
© 2007 Computational & Experimental Mechanics
 Editors: A. K. Ariffin, N. A. Nik Mohamed and S. Abdullah

32

INCOMPRESSIBLE FLUID FLOW AND ENERGY EQUATIONS
SIMULATION ON DISTRIBUTED PARALLEL COMPUTER SYSTEM

Manshoor. B1, Wan Hassan, M.N2, Alias. N3
1Faculty of Mechanical & Manufacturing Engineering

Universiti Tun Hussein Onn Malaysia, Batu Pahat, Johor
2Faculty of Mechanical Engineering

Universiti Technologi Malaysia, Skudai, Johor
3Faculty Science

Universiti Technologi Malaysia, Skudai, Johor

ABSTRACT

This paper is concerned with the development of an efficient scheme for solving
the finite difference Navier-Stokes and energy equations using distributed parallel
computer system. The numerical procedure is based on SIMPLE (Semi Implicit
Method for Pressure Link Equations) developed by Spalding. The hybrid scheme
which is combination of the central difference and up wind scheme is used in
obtaining a profile assumption for parameter variations between the grids points.
Parallelization method used on this distributed parallel computer system is
Domain Decomposition Method (DDM). The accuracy of the parallelization
method is done by comparing with a benchmark solution of a standardized
problem related to the two dimensional buoyancy flow in a square enclosure.

Keywords: simple algorithm; parallel algorithm; domain decomposition method;
navier-stokes equations

INTRODUCTION

Parallel computing or also known as parallel processing refers to the concept of
speeding up the excitation of a program using multiple processors by dividing the
program into multiple fragments that can execute simultaneously, each on its own
processor. A program being executed across n processors might execute n times
faster than it would use a single processor. Here we can say that the parallel
processing is differs from multitasking in which a single processor execute several
programs at once.

This project deals with a development of parallel algorithms in order to solve
an incompressible flow simulation using SIMPLE method that originally put
forward by Patankar and Spalding (Davis G. de Vahl, 1983). The analysis of an

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UTHM Institutional Repository

https://core.ac.uk/display/16218462?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Incompressible Fluid Flow and Energy Equations Simulation on Distributed Parallel Computer System

33

incompressible flow become more complicated and need a high performance
computer to solve the problem.

To overcome this problem, parallel computer was used and to determine the
performance of this parallel computations, the corresponding parallel algorithms
was developed and it based on method of parallelization known as Domain
Decompositions Method. Control volume approach is selected and the matrix
formed will solved using matrix tri-diagonal solver.

GOVERNING EQUATIONS

Two-dimensional incompressible laminar constant-density flow and energy
equation is governed by set of partial differential equations (M.C.Melaaen, 1993).
The continuity, momentum and energy equations in their primitive form are
shown in equations (1-4) where the equation for conservation of mass is given by:

 0=
∂
∂

+
∂
∂

y
v

x
u

 (1)

The conservation of momentum in x and y directions are governed by the u-
momentum equation expressed as:

 uS
y
u

x
u

x
P

y
uv

x
uu +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

−=
∂
∂

+
∂
∂

2

2

2

21
ρ
µ

ρ
 (2)

as well as the v-momentum equation:

 vS
y
v

x
v

y
P

y
vv

x
vu +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

−=
∂
∂

+
∂
∂

2

2

2

21 ν
ρ

 (3)

The conservation of energy express as:

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

2

2

2

2

y
T

x
T

c
k

y
Tv

x
Tu

Pρ
 (4)

The terms on the left-hand side of equations (2) and (3) is convective terms

and the terms on the right-hand side include the pressure gradient and viscous
terms. In all the above equations, u and v is the x and y components of the
velocity, P are the pressure and ρ is the density.

A. K. Ariffin, N. A. Nik Mohamed and S. Abdullah

34

DISCRETISATION

In order to numerically solve the velocity and pressure fields that obey the
discretized momentum and continuity equations, the finite difference method was
applied. This method involves integrating the continuity and momentum equations
over a two-dimensional control volume on a staggered differential grid shown in
Figure 1 (S.V.Patankar and D.B.Spalding, 1972).

This yields the governing equations in their discretized form as shown in
equations (5-6). The staggered grid evaluates the scalar variables, in this case only
the pressure, which are stored at the scalar nodes and located at the intersection of
two unbroken grid lines. The u-velocity components are stored at the east and west
cell faces of the scalar control volume and are indicated by the lower case letters e
and w. The v-velocity components are stored at the north and south cell faces of
the scalar control volume which are indicated by the lower case letters n and s.
These velocity components are located at the intersection of a dashed and
unbroken line that construct the scalar cell faces and are indicated by arrows.

FIGURE 1 Staggered Grid showing locations of flow variables

The horizontal arrows shown indicate the locations of the ue and uw velocity
components and the vertical arrows indicate the locations of the vn and vs velocity
components. After the process of discretization, the discretized of u-momentum
equation becomes:

 () JiJiJIJInbnbJiJi bAppuaua ,,,,1,, **** +−+= ∑ − (5)

and discretized of v-momentum equation becomes:

 () jIjIJIJInbnbjIjI bAppvava ,,,1,,, **** +−+= ∑ − (6)

Incompressible Fluid Flow and Energy Equations Simulation on Distributed Parallel Computer System

35

SOLUTION PROCEDURE OF THE SIMPLE ALGORITHM

The SIMPLE method proceeds by a cyclic series of guess and correct operations.
The flow chart of the algorithm showed in Figure 2. Treat the corrected pressure p
as new guessed p*, return to step 2 and repeat the whole procedure until a
converged solution is obtained.

FIGURE 2 Flow chart of the parallelized SIMPLE with DDM

A. K. Ariffin, N. A. Nik Mohamed and S. Abdullah

36

PARALLEL IMPLEMENTATION

A parallel implementation can provide a further reduction in computing time.
Parallel implementation also makes solution possible to problems that would
require too much memory to solve on a single processor. During to solve this
problem, the parallel implementation is based on message passing (distributed
memory systems) using the Parallel Virtual Machine (PVM) software. Portability
is ensured because PVM is available on many types of parallel computers.

The implementation uses a layer of subroutines on top of PVM, symbolically
denoted by start: start entire parallel application, stop: stop parallel application,
send: send a message and receive: receive a message.

Communication process is the most important process in parallel
implementation. For the send and receive subroutines, it consists of
communication process between a data or function that will be send or receive.
According to the pseudo code solution in Figure 3, the communication process
occurs between the master and slave during to their sending and receiving the data
or function.

find out if I am MASTER or SLAVES

if I am MASTER
 initialize array
 send each SLAVES starting info and subarray

 do until all SLAVES converge
 gather from all SLAVES convergence data
 broadcast to all SLAVES convergence signal
 end do

 receive results from each SLAVE

else if I am SLAVE
 receive from MASTER starting info and subarray

 do until solution converged
 update time
 send neighbors my border info
 receive from neighbors their border info

 update my portion of solution array

 determine if my solution has converged
 send MASTER convergence data
 receive from MASTER convergence signal
 end do

 send MASTER results
endif

FIGURE 3 Pseudo code solutions

Incompressible Fluid Flow and Energy Equations Simulation on Distributed Parallel Computer System

37

COMMUNICATION

Basically this finite difference problem is same with the solution of the problem in
this project. From top to bottom of the Figure 4; the one-dimensional vector X,
where N=4; the task structure, showing the 4 tasks, each encapsulating a single
data value and connected to left and right neighbors via channels; and the structure
of a single task, showing its two inports and outports.

FIGURE 4 A parallel algorithms for the finite difference problem

We first consider a one-dimensional finite difference problem, in which
we have a vector

()0X of size N and must compute
()TX , where;

()
() () ()

4
2

:0,10 11
t

i
t

i
t

it
i

XXX
XTtNi ++ ++

=<≤−<<

That is, we must repeatedly update each element of X, with no element being
updated in step t+1 until its neighbors have been updated in step t. A parallel
algorithm for this problem creates N tasks, one for each point in X. The ith task is
given the value ()0X and is responsible for computing, in T steps, the
values () () ()T

iii XXX ...,,, 21 .

 Hence, at step t, it must obtain the values ()t
iX 1− and ()t

iX 1+ from tasks i-1
and i+1. We specify this data transfer by defining channels that link each task
with “left” and “right” neighbors, as shown in Figure 4, and requiring that at step
t, each task i other than task 0 and task N-1.

i. sends its data ()T
iX on its left and right outports,

ii. receives ()t
iX 1− and ()t

iX 1+ from its left and right inports, and

iii. use these values to compute ()1+t
iX .

Notice that the N tasks can execute independently, with the only constraint
on execution order being the synchronization enforced by the receive operations.
This synchronization ensures that no data value is updated at step t+1 until the

X X X X

0 1 2 3

Xi

“right”“left”

A. K. Ariffin, N. A. Nik Mohamed and S. Abdullah

38

data values in neighboring tasks have been updated at step t. Hence, execution is
deterministic.

Figure 5(a) and 5(b) below showed the algorithms for the sending and
receiving data from master and slaves.

C broadcast data to slaves

 call pvmfinitsend (PVMDEFAULT, info)
 call pvmfpack (INTEGER4, nproc, 1, 1, info)
 call pvmfpack (INTEGER4, tids, nproc, 1, info)
 call pvmfpack (INTEGER4, n, 1, 1, info)
 call pvmfpack (REAL8, data, n, 1, info)
 msgtype = 1
 call pvmfmcast (nproc, tids, msgtype, info)

C wait for results from slaves

 msgtype = 2
 do 30 i = 1,nproc
 call pvmfrecv (-1, msgtype, info)
 call pvmfunpack (INTEGER4, who, 1, 1, info)
 call pvmfunpack (REAL8, result(who+1), 1, 1, info)
 if (who.eq.0)
 then
 write (*,1000) result(who+1), who, (nroc-1)
 else
 write (*,1000) result(who+1), who, 2*(who-1)
30 continue

C receive data from master

 msgtype = 1
 call pvmfrecv (mtid, msgtype, info)
 call pvmfunpack (INTEGER4, nproc, 1, 1, info)
 call pvmfunpack (INTEGER4, tids, nproc, 1, info)
 call pvmfunpack (INTEGER4, n, 1, 1, info)
 call pvmfunpack (REAL8, data, n, 1, info)

C determine which slave I'm (0...nproc-1)

 do 5 i = 0,nproc
 if (tids(i).eq.mytid) me = i
5 continue

C do calculation with the data

 result = work (me, n, data, tids, nproc)

C send the result to the master

 call pvmfinitsend (PVMDEFAULT, info)
 call pvmfpack (INTEGER4, me, 1, 1, info)
 call pvmfpack (REAL8, result, 1, 1, info)
 msgtype = 2
 call pvmfsend (mtid, msgtype, info)
C broadcast data to slaves

 (a) (b)

FIGURE 5 Algorithm master to send and receive data to and from slaves and
algorithm slaves to receive and send data from and to master

VALIDATION OF THE RESULTS

Tables 1 to 3 show the comparison between the results from the present simulation
and the literature results obtained by de Vahl Davis. The results of de Vahl Davis
are the standards against which all other codes are evaluated. Maximum horizontal
velocity on the vertical midplane of the cavity, Umax, maximum vertical velocity
on the horizontal midplane of the cavity, Vmax, and an average of Nusselt number
were compared at Rayleigh numbers of 103, 104, 105 and 106. The comparison had
been done between the benchmarking results obtained by de Vahl Davis which in
serial processor and the present study that are simulation using serial processor
and parallel processor or parallel computer.

From the tables, it showed that all these results are in excellent agreement
with the benchmark results of de Vahl Davis. Percentage error for the three

Incompressible Fluid Flow and Energy Equations Simulation on Distributed Parallel Computer System

39

methods of solution was below than 3% compare with benchmark result. Besides
that, the result that was showed in the forms of contour maps of non-dimensional
temperature and velocities was also compared with the results that obtained by de
Vahl Davis.

TABLE 1 Comparison of the numerical result of present study for Umax

 Ra 103 104 105 106

 G. de Vahl Davis 3.649 16.193 34.620 64.593
Present study:
 i) Serial processor 3.652 16.163 34.871 65.812
 % error 0.082 % 0.185 % 0.725 % 1.880 %
 ii) Parallel processor 3.592 16.376 34.852 65.847
 % error 1.560 % 1.131 % 0.670 % 1.941 %

TABLE 2 Comparison of the numerical result of present study for Vmax

 Ra 103 104 105 106
 G. de Vahl Davis 3.697 19.167 68.590 216.360
Present study:
 i) Serial processing 3.704 19.675 69.482 220.641
 % error 0.189 % 2.650 % 1.300 % 1.978 %

ii) Parallel processing 3.715 19.642 69.680 221.282
 % error 0.487 % 2.478 % 1.589 % 2.275 %

TABLE 3 Comparison of the numerical result of present study for

Nu

 Ra 103 104 105 106
 G. de Vahl Davis 1.118 2.243 4.519 8.800
Present study:
 i) Serial processing 1.120 2.282 4.583 8.983
 % error 0.23 % 1.74 % 1.42 % 2.08 %
 ii) Parallel processing 1.123 2.272 4.594 9.008
 % error 0.47 % 1.31 % 1.67 % 2.36 %

PARALLEL COMPUTING RESULTS

In order to achieve the objective of this project, parallel execution time was
studied to determine the performance of the parallel computations. DDM were
used during to obtain the results of the parallel simulation. Since using the parallel
computer, there are involved with send and receive a data from master and slave.
Therefore the parallel execution time consists of computational time and

A. K. Ariffin, N. A. Nik Mohamed and S. Abdullah

40

communication time. Table 4 showed the result of execution time between
sequential and parallel solution and the tabulated results of computational time
and communication time.

TABLE 4 Execution time for computational solutions

Sequential time Parallel time tcomp tcomm tp Ra.
no (tseq) (tp)
103 32.8 s 9.43 s 8.41 s 1.02 s 9.43 s
104 135.75 s 41.39 s 34.62 s 6.78 s 41.39 s
105 2040.26 s 612.06 s 522.82 s 89.24 s 612.06 s
106 163602.04 s 49080.61 s 41923.02 s 7157.60 s 49080.61 s

Execution time is not always the most convenient metric by which to evaluate

parallel algorithm performance. As execution time tends to vary with problem
size, execution times must be normalized when comparing algorithm performance
at different problem sizes.

Other parameter that was used to measure a performance of parallel
computations is speed-up and efficiency. From the speed-up, we know that how
fast the parallel computer solves the problem under consideration. It is sometimes
useful to know how long processors are being used on the computation, which can
be found from the efficiency.

TABLE 6 Results for speed-up and efficiency

Ra. no 103 104 105 106

Speed-Up 3.478 3.279 3.333 3.333
Efficiency 86.95 % 81.97 % 83.32 % 83.32 %

DISCUSSION AND CONCLUSION

From the results that were obtained, we can see that execution time for
parallel computation was decrease compare with sequential computation. By using
sequential computation, total execution time that we need to complete our
simulation at Rayleigh number 106 is 163602.04 seconds or 2726.7 minutes or
45.45 hours. For parallel computation, we were reduced an execution time for the
simulation at Rayleigh number 106 to 49080.61 seconds or 818.01 minutes or
13.63 hours. In theory, by using 4 processors to solve this problem, we can reduce
an execution time until 75%. However, it cannot be achieved since the
communication process was occurring.

As a conclusion, a parallel algorithm has been developed to simulate an
incompressible flow for the problem of natural convection that occurred in a
square cavity with specified boundary conditions. The simulations of the
incompressible flow using SIMPLE method on parallel computer are agreement

Incompressible Fluid Flow and Energy Equations Simulation on Distributed Parallel Computer System

41

with the benchmark result. Thus, the simulation is successful. Percentage errors
for the computational solution which are simulation by serial and parallel
computer are below than 3% compare with benchmark result by de Vahl Davis.
Therefore it has proved that clustering personal computers together can provide
adequate computing power for large engineering problems.

REFERENCES

Date A. W (1985). “Numerical Prediction of Natural Convection Heat Transfer in

Horizontal Annulus.” Int. J. Heat Mass Trasfer.

Davis G. de Vahl (1983). “Natural convection of air in a square cavity: a

benchmark numerical solution”. Int. Journal Numerical Mech. Fluid 3:
249-264.

Dongarra, J. & Eijkhout, U. (2000). “Numerical linear algebra algorithms and

software.” Journal of Computational and Applied mathematics. 123(2):
489-514.

Geist, A. et al. (1994). “PVM: Parallel Virtual Machine. A Users’ Guide and

Tutorial for Networked Parallel Computing”. Massachusetts: The MIT
Press.

Patankar S. V (1980). “Numerical Heat Transfer and Fluid Flow.” McGraw-Hill

Inc, New York.

Patankar S.V and Spalding D. B (1972). “A Calculation Procedure for Heat, Mass

and Momentum Transfer in 3-Dimensional Parabolic Flows.” Int. J. Heat
Mass Trasfer.

Spalding D. B (1972). “A Novel Finite Difference Formulation for Differential

Expressions Involving Both First and Second Derivatives.” Int. J. Num.
Methods Eng. 3: 551-559.

Versteeg H. K and Malalasekera M. (1995). “An Introduction to Computational

Fluid Dynamics.” Pearson, Prentice Hall.

