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ABSTRACT 
 

This paper is concerned with the development of an efficient scheme for solving 
the finite difference Navier-Stokes and energy equations using distributed parallel 
computer system. The numerical procedure is based on SIMPLE (Semi Implicit 
Method for Pressure Link Equations) developed by Spalding. The hybrid scheme 
which is combination of the central difference and up wind scheme is used in 
obtaining a profile assumption for parameter variations between the grids points. 
Parallelization method used on this distributed parallel computer system is 
Domain Decomposition Method (DDM). The accuracy of the parallelization 
method is done by comparing with a benchmark solution of a standardized 
problem related to the two dimensional buoyancy flow in a square enclosure.  
 
Keywords: simple algorithm; parallel algorithm; domain decomposition method; 
navier-stokes equations 
 
 

INTRODUCTION 
 
 
Parallel computing or also known as parallel processing refers to the concept of 
speeding up the excitation of a program using multiple processors by dividing the 
program into multiple fragments that can execute simultaneously, each on its own 
processor. A program being executed across n processors might execute n times 
faster than it would use a single processor. Here we can say that the parallel 
processing is differs from multitasking in which a single processor execute several 
programs at once. 

This project deals with a development of parallel algorithms in order to solve 
an incompressible flow simulation using SIMPLE method that originally put 
forward by Patankar and Spalding (Davis G. de Vahl, 1983). The analysis of an 
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incompressible flow become more complicated and need a high performance 
computer to solve the problem.  

To overcome this problem, parallel computer was used and to determine the 
performance of this parallel computations, the corresponding parallel algorithms 
was developed and it based on method of parallelization known as Domain 
Decompositions Method. Control volume approach is selected and the matrix 
formed will solved using matrix tri-diagonal solver.  

 
 

GOVERNING EQUATIONS 
 
 

Two-dimensional incompressible laminar constant-density flow and energy 
equation is governed by set of partial differential equations (M.C.Melaaen, 1993). 
The continuity, momentum and energy equations in their primitive form are 
shown in equations (1-4) where the equation for conservation of mass is given by: 
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The conservation of momentum in x and y directions are governed by the u-
momentum equation expressed as: 
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as well as the v-momentum equation: 
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The conservation of energy express as: 
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The terms on the left-hand side of equations (2) and (3) is convective terms 

and the terms on the right-hand side include the pressure gradient and viscous 
terms. In all the above equations, u and v is the x and y components of the 
velocity, P are the pressure and ρ is the density.  
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DISCRETISATION 
 
 

In order to numerically solve the velocity and pressure fields that obey the 
discretized momentum and continuity equations, the finite difference method was 
applied. This method involves integrating the continuity and momentum equations 
over a two-dimensional control volume on a staggered differential grid shown in 
Figure 1 (S.V.Patankar and D.B.Spalding, 1972). 

This yields the governing equations in their discretized form as shown in 
equations (5-6). The staggered grid evaluates the scalar variables, in this case only 
the pressure, which are stored at the scalar nodes and located at the intersection of 
two unbroken grid lines. The u-velocity components are stored at the east and west 
cell faces of the scalar control volume and are indicated by the lower case letters e 
and w. The v-velocity components are stored at the north and south cell faces of 
the scalar control volume which are indicated by the lower case letters n and s. 
These velocity components are located at the intersection of a dashed and 
unbroken line that construct the scalar cell faces and are indicated by arrows. 

 

 
FIGURE 1 Staggered Grid showing locations of flow variables 

 
The horizontal arrows shown indicate the locations of the ue and uw velocity 
components and the vertical arrows indicate the locations of the vn and vs velocity 
components. After the process of discretization, the discretized of u-momentum 
equation becomes: 

 
         ( ) JiJiJIJInbnbJiJi bAppuaua ,,,,1,, **** +−+= ∑ −              (5) 

 
and discretized of v-momentum equation becomes: 
 
                       ( ) jIjIJIJInbnbjIjI bAppvava ,,,1,,, **** +−+= ∑ −          (6) 
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SOLUTION PROCEDURE OF THE SIMPLE ALGORITHM 
 
The SIMPLE method proceeds by a cyclic series of guess and correct operations. 
The flow chart of the algorithm showed in Figure 2. Treat the corrected pressure p 
as new guessed p*, return to step 2 and repeat the whole procedure until a 
converged solution is obtained. 

 

 
 

FIGURE 2 Flow chart of the parallelized SIMPLE with DDM 
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PARALLEL IMPLEMENTATION 
 
A parallel implementation can provide a further reduction in computing time. 
Parallel implementation also makes solution possible to problems that would 
require too much memory to solve on a single processor. During to solve this 
problem, the parallel implementation is based on message passing (distributed 
memory systems) using the Parallel Virtual Machine (PVM) software. Portability 
is ensured because PVM is available on many types of parallel computers.  

The implementation uses a layer of subroutines on top of PVM, symbolically 
denoted by start: start entire parallel application, stop: stop parallel application, 
send: send a message and receive: receive a message. 

Communication process is the most important process in parallel 
implementation. For the send and receive subroutines, it consists of 
communication process between a data or function that will be send or receive. 
According to the pseudo code solution in Figure 3, the communication process 
occurs between the master and slave during to their sending and receiving the data 
or function. 
 

 
find out if I am MASTER or SLAVES 
 
if I am MASTER 
     initialize array 
     send each SLAVES starting info and subarray 
    
  do until all SLAVES converge 
       gather from all SLAVES convergence data 
       broadcast to all SLAVES convergence signal 
  end do 
 
  receive results from each SLAVE 
 
else if I am SLAVE 
     receive from MASTER starting info and subarray 
 
  do until solution converged 
      update time 
      send neighbors my border info 
      receive from neighbors their border info 
  
    update my portion of solution array 
      
    determine if my solution has converged 
        send MASTER convergence data 
        receive from MASTER convergence signal 
  end do 
  
  send MASTER results 
endif 
 

 

FIGURE 3 Pseudo code solutions 

 
 
 
 



Incompressible Fluid Flow and Energy Equations Simulation on Distributed Parallel Computer System 
 

37 

COMMUNICATION 
 
 

Basically this finite difference problem is same with the solution of the problem in 
this project. From top to bottom of the Figure 4; the one-dimensional vector X, 
where N=4; the task structure, showing the 4 tasks, each encapsulating a single 
data value and connected to left and right neighbors via channels; and the structure 
of a single task, showing its two inports and outports. 
 

 
 

FIGURE 4 A parallel algorithms for the finite difference problem 
 
 

We first consider a one-dimensional finite difference problem, in which 
we have a vector 

( )0X of size N and must compute
( )TX , where;  
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That is, we must repeatedly update each element of X, with no element being 
updated in step t+1 until its neighbors have been updated in step t. A parallel 
algorithm for this problem creates N tasks, one for each point in X. The ith task is 
given the value ( )0X and is responsible for computing, in T steps, the 
values ( ) ( ) ( )T

iii XXX ...,,, 21 . 

 Hence, at step t, it must obtain the values ( )t
iX 1−  and ( )t

iX 1+ from tasks i-1 
and i+1. We specify this data transfer by defining channels that link each task 
with “left” and “right” neighbors, as shown in Figure 4, and requiring that at step 
t, each task i other than task 0 and task N-1. 

i. sends its data ( )T
iX on its left and right outports,  

ii. receives ( )t
iX 1− and ( )t

iX 1+  from its left and right inports, and 

iii. use these values to compute ( )1+t
iX .  

Notice that the N tasks can execute independently, with the only   constraint 
on execution order being the synchronization enforced by the receive operations. 
This synchronization ensures that no data value is updated at step t+1 until the 

X X X X
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data values in neighboring tasks have been updated at step t. Hence, execution is 
deterministic. 

Figure 5(a) and 5(b) below showed the algorithms for the sending and 
receiving data from master and slaves. 
 
 
C     broadcast data to slaves 
 
      call pvmfinitsend  (PVMDEFAULT, info) 
      call pvmfpack (INTEGER4, nproc, 1, 1, info) 
      call pvmfpack (INTEGER4, tids, nproc, 1, info) 
      call pvmfpack (INTEGER4, n, 1, 1, info) 
      call pvmfpack (REAL8, data, n, 1, info) 
      msgtype = 1 
      call pvmfmcast (nproc, tids, msgtype, info) 
       
C     wait for results from slaves 
 
      msgtype = 2 
      do 30 i = 1,nproc 
      call pvmfrecv (-1, msgtype, info) 
      call pvmfunpack (INTEGER4, who, 1, 1, info) 
      call pvmfunpack (REAL8, result(who+1), 1, 1, info) 
      if (who.eq.0) 
      then 
      write (*,1000) result(who+1), who, (nroc-1) 
      else 
      write (*,1000) result(who+1), who, 2*(who-1) 
30    continue 
 

  
C     receive data from master 
 
      msgtype = 1 
      call pvmfrecv  (mtid, msgtype, info) 
      call pvmfunpack (INTEGER4, nproc, 1, 1, info) 
      call pvmfunpack (INTEGER4, tids, nproc, 1, info) 
      call pvmfunpack (INTEGER4, n, 1, 1, info) 
      call pvmfunpack (REAL8, data, n, 1, info) 
 
C     determine which slave I'm (0...nproc-1) 
 
      do 5 i = 0,nproc 
      if (tids(i).eq.mytid) me = i 
5     continue 
 
C     do calculation with the data 
 
      result = work (me, n, data, tids, nproc) 
       
C     send the result to the master 
 
      call pvmfinitsend (PVMDEFAULT, info) 
      call pvmfpack (INTEGER4, me, 1, 1, info) 
      call pvmfpack (REAL8, result, 1, 1, info) 
      msgtype = 2 
      call pvmfsend (mtid, msgtype, info) 
C     broadcast data to slaves 
 

                            (a)                                                                     (b) 
 

FIGURE 5 Algorithm master to send and receive data to and from slaves and 
algorithm slaves to receive and send data from and to master 

 
VALIDATION OF THE RESULTS 

 
 
Tables 1 to 3 show the comparison between the results from the present simulation 
and the literature results obtained by de Vahl Davis. The results of de Vahl Davis 
are the standards against which all other codes are evaluated. Maximum horizontal 
velocity on the vertical midplane of the cavity, Umax, maximum vertical velocity 
on the horizontal midplane of the cavity, Vmax, and an average of Nusselt number 
were compared at Rayleigh numbers of 103, 104, 105 and 106. The comparison had 
been done between the benchmarking results obtained by de Vahl Davis which in 
serial processor and the present study that are simulation using serial processor 
and parallel processor or parallel computer.  

From the tables, it showed that all these results are in excellent agreement 
with the benchmark results of de Vahl Davis. Percentage error for the three 
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methods of solution was below than 3% compare with benchmark result. Besides 
that, the result that was showed in the forms of contour maps of non-dimensional 
temperature and velocities was also compared with the results that obtained by de 
Vahl Davis.  

 
TABLE 1 Comparison of the numerical result of present study for Umax 

 
 Ra 103 104 105 106 

     G. de Vahl Davis  3.649 16.193 34.620 64.593 
Present study:      
     i) Serial processor  3.652 16.163 34.871 65.812 
        % error  0.082 % 0.185 % 0.725 % 1.880 % 
     ii) Parallel processor  3.592 16.376 34.852 65.847 
        % error  1.560 % 1.131 % 0.670 % 1.941 % 

 
 

TABLE 2 Comparison of the numerical result of present study for Vmax 
 

 Ra 103 104 105 106 
     G. de Vahl Davis  3.697 19.167 68.590 216.360 
Present study:      
     i) Serial processing  3.704 19.675 69.482 220.641 
        % error  0.189 % 2.650 % 1.300 % 1.978 % 

ii) Parallel processing  3.715 19.642 69.680 221.282 
        % error  0.487 % 2.478 % 1.589 % 2.275 % 

 

TABLE 3 Comparison of the numerical result of present study for 
____

Nu  
 

 Ra 103 104 105 106 
     G. de Vahl Davis  1.118 2.243 4.519 8.800 
Present study:      
     i) Serial processing  1.120 2.282 4.583 8.983 
        % error  0.23 % 1.74 % 1.42 % 2.08 % 
     ii) Parallel processing  1.123 2.272 4.594 9.008 
        % error  0.47 % 1.31 % 1.67 % 2.36 % 

 
 

PARALLEL COMPUTING RESULTS 
 
 

In order to achieve the objective of this project, parallel execution time was 
studied to determine the performance of the parallel computations. DDM were 
used during to obtain the results of the parallel simulation. Since using the parallel 
computer, there are involved with send and receive a data from master and slave. 
Therefore the parallel execution time consists of computational time and 
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communication time. Table 4 showed the result of execution time between 
sequential and parallel solution and the tabulated results of computational time 
and communication time. 
 

TABLE 4 Execution time for computational solutions 
 

Sequential time Parallel time tcomp tcomm tp Ra. 
no (tseq) (tp)    
103 32.8 s 9.43 s 8.41 s 1.02 s 9.43 s 
104 135.75 s 41.39 s 34.62 s 6.78 s 41.39 s 
105 2040.26 s 612.06 s 522.82 s 89.24 s 612.06 s 
106 163602.04 s 49080.61 s 41923.02 s 7157.60 s 49080.61 s 

 
Execution time is not always the most convenient metric by which to evaluate 

parallel algorithm performance. As execution time tends to vary with problem 
size, execution times must be normalized when comparing algorithm performance 
at different problem sizes.  

Other parameter that was used to measure a performance of parallel 
computations is speed-up and efficiency. From the speed-up, we know that how 
fast the parallel computer solves the problem under consideration. It is sometimes 
useful to know how long processors are being used on the computation, which can 
be found from the efficiency.   
 

TABLE 6 Results for speed-up and efficiency 
 

Ra. no 103 104 105 106 

Speed-Up 3.478 3.279 3.333 3.333 
Efficiency 86.95 % 81.97 % 83.32 % 83.32 % 

 
 

DISCUSSION AND CONCLUSION 
 
 

From the results that were obtained, we can see that execution time for 
parallel computation was decrease compare with sequential computation. By using 
sequential computation, total execution time that we need to complete our 
simulation at Rayleigh number 106 is 163602.04 seconds or 2726.7 minutes or 
45.45 hours. For parallel computation, we were reduced an execution time for the 
simulation at Rayleigh number 106 to 49080.61 seconds or 818.01 minutes or 
13.63 hours. In theory, by using 4 processors to solve this problem, we can reduce 
an execution time until 75%. However, it cannot be achieved since the 
communication process was occurring.  

As a conclusion, a parallel algorithm has been developed to simulate an 
incompressible flow for the problem of natural convection that occurred in a 
square cavity with specified boundary conditions. The simulations of the 
incompressible flow using SIMPLE method on parallel computer are agreement 
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with the benchmark result. Thus, the simulation is successful. Percentage errors 
for the computational solution which are simulation by serial and parallel 
computer are below than 3% compare with benchmark result by de Vahl Davis. 
Therefore it has proved that clustering personal computers together can provide 
adequate computing power for large engineering problems. 
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