Smith (1990), if we are able

to identify a point one the plot, above which the sample path is reasonably linear, then

we have found an appropriate threshold, meaning that the excesses Y over this threshold

follow a GPd.

Now, Figure 4.1 reveals a clear decreasing linear pattern of the whole sample path.

If seems then difficult to find a point above which the sample path is roughly linear.

However, taking a closer look at the sample path of Figure 4.1, we discover genuinely two
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Figure 4.1: Sample ME-plot for the V̇ O2max data.

linear trends and not only one, as it seemed at first look. Fitting then a straight line to

the first 25 observations and another straight line to the remaining observations of the

ordered sample, we obtain Figure 4.2, by means of the R software (see Appendix A.2).

As the fitted lines show, we denote a change in the linear trend slope around 80

ml/kg/min. Surprisingly, this value is not innocent. Indeed, in 1954, Per-Olof Åstrand,

one of the founding fathers of modern exercise physiology and pioneer in V̇ O2max stud-

ies, created with Irma Ryhming the famous Åstrand-Ryhming nomogram, a graphical

calculator which allows to estimate a personal V̇ O2max, based on the heart frequency

and the exercise intensity. For more details, we refer to Åstrand and Ryhming (1954).

With the help of the nomogram, the authors defined a classification chart with several

levels, according to the personal V̇ O2max. On the top of the chart, we find the value 80

ml/kg/min, above which an athlete is considered an “exceptional athlete”. Now, this top

value of the chart is precisely the value detected on the sample ME-plot. For this reason,

we will choose u = 80 as the fixed threshold for our data and fit a GPd to the excesses

above this threshold. Since we have 49 observations above the threshold u = 80, we end
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Figure 4.2: Sample ME-plot for the V̇ O2max data, with fitted straight lines.

up with a sample of m = 49 excesses. We alert once more that the consideration of this

threshold will reduce the sample size, but we cannot remain indifferent to the coincidence

between the threshold detected by the ME-plot and the top level of the Åstrand-Ryhming

nomogram.

1) The Block Maxima method

a) Preliminary statistical analysis

As a starting point before Gumbel’s approach, it is very useful to have an idea about

the right tail of the underlying d.f. F . A preliminary graphical analysis may help us to

suspect which type of right tail is probably at play in our d.f. F , linking us to one of the

three types of extreme value distributions defined in Theorem 2.6. We remember that

Weibull max-domain contains light right-tailed distributions with a finite right endpoint,

while Fréchet max-domain contains heavy right-tailed distributions with no finite right
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endpoint. The Gumbel max-domain acts as a boundary between the previous two types,

comprising exponential right-tailed distributions with finite or infinite right endpoint.

Then, it seems reasonable to start with Gumbel max-domain and check if the balance

tilts significantly towards one of the sides. Moreover, from the relation between the GEVd

and the GPd stated by the Pickands-Balkema-de Haan Theorem (cf. Theorem 3.4), we

know that a d.f. which belongs to Gumbel max-domain of attraction has a right tail that

can be modeled by an Exponential d.f. Since available data are considered extremal in

some sense, we can try to fit an Exponential model to the data and ascertain whether

such a distribution can be suitably fitted to the right tail of the unknown d.f. F , so that

F
(
x−λ
δ

)
' exp

(
−x−λ

δ

)
for large x, with x > λ. The goodness-of-fit of the Exponential

distribution to the right tail of F can be easily checked by eye with a classical graphical

tool used for this purpose: the Quantile-Quantile plot (shortly, QQ-plot). The QQ-plot

relies on an important property, which characterizes important classes of distributions:

the theoretical quantiles of a parametric family are linearly related to the corresponding

quantiles of the standard member of this family.

Turning back to our case study under the Block Maxima approach, as the available

data are m replicas of the r.v. Y , they are considered large, since the sample is a sample

of m maxima. Therefore, if the underlying d.f. is exponential right-tailed, we expect that

F
(
y−λ
δ

)
' exp

(
−y−λ

δ

)
. As stated before, the linearity property behind the QQ-plot is

verified for important classes of distributions. This is the case namely for location and

scale parameter families, within which we find the Exponential distribution. Let then

Qλ,δ(p) = F−1(p) be the theoretical quantiles of order p of any location-scale parametric

family, with p ∈ ]0, 1[. In particular, for the Exponential distribution, we have

Qλ,δ(p) = λ− δ log(1− p), 0 < p < 1.

The quantiles of the corresponding standard member of the class can then be defined

by Q0,1, yielding, for the Exponential distribution,

Q0,1(p) = − log(1− p), 0 < p < 1.

The aforementioned linear relationship between quantiles is thus visible for the Expo-

nential distribution, since we have

Qλ,δ(p) = λ+ δQ0,1(p), 0 < p < 1.

Hence, for the Exponential case, the plot of Qλ,δ(p) versus Q0,1(p) produces a straight

line, with slope and intercept given by δ and λ, respectively. However, since the location

and scale parameters are unknown, we cannot obtain the theoretical quantiles, Qλ,δ(p),
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needed for the plot. Thus, information about these quantiles can only be found in our

available data, here represented by (y1, . . . , ym). It is well known that the natural unbiased

estimator of any d.f. F is the empirical d.f. Fn, defined in (3.38). Then, with our available

data (y1, . . . , ym), the theoretical quantiles of order p, Qλ,δ(p), can be estimated by the

empirical quantiles of order p, yielding

Q̂λ,δ(p) = F−1
m (p) = inf{y : Fm(y) ≥ p}, 0 < p < 1.

If Y _ Exp(λ, δ), the linear relationship between Qλ,δ(p) and Q0,1(p) = − log(1 − p)
still holds approximately, if we replace Qλ,δ(p) by Q̂λ,δ(p). We have just to define the

values for p in order to trace the plot. Since we have m data points, the coordinates

(− log(1 − p), Q̂λ,δ(p)) can be plotted for m values of p ∈ ]0, 1[. More precisely, we can

plot the points (− log(1−pi), Q̂λ,δ(pi)), i = 1, . . . ,m, where pi are called plotting positions.

The most common choice for pi is pi = i
m+1

, i = 1, . . . ,m, yielding Q̂λ,δ(pi) = yi:m as

estimates of the theoretical quantiles. The plotted points (− log(1 − pi), yi:m) produce

then the QQ-plot presented in Figure 4.3, with the help of the R software (see Appendix

A.3).

As we can see, the plot exhibits a concave pattern specially for large values of yi:m,

which means that replacing Qλ,δ(pi) by Q̂λ,δ(pi) = yi:m ends up with the linear relationship

between quantiles. Therefore, the sample (y1, . . . , ym) may not have been generated by

an Exponential model, which cannot be fitted to the right tail of the V̇ O2max.

According to Beirlant et al. (2004), a concave pattern of the QQ-plot suggests that the

underlying d.f. F has a lighter right tail than expected from an Exponential distribution.

Thus, a suitable parametric model for Y must have a lighter right tail than the Exponential

distribution, as it is the case for some d.f.’s of the Gumbel max-domain, such as the Normal

or Gumbel distributions, and for all the d.f.’s of Weibull max-domain.

In a parametric approach, all the inference relies on the parameters’ estimates of a

suitable parametric model, obtained from point estimation methods. Therefore, to pur-

sue a parametric analysis, we must select a suitable parametric model for our data. As

our random sample (Y1, . . . , Ym) is a sample of maxima, the first immediate candidate

that comes to our mind is the GEVd, defined in (2.9). Thereupon, in order to pursue a

parametric approach, we can fit this limiting distribution to our data, just as an “exact”

parametric model. Once again, we can use the QQ-plot to have a rough and quick confir-

mation of the plausible fit of the GEVd to our data. Since the case γ = 0, representing the

Gumbel d.f., is seen as the separating line between the cases γ < 0, encompassing light

right-tailed d.f’s, and γ > 0, encompassing heavy right-tailed d.f.’s, we can ascertain the

goodness-of-fit of the Gumbel distribution to our data through the QQ-plot. Therefore,
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Figure 4.3: Exponential QQ-plot for the V̇ O2max data

for the Gumbel d.f., F
(
y−λ
δ

)
= exp

[
− exp

(
−y−λ

δ

)]
, y ∈ R, we have

Q̂λ,δ(pi) = yi:m, i = 1, . . . ,m

and

Q0,1(pi) = − log(− log pi), i = 1, . . . ,m,

for pi = i
m+1

. The resulting plot can be seen in Figure 4.4,obtained with the help of the

R software (see Appendix A.4).

This time, the plot exhibits a roughly linear pattern for the plotted points, despite of

a visible concave pattern located at upper values of V̇ O2max. The Gumbel distribution

seems then to be a suitable candidate that fits our data. Remember that Figure 4.3

revealed a non-linear pattern when the Exponential model was proposed as a parametric

model to be fitted to the data, pointing to an underlying d.f. F with a lighter right tail

than the Exponential distribution. As the Gumbel distribution has a lighter right tail

than the Exponential distribution, it may appear as a suitable candidate for Y . Since the
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Figure 4.4: Gumbel QQ-plot for the V̇ O2max data.

QQ-plot in Figure 4.4 presents a more linear pattern than Figure 4.3 does, the Gumbel

distribution is a more appropriate parametric family to be fitted to the r.v. Y .

As mentioned above, the QQ-plot reflects the linear relationship between the theoret-

ical quantiles of a family of distributions and the corresponding theoretical quantiles of

the standard member of the involved family. We can take advantage of the linear relation-

ship to obtain preliminary estimates of the parameters of the theoretical family. Let then

Qλ,δ(p) = Λ−1(p|λ, δ) be the quantiles of order p of the Gumbel family, for p ∈ ]0, 1[. We

have, in particular, Q0,1(p) = Λ−1(p) as the quantiles of order p of the standard Gumbel

distribution. From Theorem 2.6 and condition (2.6), we get, for 0 < p < 1,

Q0,1(p) = − log(− log p)

and

Qλ,δ(p) = λ− δ log(− log p).

It follows that

Qλ,δ(p) = λ+ δQ0,1(p),
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which makes clear the linear relationship between Qλ,δ(p) and Q0,1(p). Thus, fitting a line

to the points in Figure 4.4, we can use the intercept as a preliminary estimate for λ and

the slope as a preliminary estimate for δ. Using the Ordinary Least Squares method of

the R software (see Appendix A.5), we obtain

Call:

lm(formula = vo2max ~ Qg)

Coefficients:

(Intercept) Qg

80.0841 5.3099

which yields

λ̂ = 80.0841 and δ̂ = 5.3099, (4.1)

as preliminary estimates of the parameters of Gumbel distribution.

Using the R software (see Appendix A.5), we can add the fitted line to the QQ-plot

of Figure 4.4, presented in Figure 4.5.

As stated before, all the d.f.’s belonging to Weibull max-domain have lighter right

tails than the Exponential distribution. Hence, it may be reasonable to fit a GEVd with

γ < 0 to the data to ascertain whether we obtain a better fit than that obtained with the

Gumbel distribution. Once again, the goodness-of-fit can be assessed using the QQ-plot.

Then, for the GEVd, we have, for 0 < p < 1,

Qγ,λ,δ(p) = λ+ δ
(− log p)−γ − 1

γ
(4.2)

and

Qγ,0,1(p) =
(− log p)−γ − 1

γ
, (4.3)

resulting in the linear relationship

Qγ,λ,δ(p) = λ+ δ Qγ,0,1(p).

However, contrary to the Exponential and Gumbel cases, the quantiles of the GEV

standard model depends on the shape parameter γ. Therefore, the QQ-plot for the GEVd

can only be obtained after specifying a value for γ. Following Beirlant et al. (2004), we

look for the value of γ in the neighbourhood of 0, which maximizes the coefficient of

correlation between Q̂γ,λ,δ(p) and Qγ,0,1(p) on the QQ-plot.
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Figure 4.5: Gumbel QQ-plot for the V̇ O2max data, with fitted straight line.
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This value can be obtained using the R software (see Appendix A.6):

$maximum

[1] -0.225207

$objective

[1] 0.9949305

which can be visualized graphically in Figure 4.6.

−1.0 −0.5 0.0 0.5

0.
85

0.
90

0.
95

1.
00

γ

co
rr

(Q
γ,

 0
, 1

(p
i), 

y i
:m

)

Figure 4.6: Correlation plot between quantiles of the standard GEVd and of the location-

scale GEV family for the V̇ O2max data.

Using the R software (see Appendix A.7) with γ̂ = −0.225207, the corresponding QQ-

plot is shown in Figure 4.7. Comparing the GEVd QQ-plot with the Gumbel QQ-plot of

Figure 4.4, the former seems to reveal a better fit of the GEVd, which puts this model in a

apparently better position to be chosen for the r.v. Y . As we did for the Gumbel QQ-plot,

we can fit a straight line to the points of the plot, obtaining preliminary estimates for the
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Figure 4.7: GEVd QQ-plot for the V̇ O2max data.

location and scale parameters of the GEVd. The results are obtained with the R software

(see Appendix A.8) and the resulting fitted line can be seen in Figure 4.8.

Call:

lm(formula = vo2max ~ Qgev)

Coefficients:

(Intercept) Qgev

80.508 6.491

The preliminary estimates for the GEVd parameters are then

(γ̂, λ̂, δ̂) = (−0.225207, 80.508, 6.491). (4.4)

We can notice a negative estimate for the scale parameter γ. The inference about γ

will confirm whether we can assume γ < 0, pointing then to a d.f. for Y with a lighter

right tail than the Exponential distribution.
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Figure 4.8: GEVd QQ-plot for the V̇ O2max data, with fitted line.
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b) Statistical choice of extreme value models

From the preliminary analysis of last paragraph, we kept two parametric families as

plausible candidates to be fitted the V̇ O2max data. To explore this question more deeply,

we need more objectives tests. So, we can use some of the statistical tests mentioned

in Section 3.1.2.5. As we are in a parametric approach, we are particularly interested in

selecting a parametric model that best fits our V̇ O2max data. As seen, the model is chosen

among the GEVd family, with a particular interest in Gumbel model, the transitional case

between GEVd with γ < 0 and GEVd with γ > 0. Therefore, we can perform the following

test, in order to check if the Gumbel model is suitable for our data or not:

H0 : γ = 0 vs H1 : γ 6= 0. (4.5)

But if we want to have an alternative distribution for our data, in case of rejection of

Gumbel model, we can perform an unilateral test,

H0 : γ = 0 vs H1 : γ < 0, (4.6)

and if H0 is rejected, we can choose a GEVd with γ < 0 as a parametric model for our

data. Here, we are particularly interested in the case γ < 0, motivated by the conclusion

drawn in the graphical preliminary analysis.

The first test presented can be found in Tiago de Oliveira and Gomes (1984) and

allows us to test (4.6). The statistic to be used is given by

GSm =
Ym:m − Y[m/2]+1:m

Y[m/2]+1:m − Y1:m

,

which is called the Gumbel statistic.

Under the validity of H0, we have the following result:

GS∗m =
GSm − βm

αm

d−→
n→∞

Z _ Λ, (4.7)

where the attraction coefficients βm and αm are given by

βm =
logm+ log(log 2)

log(logm)− log(log 2)

and

αm =
1

log(logm)
.
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Therefore, at the asymptotic size α, for the test in (4.6), we reject H0 if

GS∗m ≤ Gα,

where Gε stands for the standard Gumbel ε-quantile. For further details, we refer to

Tiago de Oliveira and Gomes (1984).

We can also obtain the corresponding p-value as follows:

p(GS∗m) = Λ(GS∗m).

With the R software (see Appendix A.9), we obtain the following results:

[1] gs_m= 1.169591 gs*_m= -1.440154 p-value= 0.01467885

Considering the results, H0 is then rejected at the asymptotic size α = 0.05, leading

us to a GEVd family with γ < 0 as a parametric model to be fitted to our data.

Another test that can be performed comes from Hosking (1984), where the author

presents, among others, the Likelihood Ratio Test (LRT) and the Rao’s score test, both

for testing (4.5). Let (Y1, . . . , Ym) be a random sample of maxima, where Yi _ Gγ,

for i = 1, . . . ,m, with Gγ defined in (2.9). Let `(γ, λ, δ|y1, . . . , ym) be the respective

unrestricted log-likelihood function, where `(0, λ, δ|y1, . . . , ym) denotes the restricted log-

likelihood function, which corresponds to the Gumbel case. The LRT statistic is given

by

L = −2
(
`(0, λ̂G0 , δ̂G0|Y1, . . . , Ym)− `(γ̂Gγ , λ̂Gγ , δ̂Gγ |Y1, . . . , Ym)

)
, (4.8)

with (λ̂G0 , δ̂G0) and (γ̂Gγ , λ̂Gγ , δ̂Gγ ) denoting the ML estimators for G0 and Gγ models,

respectively.

Under H0, we have

L
d−→

m→∞
Z _ χ2

(1).

To achieve a higher accuracy in the χ2-approximation, Hosking (1984) recommends

the Bartlett correction, yielding the statistic

L∗ =
L

1 + 2.8/m

d−→
m→∞

Z _ χ2
(1). (4.9)

For the test in (4.5), at the asymptotic size α, H0 is rejected if

L∗ ≥ χ2
1,1−α,

where χ2
1,ε stands for the χ2

(1) ε-quantile.
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The corresponding p-value can be calculated as follows:

p(L∗) = 1− χ2
(1)(L

∗).

The R software (see Appendix A.10) allows us to obtain the parameters ML estimates

required by (4.8):

[1] Gumbel ML estimates

lambda= 79.87891 delta= 5.737552

[2] GEV ML estimates

gamma= -0.2431824 lambda= 80.64481 delta= 6.166826

Consequently, we have

(λ̂G0 , δ̂G0) = (79.87891, 5.737552) (4.10)

and

(γ̂Gγ , λ̂Gγ , δ̂Gγ ) = (−0.2431824, 80.64481, 6.166826). (4.11)

Note the closeness of the final ML estimates for the Gumbel model in (4.10) to the

initial estimation performed with the preliminary statistical analysis presented in (4.1).

The same observation applies to the final ML estimates for the GEVd in (4.11), which

preliminary estimates were obtained in (4.4).

Now, with the final ML estimates in hand, we can proceed to the test with the statistic

given by (4.9). The R software produces the following results (see Appendix A.11):

[1] l= 4.272373 l*= 4.116609 p-value= 0.04246411

Once again, at the same asymptotic size α = 0.05, we reject the null hypothesis of

Gumbel model, but we note that the p-value is very close to the asymptotic size α.

Considering now Rao’s score test, still from Hosking (1984), but previously presented

by Tiago de Oliveira (1981), we continue with the same test in (4.5), as for the LRT.

The score test checks whether the derivative of the log-likelihood function with respect to

γ, at point γ = 0, is significantly different from zero. Significant nonzero values suggest

γ 6= 0 and imply the rejection of H0. Let then gγ(y|λ, δ) denote the p.d.f. corresponding

to GEVd, Gγ(y|λ, δ), defined in (2.9). The log-likelihood function for an observed random

sample (y1, . . . , ym) is given by

`(γ, λ, δ|y1, . . . , ym) =
m∑
i=1

log gγ(yi|λ, δ),
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from which we can obtain the score function with respect to γ:

V (γ|λ, δ, y1, . . . , ym) =
∂`(γ, λ, δ|y1, . . . , ym)

∂γ
=

m∑
i=1

∂ log gγ(yi|λ, δ)
∂γ

.

Let (λ̂G0 , δ̂G0) be the parameters ML estimators for the G0 model. In order to test

(4.5), we define the score statistic as

Vm =
m∑
i=1

lim
γ→0

∂ log gγ(Yi|λ̂G0 , δ̂G0)

∂γ
=

m∑
i=1

(
1

2
Z2
i − Zi −

1

2
Z2
i exp(−Zi)

)
,

where Zi =
Yi−λ̂G0

δ̂G0

, for = 1, . . . ,m.

Again under H0, we have

V ∗m =
Vm√

2.09797m

d−→
m→∞

Z1 _ N (0, 1) (4.12)

or, equivalently,

V ∗2m =
V 2
m

2.09797m

d−→
m→∞

Z2 _ χ2
(1). (4.13)

Details about the normal version (4.12) are presented in Tiago de Oliveira (1981) and

the chi-square version (4.13) is presented by Hosking (1984). The normal version of the

statistic allows us to perform the test in (4.6). Therefore, for the tests in (4.6) and (4.5),

H0 is rejected at the asymptotic size α if V ∗m ≤ zα or if V ∗2m ≥ χ2
1,1−α, respectively, where

zε and χ2
1,ε are the Normal and the χ2

(1) ε-quantiles. The corresponding p-values are:

p(V ∗m) = Φ(V ∗m)

and

p(V ∗2m ) = 1− χ2
(1)(V

∗2
m ),

where Φ(.) represents the standard Normal d.f.

Using (4.10) for (λ̂G0 , δ̂G0) and the R software (see Appendix A.12), we get the fol-

lowing results for both statistics:

[1] Normal Test: v_m= -15.88231 v_m*= -1.274671 p-value= 0.1012128

[2] Chi-square Test: v^2_m= 252.2478 v^2_m*= 1.624787

p-value= 0.2024256
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This time, the results of Rao’s score test differ from those of the Gumbel statistic and

of the LRT: at the asymptotic size of α = 0.05, the null hypothesis of Gumbel model is

not rejected, driving us away from the GEVd with γ < 0.

We can use a last test mentioned in Section 3.1.2.5 to get one more witness for the

Gumbel model or for the GEVd with γ < 0. Details about this last test can be found in

Marohn (2000), which is known as Locally Asymptotically Normal (LAN) test. As for the

score test, we can use the LAN test for (4.5) or for (4.6).

Let (λ̂G0 , δ̂G0) be the parameters ML estimators for the G0 model. The LAN statistic

for testing the Gumbel hypothesis has the following expression:

Tm =
1

3.451

(
1.6449√

m
S1,m − δ̂G0

0.5066√
m

S2,m − δ̂G0

0.8916√
m

S3,m

)
,

where

S1,m =
m∑
i=1

1

2

(
Yi − λ̂G0

δ̂G0

)2

− Yi − λ̂G0

δ̂G0

− 1

2

(
Yi − λ̂G0

δ̂G0

)2

exp

(
−Yi − λ̂G0

δ̂G0

) ,

S2,m =
m∑
i=1

{
− 1

δ̂G0

+

(
Yi − λ̂G0

δ̂2
G0

)(
1− exp

(
−Yi − λ̂G0

δ̂G0

))}
,

S3,m =
m∑
i=1

{
1

δ̂G0

− 1

δ̂G0

exp

(
−Yi − λ̂G0

δ̂G0

)}
.

Note that S1,m, S2,m and S3,m are the components of the score function, i.e., the first

derivatives of the log-likelihood function from the GEVd defined in (2.9), with respect to

each parameter, γ, λ and δ, under H0 or, equivalently, at point γ = 0:

S1,m =
m∑
i=1

lim
γ→0

∂ log gγ(Yi|λ, δ)
∂γ

,

S2,m =
m∑
i=1

∂ log g0(Yi|λ, δ)
∂δ

,

S3,m =
m∑
i=1

∂ log g0(Yi|λ, δ)
∂λ

,

replacing λ and δ with their ML estimators, λ̂G0 and δ̂G0 , respectively.

According to Marohn (2000), under the validity of H0, we have

T ∗m =
Tm

0.6904

d−→
m→∞

Z _ N (0, 1) (4.14)

and, at the asymptotic size of α, H0 is rejected if |T ∗m| ≥ z1−α/2 or if T ∗m ≤ zα, for the

tests in (4.5) or in (4.6), respectively. The corresponding p-values are obtained with

p(T ∗m) = 2− 2Φ(|T ∗m|)
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or

p(T ∗m) = Φ(T ∗m).

For testing (4.6), the following results are produced using the R software (see Appendix

A.13) and taking (4.10) for λ̂G0 and δ̂G0 :

[1] t_m= -0.8798613 t_m*= -1.274423 p-value= 0.1012569

As for Rao’s score test, we do not reject the null hypothesis of Gumbel model, at the

asymptotic level α = 0.05.

To complement the previous tests, we can turn to the goodness-of-fit tests for the

Gumbel model, invoked in Section 3.1.2.5, equivalent to the hypotheses test defined in

(4.5).

Let (Y1, . . . , Ym) be a random sample of maxima, where Yi _ G0, for i = 1, . . . ,m,

with G0 defined in (2.9). The test in (4.5) can be checked equivalently by a goodness-of-fit

test for the Gumbel model G0, with the following statistics:

1. Kolmogorov-Smirnov

Dm = max
1≤i≤m

{∣∣∣∣G0(Yi:m|λ̂G0 , δ̂G0)−
i

m

∣∣∣∣ , ∣∣∣∣G0(Yi:m|λ̂G0 , δ̂G0)−
i− 1

m

∣∣∣∣} , (4.15)

2. Cramér-von Mises

W 2
m =

m∑
i=1

(
G0(Yi:m|λ̂G0 , δ̂G0)−

2i− 1

2m

)2

+
1

12m
, (4.16)

3. Anderson-Darling

A2
m = −m− 1

m

m∑
i=1

{
(2i− 1) log(G0(Yi:m|λ̂G0 , δ̂G0))+

+(2m+ 1− 2i) log(1−G0(Yi:m|λ̂G0 , δ̂G0))
}
, (4.17)

where λ̂G0 , δ̂G0 represent the ML estimators for the Gumbel model, G0.

With λ̂G0 , δ̂G0 given in (4.10) and turning to R software (see Appendix A.14), we get

Kolmogorov-Smirnov statistic: 0.06815551

Cramer-von Mises statistic: 0.07324065

Anderson-Darling statistic: 0.540129
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To complete the test, the appropriate test statistic is compared with simulated upper

quantiles of the statistic’s sampling distribution, called upper tail percentage points. Tables

of simulated quantiles can be found in Chandra et al. (1981) for Kolmogorov-Smirnov

statistic and in Stephens (1977) for Cramér-von Mises and Anderson-Darling statistics.

H0 is then rejected if the observed statistic value exceeds the appropriate quantile at the

asymptotic level α.

For Kolmogorov-Smirnov statistic, part of the table found in Chandra et al. (1981) is

transcribed in Table 4.1.

Table 4.1: Upper tail percentage points for Kolmogorov-Smirnov statistic, modified for the Gumbel

distribution.

Upper tail significance level α

Statistic m .10 .05 .025 .01

√
m Dm

10 .760 .819 .880 .944

20 .779 .843 .907 .973

50 .790 .856 .922 .988

∞ .803 .874 .939 1.007

Chandra et al. (1981)

The observed statistic is then

√
m dm =

√
74× 0.06815551 ' 0.586

and for m = 74 and α = 0.05, the upper quantile is not exceeded and, consequently, we

do not reject H0.

For Cramér-von Mises and Anderson-Darling statistics, we transcribe part of the table

from Stephens (1977) in Table 4.2.

Table 4.2: Upper tail percentage points for Cramér-von Mises and Anderson-Darling statistics, modified

for the Gumbel distribution.

Upper tail percentage points, α

Statistic Modification .75 .90 .95 .975 .99

W 2
m W 2

m(1 + 0.2/
√
m) .073 .102 .124 .146 .175

A2
m A2

m(1 + 0.2/
√
m) .474 .637 .757 .877 1.038

Stephens (1977)

The observed modified statistics are then

w2
m(1 + 0.2/

√
m) = 0.07324065× (1 + 0.2/

√
74) ' 0.075
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and

a2
m(1 + 0.2/

√
m) = 0.540129× (1 + 0.2/

√
74) ' 0.553.

We notice that neither of the modified statistics exceed the upper quantile at size

α = 0.05 and, hereupon, we do not reject H0.

The three goodness-of fit tests lead us to the non-rejection of H0, favouring once again

the Gumbel model. However, these tests must be done with some care, because they tend

to be conservative. To summarize all the results from the previous tests, we can present

the Table 4.3 with the decision of each test:

Table 4.3: Results from the statistical choice of extreme value models, for the V̇ O2max data.

Test Hypotheses Observed statistic p-value Decision (α = 0.05)

Gumbel statistic H0 : γ = 0 vs H1 : γ < 0 gs∗m = −1.440154 0.01467885 reject H0

LRT H0 : γ = 0 vs H1 : γ 6= 0 l∗ = 4.116609 0.04246411 reject H0

Rao’s score test H0 : γ = 0 vs H1 : γ 6= 0 v∗2m = 1.624787 0.2024256 not reject H0

LAN test H0 : γ = 0 vs H1 : γ < 0 t∗m = −1.274423 0.1012569 not reject H0

Concerning the three goodness-of-fit tests in (4.15), (4.16) and (4.17), we concluded

that the Gumbel model G0 was not rejected.

Most of the tests elect the Gumbel model as a parametric model to be fitted to the

V̇ O2max data. Even the LRT has a suspicious p-value near the boundary α = 0.05.

For α = 0.01, the statistic is just not significant, leading us to non-rejection of Gum-

bel family. Therefore, the underlying d.f. F of the V̇ O2max can have a finite or an

infinite right endpoint. However, V̇ O2max is pre-eminently a physiological variable and,

consequently, is naturally limited by many physiological factors. In this matter, there is

no consensus among physiologists, since each of them claim the relative importance of

different factors. But all of them agree about one point: V̇ O2max does not have the

capacity to grow infinitely, provided that it relies on limited physiological factors. One

of the most important factors is undoubtedly the heart rate. According to Cerretelli and

Di Prampero (1987), 70-85% of the limitation in V̇ O2max can be attributed to heart rate.

Other appointed limiting factors are the pulmonary diffusion, i.e. the exchange of oxygen

and carbon dioxide between the lungs and the blood, and the oxygen carrying capacity

of the blood (blood volume and flow). Details on how these factors can limit V̇ O2max

are very abundant in physiological literature. We can cite Bassett and Howley (2000),

Kravitz and Dalleck (2002), Warpeha (2003) and McArdle et al. (2009). Despite of these

recent contributions, the fact that V̇ O2max has an upper bound limit has already been

established in the 1920s with the works of Hill and Lupton (1923) and Hill et al. (1924)



88 Chapter 4. Case Studies

and today, it is universally accepted that there is a physiologically upper limit to the

body’s ability to consume oxygen.

c) Parametric estimation of extreme events

From last paragraph, we conclude that, even if we do not reject the Gumbel model,

Physiology tells us that it does make any sense to establish an infinite right endpoint for

the underlying distribution F of V̇ O2max. The Gumbel model has precisely this type of

flexibility, since its max-domain of attraction embraces d.f.’s with finite or infinite right

endpoints. Thereupon, we proceed with the parameters estimation of the Gumbel model,

the location parameter (λ) and the scale parameter (δ), turning to the estimation methods

presented in Sections 3.1.2.1 and 3.1.2.2: the ML method and the PWM method. The

ML method was already applied since it was needed to perform the hypotheses tests in

(4.5) with (4.9). The results were presented in (4.10).

The adequacy of the Gumbel fit via ML method can be assessed by graphical diagnosis

tools of the R software (see Appendix A.15). They are depicted in Figure 4.9.

The Gumbel fit is globally satisfactory, despite the asymmetry present at the beginning

and at the end of the sample, which is very common in the latter case.

We can now apply the PWM method to obtain the estimates for the same parameters

using the R software (see Appendix A.16):

[1] Gumbel PWM estimates

lambda= 79.91804 delta= 5.39941

We can gather the results of both methods in Table 4.4:

Table 4.4: ML and PWM estimates of the location and scale parameters of the Gumbel model, for the

V̇ O2max data.

Estimation method λ̂ (location) δ̂ (scale)

ML 79.87891 5.737552

PWM 79.91804 5.39941

As we can see, the estimates are very similar, using both ML and PWM methods. The

values can be taken as estimates for the attraction coefficients of Section 2.4, with b̂n = λ̂

and ân = δ̂.

With the estimates in hand, we can turn to the construction of CI’s for the location and

scale parameters of the Gumbel model. As mentioned in Section 3.1.2.4, we can obtain
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Figure 4.9: Graphical diagnosis of the Gumbel fit for the V̇ O2max data.
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more accurate intervals if they are based on the profile likelihood function. We obtain the

following results with our usual R software (see Appendix A.17), at the asymptotic 95%

confidence level:

[1] "profiling loc"

[1] "profiling scale"

lower upper

loc 78.504117 81.304361

scale 4.851143 6.890512

The profile likelihood-based CI’s can also be plotted, yielding Figure 4.10 (see Ap-

pendix A.17 for R details).
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Figure 4.10: Profile likelihood-based 95% confidence intervals for the Gumbel model pa-

rameters, for the V̇ O2max data.

As we are exploring the Gumbel model, the last estimate we can introduce is the

estimate of the exceedance probability, defined in (3.14). As we are dealing with non-

temporal data, it does make any sense to estimate the return period in (3.14). Concerning

extreme quantiles, obtained in expressions (3.12) and (3.13), we have no specific choice

for estimating a particular extreme quantile. Finally, as we are in a Gumbel model, we

cannot use expression (3.17) for estimating the right endpoint of the underlying d.f. F ,

since it is only valid for γ < 0.

Turning back to the exceedance probability, in our context of V̇ O2max, we can be

interested by one relevant estimate: the possibility of any athlete of our population sur-

passing the current record of 96 ml/kg/min, i.e. P (Y > 96). We can consider this
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probability as an excellence measure of the current record. Defining X as the r.v. that

represents the V̇ O2max of an athlete of our homogeneous population of athletes, delin-

eated at the beginning of this Chapter, and Y as the r.v. in (3.1), which represents the

maximal V̇ O2max2 of such an athlete, we can now stipulate that Y _ Λ(λ̂, δ̂), where

(λ̂, δ̂) are the ML or PWM estimators of (λ, δ). We obtain the following results with the

R software (see Appendix A.18):

[1] Maximum Likelihood: P(Y>96)= 0.05844263

[2] Probability Weighted Moments: P(Y>96)= 0.04959853

In the present conditions, any top athlete has then a 5-6% probability of surpassing

the current V̇ O2max record.

Before leaving the Block Maxima method, we will also consider the parametric GEVd,

with γ < 0. Indeed, when LRT was performed, we needed to estimate the parameters of

the GEVd model and, as we noted in (4.11), we have γ̂ < 0. Additional reasons can be

appointed for this decision. First of all, as mentioned above, it is universally accepted that

V̇ O2max is a physiological factor with a finite upper bound. Consequently, an estimate

of the right endpoint xF is appropriate. But this estimate is only calculable when we

have γ < 0. Second, the concave pattern of the QQ-plot in Figure 4.3 suggests us a light

right tail of the underlying d.f. F and the same conclusion can be drawn from the sample

ME-plot in Figure 4.1. Indeed, according to Beirlant et al. (2004), a decreasing trajectory

for the sample ME-plot corresponds to d.f.’s with a light right tail. Finally, some of the

tests performed rejected the null hypothesis H0 : γ = 0. Even if the LRT has a p-value

close to the usual size α = 0.05, the null hypothesis remains rejected. Parametric tests

for this matter are abundant in the literature and we only tried some of them. We cannot

discard the possibility of other tests that haven’t been used here to lead us to the rejection

of H0. As we are in a modest sample, a comparison of the performed tests in terms of

their power would be desirable. But this is out of the scope of this thesis.

The results for the GEVd are presented below, applying the R software (see Appendix

A.19) to extract the same type of estimates obtained in the Gumbel model. For the

parameters estimates, we get:

[1] GEV ML estimates

gamma= -0.2431824 lambda= 80.64481 delta= 6.166826

[2] GEV PWM estimates

gamma= -0.2023684 lambda= 80.46483 delta= 6.307003
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We observe that the respective estimates for γ are relatively similar and since we have

γ̂ > −1, we can cross our fingers and expect that we also have γ > −1, to grant the

consistency and asymptotic Normality of the estimators. The adequacy of the GEVd

fit via ML method can be assessed by graphical diagnosis tools of the R software (see

Appendix A.20). They are depicted in Figure 4.11.
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Figure 4.11: Graphical diagnosis of the GEVd fit for the V̇ O2max data.

The GEVd fit is globally satisfactory, despite the asymmetry present at the beginning

and at the end of the sample, which is very common in the latter case. Comparing the

diagnosis for the GEVd with the same diagnosis for the Gumbel model in Figure 4.9, we

can argue a better fit for the GEVd than for the Gumbel model and choose the first as a

suitable parametric model.
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We can obtain CI’s using the profile likelihood function, as we did for the Gumbel

family, plotting the results in Figure 4.12 (see Appendix A.21 for R details).

[1] "profiling loc"

[1] "profiling scale"

[1] "profiling shape"

lower upper

loc 79.0378578 82.29713706

scale 5.1364086 7.63658965

shape -0.4388217 -0.01412509
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Figure 4.12: Profile likelihood-based 95% confidence intervals for the GEVd parameters,

for the V̇ O2max data.

The CI for the EVI alerts us to the proximity of γ = 0, since the upper limit of the

interval is very close to zero. It can be one of the reasons for the discordances of the

statistical tests performed above.
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Finally, we can estimate the exceedance probability for the current record of 96

ml/kg/min, as we did for the Gumbel family (see Appendix A.22 for R details):

[1] Maximum Likelihood: P(Y>96)= 0.02158176

[2] Probability Weighted Moments: P(Y>96)= 0.03250008

Compared with the case γ = 0, we see that the estimated probabilities are lower, with

a reduction from 5-6% to 2-3%.

And now, as we are in the world of γ < 0, we can obtain an estimate for the right

endpoint of the underlying d.f. of the V̇ O2max. Turning to expression (3.17), the estimate

for the right endpoint xF can be calculated either by ML method or by PWM method

(see Appendix A.23 for R details):

[1] Maximum Likelihood: x^F= 106.0037

[2] Probability Weighted Moments: x^F= 111.6308

The ML method establishes the level 106.0037 ml/kg/min as an estimate for the V̇ O2max

upper bound, while the PWM method pushes this limit further, presenting the estimate

111.6308 ml/kg/ml as finite right endpoint. These values are plausible ones, in the light

of what was exposed above, in physiological terms. Notice that the current record holder

is at a distance of 10 ml/kg/min of the highest possible value, in terms of ML estimation.

All the results for Gumbel and GEV models are summarized in Table 4.5:

Table 4.5: Estimation results for Gumbel and GEVd models, for the V̇ O2max data.

Gumbel model GEV model

γ = 0 γ < 0

γ̂

ML - -0.2431824

PWM - -0.2023684

profile CI (95%) - (-0.4388217,-0.01412509)

λ̂

ML 79.87891 80.64481

PWM 79.91804 80.46483

profile CI (95%) (78.504117,81.304361) (79.0378578,82.29713706)

δ̂

ML 5.737552 6.166826

PWM 5.39941 6.307003

profile CI (95%) (4.851143,6.890512) (5.1364086,7.63658965)

P (Y > 96)
ML 0.05844263 0.02158176

PWM 0.04959853 0.03250008

xF
ML - 106.0037

PWM - 111.6308
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2) The POT method

a) Preliminary statistical analysis

As a preview of the POT approach, we can perform a quick preliminary analysis,

ascertaining the goodness-of-fit of the Exponential model to the excesses above the chosen

threshold. The Exponential distribution is particularly important in this approach, since

we know from (3.21) that the GPd reduces to the Exponential d.f. when γ = 0. Therefore,

trying to fit an Exponential model to the excesses Y above the chosen threshold reduces

to ascertain the goodness-of-fit of the GPd to these excesses, for γ = 0. Recall that we

chose the threshold u = 80 based on the sample ME-plot of Figure 4.1. We can then

use the QQ-plot of Figure 4.13 to check the adequacy of the Exponential model to the

excesses above u = 80 (see Appendix A.24 for R details).
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Figure 4.13: Exponential QQ-plot for the m = 49 excesses of the V̇ O2max data

As in the Block Maxima method, the sample path of the Exponential QQ-plot is

characterized by a concave pattern and does not follow a linear trend. We saw the same
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pattern in Figure 4.3, for high values of V̇ O2max. Thus, we can conclude that the

Exponential d.f. is not a suitable parametric model to be fitted to the excesses Y , since

the underlying d.f. has a lighter right tail, i.e. a Beta-type right tail. The GPd with

γ < 0, defined in (3.24), embodies such d.f.’s and its goodness-of-fit can be assessed again

with the help of the QQ-plot. Based on (3.24), we can obtain the theoretical quantiles of

order p for the GP family, for γ 6= 0:

Qγ,σu(p) = H−1
γ (p|0, σu) = σu

(1− p)−γ − 1

γ
, 0 < p < 1. (4.18)

The quantiles of the standard GPd are given then by

Qγ,1(p) =
(1− p)−γ − 1

γ
, 0 < p < 1, (4.19)

yielding the linear relationship

Qγ,σu(p) = σuQγ,1(p).

Plotting then Qγ,σu(p) against Qγ,1(p), we obtain a straight line with no intercept and

slope σu. As for the GEVd in the Block Maxima approach, we have to specify a value for

γ in order to construct the QQ-plot. Following again the technique described in Beirlant

et al. (2004), we choose the value of γ that maximizes the correlation coefficient between

Q̂γ,σu(p) and Qγ,1(p) in the QQ-plot. With the help of R software (see Appendix A.25),

we obtain

$maximum

[1] -0.5532608

$objective

[1] 0.994463

which can be visualized graphically in Figure 4.14 (see Appendix A.25 for R details).

With γ̂ = −0.5532608, the corresponding QQ-plot is shown in Figure 4.15 (see Appendix

A.26 por R details).
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Figure 4.14: Correlation plot between quantiles of the standard GPd and GP model for

the m = 49 excesses of the V̇ O2max data.
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Figure 4.15: GPd QQ-plot for the m = 49 excesses of the V̇ O2max data.
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The QQ-plot for the GPd exhibits a more satisfactory linearity than the QQ-plot for

the Exponential case of Figure 4.13 does, in spite of some irregularity. The GPd with

γ 6= 0 seems then to provide a better fit for the r.v. Y . Now, based on the QQ-plot of

Figure 4.15, we can fit a least squares straight line to the plotted points, which slope gives

us a preliminary estimate of the scale parameter σu. As stated before, the straight line

relating the GPd quantiles has no intercept. Therefore, least squares straight line must

be fitted without intercept. The QQ-plot with the fitted line in presented in Figure 4.16,

with the help of the R software (see Appendix A.27).

Call:

lm(formula = excess ~ Qgpd - 1)

Coefficients:

Qgpd

10.48
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Figure 4.16: GPd QQ-plot for the m = 49 excesses of the V̇ O2max data,with fitted line.
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The preliminary estimates for the GPd parameters are then

(γ̂, σ̂u) = (−0.5532608, 10.48). (4.20)

As for the Gumbel’s approach, note the negative estimate obtained for γ, which points

us to a GPd with γ < 0, when confirmed with some inference about γ.

b) Statistical choice of GPd models

The preliminary statistical analysis of the POT approach selected the GPd with γ < 0

as a suitable candidate for the r.v. Y , which represents here the excesses above the chosen

threshold, to the detriment of the GPd with γ = 0, i.e. the Exponential distribution.

However, since the preliminary analysis is not exempted from some subjectivity, we need

to rely on objective statistical tests, in order to take a decision. Such tests were mentioned

in Section 3.1.3.6 and will be applied to the V̇ O2max data. Let then X be the r.v. that

represents the V̇ O2max of an athlete of our defined population. Given our fixed threshold

u = 80, we denote by Y = X − u the r.v. that represents the excess above that fixed

threshold u, as defined in Section 3.1.3.1. In this parametric approach, it is assumed

that Y is GP-distributed, i.e. Y _ Hγ, with Hγ defined in (3.24). We are particulary

interested in the following tests:

H0 : γ = 0 vs H1 : γ 6= 0, (4.21)

from a two-sided point of view, or

H0 : γ = 0 vs H1 : γ < 0, (4.22)

for its one-sided version.

Since we are in a POT context, the statistical tests will only be performed with the

exceedances obtained from the available data. Let then (W1, . . . ,Wm) denote the m

exceedances over a non-random threshold u, as defined in (3.19), extracted from the

available random sample (X1, . . . , Xn). The first test discussed was proposed by Gomes

and van Monfort (1986) and will be used to test (4.22), using the following test statistic:

Gm =
Wm:m

W[m/2]+1:m

Under the validity of H0, we have

G∗m = log 2 Gm − logm
d−→

m→∞
Z _ Λ (4.23)
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and, at the asymptotic level α, H0 is rejected if G∗m ≤ Gα, where Gε represents the standard

Gumbel ε-quantile. This decision rule allows us to calculate the corresponding p-value:

p(G∗m) = Λ(G∗m).

Hence, applying the test statistic to our observed sample of exceedances (w1, . . . , w49),

the R software yields (see Appendix A.28):

[1] g_m= 1.128476 g_m*= -3.10962 p-value= 1.846555e-10

At the asymptotic level α = 0.05, the observed value is highly significant, leading us

to the rejection of the null hypothesis. The Exponential model is then not selected by this

test procedure as a suitable parametric model for the excesses Y . Before proceeding to

the next statistical test, one point must be stressed. We used the asymptotic distribution

of the statistic G∗m to take a decision about H0. However, Gomes and van Monfort (1986)

propose simulated critical points for small and moderate sample sizes, as n = 20, n = 100

and n = 250, at levels α = 0.05 and α = 0.1. These critical points can be found in Table

4.6, where x ↓ denotes values smaller than x.

Table 4.6: Simulated critical points for the test statistic G∗
m for statistical choice of GPd models.

Critical region for H1 : γ < 0

Statistic m .10 .05

G∗
m

20 −.89 ↓ −1.19 ↓
100 −.94 ↓ −1.21 ↓
250 −.86 ↓ −1.13 ↓
∞ −.83 ↓ −1.09 ↓

Gomes and van Monfort (1986)

The table does not consider our sample size m = 49, where m = 20 is the nearest size

available. However, the observed value g∗m = −3.10962 is significantly lower than any of

the tabled critical points, even for the asymptotic ones. We maintain then the rejection

decision of H0. We are now able to go further with other statistical tests.

After presenting a LAN test for checking the null hypothesis of a Gumbel distribution

against a GEVd, in the context of a Block Maxima approach, Marohn (2000) includes a

GPd-test procedure in his article, based on the sample coefficient of variation, for testing

(4.21) and (4.22). The necessary test statistic to perform the mentioned tests was already

discussed in Gomes and van Monfort (1986). The test statistic to be used is given by

Tm =
1

2

(
S2
W

(W − u)2
− 1

)
,
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where S2
W =

1

m

m∑
i=1

(Wi −W )2 is the sample variance.

Under H0, we have

T ∗m =
√
mTm

d−→
m→∞

Z _ N (0, 1) (4.24)

and, at the asymptotic size of α, H0 is rejected if |T ∗m| ≥ z1−α/2 or if T ∗m ≤ zα, for the

tests in (4.21) or in (4.22), respectively. The corresponding p-values are obtained with

p(T ∗m) = 2− 2Φ(|T ∗m|)

or

p(T ∗m) = Φ(T ∗m).

Using simulation, Marohn (2000) showed that, for the two-sided version of the test,

the test statistic is biased, with very poor power for small and moderate sample sizes,

leading to reasonable results only for large sample sizes (m ≥ 500). As we are working

with a sample of m = 49 exceedances, we will only perform the left-sided version of the

test given by (4.22). The R software yields the following results for u = 80 (see Apendix

A.29):

[1] One-sided Test

t_m= -0.2595148 t_m*= -1.816604 p-value= 0.03463891

At the asymptotic size of α = 0.05, the null hypothesis is rejected, favouring then the

GPd with γ < 0 as a suitable model to be fitted to the excesses Y , as already pointed in

the preliminary analysis.

As for the Block Maxima approach, we can apply a LRT to the sample of exceedances

in order to test (4.21). Let (W1, . . . ,Wm) be a random sample of exceedances, where

Wi _ Hγ, for i = 1, . . . ,m, with Hγ defined in (3.22). Let `(γ, u, σu|w1, . . . , wm) be the

respective unrestricted log-likelihood function, where `(0, u, σu|w1, . . . , wm) denotes the

restricted log-likelihood function, which corresponds to the Exponential case. The LRT

statistic is given by

L = −2
(
`(0, u, σ̂u,H0|w1, . . . , wm)− `(γ̂Hγ , u, σ̂u,Hγ |w1, . . . , wm)

)
, (4.25)

with σ̂u,H0 and (γ̂Hγ , σ̂u,Hγ ) denoting the ML estimators for H0 and Hγ models, respec-

tively.

Under the null hypothesis, we have

L
d−→

m→∞
Z _ χ2

(1).
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To achieve a higher accuracy in the χ2-approximation, Reiss and Thomas (2007) rec-

ommend the Bartlett correction, yielding the statistic

L∗ =
L

1 + 4/m

d−→
m→∞

Z _ χ2
(1). (4.26)

For the test in (4.21), at the asymptotic size α, the null hypothesis is rejected if

L∗ ≥ χ2
1,1−α,

where χ2
1,ε stands for the χ2

(1) ε-quantile.

The corresponding p-value can be calculated as follows:

p(L∗) = 1− χ2
(1)(L

∗).

The R software allows us to obtain the parameters ML estimates required by (4.25)

(see Appendix A.30):

[1] Exponential ML estimates

sigma_u= 6.644596

[2] GPd ML estimates

gamma= -0.7268204 sigma_u= 12.04526

The final ML estimates are then

σ̂u = 6.644596, (4.27)

for the Exponential distribution, and

(γ̂, σ̂u) = (−0.7268204, 12.04526), (4.28)

for the GPd. These latter estimates can be compared with the preliminary estimates

given by (4.20).

Now, with the final ML estimates in hand, we can proceed to the LRT by means of the

statistic given by (4.26). The R software produces the following results (see Appendix

A.31):

[1] l= 12.93565 l*= 11.95937 p-value= 0.0005437322

At the asymptotic size α = 0.05, the Exponential null hypothesis is rejected, leading

to the same decision as for the tests presented by Gomes and van Monfort (1986) and

Marohn (2000).
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Until now, all the performed tests rejected the Exponential distribution as a suitable

parametric model to be fitted to the r.v. Y . Notice that, the preliminary analysis already

pointed to the GPd as a suitable model for our data. We can now complete this Section

performing the same goodness-of-fit tests discussed in the Block Maxima approach: the

Kolmogorov-Smirnov, Cramér-von Mises and Anderson-Darling tests. As we are not in

a heavy-tail context, the test proposed by Kozubowski et al. (2009) will not be applied

here.

Lilliefors (1969) studied the Kolmogorov-Smirnov test in the context of the Exponen-

tial distribution with unknown parameters. Since the Exponential distribution is embod-

ied in the GPd distribution when γ = 0, we can use the procedures described in his work

to check the goodness-of-fit of the Exponential distribution to the r.v. Y . Based on (4.15),

the Kolmogorov-Smirnov statistic for the null hypothesis of Exponential model is given

by

Dm = max
1≤i≤m

(∣∣∣∣1− exp

(
−Yi:m
σ̂u

)
− i

m

∣∣∣∣ , ∣∣∣∣1− exp

(
−Yi:m
σ̂u

)
− i− 1

m

∣∣∣∣) , (4.29)

where σ̂u stands for the ML estimator of σu for the Exponential model.

With σ̂u given by (4.27), we can easily compute the Kolmogorov-Smirnov statistic

with the R software (see Appendix A.32):

Kolmogorov-Smirnov statistic: 0.1383868

The observed value must be compared with the critical values given by Lilliefors (1969),

rejecting then the null hypothesis of Exponential distribution if the observed value exceeds

the respective critical point. We transcribe some critical values in Table 4.7.

Table 4.7: Simulated critical values of the Kolmogorov-Smirnov statistic adapted to the Exponential

distribution with unknown parameters.

Level of significance for Dm

Statistic m .10 .05 .01

Dm

5 .406 .442 .504

10 .295 .325 .380

15 .244 .269 .315

20 .212 .234 .278

30 .174 .192 .226

>30 .96/
√
m 1.06/

√
m 1.25/

√
m

Lilliefors (1969)

Provided that m > 30, the critical values are
.96√

49
= 0.137 and

1.06√
49

= 0.151,

for α = 0.1 and α = 0.05, respectively. The decision seems jeopardized , since the
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observed value lies between the two critical values. In any case, we know that the

goodness-of-fit tests are reputed to be conservative. So, because of the proximity of the

critical points, we cannot maintain the null hypothesis with conviction. The Exponential

model is then rejected.

For the Cramér-von Mises and Anderson-Darling goodness-of-fit tests, we refer to

Choulakian and Stephens (2001). This time, the distribution postulated by the null

hypothesis is the GPd, with unknown parameters. According to (4.16) and (4.17), the

two statistics are given by the following expressions, for the GPd:

1. Cramér-von Mises

W 2
m =

m∑
i=1

(
Hγ̂(Yi:m|σ̂u,Hγ )−

2i− 1

2m

)2

+
1

12m
, (4.30)

2. Anderson-Darling

A2
m = −m− 1

m

m∑
i=1

{
(2i− 1) log(Hγ̂(Yi:m|σ̂u,Hγ ))+

+(2m+ 1− 2i) log(1−Hγ̂(Yi:m|σ̂u,Hγ ))
}
, (4.31)

where γ̂, σ̂u,Hγ represent the ML estimators for the GPd, Hγ.

With the estimates (γ̂, σ̂u,Hγ ) given by (4.28), the observed values for the two statistics

are given below, using the R software (see Appendix A.33):

Cramer-von Mises statistic: 0.09454922

Anderson-Darling statistic: 0.5972052

The observed values are now compared with the critical values given by Choulakian

and Stephens (2001). The null hypothesis of GPd is rejected is the observed values exceed

the critical tabled values. Part of the tabled critical points are presented in Table 4.8.

The asymptotic critical points were obtained by simulation, for γ between -0.5 and

0.9, and, according to Choulakian and Stephens (2001), they can be used with good

accuracy for m ≥ 25. Since γ was estimated, the table should be entered at γ̂ and if

γ̂ < −0.5, the table should be entered at γ = −0.5. As we have γ̂ = −0.7268204, we

follow the suggestion of the authors and enter the table at γ = −0.5. At the asymptotic

level α = 0.05, the null hypothesis of GPd is not rejected, for both statistics, since the

observed values do not exceed the tabled critical points. Considering other significance

levels do not change our decision. Although the tests based on Cramér-von Mises and
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Table 4.8: Simulated critical values of the Cramér-von Mises (normal style) and Anderson-Darling

(bold) statistics adapted to the GPd with unknown parameters.

Upper-Tail Asymptotic Percentage Points

γ .10 .05 .01

.9 .094 .115 .165

.9 .641 .771 1.086

.5 .101 .124 .179

.5 .685 .830 1.180

.1 .116 .144 .210

.1 .766 .935 1.348

0 .124 .153 .224

0 .796 .974 1.409

-.1 .129 .160 .236

-.1 .831 1.020 1.481

-.5 .174 .222 .338

-.5 1.061 1.321 1.958

Choulakian and Stephens (2001)

Anderson-Darling statistics are conservative, the observed values are not in a doubtful

region and, in particular, the Anderson-Darling observed value of the statistic is somehow

distant from the critical point.

All the tests performed in this Section are concordant: the GPd with γ < 0 must

be selected, to the detriment of the Exponential distribution, as a suitable parametric

model to be fitted to the r.v. Y . Provided that we chose a parametric model, we can now

proceed to parametric estimation and respective inference.

c) Parametric estimation of extreme events

From last Section, we selected the GPd with γ < 0 as an appropriate parametric family

to be fitted to the excesses Y above the fixed threshold u = 80. Notice that, contrary

to the Block Maxima approach, the preliminary analysis and the statistical tests of the

POT method pointed to the same direction: the underlying d.f. F , associated to the r.v.

X, the V̇ O2max of a top-athlete, is not exponential right-tailed, but light right-tailed. In

particular, the ML estimate of the EVI, given by (4.28), is somewhat small, indicating a

very light right tail.

As stressed in Section 3.1.3.3, the PWM estimators perform better than the ML esti-

mators in a small sample context. Since our sample consists of m = 49 excesses, PWM

estimators may be particularly useful. The R software gives the following estimates for

the GPd (see Appendix A.34) and the estimation results of both methods are presented
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in Table 4.9.

[1] GPd PWM estimates

gamma= -0.5086472 sigma_u= 10.0245

Table 4.9: ML and PWM estimates for the parameters of the GPd for the V̇ O2max data.

Estimation method γ̂ (shape) σ̂u (scale)

ML -0.7268204 12.04526

PWM -0.5086472 10.0245

The difference between the two methods is more evident for the EVI, since the PWM

method also elects a light right tail for the d.f. F , but heavier than the ML method.

The PWM scale estimate is lower than the ML one, pointing to a smaller dispersion of

the V̇ O2max excesses. As we did for the Block Maxima approach, we can check the fit

quality of the GPd with diagnosis tools of the R software. Here, we apply the tools to

the ML and PWM fits, which can be seen in Figures 4.17 and 4.18 (see Appendix A.35

for R details).

Based on the first two plots, the two estimation methods provide a satisfactory fit

of the GPd. The main difference appears on the Density plot, where the PWM method

shows a lower discrepancy between the kernel density and the fitted density. Note the

very light right tail of the ML fitted density. Recall that the ML estimation provided a

low estimate for the EVI, available in Table 4.9.
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Figure 4.17: Diagnosis plots for the ML fit of the GPd.
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Figure 4.18: Diagnosis plots for the PWM fit of the GPd.
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Now we have got rid of the point estimates of the GPd parameters, we can obtain CI’s

for the same parameters using the profile likelihood method of Section 3.1.3.5. However,

notice that the estimate of γ is dangerously near -1. Since the profile likelihood method

is a likelihood-based method, we know from Section 3.1.2.1 that the ML procedure is

not applicable for γ ≤ −1, compromising then the construction of CI’s. The profile log-

likelihood function for γ is depicted in Figure 4.19 (see Appendix A.36 for R details).
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Figure 4.19: Profile log-likelihood function for the POT approach of V̇ O2max.

The plot confirms the non-existence of the profile log-likelihood function for γ ≤ −1.

Thus, the obtention of a 95% profile CI for γ with the lower horizontal line on the plot is

compromised.

We can opt for the traditional method of constructing CI’s described in Section 3.1.2.4,

but, as stressed by Beirlant et al. (2004), these intervals may be very misleading, since the

Normal approximation may result in a poor inference, penalized by a small size sample.

We could seek alternative methods of construction CI’s, but this is out of the scope of
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this thesis. Consequently, under the POT approach in this case study, we do not make

any inference based on the estimates of the GPd parameters.

Before leaving the POT approach of the V̇ O2max, we can still obtain estimates of

exceedances probabilities for the r.v. X under study and of the right endpoint of F ,

provided that γ < 0, using (3.29) and (3.30), respectively. As for the Block Maxima

approach, we can estimate the probability of exceeding the actual sample maxima of 96

ml/kg/min. Using then (3.29) for the threshold u = 80 and getting the estimates (γ̂, σ̂u)

from Table 4.9, we can compute P (X > 96) using the R software:

[1] Maximum Likelihood: P(X>96)= 0.006457043

[2] Probability Weighted Moments: P(X>96)= 0.02481165

[1] Maximum Likelihood: x^F= 96.57254

[2] Probability Weighted Moments: x^F= 99.70816

We notice that the ML estimate of the right endpoint is very close to the sample

maximum, leaving almost no more space for an improvement of the current record. Con-

sequently, this estimation method points to a steady state of the current V̇ O2max2max

record, with a very low probability of exceeding it. This result is not surprising, because

of the low estimate of the EVI obtained by the ML method, as stressed before. With a

higher estimate of the EVI, available on Table 4.9, the PWM method gives some space for

improving the current V̇ O2max record, with a 2.5% probability of surpassing it. Notice

the heavier right tail of the fitted PWM density on Figure 4.18, which results in a higher

estimate of the right endpoint of F .

To close this Section, it would be interesting to compare the POT results with the

Block Maxima results. The comparison between the GEVd and the GPd estimates makes

more sense, by analogy issues. All the results are then gathered in Table 4.10.

As we can see, the two approaches lead to substantial differences between estimates.

By analogy issues, the chosen threshold u = 80 and the estimate of the GEVd location

parameter, λ̂, were juxtaposed, since u can be seen as a location parameter of the GPd.

Notice how the ME-plot of Figure 4.2 selected the threshold u = 80, which is very close to

the GEVd location parameter estimate. Remember that we are not working with a large

sample, which is sufficient to create differences between alternative approaches. However,

we have a battery of estimates at our disposal, which provides us some guidance and

some conclusions about the V̇ O2max. The POT approach attributes a better quality to

the current record of 96 ml/kg/min, with a lower right endpoint estimate and a lower

probability of surpassing the current maximum level than the Block Maxima does.
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Table 4.10: Comparison of the results for the V̇ O2max between the Block Maxima and POT approaches.

POT Block Maxima

GPd (γ < 0) GEVd (γ < 0)

γ̂

ML -0.7268204 -0.2431824

PWM -0.5086472 -0.2023684

profile CI (95%) - (-0.4388217,-0.01412509)

u/λ̂

ML 80 80.64481

PWM 80 80.46483

profile CI (95%) - (79.0378578,82.29713706)

δ̂

ML 12.04526 6.166826

PWM 10.0245 6.307003

profile CI (95%) - (5.1364086,7.63658965)

P (Y > 96)
ML 0.006457043 0.02158176

PWM 0.02481165 0.03250008

xF
ML 96.57254 106.0037

PWM 99.70816 111.6308

4.1.2 Semi-Parametric data analysis

a) Testing the extreme value index sign

Following now a semi-parametric approach as described in Section 3.2, we can start our

analysis as in parametric approach, testing the EVI sign with the methodology discussed

in Section 3.2.6. Our interest here is to make an a priori selection of the most suitable

max-domain of attraction for our V̇ O2max data. Testing EVI sign may also be useful

to select the appropriate semi-parametric estimators, since some of them rely on the

particular sign of γ. This way, our concern is to perform the tests in (3.61) or in (3.63)

by means to the test statistics defined in (3.67), (3.68) and (3.69).

As a preliminary general interest, we can perform the test

H0 : F ∈ D(G0) vs. H1 : F ∈ D(Gγ)γ 6=0, (4.32)

simply to ascertain the sign of γ.

As the statistics are a function of the random threshold k, we can represent graphi-

cally the sample paths of each statistic, plotting R∗n(k), W ∗
n(k) and T ∗n(k) versus k. The

resulting curves can be visualized in Figure 4.20 (see Appendix A.38 for R details).

Based on the rejection rule in (3.70) and considering the behaviour of the three statis-

tics, we observe a clear trend of Greenwood and Ratio statistics towards the respective

critical values, even getting into the rejection zone. Concerning Hasofer-Wang statistic,

the respective sample path is almost always outside of the acceptance region, except for



4.1 The Maximal Oxygen Uptake or V̇ O2max 113

0 10 20 30 40 50 60 70

−
2

0
2

4
6

k

ob
se

rv
ed

 s
ta

tis
tic

Rn
*  (k)

Wn
*  (k)

Tn
*  (k)

z0.975, z0.025

g0.975, g0.025

Figure 4.20: Sample paths of Greenwood, Hasofer-Wang and Ratio statistics in a two-sided

test context.

a brief interval of k, and the curve exhibits the same trend mentioned for the two other

statistics. Therefore, at the asymptotic level of α = 0.05, we find evidence to reject the

null hypothesis in (4.32), pulling away the Gumbel max-domain of attraction.

If we want to be more specific and check if we are in a Weibull max-domain, we can

perform the one-sided version of the test, at the asymptotic level of α = 0.05:

H0 : F ∈ D(G0) vs. H1 : F ∈ D(Gγ)γ<0,

and modify the respective critical values according to the rule in (3.72). The resulting

plot can be seen in Figure 4.21 (see Appendix A.39 for R details).

Observing the plot, we conclude exactly the same as for the two-sided test: at the

asymptotic level α = 0.05, we find evidence to reject H0. One important point should

be emphasized: as noted in Section 3.2.6, the Hasofer-Wang statistic W ∗
n is specially

addressed to detect a Weibull max-domain, since it it the most powerful of the three in

that case. Paying attention to Hasofer-Wang statistic’s sample path, we note that it is
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Figure 4.21: Sample paths of Greenwood, Hasofer-Wang and Ratio statistics in a one-sided

context.

almost always in the rejection zone, except for a small interval of k, with a tendency to stay

in that zone. As our intention here is ascertain the possibility of a Weibull max-domain,

the Hasofer-Wang statistic is very useful to give us some guidance.

As a conclusion for these tests, we elect then a Weibull max-domain for the d.f. of

the V̇ O2max. Contrary to the parametric approach where the choice of the statistical

model was doubtful, the semi-parametric approach points clearly in Weibull max-domain’s

direction.

b) Heuristic choice of the random threshold

The next step is to estimate then the EVI with some semi-parametric estimators

presented in Section 3.2.3. However, as for the the test statistics discussed above, the

semi-parametric estimators for γ are a function of the random threshold k. Consequently,

a choice for k would be appropriate in order to obtain an estimate for the EVI. For this
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choice, we follow the heuristic approach of Section 3.2.7. According to this approach, k is

chosen where the estimates of each estimator are very similar. To have an idea about the

similitude of the estimates, we can plot the sample path of each estimator on the same

plot and choose a region where the sample paths are very close.

The first estimator seen was the Pickands estimator. This estimator may cause some

troubles for the heuristic choice of k. Indeed, this estimator is known for its large asymp-

totic variance, given by (3.59). Since we are using a heuristic process for the choice of k

based on a minimization of distances between γ estimates, the Pickands estimator may

cause some distortion on the measurements. For now, we present the isolated sample

path of Pickands’ estimator in Figure 4.22 (see Appendix A.40 for R details). Taking a

closer look at the scale of the plot, we see clearly a high volatility of the EVI-estimates.

Consequently, the use of Pickands’ estimator can lead to misleading results.
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Figure 4.22: Pickands-plot for the V̇ O2max data.

Obviously, the Hill estimator will not be used, since it is only valid for γ > 0 and

we are in a Weibull max-domain context. The Moment estimator, the Generalized Hill

estimator and the Mixed Moment estimator can be chosen without danger, since they are
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valid for γ ∈ R. The Negative Hill estimator was developed for γ < −0.5 and as the

EVI is unknown, we cannot guarantee that this condition is fulfilled. We can eventually

consider the sample path of the Negative Hill estimator in Figure 4.23 (see Appendix A.41

for R details).
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Figure 4.23: Negative Hill estimator sample path for the V̇ O2max data

The sample path exhibits a stable pattern sensibly after k = 30 and stays always under

-0.5, except for the beginning part of the plot. To ascertain whether γ < −0.5, we can build

CI’s for γ from each possible value of the threshold k, using expression (3.57). However,

from (3.59), we note that the asymptotic variance of γ̂NHn,k is only valid for −1 < γ < −0.5.

We recall that the expressions of the asymptotic variances in (3.59) hold only if Theorem

3.56 and extra specific conditions are satisfied. Moreover, expression (3.57) is a simplified

version of CI’s for γ, intended to avoid the estimation of the second-order parameters ρ

and β mentioned in Section 3.2.5. Finally, replacing γ by the Negative Hill estimate, we

introduce some sampling variability, which has repercussions on the interval accuracy. All

these reasons make it difficult to confirm if γ < −0.5 and, consequently, the Negative

Hill estimator will be excluded from our analysis. Concerning the PORT estimators,
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PORT-Hill will be excluded for the same reasons as the Hill estimator. To use the PORT-

Moment and PORT-Mixed Moment estimators, we have to take into account the tuning

parameter q, with 0 ≤ q < 1. To have some guidance, we can plot the sample path of

each PORT estimator for different values of q. The sample paths are shown in Figure 4.24

(see Appendix A.42 for R details).
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Figure 4.24: PORT-Moment and PORT-Mixed Moment sample paths for the V̇ O2max

data

As the two plots exhibit, lower values for the tuning parameter q return more stable

sample paths for the PORT estimators. Therefore, lower values of q would be desirable.

Fraga Alves et al. (2009) suggest the use of q = 0.1 or even q = 0.01. We will choose the

latter one.

Now that the semi-parametric estimators have been chosen for the heuristic choice of

k, a plot with the sample paths of all the estimators may help us to ascertain eventual

regions where a clear proximity of all the estimates is visible. This plot can be found in

Figure 4.25 (see Appendix A.43 for R details).

Several observations can be made from Figure 4.25:

1. All the estimators are highly volatile for low values of k and exhibit lower variability

sensibly after k = 30;

2. Despite a lower volatility after k = 30, none of the semi-parametric estimators are

stable, provided that they all reveal a downward trend, except for the PORT-Mixed

Moment estimator, which shows an upward trend;
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Figure 4.25: Sample paths of Moment, Generalized Hill, Mixed Moment, PORT-Moment,

PORT-Mixed Moment and Pickands estimators for the V̇ O2max data

3. All the estimators are relatively close, excluding the PORT-Mixed Moment estima-

tor, which has a distinct behaviour, remaining at the margin of the group formed

by the other estimators, and the Pickands estimator;

4. Since it was stated above, the Pickands estimator exhibits an erratic behaviour,

characterized by a high volatlity.

The choice ok k seems to have some obstacles and hence, to keep some homogeneity,

we decided to apply the heuristic methodology of Section 3.2.7 without the PORT-Mixed

Moment and Pickands estimators. Using then identity (3.73) by means of the R software

(see Appendix A.44), the optimal value for k is given as follows:

[1] k opt= 19

The heuristic procedure selects k = 19 for the random threshold, choosing then k+1 =

20 top order statistics for semi-parametric inference. This optimal selection can be seen in

Figure 4.26, where the function
∑

(i,j)∈E:i 6=j[γ̂
(i)
n,k − γ̂

(j)
n,k]

2 from (3.73) attains its minimum

at k = 19 (see Appendix A.45 for R details).
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Figure 4.26: Sample path of the function
∑

(i,j)∈E:i 6=j[γ̂
(i)
n,k − γ̂

(j)
n,k]

2

As we can observe in the plot of Figure 4.26, the minimum of the function is attained

in a region of high variability, also visible in Figure 4.25, since the number of top order

statistics is relatively low. This result is not surprising, since we know from Section 3.2.7

that a relatively low choice for k induce estimators with higher variances. We can observe

another region of the plot where the values of the function are very close to the minimum

attained: sensibly between k = 35 and k = 50. After k = 50, we have again a high

volatility in the function due principally to the erratic behaviour of the PORT-Moment

estimator, visible in Figure 4.25. So, an eligible value for k can also be chosen between

k = 35 and k = 50. This region is more stable, with lower variance, but as values of k

are higher, this induce a bias in the estimators. Since the balance between asymptotic

variance and asymptotic bias, dealt with the AMSE introduced in Section 3.2.7, is out of

the scope of this thesis, we will also elect a value for k between k = 30 and k = 50 by

the same process of minimization. And to avoid the choice near k = 50, after which a

high variability is visible again, we will minimize the function
∑

(i,j)∈E:i 6=j[γ̂
(i)
n,k − γ̂

(j)
n,k]

2 for

k ∈ [35, 45] using R software (see Appendix A.46), yielding

[1] k opt= 43

This second choice for k involves then k + 1 = 44 of the top order statistics for semi-

parametric inference. In Figure 4.25, the clear stability and proximity of all the estimates

are also evident. For k = 19, we have equally a high proximity of all the estimates, but

in a more volatile region.
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c) Estimation of the Extreme Value Index

With two proposals for the threshold k, we can now proceed to the semi-parametric

estimation of the EVI, turning to each estimator used during the heuristic procedure.

With R software (see Appendix A.47) , we obtain the following results:

[1] k opt=19

Moment: gamma= -0.903127 Generalized Hill: gamma= -0.8785233

Mixed Moment: gamma= -0.7543541 PORT-Moment (q=0.01): gamma= -0.9177094

[2] k opt=43

Moment: gamma= -0.5810163 Generalized Hill: gamma= -0.6317842

Mixed Moment: gamma= -0.4489174

PORT-Moment (q=0.01): gamma= -0.5879511

From the obtained results, we can immediately see that, for k = 19, the semi-

parametric estimates for the EVI are lower than those of the parametric approach. For

k = 43, the semi-parametric estimates are lower than those obtained under a Block Max-

ima approach, but lie between the ML and PWM estimates of the POT approach, staying

closer to the latter ones. Recall that the POT approach worked with m = 49 exceedances

and that the semi-parametric approach selected k + 1 = 44 top observations, almost the

same portion of the sample. The semi-parametric approach seems to validate the PWM

estimation, which performs better in small samples.

And now, with these estimates in hand, we are able to construct approximate CI’s for

the EVI, by means of expression (3.57). But first, we need to obtain estimates for the

asymptotic variances of (3.59), replacing γ by the estimate of the respective estimator.

For each of the four estimators used in the heuristic procedure, we can easily obtain such

estimates combining (3.59) with R software (see Appendix A.48), yielding the following

results:

[1] k opt=19

Moment: s2_M= 4.037741 Generalized Hill: s2_GH= 1.13451

Mixed Moment: s2_MM= 3.044318 PORT-Moment (q=0.01): s2_M(q)= 4.037741

[2] k opt=43

Moment: s2_M= 2.137555 Generalized Hill: s2_GH= 0.8409316

Mixed Moment: s2_MM= 1.614211 PORT-Moment (q=0.01): s2_M(q)= 2.137555
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The theoretical results are then confirmed: the estimated asymptotic variances are

higher for the lowest of the two values for k. An analysis of the trade-off asymptotic

variance-bias would be suitable. In this Section, we merely use these asymptotic variances

estimates to construct approximate CI’s for the EVI. Then, with the asymptotic variances

in hand, the construction of approximate CI’s for γ at the 95% asymptotic confidence level

is now possible and the results are summarized in Table 4.11.

Table 4.11: Semi-parametric approximate 95% confidence intervals for γ for the V̇ O2max data.

Semi-parametric estimator of γ k = 19 k = 43

Moment
-0.903127 -0.5810163

(-1.806653,0.0003987481) (-1.018007,-0.1440253)

Generalized Hill
-0.8785233 -0.6317842

(-1.357457,-0.3995895) (-0.9058749,-0.3576936)

Mixed Moment
-0.7543541 -0.4489174

(-1.538896,0.03018804) (-0.8286641,-0.06917064)

PORT-Moment (q=0.01)
-0.9177094 -0.5879511

(-1.821235,-0.01418371) (-1.024942,-0.1509601)

As expected, the CI’s based on the lower value k = 19 have a larger amplitude than

those based on the higher value k = 43, reflecting then the high variability of the esti-

mators at lower levels of the random threshold k. Moreover, the intervals associated to

the Moment and to the Mixed-Moment estimators contain zero, but at the very final of

the interval. In general, these approximate CI’s confirm us the Weibull max-domain of

attraction for the V̇ O2max, leading us to a finite right endpoint of the underlying d.f. F .

We recall that the obtained CI’s are simplified versions and more accurate intervals can

be obtained with more precise techniques, involving the estimation of the second order

parameters ρ and β, for instance. But, as already mentioned, this work is out of the scope

of this thesis. We solely look for a simple and rough confirmation of the EVI’s sign via

CI’s, confirming us the Weibull max-domain of attraction.

d) Semi-parametric estimation of other extreme events

To end this semi-parametric analysis and for some parallelism with the parametric

analysis, the last step consists in estimating some other important parameters, discussed

in Section 3.2.4: the normalizing constants b
(
n
k

)
and a

(
n
k

)
, the exceedance probability of

the current record of 96 ml/kg/min and finally, the right endpoint xF of the underlying

d.f. F .

For the attraction coefficients b
(
n
k

)
and a

(
n
k

)
, we can use the identities (3.49) and

(3.50) discussed in Section 3.2.4, for both values of k and each estimator used in the
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heuristic process, when necessary. The identity for the location coefficient b
(
n
k

)
is very

simple, since it does not depend on γ, but only on k. Therefore, the R software gives

us quickly the resulted needed, for both values of the random threshold (see Appendix

A.49):

[1] k opt=19

b(n/k)= 87.4

[2] k opt=43

b(n/k)= 81.125

A comparison with the parametric approach would be suitable. Since we are in a

Weibull max-domain, consulting the results in Table 4.5 concerning the GEVd for γ < 0,

we immediately notice a clear similitude of the ML and PWM estimates for the loca-

tion parameter λ, with the semi-parametric estimate for k = 43. The semi-parametric

approach seems to give some support to the second choice for the threshold, k = 43.

Focusing now on the scale coefficient a
(
n
k

)
, (3.50) shows us identically a direct depen-

dence on k and an indirect one, via γ̂−n,k. Therefore, as for b
(
n
k

)
, a different estimate can

be calculated for each k, with our R software (see Appendix A.49):

[1] k opt=19

a(n/k)= 8.128112

[2] k opt=43

a(n/k)= 9.956318

The gathered results are presented in Table 4.12.

Table 4.12: Semi-parametric estimates of the location and scale coefficients for the V̇ O2max data.

Estimator k = 19 k = 43

â
(
n
k

)
8.1 9.956

b̂
(
n
k

)
87.4 81.125

As for the location coefficient, for the choice k = 43, the semi-parametric estimate

of the scale coefficient is closer to the ones obtained for the scale parameter δ under a

parametric approach (see Table 4.10). This is particularly true for the PWM method,

which performs better on small and modest samples than the ML estimator. The choice

k = 43 approximates once again the parametric (specially PWM) and semi-parametric

approaches.



4.1 The Maximal Oxygen Uptake or V̇ O2max 123

Now, remember the differences of the EVI estimates between the semi-parametric

approach and the Block Maxima method. Comparing Table 4.10 with Table 4.11, we recall

that the semi-parametric estimates of the EVI are lower in a semi-parametric context,

inducing then a lighter right tail. As we have a lighter right tail of the underlying d.f.

in a semi-parametric context, we surely have a lower right end-point, putting our current

record closer to xF . In order to confirm this exposition, an estimate of the right endpoint

xF is needed. For this, we can use expression (3.53). This time, the estimate of the right

endpoint depends on k and γ, so that a table that condenses all the estimates would be

practical. Note that the estimate of xF depends precisely on the estimate of the scale

coefficient â
(
n
k

)
, since we can rewrite (3.53) as

x̂F = max

(
Xn:n, Xn−k:n −

â
(
n
k

)
γ̂

)
. (4.33)

Therefore, before taking any decision about the right endpoint estimate, we have to

take into account the scale effect and, as we can see in the aforementioned tables, the

scale estimate is lower under a Block Maxima approach. It is time to see what our R

software has to tell us (see Appendix A.50) .

[1] k opt=19

Moment: xF= 96.39997 Generalized Hill: xF= 96.65202

Mixed Moment: xF= 98.17493 PORT-Moment (q=0.01): xF= 96.25696

[2] k opt=43

Moment: xF= 98.26104 Generalized Hill: xF= 96.88405

Mixed Moment: xF= 103.3035 PORT-Moment (q=0.01): xF= 98.05892

All the estimates can be gathered on Table 4.13.

Table 4.13: Semi-parametric estimates for the right endpoint xF of the underlying d.f. F for the

V̇ O2max data.

Semi-parametric estimator of γ k = 19 k = 43

Moment 96.39997 98.26104

Generalized Hill 96.65202 96.88405

Mixed Moment 98.17493 103.3035

PORT-Moment (q=0.01) 96.25696 98.05892

Our suspicions were accurate. With a lighter right tail of the underlying d.f F in a

semi-parametric context, the right endpoint xF decreased substantially when compared
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to the ML and PWM estimates of the Block Maxima method. Note the similitude with

the POT estimates. Then, following a semi-parametric analysis, we conclude that the

current record of 96 ml/kg/min has a slight capacity to increase much, since it is very

close to the estimated upper bound. Even the highest semi-parametric estimate given by

the Mixed Moment estimator for k = 43 does not surpass much the level 100 ml/kg/min.

At this point, it would be interesting to consider the sample path of the right endpoint

xF , for each estimator covered by the heuristic process. The sample paths are visible in

Figure 4.27 (see Appendix A.51).
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Figure 4.27: Sample paths of Moment, Generalized Hill, Mixed Moment and PORT-

Moment estimators for the right endpoint of the underlying distribution function F for

the V̇ O2max data.

The Moment and PORT-Moment estimators exhibit a clear volatility for low levels of

the threshold k, describing a decreasing pattern sensibly after k = 30. This decreasing

tendency causes some troubles, since a downward trend conducts the sample path of the

estimator towards the sample maximum and, how it was emphasized in Section 3.2.4,

the estimate of xF cannot lie under the sample maximum, Xn:n. Remember that this

restriction was imposed on the estimator of xF , resulting in expression (3.53). Figure 4.27

makes that clear, since, sensibly after k = 50, the Moment and PORT-Moment estimators

stay at x̂F = 96, since they cannot decrease anymore. The Mixed Moment estimator stays

at a high level after k = 30 and switch to an upward trend after k = 50, contrasting with

the two previous estimators. Concerning the Generalized Hill estimator, its behaviour is

also distinct, provided that it has a stable path all the time at a very low level, taking an

upward path after k = 50.
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Looking at Figure 4.27, we can be tempted to apply the same heuristic process used

for the choice of k, in order to obtain the “best” estimate of xF . It may be interesting to

determine which value of k minimize the difference between all the estimates of Figure

4.27 and compare it with the optimal k values obtained from the heuristic process applied

to the EVI-estimators. Using then (3.73) and replacing γ̂n,k by x̂F , we can obtain the

solution of the minimization problem with the R software (see Appendix A.52):

[1] k opt= 6

The optimal selected value for k which provides the “best estimate” for the right

endpoint xF is somewhat different from the optimal values obtained from the heuristic

process applied to the EVI-estimators. To gain some clarity for such a low choice, we

can look at the plot of the function defined in (3.73), adapted for the right endpoint

estimators, which can be seen in Figure 4.28 (see Appendix A.52 for R details).
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Figure 4.28: Heuristic choice of the threshold k for the right endpoint estimation for the

V̇ O2max data.

The plot demonstrates a high variability of the function, which attains its lower values

until k = 20, After that, the function is characterized by an increasing behaviour. Note

that the optimal choice of k = 6 lies in a very unstable region of the path. Another choice

of k is possible at k = 15, since the function attains a local minimum at this value for

10 < k < 20, but, as for the optimal choice k = 6, this value lies in a very unstable region

of the function. Recall that the first choice for k was k = 19, which was seen to be in a

very unstable region of the plot depicted in Figure 4.26. The choice k = 43 provides more
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stability of the estimates. As a curiosity, we present, in Table 4.14, the estimates of the

right endpoint for the newly calculated k values.

Table 4.14: Heuristic semi-parametric estimates for the right endpoint xF of the underlying d.f. F for

the V̇ O2max data.

Semi-parametric estimator of γ k = 6 k = 15

Moment 96.49078 96.03333

Generalized Hill 96.49083 97.0235

Mixed Moment 97.11885 97.0445

PORT-Moment (q=0.01) 96.45587 96.03333

Comparing the results with Table 4.13, we see some similarity with the estimates

obtained with k = 19, which was selected in a k-region with the same characteristics as

for the newly k values.

Taking back the firstly calculated k-values, we can use (3.58) to obtain CI’s for the

right endpoint, according to the different EVI-estimators used in the heuristic process.

The estimated variances were already calculated, when obtaining the CI’s for the EVI

in Table 4.11. Taking then α = 0.05, the CI’s for xF are presented in Table 4.15 (see

Appendix A.53).

Table 4.15: Semi-parametric approximate confidence intervals for xF for a α = 5% choice.

Semi-parametric estimator of γ k = 19 k = 43

Moment
96.39997 98.26104

(96,100.2081) (96,103.712)

Generalized Hill
96.65202 96.88405

(96,98.78524) (96,99.77561)

Mixed Moment
98.17493 103.3035

(96,102.9144) (96,111.2383)

PORT-Moment (q=0.01)
96.25696 98.05892

(96,99.945) (96,103.382)

Finally, to close this semi-parametric analysis, we can calculate the same exceedance

probability as obtained in the parametric context, measuring the quality of the sample

maximum, the current record of 96 ml/kg/min. This probability is obtained with expres-

sion (3.54), where Hγ̂ stands for the GPd defined in (3.21). As this exceedance probability

depends on k and γ, we can construct a table with the results for each threshold k, re-

placing γ by the estimates of the four estimators used in the heuristic process. They can

be found in Table 4.16 (see Appendix A.54 for R details).
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Table 4.16: Semi-parametric estimates for the exceedance probability of the actual record for the

V̇ O2max data.

Semi-parametric estimator of γ k = 19 k = 43

Moment 0.008170709 0.01779646

Generalized Hill 0.01253879 0.006081975

Mixed Moment 0.0307783 0.0489384

PORT-Moment (q=0.01) 0.005422953 0.01613558

The semi-parametric estimates for the exceedance probability of 96 ml/kg/min provide

several results, ranging between 0.5% and 1.78%. The exception rule is the estimates of

the Mixed Moment estimator, which situate this probability around 3% or 5%. We must

recall that this estimator gave the highest estimates for the right endpoint, as we can see

in Table 4.13 and in Figure 4.27.

Before leaving this Section, it would be interesting to confront the semi-parametric

results with the parametric ones obtained in Section 4.1.1. Comparing then Tables 4.12,

4.13 and 4.16 with Table 4.10, we can conclude that the semi-parametric approach leads

to more concordant results with those obtained under the POT method, except for the

estimates of the scale coefficient, which are lower in a semi-parametric context. The

Block Maxima method offers larger differences, when compared to the POT method or

the semi-parametric framework. We see some proximity between the ML right endpoint

estimate of the Block Maxima method and the Mixed Moment estimate for k = 43,

but generally speaking, the POT and semi-parametric approaches give more quality to

the current sample maximum than the Block Maxima does, with a lower probability of

surpassing the current record of 96 ml/kg/min.

4.2 The 100 metres in athletics revisited

The 100 metres race is one of the most popular and prestigious outdoor events in

the sports of athletics. Who cannot remember the famous sprinter Carl Lewis during

the eighties? Nowadays, Jamaica is in office, with Usain Bolt as the holder of the world

record of 9.58 seconds in 2009. Progressively, the 100 metres has made its own mark,

even supplanting the marathon as the gold event of the running universe. Because of its

popularity, this event catches the attention of many fields, including Statistics, and since it

consists in running a distance of 100 metres in the shortest time possible, it is of particular

interest to EVT. Among articles from EVT about this subject, we can cite Einmahl and

Magnus (2008), Einmahl and Smeets (2011) and Henriques-Rodrigues et al. (2011). In
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this thesis, the 100 metres race is revisited in the light of the techniques presented in

Sections 3.1 and 3.2. Therefore, we will follow the same analysis as for the V̇ O2max and

the results obtained can be seen as an update and complement of those presented in the

articles cited above, since we base our analysis on data until 2012.

As for the V̇ O2max, we try to consider a population of athletes as homogeneous

as possible, controlling the presence of potential “confounding variables”. Therefore,

in this Section, we will also consider only masculine runners. Concretely, we use a

sample of 1184 masculine world athletes, considering their 100 metres running times,

measured in seconds with two decimal places and recorded from 1991 to 2012. De-

spite data availability before 1991, we consider this year as the starting point for our

collection. Indeed, according to Einmahl and Smeets (2011), the International Associ-

ation of Athletics Federations (IAAF) started with modern doping control procedures

in 1990 and, in order to avoid doping related times as much as possible, data before

January 1, 1991 were excluded from the sample. Moreover, this organization recog-

nizes officially a recorded time if the associated wind speed is less or equal to 2 me-

tres per second (m/s). Consequently, running times with a wind speed of more than

2 m/s are not taken into account. The same rule applies to doubtful and question-

able timings, which are not officially recognized. Finally, we only consider electron-

ically recorded times, to keep homogeneity of the recording procedure. Thus, times

clocked by hand or by other unofficial timing systems are also excluded from the sam-

ple. All the necessary data were obtained from three websites: http://hem.bredband.

net/athletics/atb-m01.htm, http://www.alltime-athletics.com/m_100ok.htm and

http://www.iaaf.org/statistics/toplists/index.html. For each of the 1184 ath-

letes, we picked up the recorded running times of each year from 1991 to 2012, when

available. If an athlete has several records at the same year, then we keep only the best

time for this particular year, i.e., the lowest time from this year. Therefore, each athlete

has only one record per year when data are available at this year. This avoids correlated

data within each year for each athlete. Our sample consists then of one observation per

year, from 1991 to 2012, for each of the 1184 athletes.

Provided that our data are organized by year, it may be of particular interest examining

the eventual presence of a downward trend of the observed running times, revealing then

a progressive improvement of the athletes’ performance. In order to check the eventual

time-dependence of the running times, we consider Figure 4.29.

Observing then the whole set of the annual Box-Plots, we see no evident decreasing (or

eventually increasing) trend. Therefore, we can assume stationarity and proceed without

time-series considerations.

http://hem.bredband.net/athletics/atb-m01.htm
http://hem.bredband.net/athletics/atb-m01.htm
http://www.alltime-athletics.com/m_100ok.htm
http://www.iaaf.org/statistics/toplists/index.html
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The subsequent analysis or the 100 metres running times will follow the same steps

and methodologies exposed in the V̇ O2max case study, whereupon we refer to Section

4.1 as the guideline for all theoretical considerations, which will not be developed again

in this second case study. The same rule applies to R scripts, which can be found in

Appendix A, since they are exactly the same, changing only variables’ names and some

values. Using the V̇ O2max case as a guideline, we can easily adapt the V̇ O2max scripts

to the 100 metres study.

4.2.1 Parametric data analysis

As for the V̇ O2max, we will first follow the Gumbel’s approach of Section 3.1.2, con-

sidering again, each of the 1184 athletes as a block. Then, for each athlete, we select the

best time from all its annuals records from 1991 to 2012, independently of the year. We

obtain thus 1184 blocks with one observation per block, i.e. 1184 observations. We recall

that, as data are running times, the best time of each athlete represents the lowest of

the observed values. In the V̇ O2max analysis, we mentioned that, in sports measures, it

is very frequent to obtain repeated values for several athletes, due to the lack of preci-

sion of the measurements and discretization of data. For this reason, the obtained 1184

running times are smoothed using the same technique as for the V̇ O2max. Hence, when

for instance r athletes have the same recorded time of 10.15 seconds, these r results are

smoothed equally over the interval ]10.145, 10.155[ as follows:

timej = 10.145 + 0.01
2j − 1

2r
, j = 1, . . . , r.

However, in order to proceed, we must perform a last step. Indeed, as stated from

the beginning, this thesis deals with inference based on sample maxima. Moreover, the

Gumbel’s approach requires a sample of m maxima. Since running times implies a sample

minima analysis, we have to transpose our 1184 smoothed running times to a maxima

context. This is done converting all the 1184 smoothed times in running speeds, so that

a lower running time corresponds to a higher speed. This way, selecting the lowest time

for an athlete is equivalent to selecting the highest speed. We choose to express the

running speeds in metres per second (m/s), since the basic reference are 100 metres. The

conversion is then done as follows:

speedi =
100

smoothed time i
, i = 1, . . . , 1184.

Defining then Y as the r.v. that represents the maximum running speed of an ath-

lete who performs the 100 metres race, according to (3.1), we have a random sample
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(Y1, . . . , Ym) of m = 1184 maxima at our disposal. As it was discussed in the first case

study, the r.v. Y must be distinguished from the original r.v. X, which represents the

running speed of a 100 metres athlete, with d.f. F . In a Gumbel’s approach, we consider

our data collection as a realization of the r.v. Y , which is assumed to follow a GEVd.

Concerning the POT approach, since we have a large sample, it may be reasonable

to choose a fixed threshold u, above which we can fit a GPd. We will use the same

sample as for Gumbel’s approach, since the POT methodology is only valid if we are

working with a random sample. Provided that each athlete have several measurements,

surely inter-correlated, we keep the best result of each one, in order to respect the i.i.d.

rule, obtaining then a random sample of 1184 observations. The philosophy behind this

sample is somewhat different from Gumbel’s approach. Under the POT methodology, the

sample in hand is the realization of the original r.v. X with d.f. F . In particular, it is

assumed that the data were taken from the right tail of F . Therefore, the random sample

(X1, . . . , Xn) is collection of top observations. Taking then a fixed threshold u, the r.v. Y

represents the excesses above u, as discussed in Section 3.1.3.1, which is assumed to follow

a GPd. Contrary to Gumbel’s approach, which fits a GEVd to the whole sample, the POT

methodology fits a GPd only to the portion of the sample above u. Since we do not have a

reference value for an eventual threshold, the sample ME-plot presented in Section 3.1.3.7

can help us to fix a suitable threshold. Defining then u by Xn−k:n, k = 1, . . . , n−1 and the

empirical counterpart of the mean excess function, ên, as in (3.34), the sample ME-plot

can be seen in Figure 4.30(cf. Appendix A.1).

Following Davison and Smith (1990) suggestion, already applied in the V̇ O2max case

study, we notice two linear trends in the plot, apart from the high volatility characterizing

the top sample. The two linear patterns are separated by a kink, visible at 9.7 m/s. As

the objective of the POT methodology is to induce a cut-off in the sample above which

the sample ME-plot follows a linear trend, we will take u = 9.7 as the required threshold

for the POT analysis.

1) The Block Maxima approach

a) Preliminary statistical analysis

For a preliminary statistical analysis before proceeding to Gumbel’s approach, we can

fit again the Exponential model to our data in order to take a position about the weight of

the right tail of the underlying d.f. F . This question can be assessed by the Exponential

QQ-plot presented in Figure 4.31 (cf. Appendix A.3).
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Figure 4.30: Sample ME-plot for the 100 metres data

This time, the plot exhibits a predominantly linear pattern, in contrast to the V̇ O2max

case study, where a clear concave pattern was visible. However, we can argue that Figure

4.31 reveals a slight concave pattern for the 100 metres data and we cannot deny this

position. Independently of the point of view chosen, we can draw the following conclusion:

defining X as a r.v. that represents the running speed of an athlete who performs a 100

metres race (in contrast to Y , which represents the maximum running speed of a similar

one), its d.f. F is exponentially right-tailed or is characterized by an almost exponential

decay of its right tail. This suggests us that the d.f. of the running speed may belong

to the Gumbel max-domain of attraction. Thus, the underlying d.f. of the V̇ O2max r.v.

seems to have a lighter right tail than the d.f. of the running speed.

Provided that the Gumbel d.f. appears as a strongly potential limiting distribution

for the running speed defined by the r.v. X, we can assess the goodness-of-fit of this

distribution to our r.v. Y , using the classical Gumbel QQ-plot, as shown in Figure 4.32

(cf. Appendix A.4).

The Gumbel QQ-plot reveals a fairly reasonable linear pattern, with some asymmetry
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Figure 4.31: Exponential QQ-plot for the 100 metres data

located at lower and upper quantiles, pointing to the Gumbel model as a suitable candidate

to fit our data. Once more, we can take advantage of the visible linear relation to obtain

preliminary estimates of the parameters of the Gumbel distribution, λ and δ, fitting a

least squares straight line to the points of Figure 4.32. The results are obtained with the

R software (cf. Appendix A.5):

Call:

lm(formula = speeds ~ Qgt)

Coefficients:

(Intercept) Qgt

9.752466 0.087935

which yields

λ̂ = 9.752466 and δ̂ = 0.087935, (4.34)

as preliminary estimates of the parameters of Gumbel’s distribution.
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Figure 4.32: Gumbel QQ-plot for the 100 metres data

The least squares straight line can be added to Gumbel QQ-plot, leading us to Figure

4.33 (cf. Appendix A.5).

As a complement, we can check the eventual goodness-of-fit of the GEVd and compare

it to the Exponential fit, since it is a natural candidate for extreme data. We use once

again the QQ-plot, basic tool in this preliminary analysis. Inspired by the first case study,

the expressions for the GEV model quantiles and for the standard GEV quantiles are given

by (4.2) and (4.3):

Qγ,λ,δ(p) = λ+ δ
(− log p)−γ − 1

γ
, 0 < p < 1

and

Qγ,0,1(p) =
(− log p)−γ − 1

γ
, 0 < p < 1,

resulting in the linear relationship

Qγ,λ,δ(p) = λ+ δ Qγ,0,1(p).
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Figure 4.33: Gumbel QQ-plot for the 100 metres data, with fitted straight line

The obtention of the standard quantiles Qγ,0,1 requires an estimate of the shape param-

eter. As usual, we choose γ so that the correlation between the quantiles Q̂γ,λ,δ(p) = Yi:m

and Qγ,0,1 is maximized. The R software helps us to solve this optimization problem (cf.

Appendix A.6):

$maximum

[1] 0.07126956

$objective

[1] 0.9963723

A first evidence stands out: we obtain a positive estimate for the EVI under the Block

Maxima approach, γ̂ = 0.07126956. But since we are still in a preliminary analysis, we

cannot draw any definitive conclusion about this unusual estimate. The obtention of the

estimate can be confirmed graphically on Figure 4.34 (cf. Appendix A.6). We can now

proceed to the GEVd QQ-plot, which can be seen on Figure 4.35 (cf. Appendix A.7).
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Figure 4.34: Correlation plot between quantiles of the standard GEVd and the location-

scale GEV family for the 100 metres data.
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Figure 4.35: GEVd QQ-plot for the 100 metres data.
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Compared to the Gumbel QQ-plot of Figure 4.32, we do not see major differences

between the two fits. To increase the accuracy of the plot, we can add a least squares

straight lines to the GEVd QQ-plot, which gives us, at the same time, preliminary esti-

mates for λ and δ. For the line fitting, we use the R software which yields (cf. Appendix

A.8)

Call:

lm(formula = speeds ~ Qgevt)

Coefficients:

(Intercept) Qgevt

9.75109 0.08003

We have then the following preliminary estimates for the GEVd parameters:

(γ̂, λ̂, δ̂) = (0.07126956, 9.75109, 0.08003) (4.35)

which allows us to add the fitted line to the GEVd QQ-plot, available on Figure 4.36 (cf.

Appendix A.8).

The choice between the Gumbel and the GEVd QQ-plots is not evident. We need more

reliable and objective techniques to choose one of the parametric models. The statistical

tests presented below have this mission and we hope they are able to discriminate what

our eyes cannot see.

b) Statistical choice of extreme value models

The preliminary statistical analysis suggests the Gumbel distribution as a suitable

parametric model to be fitted to our 100 metres running speeds. On the same way, the

analysis eventually suggests that a GEVd may be appropriate as well, as a parametric

model for the r.v. Y . Again, we have the same battle between the Gumbel model and the

GEVd and the winner must be chosen with more consistent statistical tools. As for the

previous case study, we will perform the same statistical tests with the same statistics.

Therefore, the hypotheses at play are

H0 : γ = 0 vs H1 : γ 6= 0, (4.36)

for the two-sided version of the test and

H0 : γ = 0 vs H1 : γ < 0, (4.37)
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Figure 4.36: GEVd QQ-plot for the 100 metres data,with fitted line.
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for the left one-sided one. Notice that we prefer a left one-sided version of the test since

it is usual in athletics to have γ < 0. But we keep in mind the suspicious preliminary

positive estimate for the EVI in (4.35). Putting it in our pocket, we proceed to the

statistical tests.

The firstly discussed test was based on the standardized Gumbel statistic defined by

(4.7), used for testing (4.37). Applying the R software to the 100 metres data, we obtain

the following results (cf. Appendix A.9):

[1] gs_m= 4.056264 gs*_m= 2.285715 p-value= 0.9032993

At the asymptotic size α = 0.05, the null hypothesis in (4.37) is not rejected and the

Gumbel model is strongly recommended by this test as a suitable parametric model for

the r.v. Y .

As a second statistical test, we saw the adjusted LRT defined by the statistic in (4.9),

developed for the test (4.36). But as seen in (4.8), in order to perform this test, we need

the ML estimates of the parameters from the Gumbel and GEV models. The R software

allows us to obtain easily the ML estimates, necessary for the computation of the statistic

(cf. Appendix A.10):

[1] Gumbel ML estimates

lambda= 9.754742 delta= 0.07891165

[2] GEV ML estimates

gamma= 0.1064495 lambda= 9.750348 delta= 0.07570596

The final ML estimates for the Gumbel and GEV models are then

(λ̂G0 , δ̂G0) = (9.754742, 0.07891165) (4.38)

and

(γ̂Gγ , λ̂Gγ , δ̂Gγ ) = (0.1064495, 9.750348, 0.07570596), (4.39)

which can now be used for the adjusted LRT using the R software (cf. Appendix A.11):

[1] l= 29.11658 l*= 29.04788 p-value= 7.061122e-08

With these results in hand, at the asymptotic size α = 0.05, we find a very strong evi-

dence for the rejection of H0 and, hence, the Gumbel model is strongly rejected, favouring

then a GEVd. Once more, note that the preliminary estimates for the Gumbel model

obtained in (4.34) are very close to the final ML estimates for the same model given by
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(4.38). However, we obtain a surprising result for the EVI with the ML estimates of the

GEV model. Indeed, as we can see in (4.39), the estimate for γ is close to zero, but pos-

itive. Before extracting some conclusion, we must complement the ML estimation with

other methods, like the PWM method, and construct some CI’s for the GEVd parameters.

But before this, we can perform the remaining statistical tests performed in the V̇ O2max

analysis.

Rao’s score test, defined by the statistic in (4.12) or (4.13), can now be applied, for

testing again (4.37) or (4.36), respectively. Using the final ML estimates for the Gumbel

model, (λ̂G0 , δ̂G0) = (9.754742, 0.07891165), needed for the statistic to be computed, the

R software provides us the following results (cf. Appendix A.12):

[1] Normal Test: v_m= 290.7215 v_m*= 5.833129 p-value= 1

[2] Chi-square Test: v^2_m= 84518.96 v^2_m*= 34.0254

p-value= 5.439744e-09

Once more, we obtain surprising results. Considering the Normal version of Rao’s

score test, at the asymptotic level α = 0.05, the null hypothesis of Gumbel model is not

rejected, but, looking at the Chi-square version of the test, at the same asymptotic level,

the Gumbel model is strongly rejected in favor of the GEVd. Recalling the results of

the previous statistical tests, a surprising conclusion begins to appear: testing a Gumbel

model versus a GEVd with γ < 0 leads always to a non-rejection of the Gumbel hypothesis.

But, when the Gumbel model is tested against a generic GEVd with γ 6= 0, it is strongly

rejected in favor of the GEVd. Therefore, the previous statistical tests suggest that a

GEVd with γ > 0 is appropriate to the maxima running speeds data. Considering the

results of the ML estimation for the GEVd in (4.39), we testify a positive estimate for

γ. Note that the preliminary statistical analysis did not point to such a distribution as a

suitable one for the r.v. Y .

Proceeding with the subsequent tests of the first case study, we can now consider the

LAN test of Marohn (2000), used again to test (4.36) or (4.37), with the statistic in (4.14)

(cf. Appendix A.13):

[1] Unilateral test: t_m= 4.027118 t_m*= 5.833021 p-value= 1

[2] Bilateral test: |t_m|= 4.027118 |t_m*|= 5.833021

p-value= 5.443276e-09
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The LAN test leads us to the same conclusion as the previous tests: the GEVd with

γ > 0 is the most suitable model for the r.v. Y . As the shape parameter γ governs the

heaviness of the underlying d.f. for the r.v. X, which represents the running speeds of

an athlete performing a 100 metres race, a positive estimated value indicates possibly a

heavy right tail.

Finally, we can close the statistical tests with the three goodness-of fit tests presented

in (4.15), (4.16) and (4.17), used to check the suitability of the Gumbel model. Using

again the ML estimates of the Gumbel model, (λ̂G0 , δ̂G0) = (9.754742, 0.07891165) and

the R software, we get (cf. Appendix A.14):

Kolmogorov-Smirnov statistic: 0.04724083

Cramer-von Mises statistic: 1.048995

Anderson-Darling statistic: 6.943542

The decision is ruled by the simulated critical points of the sampling distribution of

each test statistic, presented in Table 4.1, for the Kolmogorov-Smirnov statistic, and in

Table 4.2, for the Cramér-von Mises and Anderson-Darling statistics. The use of the

Tables requires the computation of the modified statistics:

1. Modified Kolmogorov-Smirnov statistic:
√
m dm =

√
1184× 0.04744457 ' 1.63

2. Modified Cramér-von Mises statistic: w2
m(1+0.2/

√
m) = 1.056051×(1+0.2/

√
1184)

' 1.0622

3. Modified Anderson-Darling statistic: a2
m(1+0.2/

√
m) = 6.963871×(1+0.2/

√
1184)

' 7.004

Consulting the respective Tables at the asymptotic size of α = 0.05, the null hy-

pothesis of Gumbel model as a suitable model for the data is always rejected, since the

modified statistics always exceed the tabled critical points. Therefore, even the conser-

vative goodness-of-fit tests reject the Gumbel model as a suitable parametric model. We

can summarize the results of all previous tests in Table 4.17.

As stated before, all the tests do not reject the Gumbel model when confronted with

a GEVd with γ < 0, but reject it strongly, when tested against a generic GEVd with

γ 6= 0. These results are corroborated by the three goodness-of-fit tests, which rejected

the Gumbel model. We may then conclude that the tests select a GEVd with γ > 0 as an

appropriate parametric model for Y . Note that the conclusions drawn from the statistical

tests do not support the results extracted from the preliminary statistical, since the latter
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Table 4.17: Results for the statistical choice of extreme value models for the 100 metres data.

Test Hypotheses Observed statistic p-value Decision (α = 0.05)

Gumbel statistic H0 : γ = 0 vs H1 : γ < 0 gs∗m = 2.285715 0.9032993 not reject H0

LRT H0 : γ = 0 vs H1 : γ 6= 0 l∗ = 29.04788 7.061122e-08 reject H0

Rao’s score test H0 : γ = 0 vs H1 : γ 6= 0 v∗2m = 34.0254 5.439744e-09 reject H0

LAN test H0 : γ = 0 vs H1 : γ < 0 t∗m = 5.833021 1 not reject H0

LAN test H0 : γ = 0 vs H1 : γ 6= 0 |t∗m| = 5.833021 5.443276e-09 reject H0

pointed to an exponential right-tailed underlying d.f. or eventually a slightly light-tailed

one.

The Gumbel statistic presented in (4.7) can also be used to test a Gumbel model

against a GEVd with γ > 0. Fore more details, we refer to Tiago de Oliveira and Gomes

(1984). Therefore, in order to test

H0 : γ = 0 vs H1 : γ > 0,

at the asymptotic level of α = 0.05, we reject H0 if

GS∗m =
GSm − βm

αm
≥ G1−α,

where Gε stands for the standard Gumbel ε-quantile.

We can also obtain the corresponding p-value as follows:

p(GS∗m) = 1− Λ(GS∗m).

The R software produces the following results:

[1] gs_m= 4.056264 gs*_m= 2.285715 p-value= 0.09670072

At the asymptotic size α = 0.05, the null hypothesis is not rejected and, once again,

the Gumbel statistic selects the Gumbel model as suitable for the r.v. Y . Therefore,

this test does not select a GEVd with γ > 0 as a suitable model, contrary to the other

performed tests.

c) Parametric estimation of extreme events

The statistical tests from last section elect a GEVd with γ > 0 as a parametric

model for the r.v. Y , the maximum running speed of a 100 metres athlete. We are then

in the context of heavy right-tailed distributions, underlying our population of athletes.
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With a parametric model in hand, we can now estimate the respective parameters by

the estimation methods of Section 3.1.2. The ML estimates for the GEVd parameters,

(γ̂Gγ , λ̂Gγ , δ̂Gγ ), were already obtained when the LRT was performed in last paragraph.

The results are visible in (4.39) and we verified a positive estimate for the EVI. We can

use the R software which offers some graphical diagnosis tools to check the adequacy of

the ML fit, presented in Figure 4.37 (cf. Appendix A.20). The plots evince a satisfactory
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Figure 4.37: Graphical diagnosis of the GEVd fit for the 100 metres data.

fit for the GEVd with γ > 0 except, perhaps, for the QQ-plot, where some asymmetry is

present on the top of the sample, because of the large variability characterizing this area.

Pursuing now a PWM estimation for the GEVd parameters, the R software provides

us the following estimation results (cf. Appendix A.19):

[1] GEV PWM estimates

gamma= 0.1398049 lambda= 9.748983 delta= 0.07337964

The estimation results are very similar to the ML estimates obtained in (4.39) and
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we denote again a positive estimate for the EVI. The estimates of the two methods are

summarized in Table 4.18.

Table 4.18: ML and PWM estimates for the parameters of the GEVd, for the 100 metres data.

Estimation method γ̂ (shape) λ̂ (location) δ̂ (scale)

ML 0.1064495 9.750348 0.07570596

PWM 0.1398049 9.748983 0.07337964

Remember that these estimates can be taken as estimates for the attraction coefficients

of Section 2.4, with b̂n = λ̂ and ân = δ̂.

To complement the point estimates of the parameters, we can construct CI’s for the

GEVd parameters based on the profile likelihood method described in Section 3.1.2.4.

Once more, the R software can be helpful (cf. Appendix A.21).

[1] "profiling loc"

[1] "profiling scale"

[1] "profiling shape"

lower upper

loc 9.74557247 9.7551860

scale 0.07221670 0.0794508

shape 0.06647845 0.1480332

Taking a look at the CI for the shape parameter γ, we notice that the zero value is

excluded from the interval, thus pulling away the Gumbel model as a suitable parametric

model, as already seen. The results can be visualized in Figure 4.38).

The last estimation that can be performed in a GEVd context with γ > 0 is the

exceedance probability of an appropriate extreme quantile. Inspired by the previous

case study, we can check the quality of the current record of the Jamaican Usain Bolt,

computing the probability of exceeding the current sample maximum. The lowest running

time of our sample is 9.58 seconds, which corresponds to the maximum running speed

of approximately 10.438 m/s. We can then calculate P (Y > 10.438). Provided that

Y _ Gγ(λ, δ), we can obtain the desired probability using the GEVd, replacing the

parameters by its ML or PWM estimates (cf. Appendix A.22):

[1] Maximum Likelihood: P(Y>10.438)= 0.001736962

[2] Probability Weighted Moments: P(Y>10.438)= 0.002482753
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Figure 4.38: Profile likelihood-based 95% confidence intervals for GEVd parameters for

the 100m data.
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Then, following a Gumbel’s parametric approach, the current record of the runner

Usain Bolt can be surpassed with approximately 0.2% of probability.

Since we are in a context of γ > 0, the underlying d.f. F is unbounded on the right,

with an infinite right endpoint, giving to an athlete the possibility of increase infinitely

his running speed. Unless we are in a science-fiction world, this conclusion is unrealistic.

For a matter of comparison, we can examine the results provided by the Gumbel

model, in spite of the decisions taken from the statistical tests. The ML estimates for

(λ, δ) were already computed since they were necessary for the LRT. We can find them in

(4.38). The PWM estimates can also be easily computed, providing the following results

(see Appendix A.16):

[1] Gumbel PWM estimates

lambda= 9.76066 delta= 0.08498496

The respective CI’s can be also obtained using the profile likelihood approach, yielding

the following results, together with Figure 4.39 (cf. Appendix A.17).

[1] "profiling loc"

[1] "profiling scale"

lower upper

loc 9.75004910 9.75946783

scale 0.07542365 0.08266502

9.750 9.755 9.760

10
92

10
94

10
96

10
98

Profile Log−likelihood of Loc

loc

pr
of

ile
 lo

g−
lik

el
ih

oo
d

0.074 0.078 0.082

10
93

10
95

10
97

Profile Log−likelihood of Scale

scale

pr
of

ile
 lo

g−
lik

el
ih

oo
d

Figure 4.39: Profile likelihood-based 95% confidence intervals for Gumbel parameters for

the 100m data.
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Finally, the exceedance probability of the current world record of Usain Bolt can be

estimated using the Gumbel model G0(λ, δ) and replacing λ and δ by their respective ML

or PWM estimates. With the help of our habitual R software (cf. Appendix A.18), we

obtain:

[1] Maximum Likelihood: P(Y>10.438)= 0.0001736257

[2] Probability Weighted Moments: P(Y>10.438)= 0.0003455796

To ease the comparison of the results between the GEV and Gumbel models, a table

like Table 4.19 would be appropriate.

Table 4.19: Estimation results for Gumbel and GEV distributions for the 100 metres data.

Gumbel model GEV family

γ = 0 γ > 0

γ̂

ML - 0.1064495

PWM - 0.1398049

CI (95%) - (0.06647845,0.1480332)

λ̂

ML 9.754742 9.750348

PWM 9.76066 9.748983

CI (95%) (9.7500491,9.75946783) (9.74557247,9.755186)

δ̂

ML 0.07891165 0.07570596

PWM 0.08498496 0.07337964

CI (95%) (0.07542365,0.08266502) (0.0722167,0.0794508)

P (Y > 10.438)
ML 0.0001736257 0.001736962

PWM 0.00034558 0.00248275

As we can see, the estimates between Gumbel and GEVd models are very similar,

except perhaps for the exceedance probabilities, where some critics may argue that a

probability of 0.17% is significantly different from a probability of 0.017%, speaking of

ML estimates. Anyway, since the conclusion of an infinite right endpoint for the underlying

d.f. F may seem unsatisfactory in a human sports universe, we can choose the Gumbel

model as a suitable parametric model for the 100 metres data, due to its flexibility and

possibility of a finite right endpoint for the underlying d.f. Recall that the Gumbel statistic

always selects the Gumbel model, whatever one-sided test is performed. We can take a

look to the R diagnosis of Figure 4.40, applied to the Gumbel fit, in order to check the

adequacy of such a distribution (cf. Appendix A.15).

Unfortunately, comparing this diagnosis with Figure 4.37, we notice that the Gumbel

fit seems worse than the GEVd fit, a fact accused specially by the QQ-plot, where the

empirical and theoretical quantiles correspondences seem better in the GEVd case. Thus,
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Figure 4.40: Graphical diagnosis of the Gumbel fit for the 100 metres data
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adopting the Gumbel model as a parametric model for Y must be done with some care,

keeping in mind that better results are obtained with a GEVd family with γ > 0. The

Gumbel’s Block Maxima approach leads us then to the suitability of a GEVd with γ > 0,

or eventually, to a Gumbel parametric model, although a poorer fit is achieved in this

latter case. As it makes more sense to have a finite right endpoint for the underlying d.f.

F , we can look what other approaches have to tell us, namely the POT approach and the

semi-parametric inference. Hence, before concluding for the superhuman capacities of our

100 metres runners, we have to wait for the results of the aforementioned approaches.

2) The POT method

a) Preliminary statistical analysis

Based on the ME-plot of Figure 4.30, we chose u = 9.7 as a suitable threshold above

which we can fit a GPd. As for the V̇ O2max study, we begin this Section ascertaining

the goodness-of fit of the particular case of the GPd, i.e. the Exponential distribution.

This way, we can state an initial conjecture about an eventual exponential decay of the

right tail of the underlying d.f. F by means of the QQ-plot. The plot is visible on Figure

4.41, where the Exponential distribution is fitted to the m = 1051 excesses above u = 9.7,

represented by the r.v. Y (cf. Appendix A.24).

The Exponential QQ-plot exhibits a roughly linear pattern, apart from the top-sample,

characterized by the usual volatility . This preliminary study contrasts with the POT

approach of the V̇ O2max, where Figure 4.13 revealed a concave pattern, questioning the

suitability of the Exponential model. Using then (3.24), the theoretical quantiles of the

Exponential model are given by

Qσu = −σu log(1− p), 0 < p < 1

and

Q1 = − log(1− p), 0 < p < 1,

yielding the linear relationship

Qσu = σuQ1.

Recall that, as we are working with excesses, the straight line which characterizes the

linear relationship between the quantiles has no intercept.

We can then fit a least squares straight line with no intercept to the points of Figure

4.41, in order to obtain a rough estimate of the scale parameter σu of the Exponential

distribution. The R software yields the following results:
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Figure 4.41: Exponential QQ-plot for the m = 1051 excesses of the 100 metres data

Call:

lm(formula = excesst ~ Qet - 1)

Coefficients:

Qet

0.1149

We have then a preliminary estimate of the scale parameter of the Exponential model:

σ̂u = 0.1149 (4.40)

and the fitted straight line can be added to the Exponential QQ-plot, resulting in Figure

4.42.

Note that the empirical quantiles grow at the same time as the theoretical Exponential

quantiles, except for the top-portion of the sample, where the linear relationship between

the two quantiles ceases to exist. This can be a clue about some right-asymmetry of
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Figure 4.42: Exponential QQ-plot with fitted line for the m = 1051 excesses in the 100

metres data
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F , when compared with the Exponential distribution. Anyway, we must not forget that

the last top portion of the sample is characterized by a high volatility, as stressed in the

ME-plot of Figure 4.30.

To complete this preliminary analysis, we can also fit a GPd with γ 6= 0 to the sample

excesses, by means of a QQ-plot, since, until now, we do not have any reason to reject

the GPd. The needed quantiles of the GPd are available in (4.18) and (4.19):

Qγ,σu(p) = H−1
γ (p|0, σu) = σu

(1− p)−γ − 1

γ
, 0 < p < 1

and

Qγ,1(p) =
(1− p)−γ − 1

γ
, 0 < p < 1,

yielding the linear relationship

Qγ,σu(p) = σuQγ,1(p).

As noted in the preliminary study of the V̇ O2max, we have to specify a value for γ

before the construction of the QQ-plot, since the standard quantiles of the GPd depend

on this parameter. Following once again the procedure of Beirlant et al. (2004), we seek

the value of γ which maximizes que correlation between Q̂γ,σu(p) = Yi:m and Qγ,1(p). The

R software solves this optimization problem easily (cf. Appendix A.25):

$maximum

[1] -0.07146666

$objective

[1] 0.999302

which can be visualized graphically in Figure 4.43. With γ̂ = −0.07146666, the corre-

sponding QQ-plot is shown in Figure 4.44 (cf. Appendix A.26).

We have here the first important difference between the two parametric approaches:

contrary to the Block Maxima approach, we obtain a negative estimate for the EVI, which

makes much more sense in the sports context. The estimate is negative and very close to

zero, questioning the eventual suitability of the Exponential distribution, where γ = 0.

As for the Exponential fit, the GPd QQ-plot exhibits a linear pattern, which seems

more regular than the Exponential QQ-plot of Figure 4.42. To clean this doubt, we can fit

a least squares straight line to the points of Figure 4.44. Recall once more that the fitted

line must have no intercept. The R software produces the following results (cf. Appendix

A.27):
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Figure 4.43: Correlation plot between quantiles of the standard GPd and of the GP family

for the 100 metres data.

Call:

lm(formula = excesst ~ Qgpdt - 1)

Coefficients:

Qgpdt

0.127

Adding the fitted line to the GPd QQ-plot, we obtain the plot on Figure 4.45.

Looking at the GPd QQ-plot with fitted line, we confirm our guess: the GPd provides

a more linear pattern than the Exponential distribution does, with less irregularity at the

top of the sample. Therefore, the GPd with γ < 0 seems to be a strong candidate as a

parametric model to be fitted to the sample excesses. As a preliminary analysis is always

subjective, we check the suitability of the GPd model in the next Section, using objective
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Figure 4.44: GPd QQ-plot for the 100 metres data.
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Figure 4.45: GPd QQ-plot for the 100 metres data,with fitted line.
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statistical procedures. This plot also offers preliminary estimates of the GPd parametres:

(γ̂, σ̂u) = (−0.07146666, 0.127). (4.41)

b) Statistical choice of GPd models

From the preliminary analysis, we selected two potential candidates as a parametric

model to be fitted to the excesses above the chosen threshold u = 9.7. The GPd with γ < 0

appeared as the first more suitable model, followed by its particular case for γ = 0, the

Exponential distribution. We use then the statistical tests discussed in Section 3.1.3.6 in

order to achieve (or not) some discrimination between the two candidates. We will follow

the same order and methodology discussed in the V̇ O2max analysis, so, for theoretical

questions behind the tests, we refer to the POT analysis of the previous Case Study. As

for the V̇ O2max study, the hypotheses at play are the following:

H0 : γ = 0 vs H1 : γ 6= 0, (4.42)

from a two-sided point of view, or

H0 : γ = 0 vs H1 : γ < 0, (4.43)

for its one-sided version.

Recall that most of the statistical tests presented in this Section work with the ex-

ceedances above the chosen threshold. Following (3.19) and the first Case Study, we

defined the exceedance above u by the r.v. W . The first discussed test was developed by

Gomes and van Monfort (1986), which is used to test (4.43) with the statistic defined by

(4.23). With the help of the R software, we get the following results (cf. Appendix A.28):

[1] g_m= 1.128476 g_m*= -6.218269 p-value= 1.138534e-218

At the usual asymptotic levels α, the statistic is highly significant and, therefore, the

null hypothesis of Exponential distribution is rejected. Then, the first covered test selects

the GPd with γ < 0 as a suitable parametric model to be fitted to the data. Recall

from the preliminary analysis that the GPd appeared as a better candidate than the

Exponential distribution.

The next test comes from the work of Marohn (2000) and can be used for (4.42) or

(4.43) using the statistic in (4.24). It was seen in the V̇ O2max analysis that the statistic

is biased when we perform the two-sided version of the test, leading to reasonable results

only for sample sizes m > 500. As we are working with m = 1051 exceedances, we can
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perform the two versions of the test, when we only performed the one-sided version in the

V̇ O2max analysis. The R software leads us to the following results (cf. Appendix A.29):

[1] Two-sided Test

t_m= -0.08076792 t_m*= -2.618426 p-value= 0.008833656

[2] One-sided Test

t_m= -0.08076792 t_m*= -2.618426 p-value= 0.004416828

Once again, at the usual asymptotic levels α, the two-versions of the test reject the

null hypothesis of γ = 0, favouring again the GPd to the detriment of the Exponential

distribution.

The famous LRT is now applied to confirm (or not) our choice of the GPd as a suitable

parametric model to be fitted to our data. The tested hypotheses are defined by (4.42)

and checked with the statistic defined by (4.26). To compute the observed value of the

statistic, we need the final ML estimates of the Exponential and GP distributions, since

we only have preliminary estimates given by (4.40) and (4.41), respectively. Our usual R

software yields the following results (cf. Appendix A.30):

[1] Exponential ML estimates

sigma_u= 0.1190547

[2] GPd ML estimates

gamma= -0.0951046 sigma_u= 0.1303735

The final ML estimates are then

σ̂u = 0.1190547,

for the Exponential distribution, and

(γ̂, σ̂u) = (−0.0951046, 0.1303735), (4.44)

for the GPd. Notice the quality of the preliminary estimates, since the they are very close

to the final ML estimates. In particular, the final estimate of the EVI is lower, indicating

a lighter right tail than expected for the underlying d.f. F .

Now, with the final ML estimates in hand, we can proceed to the LRT by means of

the statistic given by (4.26). The R software produces the following results (cf. Appendix

A.31):

[1] l= 8.986452 l*= 8.95238 p-value= 0.002771083
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The LRT does not modify our decision: at the usual asymptotic levels α, the null

hypothesis of Exponential distribution is one more time rejected. The LRT supports then

the decisions of the previous tests.

Finally, to close the battery of statistical tests for the model choice, we end this

Section with the three usual goodness-of-fit tests. The Kolmogorov-Smirnov statistic is

used to test the null hypothesis of an Exponential fit and the Cramér-von Mises and

Anderson-Darling statistics are used to test the null hypothesis of a GP fit. Considering

the Kolmogorov-Smirnov statistic given by (4.29) and presented by Lilliefors (1969), we

obtain the following results with the R software (cf. Appendix A.32):

Kolmogorov-Smirnov statistic: 0.03480792

The observed statistic is then compared with the simulated critical values of Table

4.7. As we have m = 1051, the critical values for α = 0.05 and α = 0.01 are given

by 1.06√
1051

= 0.03269674 and 1.25√
1051

= 0.03855748, respectively. The null hypothesis of

Exponential fit is then rejected at the asymptotic level α = 0.05, but not at the asymptotic

level α = 0.01. However, we know that the goodness-of-fit tests are conservative. On the

other hand, the observed value of the statistic lies between the two critical values and is

not far from the higher one. Thus, it is not recommended to maintain the null hypothesis,

because of the presented arguments, and the Exponential fit is then rejected. Respecting

the Cramér-von Mises and Anderson-Darling statistics defined in (4.30) and in (4.31) and

studied by Choulakian and Stephens (2001), we can look at what the R software has to

tell us (cf. Appendix A.33):

Cramer-von Mises statistic: 0.089607

Anderson-Darling statistic: 0.5375702

The critical points can be found in Table 4.8. As we have γ̂ = −0.0951046 the table

is entered at -0.1. At the usual asymptotic levels α, the two statistics do not exceed their

respective critical points and, consequently, the null hypothesis of GP is not rejected.

Despite their conservativeness, we decided to maintain the null hypothesis, since the

observed values are not so close to the critical values, contrasting with the Kolmogorov-

Smirnov statistic where the observed value was involved with the critical points.

We close then this Section electing the GPd with γ < 0 as a suitable parametric model

to be fitted to the 100 metres speeds above the threshold u = 9.7. Such a model states

that the underlying d.f. F of the 100 metres running speed, represented by the r.v. X, is

light right-tailed with a finite right endpoint, contrasting strongly with the Block Maxima

approach.
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c) Parametric estimation of extreme events

With a parametric model in hand, we can now proceed to the estimation of the GPd

parameters. The ML estimates were already computed, when the LRT was performed,

and are available in (4.44). Concerning the PWM method, the results are given by the R

software (cf. Appendix A.34):

[1] GPd PWM estimates

gamma= -0.1085283 sigma_u= 0.1319759

The estimation results of both methods are presented in Table 4.20.

Table 4.20: ML and PWM estimates of the shape and scale parameters of the GPd for the 100 metres

data.

Estimation method γ̂ (shape) σ̂u (scale)

ML -0.0951046 0.1303735

PWM -0.1085283 0.1319759

As we can see, the PWM estimates are very similar to the ML estimates. Provided that

we are in a large sample context, the two methods provide satisfactory results. Following

then a parametric approach, we obtain very similar results for the EVI-estimate when

compared to the estimate obtained by Einmahl and Magnus (2008), but regarding Einmahl

and Smeets (2011), we obtained higher estimates for the EVI, inducing a heavier right

tail of the underlying d.f. F .

We can use the R software to extract some diagnosis tools for the ML and PWM fits.

The diagnosis plots can be found on Figures 4.46 and 4.47 (cf. Appendix A.35). The

diagnosis plots show similar and satisfactory results for both estimation methods.

As a reinforcement for the point estimates, we can calculate CI’s for the GPd param-

eters. In contrast to the V̇ O2max POT approach, we can obtain such intervals based on

the profile likelihood function, since our EVI estimate is far from -1, and so does the true

value of γ (at least, we are expecting it), under which the ML procedure is not applicable.

Extracting the profile likelihood method from the suitable package of the R software,

we obtain the following results, at an asymptotic confidence level of 95% (cf. Appendix

A.36):

[1] profiling shape

conf.inf conf.sup

-0.14519520 -0.03528529
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Figure 4.46: Diagnosis plots for the ML fit of the GPd for the 100 metres data.
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The obtention of the 95% profile CI’s can be visualized graphically. For instance,

concerning the EVI, Figure 4.48 follows the procedure described in (3.31).

Looking at the CI for γ, we notice that the value 0 is excluded from the interval,

pulling away the Exponential distribution as a suitable parametric model, at least for a

95% asymptotic confidence level.

To end the POT approach, we can estimate the usual probability of surpassing the

current world record of Usain Bolt and present an estimate of the right endpoint of the

underlying d.f. F , based on the ML and PWM estimates. Recall that the current world

record of Usain Bolt is 9.58 seconds, which gives the maximal speed of 10.438 m/s. Using

(3.29) and (3.30) and turning to our R software (cf. Appendix A.37), we get
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Figure 4.47: Diagnosis plots for the PWM fit of the GPd for the 100 metres data.
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Figure 4.48: Profile log-likelihood function for γ under the POT approach of the 100 metres

data.
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[1] Maximum Likelihood: P(X>10.438)= 0.000260351

[2] Probability Weighted Moments: P(X>10.438)= 0.0001616754

[1] Maximum Likelihood: x^F= 11.07084

[2] Probability Weighted Moments: x^F= 10.91605

The right endpoint estimates are very similar, either by the ML method or by the PWM

method. In particular, the ML provides the highest estimate for xF , which corresponds

to a running time of 9.03 m/s, while the PWM method obtains a boundary time of 9.16

m/s. Therefore, in the present circumstances, a 100 metres athlete has still some space

for improvement. Compared to the current world record of Usain Bolt, a top-athlete

can still reduce the 100 metres running time by approximately 0.42 seconds, in terms of

PWM, or by approximately 0.55 seconds, in terms of ML. The estimated probabilities of

getting such improvement are given by 0.0167% and 0.026%, following the PWM and ML

methods, respectively.

The POT approach brings more interesting results when compared to the Block Max-

ima approach. Recall that this latter approach determined an infinite right endpoint for

the running speed of the athletes, which is plausible in a science fiction world, but absurd

in our reality. The POT approach states a finite right endpoint for the light right-tailed

d.f. F . Notice finally that the estimates of the right endpoint xF presented in this thesis

under a parametric framework are a little higher than those obtained by Einmahl and

Magnus (2008) and Einmahl and Smeets (2011), in terms of running speed, or a little

lower, in terms of running time. Considering then only data above the threshold u = 9.7

is sufficient to obtain evidence for γ < 0 and to remove the absurd conclusion of γ > 0

obtained under the Block Maxima approach. The data under this threshold seem to have

enough power to modify the decision about the EVI sign. If we take a closer look at the

Gumbel and GEVd QQ-plots of Figure 4.33 and 4.36, we note a convex pattern of the

plotted points precisely until 9.7, the chosen threshold based on the kink of the ME-plot

in Figure 4.30. This convex pattern, symptom of heavy tails, is sufficient to create differ-

ences if we consider a threshold, under a POT approach, or not, under a Block Maxima

approach. Note equally that the convex pattern corresponds to the worst results. Hence,

are the data under 9.7 m/s really needed for the analysis? Are those data originating

from another population of athletes with other d.f., where 9.7 may establish a boundary

between the two populations? Are we facing a mixture of distributions? All these ques-

tions are pertinent and interesting, but, unfortunately, they are beyond of the scope of

this thesis.
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4.2.2 Semi-Parametric data analysis

a) Testing the extreme value index sign

We may begin this Section with the semi-parametric tests developed in Section 3.2.6,

to achieve some discrimination of the EVI sign. The hypotheses at play are then

H0 : F ∈ D(G0) vs. H1 : F ∈ D(Gγ)γ 6=0, (4.45)

tested with the Greenwood (R∗n(k)), Hasofer-Wang (W ∗
n(k)) and Ratio (T ∗n(k)) standard-

ized statistics.

As the statistics depend on the random threshold k, we can visualize their respective

sample paths in Figure 4.49, where R∗n(k), W ∗
n(k) and T ∗n(k) are plotted against k (cf.

Appendix A.38).
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Figure 4.49: Sample paths of Greenwood (G∗n), Hasofer-Wang (W ∗
n) and Ratio (T ∗n) statis-

tics for testing H0 : F ∈ D(G0) vs. H1 : F ∈ D(Gγ)γ 6=0 in the 100 metres data.

The Greenwood (R∗n(k)) and the Hasofer-Wang (W ∗
n(k)) statistics are useful to detect

right heavy-tailed and light-tailed d.f.’s, respectively. Looking at their sample paths and
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considering the decision rule in (3.70), we can notice a oscillatory behaviour of the paths

around the Normal quantiles, ending up by surpassing the respective Normal quantiles,

for large values of k. If we change the asymptotic size α, the oscillatory behaviour can be

more or less pronounced. Anyway, it can be stated that, the sample paths head for the

rejection region, since they oscillate dangerously around the critical values given by the

Normal quantiles. The Ratio statistic (T ∗n(k)), used as a complement, is always between

the Gumbel quantiles, indicating a non-rejection of H0. However, as stated in Section

3.2.6, the Ratio test tends to be conservative, specially if the true value of γ is close to

zero. This may explain the difficult decision that can be taken based on the sample paths.

At the asymptotic size of α =, we reject H0 with some doubts, provided that the EVI has

probably a value close to zero.

If we want to be more specific about the EVI sign, we can perform a one-sided test.

Remember that the parametric Block Maxima approach selected a GEVd with γ > 0 as a

suitable d.f. to be fitted to the 100 metres data. We can now check if the semi-parametric

approach selects a Fréchet max-domain of attraction for the 100 metres data, i.e. we want

to test

H0 : F ∈ D(G0) vs. H1 : F ∈ D(Gγ)γ>0,

using the same statistics as for (4.45).

But we can check what happens if we are interested in a Weibull max-domain of

attraction, performing then the test

H0 : F ∈ D(G0) vs. H1 : F ∈ D(Gγ)γ<0.

The sample paths of the three aforementioned statistics for both one-sided tests can

be visualized in Figure 4.50 (cf. Appendix A.39).

Considering the decision rule in (3.71) and the first plot of Figure 4.50, we observe that

the sample paths of the three statistics never surpass their respective critical values. Even

the Greenwood statistic, a powerful tool to detect a Fréchet max-domain of attraction,

never leads us to the rejection of the null hypothesis. Therefore, contrasting with the

parametric Gumbel’s approach, the semi-parametric inference does not consider a right

heavy-tailed d.f. as an underlying model for our 100 metres athletes’ population. As

we are interested in a Weibull max-domain of attraction, we can focus on the Hasofer-

Wang statistic. Considering the decision rule in (3.72) and the second plot of Figure

4.50, we verify that the sample path of this statistic is mainly in the rejection zone and,

consequently, the null hypothesis of Gumbel max-domain of attraction is rejected for the

major part of the k values, at the asymptotic size of α = 0.05. The Ratio statistic is almost

always within the non-rejection region, as it was already seen. Since the test based in



4.2 The 100 metres in athletics revisited 167

0 200 400 600 800 1000 1200

−
4

−
2

0
2

4
6

H1 : F ∈ D(Gγ)γ>0

k

ob
se

rv
ed

 s
ta

tis
tic

Rn
*  (k)

Wn
*  (k)

Tn
*  (k)

z0.95

z0.05

g0.95

0 200 400 600 800 1000 1200

−
4

−
2

0
2

4
6

H1 : F ∈ D(Gγ)γ<0

k

ob
se

rv
ed

 s
ta

tis
tic

Rn
*  (k)

Wn
*  (k)

Tn
*  (k)

z0.05

z0.95

g0.05

Figure 4.50: Sample paths of Greenwood, Hasofer-Wang and Ratio statistics of the one-

sided tests for the 100 metres data.

this latter statistic is conservative, the non-rejection of the Gumbel max-domain may be

explained by the negative, but close to zero, value of the EVI. The Weibull max-domain

is then the most appropriate domain for the 100 metres running speeds.

b) Heuristic choice of the random threshold

Now that the max-domain of attraction has been defined through the sign of the

EVI, we can proceed to the appropriate choice of the random threshold k in order to

estimate the EVI with the semi-parametric estimators of Section 3.2.3. As we did for the

V̇ O2max, we will follow the heuristic procedure of Section 3.2.7. According to (3.73),

k is chosen so that the difference between the EVI estimates obtained with the semi-

parametric estimators of Section 3.2.3 is the lowest. Therefore, we have to specify which

semi-parametric estimators are chosen for this optimization problem.

The first candidate to be included is the Pickands estimator, defined in (3.43). How-

ever, as seen in the V̇ O2max case study, this estimator is reputed for its large asymptotic

variance, which can compromise the optimization problem required by the heuristic pro-

cess. As a curiosity, we present the sample path of the Pickands estimator in Figure 4.51

(cf. Appendix A.40).

As for the previous case study, the Hill estimator will not be used for the heuristic

process, since it is valid only for γ > 0 and the Fréchet max-domain of attraction was

rejected by the semi-parametric tests. On the contrary, the Moment and Generalized Hill

estimators can be used without any problem, since they are valid for γ ∈ R. Concerning



168 Chapter 4. Case Studies

0 200 400 600 800 1000 1200

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

k

γ̂ n,
 k

P

Figure 4.51: Pickands-plot for the 100m data.

the Negative Hill estimator, we know it is valid only for γ < −0.5. As for the V̇ O2max

case study, we can check the sample path of this estimator, to ascertain the eventual

validity of γ < −0.5 (cf. Appendix A.41). From Figure 4.52, we note that the sample

path of the estimator is always above -0.5 and seems to stabilize between -0.2 and -0.25

for most of the k values. Consequently, the validity of γ < −0.5 is very questionable and

difficult to prove. Thus, as for the previous case, the Negative Hill estimator will not be

included as a participant of the heuristic process.

Finally, the PORT estimators depend on the tuning parameter q. Following the same

rationale as the previous case, we can plot the sample path of the PORT-Moment and

the PORT-Mixed Moment estimators for different values of q to have some clues about

the “best” choice of q. Consider then Figure 4.53 (cf. Appendix A.42).

We extract the same conclusion from the two plots: a choice of a lower value for q

provides a more stable path of the corresponding EVI-estimator. Recall that the same

conclusion was drawn from the V̇ O2max analysis. Following then the previous case study

in the light of Fraga Alves et al. (2009), we will choose again q = 0.01.
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Figure 4.52: Negative Hill estimator sample path for the 100m data

All the chosen estimators can now be plotted together in order to seek a region where

all the candidates provide concordant values for the EVI. We can see the corresponding

plot in Figure 4.54 (cf. Appendix A.43).

The plot helps us to make a suitable choice of the estimators to be used in the heuristic

procedure:

1. The Moment, Generalized Hill and Mixed Moment estimators are concordant along

the whole plot, with concordant estimates;

2. The PORT estimators show an erratic behaviour: the PORT-Mixed Moment esti-

mator has an upward trend above zero, as for the V̇ O2max Case Study, and the

PORT-Moment estimator keeps some distance from the group formed by the Mo-

ment, Generalized Hill and Mixed Moment estimators, specially after k = 350.

Consequently, they will be excluded from the analysis;

3. The Pickands estimator shows its reputed high variability and its use may distort
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Figure 4.53: PORT-Moment and PORT-Mixed Moment estimators sample paths for the

100m data
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the optimization problem of the heuristic procedure. Therefore, it will be excluded

from the set of candidates.

We decided to keep the Moment, Generalized Hill and Mixed Moment for the heuristic

procedure since they exhibit concordant sample paths. We can now use (3.73) to obtain

the most suitable choice of k with the help of the R software (cf. Appendix A.44):

[1] k opt= 860

The heuristic procedure selects then k + 1 = 861 top observations on which all the

inference about the extreme value events will be based. But before that, it would be

pertinent to understand all the calculus procedure behind the optimal value k = 860.

Remember from Figure 4.54 that the paths of the chosen semi-parametric estimators are

very close along all the plot, suggesting eventually many possibilities for k. Consider then

Figure 4.55 (cf. Appendix A.45).
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Figure 4.55: Heuristic choice of the threshold k for the EVI estimation of the 100m data.

As expected and considering the scale, we notice that the distances between the EVI-

estimates are very small considering the three chosen estimators. The best choice of

k = 860 is visible in the plot. Generally speaking, the region 400 < k < 1000 seems a

good one in order to select the most suitable value for k. We could keep, for instance, a

value of k between 400 and 500 as well. But looking at Figure 4.54, we see that this region

seems slightly more unstable than the region where we chose k = 860. This kind of choice

and consideration is always arguable. Since we need a value for k in order to proceed,
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we decided to keep the value k = 860 that results from the optimization problem. Recall

that under a POT approach, we worked with m = 1051 observations above the selected

threshold 9.7. Under a semi-parametric approach, fewer observations are needed, since

the heuristic process elected k + 1 = 861 observations.

c) Estimation of the Extreme Value Index

Now we have elected an optimal k-value, we can proceed to the estimation of the EVI,

considering the chosen estimators. We obtain the following results with the R software

(cf. Appendix A.47):

[1] k opt=860

Moment: gamma= -0.07384262 Generalized Hill: gamma= -0.07292183

Mixed Moment: gamma= -0.07108349

The selected estimators provide very similar results for the EVI estimate,

around -0.07. At this point, it would be interesting to compare the semi-parametric

estimate of γ with those obtained under parametric approaches. The comparison is only

made with the POT approach, since the Block Maxima approach led to unrealistic re-

sults, in a context of heavy right tails. Consulting then Table 4.20, we find very similar

results, mainly with the ML method. Comparing the semi-parametric results for the EVI

estimation with Einmahl and Magnus (2008) and Einmahl and Smeets (2011), we obtain

higher estimates for γ, as it was stressed in POT analysis.

We can obtain richer estimates for γ through CI’s computed using (3.57). For that,

estimates for the asymptotic variances σ2
E are needed. They just can be found in (3.59)

and computed with our R software (cf. Appendix A.48):

[1] k opt=860

Moment: s2_M= 0.9255103 Generalized Hill: s2_GH= 0.878037

Mixed Moment: s2_MM= 0.9261752

Using then the estimated asymptotic variances, we can now use expression 3.57 and

construct 95% CI’s for the EVI. Results are concentrated in Table 4.21.

Looking at the approximate CI’s for γ, we notice that none of them include zero,

confirming then the Weibull max-domain of attraction and labeling the underlying d.f.

F as a light right-tailed one, with a finite right endpoint. But recall that the obtained

CI’s are approximated intervals, which can be improved, but with techniques out of this

thesis.
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Table 4.21: Semi-parametric approximate 95% confidence intervals for γ for the 100 metres data.

Semi-parametric estimator of γ k = 860

Moment
-0.07384262

(-0.1381406,-0.009544618)

Generalized Hill
-0.07292183

(-0.1355491,-0.0102946)

Mixed Moment
-0.07108349

(-0.1354046,-0.006762394)

d) Semi-parametric estimation of other extreme events

The last step consists in obtaining estimates for the location coefficient, b
(
n
k

)
, the

scale coefficient, a
(
n
k

)
, the right endpoint, xF , and for a suitable exceedance probability.

The attraction coefficients can be estimated easily with conditions (3.49) and (3.50), with

the participation of our usual R software (cf. Appendix A.49):

[1] k opt=860

b(n/k)= 9.727626

[2] k opt=860

a(n/k)= 0.1233697

Once more, note the extreme proximity between the semi-parametric approach and

the POT method. Concerning the estimate of the location coefficient, b̂
(
n
k

)
= 9.727626,

we find an extraordinary proximity with the threshold u obtained with the ME-plot of

the POT methodology, depicted in Figure 4.30. The same applies to the estimate of the

scale coefficient, â
(
n
k

)
= 0.1233697, almost like the ones obtained in Table 4.20, with a

higher proximity obtained by the ML method.

With the estimates of the attraction coefficients, we can now proceed to the right

endpoint estimate with (3.53) or (4.33). The R software reveals the following results (cf.

Appendix A.50):

[1] k opt=860

Moment: xF= 11.39834 Generalized Hill: xF= 11.41943

Mixed Moment: xF= 11.46319

We find similar results in the POT methodology, specially for the ML estimation,

although the semi-parametric methodology produces slightly superior results for the right
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endpoint. Converting the speeds to running times, we obtain a left endpoint between 8.72

and 8.77 seconds, since the running times belong to a minimum context. Therefore, the

semi-parametric approach consider that an athlete can lower the current time record of

Usain Bolt (9.58 seconds) under 9 seconds, while the POT approach stayed a little above

9 seconds. There is then some space for improvement and it would not be surprising

if Usain Bolt itself breaks his own record sooner or later. The point estimates of the

right endpoint can be completed with CI’s computed from (3.58), where the asymptotic

variance estimates, σ̂2
E were already calculated, when we constructed CI’s for γ presented

in Table 4.21. We present then the results for the 100 metres data in Table 4.22, in terms

of speed (normal display) or in terms of time (bold). Recall that the expression for the

CI’s was left-truncated and, therefore, we cannot state the confidence level of the resulting

intervals. All that we can say is that this level is lower than 1− α (see Appendix A.53).

Table 4.22: Semi-parametric approximate confidence intervals for xF (α = 5%) for the 100 metres

data, in terms of speed (m/s) or time (seconds).

Semi-parametric estimator of γ k = 860

Moment

11.39834

(10.438,12.0136)

8.773207

(8.3239,9.58)

Generalized Hill

11.41943

(10.438,12.03394)

8.757005

(8.30983,9.58)

Mixed Moment

11.46319

(10.438,12.12738)

8.723575

(8.245804,9.58)

The same strategy can be applied to select the optimal k-value in terms of the right

endpoint estimate. For a first impression, we can look at Figure 4.56, which depicts

the sample paths of the right endpoint estimator defined in (4.33), considering the three

EVI-estimators used in the heuristic procedure (cf. Appendix A.51).

Just as Figure 4.54, we notice that the sample paths of the three estimators are very

close, along all the plot, giving similar estimates for almost every k value. After k = 600,

we observe a decreasing trend of the three estimators towards the sample maximum.

The optimal value is choosing again by means of expression (3.73), replacing γ̂n,k by x̂F

and using the R software (cf. Appendix A.52) to obtain the optimal solution of the

minimization problem:
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Figure 4.56: Sample paths of Moment, Generalized Hill and Mixed Moment estimators

for the right endpoint of the underlying d.f. for the 100 metres data.

[1] k opt= 15

Mathematically, the optimal threshold found by the heuristic procedure applied to the

right endpoint estimators is unfeasible, since it lies in an extremely unstable region of the

plot, characterized by a high volatility of the estimators. A more adequate choice of k is

then required. To seek another regions of local minima, a plot of the function defined by

(3.73) and adapted for x̂F would be appropriate. Consider then Figure 4.57 (cf. Appendix

A.52).

As the plot demonstrates, the minimum of the distance function defined by (3.73)

is effectively attained at k = 15. However, as it was previously observed, this k value

lies in a very unstable region of the plot and cannot be maintained. Two other regions

seem more adequate: the region around k = 400 and the region 800 < k < 1100. Notice

that the original k = 860 lies within the second region. In terms of stability, the region

800 < k < 1100 seems preferable and, applying the same minimization procedure by

means of the R software, we obtain:

[1] k opt= 1027

The heuristic procedure applied to the right endpoint estimators selects then k + 1 =

1028 top observations, inducing a further approximation between the semi-parametric
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Figure 4.57: Heuristic choice of the threshold k for the right endpoint estimation for the

100 metres data.

approach and the parametric POT method, which selected m = 1051 top observations.

The newly computed k value is visible in Figure 4.57.

With this new k value, the R software gives the following right endpoint estimates:

[1] k opt=1027

Moment: xF= 11.21529 Generalized Hill: xF= 11.25726

Mixed Moment: xF= 11.27333

Once more time, these estimates are closer to the estimates obtained under the POT

approach, specially to ML estimates, as it was already discussed.

In the present circumstances, what is then the probability of surpassing Usain Bolt’s

record? This last question can be answered with our usual exceedance probability. As

the current record in terms of time is 9.58 seconds, the corresponding speed is given by

10.438 m/s. We can use then condition (3.54), with Hγ̂ given by (3.21), to obtain the

required estimated probability, P (X > 10.43841), recalling that the r.v. X represents the

running speed of a 100 metres athlete from population defined since the beginning of this

case study. Giving way to our R software, we obtain the following estimated probabilities

(cf. Appendix A.54):

[1] k opt=860

Moment: P(X>10.438)= 0.0004022769
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Generalized Hill: P(X>10.438)= 0.0004150361

Mixed Moment: P(X>10.438)= 0.0004412586

As for all the semi-parametric inference, the exceedance probability shows us similar

results when confronted with the POT analysis, where the victory is once again awarded

to the ML method.

The comparison between the POT analysis and the semi-parametric approach leads us

to an interesting conclusion: with fewer top observations, the semi-parametric approach

presents very similar results to those obtained with the POT methodology.



178 Chapter 4. Case Studies



Chapter 5

Conclusions and open questions

EVT offers interesting conclusions when applied to the world of Sports, even in a sim-

plified context of analysis, where some assumptions have been made. The most important

lesson is undoubtedly the clear affinity between semi-parametric approaches and the para-

metric POT method. In both of the Case Studies, the obtained results and estimates are

very similar, for the aforementioned approaches. On the contrary, the Block Maxima

method stays at the margin, yielding particular results, different from its two contenders.

The 100 meters Case Study is the most flagrant situation, where this latter methodology

produces a peculiar and unusual positive estimate of the EVI.

For the V̇ O2max analysis, the POT methodology yields similar results when com-

pared to a semi-parametric framework, specially if we choose the PWM method as a

point estimation method. Recall that this method performs better in small and modest

samples than the ML does. The results seem to support this theoretical result. Generally

speaking, the analysis demonstrates that the current record of Bjørn Dæhlie and Espen

Harald Bjerke is arriving at a steady-state, with little space for improvement. Indeed, the

estimates for the right endpoint of the underlying d.f. are very close to the sample maxi-

mum. For the 100 metres analysis, a large sample example, the ML method, applied with

a POT approach, provides more concordant results with the semi-parametric analysis. As

mentioned above, the Block Maxima method do not demonstrate similar affinity with the

two other methods. The analysis shows that, in the present circumstances, a 100 metres

athlete can improve his running time, with the possibility to reduce the current record of

Usain Bolt under 9 seconds.

As stated above, all this thesis was made within simplified premises and we consider

the performed work as a starting point and guideline for future and deeper investigation,

refining the tools used along all the analysis. Indeed, many questions have not been

treated and their consideration can improve the achieved results. The estimation of the

179
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second order parameters of Section 3.2.2 can improve the accuracy of the semi-parametric

CI’s, if they have been taken into account. The knowledge of the second order parameters

estimates also permits the use of the AMSE criterion for a threshold choice, since it is very

popular among statisticians. Another analysis that can be done is the power comparison

between the performed tests, in order to select the more suitable decision. Again, we have

space for going beyond this thesis. A time-series study would also be appropriate as an

additional tool that can be used for comparison.

To sum up, this thesis is neither complete, nor restrictive. It provides us with a

constructive framework, which can be used as a starting point for further investigation.

It was our intention to gather the most well known techniques from the EVT in order to

construct an organized methodology, with a logical framework, which permits to obtain

interesting conclusions, when applied to Sports. This thesis whets then our appetite for

other sports’ modalities that can be analyzed with the methodology presented along this

work. Tennis, skiing, swimming, weightlifting, all these sports abound in data that are

waiting for treatment, with the tools of this thesis. We are then just at the beginning of

the story, with a maximum of curiosity and a minimum of wasted time...



Appendix A

R scripts for the V̇ O2max Case Study

A.1 Sample ME-plot

Data<-read.table("VO2max.txt",header=T)

vo2max<-Data$VO2max

vo2max<-sort(vo2max)

library(evir)

meplotvo2max<-meplot(vo2max,type="o",omit=1)

grid()

A.2 Sample ME-plot, with fitted straight lines

linreginit1<-lm(meplotvo2max$y[1:25]~meplotvo2max$x[1:25])

linreginit2<-lm(meplotvo2max$y[26:74]~meplotvo2max$x[26:74])

meplot(vo2max,type="o",omit=1)

abline(linreginit1,col="blue")

abline(linreginit2,col="red")

grid()

A.3 Exponential QQ-plot

m<-length(vo2max)

i<-c(1:m)

fun<-function(x) -log(1-x)

Q<-fun(i/(m+1))

plot(Q,vo2max,pch=19,xlab=expression(-log(1-p[i])),ylab=expression(y[i:m]))

grid()
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A.4 Gumbel QQ-plot

fung<-function(x) -log(-log(x))

Qg<-fung(i/(m+1))

plot(Qg,vo2max,pch=19,xlab=expression(-log(-log(p[i]))),ylab=expression(y[i:m]))

grid()

A.5 Linear fit for the Gumbel QQ-plot

linreg<-lm(vo2max~Qg)

print(linreg,digits=5)

abline(linreg,col="blue",lwd=2)

A.6 Correlation for the GEVd QQ-plot

correlgev<-function(g){

x<-((-log(i/(m+1)))^(-g)-1)/g

cor(vo2max,x)

}

(gopt<-optimize(correlgev,interval=c(-.5,.5),maximum=T))

# Correlation plot

seqg<-seq(-1,.5,.01)

correl<-sapply(seqg,correlgev)

correl[101]<-cor(Qg,vo2max)

plot(seqg,correl,type="l",xlab=expression(gamma),

ylab=expression(corr(Q[list(gamma,0,1)](p[i]),y[i:m])),mgp=c(2.2,1,0))

grid()

abline(v=gopt$maximum,lty=2,col="red"); abline(h=gopt$objective,lty=2,col="blue")

A.7 GEVd QQ-plot

Qgev<-((-log(i/(m+1)))^(-gopt$maximum)-1)/(gopt$maximum)

plot(Qgev,vo2max,xlab=expression(((-log(p[i]))^-hat(gamma)-1)/hat(gamma)),

ylab=expression(y[i:m]),pch=19)

grid()

A.8 Linear fit for the GEVd QQ-plot

(linereggev<-lm(vo2max~Qgev))

abline(linereggev,col="blue",lwd=2)
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A.9 Gumbel test statistic

GS<-(max(vo2max)-vo2max[floor(m/2)+1])/(vo2max[floor(m/2)+1]-min(vo2max))

bn0<-(log(m)+log(log(2)))/(log(log(m))-log(log(2)))

an0<-1/(log(log(m)))

library(evd)

pvaluewn<-pgumbel((GS-bn0)/an0)

cat("[1] gs_m=",GS," gs*_m=",(GS-bn0)/an0," p-value=",pvaluewn,"\n")

A.10 Gumbel and GEVd ML estimation

dGumbel <- function(x,a,b) 1/a*exp((b-x)/a)*exp(-exp((b-x)/a))

pGumbel <- function(q,a,b) exp(-exp((b-q)/a))

qGumbel <- function(p,a,b) b-a*log(-log(p))

a_Gumbel=as.vector(linreg$coefficients[2])

b_Gumbel=as.vector(linreg$coefficients[1])

library(fitdistrplus)

fGumb<-fitdist(vo2max,"Gumbel",start=list(a=a_Gumbel,b=b_Gumbel))

b<-as.vector(fGumb$estimate[2])

a<-as.vector(fGumb$estimate[1])

fGev<-fgev(vo2max)

shapgev<-as.vector(fGev$param[3])

locgev<-as.vector(fGev$param[1])

scalgev<-as.vector(fGev$param[2])

cat(" [1] Gumbel ML estimates","\n"," lambda=",b," delta=",a,"\n",

"[2] GEV ML estimates","\n"," gamma=",shapgev," lambda=",locgev,

" delta=",scalgev,"\n")

A.11 LRT-Block Maxima

library(evd)

loglikgumb<-fGumb$loglik

loglikgev<-as.vector(logLik(fgev(vo2max)))

LR<--2*(loglikgumb-loglikgev)

LRstar<-LR/(1+2.8/m)

pvalueLR<-pchisq(LRstar,1,lower.tail=F)

cat("[1] l=",LR," l*=",LRstar," p-value=",pvalueLR,"\n")

A.12 Rao’s score test

zi<-(vo2max-b)/a

Vm<-sum(.5*zi^2-zi-.5*zi^2*exp(-zi))

Vm2<-Vm^2
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Raonorm<-Vm/sqrt(2.09797*m)

Raochi<-Vm2/(2.09797*m)

pvalueraonorm<-pnorm(Raonorm)

pvalueraochi<-pchisq(Raochi,1,lower.tail=F)

cat("[1] Normal Test: v_m=",Vm," v_m*=",Raonorm," p-value=",pvalueraonorm,"\n")

cat("[2] Chi-square Test: v^2_m=",Vm2," v^2_m*=",Raochi,

" p-value=",pvalueraochi,"\n")

A.13 LAN test

s1m<-sum(-(vo2max-b)/a+.5*((vo2max-b)/a)^2*(1-exp(-(vo2max-b)/a)))

s2m<-sum(-1/a+(vo2max-b)/(a^2)*(1-exp(-(vo2max-b)/a)))

s3m<-sum(1/a-1/a*exp(-(vo2max-b)/a))

Tm<-1/3.451*(1.6449/sqrt(m)*s1m-a*.5066/sqrt(m)*s2m-a*.8916/sqrt(m)*s3m)

pvaluelan<-pnorm(Tm/.6904)

cat("[1] t_m=",Tm," t_m*=",Tm/.6904," p-value=",pvaluelan,"\n")

A.14 Goodness-of-fit tests-Block Maxima

gofstat(fGumb,print.test=F)

A.15 Gumbel fit diagnosis

plot(fGumb)

A.16 Gumbel PWM estimation

y <-vo2max

y<-sort(y); yy<-c();yyy<-c()

for(i in 1:m) {

yy[i]=(i-1)/(m-1)*y[i]

yyy[i]=(i-1)*(i-2)/((m-1)*(m-2))*y[i]

}

M100=mean(y); M110=mean(yy); M120=mean(yyy)

dgpwm<-(2*M110-M100)/log(2)

lgpwm<-M100+digamma(1)*dgpwm

cat(" [1] Gumbel PWM estimates","\n"," lambda=",lgpwm," delta=",dgpwm,"\n")
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A.17 Profile likelihood CI’s for Gumbel model

confint(profile(fgev(vo2max,shape=0)))

# profile likelihood plot

par(mfrow=c(1,2))

lCIgumb<-confint(profile(fgev(vo2max,shape=0),which="loc"))

linfgumb<-lCIgumb[1]

lsupgumb<-lCIgumb[2]

dCIgumb<-confint(profile(fgev(vo2max,shape=0),which="scale"))

dinfgumb<-dCIgumb[1]

dsupgumb<-dCIgumb[2]

plot(profile(fgev(vo2max,shape=0),which="loc"))

abline(v=linfgumb,col="blue")

abline(v=lsupgumb,col="blue")

abline(v=b,col="red")

plot(profile(fgev(vo2max,shape=0),which="scale"))

abline(v=dinfgumb,col="blue")

abline(v=dsupgumb,col="blue")

abline(v=a,col="red")

par(mfrow=c(1,1))

A.18 Exceedance probability for the Gumbel model

exceedmaxml<-pgumbel(96,b,a,lower.tail=F)

exceedmaxpwm<-pgumbel(96,lgpwm,dgpwm,lower.tail=F)

cat(" [1] Maximum Likelihood: P(Y>96)=",exceedmaxml,"\n",

"[2] Probability Weighted Moments: P(Y>96)=",exceedmaxpwm ,"\n")

A.19 ML and PWM estimation of the GEVd

fGev<-fgev(vo2max)

shapgev<-as.vector(fGev$param[3])

locgev<-as.vector(fGev$param[1])

scalgev<-as.vector(fGev$param[2])

library(fExtremes)

pwmgev_fit<-gevFit(vo2max,type="pwm")

lpwm<-as.vector(pwmgev_fit@fit$par.ests[2])

dpwm<-as.vector(pwmgev_fit@fit$par.ests[3])

gpwm<-as.vector(pwmgev_fit@fit$par.ests[1])

cat("[1] GEV ML estimates","\n"," gamma=",shapgev," lambda=",locgev,

" delta=",scalgev,"\n")

cat("[2] GEV PWM estimates","\n"," gamma=",gpwm," lambda=",lpwm," delta=",dpwm,"\n")
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A.20 GEVd fit diagnosis

dGev<-function(x,g,a,b){ exp(-(1+g*(x-b)/a)^(-1/g))* (1+g*(x-b)/a)^(-1/g-1)/a}

pGev<-function(q,g,a,b){exp(-(1+g*(q-b)/a)^(-1/g))}

qGev<-function(p,g,a,b){b+a*((-log(p))^(-g)-1)/g}

b_Gev=80; a_Gev=6;c_Gev=-.2

fGevml<- fitdist(vo2max,"Gev",start=list(a=a_Gev,b=b_Gev,g=c_Gev))

plot(fGevml)

A.21 Profile likelihood CI’s for the GEVd

confint(profile(fgev(vo2max)))

# profile likelihood plot

par(mfrow=c(2,2))

lCI<-confint(profile(fGev,which="loc"))

linf<-lCI[1]

lsup<-lCI[2]

dCI<-confint(profile(fGev,which="scale"))

dinf<-dCI[1]

dsup<-dCI[2]

gCI<-confint(profile(fGev,which="shape"))

ginf<-gCI[1]

gsup<-gCI[2]

plot(profile(fGev,which="loc"))

abline(v=linf,col="blue")

abline(v=lsup,col="blue")

abline(v=locgev,col="red")

plot(profile(fGev,which="scale"))

abline(v=dinf,col="blue")

abline(v=dsup,col="blue")

abline(v=scalgev,col="red")

plot(profile(fGev,which="shape"))

abline(v=ginf,col="blue")

abline(v=gsup,col="blue")

abline(v=shapgev,col="red")

par(mfrow=c(1,1))

A.22 Exceedance probability for the GEVd

gevexceedmaxml<-1-pGev(96,shapgev,scalgev,locgev)

gevexceedmaxpwm<-1-pGev(96,gpwm,dpwm,lpwm)

cat(" [1] Maximum Likelihood: P(Y>96)=",gevexceedmaxml,"\n",

"[2] Probability Weighted Moments: P(Y>96)=",gevexceedmaxpwm ,"\n")
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A.23 Endpoint estimation-Block Maxima

xF_ml<-locgev-scalgev/shapgev

xF_pwm<-lpwm-dpwm/gpwm

cat(" [1] Maximum Likelihood: x^F=",xF_ml,"\n",

"[2] Probability Weighted Moments: x^F=",xF_pwm ,"\n")

A.24 Exponential QQ-plot

excess<-vo2max[which(vo2max>80)]-80

me<-length(excess)

ie<-c(1:me)

fun<-function(x) -log(1-x)

Qe<-fun(ie/(me+1))

plot(Qe,excess,pch=19,xlab=expression(-log(1-p[i])),ylab=expression(y[i:m]))

grid()

A.25 Correlation for the GPd QQ-plot

correlgpd<-function(g){

x<-((1-ie/(me+1))^(-g)-1)/g

cor(excess,x)

}

(ggpdopt<-optimize(correlgpd,interval=c(-1,.5),maximum=T))

# Correlation plot

seqgpdg<-seq(-1.5,.5,.01)

correl2<-sapply(seqgpdg,correlgpd)

correl2[151]<-cor(Qe,excess)

plot(seqgpdg,correl2,type="l",xlab=expression(gamma),

ylab=expression(corr(Q[list(gamma,1)](p[i]),y[i:m])),mgp=c(2.2,1,0))

grid()

abline(v=ggpdopt$maximum,lty=2,col="red")

abline(h=ggpdopt$objective,lty=2,col="blue")

A.26 GPd QQ-plot

Qgpd<-((1-ie/(me+1))^(-ggpdopt$maximum)-1)/(ggpdopt$maximum)

plot(Qgpd,excess,xlab=expression(((1-p[i])^-hat(gamma)-1)/hat(gamma)),

ylab=expression(y[i:m]),pch=19)

grid()
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A.27 Linear fit for the GPd QQ-plot

(linereggpd<-lm(excess~Qgpd-1))

abline(linereggpd,col="blue",lwd=2)

A.28 Gomes and van Monfort (1986) test

exc<-vo2max[which(vo2max>80)]

Gm<-exc[me]/exc[floor(me/2)+1]

Gmstar<-log(2)*Gm-log(me)

pvaluniGmstar<-pgumbel(Gmstar)

cat("[1] g_m=",Gm," g_m*=",Gmstar," p-value=",pvaluniGmstar,"\n")

A.29 Marohn (2000) test-POT

T_m<-0.5*((var(exc)*(me-1)/me)/(mean(exc)-80)^2-1)

T_mstar<-sqrt(me)*T_m

pvaluniTmstar<-pnorm(T_mstar)

cat("[1] One-sided Test","\n","t_m=",T_m," t_m*=",T_mstar,

" p-value=",pvaluniTmstar,"\n")

A.30 Exponential and GPd ML estimation

a_exp<-as.vector(1/linereggpd$coefficients)

fexp<-fitdist(excess,"exp",start=list(rate=a_exp))

aexp<-as.vector(1/fexp$estimate)

library(ismev)

fgpd<-gpd.fit(vo2max,threshold=80,show=F)

shapgpd<-as.vector(fgpd$mle[2])

scalgpd<-as.vector(fgpd$mle[1])

cat(" [1] Exponential ML estimates","\n"," sigma_u=",aexp,"\n",

"[2] GPd ML estimates","\n"," gamma=",shapgpd," sigma_u=",scalgpd,"\n")

A.31 LRT-POT

loglikexp<-fexp$loglik

loglikgpd<--fgpd$nllh

LRgpd<--2*(loglikexp-loglikgpd)

LRgpdstar<-LRgpd/(1+4/me)

pvalueLRgpd<-pchisq(LRgpdstar,1,lower.tail=F)

cat("[1] l=",LRgpd," l*=",LRgpdstar," p-value=",pvalueLRgpd,"\n")
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A.32 Kolmogorov-Smirnov test-POT

KS<-max(max(abs(pexp(excess,rate=1/aexp)-ie/me),

abs(pexp(excess,rate=1/aexp)-(ie-1)/me)))

cat("Kolmogorov-Smirnov statistic: ",KS,"\n")

A.33 Cramér-von Mises and Anderson-Darling tests-POT

pGP<-function(x,g,a){1-(1+g*x/a)^(-1/g)}

CVM<-sum((pGP(excess,shapgpd,scalgpd)-(2*ie-1)/(2*me))^2)+1/(12*me)

AD<--me-1/me*sum((2*ie-1)*log(pGP(excess,shapgpd,scalgpd))+

(2*me+1-2*ie)*log(1-pGP(excess,shapgpd,scalgpd)))

cat(" Cramer-von Mises statistic: ",CVM,"\n",

"Anderson-Darling statistic: ",AD,"\n")

A.34 GPd PWM estimation

fgpdpwm<-gpd(vo2max,threshold=80,method="pwm")

shapgpdpwm<-as.vector(fgpdpwm$par.ests[1])

scalgpdpwm<-as.vector(fgpdpwm$par.ests[2])

cat(" [1] GPd PWM estimates","\n","gamma=",shapgpdpwm," sigma_u=",scalgpdpwm,"\n")

A.35 GPd ML and PWM fit diagnosis

library(POT)

# ML fit diagnosis

fitml<-fitgpd(vo2max,threshold=80)

par(mfrow=c(2,2))

plot(fitml,which=1:3)

par(mfrow=c(1,1))

# PWM fit diagnosis

fitpwm<-fitgpd(vo2max,threshold=80,est="pwmu")

par(mfrow=c(2,2))

plot(fitpwm,which=1:3)

par(mfrow=c(1,1))

A.36 Profile likelihood CI’s for the GPd

gpd.profxi(fgpd,xlow=-.9,xup=-.1,nint=8000)
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A.37 Exceedance probability and endpoint estimation for the GPd

# exceedance probability

exceedmaxpotml<-me/m*(1-pGP(16,shapgpd,scalgpd))

exceedmaxpotpwm<-me/m*(1-pGP(16,shapgpdpwm,scalgpdpwm))

cat(" [1] Maximum Likelihood: P(X>96)=",exceedmaxpotml,"\n",

"[2] Probability Weighted Moments: P(X>96)=",exceedmaxpotpwm ,"\n")

# endpoint estimation

xF_potml<-80-scalgpd/shapgpd

xF_potpwm<-80-scalgpdpwm/shapgpdpwm

cat(" [1] Maximum Likelihood: x^F=",xF_potml,"\n",

"[2] Probability Weighted Moments: x^F=",xF_potpwm ,"\n")

A.38 Greenwood, Hasofer-Wang and Ratio sample paths (two-sided)

n<-length(vo2max)

Mj<-function(k,r) {

y<-NULL

for(i in 1:k) {

y[i]<-(vo2max[n-i+1]-vo2max[n-k])^r

}

(1/k)*sum(y)

}

Rstar<-function(k){

R<-Mj(k,2)/(Mj(k,1))^2

stat<-sqrt(k/4)*(R-2)

}

Wstar<-function(k){

R<-Mj(k,2)/(Mj(k,1))^2

W<-1/(k*(R-1))

stat<-sqrt(k/4)*(k*W-1)

}

Tstar<-function(k){

T<-(vo2max[n]-vo2max[n-k])/Mj(k,1)

stat<-T-log(k)

}

x<-seq(2,n-1,1)
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Rstarobs<-sapply(x,Rstar)

Wstarobs<-sapply(x,Wstar)

Tstarobs<-sapply(x,Tstar)

plot(Rstarobs,type="l",ylim=c(-2,6),xlab="k",ylab="observed statistic",

cex=0.8,col="darkgreen")

grid()

lines(Wstarobs,col="red");lines(Tstarobs,col="blue");

abline(h=qnorm(.025),lty=2,lwd=2) ; abline(h=qnorm(.975),lty=2,lwd=2)

library(evd)

abline(h=qgumbel(.025),lty=2,lwd=2,col="blue")

abline(h=qgumbel(.975),lty=2,lwd=2,col="blue")

Text<-c(expression(R[n]^paste("*")~(k)),expression(W[n]^paste("*")~(k)),

expression(T[n]^paste("*")~(k)),expression(list(z[.975],z[.025])),

expression(list(g[.975],g[.025])))

legend(40,1.5,legend=Text,col=c("darkgreen","red","blue","black","blue"),

lty=c(1,1,1,2,2),lwd=c(1,1,1,2,2),cex=0.8)

A.39 Greenwood, Hasofer-Wang and Ratio sample paths (one-sided)

plot(Rstarobs,type="l",ylim=c(-2,6),xlab="k",ylab="observed statistic",

cex=0.8,col="darkgreen")

grid()

lines(Wstarobs,col="red");lines(x,Tstarobs,col="blue");

abline(h=qnorm(.05),col="darkgreen",lty=2,lwd=2)

abline(h=qnorm(.95),lty=2,lwd=2,col="red")

abline(h=qgumbel(.05),lty=2,col="blue",lwd=2)

Text<-c(expression(R[n]^paste("*")~(k)),expression(W[n]^paste("*")~(k)),

expression(T[n]^paste("*")~(k)),expression(z[.05]),expression(z[.95]),

expression(g[.05]))

legend(50,1.5,legend=Text,col=c("darkgreen","red","blue","darkgreen","red","blue"),

lty=c(1,1,1,2,2,2),lwd=c(1,1,1,2,2,2),cex=0.8)

A.40 Pickands plot

gammahatp<-function(k){

1/log(2)*log((vo2max[n-floor((k+1)/4)+1]-vo2max[n-2*floor((k+1)/4)+1])/

(vo2max[n-2*floor((k+1)/4)+1]-vo2max[n-4*floor((k+1)/4)+1]))

}
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xp<-seq(1,n,1)

Pest<-sapply(xp,gammahatp)

plot(Pest,type="l",xlab="k",ylab=expression(hat(gamma)[list(n,k)]^P),mgp=c(2.2,1,0))

grid()

abline(h=0)

A.41 Negative Hill plot

gammahatnh<-function(k) {

ind<-NULL

ind<-seq(1,k-1,1)

f1<-function(x) log(vo2max[n]-vo2max[n-x])-log(vo2max[n]-vo2max[n-k])

f2<-sapply(ind,f1)

1/k*sum(f2)

}

x<-seq(2,n-1,1)

NHest<-sapply(x,gammahatnh)

plot(x,NHest,type="l",xlab="k",ylab=expression(hat(gamma)[list(n,k)]^NH),

mgp=c(2.2,1,0))

grid()

A.42 PORT estimators sample paths

Xistar<-function(x){

y<-NULL

nq<-floor(n*x)+1

for(i in 1:n){

y[i]<-vo2max[i]-vo2max[nq]

}

return(y)

}

# PORT Moment

Mnrq<-function(k,r,q) {

y<-NULL

for(j in 1:k) {

y[j]<-(log(Xistar(q)[n-j+1])-log(Xistar(q)[n-k]))^r

}

(1/k)*sum(y)

}
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gammahatmPORT<-function(k,q) Mnrq(k,1,q)+1-0.5*(1-(Mnrq(k,1,q))^2/Mnrq(k,2,q))^-1

PORTMest<-function(q){

nq<-floor(n*q)+1

x<-seq(1,n-nq-1,1)

sapply(x,gammahatmPORT,q=q)

}

# PORT Mixed Moment

Lnrq<-function(k,r,q) {

y<-NULL

for(j in 1:k) {

y[j]<-(1-(Xistar(q)[n-k]/Xistar(q)[n-j+1]))^r

}

(1/k)*sum(y)

}

phihatnkq<-function(k,q) (Mnrq(k,1,q)-Lnrq(k,1,q))/(Lnrq(k,1,q))^2

gammahatmmPORT<-function(k,q) (phihatnkq(k,q)-1)/(1+2*min(phihatnkq(k,q)-1,0))

PORTMMest<-function(q){

nq<-floor(n*q)+1

x<-seq(1,n-nq-1,1)

return(sapply(x,gammahatmmPORT,q=q))

}

# PORT sample paths

q<-c(0,0.25,0.5)

PORTMestfin<-sapply(q,PORTMest)

PORTMMestfin<-sapply(q,PORTMMest)

par(mfrow=c(1,2))

plot(PORTMestfin[[1]],type="l",xlab="k",xlim=c(0,60),ylim=c(-3,0),

ylab=expression(hat(gamma)[list(n,k)]^M(q)),

main="PORT Moment estimator sample path",mgp=c(2.2,1,0),lwd=2)

lines(PORTMestfin[[2]],col="red")

lines(PORTMestfin[[3]],col="blue")

abline(h=0)

legend(15,-2.5,legend=c("q=0","q=0.25","q=0.5"),lty=c(1,1,1),

col=c("black","red","blue"),cex=0.8,lwd=c(2,1,1))

plot(PORTMMestfin[[1]],type="l",xlab="k",xlim=c(0,60),ylim=c(-2,1),

ylab=expression(hat(gamma)[list(n,k)]^MM(q)),

main="PORT Mixed Moment estimator sample path", mgp=c(2.2,1,0),lwd=2)
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lines(PORTMMestfin[[2]],col="red")

lines(PORTMMestfin[[3]],col="blue")

legend(15,-1,legend=c("q=0","q=0.25","q=0.5"),lty=c(1,1,1),

col=c("black","red","blue"),cex=0.8,lwd=c(2,1,1))

abline(h=0)

par(mfrow=c(1,1))

A.43 Semi-parametric estimators plot

# Moment

Mnr<-function(k,r) {

y<-NULL

for(i in 1:k) {

y[i]<-(log(vo2max[n-i+1])-log(vo2max[n-k]))^r

}

(1/k)*sum(y)

}

gammahatm<-function(k) Mnr(k,1)+1-0.5*(1-(Mnr(k,1))^2/Mnr(k,2))^-1

# Generalized Hill

gammahath<-function(k) {

ind<-NULL

ind<-seq(1,k,1)

f1<-function(x) log(vo2max[n-x+1])-log(vo2max[n-k])

f2<-sapply(ind,f1)

1/k*sum(f2)

}

gammahatgh<-function(k){

ind<-NULL

ind<-seq(1,k,1)

f1<-function(x) log(gammahath(x))-log(gammahath(k))

f2<-sapply(ind,f1)

gammahath(k)+(1/k)*sum(f2)

}

# Mixed Moment

Lnr<-function(k,r) {

y<-NULL

for(i in 1:k) {

y[i]<-(1-(vo2max[n-k]/vo2max[n-i+1]))^r

}
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(1/k)*sum(y)

}

phihatnk<-function(k) (Mnr(k,1)-Lnr(k,1))/(Lnr(k,1))^2

gammahatmm<-function(k) (phihatnk(k)-1)/(1+2*min(phihatnk(k)-1,0))

# plot

x<-seq(1,n-1,1)

Mest<-sapply(x,gammahatm)

GHest<-sapply(x,gammahatgh)

MMest<-sapply(x,gammahatmm)

plot(x,Mest,type="l",xlab="k",ylim=c(-2,0),ylab=expression(hat(gamma)[list(n,k)]^E),

mgp=c(2.2,1,0),lwd=1)

abline(h=0)

lines(GHest,col="red")

lines(MMest,col="blue")

lines(PORTMest(.01),col="darkgreen")

lines(PORTMMest(.01),lwd=2,col="gray")

lines(Pest,lwd=2,col="violet")

legend(35,-1.25,c("Moment","Generalized Hill","Mixed Moment",

"PORT-Moment (q=0.01)","PORT-Mixed Moment(q=0.01)","Pickands"),lwd=c(1,1,1,1,2,2),

col=c("black","red","blue","darkgreen","gray","violet"),cex=0.9)

grid()

A.44 k heuristic choice

# for equal vector length

Mest1<-Mest[-length(Mest)]

GHest1<-GHest[-length(GHest)]

MMest1<-MMest[-length(MMest)]

sqdifest<-(Mest1-GHest1)^2+(Mest1-MMest1)^2+(Mest1-PORTMest1)^2+(GHest1-MMest1)^2+

(GHest1-PORTMest1)^2+(MMest1-PORTMest1)^2

kopt<-which.min(sqdifest)

cat("[1] k opt=",kopt,"\n")

A.45 Distance function plot

plot(sqdifest,type="l",ylim=c(0,.6),xlab="k",

ylab=expression(sum((hat(gamma)[list(n,k)]^(i)-hat(gamma)[list(n,k)]^(j))^2)),

mgp=c(2.2,1,0))

grid()



196 Chapter A. R scripts for the V̇ O2max Case Study

abline(h=sqdifest[kopt],lty=2,col="blue"); abline(v=kopt,lty=2,col="red")

A.46 Second k heuristic choice

kopt2<-which.min(sqdifest[35:45])+34

cat("[1] k opt=",kopt2,"\n")

A.47 EVI semi-parametric estimation

# k=19

gmk1<-gammahatm(kopt)

gghk1<-gammahatgh(kopt)

gmmk1<-gammahatmm(kopt)

gmpk1<-gammahatmPORT(kopt,0.01)

# k=43

gmk2<-gammahatm(kopt2)

gghk2<-gammahatgh(kopt2)

gmmk2<-gammahatmm(kopt2)

gmpk2<-gammahatmPORT(kopt2,0.01)

cat("[1] k opt=19","\n","Moment: gamma=",gmk1," Generalized Hill: gamma=",

gghk1,"\n","Mixed Moment: gamma=",gmmk1," PORT-Moment (q=0.01): gamma=",

gmpk1,"\n")

cat(" [2] k opt=43","\n"," Moment: gamma=",gmk2," Generalized Hill: gamma=",

gghk2,"\n"," Mixed Moment: gamma=",gmmk2," PORT-Moment (q=0.01): gamma=",

gmpk2,"\n")

A.48 Semi-parametric asymptotic variances

## k=19

# Moment

s2mk1<-(1-gmk1)^2*(1-2*gmk1)*(1-gmk1+6*gmk1^2)/((1-3*gmk1)*(1-4*gmk1))

# Generalized Hill

s2ghk1<-(1-gghk1)*(1+gghk1+2*gghk1^2)/(1-2*gghk1)

# Mixed Moment

s2mmk1<-(1-2*gmmk1)^4*(1-gmmk1)^2*(6*gmmk1^2-gmmk1+1)/

((1-2*gmmk1)^3*(1-3*gmmk1)*(1-4*gmmk1))

# PORT-Moment

s2mpk1<-s2mk1

## k=43

# Moment
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s2mk2<-(1-gmk2)^2*(1-2*gmk2)*(1-gmk2+6*gmk2^2)/((1-3*gmk2)*(1-4*gmk2))

# Generalized Hill

s2ghk2<-(1-gghk2)*(1+gghk2+2*gghk2^2)/(1-2*gghk2)

# Mixed Moment

s2mmk2<-(1-2*gmmk2)^4*(1-gmmk2)^2*(6*gmmk2^2-gmmk2+1)/

((1-2*gmmk2)^3*(1-3*gmmk2)*(1-4*gmmk2))

# PORT-Moment

s2mpk2<-s2mk2

cat("[1] k opt=19","\n","Moment: s2_M=",s2mk1," Generalized Hill: s2_GH=",

s2ghk1,"\n","Mixed Moment: s2_MM=",s2mmk1," PORT-Moment (q=0.01): s2_M(q)=",

s2mpk1,"\n")

cat(" [2] k opt=43","\n"," Moment: s2_M=",s2mk2," Generalized Hill: s2_GH=",

s2ghk2,"\n"," Mixed Moment: s2_MM=",s2mmk2," PORT-Moment (q=0.01): s2_M(q)=",

s2mpk2,"\n")

A.49 Location and scale coefficients semi-parametric estimates

# location

bnk1<-vo2max[n-kopt]

bnk2<-vo2max[n-kopt2]

cat(" [1] k opt=19","\n","b(n/k)=",bnk1,"\n","[2] k opt=43","\n"," b(n/k)=",

bnk2,"\n")

# scale

negmom<-function(k) 1-0.5*(1-(Mnr(k,1))^2/Mnr(k,2))^-1

ank<-function(k) vo2max[n-k]*Mnr(k,1)*(1-negmom(k))

ank1<-ank(19)

ank2<-ank(43)

cat(" [1] k opt=19","\n","a(n/k)=",ank1,"\n","[2] k opt=43","\n"," a(n/k)=",

ank2,"\n")

A.50 Endpoint semi-parametric estimation

endpm<-function(k) max(max(vo2max),vo2max[n-k]-ank(k)/gammahatm(k))

endpgh<-function(k) max(max(vo2max),vo2max[n-k]-ank(k)/gammahatgh(k))

endpmm<-function(k) max(max(vo2max),vo2max[n-k]-ank(k)/gammahatmm(k))

endpmp<-function(k) max(max(vo2max),vo2max[n-k]-ank(k)/gammahatmPORT(k,0.01))

cat("[1] k opt=19","\n","Moment: xF=",endpm(19)," Generalized Hill: xF=",

endpgh(19),"\n","Mixed Moment: xF=",endpmm(19),

" PORT-Moment (q=0.01): xF=",endpmp(19),"\n")

cat(" [2] k opt=43","\n","Moment: xF=",endpm(43)," Generalized Hill: xF=",

endpgh(43),"\n","Mixed Moment: xF=",endpmm(43),

" PORT-Moment (q=0.01): xF=",endpmp(43),"\n")
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A.51 Endpoint semi-parametric estimators sample paths

x<-seq(1,n-1,1)

Mestendp<-sapply(x,endpm)

GHestendp<-sapply(x,endpgh)

MMestendp<-sapply(x,endpmm)

MPestendp<-sapply(x,endpmp)

# for equal vector length

Mestendp1<-Mestendp[-length(Mestendp)]

GHestendp1<-GHestendp[-length(GHestendp)]

MMestendp1<-MMestendp[-length(MMestendp)]

MPestendp1<-MPestendp[-length(MPestendp)]

plot(x,Mestendp,type="l",ylim=c(90,115),xlab="k",

ylab=expression(hat(x)^F), mgp=c(2.2,1,0))

grid()

lines(GHestendp,col="red")

lines(MMestendp,col="blue")

lines(MPestendp,col="darkgreen")

legend(40,115,c("Moment","Generalized Hill","Mixed Moment",

"PORT-Moment (q=0.01)"),lty=c(1,1,1,1),

col=c("black","red","blue","darkgreen"))

A.52 Heuristic procedure for endpoint estimate

sqdifestendp<-(Mestendp1-GHestendp1)^2+(Mestendp1-MMestendp1)^2+

(Mestendp1-MPestendp1)^2+(GHestendp1-MMestendp1)^2+

(GHestendp1-MPestendp1)^2+(MMestendp1-MPestendp1)^2

koptendp<-which.min(sqdifestendp)

cat("[1] k opt=",koptendp,"\n")

plot(sqdifestendp,type="l",ylim=c(0,100),xlab="k",

ylab=expression(sum((hat(x)^F(i)-hat(x)^F(j)))^2),mgp=c(2.2,1,0))

grid()

abline(h=sqdifestendp[koptendp],lty=2,col="blue")

abline(v=koptendp,lty=2,col="red")

A.53 Semi-parametric CI’s for endpoint

xFCIsupM19<-endpm(19)+pnorm(.95)*ank1/(gmk1)^2*sqrt(s2mk1/19)

xFCIsupM43<-endpm(43)+pnorm(.95)*ank2/(gmk2)^2*sqrt(s2mk2/43)

xFCIsupGH19<-endpgh(19)+pnorm(.95)*ank1/(gghk1)^2*sqrt(s2ghk1/19)
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xFCIsupGH43<-endpgh(43)+pnorm(.95)*ank2/(gghk2)^2*sqrt(s2ghk2/43)

xFCIsupMM19<-endpmm(19)+pnorm(.95)*ank1/(gmmk1)^2*sqrt(s2mmk1/19)

xFCIsupMM43<-endpmm(43)+pnorm(.95)*ank2/(gmmk2)^2*sqrt(s2mmk2/43)

xFCIsupPM19<-endpmp(19)+pnorm(.95)*ank1/(gmpk1)^2*sqrt(s2mpk1/19)

xFCIsupPM43<-endpmp(43)+pnorm(.95)*ank2/(gmpk2)^2*sqrt(s2mpk2/43)

A.54 Semi-parametric exceedance probability

excedprobM19<-19/n*(1-pGP(96-bnk1,gmk1,ank1))

excedprobM43<-43/n*(1-pGP(96-bnk2,gmk2,ank2))

excedprobGH19<-19/n*(1-pGP(96-bnk1,gghk1,ank1))

excedprobGH43<-43/n*(1-pGP(96-bnk2,gghk2,ank2))

excedprobMM19<-19/n*(1-pGP(96-bnk1,gmmk1,ank1))

excedprobMM43<-43/n*(1-pGP(96-bnk2,gmmk2,ank2))

excedprobPM19<-19/n*(1-pGP(96-bnk1,gmpk1,ank1))

excedprobPM43<-43/n*(1-pGP(96-bnk2,gmpk2,ank2))
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Embrechts, P., Klüppelberg, C., Mikosch, T., 1997. Modelling Extremal Events for Insur-

ance and Finance, 1st Edition. Springer, Berlin.

Falk, M., 1995. Some best estimators for distributions with finite endpoint. Statistics

27 (1-2), 115–125.

Ferreira, A., de Haan, L., Peng, L., 2003. On optimizing the estimation of high quantiles

of a probability distribution. Statistics 37 (5), 401–434.

Fisher, R. A., Tippett, L. H. C., 1928. Limiting forms of the frequency distribution of the

largest or smallest member of a sample. Proc. Camb. Phil. Soc. 24, 180–190.

Fraga Alves, M. I., 1995. Estimation of the tail parameter in the domain of attraction of

an extremal distribution. J. Stat. Plan. Infer. 45 (1-2), 143–173.

Fraga Alves, M. I., 2001. A location invariant Hill-type estimator. Extremes 4, 199–217.

Fraga Alves, M. I., de Haan, L., Lin, T., 2003. Estimation of the parameter controlling the

speed of convergence in extreme value theory. Math. Methods Statist. 12 (2), 155–176.

Fraga Alves, M. I., Gomes, M. I., de Haan, L., Neves, C., 2009. The mixed moment

estimator and location invariant alternatives. Extremes 12, 14–185.

Gnedenko, B., 1943. Sur La Distribution Limite Du Terme Maximum D’Une Série Aléa-
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Basel-Boston-Berlin.



206 Chapter B. References
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