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Abstract

This report discusses the implementation of three methods for removing or mitigating the
so-called inertial force from measured signals resulting from wave impact on components

of offshore structure models. The wave impact causes vibration or acceleration in the

modeled The ion is perceived as a force by the measurement
transducers. This inertial force component is not scaleable. and must be removed in order

10 obtain the actual applied force.

A mitigation method based on the solution of the system equation of motion using
normalized coordinates. known as the normal mode method. is investigated. A technique
based on the division of the fast Fourier transtorm of the measured force by the system
frequency response. known as the inverse Fourier transform method. is implemented.

Finally. the use of digital low pass and band reject filters is examined.

These techniques are applied to wave impact and decay test measurements from

experiments conducted on jacket type fixed offshore structure models.

The results prove to be less than ideal. The reasons for this are discussed. and

recommendations are made for future investigations.
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1.0 Introduction

The topic of wave impact loading of offshere structures and their components has
received a great deal of attention over the past twenty-five years. Components, such as

structural cross-members, located just above the mean water level are subjected to

large i impulsive wave loads. Over time these loads can lead to
fatigue overstressing and result in failure. Other components, such as deck beams and
plating, are typically located at elevations higher than the expected extreme wave. That

is, they are designed to avoid impact rather than withstand it.

Despite this, special conditions sometimes occur that require re-evaluation of the loading
of these components. For fixed offshore structures, seabed subsidence or the observation
of wave heights beyond design or predicted extreme values can raise the concemns of
operators. Similarly, for floating structures, the unexpected reduction of air-gap due to
extreme waves or vessel damage can expose decks, superstructure, and other equipment

to higher than anticipated loads.

In recent years, older offshore have been subj to for re-

certification. These vessels or structures were often originally designed without adequate
consideration of extreme load effects. Updated estimates, and subsequent remedial

action, are required for the structures to remain in operation.



Many offshore structures are now the subject of decommissioning plans. Regulators in
many jurisdictions require that obsolete structures be removed from the field at the end of
their operational life. Operators, for a variety of reasons, often prefer to delay complete
removal, and propose partial decommissioning. This can expose certain structural
components to wave loads for which they were not specifically designed. Estimates are

then required in order to that the can wi the wave loading.

Designers have come to realize that reliable wave load estimates for structures located
above the mean water level are an important part of the overall vessel design. Damage to

structure or equij can have costly ic and safety implicati so there has

been a push in recent years develop a better understanding of the wave impact process.

Numerical and analytical estimates of wave loading have typically been made using

Morison’s equation or diffraction based formulations. These are suitable for the case of

wave loading of but will lead to an under estimation of

loads under partial or extreme 1i wave iti This has led to

the increased use of model tests to establish load estimates and to calibrate numerical
models. Over the years, simplified structures have been subjected to a variety of test
procedures. The most popular modeled structure has been the horizontal circular cylinder,
chosen because it can represent the shape of common structural members, and because it

is to ical and i ing. These cylinders have been subjected

to drop or plunge tests, generated waves in flumes or wave tanks, and oscillating free



surfaces in U-tubes. The results have shown considerable scatter and there remains some

the priate value for the i i slam

More recently, model tests have focussed attention on horizontal and vertical flat plates,

which can represent decks and sup Again, these have been
subjected to drop-type tests, and to tests in waves. The i ion has
included pressure and load

Regardless of the type of modeled structure, or instrumentation scheme, the wave impact
process will invariably lead to dynamic response. The structure accelerates or vibrates at
its resonant frequency. and this is observed as force by the load transducers. This causes

an ification and oscillation in the signal, which masks the actual

or applied force. To obtain an accurate estimate of the full scale wave impact load, this

inertial force must be removed.

Experimenters have proposed many methods to eliminate or mitigate the measured

inertial force. Several of the i will be i i and

this report.

Finally, recommendations will be made for areas that require further investigation in

order to improve the inertial force mitigation techniques.



2.0 Review of Literature

2.1 Introduction

There is an abundance of published literature that focus on model test studies of wave

impacts on p of offshore These include hori and

vertical oriented circular cylinders, plates and deck Test i include the

use of generated waves in basin or flume facilities, drop tests, experiments in oscillating

U-tubes, and even full-scale measurements.

Many of these publications present their measured model test results in comparison with

The iction methods are often the main focus of these papers.

Adi ion of ical predicti i is beyond the scope of this report. As a

result, this review of literature has focussed on gathering details related to the physical

model tests and data processing techniques. The topics of interest include:

1. Parti of data isition and i ion used during model experiments.

o

. Details regarding wave parameters that influence impact measurement results.
3. Information on techniques used to mitigate or remove inertial components from wave

impact measurements.



2.2 Horizontal Circular Cylinders Subjected to Regular G d

Waves

A number of authors have reported on experimental and theoretical work related to small
horizontal circular cylinders subjected to generated regular waves. Dalton and Nash

(1976), Miller (1977) and (1980), Isaacson and Subbiah (1990), and Isaacson and Prasad

(1992) and (1994) have papers describi peri setup, problems

encountered and general observations on the topic. Measured results are often compared

to results obtained using analytical or numerical methods.

Some early experimenters report problems with their test measurements, which they

attribute (explicitly or implicitly) to i ies with the test equi or wave

generation system. Dalton and Nash (1976) reported that their load measurements did not
display the expected impulsive characteristics. They imply that this was related to the size
of the cylinder used. They provide no discussion of data acquisition, sampling rates, or
signal processing techniques. They do not provide a discussion of the effects of dynamic

amplification.

Most of the experiments described involve the use of small cylinders, where the
measurements can be complicated by the effects of scale. Few provide details of the data

acquisition systems.



Miller (1977) and (1980) reported on experiments where the support structure for the
cylinder model and measurement system had a low natural frequency. which caused
corruption of the load measurement signals. The quality of the wave generation was
erratic. which led to problems with the estimation of surface velocity needed for
theoretical calculations. The shape of the input wave was reported by several
investigators. Dalton and Nash (1976) and Miller (1977) and (1980). to have a significant
effect on the resulting load measurement. Parameters such as wave steepness have been

shown to affect the ch istics of the loads, parti the rise-time.

Dalton and Nash (1976) described how the load resulting from the more
irregular waves (i.e. steep) in the ramp-up portion of the wave signal displayed

characteristics that were more impulsive than the i of the load

Cylinder misalignment. with either the water surface. or the wave front was observed
(Dalton and Nash (1976). Miller (1977) and (1980). and Isaacson and Prasad (1992) and
(1994)) to have an influence on the rise-time. and therefore on the dynamic response of
the systems. These misalignments were caused. in some degree. by inadequate

adaptability of the test equipment. but mostly by the poor wave generation quality.

Problems with alignment. and low wave vertical velocity were cited as the main
disadvantages of generated wave tests as compared with drop-type tests (to be discussed
later). Dalton and Nash (1976) claim that drop tests differ from generated wave tests due

to the effects of virtual mass.



Isaacson and Prasad (1992) and (1994), and Miller (1977) reported that load rise-time

was affected by air i fluid ibility, cylinder cylinder

inclination. and motion of the cylinder. They claimed that rise-time affects the dynamics
response of the cylinder. which in turn affects the fluid particle kinematics. That is. the
motion of the cylinder affects the characteristics of the wave that is causing the initial

cylinder vibration.

The influence of entrapped air will be discussed later. but has been shown to cushion the

slam loading.

Miller (1977) and (1980) reported that the dynamic amplification factor could be as high
as 2.0. He reported that dynamic amplification depends on system natural frequency.

acceleration. and damping. He felt that in future i the dynamic ch

of the system should be varied to develop a better understanding of the slam process.

Miller stated that slamming was not Reynold’s number dependent. The influence of
viscosity was negligible. being associated with inertia instead. Although the form of the

slam coefficient is reminiscent of drag. the physics are associated with accelerated flow.

Isaacson and Prasad (1992) and (1994) stated that during the stage of partial submergence

it was not possible to distinguish between load contributions due to slamming and drag.



Miller (1980) felt that it was usually not possible to deduce the input responsible for a
particular slam response. Wellicome. in his discussion of Miller (1977) remarked that it

was only possible to work backwards from load measurement to the actual impact. These

imply the exi: of dynamic ification or inthe d

signals.

Miller (1977) and (1980) mentioned that computer models were quite useful in

developing an understanding of the impact process.

Most of the early authors provide little information of their data acquisition systems.
Isaacson and Prasad (1992) and (1994) are the exception: quoting very high sample rates

(20 kHz).

2.3 Horizontal Circular Cylinders Tested in Oscillating U-Tube
Tanks

Sarpkaya (1978) reported on i using i horiz | circular cylinders.
0.076m to 0.2m in diameter, subjected to the impact of an oscillating free surface ina U-
tube. The instrumentation measured the vertical force and the vertical acceleration. The
free surface oscillated at a period of 5.5 seconds. The cylinders. which were considered to
be elastically supported. were reported to have natural frequencies of 358 Hz and 628 HZ

for diameters of 0.076m and 0.15m, respectively.



The author stated that the system natural frequency would have to approach infinity for
the response to approach that of a rigid body. This is interesting since several other
experimenters report having used rigid cylinders (Faltinsen et al (1977)). Sarpkaya
reiterated a point made by other authors that the response of the system to an impulsive
force is heavily dependent on the exact nature of the applied force, as well as the system

natural frequency.

Sarpkaya stated that random factors such as the nature of the disturbances at the wave
surface, the orientation of the structural member relative to the given wave, currents,
three-dimensional nature of the waves, and spray, affect the determination of impact

force magnification in the (full scale) ocean environment. In short, the rise time is
affected by these non-deterministic factors and there is no way to predict the reaction
forces on circular members even when damping, natural frequency and the ideal values of

the slam coefficient are known.

‘The author used several derivations of the slam ient. For one ient, the

inertial force of the cylinder was removed, based on the acceleration measurement. He
reported obtaining experimentally derived values for the slam coefficient that are close to
the theoretical value of &. The slamming force may be amplified by as much as 1.7 due to
the dynamic response of the structure. He reported that the slam coefficient can reach a
value as high as 6.3 due to dynamic response. The fluid force acting on the cylinder-

transducer system can amplify or attenuate the dynamic response.



Sarpkaya (1978) described the total slamming process in a manner similar to Garrison

(1996). After the initial impact. the net force due to the d d

of added mass. The cylinder damped at the natural freq
Following this the buoyant force increases and separation effects give rise to large drag
forces.

He highlighted some of the di Ities of tests using d waves. saying that there is

a limitation in the range of wave amplitudes that can be achieved. and there is a difficulty

in measuring the fluid velocities at the instant of impact.

2.4 Horizontal Circular Cylinders Subjected to Drop Tests

Numerous authors (Campbell. Wellicome. and Weynberg (1977). Faltinsen. Kjaerland.
Nottveit. Vinje (1977). Campbell. and Weynberg (1979). Miao (1990). Garrison (1996)).
have reported on experiments where horizontal circular cylinders are dropped or plunged

via mechanical apparatus into a still water surface.

The advantages of this form of experiment relative to generated wave tests are that larger
diameter cylinders can be utilized. reducing the effects of scale. Cylinder diameters
ranged from 0.05m (Miao (1990)) to 0.35m (Faltinsen et al (1977)). In addition the
cylinders can be subjected to higher. and more controlled velocities. something that

cannot be easily achieved using generated waves. The angle of the cylinders relative the



free surface is more readily controlled, avoiding the effects of misalignment, especially
on impact rise time. Campbell and Weynberg (1979) report that their test rig allowed the

cylinder angle to be controlled to 0.5 minutes.
One disadvantage of this form of experiment is that the effects of wave shape on impact
force cannot be studied. The cylinders impact a flat surface, rather than a wave profile

with steepness.

The instrumentation has ranged from force transducers connecting the cylinders to the

test i to high pressure installed at various locations on
the cylinder, and strain gauges installed directly on the cylinder to measure stress.
Faltinsen et al (1977) reported measurement uncertainty to be +10 percent, using a strain-
gauged system. The pressure transducers suffered from gauge slip and required

calibration prior to each run.

The cylinders have been described as being either rigid or elastic. The rigid cylinders
were constructed of aluminum, while the elastic cylinders were constructed of PVC tube.

Faltinsen et al (1977) used the results from rigid cylinder tests to compare with theory.

They were surprised to find poor between the ical and
values in the impact phase. This may have been related to the difficulty in achieving a
truly rigid cylinder. Using elastic cylinders, the results showed fair agreement with a

numerical model, though the authors cautioned that their scaling methods might have



been questionable. The length, diameter, thickness, and mass distribution of the elastic

cylinders were varied. The experimenters attempted to maintain similarity using three

This i drop ities higher than specified by
Froude, and resulted in stresses higher than yield stress for realistic extreme wave

velocities.

The degree of cylinder-end fixity can influence the measured results. Miao (1990)
reported his cylinders to have fixed end conditions. Faltinsen et al (1977) reportedly used
pinned-end conditions, but felt the fixed-end conditions would only result in higher

stresses.

Several authors (Faltinsen et al (1977), Garrison (1996)) reported that Froude scaling was
‘most appropriate, due to the inertial and gravitational nature of impact. Reynold's number
scaling was inappropriate since it was felt that viscous effects were not relevant. With

deeper cylinder submergence, drag, buoyancy, and viscous effects dominate.

Cylinder and test system dynamic response was an important issue to all the
experimenters. Campbell and Weynberg (1979) reported that the natural frequency of

their test rig was 500 Hz. Both the force transducers and the pressure sensors used in that

exhibited illati i with the test rig vibration. Miao (1990)
reported that the dominant component of the dynamic response was at the fundamental

frequency.



Miao (1990) stated that the response of an elastic member to an impulsive load depends
on the characteristics of the applied force, and the vibrational characteristics of the
member. Garrison (1996) stated that slam forces are characterized by a high spike upon
contact with the water surface, the magnitude of which depends on the velocity and beam

dynamics.

Campbell et al (1977) used curve-fitting techniques to deal with cylinder dynamics. This

involved fitting a cubic or quadrati ial to the signal. There were often
difficulties with the fit to the first cycle, which affected the interpretation of the slam.

Faltinsen et al (1977), Campbell and Weynberg (1979), and Miao (1990) all present
computer models based on the equation of motion of the cylinder, which help shed light

on the effects of dynamic response on the force measurement.

Miao (1990) reported that peak dynamic stress was lower than that derived using quasi-
static methods, and felt that the effects of slamming load from design wave conditions
were not a serious as conventionally thought. He states that the dynamic load factor for a
given impulse shape is dependent on the ratio of the impulse duration and the natural
period of the structure. Therefore, in a heavy sea condition, where the impact duration is
short, part of the load is resisted by the inertia of the structure and the stresses produced
are smaller than for a longer loading of the same magnitude. He felt, therefore. that the

effects of dynamic amplification could be ignored.



Garrison (1996) reanalyzed the data presented by Faltinsen. He stated that real fluid
effects influence the impact process, including those related to the free surface. The
impact process is highly non-linear and transient, but becomes steady flow at deeper

immersion, and related to viscous effects.

He felt that in the impact phase, mass, stiffness, and Froude scaling should be maintained
between model and prototype. Garrison (1996) divided that entire slamming process into
three regions. Region 1 being the initial impact where inertial effects are dominant and
viscous (Reynolds) and gravitational (Froude) effects are negligible. Region 2 is a
transitional phase where beam dynamics, Froude and to a minor degree Reynolds effects
are important. Region 3 is a large submergence, steady state region where forces on the

cylinder are due largely to buoyancy and drag.

2.5 Horizontal Circular Sections on Full Scale OTS

Kaplan (1979) reported on full scale measurements from a horizontal circular cylinder
installed on the Ocean Tests Structure (OTS). The OTS was an instrumented platform

located in the Gulf of Mexico in the late 1970s.

The instrumented horizontal circular member was located 5 feet above the mean water
surface, and had an outer diameter of 12.75 inches and a length of 25.5 inches. The force

measurements were filtered prior to being recorded, using an analog 4-pole Butterworth



filter having a cutoff frequency of 3 Hz. These signals were digitized and re-sampled at a

rate of 0.1 sec.

The measured vertical force did not display the shape predicted by theory. However, the

filtered theoretical time trace did resemble the physical measurement, displaying

rapid impulsive rise istics, and i The author felt that this
indicated that the initial filtering might have corrupted the full-scale measurements.
Similarly he felt that the re-sampling rate of 0.1 seconds might have been inadequate to

capture the rapid rise characteristic.

Kaplan (1979) described a typical vertical impact as having a region of positive force,
followed by a region of negative force. A typical horizontal force was described as

having a region of negative force, followed by a region of positive force.

He reported that Miller (1977) showed the slam coefficient to be 3.6x1, where the
variation was due to experimental uncertainties and the influence of measuring system
dynamics, Miller (1977) in the discussion reply felt that the variation was more likely due

to variation in input rise time.

Kaplan (1979) was reluctant to apply the slam coefficient method to the OTS data due to
uncertainties in the evaluation of the peak force, and determination of the vertical

velocity.



Further proof that the initial filtering of the may have been

was demonstrated when the instrumented member was “hit sharply”. The unfiltered
measurement displayed a sharp initial pulse, followed by a lesser negative region with a
shorter time extent, and lingering high frequency component. Conversely the filtered

record was less sharp and the time extent of the impulse was larger.

He reported that the natural frequency of the measurement system was very close to the
estimated peak frequency of the input wave, and that this probably led to dynamic

amplification.

2.6 Horizontal Circular Cylinders in Breaking Waves

Chan (1993) and Prasad, Chan, and Isaacson (1994) reported on experiments using

horizontal circular cylinders in breaking waves. Chan (1993) used a relatively large

cylinder, with a diameter of 0.216m i with pressure The
transducers had a natural frequency of 100kHz, and were sampled at 16700Hz. Prasad et
al (1994) used a smaller diameter cylinder, 0.042m instrumented to measure vertical and

horizontal forces. The sample rate was 10000Hz, low-pass filtered at 1000Hz.

Both authors reported that impact forces due to breaking waves are greater than those due
to non-breaking waves. Chan (1993) reported that the increase in force can be more than

double, while Prasad et al (1994) reported that these forces can be 4 to 20 times greater.



The position of the cylinder relative to the wave profile has a significant effect on the

peak impact forces.

Prasad (1994) reported that when idering the wave impact the
variability of the hydrodynamic loading must be considered and the effect this will have
on dynamic response. Previous experimenters observed scatter in the slam coefficient that
was attributed to the effect cylinder and measurement system dynamic response had on
the applied and measured force. Other factors such as entrained air, ripples on the water
surface, cylinder roughness, and cylinder inclination also affect the measurements. Chan
(1993) also pointed out that in earlier experiments, the cylinder diameter was often less
than a fifth of the incident wave height. and thesc smaller models were affected by the

response of the measurement system.

According to Chan (1993) existing numerical models based on rate of change of
momentum of a mass of water past a cylinder assume that the water surface impacting the
surface to be flat. This may be appropriate for small cylinders, but will not be relevant for
steep wave impacts, where the diameter will be comparable to the dimension of the crest.
For drop type tests the added mass is assumed to be half that of a long flat plate in an
infinite volume of fluid, having the same water contact width. Again this assumption is

not appropriate for the breaking wave situation.

In the breaking wave situation, the effects of entrapped air and wave profile trajectory are



The hori force may be as large as the vertical component

(this could lead to high ing moments on the The presence of entrained

air and splash affects the local water particle kinematics and pressures, and consequently
influence the magnitude of the impact force. When there is little entrapped air, the impact
pressures are high, however, the peaks are not simultaneous over the entire zone (Chan
(1993)). As a result the impact forces may not be as high. When the wave curvature is
smaller, and air entrapment is greater, the pressures are not as impulsive and there are
synchronous high pressures over a wide zone. This yields an oscillatory impact force that
may influence the structural dynamics significantly. Pressure variations in both space and
time are strongly dependent on the location of the cylinder relative to the incident wave

profile.

Prasad et al (1994) reported that their measurement setup had a natural frequency of
29Hz in the horizontal direction. In the vertical direction, the dominant frequency was
290Hz with minor components at 130 and 190Hz. In this case the effect of dynamic
response is expected to have a greater influence on the horizontal measurement, due to
the low natural frequency. The recorded and applied forces will differ, and there may be a

phase difference.

The authors introduced a numerical correction method based on the equation of motion of
the cylinder and supports, which is solved for displacement. The measured force was

assumed to be equal to the stiffness times the displacement. The method was



using the i force. The signal was first low-
pass filtered (125Hz) to remove high frequency noise that would amplify the predicted
force. The assumptions made for this method was that the cylinder-dynamometer system

was single DOF, and that the cylinder motion did not affect the applied force.

This method was not i to the vertical due to the presence of the
minor below the domi An alternate method, based on
Isaacson and Prasad (1992) ing an idealized ic triangular impact applied to

a single DOF system, was used. This was a closed-form soluticn where dimensionless

rise-time was varied.

Chan’s experiments used pressure sensors. The pressures fluctuated significantly for
almost identical wave conditions, but the impulses (the pressures integrated over the
duration of the impact) were repeatable. Chan suggested that the impulse may be a much
better variable to use in the numerical simulation and may be utilized in predicting the
structural responses and stresses. Usage of the impulse is only possible if the time scales
of the impulsive pressures are much smaller than the response time scales of the

structure.

Both authors suggested that due to the complexity of the breaking wave impact it was
unlikely that a single closed form expression, similar to that for the slam coefficient,

would be developed to predict this type of impact.



2.7 Vertical Plates in Breaking Waves

Several authors reported on experiments involving vertical plates, subjected to breaking
or plunging wave conditions (Kirkgoz and Mengi (1987), Chan and Melville (1988),
Toumazis et al (1989), and Chan et al (1991)). These plates were surface piercing and
non-piercing, and were instrumented with fast response pressure transducers. Sample

rates were very high, from 3.6 to 20 kHz.

All authors were unanimous that impact loads from breaking waves were significantly
higher than those from comparable non-breaking waves. Chan and Melville (1988)

reported impact pressures 2 to 5 times higher, with fluid velocities 2 times higher.

The impact pressure time series was characterized by short rise times, high maxima, and
pressure oscillations. Only Chan noted the pressure oscillations, which he attributed to

the dynamics of trapped air.

Chan and Melville (1988), Toumazis et al (1989), and Chan et al (1991) all reported on
the affect that entrapped air had on impact measurements. Toumazis suggested that the
effects of trapped air were not fully understood, and therefore limited the development of
numerical and analytical models. Air entrapment was observed to have a cushioning

effect, reducing the peak impact pressure. Chan observed two ranges of pressure

20



oscillation, 2000 to 5000 Hz and 300 to 800 Hz. He claimed that increased air entrapment

led to a reduction of the oscillation frequency.

Chan and Melville (1988) conducted experiments at two scales. They reported that in the
smaller scale model tests the low frequency range oscillations were not observed,

however the other pressure istics and distributions were with the

larger scale results.

All the authors discuss the influence of wave profile on the impact measurements.
Kirkgoz and Mengi (1987) observed significant dynamic load resulting from so-called
perfect impact, where the vertical wave front impacts a vertical wall. They reported that
the pressures in this case were simultaneous over the entire interface. They describe the
pressure distribution as being linear from the point of impact to the crest, and parabolic

from the point of impact to the bottom of the plate.

Chan and Melville (1988) stated that other investigators correlated high impact pressure
to steep incident wave fronts and fluid velocities. Chan et al (1991) described the effects
of five wave profiles on pressure measurement. The first profile was inclined away from
the wall and resulted in non-impulsive pressures with low magnitudes and long rise

times. The second profile was more vertical and resulted in high peak pressures, short rise

times, and low i high frequency oscillations. The third profile had a more

developed, higher speed wave crest. The peak pressures may not have been as high, in
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this case. but the total integrated force could be damaging. There was an initial
pronounced oscillation at 200Hz, with reduced to low amplitudes after two or three

periods. followed by a slow modulated decay. The fourth profile resulted in significant

trapped air. The peak pressures were simul and of gnitude over the

region. The pressure

illati i were more d and in phase. The rise
times were longer and the oscillation frequency was lower. at 100Hz. The peak pressures
resulting from the crest were higher. In the fifth case the crest has developed into a well-
defined jet. which hit the lower transducer resulting in high impulsive pressures. The

oscillation frequency was 1000Hz.

Toumazis et al (1989) had similar observations. When the wave does not break. the
measured pressures are small. because there is no entrapped air. He stated that this can be
considered a two dimensional problem and scaling can be based on Froude. When hit by
the tip of a breaking wave. high pressure measurements were recorded. Above and below
this point. the pressures were lower. In the overturning stage. the breaking wave jet was
in free-fall. In addition to gravity forces. surface tension and inertial forces are important.
The larger the radius of curvature of the wave front. the lesser the air entrainment. the

higher the peak pressures.

In the entrapped air region. uniform pressures were observed. with prolonged rise times.
A high degree of measurement variability was also observed. Due to the randomness of

wave breaking. the characteristics of the trapped air region will vary even for repeated



runs. Even the frequency of pressure oscillation varied. Toumazis et al (1989) made
similar observations, citing that air entrainment results in higher scatter. longer impact

duration. and lower impact pressure magnitudes.

Chan et al observed that as the air pocket size increased both the peak pressure and

illati q d The within the air pocket were simultaneous
and of equal magnitude. When integrated over the contact area. the air pocket pressures

may be large enough to induce significant structural response.

Chan raised the question as to whether the observed pressure oscillations were the direct
result of oscillation of the entrapped air. or whether it is merely structural vibration. Chan
and Melville (1988) stated that the fact that the low frequency oscillations were in phase
over several impact elevations (for a particular test). ruled out structural vibrations and

supported its association with trapped air.

Chan et al (1991) used a one-dimensional numerical model to study whether oscillations
were due to entrapped air or structural vibration. The model consisted of a coupled
system where the inertia of the incident wave. the dynamics of the structure. and the
compression and leakage of the trapped air were taken into account. Results showed that
the entrapped air affected the pressure characteristics more significantly than the

structural parameters. Low air pocket thickness resulted in high peak pressure magnitude.

Higher air pocket thickness resulted in lower frequency pressure



pressures were observed irrespective of the variations in structural mass or stiffness
properties. The authors stated however, that following the first few pressure oscillations,

the decay oscillation could be attril to I vil

Kirkgoz and Mengi (1987) developed a formulation for the dynamic behavior of a
vertical plate based on the classical theory of elastic plates. Spatial integration of this

equation was done using finite element methods.

Chan and Melville (1988) di the use of a

“filter” off pressure oscillations.

Chan et al (1991) noted that non-submerged vertical plates would have likely have an
impulsive total force, due to the integration of the impuisive pressures. Surface piercing
plates may display non-impulsive integrated total force due to the attenuation by non-

impulsive loading below the still water line.

Chan and Melville (1988) highlighted a number of questions they felt needed to be
addressed. (1) What are the important temporal and spatial characteristics of the impact
pressures? (2) How do the pressure characteristics correlate with the incident wave
kinematics? (3) What is the cause of the high variability in impact pressures? (4) What is
the cause of the pressure oscillations? (5) How can model test results be extrapolated to

prototype conditions?



2.8 Model Jacket Structures Subjected to Generated Waves

Several authors have reported on model tests of jacket type structures. Broughton and
Horn (1987). Kaplan (1992). Kaplan et al (1995). Murray et al (1995). Murray et al
(1997) discussed model set-up. test procedures. and methods of dealing with extraneous

force measurements.

Most of these authors recognized that resonance effects, caused by structural

lead to of d inertial forces. A number of methods

were proposed for removal of these loads.

Murray et al (1997) pointed out that resonant responses will be dominant at the resonant
frequencies of the structure and are related to the inertial and damping (hydrodynamic

and structural) characteristics. In an ideal situation. a hydro-elastic model would be used

for testing This. however, can be ibiti; Xpensive. A more option is to
construct a model with sufficiently high stiffness that its resonant frequency is above the
maximum frequency of interest to the designer and can therefore be ignored. This
involves a trade off between stiffness and load measurement sensitivity. A high data

acquisition sampling rate is also required.

Four methods were described for the removal of the extraneous forces. Kaplan (1992)

described an inverse Fourier transform method that can be used to relate the measured



force to the actual force. In order to establish the actual impact force time history from a
measured result, it is possible to relate them by a convolution integral expression using
the impulse response function of the measuring system. Applying Fourier transform
operations to this relation leads to an expression that relates the measured and actual
forces by the Fourier transform of the impulse response. An inverse Fourier transform
will yield the actual force time history. Murray =t al (1995) contend that in a multiple

degree-of-freedom system where pling can occur, i ion of this

method can be difficult.

Another method described by Murray et al (1995), involved using accelerometer
measurements to estimate the inertial force, which is then subtracted from the total
measured force. The problem with this method is the estimation of the added mass and
added moments of inertia due to the variation of water impacting the deck. Also this
method assumes that the damping is negligible (which may not be the case particularly

for fluid damping) and that the deck is rigid.

Murray (1995) and Kaplan (1995) describe a method of digital filtering whereby through
careful selection of the cutoff frequency, the high frequency inertial forces are removed
from the measured force signals. The risk in using a filtering technique is that valid high
frequency components will be removed. The authors demonstrated that the while the low
frequency force components for the spatially varied load cells are out of phase, the high

frequency components are in phase with each other. They conclude that the high



frequency components are not phase locked to the low frequency components. and can be

legitimately removed through filtering. Murray et al (1997) used this filtering technique.

Andersen et al (1998) a method for ing inertial load. or structurai

dynamics. from measured wave impact signals. based on the so-called normal mode
approach. The procedure establishes an equation of motion for the system. determines the

cigenvectors using measured decay test data. and solves the equations using normal

dif The lerations dq ined in the normal coordinate system are then
converted to physical coordinates, and used to calculate the inertial force. which is

subtracted from the measured force.

Several of the authors pointed out that the shape and extent of the impacting wave had a
great influence on the measured force. Broughton and Horn (1987) correlated crest height
with measured force. Kaplan (1992) used a 2™ order equation of motion for the structure
10 establish the influence of pulse duration and natural period on response amplitude. He
showed that when the pulse time is close to the natural period. the peak response can be
1.7 times the actual value. Murray (1995) reported a direct relationship between wave

steepness and resonance effects.

Kaplan (1992) stated that measurement procedures. inertial effects. system dynamics.
filter effects must be considered when determining the shape and magnitude of impact

forces.



Kaplan (1992) developed a numerical formulation for vertical loads on flat deck

structures, based on his previous work on circular cylinders.

Broughton and Horn (1987) reported on model tests of a jacket structure. Four tri-axial
load cells were sampled at a rate of 20 Hz. Model tests reported by Murray et al (1995)
and (1997) used a dynamometer constructed of eight uniaxial load cells sampled at 200

Hz and 500 Hz.

and Horn (1987) ped finite element models for the jacket and deck with
load estimates based on the rate of change of momentum of the wave relative to the
structure (the typical method for this type of load estimation) and from model test results.

One of these FE models was non-linear.

29 Summary

Clearly the subject of wave impact on models of offshore structures or their components
is complicated. Publications covering more than twenty years have been reviewed here,

and despite the variations in their topics and techniques there are some common themes.

Most experimenters agree that model and measurement systems should have a high

natural frequency. A value significantly higher than the frequency of the impacting wave

is required. This is complicated by the fact that waves impacting above the still water line

28



(or breaking waves) are thought to have high frequency energy content. This leads to

dynamic response or amplification, sometimes in multiple modes of vibration.

Early experiments suffered from the limitations of test equipment and facilities,
particularly in the areas of wave generation and data acquisition. Poor wave quality
limited the usefulness of measured force results. Low data sampling (or resampling) and

inappropriate filtering choices led to misi i Model and systems

with natural frequencies in the range of wave frequencies led to corrupted force

measurements.

Most of the recent experimenters recommended very high sample rates, in the kilohertz
range. with appropriate hardware filter cutoffs to prevent aliasing. The practicality of
using this range of sample rate depends on the number of instrumentation channels and
the data storage capacity. Further work needs to be done to establish the suitable

sampling rates for wave impact

p that digital

signal processing or filtering be done offline. This allows the filter selection to be based

on the particulars of the measured signal.

Besides the natural frequency and damping characteristics of the model and measuring
system, the nature of the dynamic response depends greatly on a number of other factors.

‘Wave related such as air i surface ripple, fluid

compressibility, surface current, and the three-dimensional nature of waves can affect
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dynamic response. Wave steepness has been shown to affect response rise time and

air can i response i The presence of breaking waves has
been shown to greatly increase measured response. Breaking waves are related to wave
steepness, and their effects are influenced by the position of the model relative to the
wave profile. Other factors such as model surface roughness, and inclination can

contribute to measurement results.

Many of these factors are considered to be non-deterministic, so even when the physical
characteristics of the model and measuring system are known, predictions and
interpretation of results can be difficult. Work has been done to quantify the effects of
many of these factors, though the type and shape of the modeled structure often dictate

the influence of a particular factor.

Many types of instrumentation have been used in wave impact experiments. Force
transducers, typically combined to measure in multiple degrees-of-freedom, quantify
impact loads. Pressure transducers are used to measure localized pressures.
Accelerometers are used to measure structural vibrations. Strain gauges are used to
directly measure stress in a structure. Photographic or video records are used to document

the impact process.

The experimenters agree that Froude scaling is most appropriate, particularly at the initial

phase of impact, where inertial and gravitational forces are deemed to be dominant. As



the impact process proceeds, particularly where the structure is subjected to deep

submergence, viscous effects begin to dominate.

2.10 Objectives of the Present Study

A number of methods are to mitigate or elimis the inertial force

that are typically present in measured wave impact signals. The inertial force is the result
of structural accelerations caused by the wave impact, and recorded by the measurement
system. The inertial force corrupts the actual applied force, and should be removed prior
to scaling. Of ail the problems associated with the measurement of wave impacts, the
question of how to deal with inertial force is the most pressing. For this reason, this report

will examine techniques to mitigate this force.

Several authors reported that computer models based on the equation of motion of the
model were used to provide insight into the impact process. These were typically single
degree-of-freedom models, which generally assumed damping to be negligible. Others

applied curve fitting or averaging techniques to smoothen impact data.

Accelerometer measurements have been used to directly calculate inertial force, which is

then subtracted from the total measured force.

One author describes the so-called normal mode method to reduce inertial force

components. The equation of motion is solved in the normalized coordinate system. The



are ined from the decay tests. This elimi the need to

develop a stiffness matrix.

Another author presents an inertial force mitigati ique based on a
integral involving the measured and actual forces and the system impulse response. The
equation is solved in the frequency domain, and an inverse Fourier transform is used to

obtain the actual force time series.

Digital filtering is also recommended as a method to remove the inertial force component

from measured wave impact signals.

These last three methods (normal mode technique, inverse Fourier transform technique,

and digital filtering) will be explored in greater detail in this report.
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3.0 Discussion of Model Jacket Structure Experiments

The sample wave impact measurements used throughout this report were taken from
experiments conducted at the Institute for Marine Dynamics (IMD). located in St. John's,

Newfoundland. IMD is an institute of the National Research Council of Canada (NRC).

IMD has conducted numerous experiments over the years measuring wave induced

impact loads on of offshore These are generally

located above the still water line. and include deck plating. deck beams. support columns.

wave defl deck equi and

Instrumentation used is generally contined to load and pressure transducers. When these
are attached to structural components. they measure localized forces and pressures. Sets
of load transducers used in combination are known as dynamometers. These are used

typically to measure global loads on the large structural components. though they can be

designed for smaller components.

IMD’s typical dynamometer design consists of a support trame. known as a strongback.
upon which strain gauge based load transducers are mounted. The structural component

under consideration is attached to the load transducers via flexural members (flexures)

that ensure uni-directional loading of the indivi The load d are

oriented orthogonally with respect to each other. This allows force measurement in three
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degrees-of-freedom. Moments may also be deduced from the force measurements,
relative to an assumed origin. A typical dynamometer design is shown in Figure 3.1. In
this case the structural component is the deck of a jacket structure. Note that the deck

plating is not shown, for clarity.

Figure3.1  Typical Dynamometer

A jacket is a type of fixed offshore structure designed using space frame/truss
components. It rests on the ocean floor and is secured using piles. The structure provides
a protective “jacket” for the production risers, thus the name. IMD has conducted model

tests on several jacket designs. In-house research experiments were performed on a 1:36



scale model of a generic jacket structure. Some results of that test program were reported
in Murray et al (1995) and (1997). Another set of experiments were performed as part of
a fee-for service contract, using a 1:54 scale model of an existing North Sea jacket-type

platform Winsor (1998). A model of a typical jacket structure is shown in Figure 3.2.

Figure3.2  Typical Jacket Structure Model



The models for these experiments were constructed in similar fashion. Each consisted of
three sections. base, strongback, and deck. The base was a space frame/truss structure
designed to maintain geometric similarity between model and prototype. The strongback
was attached to the top of the base. and was used to support the force transducers. The

deck was connected to the transducers using flexural members (see Figure 3.1).

[n both i the deck was ded from the L; using seven

transducers. Four transducers were oriented to measure vertical force only. two were
oriented to measure transverse force. and one was oriented to measure longitudinal force.

The deck was d to the indivi using

flexures. These
flexures were in the form of cylinders. with sections of reduced diameter. that permitted

only uniaxial force to be i to the This of

allowed for the of six deg f-freedom forces and moments applied to the

deck. Both models utilized Interface SSB-250. cantilever type transducers.

The bases of the jacket structures were constructed of steel round stock and tubing. A
typical elevation is shown in Figure 3.3. The deck of the 1:36 model was constructed
using square aluminum closed-tubing with sheathing fixed to its top and underside. The
interior cavity of the deck was packed with Styrofoam to prevent water trom becoming
trapped inside. Similarly. the 1:54 scale model deck was fabricated using box and round
tube members covered top and bottom with thin plate. The interior spaces were tilled

with urethane foam to limit water ingress. Attached to the perimeter of the deck were
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Figure3.3  Elevation of Jacket Structure Model

cantilever deck sections, fabricated with steel box section material and covered with thin
plate and mesh. The cantilever sections were removable, but were in place for the

experiments. A typical deck is shown in Figure 3.4

The experiments were conducted in IMD’s Offshore Engineering Basin (OEB). The
models were securely bolted to the basin floor during testing. The 1:36 scale model tests
were conducted in a water depth representing 77.0 m full scale. The 1:54 scale model

tests were conducted in a water depth representing 81.1 m full scale. The wave conditions
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Figure34  Typical Jacket Structure Deck

for test measurements used in this report are summarized in Table 3.1. The wave spectra
were based on the JONSWAP formulation. For the purposes of this report the 1:36 scale

model will be referred to as Jacket A, the 1:54 scale model will be known as Jacket B.

Figure 3.5 shows the coordinate system used for both sets of experiments. The coordinate
system was right-hand-rule, with the origin located at the geometric centre of the
dynamometer, at the top elevation of the deck. Moments were measured positive
clockwise about each axis, viewed from the origin. The load transducer locations are

indicated on the figure.



Table 3.1 - Summary of Wave Conditions for Jacket Structure Experiments

Wave Water | Hs(m) Tp (s)
Jacket Structure Direction Depth
(m)
Jacket A (Scale 1:36) 0 Degrees 77.0 19.5 14.5
Jacket B (Scale 1:54) 0 Degrees 8L.1 164 174
Y I
|
== He—=——
L i
X
i | i |
Wave Direction >

Figure3.5  Coordinate System
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The tests for Jacket A were sampled at a model scale rate of 500 Hz, with a hardware
cutoff frequency of 100 Hz. The tests were for Jacket B sampled at a rate of 200 Hz, with
a hardware cutoff of 100 Hz. Decay tests were conducted to determine the lowest natural
frequency of the models. This was done by applying a known load to the deck and

releasing it instantaneously. The decay time traces were measured using the

The natural and damping istics were
determined from traces fitted to these measurements, or by locating the resonant peak of
the signal in frequency domain. Table 3.2 summarizes the natural frequencies. Figures

3.6 10 3.11 show the measured decay time traces.

Table 3.2 - Jacket Structure Natural Frequencies
Structure | Degree-of -Freedom | Natural Frequency | Natural Frequency
in Air (Hz) in Water (Hz)
X 2 NA
Jacket A Y 4 NA
Z .24 NA
X 341 341
Jacket B Y 361 359
z 10.39 4.77

The linearity of the dynamometers was established by applying a range of known loads to

the deck. parallel to each coordinate axis. The applied loads were measured using a
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Figure 3.6  Decay Force - Jacket A - X Direction
Decay Test - Jacket A - Y Direction Applied Load - Y Direction Measurement
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Figure 3.7  Decay Force — Jacket A — Y Direction
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Decay Test - Jacket A - X Direction Applied Load - Z Direction Measurement
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Figure 3.8  Decay Force — Jacket A - Z Direction

Decay Test - Jacket B - X Direction Applied Load - X Direction Measurement
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Figure 3.9  Decay Force - Jacket B - X Direction
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Decay Test - Jacket B - Y Direction Applied Load - Y Direction Measurement
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Figure 3.10 Decay Force — Jacket B - Y Direction

Decay Test - Jacket B - Z Direction Applied Load - Z Direction Measurement
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Figure 3.11 Decay Force - Jacket B — Z Direction
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in-line load In all cases the load was at least 98% of the

applied load.

Figures 3.12 to 3.17 show the wave impact force measurements obtained from the tests
in wave conditions defined in Table 3.1. The signals are presented in full scale, with units
of mega-Newtons. These are single impact events selected from the full time trace. In
each case the three degree-of-freedom measurements are shown. These signals will be

used extensively throughout this report.
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Figure 3.12 Wave Impact Event - Jacket A - X Direction
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Figure 3.13 Wave Impact Event - Jacket A — Y Direction
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Figure 3.14 Wave Impact Event — Jacket A — Z Direction
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Figure 3.15 Wave Impact Event — Jacket B — X Direction
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Figure 3.16 Wave Impact Event — Jacket B - Y Direction
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Figure 3.17 Wave Impact Event - Jacket B — Z Direction



4.0 Removal of Inertial Forces Using the Normal
Mode Approach

4.1 Introduction

Andersen et al. (1998) recommend a method for removing the effects of structural
dynamics (inertial load) from measured wave impact signals, based on the so-called

normal mode approach. The procedure, which is outlined in Table 4.1, establishes an

equation of motion for the system, ines the eig using decay test
data, and solves the equations using normal i The i ined in
the normal i system are then to physical i and used to

calculate the inertial force, which is subtracted from the measured force.

This procedure, in general, is described in standard structural dynamics or vibrations texts

such as Thomson, (1981).
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Table 4.1 - Procedure for Application of Normal Mode Approach

L
E Step Description
1 Establish equation of motion.
2 Establish u ions for eig and eig
Determine eigenvalues.
3 Determine eigenvectors from measured decay tests.
4 Normalize eigenvectors.
5 Convert system from physical to normal coordinate system.
6 Solve for accelerations in normal coordinate system.
7 Convert back to physical coordinate system.
8 Calculate inertial force and subtract from measured force to

obtain actual force.
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4.2  Methodology — Normal Mode Approach
4.2.1 Establish Equation of Motion

A simple equation of motion for the jacket structure described in Section 3.0 is defined

as.

prls+ [Klxo}={FE}

where.
4.1
[s] mass matrix
[x] stiffness matrix
HaGH applied force vector
G acceleration vector
i} displacement vector

In this case damping is assumed to be negligible. so no damping term is included in the

equation. For the case of free vibration the equation becomes:

M]G0} + [K] )} =0 42



4.2.2 Determine Eigenvalues

Equation 4.2 is used to ine the natural

and ei

of the structure, in the following manner. Pre-multiplying each term by the

inverse of [M], results in

(] Moot (] [Kxo}=0 4
which can be written as
[1{zn}+[al{xr}=0 44

where,

[1]=[mM ] [M]=identity or unit matrix
[A]=[M]"[K]=system or dynamic matrix

ing ic motion, the di velocity, and
as follows.
x(t)=e'" 45
i()=iwe'® L

2 5 4.7
it)=(io)e” =-0'e™"
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Substitution of equations 4.5 and 4.7 into equation 4.4 leads to

-0’ [I {x@ (A} x()}=0 4“4
—Al {0+ (A x0)}=0 2
where

A=’ =cigenvalues

Equation 4.9 can then be written in the following form.

[a-a1]{x(:)}=0 410

The ei; are ined by ing the i when set equal to zero.

This is known as the characteristic equation, the roots of which are the eigenvalues.

la-41j=0 a1l



4.2.3 Determine Eigenvectors

The eigenvalues are substituted into Equation 4.10 to obtain the eigenvectors {)? v } where

‘i represents the particular degree-of-freedom or mode shape. This results in the

following equation.
a4, . }=0 a2

The eigenvalues represented by {X i } are referred to as non-normalized. The

ig may also be ined using the adjoint matrix of the system as discussed

in Appendix A.

After substitution of the following

[]=[mT"[m] 413
[al=mT[x]

i=0?

into Equation 4.12 and pre-multiplication by 1/[M ]™* Equation 4.14 is obtained.



o [M]{T J+ [k 4

where

®, natural frequency

X cigenvector (non - normalized)

Equation 4.14 provides a ient method to ds ine the eig using

measured decay test data. During the model test experiments. described in Section 3.0.

the following forces were measured.

VE s = (K Hx @)} ={ P00 }=[ M J{20)} 3

Equation 4.15 indicates that the force measured by the force transducers equals the
transducer displacement multiplied by its stiffness. For impact type force measurements
the displacement will inherently include the dynamic or inertial component. So the
measured force is a combination of the actual force (due to the applied load) and the

inertial load.

F O et = FF O F O b 416

where the inertial force is given by the expression



{F )} =M ()} 417

In a practical sense it is difficult to measure the physical displacements of the structure

directly. The ions can be using and this ique has
been used in the past to establish inertial loads, as discussed in Appendix B. Without the
ability to accurately measure the physical displacement, it is difficult to directly

determine the stiffness or flexibility matrices.

An alternate method can be used to establish the physical response of a structure. This
involves the use of experimentally determined force decay time traces. The model
structure is given an initial displacement or offset in the degree-of-freedom of interest. It
is allowed to vibrate freely, and the resulting inertial forces are measured directly from
the force transducers installed on the structure. The inherent assumption is that following
the initial excitation, no other external force acts on the structure and measured forces are

purely inertial.

Based on this assumption, and using Equation 4.14, it is seen that the modal force vector

obtained from the decay tests is given by

{F docsrnsamy =[ K {E J= 02 [ )[R, } 418



Utilizing the relationship given in Equation 4.18 circumvents the inconvenience of not

knowing the stiffness matrix. The it ige can be ined using
Equation 4.19.
= 1 -t
{x. }=F[M] {F Yocsumtssy 419
The natural ies can be ined from the istic equation or

The mass and mass inertia properties are used to develop the mass matrix. The measured
force vector is determined from the fast Fourier transform of the decay time trace. A
discussion of the procedure to obtain the matrix of measured decay force vectors is

provided in Appendix C.

4.24 Eigenvector Normalization

The non-normalized eig: are ined using only the decay force
signals, the mass matrix, and the vector of natural frequencies. The shapes of the
eigenvectors are uniquely defined, but their amplitudes are arbitrary. This allows the

eigenvectors to be normalized. There are several methods to do this.

One method involves setting an arbitrary degree-of-freedom (typically the first), for a
particular mode shape, to unity. The remaining degrees-of-freedom are set relative to this

reference value.



A variation of this procedure is to normalize the shapes to the maximum displacement
value in each mode rather than with respect to an arbitrary coordinate. The maximum

coordinate becomes unity.

The most popular normalization procedure for computer applications involves adjusting

each modal amplitude such that it that satisfies the expression.

{x.F mlix,}=1 420
where,

{X,}  vectorof normalized mode shape amplitudes.

A scalar factor is used to normalize the eigenvectors. This factor is determined using this

equation.
{%.Ym )iz, }=s, a2
where S, =scalar

The normalized eigenvector, {X,, }, is achieved by applying the scalar factor to the non-

ig in the ing manner.

{x,}={%,}s; a2
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‘This, along with the orthogonality condition, (see Appendix D) for the mass matrix leads

to the following equation.

(T rlixl= 01 .

where,

[X ] matrix of normalized eigenvectors

The eigenvectors or mode shapes are said to be orthonormal relative to the mass matrix.

4.2.5 Conversion to Normal Coordinates

With the eigenvectors established, it is necessary to convert the system from physical to
normal coordinates. In matrix notation the modal displacement vector is related to the

mode shape and modal amplitude as follows.

{e}=[x){=0)}

424
where,
{x () } geometric or physical coordinate vector,

[X] Nx N mode shape matrix,
{z ) } modal amplitude or normal coordinate vector.



The mode shape matrix serves to transform the normal coordinate vector to the physical

coordinate vector.

Due to the orthogonality properties of mode shapes, it is possible to evaluate the normal

simply by ps ipiying both sides of Equation 4.24 by {X " [M]. Since
{X N }r [M ] {X n }= 0 when n # m, this leads to the following relationship for a normal

coordinate vector.

fe. ()}= {x.F M)}

e, T i} 438

Substituting Equation 4.24 into Equation 4.1, and pre-multiplying by {X 2 }T [M] leads to

(X] mlx N+ [xT KX} 0}=[xT {Fo} 426

Further substitution of Equation 4.27 leads to Equation 4.28.

T [Klx]={or JixT (m]ix] 4z

[x [M][x}{z(x)}=§[x}' (Fol-Mlixliz@)}) 428
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Rearranging this leads to

(X Xz b T M1IX)e0)}=IxT {Fo} 429

Substituting Equation 4.30 and 4.31 into Equation 4.29 leads to Equation 4.32.

[xT[m]lx]=[r]
({Fo}-MIX KOV D ={F () bocures

O X T {F0) e

431

432

Here {z(1) } the di i vector in normal coordinates. This
vector can then be di: to yield the ion ti vector
in normal i Adi ion of is given in Appendix E.
426 R to Physical C

The acceleration vector in physical or geometric coordinates is obtained by applying

Equation 4.33. Finally, the inertial force is obtained by the use of Equation 4.17. The



inertial force is subtracted from the force measured using the force transducers to obtain

the actual applied force on the structure.

{&()}=[x){z()} 433

4.3 Implementation of Normal Mode Approach

The normal mode approach outlined in Section 4.2 is implemented for a three degree-of-
freedom system in Matlab script normal_mode_v3_3dof_nodamping.m, which is shown

in Appendix K.

The program requires the input of the system mass matrix, the measured decay force
vectors, the natural frequency vector, and the implicit time series spacing. The mass
matrix, shown in Table 4.2, is assumed to be diagonal. Each diagonal term represents the
deck mass for the jacket structure model described in Section 3.0. For a higher DOF

system the additional diagonal terms would represent added moment of inertia.

‘Table 4.2 — Mass Matrix for Jacket Structure Model (B)
(kg full scale)
5.53e06 00 0.0
0.0 5.53e06 0.0
0.0 0.0 5.53¢06
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The method to determine the matrix of measured decay force vectors is described in
Appendix C. For this investigation, three different decay force vector matrices were used.
This was done to illustrate the sensitivity of the results to these parameters. Table 4.3
shows the three, 3x3 matrices used. These contain the so-called magnitudes of the

signals.

Table 4.3 - Matrix of Measured Decay Force Vectors
Jacket B
Decay Force Vector Matrix |
DOF Mode 1 (X) Mode 2 (Y) Mode 3 (Z)
X 233 0.85 1.7
Y [N} 2 2
z -0.052 0.104 20
Decay Force Vector Matrix 2
DOF Mode 1 (X) Mode 2 (Y) Mode 3 (Z)
X 23.75 0.475 1.95
b 4 1.247 15 1.158
z -0.094 0.047 206
Decay Force Vector Matrix 3
DOF Mode 1 (X) Mode 2 (Y) Mode 3 (Z)
X 22.303 1.325 -0.525
X 1.021 26.235 0.870
z -0.069 0.085 -5.838 |




The results obtained by using the three decay force vectors were for all intents and
purposes the same. The actual force signals were identical, based on visual inspection.

For that reason, decay force vector matrix 2 was chosen for all remaining processing.

Table 4.4 shows the natural frequency vector defining the frequencies of the model jacket
structure deck for each degree-of-freedom, in radians per second. These frequencies were

determined from the measured decay test time traces.

Table 4.4 - Vector of Natural Frequencies - Jacket B
(radians/s)
X Y z
214 23.1 66.7

The time step is 0.0367 seconds, which is equivalent to a 200 Hz (model scale) sampling

rate.

Following this input, the i i are ined using the

decay force vectors. The izing scalar is then i and the eig are
normalized.



Next the input force vectors are specified. These are the measured signals from which the

inertial force component is to be removed.

Using the force vectors and the i ige , the di: in the
normalized i system are i These di are then
to obtain the ions in the i il system. The

differentiation is based on the central difference technique described in Appendix E.
These accelerations are converted back to the physical coordinate system, and then used

to determine the inertial force This force is from the

total force, to obtain the actual force.

The input signals are shown in Figures 4.1 to 4.9. Figures 4.1 to 4.3 are decay test
measurements. These signals are completely inertial in nature, and the normal mode
approach should (in theory) reduce them to steps or flat lines as appropriate. These
signals represent the forces measured in the X, Y, and Z directions, due to a load applied
in the X direction. See Section 3.0 for a description of the coordinate system. Figures 4.4

to 4.9 are individual wave impact events.
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Figure4.1  Measured Decay Force — Jacket B — X Direction

Measured Decay Force - Y Direction - Load Applied in X Direction
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Figure4.2  Measured Decay Force — Jacket B — Y Direction
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Measured Decay Force - Z Direction - Load Applied in X Direction
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Figure4.3  Measured Decay Force — Jacket B - Z Direction
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Figure44  Measured Wave Impact Event 1 - Jacket B — X Direction
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Figure4.5  Measured Wave Impact Event 1 - Jacket B - Y Direction

Measured Wave Impact Event 1 - Z Direction - Jacket B

measured impact force - fz
15
10
_ 5
z
20
£
=
3 10
5
=15
20
25
o 5 0 15 20 25 3 3 4

Time (s)

Figure4.6  Measured Wave Impact Event 1 - Jacket B — Z Direction
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Figure4.8  Measured Wave Impact Event 2 - Jacket B - Y Direction
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Measured Wave Impact Event 2 - Z Direction - Jacket B
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Figure4.9  Measured Wave Impact Event 2 - Jacket B — Z Direction

Figures 4.10 to 4.12 compare the measured and actual forces for a decay test. Ideally, the
actual force, in Figure 4.10, would appear as a step. Instead, considerable high frequency
vibration is observed at the discontinuity. Despite this, there is clearly some signal
reduction. Figure 4.12 shows some minor signal removal from the Z direction

measurement. Figure 4.11 shows no signal reduction from the Y direction measurement.
Figures 4.13 to 4.15 compare the measured and actual force results for a single wave

impact event. Again, the X and Z direction plots show reasonable actual force signals,

with some reduction of inertial force. The Y direction plot shows no signal reduction,
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however, the overall scale or magnitude of the signal is quite small compared to those in

the other degrees-of-freedom.

Figures 4.16 to 4.18 show similar results for another wave impact event from the same

test.

This method was also i in a six degree-of-freedom form, but the results were

equally unsatisfactory, so they will not be presented here.

Comparison of Measured and Actual Force - X Direction - Normal Mode Method
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Figure 4.10 Measured and Actual Force - X Dir. - Normal Mode
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‘Comparison of Measured and Actual Force - Y Direction - Normal Mode Method
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Figure 4.11 Measured and Actual Force — Y Dir. - Normal Mode
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Figure 4.12 Measured and Actual Force — Z Dir. — Normal Mode



Measured and Actual Force - Event 1 - X Direction - Jacket B - Normal Mode Method
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Figure 4.13 Wave Event 1 and Actual Force — X Dir. - Normal Mode
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Figure 4.14 Wave Event 1 and Actual Force — Y Dir. — Normal Mode
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Measured and Actual Force - Event 1 - Z Direction - Jacket B - Normal Mode Method
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Figure 4.15 Wave Event 1 and Actual Force — Z Dir. - Normal Mode
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Figure 416 Wave Event 2 and Actual Force — X Dir. — Normal Mode



Measured and Actual Force - Event 2 - Y Direction - Jacket B - Normal Mode Method
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Figure4.17 Wave Event 2 and Actual Force - Y Dir. - Normal Mode
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4.4  Limitations of the Normal Mode Approach

Clearly the results obtained from this method fall short of expectations. This section will

list and discuss some of the limitations of the normal mode approach.

. The method is time consuming to implement. It is not a method that can be utilized

without signi ion. Its depends on the availability of quality

decay test measurements. and accurate model physical properties (such as mass. radii

of gyration. and natural frequency).

. The success of the approach is subject to the vagaries of the system measuring

system. For example. does the dynamometer have some inherent cross-talk? Were the

loads applied to excite the decay tests in-line with the model coordinate system?
These are questions that will plague a user of this technique. particularly if they are

not involved in the model test program.

3. The major problem with this technique. when applied to wave impact cases. is the
determination of the added mass. As the wave impacts the deck of the model. it will
contribute to the mass of the structure. This added mass will vary spatially and
temporally as the wave travels along the deck. The result is a fluctuating system

natural frequency. and the introduction of fluid damping. The quantification of added
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mass for structures of this type (subjected to wave impact loading) is an area of

research that needs significant attention.

. The method used to establish the matrix of decay force vectors using fast Fourier

transforms. described in Appendix C. is really intended for use with sinusoidal type

signals. Application to decay type signals likely introduces a source of error.

. The normal mode technique makes the simplifying assumption that there is no

damping. and this is reflected in the defined equation of motion. Clearly structural
damping is present. as well as damping related to fluid-structure interaction. This is

another topic for future i igation. An attempt was made to

introduce a damping term to the present equation of motion. based on Rayleigh

damping. The results of this are presented in Appendix F.

. A good indicator that this method has not been successful is the failure to satisfy the

orthogonality condition. as defined in Equation 4.23. The result should be an identity
matrix. with values of 1.0 along the diagonal. and zeros elsewhere. As seen in Table
4.5. the off diagonal terms are non-zero. and are too large to be considered due to

round off.

. The greatest limitation with this method. and indeed all the methods to be discussed

here. is the difficulty in quantifying whether a particular actual force result is



satisfactory. Other than a subjective visual assessment of the signal and perhaps its
FFT, in comparison with the original signal, there are no obvious, quantifiable
parameters to gauge the suitability of the modified signal. This is an area that requires

further research.

Table 4.5 — Orthogonality Condition Not Satisfied (see Equation 4.23)
1.0000 0.0840 0.0930
i 0.0840 1.0000 0.0619
! \
L 0.0930 l 0.0619 1.0000




5.0 Inverse Fourier Transform Method

5.1 Background

Kaplan (1992), Kaplan et al (1995), and Murray et al (1995) discussed the use of the
Inverse Fourier Transform method to remove inertial forces from measured force signals.
This can be applied to force measurements from the deck dynamometer of a model jacket

structure subjected to wave impact, as described in Section 3.0.

Kaplan (1992) stressed the importance of removing the effects of measurement system
dynamics from the total force measurement. These so-called inertial forces are due to
structural acceleration, and are seen as forces by the load measuring devices. The
removal of these extraneous force components is necessary in order to obtain the actual
applied force. The manner in which the actual force differs from the measured force will
depend on the time extent and form of the applied impulsive force, and the natural

frequency of the measurement system.

According to Kaplan (1992), the measured force is related to the actuat force using a
convolution integral expression, as shown in Equation 5.1. The convolution integral and
its use in the determination of the response to an arbitrary excitation is discussed in

general terms in Thomson (1981).
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fa= [ he-1) £, (dr

where

fn(f) represents measured force,
f.(7) representsactual force,
h(t—7) representsimpulse response.

Applying a Fourier ion leads to the

51

Fn(iw)=H(iw) Fa(iw)
where

H(iw) representsfrequency response or the
Fourier transformof A(t),

F n(iw) represents the Fourier transformof f,, (1),

Fu(iw) represents the Fourier transformof f, (¢).

52

ip in Equation 5.2.

Knowing F, (iw) and H(iw), Equation 5.2 can be rearranged to obtain F, (iw).

F,(iw) = F, o)/ H(io)

9
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The actual force time series can then, in theory, be determined by taking the inverse

Fourier transform of F, (i®).

Kaplan et al (1995) and Murray et al (1995) stated that the implementation of this method
is complicated. This is particularly true for multi-degree-of-freedom (MDOF) systems,
due to the presence of mode coupling. They claimed that a matrix of cross-coupling
terms would be required, and developing this would be extremely difficult. In addition,
the effects of added mass and fluid damping further complicate the situation when

considering wave induced impact loads.

5.2 Implementation of Inverse Fourier Method

Despite these warnings, an attempt has been made here to implement this procedure, first
in a single degree-of-freedom (SDOF) form, and then in MDOF form. The measured
force signals, and the impulse response signals will be taken from decay tests conducted
for the experiments described in Section 3.0. The reason for this is two-fold. First, the use
of in-air measurements eliminates the effects of added mass and fluid damping. Second,
the signal from a decay test will be purely inertial following the release of the initially
applied load. The successful removal of the inertial component will result in a signal

resembling a rectangular pulse.
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Murray et al (1995) described how the impulse response for a system could be developed
from the derivative of the response to a pulse or step. This serves as the rationale for
using the decay test to obtain the impulse response. The decay test is performed by
applying a known load to the system, in line with a particular degree-of-freedom (DOF).
The statically applied load is released instantaneously, and the decay force time trace is
measured through the system instrumentation. The measured response is typically used to
obtain the natural frequency and damping characteristics of the system. Decay tests are

repeated for each relevant degree-of-freedom (DOF).

5.2.1 SDOF Implementation - Frequency Domain Division

This section will describe the implementation of the inverse Fourier transform method in

SDOF form, using measured and simulated data. It will be seen that the application of the

is not strai; . The signal i ions required to facilitate the
procedure will be illustrated. See Table 5.1 for a summary of the procedure in SDOF

format.

A set of decay tests was conducted on the instrumented deck of a jacket structure model

(Section 3.0). A typical decay test force from the is shown

in Figure 5.1. For this demonstration the signal will serve as the source for the measured
force signal, £, (r), and the impulse response, h(¢) . The measured force signal, f, (1),

is selected from the original signal, and is shown in Figure 5.2. Points from 330.71 to
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Table 5.1 - Procedure for Application of the
Inverse Fourier Transform Method (SDOF Format)

Step

Description

Establish step or pulse response vectors. These can be taken
from measured decay force tests. The exact starting point is a
matter of trial and error, though in theory it should coincide
with the release of the applied load (in the decay test).

Differentiate the step response vector to obtain the impulse
response vector.

Take the Fast Fourier Transform (FFT) of the measured input
vector.

‘Take the FFT of the impulse response vector, to obtain the
frequency response vector.

Normalize the frequency response vector by its own initial
value. This is required to maintain the same DC component
between the measured input vector, and the derived output
vector.

Divide the FFT of the measured input vector by the normalized
frequency response vector to obtain the FFT of the actual force
vector.

Take the inverse Fourier transform of the actual force vector
FFT to obtain the actual force time series.
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Figure 5.2  Selected Measured Decay Force — X Direction



368.30 seconds of the original signal are selected. Note that the length of the f,, (1)
signal is 1024 points. It is recommended that that when signals are subjected to a Fast
Fourier Transform (FFT) that they be a power of 2 in length. This ensures the most

efficient application of the FFT.

In a similar manner, the step or pulse response used to derive the impulse response
function, A(r), is also selected from the original signal. In order to demonstrate the
sensitivity of the overall procedure to the signal selection, two pulse responses have been
created. Signals s1(¢) and s2(r) represent selections from times 336.9976 to 374.5847
seconds and 337.0344 to 374.6214 seconds, respectively. These selections are one time
step in the difference. They are shown in Figures 5.3 and 5.4. Note that these signals are
also 1024 points in length. This is required to ensure efficient application of the FFT
algorithm. and also to facilitate division of the signals in the frequency domain. It is
necessary that the signals involved in the vector division be the same length. This could

be considered a minor shortcoming of this method.

Next the pulse response signals are dii i using the i ibed in
Appendix E. These derivatives, defined k1() and h2(r), represent the response to an

impulse, and are shown in Figures 5.5 and 5.6.
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Comparison of impulse responses hi(t) and h2(t)
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Figure 5.6  Impulse Responses — Selected View



The next step is to apply an FFT to each signal. Then the division of the FFT of f,,(r) by
the FFT of h(t), is done to obtain the FFT of f,(t), as per Equation 5.3. The FFT of an
impulse response is commonly known as a frequency response. The MATLAB operator
for array division ( ./ ) is required here since each vector element must be divided
individually. The command would be “FA1=FM./H1;". FM represents F, (i@), the FFT
of the measured force, H1 represents H1(iw) the FFT of the impulse response, and FAl
represents, the FFT of the actual force signal. Figures 5.7 to 5.9 show the resulting

signals.

At first examination the result for F,1(i@) looks promising. The resonant peak has been
removed and the remaining signal is reminiscent of a sinc function, as would be expected.
However, if the inverse Fourier transform of this is obtained, the result does not resemble
the expected rectangular pulse. The result is shown in Figure 5.10. The signal appears to
be inverted, the overall magnitude of the signal does not compare with the original

fx(2), and there is an high

In the ideal situation, the inertial component would be completely removed from the
S (1) signal, to reveal an actual force ( £, (r) ) signal resembling a rectangular pulse. The
mean of these signals would be identical. This can only be achieved if the DC component

of their respective FFT’s is identical. Therefore, for the frequency domain division
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described above, it is necessary that the DC component of the frequency response vector

have a value of 1.0.

The DC component of a signal (frequency domain) is related to the mean of the signal
time series multiplied by the number of points in the time series. Strictly speaking, the
DC component of the frequency domain vector is equal to the sum of the time domain

vector elements.

The example from above can be re-done using this modification. The frequency response
vector is scaled as follows, “H1S=HI/HI1(1);". Figure 5.11 shows the modified frequency
response vector. The DC component now has a value of 1.0. Dividing F,, (@) by

HIS (iw) yields F,1S (iw), as shown in Figure 5.12. Taking the inverse Fourier
transform of this leads to the signal shown in Figure 5.13. Figure 5.14 plots the actual

force, fals(t), in comparison with the measured force, f,(f).

The scaling procedure has inverted the signal, and adjusted the overall magnitude so that

it resembles that of f,, (r) . Note however that this f, (¢) signal shows an unexpected

high frequency This high p is not apparent in the f,, (¢)

signal or its FFT, F,, (iw). This will be discussed later.
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"Actual Force" time series from ifft of FA1S
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In order to demonstrate the sensitivity of the process to the selection of the impulse
response £ (t) , the procedure is repeated using A2 (¢) . which is shifted from hl(r) by one
time step (i.e. its selection started at time 337.0344 seconds of the total measured force
signal, rather than 336.9976). Figures 5.15 and 5.16 clearly show that using h2(t) as the
impulse response produces an actual force signal that differs considerably from that

produced by Al(r) , showing even more high frequency contamination.

The shift in the step response selection (by one point) causes an increase in the element
sum (sum of all the time series vector elements) of the subsequent impulse response. As a
result the DC component of the frequency response is higher. When the normalization is
done, the entire vector is divided by the larger number and therefore has smaller values in

the high frequency range.

Subsequent division with the FFT of the measured force signal f,, () causes the high

frequency range of the resultant F, (iw) to be amplified.

Ultimately the selection of the “proper” step response / impulse response will be a matter

of trial and error.
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522 SDOF - Use of Ci ion and ion T

C ion and ion are to combine signals in the time domain.
They are equivalent to multiplication and division (in the frequency domain),
respectively. The procedure defined by Kaplan (1992), and shown in Equation 5.3, is
equivalent to a deconvolution in the time domain. A brief description of convolution is

given in Appendix G.

It would be of some interest to i the asa ion (time

domain) and compare it to the result from the frequency domain division. MATLAB
conveniently provides scripts for this purpose (conv and deconv). As with the frequency
domain division, however, it will be seen that the implementation of the deconvolution is

not straightforward.

The same signals employed for the frequency domain division will be used. Both the
measured force signal, f, (f), and the pulse response will be selected from the original
decay test signal shown in Figure 5.1. The pulse response is differentiated to obtain the

impulse response, hl(t), shown in Figure 5.5. Both signals have a length of 1024 points.

The MATLAB i (deconv) is i as follows,

“[q,r]=deconv(c,a);", where vector “a” is deconvolved out of vector “c” to obtain the

s



vector “g", the quotient, and the vector “r”, the remainder. In this example, the f,, (1)

will be “c”, and hl(r) will be “a”.

of the ion, with the signals unmodified, results in a “g” vector
that contains only one point. Smith (1999) describes how when two signals, of length M
and N respectively, are convolved, the resulting signal has a length (M+N - 1). It would
be reasonable to assume that the signal “c” in the deconv command, be larger than the
signal “a". Since k1(t) has a length of 1024 points, f, (t) would need a length of 2047
point in order to deconvolve a signal “g" of length 1024 points. The solution is to pad the
signal “c” ( f,(t) in this example) with zeros, to a length of 2047 points. The result of
doing this, and deconvolving, yields a “¢” as shown in Figure 5.17. Clearly this does not
resemble the expected rectangular pulse signal. Some other modification must be

required.

One i ion that facili the ion process is the addition of an impulse

of magnitude 2.0 to the first point of the defined impulse response vector. This procedure

is discussed in Appendix H.

This procedure was applied to the measured f,, () and hl(¢) signals from above. The
h1(r) signal must first be scaled by the factor (-mean( 41(r) )*1024), where 1024 is the

number of points in the k1(r) signal, to yield Als(r). This is identical to the



normalization done in the freq 'y domain to achieve a DC component of 1.0. The
scaled impulse response vector is then deconvolved out of f,, 2 (), the version of
f.(t) padded with zeros. This yields the still unrealistic signal for “q”, shown in Figure

517,

The value of the first point of Als(r) (a[1]) is then altered, iteratively, and the
deconvolution quotient, q[n], is recalculated until the its mean matches the mean of
[ (1) (note that this is the mean of the non-padded signal). For this example, the original

value of the initial point of the scaled impulse response (hls (1)), was ultimately changed,

x 107 Deconvolution of fm(t) padded to 2047 points and hi(t)
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Figure 5.17  Result of Deconvolution
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from 0.1936 to 2.19331 before the mean of q[n] matched the mean of f,, (1) . q[n] then

what could be i the actual force signal, f,(r), as shown

in Figure 5.18.

What has happened here? The vector element sum of the original unmodifed impulse
response ( hl(r)) had a value of -1.0. The modified impulse response ( 4ls (r)) had a sum
equal to 1.0. Essentially an impulse of magnitude 2.0 has been added to the time series.
The absolute value of the DC component in frequency domain remains unchanged at 1.0.
There is however, a shift in the frequency response vector, which is particularly
noticeable in the high frequency range. As an aside, the FFT of a single impulse of

amplitude 2.0 would be a flat line of magnitude 2.0.

Figure 5.19 the actual force ined using the inverse Fourier transform

method to that from the deconvolution. It is seen that the general shape and magnitude of

the signals are but that the signal is i less noisy.
The noise reduction is due to the signal shift in the high frequency range of the frequency
response, the result of the addition of the impulse. The appropriateness of this technique

may be questionable, however, it could be argued that it is legitimate since it merely

filters out high that are not legiti the resuit of the
numerical process. Otherwise it could be viewed as a form of low-pass filter. The

deconvolved signal does show some oscillation or noise near the di inuity, see Figure

5.20. This may be caused by some peculiarity of the deconvolution process, or by Gibb's
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Comparison of Measured Force and Actual Force from Deconwolution
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Figure 5.19  Actual Forces from IFT and Deconvolution Methods
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Comparison of Actual Force Results

— Using Inverse Fourier Transform
Using Deconvolution

Force Magritude (MN)

08 It 2 & & 8
Time(s)

Figure 5.20  Actual Forces from IFT and Deconvolution Methods

Effect (see Appendix I). In either case this illustrates the single biggest drawback of this

technique when applied to impact type p. that it is likely impossible to separate

the actual impact force from the signal corruption at the discontinuity.

Figures 5.21 to 5.24 compare the results of the inverse Fourier transform and
deconvolution methods applied to simulated data. Figure 5.21 compares the computed
actual force time series, using the deconvolution technique (q), and the inverse Fourier
transform (fa), to the original simulated “measured” force signal. Figure 5.22 shows the

Fourier transforms for these signals. This example uses a low frequency sinusoidal input



signal. Note the output signals are rounded at the discontinuity. The question is whether
this rounding represents Gibbs Effect, since the anticipated oscillation is not evident.
Figures 5.23 and 5.24 show similar plots using a higher frequency simulated “measured”
force signal. Note that in this case the rounding is no longer evident at the discontinuities,

instead, the expected oscillation typical of Gibbs Effect occurs.

5.2.3 MDOF - Frequency Domain Division

Up to this point the discussion has focussed to the application of these techniques to
single degree-of-freedom systems. In a realistic situation the force measurements would
likely be made (using a dynamometer) in at least three degrees-of-freedom
siraultaneously. So it is necessary to investigate the implementation of the inverse Fourier

transform method, and the deconvolution method in a MDOF situation.

The investigation will be limited to a three degree-of-freedom system, where orthogonal
force measurements represent the X, Y and Z directions. As before, the force
measurements used here are taken from decay test results from the jacket structure model

tests described in Section 3.0. Figure 3.5 defines the coordinate system.

Appendix K shows the MATLAB script for the implementation of the inverse Fourier

transform method, in matrix form, called FFT_matrix_attemptlb.m.
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Actugj Figfces from Inverse Fourier Transform and Decomwlution using Simulated Data
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Figure 5.23 C ison of Using Time Series
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Nine time traces, from three separate decay tests, are loaded into the MATLAB
workspace. From these the so-called measured force signals are selected. The selections
have a length of 1024 points, though any other power of two could have been used. Also
from the original decay test signals, the step response signals are selected. As with the
single degree-of-freedom implementation, these are selected at the point where the
applied load is released. The step response signals are also 1024 points in length. The
files are saved to the computer hard drive in ASCII format. This is required so that they
can be differentiated using the script First_deriv.m, (Appendix K) to obtain the impulse

response vectors.

A fast Fourier transform (FFT) is then applied to the measured force vectors and the
impulse response vectors using the MATLAB command ffr.m. The frequency response
vectors (the ffts of the impulse response vectors) are then normalized in the following
manner. Each frequency response vector is normalized by the initial point value of its
relevant diagonal term vector. For example, the vectors (three in total) resulting from
load applied in the X direction are divided by the first point of the X direction
measurement. Likewise for the vector sets due to loads applied in the Y and Z directions.
This ensures that the matrix of initial points (from the nine frequency response vectors)

will have 1.0’s along the diagonal.

The division of the measured force FFTs by the frequency responses in matrix form is

done in the following manner. First , three of the nine available measured force signals



are chosen, and stored in a common matrix, size 3x1024. In the script shown in Appendix
K, the signals measured from the test where the load was applied in the X direction were
used. Next, in a “for loop™, the frequency response vectors are stored in a 3x3 matrix, and
used to divide the 3x1 column vector from the measured force matrix. That is, the first
points from each of the nine frequency response vectors are used to develop a 3x3 matrix.
Similarly, the first points from each of the measured force signals are used to develop a
3x1 column vector. The matrix division of these yields a 3xlcolumn vector representing
the first points of three “actual force” vectors. This is repeated 1024 times (in this case),

until the three complete “actual force” vectors are generated.

The inverse Fourier transform is then taken of each row vector in the “actual force”
matrix, to obtain the “actual force” time series. Figures 5.25 to 5.26 compare the “actual
force™ time series to the original “measured force” time series. The results appear to be as
good as those using the SDOF method, at least in the X direction. In the Y and Z
directions, there appears to be little or no signal suppression. The overall magnitude of
the Y and Z signals is, however, quite small compared to the X signal, as would be
expected in this loading condition. Perhaps it is optimistic to expect any signal removal in

these degrees-of-freedom?

Several other attempts were made to implement this procedure, using different

to the

i of the response matrix and its application in the
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Measured and Actual Forces implemented in MDOF Fom - X Direction
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Figure 5.25 Result of Inverse Fourier Transform in MDOF Form
Measured and Actual Forces Implemented in MDOF Form - Y Direction
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Figure 5.26  Result of Inverse Fourier Transform in MDOF Form



Measured and Actual Forces Implemented in MDOF Form - Z Direction
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Figure 5.27  Result of Inverse Fourier Transform in MDOF Form

generation of the “actual force” vectors. These provided no improvement over the

method outlined above, so they will not be presented here.

5.24 MDOF - Use of Deconvolution Techniques

The next i ion attempt is using time domain signals, making use of
the MATLAB deconvolution command (deconv), as was done for the SDOF case. The
initial portion of the script is identical to the frequency domain attempt, to the point

where the impulse response vectors are normalized. The concept here is to deconvolve



the impulse response signals out of the measured force signals to obtain nine vector

components of actual force.

The first problem with this approach becomes apparent when the deconvolutions are
attempted. The quotient signals produced bear no resemblance to measured force signals
from which they are deconvolved. As with the SDOF implementation, the impulse

response signals require that the first point be modified to facilitate the deconvolution.

For the so-called “diagonal term” vectors, where the DOF of the applied load and

measurement coincide, the addition of a 2.0 magnitude impulse works well.

When the value of the first point of the impulse response vector is modified, the

comparison between the “ force” and the quotient signal can be

improved. To demonstrate this, the impulse response vectors representing collinear
applied and measured loads, have had their first points modified by the addition of an
impulse of magnitude 2.0. As with the SDOF example this changes the sum of the vector
elements from 1.0 to 1.0. The comparisons are shown in Figures 5.28 to 5.30. The
vector “h_x_fx" represents the impulse response vector of a force measured in the X
direction, due to a load applied in the X direction. Similarly, “h_y_fy” and “h_z_fz"
represent collinear applied and measured loads. Table 5.2 shows the modifications to the

initial point values of the these impulse response signals.



The comparison in Figure 5.28 shows excellent signal removal. This should be expected
since both the measured force and the impulse response vector originate from the same
signal. The comparisons in Figures 5.29 and 5.30 show only moderate signal removal. In
these cases the measured force and impulse response vectors were derived from different
decay tests. Note however that the force scale is considerably smaller than for that shown

in Figure 5.28.

Table 5.2 Impulse Response Vector Modifications

Impulse
Response Signal Description
File

Original Initial | Modified Initial
Point Value Point Value

Impulse
response vector
measured in X
direction due to
load applied in
the X direction.
Impulse
response vector
measured in Y
direction due to
load applied in
the Y direction.
Impulse
response vector
measured in Z
direction due to
load applied in
the Z direction.

h_x_fx 0.1936 2.1933

h_y_fx -0.3115 1.6900

h_z_fz -0.8669 1.1330




It should be noted that the signals in Figure 5.28 are identical to those shown in Figure
5.18. The quotient signal shown in Figure 5.28 is one component of the total X direction

force, while the quotient signal shown in Figure 5.18 was developed as a single DOF.

For the cases where the impulse response vectors and the measured force vectors are not
collinear, reasonable results are not obtained by the modification technique. Even using
an iterative approach, changing /(1) until the mean of the convolved signal matches the
original measured force signal does not work. Instead of iterating towards the “correct
actual force”, with only minor alteration of the impulse response signal, ridiculously large
values need to be substituted to generate a signal that is reasonable, and then in shape
only. The magnitude (quantified by the mean) in these cases will differ from that of the
measured force signal by a scale factor which is equal to the value substituted for the first

point of the impulse response signal.

It is not clear what justification could be used to apply such a scale factor. In addition, the
scaled quotient signal not only matches the mean of the “measured force” signal, the
shape is identical. When subtracted from “measured force™ signal (to obtain the inertial
force), the signal would essentially be zero. This might not seem unreasonable, since with
this type of 3 DOF system, the amount of X direction measured force (for example) due

to an applied load in the Y or Z directions would be expected to be negligible.
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Measured and Actual Forces - MDOF Decomvolution - X Direction
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Figure 5.28 Result of Deconvolution Method in MDOF Form

Measured and Actual Forces - MDOF Deconvolution - Y Direction
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Figure 5.29  Result of Deconvolution Method in MDOF Form



Measured and Actual Forces - MDOF Decomvolution - Z Direction

20
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Figure 5.30 Result of Deconvolution Method in MDOF Form

As an example, Figure 5.31 compares the measured force signal “fm_x" to a deconvolved
quotient “q”, that has been developed using the impulse response signal “h_y_fx”
(impulse response in the X direction to a load applied in the Y direction). The first point
was iterated to a value of 22000 (from the original value of —1.6026). The quotient was

then scaled by 22000 so that its magnitude (mean) matches that of the “measured force”.
Appendix K contains the MATLAB script developed for this implementation,

FFT_matrix_deconv_a.m. The impulse response vectors are normalized by the mean of

the relevant “diagonal term™ vector (multiplied by its length, 1024). Each vector then has
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Measured and Actual Force - Deconvolution - Impulse not collinear with Measured Force
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Figure 5.31 Result of Deconvolution-Impulse and Force not Collinear

its first point value modified by adding (or subtracting) the absolute value of two times
the vector element sum of the original unmodified vector. For the “diagonal term”
vectors, this means an addition (or subtraction) of 2.0. The “off-diagonal” terms would
see the addition (or subtraction) of a lesser value. The concept here is to maintain the
signal ratio between the relevant “diagonal” and “off-diagonal” vectors. Unfortunately,

this procedure fails to produce results for “off-di; ” term vectors.
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5.3  Application to M d Wave I

These procedures were applied to measured wave impact signals, gathered from the
model test experiments described in Section 3.0. This was implemented in SDOF and
MDOF form. The MATLAB scripts for these are ift_wave_sdof.m and

FFT_matrix_wave.m, and are shown in Appendix K.

The results were less than satisfactory. Figures 5.32 to 5.37 compare the measured and
actual force time series, for Jacket B and Jacket A, for the SDOF case. In neither DOF
was there significant signal suppression. In fact, in many, the actual force signal was
amplified. There are two reasons for this. Figures 5.38 to 5.43 compare the FFTs of the
measured and actual force signals. In each DOF it can be seen that the high frequency
region of the actual force signal is amplified in sections. This does not represent real
frequency components, but is the result rather of the division of the small measured force
values by smaller values in the frequency response. Figures 5.44 to 5.46 compare the
measured force FFTs and the frequency response, for Jacket A, in the X and Y degrees-
of-freedom. These show the relative scales of the force signal and the frequency response

in the higher region. The signal displays i high

noise, which is amplified in the division process.

Figure 5.46 compares the FFT of the force signal and the frequency response for Jacket A

in the Z DOF. This illustrates the other reason for the poor performance of this method.

The resonant peak of the measured signal has been shifted from that of the frequency
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Figure 5.32 IFT Method - Jacket B Wave Impact - SDOF - X Dir.
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Figure 5.33 IFT Method - Jacket B Wave Impact — SDOF - Y Dir.
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measured and actual force signals

' fm-z - measured signal
15| — fa-z - actual signal
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Figure 5.34 IFT Method - Jacket B Wave Impact - SDOF - Z Dir.
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Figure 5.35 IFT Method - Jacket A Wave Impact —- SDOF - X Dir.
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measured and actual force signals
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Figure 5.36 IFT Method - Jacket A Wave Impact — SDOF - Y Dir.
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Figure 5.37 IFT Method - Jacket A Wave Impact - SDOF - Z Dir.
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FFTs of measured and actual force signals - X Direction
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Figure 5.38 IFT Method - Jacket B FFT of Wave Impact - SDOF - X
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Figure 5.39 IFT Method - Jacket B FFT of Wave Impact - SDOF - Y
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FFTs of measured and actual force signals - Z Direction
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Figure 5.40 IFT Method - Jacket B FFT of Wave Impact —- SDOF - Z
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Figure 5.41 IFT Method - Jacket A FFT of Wave Impact - SDOF - X
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FFTs of measured and actual force signals - Y Direction
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Figure 5.42 IFT Method - Jacket A FFT of Wave Impact - SDOF - Y

FFTs of measured and actual force signals - Z Direction

o 5 10 15 30 35 40 45

20 25
Frequency (Hz)

Figure 5.43 IFT Method - Jacket A FFT of Wave Impact - SDOF - Z



FFTs of Measured Signal and Nomalized Frequency Response - X Direction
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Figure 5.44 FFT of Measured Signal and Freq. Response — Jacket A
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Figure 5.45 FFT of Measured Signal and Freq. Response — Jacket A
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FFTs of Measured Signal and Normalized Frequency Response - Z Direction

Figure 5.46 FFT of Measured Signal and Freq. Response — Jacket A

response. This is an effect of the added mass caused by the impacting wave. Since the

peaks no longer coincide, the procedure cannot be properly implemented.

Similar poor results were obtained from the MDOF implementation, so will not be

presented here.



5.4 Blind Deconvolution

Ani i ique for i ions from signals is described

by Smith (1999). This technique is known as Blind Deconvolution. The impulse response
of the system is unknown, and must be estimated. The appropriateness of the method may
be dubious, but it does provide some interesting results. A discussion of this method, and

its application to measured wave impact signals is provided in Appendix G.

5.5 Summary

Based on the ication of these i to decay data, it is clear that they

have some merit. In both the single DOF, and multiple DOF implementations the

dida job of ing the inertial when the impulse
response vector and the measured force vector were collinear. Otherwise, the results were

not impressive.

The technique is best suited for single DOF measurement systems, where crosstalk and
contamination from multiple modes of vibration are less an issue. For MDOF systems,
further work needs to be done to develop methods to establish the matrix of cross
coupling terms. This needs to be tied into studies of overall dynamometer design. There
has been little work done to quantify the effects of system dynamics on these important

measuring devices.



Further work needs to be done to establish criteria for the selection of pulse (step)
responses from measured decay tests. These are differentiated to generate the impulse
responses. The sensitivity of the results to the selection has been demonstrated here, but

the process is still based on trial and error at this point.

Additional study is required to understand the differences observed between the results
obtained using the frequency domain division and the deconvolution in time domain.

‘Why does the impulse response vector require the addition of an impulse to the first point

to facilitate the ion? Is this i ion even appropri
Gibbs effect seems to be an important and unavoidable feature of this technique. Some
authors have described methods to mitigate Gibb's effect, and these are discussed briefly

in Appendix L. Effort needs to be made to i i these mitigati hni and to

establish their effect and appropriateness applied to the inverse Fourier transform

methods.

The ication of the i to wave impact signals highlights the need

for further study in two areas. First, more work needs to be done to understand the effects
of spatially and temporally varying added mass on the measured wave impact signals.
Second, the appropriateness of filtering to remove the erroneous high frequency

components from the actual force signals needs to be examined.



The Blind D¢ i i i in Appendix G requires further
experimentation with the selection of desired pulse shapes, the application of the Custom

Filter method, and consideration of Gibbs effect.



6.0 Use of Digital Filters to Remove Inertial Force

6.1 Introduction

Murray and Kaplan (1995) described the use of digital filters in post-experiment

processing to remove inertial loads from measured force signals. They demonstrated the

use of a low-pass Kaiser window to remove high from

wave impact loads on the instrumented deck of a jacket-type offshore structure. Their
Justification for applying a low-pass filter was that the high frequency components
measured by the vertical measuring load transducers (five in this case) were not phase
locked to the low frequency components. That is, the low frequency component time
traces for the individual transducers that comprise the dynamometer were out of phase
with each other. The time traces of the high frequency components were in phase. The

authors stated that this indicates that the high are

inertial in origin, and can be legitimately removed. In the conclusion section of their

paper they recommend further investigation using band reject type filters.

An attempt was made to apply this low/high pass separation technique to measured
vertical force signals from the experiments described in Section 3.0. The results were not
as conclusive as those presented by Murray and Kaplan (1995). The signals were low and
high pass filtered with appropriate frequency cutoffs, using a Kaiser window. The low
pass signals showed the expected phase relationships, with the forward load transducer

signals cut of phase with rear load ransducers. When high pass filtered though, the

126



signals could not definitively be described as being in phase. Indeed, if regions of the
high frequency range are band passed, there are sections that show the same phase
relationships as seen in the low pass case. This is not to suggest that the hypothesis put
forward by Murray and Kaplan (1995) is invalid, but it does emphasize the need to
careful application of low pass filters, and the need for further investigation of the use of

band reject filters.

6.2 Filter Types

There are, of course, many types of low pass and band reject filters that can be applied to
a measured signal. The choice can be overwhelming to someone not versed in the
mysteries of digital signal processing (DSP). The selection of an inappropriate filter, or

its improper application can lead to incorrect interpretation of results.

Smith (1999) provides an excellent discussion of filter types going a long way to
demystify their use. He basically divides filters into two categories, those optimized for
use with time-domain encoded signals, and those optimized for use with frequency-
domain encoded signals. The former are best at removing noise from signals, while the

latter are best at separating bands of frequencies. The time domain filters typically have

sharp step response, while having poor response istics. The
domain filters, on the other hand, have excellent frequency response characteristics, with
fast roll-off, and good stopband attenuation, but they can have slow step responses, with

significant overshoot.
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Which type of filter best applies to the measured wave impact signals being examined
here? This question will be examined by implementing a number of the filters
recommended by Smith (1999). The algorithms and scripts for each filter will be

and their

and limitations when applied to a typical wave impact

measurement will be discussed

Smith (1999) also categorizes filters as to whether they are applied in convolution or in
recursion. These classifications essentially influence the speed of the applied filter. Since

the signals under examination here are post processed. speed is not an issue.

Figures 6.1 and 6.2 show a typical wave impact time trace and its FFT. These will be
used for this examination of filters. This signal represents a wave impact on the deck

dy d in the hori (X) direction. This will be the common signal to

which the filters will be applied. The filters that are to be explored are the moving
average filter. the windowed sinc filter. the single pole filter. the Chebychev type I. and
the Kaiser window. These will all be implemented as low pass filters. and several will be

implemented in band reject form.
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Typical Horizontal Wave Impact Measurement - Jacket B
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Figure 6.1 Horizontal Wave Impact — X Direction - Jacket B
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Figure 6.2 FFT of Horizontal Wave Impact — X Direction — Jacket B
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6.3  Low Pass Filters
6.3.1 Moving Average Filter

The moving average filter is the simplest of all filters. It is classified as finite impulse
response (FIR). It is implemented by averaging sections of the time series using
successive windows of arbitrary length. The algorithms in non-recursive and recursive

form are given in Equations 6.1 and 6.2.

1

sl S i+ ) “

=

ylil=yli-1l+ i+ pl-li-q] 6.2

Where, p=(M -1)/2 and g=p+1. M is the filter length, or the length of the
averaging window. x{i] and y{i] are the input and output signals respectively. The

Matlab scripts for these are given in Appendix K.

The moving average filter is the best for reducing random noise in a signal. It has a sharp

step response, with little or no L Its. response istics are very
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poor, with extremely slow roll-off, and very poor stopband attenuation. Figures 6.3 and

6.4 show the frequency and step responses for a range of filter lengths.

Increasing the filter length has the effect of improving the roll-off and stopband
attenuation of the frequency response, while lengthening the rise-time of the step

response.

The frequency responses are sinc functions. This means that the impulse responses are
rectangular pulses, where the width of the pulse is the same as the filter length. The same
filtered output could be obtained by convolving the input signal with the rectangular

pulse.

Other than altering the filter length, the user of the moving average filter has no control
over location of the cutoff frequency. For the example input signal, a filter length of 9
points causes the first zero crossing of the frequency response to coincide with the
resonant peak, resulting in the best case for this filter type, see Figures 6.5 and 6.6. A
filter length of 19 points causes the second zero crossing to coincide with the resonant

peak, resulting in the second best case.

The 9 point moving average filter, for this wave input example, does a good job of

removing the resonant peak without corrupting the lower frequency (wave induced)

The higher are not reduced to zero, but are reduced
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Moving Average Filter - Effect of Filter Length on Frequency Response
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Figure 6.3 Effect of Filter Length on Freq. Response — Moving Avg.

Moving Average Filter - Effect of Fiter Length on Step Response
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Figure 6.4 Effect of Filter Length on Step Response — Moving Avg.
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Moving Average Filter - Effect of Filter Length on Output FFT
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Figure 6.5 Effect of Filter Length on Output FFT — Moving Avg.

Moving Average Filter - Effect of Filter Length on Time Domain Output
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Figure 6.6 Effect of Filter Length on Time Series — Moving Avg.
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1o less than 20 percent of their original values. Common wisdom would suggest that this
type of filter is not appropriate for this type of signal. However, based on these
interesting observations. and the ease of implementation. use of the moving average filter

should at least be explored.

Blackman and Gaussian windows. applied in convolution. provide step responses that are
almost as good as the moving average filter. while producing better stopband attenuation

in the frequency response.

6.3.2 Windowed Sinc Filter

The windowed sinc filter is also classified as FIR. since it is implemented in convolution.
It is known for its excellent frequency response characteristics: fast roll-off. low passband
ripple and good stopband attenuation. The step response shows short rise-time. but an

overshoot in the range of 9 to 10 percent. Increasing the filter length improves the roll-off
in the frequency response. but has little effect on the step response rise-time or overshoot.

Figures 6.7 and 6.8 illustrate the effect of filter length on frequency and step responses.

The filter kernel or impulse response for the windowed sinc filter Smith (1999) is given

in Equation 6.3.

Wik S
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Windowed Sinc Filter - Effect of Filter Length on Frequency Response
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Figure 6.7 Effect of Filter Length on Freq. Response — Windowed Sinc

Windowed Sin Filter - Effect of Filter Length on Step Response
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Figure 6.8 Effect of Filter Length on Step Response — Windowed Sinc
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M =4/BW where BW is the transition bandwidth between the passband and stopband.
M is required to be even. £, is the cutoff frequency, and K is a normalization constant to
set unity gain at DC. The cutoff frequency used for this and all examples was 0.088
where the Nyquist frequency was 0.5. The filter kernel is convolved directly with the
input signal to produce the filtered output signal. Figures 6.9 and 6.10 show the effects of
filter length on the output signal and FFTs. Beyond M equal to 50, there is little visible
difference between the output signals and their FFTs. The Matlab script implementing

this algorithm is shown in Appendix K

As a result of their excellent frequency response, windowed sinc filters are best used to

separate bands of frequencies.

The impulse response of an ideal filter is a sinc function. An ideal filter cannot be

on The wii sinc filter is the result of truncating, shifting

and windowing (using a Blackman window) the ideal impulse response. This filter kernel

is shown in Figure 6.11.

Stopband attenuation can be improved by using the filter in multiple stages. Either by

applying the filter successively or by convolving the kernel with itself.
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Windowed Sinc Fiter - Efiect of Filter Length on Time Domain Output
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Figure 6.9 Effect of Filter Length on Time Series - Windowed Sinc
Windowed Sinc Filter - Effect of Filter Length on Output FFT
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Figure 6.10 Effect of Filter Length on Output FFT - Windowed Sinc
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Windowed Sinc Filter - Effect of Filter Length on Impuise Response
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Figure 6.11 Effect of Filter Length on Imp. Response - Windowed Sinc

6.3.3 Single Pole Filter

The single pole filter is classified as a recursive, time domain filter. It has very good step

response characteristics, with quick rise-time, and no overshoot. However, it has terrible

frequency response characteristics, with extremely slow roll-off and poor stopband

attenuation. Figure 6.12 and 6.13 show the frequency and step responses for non-

cascaded and cascaded versions.
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Recursive filters are referred to as infinite impulse response (IIR), since their impulse

are of decaying ials. They use previously output

values. along with the present input value to determine subsequent output values.

The recursive algorithm given in Equation 6.4 gives the output signal for the non-

cascaded single pole low pass.

il = a, x[i]+b1 i1} 6.4

where ¢, =1-z_ b, e _ £ is the cutoff frequency (0.088 in this case). In

four stage cascaded form. the recursion equation would be as shown in Equation 6.5.

il = a,x[i]+ by{i=1]+b,[i = 21+ b,[i - 3]+ b,[i - 4] 6.5

where ¢, =(1-2)'. b, =4z. b, =627, b, =4z". b s=e¢ ™" | x is the input
] 2

signal. and v is the output signal. = is the amount of decay between adjacent samples.
Figures 6.14 shows the filtered output signal. Clearly in this form. the algorithms have

done little to remove inertial loads.



Single Pole Filter - Effect of Filter Length on Frequency Response
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Figure 6.12 Effect of Filter Length on Freq. Response — Single Pole

Single Pole Filter - Effect of Filter Length on Step Response
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Figure 6.13 Effect of Filter Length on Step Response — Single Pole
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Single Pole Filter - Effect of Filter Length on Time Domain Output

input
output1 single pole recursive
2 — output2 four stage low pass

Time (s)

Figure 6.14 Effect of Filter Length on Time Series - Single Pole

6.34 Chebychev Type 1

The Chebychev type 1 filter is a recursive. The type 1 designation indicates that ripple is
allowed only in the passband. This filter is optimized for use in the frequency domain, in
that it is designed to separate bands of frequencies. It is not considered to be as good as
the windowed sinc filter. The purpose of the ripple in the passband is to improve the

speed of the roll-off. With zero percent ripple, it is known as a Butterworth filter.
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The parameters used to design a Chebychev filter include cutoff frequency. percent ripple
in the passband. and number of poles. Generally. the more poles used, the better. The
recursion coefficients can be selected from published tables. based on the cutoff
frequency and number of poles or efficiently using computer programs. Such a program
is provided by Smith (1999) and is implemented in a Matlab script in Appendix K.

Otherwise the z-transform would be utilized to determine the coefficients.

The larger the number of poles. the better the frequency response. The step response is
quite sharp. but the overshoot can reportedly be in the range of 5 to 30 percent. Beyond 8
to 10 poles. there is little difference in the shape of the frequency response, see Figure
6.16. Figure 6.16 shows the frequency response using 10 poles and a variation from 0 to
5 in the percent ripple. Figure 6.17 shows an overshoot of more than 20 percent. with

number of poles equal to 10, and a percent ripple of 5.

The effect of the number of poles on the output time series is shown in Figure 6.18.

6.3.5 Kaiser Window

Murray and Kaplan (1995) employed a non-recursive Kaiser window in the filtering of
their wave impact measurements. Matlab conveniently provides scripts to design such
filters. The Kaiser window is an FIR filter. which produces an impulse response that can

be applied in convolution.
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Chebychev Filter - Effect of Number of Poles on Frequency Response
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Figure 6.15 Effect of Number of Poles on Freq. Response — Chebychev
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Figure 6.16 Effect of Percent Ripple on Freq. Response — Chebychev
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Chebychev Filter - Effect of Percent Ripple on Step Response
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Time (s)

Figure 6.17 Effect of Percent Ripple on Step Response — Chebychev

Chebychev Filter - Effect of Number of Poles on Time Domain Output

NI
20 — output - PR=1,
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Figure 6.18 Effect of Number of Poles on Time Series — Chebychev



The Matlab script ““Kaiserord.m” requires as input the frequency vector defining the
transition band (the section between the passband and stopband). The amplitude of this
frequency vector is required. Generally a value of 1 is used for the passband, and 0 for
the stopband. The allowable amplitude deviation in the passband and stopband is
required. This is the same as percent ripple in other filter designs. Finally, the sample rate
of the input signal is needed. This can be normalized so that the Nyquist frequency is 0.5.
The script produces the order and cutoff frequency required for use in scripts “Kaiser.m”

or “firl.m". The command procedure for this is given in Appendix K.

Figure 6.19 shows the effect percent ripple has on the frequency response. The roll-off is
almost identical. The transition band has been set very narrow. This allows for a clean
separation of frequencies, as shown in Figure 6.20. The step responses are also very
similar, each showing a reasonably sharp response with approximately 10 percent

overshoot. See Figure 6.21.

Given the similarity of the and step

one would expect the output

time series to be similar. This is demonstrated in Figure 6.22.

6.3.6 Comparison of Low Pass Filters

One of the goals of this exercise is to determine which filter or type of filter is the best to

apply to a measured wave impact, in order to remove inertial forces. Will a filter



Kaiser Lowpass Filter - Effect of Percent Ripple on Frequency Response
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Figure 6.19 Effect of Percent Ripple on Freq. Response — Kaiser LP
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Figure 6.20 Effect of Percent Ripple on Output FFT — Kaiser LP



Kaiser Lowpass Filter - Effiect of Percent Ripple on Step Response
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Figure 6.21 Effect of Percent Ripple on Step Response — Kaiser LP
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Figure 6.22 Effect of Percent Ripple on Time Series — Kaiser LP
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optimized for the time domain provide better results than one optimized for the frequency
domain? Is there a certain filter from either category that stands out? The results from the

filters just discussed will be compared to shed some light on these questions.

Table 6.1 summarizes the input parameters for each filter design. An attempt was made to

keep the cutoff frequencies the same.



Table 6.1 — Low Pass Filter Input Parameters

Normalized

i = Other Input
Filter Name | Filter Type | Frequency Parameters Notes
Cutoffs
s Time
Moving 5 .
Domain, . Symmetrical
Average Convoluiion N/A Filter Length=9 Averaging
. Frequency
Widowed | Domain, 0088 | Filter Length=300
inc .
Convolution
i Time
Single Pole Domain, 0.088 Single Stage
Recursive
Percent
Frequency Ripple =1
Chebychev Domain, 0.088 Type 1
Recursive Number of
Poles = 10
Sample
Rate=1 Transition
frequencies
Passband defined
Kaiser Non- 0.088 Ampbiude=] —
i Window recursive t0 0.095 Stopband ripple the
| Amplitude =0 same in
| passband and
| Percent Ripple=1 stopband
L
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Figure 6.23 compares the frequency response. Figure 6.24 compares the step response.

Figures 6.25 and 6.26 compare output signal time series and their FFTs, respectively.

A moving average filter of length 9, based on symmetrical averaging, resuited in a
frequency response with a zero crossing located at the resonant peak of the input signal.
This focussed signal removal resembles a band reject filter in some aspects. Despite its
slow roll-off, and poor stopband attenuation, the signal removal is reasonable. From the
output signal FFT it is seen that the low frequency wave components have not been
dramatically altered, and the energy in the stopband region is not significant. The step

response is very sharp, and has no overshoot.

The single pole filter was implemented as a single stage. The roll-off and stopband
attenuation are atrocious. The step response is excellent, with extremely sharp rise time,
and no overshoot. The single pole filter, however, removes almost none of the inertial

component.

The frequency response for the other filters is extremely good, with little to choose
between them. The roll-offs are quick, and the attenuation in the stopband is good. The

Chebychev displays the worst passband ripple.

For clarity, Figure 6.27 to 6.30 compare the frequency response, step response, output

signals and FFTs for the three filters deemed to be the best. The windowed sinc and



Comparison of Frequency Response
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Figure 6.24 Comparison of Step Response for Low Pass Filters
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Comparison of Output Signal
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Figure 6.25 Comparison of Time Series for Low Pass Filters
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Figure 6.26 Comparison of Output FFTs for Low Pass Filters
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Comparison of Frequency Response
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Figure 6.27 Frequency Response for Selected Low Pass Filters
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Figure 6.28 Step Response for Selected Low Pass Filters
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Comparison of Output Signal
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Figure 6.29 Time Series for Selected Low Pass Filters
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Figure 6.30 Output FFTs for Selected Low Pass Filters
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Kaiser window filters have and step

P and result in nearly

identical output signals.

If only frequency domain filters are considered, the choice of filters would likely be
based on ease of implementation or other personal preference. The choice between time
domain and frequency domain filters is not so straightforward. The moving average filter.
by most standards, would be labeled as having useless frequency response characteristics.
Itis really only luck that the input signal resonant peak is narrow enough to be eliminated
by the first zero crossing region of the frequency response. However, a narrow resonant
peak is typical of wave impact signals, so the moving average filter should always be
considered as a filtering tool for these types of signals. Due to the nearly ideal step
response the output signal is not corrupted by overshoot. So what you see, is what you
get. The frequency domain filters, on the other hand, can separate close proximity
frequency bands. However, due to the overshoot in the step response the output signal

will be corrupted, particularly in the impact region.

So which type of filter should be used? There is no clear or easy answer. A reasonable

wouldbe toi both types when ining wave impact signals.
Application of moving average and windowed sinc filters would produce output signals
that help define a range of peak load. From Figure 6.29, the moving average and

windowed sinc filters would estbalish a peak load range from 19 to 22 (MN). For
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engineering purposes this would be quite reasonable. It would be foolish to expect better

results given the inherent uncertainties of all filters.

6.4 Band Reject Filters

If one is uncomfortable with the assertion by Murray and Kaplan (1995) that the high
frequency components in a wave impact signal are entirely inertial, then the use of band

reject filters should be considered.

A band reject filter acts like a combination low pass and high pass filter, maintaining low

and high ranges while eliminating the ition zone that separates them. As
with the low pass filters, care must be taken in their design. Three types will be examined

and compared.

6.4.1 Recursive Algorithm

Smith (1999) provides algorithms for the recursion coefficients of a band reject filter.

These are shown in Equations 6.6 and 6.7.



a,=K
a,=-2KcosQ2x f)
a,=K

b =2Rcos(2x f)
by=-R*

6.6
where

2Rcos(27 f)+R*
2-2cos(2x f)
R=1-3BW

K

BW and f are the idth and centre of the ition region, respt

The recursion equation is as follows.

y()=a,x(i)+a, x(i-1)+a, x(i-2)+b, y(i-1)+b, y(i-2) 6.7

The centre frequency is selected to be 0.1113. This is the location of the resonant peak of

the input signal under ination. Recall that the scale has been normalized

so that the Nyquist frequency is 0.5. A range of transition bandwidths, from 0.01 to 0.1

was i Figure 6.31 p the This filter preduces a V-

shaped frequency response. This allows for a very focussed rejection band selection. The

157



speed of the roll-off increases with decreasing transition bandwidth. The level of

corruption of the high frequency band increases with increasing bandwidth. For example,

witha idth of 0.1, the it ion of the high freq is almost 20
percent. The effect of this on the output signal and its FFT is negligible, as shown in

Figures 6.32 and 6.33. The iti idth of 0.0467 ¢ i the lower limit of

the transition zone at 0.088, which is comparable with the cutoff values of the low pass

filters shown previously.

Figure 6.34 shows that the level of step response overshoot is in the range of 10 to 15

percent.

6.42 Windowed Sinc Band Reject

Applying a spectral inversion technique to a low pass windowed sinc filter generates the
windowed sinc band reject filter. Spectral inversion involves modifying the filter kernel
by changing the sign of all samples, and then adding 1.0 to the point of symmetry. This
essentially flips the frequency response of the low pass filter vertically, making it a high
pass filter. The procedure is to establish the low pass filter, with a frequency cutoff at the
lower limit of the desired transition zone. Similarly, develop a low pass filter with a
frequency cutoff at the upper limit of the desired transition zone. The second low pass
filter is then spectrally inverted to obtain a high pass filter, with its cutoff at the upper

limit of the desired transition zone. The two filter kemnels are then added. The frequency
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Recursive Band Reject Filter - Effect of Transition Bandwidth on Frequency Response
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Figure 6.31 Effect of Bandwidth on Freq. Response - Recursive BR

Recursive Band Reject Filter - Effect of Transition Bandwidth on Time Domain Output
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Figure 6.32 Effect of Bandwidth on Time Series - Recursive BR
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Recursive Band Reject Filter - Effect of Transition Bandwidth on Output FFT
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Figure 6.33 Effect of Bandwidth on Output FFT - Recursive BR

Recursive Band Reject Filter - Effect of Transition Bandwidth on Step Response
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Figure 6.34 Effect of Bandwidth on Step Response - Recursive BR



response for the new filter kernel will be a band reject. If one wished to obtain a band

pass filter, the two filter kernels would have to be convolved.

There are two limitations to the spectral inversion method. First the filter kernels must
have left-right symmetry. Second, the unit impulse must be added at the centre of

symmetry.

Filters developed using this technique were applied to the sample input signal. The low
and high frequency cutoffs were 0.088 and 0.1346, respectively. The filter length was
varied from 100 to 500. The effect of this variation of frequency response is shown in
Figure 6.35. The roll-offs are quite sharp, increasing with filter length, and there is no
amplification in either the low or high frequency passbands. As seen in Figure 6.36, the
frequency content in the reject zone is essentially reduced to zero. This could be
considered a problem since, in theory, there could be some wave induced (non-inertial)

energy in that region.
The step responses show similar levels of overshoot, approximately 10 percent, see

Figure 6.37. Figure 6.38 shows the filtered output signals which, to the eye, appear quite

similar.
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Windowed Sinc Band Reject Filter - Effect of Filter Length on Frequency Response
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Figure 6.35 Effect of Filter Length on Freq. Response — Win. Sinc BR

Windowed Sinc Band Reject Filter - Effect of Filter Length on Output FFT
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Figure 6.36 Effect of Filter Length on Output FFT — Win. Sinc BR
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Windowed Sinc Band Reject Filter - Effect of Filter Length on Step Response
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Figure 6.37 Effect of Filter Length on Step Response — Win. Sinc BR

Windowed Sinc Band Reject Filter - Effect of Filter Length on Time Domain Output
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Figure 6.38 Effect of Filter Length on Time Series — Win. Sinc BR
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6.4.3 Kaiser Band Reject

The scripts described in Section 6.3.5 to develop Kaiser low pass filters can used to
generate band reject filters. Instead of a two point vector defining the transition between
the low frequency passband and stopband, a four point vector defining the transitions
between the the reject region and the low and high passbands is used. For this example,
this vector of normalized frequencies would be [0.088 0.104 0.1186 0.1346]. This vector
defines a rejection zone that centres on the resonant peak of the input signal. The
corresponding amplitude vector would be (1 0 1], and a similar three point vector would
define the allowable deviation in each zone. For this demonstration, the ailowable percent
ripple is varied from 1 to 6 percent. Figure 6.39 illustrates the effect of percent ripple on
the frequency response. The roll-off for each is quite fast, and seemingly unaffected by
the percent ripple. The frequency response using 6 percent ripple shows the largest
deviation in the low and high passbands, as expected. But it also shows an amplification
in the stopband, which is unexpected and unwanted. The effect of this is evident in the
output signal FFT shown in Figure 6.40. The output time-series, however, are essentially
identical, as seen in Figure 6.41. The step response are also identical, each showing an

overshoot of approximately 10 percent, as seen in Figure 6.42.
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Figure 6.39 Effect of Percent Ripple on Freq. Response — Kaiser BR

Kaiser Window Band Reject Filter - Effect of Percent Ripple on Output FFT
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Figure 6.40 Effect of Percent Ripple on Output FFT - Kaiser BR
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Kaiser Window Band Reject Filter - Efiect of Percent Ripple on Time Domain Output
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Figure 6.41 Effect of Percent Ripple on Time Series - Kaiser BR

Kaiser Window Band Reject Filter - Effect of Percent Ripple on Step Response
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Figure 6.42 Effect of Percent Ripple on Step Response — Kaiser BR



6.4.4 Comparison of Band Reject Filters

From the filters discussed above, one of each type was designated to be the best. These
were the recursive with a bandwidth of 0.0467, the windowed sinc with a filter length of
100, and the Kaiser window with a percent ripple of 1. The frequency response of each is

compared in Figure 6.43. The Kaiser window displays the fastest roll-off, but shows the

greatest deviation in the The wil sinc shows no passband ripple, but
has a slightly slower roll-off. The recursive filter has the slowest roll-off, but the reject
zone is very focussed, a feature that is advantageous when dealing with a narrow banded
resonant peak. The recursive filter does show an amplification in the order of 0.5 percent

in the high frequency passband.

The step responses are quite similar, each showing sharp rise time, with overshoot in the
10 to 15 percent range, as seen in Figure 6.44. The output time series are very similar, as
seen in Figure 6.45. The peak values range from approximately 22.5 to 24, with the
recursive filter producing the highest, and the windowed sinc the lowest. The output
signal FFTs are shown in Figure 6.46. An interesting result from the recursive filter is
that the energy is never reduced to zero in the stopband region (well perhaps at one

point). This “simulates™ the retention of the wave induced component in this region.
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Figure 6.44 Comparison of Step Response — Band Reject Filters



Band Reject Filters - Comparison of Output Signal
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Figure 6.46 Comparison of Output FFT — Band Reject Filters
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As with the low pass filters, the selection of filter from this group will depend on ease of
implementation and unique features of the input signal, such as width of the resonant

peak.

6.5 Comparison of Low Pass and Band Reject Filters

Figure 6.47 to 6.50 compare the frequency response, step response, output time series and
output FFTs for the low pass and band reject filters discussed above. Further work needs
to be done to test the hypothesis put forward by Murray and Kaplan (1995) regarding the
phase relationships of low and high passed signals measured from dynamometers. The

appropriateness of low pass filters versus band reject filters needs to be established.
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Comparison of Frequency Response
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Comparison of Output FFT
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7.0 Comparison of Methods

For completeness, this section compares reslts obtained using the methods discussed
above. This includes the normal mode approach, the inverse Fourier transform
implemented in SDOF format, and selected filters. The methods were applied to three

wave impact events, from Jacket B i in the X and Z directi and Jacket A

experiments in the Z direction.

The normal mode approach was applied using script
Normal_mode_v3_3dof_nodamping.m. The inverse Fourier transform method was
implemented using script Ift_wave_sdof.m. The selected filters were the low pass Moving
Average, the low pass Windowed Sinc, the band reject using the recursive algorithm, and
the band reject Windowed Sinc. These are implemented in scripts Mov_avg_v2.m,

Win_sinc_v2.m, Band_reject_recur_v2.m, and Band_reject_win_sinc_v2.m, respectively.

Tables 7.1 to 7.4 outline the input parameters used in the program implementation.
Figures 7.1 to 7.21 compare the results. These illustrate, once again, the deficiencies of
the normal mode and inverse Fourier transform methods. The output signals from these

methods display i high ination and little ion of

inertial component. These problems are related to added mass estimation and the inherent

shift of structural natural frequency in water.



Table 7.1 — Mass Matrix for Jacket Structure Model (A)

: (kg full scale)
3.19¢6 00 00
00 3.19¢6 00
0.0 00 3.19¢6

Table 7.2 — Matrix of Measured Decay Force Vectors

Jacket A
DOF Mod; 1 '(X) Mod; 2’(“ &ode 3-(2)
X 9.020 0275 -0.180
¥ 0.443 3.803 -0.298
z -0.036 -0.059 0540

Table 7.3 - Vector of Natural Frequencies - Jacket A
(radians/s)

14.32 15.85 4551

174




Table 7.4 — Filter Input Parameters

Sinc

Input Parameters
Filter Type Jacket B — X Direction
Low Pass Moving Average Filter Length: 9
Low Pass Windowed Sinc Filter Length: 300
Cutoff Frequency: __ 0.088 (Nyquist =
Band Reject — Recursive Centre Frequency: 0.111 (Nyquist =0..
Transition Bandwidth: 0.047
Band Reject - Windowed Filter Length: 100

Low Freq. Cutoff: 0.088 (Nyquist = 0.5)
High Freq. Cutoff: 0.135

Filter Type

Jacket B — Z Direction

Low Pass Windowed Sinc

Low Pass Moving Average

Band Reject - Recursive

Band Reject - Windowed
Sinc

Filter Length: 9

Filter Length: 300

Cutoff Frequency: 0.331 (Nyquist =0.5)
Centre Frequency: 0.357 (Nyquist = 0.5)
Transition Bandwidth: 0.056

Filter Length: 100

Low Freq. Cutoff: 0.331 (Nyquist = 0.5)
High Freq. Cutoff: _ 0.3858

Sinc

Filter Type Jacket A - Z Direction
Low Pass Moving Average Filter Length: 27
Low Pass Windowed Sinc Filter Length: 300
Cutoff Frequency:  0.024 (Nyquist = 0.5)
Band Reject - Recursive Centre Frequency: 0.360 (Nyquist = 0.5)
Transition Bandwidth: 0.058
Band Reject - Windowed Filter Length: 100

Low Freq. Cutoff: 0.007 (Nyquist =0.5)

High Freq. Cutoff: _0.048
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‘The results obtained from the filters are much cleaner. The Windowed Sinc filters cause a
shift in the location of the peak. This is a result of the convolution process utilized in that
filter. The choice of filter would likely be based on personal preference, and ease of
implementation. The main problem with the use of filters is the uncertainty regarding the
legitimacy of the frequency components being removed. There is always the fear that too

much or not enough of the offending signal has been removed.
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Figure 7.1 Results — All Methods — Jacket B — X Dir.
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Figure 7.2 Results — Inverse Fourier Transform — Jacket B — X Dir.



Comparison of Methods - Jacket B - X Direction
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Figure 7.3 Results — Normal Mode — Jacket B - X Dir.
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Figure 7.4 Results - Low Pass Moving Average — Jacket B — X Dir.
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Comparison of Methods - Jacket B - X Direction
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Figure 7.5 Results — Low Pass Windowed Sinc - Jacket B - X Dir.
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Figure 7.6 Results — Band Reject Recursive — Jacket B - X Dir.
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Comparison of Methods - Jacket B - X Direction
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Figure 7.7 Results — Band Reject Win. Sinc — Jacket B — X Dir.
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Comparison of Methods - Jacket B - Z Direction
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Figure 7.9 Results — Inverse Fourier Transform — Jacket B — Z Dir.
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Figure 7.10 Results — Normal Mode - Jacket B — Z Dir.



Comparison of Methods - Jacket B - Z Direction
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Figure 7.11 Results — Low Pass Moving Average — Jacket B — Z Dir.
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Figure 7.12 Results — Low Pass Windowed Sinc - Jacket B - Z Dir.



Comparison of Methods - Jacket B - Z Direction
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Figure 7.13 Results - Band Reject Recursive - Jacket B - Z Dir.
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Figure 7.14 Results - Band Reject Win. Sinc - Jacket B — Z Dir.
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Comparison of Methods - Jacket A - Z Direction
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Figure 7.15 Results — All Methods — Jacket A — Z Dir.
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Figure 7.16 Results — Inv. Fourier Transform - Jacket A — Z Dir.
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Figure 7.17 Results — Normal Mode — Jacket A — Z Dir.
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Figure 7.18 Results — Low Pass Moving Average — Jacket A — Z Dir.
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Comparison of Methods - Jacket A - Z Direction
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Figure 7.19 Results — Low Pass Windowed Sinc — Jacket A - Z Dir.
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Figure 7.20 Results — Band Reject Recursive - Jacket A - Z Dir.
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Figure 7.21 Results — Band Reject Win. Sinc - Jacket A - Z Dir.
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8.0 Conclusions

The subject of wave impact on offshore and their isi to

vessel designers and operators for many reasons. They are often required to quantify
these impact loads. Standard methods for wave load prediction will underestimate the

forces on these duetoi i loading. This il the use of physical

model tests to establish wave impact loads. The model measurement systems are
designed to have high stiffness. This ensures that the natural frequency of the structure is
above the wave frequency. However, it is widely believed that impacting waves (where
the contact is well above the mean water line) contain high frequency energy components
that cause the structure to vibrate at its modal frequencies. This impact-induced vibration
is recorded by the measuring system as a force (inertial force), and corrupts the actual
applied force measurement. Before scaling can occur, the inertial force must be removed

from the measured signal.

A number of techniques for removing inertial force from measured signals have been
described in published literature. Three of the major methods have been discussed,
implemented, and compared in this report. Their algorithms have been presented, and the
steps required to produce functioning code (using MATLAB), have been given. Each of
the techniques contained inherent and unique problems that made their implementation

challenging. Some of the problems were common to all the methods.
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None of the techniques implemented produced results that were considered satisfactory.
The main problem was the presence of unwanted high frequency content after the
application of the methods. Another problem that plagues the comparison of the
techniques is the lack of a method to quantify the performance. How can the success of a
technique to remove inertial load be judged when it is not known how much inertial load
there is to remove in the first place? These problems, and others, have led to the

compilation of a list of topics that require further examination (Section 9.0).

While neither of the implemented methods were seen as completely satisfactory, the use
of digital filtering techniques are recommended based on their relative performance, and

the ease of implementation.



9.0 Summary of Topics That Require Further Work

Throughout this report. topics considered worthy of further investigation have been

d. These will be ized here. in no parti order of i

* Many factors (such as air i model surface etc.) were cited as

having an effect on the dynamic response of a model and its measuring system. The
type and shape of the particular model will. in turn. affect many of these factors. This
means that for each new model test. some investigation of the intluence of these
factors needs to be done.

* Anappropriate data sampling rate for wave impact studies needs to be established.
Early experimenters likely used analog techniques to record test data. and later
digitized for computer analysis. Their sampling rates. when reported. seem quite low
compared to recent experiments. which were often in the kilohertz range. Adequate
values are likely somewhere in between. Further effort is needed to identify
appropriate data acquisition sampling rates. and hardware filter values.

o The main problem associated with both the inverse Fourier transform method and the
normal mode method is the effect of added mass. As the wave impacts a structure. the
level of added mass varies both spatially and temporally. Without an accurate
accounting of this parameter. both methods fail to produce satisfactory results.
Techniques need to be developed to provide better estimates of the added mass during

wave impact events.



The normal mode ique makes the si

plifying ion that there is no
damping. This is reflected in the defined equation of motion. Clearly damping is
present in structural form, as well as damping related to fluid-structure interaction.

This is another topic for further il

The developers of the inverse Fourier transform method claimed that a matrix of
cross-coupling terms would be required in order to properly implement the method.
They claim that this would be difficult, if not impossible to achieve. Still it is a topic
that warrants further inquiry.

A study of cross-coupling terms could be linked to a study of overall dynamometer
design. There has been little work done to quantify the effects of system dynamics on
these important measuring devices.

For the inverse Fourier method, it was that the selection of

the step response (which was differentiated to obtain the impulse response) had a

major influence on the result. A needs to be i for this

important part of the technique. In addition, a method to directly and accurately
measure the stiffness matrix of a system needs to be developed.

The inverse Fourier transform method was implemented using a time domain based
deconvolution. The result was shown to be different from that obtained using
frequency domain division. This was attributed to the impuise added to the impulse
response to facilitate the deconvolution. The appropriateness of this addition needs to

be investigated.
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*  Gibbs effect seems to be an unavoidable feature of many DSP techniques. A number
of authors have proposed methods to mitigate this phenomenon, typically using
windowing techniques. Further study needs to be done to evaluate the effectiveness of

these techniques. This could be linked to a study of the use of filters to remove the

high content i when using the inverse Fourier

transform method, or the normal mode method.

The Blind Deconvolution technique, discussed in Appendix G requires further

experimentation with the selection of desired pulse shapes, the application of the

Custom Filter method, and consideration of Gibbs effect.

©  Further work needs to be done to test the hypothesis put forward by Murray and
Kaplan (1995) regarding the phase relationships of low and high passed signals
measured from dynamometers. They stated that the high frequency components from
the separate vertical dynamometer load cells were not phase locked to the low
frequency components. This meant, they claimed, that the high frequency
components were inertial in origin and could be removed using a low pass filter.

* The value of using a band reject filter versus a low pass filter to remove inertial force

from measured signals needs to be established. In addition, a band reject filter that

does not remove wave-induced energy from the rejection zone would be ideal.

These are a few of the topics that came to light during the preparation of this report.
Some of these would be relatively simple to investigate, while others would require some

complex model testing.



The subject of wave impact on offshore structures and their components will continue to
be important to designers and operators. The development of numerical methods will
depend on the availability of reliable model test methods, and the techniques to ensure
credible results. As each of the topics above is investigated, the level of comfort with
measured results will increase. This will lead to improved estimates of wave impact loads

on offshore structures.
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Appendix A

Use of Adjoint Matrix

to Determine Eigenvectors




A10 Method to Establish Eigenvectors

The eigenvectors discussed in Section 4.2.3 may also be determined using the adjoint

matrix of the system as follows.

[4-41]=[8] Al

The inverse of (8] is given by.

o A : A2
B]' = —adi[B
(6]~ adle
The adjoint of a square matrix is the transpose of its cofactor matrix. Multiplying both

sides of Equation A.2 by |B{[B] leads to

[B][7)=[Blad 8]

By substituting Equation A.1 into Equation A.3. Equation A.4 is obtained.

|d=a1|[1]=[4=A1)adi[4-21] Ad



Substitution of a root or eigenvalue (4, ) into Equation A.4 results in Equation A 5.

[ol=[4-4 rkdifa-4,1] As

When compared to Equation 4.12 it is seen that for each eigenvalue. the eigenvector can

be determined as follows.

)= adil4-4,1] A6



Appendix B

Use of Acceler M

to Determine Inertial Force
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B.1.0 Use of Accel M 1ts to Determine

Inertial Force

Several authors have di: the use of accel to d ine and

remove inertial force components from measured force data.

Mogridge and Cornett (1989) applied the inertial force correction outlined in Equation

B.1 to the total force measured by a jacket structure deck dynamometer subjected to wave

loading.

F.,, =kx +m¥,

where

F,,, external force B.1
m deck mass (including added mass)

k dynamometer stiffness

X, deck displacement

& deck acceleration.

The deck dynamometer for their experiment consisted of four vertical load transducers.
and three horizontal load transducers (one in the X direction. two in the Y direction).
Four accelerometers were mounted on the deck. three measuring translational modes. and

one to estimate torsional moments.
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The sample rate was 500 Hz model scale. with a hardware filter of 100 Hz to prevent
aliasing. The force measurements were further filtered in post-processing. applying a
Kaiser filter with a cutoff of 9 Hz full scale (47.6 Hz model scale). The signals were
decimated at a rate of 2:3. The authors reported that the advantage of post-experiment
filtering was that it allowed the objectives of the filtering to be easily identified. and the

appropriate filter chosen.

The corrections were applied only to the horizontal force measurements because the
accelerations were not measured in six DOFs. The authors quantify the signal reduction
merely by noting the percentage reduction in the peak. and making some general

observations regarding the reduction of oscillations after the impact peak has passed.

Murray and Kaplan (1995) discuss the limitations of this method. First. the equation of
motion assumes no damping. This ignores the effects of both structural and fluid
damping. The deck structure is assumed to behave as a rigid plate. This is likely not the

case. [t can be d by ing the phase di between

The main problem with this method is in the estimation of added mass and added
moment of inertia. As the wave crest passes the underside of the deck. the amount of
added mass varies spatially and temporally. The water contact area continually changes.
making an added mass estimate difficult. As a result the corrected force signal will

contain unwanted oscillations related to the poor added mass estimate. Mogridge and
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Cornett (1989)

make no

for this, which

erroneous results.

ledto



Appendix C

Use of Fast Fourier Transform to
Develop Matrix of Decay Force Vectors
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C.1.0 Use of Fast Fourier Transform to Develop Matrix of

Decay Force Vectors

This section will discuss the methodology used to develop the decay force vector used in
Equation 4.19, of Section 4.2.3. This square matrix represents the amplitude of force
response in all degrees-of-freedom (DOF), due to excitation in each DOF. Ideally, the off
diagonal matrix terms would be zero, indicating that the structure responded only in the

direction of applied excitation.

Free-vibration decay tests were conducted on the model described in Section 3.0, in each
degree-of-freedom measured by the dynamometer. For example, in the X direction, the
decay test was conducted by applying a static load to the model, colinear with the model

coordinate system. The load was released i and force were

made in six degrees-of-freedom. The load measurements were used to develop a force
amplitude vector for the X DOF. This procedure was repeated for each degree-of-

freedom.

Development of the matrix of decay force vectors involved the use of the fast Fourier
transform (FFT). For each force vector, or excitation DOF, the measured response signals
for each degree-of-freedom were subjected to a FFT. Care needs to be taken in the
application of the FFT. The signal time step should be selected such that aliasing is

avoided. When dealing with model test data, this is typically considered in the data



acquisition setup. The length or size of the FFT should match the number of data points
in the time series. For the most efficient FFT processing, its length should be a power of
two. When the time series length is shorter than the FFT length, it is reccommended that
the time series be padded with zeros, to the length of the FFT. It is important that the time
series not be truncated by using a FFT length shorter than the number of time series data
points. An effort should also be made to ensure that the product of the FFT Ieném and the
signal time step be an integer multiple of the time series natural period. This ensures that

periodicity is maintained.

The magnitude of the FFT is scaled using a procedure described the Matlab Signal
Processing Toolbox User’s Guide. As per the Matlab script in Equation C.1, the scaled
magnitude is obtained by dividing the absolute value of the FFT by the number of data

points in the time series, all multiplied by a factor of two.

Pn=abs (FFT (x))x2/ length(x)

where, c1
Pn=scaled magniude

x=input time series

The sign of the phase is used to determine the sign of the magnitude. Matlab command

angle.m is used to determine the phase of the input signal.
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C.2.0 Implementation

The procedure used here is summarized in Table C.1. The procedure is implemented in

the Matlab script FFT_modulus_general.m, which is shown in Appendix K

When applying this method to a set of decay signals, the question arises as to what the
appropriate signal length is. Is it sufficient to use 128 points, or are 512 or 1024 points
preferable? This was explored by examining three decay force vectors (from the model
tests described in Section 3.0), using three sample lengths, 128, 256, and 512 points.
Samples of the selected signals are shown in Figures C.1 to C.6. These represent the
measurements in six degrees-of-freedom, to an excitation load applied in the X direction.

Similar plots could be generated for excitation in the other degrees-of-freedom.

Table C.2 shows the scaled magnitudes and phase signs obtained for each signal length,
obtained using the appropriate identical FFT length. These represent results for three

decay force vectors ling to initial excitation in the three il degrees-

of-freedom. Figure C.7 shows a sample magnitude (modulus) and phase piot. The

magnitudes for each vector were normalized relative to their respective largest value. The

largest term was then by unity. The ized vectors obtained for each
FFT length (or signal length) were compared, as shown in Figures C.8 to C.10, and Table

C.2. These plots indicate that the selected signal length (and therefore FFT length)



arguably has little influence on the shape of the vector, and therefore either FFT length

value may be used.

This method is best suited for ining the i of si idal signals. Itis a

simplifying assumption to apply it to a decaying signal.
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Table C.1 - Procedure for Developing the Decay Force Vectors

Step Procedure iption

Establish the input signal time step. It is important to ensure that
alusm;doﬁnuwun F«modelus\danmenmsvepwoumbe

during the data it ion. For simulated
data, the time step can be set experimentally by iteratively adjusting
the step increment and calculating the FFT until the magnitude no
longer changes.

Establish the natural period for each degree of freedom by
performing decay or a spectral analysis.

Examine the measured signal that is in-line with the direction of
applied load. From this select a representative segment, ensuring
that the number of data points in the selection is a power of two
(i.e. 64, 128, 256, erc.). If it is not possible to match one of these
values, use a smaller value. The signal can then be padded with

| zeros to aniain the power of two. The Matlab command FFT.m will
i automatically pad a signal with zeros to a power of two.

Check the periodicity of the selected signals. The signal time step
(T) multiplied by the number of data points in the signal (N) shouid
be an integer multiple of the individual signal periods.

Perform the FFT. Scale the magnitude using the using the technique
defined in Equation C.1.

Examine the FFT of the measured signal that is in-line with the
direction of applied load. Record the magnitude, phase (sign only),
and frequency of the resonant peak. At the same frequency, record
the magnitude, and phase (sign only) of the other responses. The
sign of the phase determines the sign of the magnitude. The phase
can be can be determined using the Matlab command angle.m .

These magnitudes represent the decay force amplitude vectors.
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Table C.2 - Scaled Magnitude and Phase for Three Vectors

Vector F1 -X Vector F2 - Y Vector F3 -Z
Direction Direction Direction
DOF Scaled Phase Scaled Phase Scaled Phase
i Sign i Sign i Sign
(MN) (MN) (MN)
FFT Length 128
FX 22303 | negative | 1.325 | negative | 0.525 | positive
FY 1.021 | negative | 26.235 | negative | 0.870 | negative
FZ 0.069 | positive | 0.085 | megative | 5.838 | positive
MX 0.870 | negative | 19.150 | megative | 21.500 | negative
MY 17.400 | positive | 2.775 | positive | 37.100 | positive
MZ 237.750 | negative | 64.750 | negative | 9.600 | negative
FFT Length 256
FX 16.190 | negative | 0.872 | negative .274 sitive
FY 0.832 | negative | 17.584 | negative .570 | positive
FZ 0.038 | positive | 0.040 negative .200 | positive
MX 0.720 | negative | 12.85( negative | 11.075 | negative
MY 12.370 | positive 1.35€ positive | 20.300 | positive
MZ 172.500 | negative | 39.450 | megative | 5.395 | negative
FFT Length 512
FX 10.002 | negative negative | 0.141 positive
FY .530 | negative negative | 0.275 | positive
FZ | 0027 | positive | O negative | 1.602 | positive
MX .500 | negative negative | 5.720 | negative
MY .600 | positive positive | 10.150 | positive
MZ 105.800 | negative . negative | 2.670 | negative
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Table C.3 - Normalized Decay Force Vectors

Vector F1 - X Direction

FFT Length 128 256 512
FX 0.093808 0.093855 0.094532
FY 0.004294 0.004823 0.005009
FZ 0.000288 0.000219 0.000255
MX 0.003659 0.004174 0.004726
MY 0.073186 0.07171 0.071834
MZ 1 1 1
Vector F2- Y Direction
FFT Length 128 256 512
FX 0.020463 0.022104 .018245
FY 0.405174 .4457. .468102
FZ 0.001313 .0010 .001036
MX 0.295753 .3257: .346893
MY 0.042857 .0343 033777
MZ 1 1 1
Vector F3- Z Direction
FFT Length 128 256 512
FX 0.014151 0.013478 .013911
FY 0.02345 0.028079 .027074
FZ 0.157345 0.157635 157833
MX 0.579515 0.545567 .563547
MY 1 1 1
Mz 0.25876 0.265764 0.263054
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Appendix D

of Orthogonality Conditi




D.1.0 Discussion of Orthogonality Condition

Orthogonality ionships are special ies of free-vibration mode shapes. The
concept of orthogonality is based on Betti’s law. Betti’s law implies that the work done
by one set of loads on the deflections due to a second set of loads is equal to the work of
the second set of loads acting on the deflections due to the first. Equation D.1 illustrates

this concept.

[P] b =[A] fe} D1

Where P, and P, are separate sets of applied loads. and x, and x, are the respective

deflections. or displacements.

When considering free vibration. Betti’s law can be re-written to represent the

relationship between deflections and inertial forces.

) = ) D2

where f,, and f,, representinertial forces for separate mode shapes m and n. while

X, und x,, are the respecti i or




The inertial force can be represented by @ [M]{x, }. When substituted into Equation D.3

this leads to

o) e} Mt} =0} ) (M.} b3

This can be re-arranged to give
@ -o) x| [M]ix,}=0 D4
since the product of the matrices is a scalar.

When @, # @, we see that

e} Ml }=0 ps

A similar relationship can be developed for the stiffness matrix.

tea)' (Kt }=0 D6
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These are known as the orthogonality conditions with respect to mass and stiffness. These

Sambe in terms of lized eig as follows.
[e.] vlix.]=0 when men 7
{-\'m ]l [K]lx,]=0 when m=n D8

In a practical sense. when these conditions are satisfied. it means that the eigenvectors are

independent of each other.
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Appendix E

Discussion of Numerical Differentiation Techni
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E.1.0 Numerical Differentiation Techniques

The normal mode approach to removing inertial forces from measured signals requires a

to obtain ion signals from displ: The

ofan i acquired signal. or other noisy signal. can
be a dubious operation. Rapid changes in signal value from point to point are amplified in

the differentiation process. resulting in serious problems with accuracy. The

used here are described in James (1977).

The definition of the first derivative. shown in Equation E.1. illustrates the inherent

problem with numerical differentiation.

i i E.
dv_p o Sx a0 - f(x) 1
dx Ax

The denominator Ax is required to be as small as possible. This means that the difference
between the numerator parameters will be smaller. Taken to extremes. the operation will
ultimately be limited by the precision of the computer. In other words. the subtraction of
two small (and similar) numbers. and subsequent division by another small number may

result in a derivative with large error.



To mitigate this it is i that an analyti ion be fit through

experimentally obtained data. The ion could then be di y ly.

Alternately. points generated from the analytically defined curve can be differentiated

numerically. Otherwise. the experimental data must be differentiated point by point.

The data obtained from the experiments discussed in Section 3.0 A were not amenable to

curve fitting i therefore i iffe iation was not an option. Instead a
numerical technique based on Taylor-series expansions was used. These techniques are

commonly known as Central-Difference expressions.

The Matlab scripts that implement the normal mode method utilize the Central-
Difference expression. with error of order h'. The algorithm shown in Equation E.2

produces the second derivative.

+16y,,-30y, +16y,_, -
12h°

where.

¥ ordinate of the input signal
i ordinate index

h increment of the abscissa
o second derivative

9
3
b4



This expression requires knowledge of the values previous and subsequent to the point
indicated by the ordinate index. This is dealt with by using the Forward-Difference. and

-Di ions as shown in ions E.3 and E.4.

P

E3

Ed4

These expressions have been used in normal mode method scripts ( i.e.

normal_mode _v3_3dofm ) to di iate the normal i displ. vectors.

Script first_deriv.m is a stand-alone differentiation program that also utilizes these

algorithms.All scripts are located in Appendix K.

An alternate procedure for differentiation involves the multiplication of a signal’s Fourier
transform by an imaginary ramp function. This can be simulated by subjecting the time-
series signal to a fillter that has a response H (@)= j @ . The Matlab script reme=.m

can be used to generate such a filter. A typical implementation of the remez.m command

is shown in Equation E.5.



b=remez(n. fa. fiype)

where ES
n order of filter

V3 frequency range vector

a amplitude vector

] output filter coefficients

Example:

b=reme=(21. [01) [0 pi*Fs) ')

The order ot the filter n. determines the fit to the imaginary ramp function. The

frequency range vector must be expressed in values from 0 to 1. where | represents the
Nyquist frequency (i.e. half the sampling frequency Fs). The amplitude vector defines
the amplitude for the frequency pairs defined in the frequency range vector. The fiipe

option defines the filter type, in this case "d" signifies differentiation.

This differentiation method was applied in the normal mode method in script
normal_mode_remez.m (see Appendix K ). The results displayed transients at the
beginning of the signal. the length of which were related to the order of the filter n. The
first 7 + | data points were truncated from each remez.m output signal. in order to

maintain alignment with the other signals utilized in the program.
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A comparison of results using remez.m and the central-difference technique showed

negligible differences.
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Appendix F
Use of Rayleigh Damping Method to

Estimate a Damping Force Component
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F.1.0 Use of Rayleigh Damping Method to Estimate a
Damping Force Component

‘The normal mode approach as described in Section 4.0 assumes that damping is
negligible. This assumption ignores the inherent structural damping present in the model
measuring system. This section will discuss the use of the Rayleigh damping method to
provide an estimation for the damping term in the system equation of motion. The
method will be applied to simulated and measured force signals, and the effect of the

damping term will be assessed.

F.2.0 Description of Rayleigh Damping

The Matlab script Normal_Mode_V3_3dof.m, shown Appendix K, includes an estimate

for the damping term in the equation of motion. The damping coefficient is determined

g =t GO

20, 2 F1
based on the Rayleigh Damping method, as described by Clough and Penzien (1975).

The Rayleigh damping method assumes that the damping ratio is proportional to mass

and stiffness. The damping ratio is expressed as shown in Equation F.1.
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The first term on the right hand side defines the mass proportionality, while the second
term defines the stiffness proportionality. The parameters a, and a, are known as

proportionality constants. The damping matrix is then determined using the Equation F.2.

C=ay,m+a k F.2
where,

[ damping coefficient matrix,

m mass matrix,

k stiffness matrix.

Equation F.1 can be expressed in matrix form for multi-degree-of-freedom systems, and

to allow ination of the ionality constants, as shown in Equation
F.3. This requires some knowledge of the damping ratio for each degree of freedom.
Generally, this information is not available, so it is assumed that the damping ratio is
constant for each frequency or degree-of-freedom, and Equation F.3 can be simplified as

shown in Equation F.4.

o, -, A
{oezedy S es
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The parameter ¢ is the assumed damping ratio. The frequencies @, and @, are the
fundamental frequency and the highest relevant frequency respectively, in radians per
second. The modes between the fundamental and highest frequencies will have damping
ratios slightly lower than the estimated value. The frequencies above and below the
fundamental and highest values will have increasingly higher values for the damping

ratio.

E.3.0 Implementation of Rayleigh Damping Method

A set of simulated decay test force signals has been generated using the method described
in Appendix J. The normal mode approach with and without damping was applied to
these signals using scripts normal_mode_v3_3dof.m and

normal_mode_v3_3dof_nodamping.m (A dix K), respectively. Without inclusion of a

damping term the resulting actual force signal contains evidence of a damping force.
When the Rayleigh estimate is included, the normal mode approach successfully removes

both the inertial and damping force components from the simulated actual force signals.

Figures F.1 to F.3 compare the simulated measured and actual forces and show the effect

of the Rayleigh damping estimate. The measured force signals were generated using a
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damping ratio of 0.05, and the same value was used in the Rayleigh estimate. Clearly,
inclusion of the damping term results in a better representation of the expected actual

force.

Figure F.4 illustrates the effect of changing the damping ratio when generating the
Rayleigh damping estimate. The ability to remove the damping force is significantly
impaired. Recall that the simulated signals were generated using a damping ratio of 0.05.
Use of other values in the Rayleigh damping estimate causes the normal mode script to
produce actual force signals that contain a damping component. Note that when a
damping ratio of 0.05 is used, the resulting actual force is 90 degrees out of phase with
the signal generated without consideration of damping. This makes sense since under the
assumption of harmonic motion, acceleration and displacement are 180 degrees out of

phase with each other, while velocity is 90 degrees out of phase.

The oscillation remaining in the could be the result of the numerical differentiation

process used in the normal mode approach.

Figures F.5 to F.10 compare measured and actual force signals, from the experiments
described in Section 3.0. The actual force signals were generated using
normal_mode_v3_3dof.m, with a damping ratio of 0.05 assumed. Clearly, the signal
reduction has not been improved in this case. Figures F.11 to F.16 show very little

difference between the damped and non-damped cases. This could be due to the
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assumption of a damping ratio of 0.05. The examples using simulated signals
demonstrated the sensitivity of the result to correct damping ratio. However, Figures F.17
to E.19 show little improvement in the actual force result when a more realistic damping

ratio of 0.007 was used.
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Figure F.2  Simulated Measured and Actual Force — Y Direction
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Figure F.3  Simulated Measured and Actual Force — Z Direction
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Comparison of Measured and Actual Force - X Direction - Using Rayleigh Damping
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Figure F.5 Measured and Actual Force — Rayleigh Damping — X Dir.
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Figure F.6 Measured and Actual Force — Rayleigh Damping — Y Dir.
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Comparison of Measured and Actual Force - Z Direction - Using Rayleigh Damping
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Figure F.7 Measured and Actual Force — Rayleigh Damping — Z Dir.
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Figure F.8 Measured and Actual Impact — Rayleigh Damping - X Dir.
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Comparison of Measured and Actual Force - Y Direction - Using Rayleigh Damping
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Figure F.9 Measured and Actual Impact — Rayleigh Damping - Y Dir.
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Figure F.10 Measured and Actual Impact — Rayleigh Damping - Y Dir.
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Effect of Rayleigh Damping on Actual Force - Decay Test - X Direction
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Figure F.11 Effect of Rayleigh Damping on Actual Force - X Dir.
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Figure F.12 Effect of Rayleigh Damping on Actual Force — Y Dir.
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Effect of Rayleigh Damping on Actual Force - Decay Test - Z Direction
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Figure F.13 Effect of Rayleigh Damping on Actual Force — Z Dir.
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Effect of Rayleigh Damping on Actual Force - Wave Impact Event - Y Direction
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Effect of Rayleigh Damping on Actual Force - Decay Test - X Direction
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Figure F.17 Effect of Damping Ratio on Actual Force - X Dir.
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Figure F.18 Effect of Damping Ratio on Actual Force - Y Dir.
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Effect of Rayleigh Damping on Actual Force - Decay Test - Z Direction
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Figure F.19 Effect of Damping Ratio on Actual Force — Z Dir.
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Appendix G
Discussion of Blind Deconvolution Applied

to Measured Wave Impacts
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G.1.0 Blind Deconvolution Applied to Measured Wave

Impacts

G.11 Introduction

Ani i to remove ions from signals,
known as Blind Deconvolution, is presented in Smith (1999). The author describes the
case of a gamma-ray detector, which records pulses due to the impact of gamma rays.

The pulses are however convolved with the unknown impulse response of the system.

The Blind D¢ ion involves the estimation of the system impulse response that is
then deconvolved from the detected pulses, resulting in a filter kernel that can then be

used to reveal the true nature of other detected pulses.

G.2.0 Implementation of Method

In this section the implementation of this procedure using wave induced impact data, as

well as other types of signals, will be presented.

As with the methods previously discussed, the procedure is really quite simple. However,
questions can be raised about the implementation. The first step is to identify the so-
called detected pulse. For the example described in Smith (1999), the detected pulse was
the response to an impulse, measured by the light detector. For the present case the

detected pulse will be represented by the total vertical force measurement from the deck
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dynamometer of a jacket structure model (described in Section 3.0) subjected to wave
loading, see Figure G.1. From this, a representative selection will be made and used as

the detected pulse (det_pul), see Figure G.2.

The remaining steps seem simple on paper. Generate a signal that represents the desired
pulse (des_pul), a pulse that has not been corrupted by unwanted convolution. Take the
FFT of these signals, and divide the desired (DES_PUL) by the detected (DET_PUL) to
obtain the required frequency response (RFR). Take the inverse Fourier transform of this
to obtain the required filter kernel (rfk). The rfk is equivalent to an impulse response, and
will be used in convolution with other detected pulses to obtain the non-corrupted

measurement.

Before the rfk can be used in a convolution it must be conditioned using the so-called

Custom Filter Technique, which involves shifting, truncating, and windowing the signal.

The requirement for truncation of the rfk is related to the fact that a computer cannot
represent a continuous signal. By necessity it requires a sampled filter kemel. The filter
kemnel is, therefore, inherently truncated, no matter what its length. As a result it will be

subject to the problems iated with the di: inuity, namely ringing, and

aliasing. This is unavoidable. The question then is how much should be truncated?
Despite the fact that a longer filter kernel will produce a better representation of the

frequency response, it will increase computation time. Also, the practical filter kernel

246



length is limited by the length of the input signal (the signal it will be convolved with)

and the problems related to end effects (to be discussed later).

The application of a window (i.e. Blackman or Hamming) will relieve the effects caused

by the truncation discontinuity.

The shift allows for the easy indexing of vectors by the computer programs performing
the task. This allows for simpler application of the window. The only effect of the shift is

to produce a similar shift in the output signal, which can be compensated later if required.

A number of questions are i it raised ling the proper i ion of the

Blind Deconvolution method. These are summarized below.

. What shape should be used for the desired pulse? What should its length be, and does
it need to be aligned with the detected pulse? Does its peak need to be scaled to
match the peak of the detected pulse?

2. Do the frequency spectra of the desired pulses need to be normalized in order to

maintain the DC component?

3. How do you decide where to truncate the required filter kernel when applying the

custom filter method?

IS

. How much does the required filter kernel need to be shifted when applying the

custom filter method?
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5. Are there restrictions regarding the type, size, and location of the window used when

applying the custom filter method?

Some of these issues will be in the

In his gamma-ray detector example, Smith (1999) used a Blackman window as his
desired pulse. This seems a reasonable starting point for the present example. He
recommends that the width of the window be approximately 1/3 the length of the impulse
event. For the present example the window width will be approximately ¥ the length of
the wave impact event. The effects of other shapes and window lengths will be examined

later.

Figure G.3 shows the selected wave impact event (the detected pulse) plotted against two
versions of the desired pulse, one shifted to match the detected pulse location and the
other not shifted. The desired pulses have been padded with zeros to 2500 points to match
the length of the detected pulse. This is required to facilitate the subsequent frequency
domain division. Note that each desired pulse has been scaled to match the height of the

wave impact. An attempt will be made without this scaling later.

The FFTs of the desired pulse signals are divided by the FFT of the detected pulse. This
produces the required filter responses (RFR). The inverse FFT of each RFR produces the

required filter kernels (rfk). These are shown in Figure G.4. Close examination reveals



that the two signals are identical, but shifted relative to each other by the amount applied
to the desired pulses. The Fourier transform process considers the signals to be periodic,
allowing them wrap around. The shift in the desired pulse causes only a shift in phase,

while not affecting the magnitude of the FFT.

The next step is to apply the so-called Custom Filter method, where the rfk is shifted,

truncated, and windowed. Since the signals are identical, either can be selected for further

In this case it is that the signal (rkf1) developed from the non-
shifted desired pulse be used. The reason for this is that two steps are eliminated from the
process — the initial shift to align the desired pulse with the detected pulse, and the shift

required to facilitate windowing in the Custom Filter method.

The truncaticn of the required filter kernel is an arbitrary process, dependant on the
nature of the filter kernel signal, and the length of the detected pulse signal. In this case
the region from 15.180 to 23.364 seconds will be kept, and the remainder of the signal

will be set to zero. Figure G.5 shows the truncated (and inherently shifted) rfk.

A Blackman window is than applied to the truncated rfk. It is centred on the peak of the
filter kernel and has a length twice that of the non-zero portion of the truncated rfk, as
shown in Figure G.6. It is the signal shifting that allows the windowing to be applied
easily. The purpose of the windowing is to smooth the signal in regions of discontinuity,

thereby reducing aliasing. The windowed rfk is shown in Figure G.7.
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If the windowed rfk is then convolved with the original wave impact event vector
(det_pul) the “actual force™ vector is produced. This is shown in Figure G.8. Note that the
convolved signal appears to be reasonable, but its main peak is shifted from that of the
detected signal. This shift is comparable to that inherent in the rfk, Figure G.7. If the shift
is removed from the rfk (Figure G.9) and the convolution reapplied, the peak of
convolved signal now aligns with that of the detected pulse, see Figure G.10. The
corrupted sections indicated are known as end effects and are a natural result of the

convolution process. This will be discussed later.

So it has been shown that the Blind Deconvolution technique can produce results that
appear reasonable, in that they remove high frequency inertial component from the
measured signal. It has also been demonstrated that in its application, it is not necessary
to align the peak of the desired pulse with the peak of the detected pulse, in fact there are

advantages to not doing so.

If the peak desired pulse is not scaled to match that of detected pulse, the resulting
convolved signal is reduced by that very amount, as shown in Figure G.11. Similarly, if
the FFT of the desired pulse is normalized by its own initial value, prior to division with
the detected pulse spectrum, it results in a convolved signal that is reduced by the same
scale factor. The reason for suggesting this is that in the Inverse Fourier Transform

method, it is necessary to normalize the frequency response in order to maintain the mean



values between measured and actual forces. In summary, it can be said that as a rule it is
best to scale the desired pulse peak to match the peak of the detected pulse, but it is not

necessary to normalize the desired pulse spectrum by its own initial value.

As i above, the ion of the rfk can be arbitrary. The dilemma is

this. A longer filter kernel will allow better reproduction of the frequency response, while

the length of the ion due to end effects. The simple solution is to
increase the length of the detected pulse so that the region of interest (the wave impact) is

not affected by the corruption.

G.3.0 End Effects

End effects are the corrupted sections that occur at the beginning and end of all
convolved signals. When two signals of length M and N are convolved, the resulting
signal has a length of M+N - 1. The first and last M-1 points of the convolved signal

(where M is the length of the impulse are i tobe

According to Smith (1999) this is due to the fact that the M length impulse response is

not “fully immersed” in the signal being He describes the ion process

this way. Each point in the output signal is the summation of the products of the M
impulse response points, and N relevant input signal points. When calculating points at
the beginning and end of the output signal, the impulse response signal tries to use (input

signal) points that are outside the range of the input signal. Since this is impossible, the
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M-1 points at the beginning and end of the output signal are developed using incomplete

information.

Jackson (1989) suggests two techniques to deal with end effects in a convolution. These
are known as the overlap-add and overlap-save techniques. In each, the input signal being
convolved is divided into segments (either overlapping or non-overlapping depending on
the method) which are then convolved with the impulse response. The resulting

convolved segments are then overlapped or concatenated (as the case may be).

These methods were applied to some simple sinusoidal signals and compared to the

results obtained using the Matlab i (conv) and domain

multiplication. The results were identical, as shown in Figure G.12. This implies either
that the overlap-add and overlap-save methods are not effective in this application, or that
the MATLAB command already utilizes these or similar techniques. In either case, the

beginning and end sections of a convolved signal should be disregarded.

G.4.0 Effect of Desired Pulse Shape

Next the effect of desired pulse shape and length on the final convolved result will be
examined. Figure G.13 shows desired pulse signals created using Blackman windows of

different lengths. With the i of the the resulting

convolved signals are presented in Figure G.14. The windows with lengths of 159 and
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100 points result in similar signals. The result using the 50 point window is significantly
different. Smith (1999) warned of this saying that if the desired pulse is made too narrow,
the final result will not be satisfactory. Experimentation with window length is

recommended.

Examination of the wave impact event (detected pulse in Figure G.2) shows that it
consists of a region of positive force, followed immediately by a region of negative force.
It would be of some interest to investigate the effect of using a desired pulse with similar
characteristics. Figure G.15 shows such a signal. When applied to the detected pulse, the
resulting convolved signal again appears reasonable, see Figure G.16. The Blind
Deconvolution technique seems to be quite flexible, as long as the desired pulse vectors

are not forced to extremes (i.e. made too narrow).

G.5.0 Application of Blind Deconvolution to Decay Test
Results

While investigating the previous methods (inverse Fourier transform and normal mode
method), attempts have been made to retrieve the pulse signal (actual applied force)
responsible for the measured signal from a decay test. It would be of some interest to

apply the Blind Deconvolution to this type of signal.
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Figure G.17 shows the measured decay test signal, which represents the detected pulse,
and a rectangular pulse, which represents the desired pulse. The FFTs of these signals are
obtained (Figure G.18), and divided to obtain the required frequency response (Figure
G.19). The inverse FFT is performed to obtain the rfk (Figure G.20), which is then
shifted, truncated, and windowed (Figures G.21 to G.23). The modified filter kernel is the
unshifted (Figure G.24), and convolved with detected pulse to obtain the signal shown in
Figure G.25. The convolved signal is subject to end effects, as shown in Figure G.26. In
Figure G.27 the convolved and detected signals have been arbitrarily aligned by matching

the location of the discontinuity.

The convolved result is comparable to that obtained using the inverse Fourier transform

method. The i observed at the di inuities are caused by the truncation of the

filter kernel (or impulse response) and are commonly referred to as Gibbs Effect, see

Appendix L. These are i Figure G.28 p results using
three different filter kernel truncation lengths. Although the signals display different
means in the offset region, the shape and magnitude of the transients are almost identical.
This is a characteristic of Gibbs Effect. The amplitude of the transient will remain

for all levels of

Gibbs Effect was also observed in the inverse Fourier transform method, and is a
significant hindrance to the usefulness of these methods to remove inertial loads, since it

is frequently the discontinuity region that is of most interest to investigators.



As an aside, the similarities between the inverse Fourier transform method, and the Blind
Deconvolution method show be pointed out. In the inverse Fourier transform method the
system frequency response can be obtained by dividing the FFT of the measured force by
the FFT of the actual force. The Blind Deconvolution method is the reciprocal of this,
with the desired pulse FFT being divided by the detected pulse FFT to obtain the required
filter response. These responses are then used in a deconvolution and a convolution

process, respectively.

G.6.0 Summary

In summary it can be said that the Blind D i ique can be

another useful tool in the determination of actual force signals, from measured signals

by system ics. The method does, however, require
experimentation with the selection of desired pulse shapes, the application of the Custom

Filter method, and consideration of Gibbs effect.

Table G.1 summarizes the basic steps required in the application of the Blind

Deconvolution technique.
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Table G.1 — Procedure to Apply the Blind Deconvolution Method

Step Description

1 Determine the detected pulse. For the case of wave impact this will
be the measured force.

2 Generate the desired pulse. This represents a pulse that has not been
corrupted by unwanted convolution. The exact shape is a matter of
trial and error.

3 Take the FFT of both these signals.

4 Divide the FFT of the desired pulse by the FFT of the detected pulse
to obtain the required filter response.

5 Take the inverse FFT of the required filter response to obtain the
required filter kernel.

6 Modify the required filter kernel (i.e. shift, truncate, and window).

7 Apply the modified filter kemel in convolution with other detected

pulses to obtain the actual force signals.
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Comparison of Detected and Desired Pulses
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Comparison of Shifted and Unshifted Filter Kemels
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Detected Pulse and Convolved Signal Result - Using Non-scale Desired Pulse
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Comparison of Blackman Windows
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Results Using Desired Pulse with Positive and Negative Regions
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Comparison of Meausured and Actual Force
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Reaquired Filter Kemel - Shifted and Truncated and Windowed
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Result of Convolution with Unshifted Filter Kemel
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Comparison of Measured and Convolved Signals
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Appendix
Discussion of Modifications Required

to Facilitate Deconvolution
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H.1.0 Modifications to Facilitate Deconvolution

To illustrate the limitations of the convolve and deconvolve commands, they will be
applied to some arbitrary simulated signals. Figure H.1 shows an 81 point sine wave,
b{n], which will serve as the signal to be convolved. Figure H.2 shows an arbitrary 17

point signal, a[n], which will serve as the impulse response. Using the MATLAB

o= b)”, the signal c[n] is produced, see Figure H.3. Note
that this signal shows some resemblance to the original signal b(n], in that the
characteristics of a sine wave are evident, but the first and last 17 points of the signal are

corrupted. This is an expected result of the convolution process, known as end effects

(see Appendix G). The first and last N points (where N is the length of the “impulse
response”) of the convolved signal are unusable. The signal a[n] is deemed to be not fully
immersed in the signal b[n] in those regions. If signal c[n] is now deconvolved with
signal a[n], it should produce a signal that is identical to b[n]. Figure H.4 shows a

comparison of q[n] and b[n] for this case. The two signals are identical, indicating that

the ion and ion process was

The entire process, though, is sensitive to the element values in the impulse response
vector. If value of the first point of vector a[n] is changed to 0.0, the deconvolution
procedure will not work. The error message produced indicates that the first coefficient of

a[n] must be non-zero. If the value of the first point is iterated from 0.0, back towards the
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original value of 0.2, it is di that the i ion process is not
correct until a value of at least 0.16 is reached. For example, using a value of a[1]=0.14,
results in a q[n] signal that differs slightly from b[n] as shown in Figure H.5. Using a

value of a[1]=0.10 results in the signal shown in Figure H.6.

The value of the first point of any vector a[n] can be altered to some threshold value
where the deconvolve command (deconv) no longer works. In fact, this applies to all the
points in the a[n] signal. To demonstrate this, an arbitrary a[n] 17 element signal
composed entirely of points with value 0.1, was convolved and deconvolved with the
81point sine wave, shown in Figure H.1. Then the value of each point in a[n] was altered,
iteratively, until the deconvolved signal no longer matched the original sine wave. This
experiment indicates a trend towards larger magnitude changes (in the point value), for
increasing vector element number. Figure H.7 illustrates this. The same trend can be

generated for any arbitrary a[n] signal.

The only practical use for this knowledge is in a situation as described above, where the
deconvolution of two measured signals produces a result that does not resemble that
expected, as per Figure 5.17. A single point in the measured a[n] signal can be altered,
until the deconvolution process works. The best point to select for alteration is the first

since, in theory, it will require the smallest modification to facilitate the deconvolution.
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Figure H.7
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Appendix 1

Discussion of the Mitigation of Gibbs Effect
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1.1.0 Mitigation of Gibbs Effect

Gibbs effect is i asan or decaying oscillation observed at the
discontinuity of a time series. It is caused by the truncation or removal of frequencies

from a discrete signal in the domain. ing the amount of ion (i.e.

removing more frequencies) causes the width of the oscillation to increase. The

amplitude of the oscillation stays roughly the same, at approximately 9 percent.

Figures L1 to LS5 illustrate the effect of this truncation. A time domain signal of a
rectangular pulse is shown. In the frequency domain, this will be represented by a sinc
function. After removing a range of frequencies, the time domain signal displays the
overshoot and oscillation characteristic of Gibbs effect. This phenomenon occurs in low
pass filtering, where a range high frequency components is eliminated. Similarly, in the
inverse Fourier transform method, a band of frequencies in the resonance range is

suppressed, leading to ringing at the discontinuities.

This causes i ion when ining wave impact signals

that have been processed to remove inertial load either through filtering or use of the

inverse Fourier method. It is difficult, if not i ible, to say with

certainty whether, or to what extent, the resulting signal has been corrupted by Gibbs

effect.
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The phenomenon is unavoidable. It is a fact of life when dealing with discrete signals.

Several authors have discussed the use of windows and filters to suppress Gibbs effect
commonly seen in truncated Fourier series. These will be mentioned here, but they will
not be implemented or evaluated. This is a topic that could certainly use further

examination.

Walker (1991) discusses the use of Cesaro and de la Vallee Poussin filters in the

of Gibbs ing (1983) the use of the Lanczos

window over the Cesaro, claiming it has a lesser effect on the rise time of the signal.
Terrel (1980) and Smith (1999) recommend the use of windows such as Hamming,
Blackman, and hanning to mitigate Gibbs effect, though this is at the expense of rise

time.
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Rectangular Puise Time Series
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Appendix

Generation of Simulated Decay Signals



J.1.0 Generation of Simulated Decay Signals

To aid the evaluation of the normal mode approach in its ability to remove inertial forces
from measured signals, a set of simulated decay time traces was generated. These signals
were designed to represent measured decay test forces for a jacket structure model, such
as that described in Section 3.0. It was assumed that input forces were applied one
degree-of-freedom at a time, and that crosstalk did not occur. This is, if a force was
applied in the X direction, then the resultant force would be measured only in the X

direction.

The development of the simulated signals was based on the second-order differential

equation of motion, as shown in Equation J.1.

[M 1z )b+ [ M )b+ (K e ()} ={F (0}

where,
J1
[M ] mass matrix,
[c]  damping coefficient matrix,
[K ] stiffness matrix,
{#(r)} acceleration vector,
{&()} velocity vector,
{x(t)} displacement vector.



This can be rearranged to the following form.

oy _LCly. o [K] 1
{xo}= [M]{x(t)} Im{x(r)}+[m{r(r)} 12
This differential equation can be solved using the Matlab solver ODE45.m.

Implementation requires that Equation J.2 be expressed as a set of first order differential

For simplicity this will i for a single degree-of-freedom system.

Let

w, (1) = x(r) 13
u, (1) = x(1)
() =u,(1)

. C K 1
y(0) =‘ﬁ"z""ﬁ“'("+ﬁ”"

The output from ODE45 for this simplified case would be vectors for velocity,
displacement, and time. For the more complicated six degree-of-freedom system, six
velocity vectors, and six displacement vectors, would be produced along with the time
vector. This has been implemented in Matlab scripts run_dof6_sim3.m and dof6_sim3.m,

shown in Appendix K.
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The inputs for this program include the mass, stiffness, and damping matrices. The
stiffness matrix is a by-product of the normal mode method, implemented in script
normal_mode_v3.m (which is a six degree-of-freedom version of
normal_mode_v3_3dof.m). That program does not use the stiffness matrix explicitly, but

can be generated using Equation J.4.

(K 1= [F sy [R T 34
where,

[k] stiffness matrix

[F] force i from decay tests
[i ] non —normalized eigenvectors

The damping matrix is determined using the Rayleigh Damping method (see Appendix

F). using the stiffness matrix as generated above.

J.2.0 Sample Implementation

Script run_dof6_sim3.m requires the input of mass, stiffness, and damping matrices.
Examples of these are shown in Table J.1. The value of the applied pulse force amplitude,
its location and duration in the time series are input interactively. The system initial
conditions are hard-coded in the script, and can be altered as appropriate. Figurcs J.1 to

1.6 show sample output signals. These signals have been curve-fit using a cubic spline in
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order to obtain uniform time spacing. ODE45 produces signals with non-uniform time

spacing. The curve fitting was done using script spline_fit.m shown in Appendix K.
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Force Magnitude
o
&

o

Simulated Fz

-0.5

50
Time (s)

70 80 90
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Figure J.4 Simulated Decay Moment Time Series —~ About X
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Figure J.6 Simulated Decay Moment Time Series — About Z
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Table J.1 — Mass, Damping, Stiffness Matrices Used to
Generate Simulated Decay Time Series

Mass Matrix
Mode 1 Mode 2 Mode 3 Mode 4 ode 5 Mode 6
kg 5.53E+06 0.00 0.00 .00 .00 .00
kg .00 5.53E+06 0.00 .00 .00 .00
kg .00 .00 | 5.53E+06 | 0.00 .00 .00
[ kg-m’ .00 .00 000 | 845E+08 | 0.0 .00
kg -m .00 .00 0.00 0.00 .34E+09 .00
kg -m” .00 .00 0.00 0.00 .00 2.18E+09
Damping Matrix
Mode 1 Mode 2 Mode 3 Mode 4 Mode § Mode 6
kgls 1.19E+07 0.00 0.00 0.00 .00 .00
ke/s .00 1.25E+07 0.00 0.00 .00 .00
kg/s .00 .00 3.64E+07 0.00 .00 .00
kg-m/s .00 .00 0.00 4.26E+09 0.00 .00
kg-m/s .00 .00 0.00 0.00 7.026+09 0.00
kg-m/s .00 .00 0.00 0.00 0.00 4.53E+09
Stiffness Matrix
Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6
N/m 2.58E+09 0.00 0.00 0.00 .00 .00
N/m .00 3.14E+09 0.00 0.00 .00 .00
N/m .00 2.42E+10 0.00 .00 .00
N-m/m .00 .00 0.00 2.55E+12 0.00 .00
N-m/m .00 .00 0.00 0.00 4.27E+12 0.00
N-m/m | 000 .00 0.00 0.00 0.00 8.80E+11
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Appendix K
Matlab Scripts

Normal_mode_v3_3dof.m
Normal_mode_v3_3dof_nodamping.m
Normal_mode_v2_remez.m
FFT_matrix_attemptlb.m

Ift_wave_sdof.m
FFT_matrix_wave.m
FFT_modulus_general.m
Run_dof6_sim3.m
Dot6_sim3.m
First_deriv.m
Spline_fit.m
Mov_avg_v2.m
Single_pole_v2.m
Win_sinc_:
Kaiser_lp_v3.
Cheb_v3.m

Sub_cheb_v2.m
Band_reject_recur_v2.m
Band_reject_win_sinc_v2.m
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%

% Program: Normal_mode_v3_3dof.m

% Developed by: Fraser Winsor

%

%

% Removes inertial force from the measured input signals. Damping

% is based on Rayleigh damping method. This version considers only three
% degrees-of-freedom.

% Input mass matrix. measured decay force vectors. and

% the vector of natural frequencies.

%

% m mass matrix

% fmd force vector from the measured decay tests

% w natural frequency vector value for the DOF of interest
%

% h time step (full scale)

%

%

[filename.pathname] = uigetfile("*.dat'.'Input Mass Matrix'.50.50):
filename=lower(filename):
eval(['load '.[pathname. filename].";'])

dstr(filename.’.");

m=eval(filename(1:(1)-1));

%

[filename.pathname] = uigetfile("*.dat"'Input Measured Decay Force Vector'.50.50):
filename=lower(filename);

eval(['load '.[pathname. filename].":'])

f=findstr(filename.".");

fmd=eval(filename(1:f(1)-1)):

%

[filename.pathname] = uigetfile("*.dat'.'Input Natural Frequency Vector'.50.50):
filename=lower(filename);

eval(['load '.[pathname.filename]."'])

f=findstr(filenam
w=eval(filename(1:f(1)-1)):

%
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input('Input time step (default = 0.036742)');
if isempty(h)

h=0.036742:
end
%
%
% Determine the non-normalized eigenvectors
%
% phi_nn non-normalized eigenvector
%
%
forj=1:3

phi_nn(:j)= (I/w()*2)*inv(m)*fmd(:j):

en

phi_nn

%

%

% Produce the coefficients that normalize the

% eigenvectors. (non_norm_vector = ¢ * norm_vector)
%

% e(i) scalar normalizing coefficient

% phi_nn'transpose of non-normalized eigenvector

% Input the measured force vectors.

%

% fm Measured force vectors
%



[filename.pathname] = uigetfile("*.dat'. Input Measured FX'.50,50);

filename=lower(filename);
eval(['load '.[pathname.filename].":"])
f=findstr(filename.".");
fm(1.:)=eval(filename(1:£(1)-1))';

%

%

% Evaluate the size of the input measured FX vector
% and preallocate space for the entire vector - then
% recalculate the first row values.

%

%

[fm_r_size.fm_c_size|=size(fm):
fm=zeros(3.fm_c_size);
fm(1.:)=eval(filename(1:f(1)-1))":
%

%

[filename.pathname] = uigetfile("*.dat'.' Input Measured FY'.50.50):

filename=lower(filename):
eval(['load ".[pathname.filename].".'])
t=findstr(filename."
tm(2.:)=eval(filename(1:f(1)-1))"
%

(filename.pathname] = uigetfile("*.dat'.' Input Measured FZ'.50.50):

tilename=lower(filename):
eval(['load '.[pathname.filename].":'])

fm(3.:)=eval(filename( 1:f(1)-1))':
%

Yo

% Generates the displ. in the ized dii system.
%

% z displ in lized di system.
%

%

z=zeros(3.fm_c_size);

for t=1:fm_c_size

fori=1:3

2(1.0)=(1/w(i)*2)*phi(:.i)*fm(..t):

end

end

%

%

% Differentiates the dipl: in the i di

% system. i 1 in the i di system.
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% The first and last points are calculated using the Forwmd~Dxﬂ'etence.

% and Difference X ly. The are
% calculated using the Central-Di ion. [Applied N ical
% Methods for Digital Computation James, Smith. Wolford pp 343-348].

% zdd  second derivative of the displ in the
coordinate system (i.e. acceleration).

This section used to get velocity vectors needed for calculation of damping force.

eros(3.fm_c_size):

2(1.3)+4*2(1.2)-3*2(i.1))/(2*h):
2(1.4)74*2(1.3)-3*2(i.2))/(2*h):

zd(i.fm_c_size)=(3*2(i.fm_c_size)-4*z(i.fm_c_size-1)+2z(i.fm_c_size-2))/(2*h):

2d(i.fm_c_size-1)=(3*2(i.fm_c_size-1)-4*2(i.fm_c_size-2)*z(i.fm_c_size-
3)2%h):
end

(fm_c_size-2)
fori=1:3
2d(i.0)=(-z(i.1+2)+8%2(i.t+1)-8*2(i.t-1 ) +2(i.:-2))/(12%h):
end
end

This section to get acceleration needed for inertial force calculation.
ros(3.fm_c_size);

zdd(i.)=(-2(i.4)+4*2(i.3)-5*2(1.2)+2*2(.1))/(h"2):

2dd(i.2)=(-2(i.5)+4*2(i 4)-5*2(1.3)+2* 2(1.2))(h"2):

zdd(i.fm_c_size-1)=(2*2(i.tm_c_size-1)-5*2(i.fm_c_size-2)+4*2(i.fm_c_size-3)-
2(i.fm_c_size-4))/(h"2):

2dd(i.fm_c_size)=(2*z(i.fm_c_size)-5*z(i.fm_c_size-1)+4*2(i.fm_c_size-2)-
2(i.fm_c_size-3))/(h"2);
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3
% zdd(i.t)=(z(i.t+1)-2*z(i.t)+2(i,t-1))/(h"2);
2dd(i.t)=(-2(i.t+2)+16*2(i.t+1)-30*2(i.t)+16*2(i.t-1)-2(i.t-2
end

end

%

%

% Converts the I from the lized
% system to the physical coordinate system.

%

% xdd  acceleration in the physical coordinate system.
%

%

%

xd=zeros(3.fm_c_size):

xd=phi*zd:

%

xdd=zeros(3.fm_c_size):

xdd=phi*zdd:

%

Determines the inertial force using the acceleration
in the physical coordinate system.

ti inertial force vector

*m*xdd:

Generate stiffness matrix

% Generate damping matrix using Rayleigh Method

damp_ratio=input(' Enter damping ratio (i.e. 0.05): ");
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%
w %type up frequencies for reference
%

omega_m=input(' Enter fundemental frequency (rad/s): ')
omega_n=input(" Enter high frequency (rad/s):"):

%

freq_vec = [(omega_m*omega_n): 1]: % vector containing frequencies

%

a=[(2*damp_ratio)/(omega_m + omega_n)}*freq_vec: % proportionality constants
%

C=a(l)*m +a(2)*k:

%

%
% Determines the damping force using the velocity
in the physical coordinate system.

fd damping force vector

_c_size):

% Determine real force vectors

%

% ft real force vector. (ft = fm - fi-fd)
%

%

ft = zeros(3.fm_c_size):

ft = fm-fi-fd:

%

%

% Calculate time vector (be to used for plotting)
%

a

%
t_ft=zeros(1.fm_c_size|
=0:h:(h*(fm_c_size-1)):




% Program: Normal_mode_v3_3dof_nodamping.m
% Developed by: F. Winsor

% Removes inertial force from the measured input signals. Damping
% is assumed to be negligible. This version considers only three
% degrees-of-freedom.

% Input mass matrix. measured decay force vectors. and
%o the vector of natural frequencies.

m mass matrix
% fmd force vector from the measured decay tests
% w natural frequency vector value for the DOF of interest

% h time step (full scale)

[filename.pathname] = uigetfile("*.dat'Input Mass Matrix'.50.50):
filename=lower(filename):

eval(['load ".[pathname.filename].":'])

f=findstr(filename."
m=eval(filename(1:
%
[filename.pathname] = uigetfile("*.dat" Input Measured Decay Force Vector'.50.50):
tilename=lower(filename);

eval(['load '.[pathname.filename].";'])

f=findstr(filename."
fmd=eval(filename(1:£(1)-1)):
%

-1

[filename.pathname] = uigetfile("*.dat'.'Input Natural Frequency Vector'.50.50):
filename=lower(filename):

eval(['load ".[pathname.filename].'.'])

f=findstr(filename
w=eval(filename(1:£(1)-1)):

%

h=input('Input time step (default = 0.036742)):




if isempty(h)
h=0.036742;
end

% Determine the non-normalized eigenvectors

% phi_nn non-normalized eigenvector

forj=1:3
phi_nn(:j)= (/w(j)"2)*inv(m)*fmd(:j):
end
phi_nn
%

Produce the coefficients that normalize the
eigenvectors. (non_norm_vector = ¢ * norm_vector)

(i) scalar normalizing coefficient
phi_nn'transpose of non-normalized eigenvector

3

qrt(phi_ni

) * m * phi_nn(:.i)):

Normalize eigenvectors.

phi normalized eigenvector

hi_nn(:.i)*(1/e(i)):

Input the measured force vectors.

fm Measured force vectors

%
%
[filename.pathname] = uigetfile('* .dat'.' Input Measured FX'.50.50):



filename=lower(filename);
eval(['load '.[pathname, filename],";'])
f=findstr(filename."."):
fm(1.:)=eval(filename(1:f(1)-1))’;

%

Evaluate the size of the input measured FX vector
and preallocate space for the entire vector - then
recalculate the first row values.

-_size.fm_c_size]=size(fm):
ros(3.fm_c_size):
eval(filename(1:f(1)-1))";

fm=:

fm(1.:

[filename.pathname] = uigetfile('*.dat'. Input Measured FY".50.50):
filename=lower( filename):

eval(['load ".[pathname.filename].":'])

f=findstr(filename.".):

tm(2.:)=eval(filename(1:£(1)-1))':

%

[tilename.pathname] = uigetfile('*.dat'.'Input Measured FZ'.50.50):
tilename=lower( filename);

eval(['load ".[pathname.filename].":'])

f=findstr(filename.".");

fm(3.:)=eval(filename(1:£(1)-1)):

%
%
% Generates the di inthe li; system.
%
% Z displ: in lized di system.
%
%
z=zeros(3.fm_c_size):
for t=1:fm_c_size
for i
2.0=(1/w(i)*2)* phi(:i)* fm(:.):
end
end
%
%
% Dif i the dipl in the i di
% system. producing ions in the i dinate system.
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% The first and last points are calculated using the Forward-Difference,
% and Backward Di i pectively. The inder are
% calculated using the Central-Di ion. [Applied )
% Methods for Digital Computation James, Smith., Wolford pp 343-348].

% zdd  second derivative of the displacement in the normalized

% coordinate system (i.e. acceleration).

%

%

%

% This section to get acceleration needed for inertial force calculation.

2(i.4)+4*2(1.3)-5%2(1.2)+2*2(i.1))/(h2):
2(i.5)+4*2(1.4)-5%2(i.3)+2* 2(1.2))/(h"2):

ze)=(2*2(i.tm_c_size)-5*z(i.fm_c_size-1)+4*z(i.fm_c_size-2)-
)/(h"2):

2dd(i.)=(-Z(i.t+2)+16*2(i.t+1)-30*2(i.t)}+16* 2(i.t- 1 )-2(i.t-2))(12*h"2):
end

% Converts the accelerations from the normalized coordinate
% system to the physical coordinate system.

% xdd  acceleration in the physical coordinate system.

xdd=zeros(3.fm_c_size):
xdd=phi*zdd:
%

o
%

% Determines the inertial force using the acceleration
% in the physical coordinate system.
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% fi inertial force vector

%

%

fi=zeros(3.fm_c_size);

fi=-1*m*xdd:

%

%

% Determine real force vectors

%

% ft real force vector. (ft = fm - fi-fd)

eros(3.fm_c_size):

% Calculate time vector (be to used for plotting)
%

zeros(l.fm_c_size):
0:h:(h*(fm_c_size-1)):




% Program: Normal_mode_v2_remez.m
% Developed by: F. Winsor

% Removes inertial force from the measured input signals. Damping
% is assumed to be negligible. This version considers only three

% degrees-of-freedom. The numerical differentiation is done using the
% Matlab remez.m command.

%

T ot criinansnsvaseranissmnussss s R SRS S oS eSS SR SRS SRSV AP B RS e
%

%

% Input mass matrix. measured decay force vectors. and

% the vector of natural frequencies.

%

% m mass matrix

% tfmd force vector from the measured decay tests

% w natural frequency vector value for the DOF of interest
%

% h time step (full scale)

%

%

[filename.pathname] = uigetfile("* dat’. Input Mass Matrix'.50.50):
filename=lower( filename):

eval([load . [pa!hname filenamel]."])

f=findstr(filename."
m=eval(filename(1:f(1)-1)):

%

[filename.pathname] = uigetfile("*.dat'. Input Measured Decay Force Vector'.50.50):
filename=lower(filename);

eval(['load '.[pathname.filename].":'])

f=findstr(filename."
fmd=eval(filename(1:f{1)-1)):

%

[filename.pathname] = uigetfile('*.dat'.'Input Natural Frequency Vector'.50.50):
filename=lower(filename):

eval(['load [palhname filename].":'])

f=findstr(filename.".'):
w=eval(filename(1: f(l )-1):

%

h=input('Input time step (default = 0.036742)');
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if isempty(h)
h=0.036742;
end

% Determine the non-normalized eigenvectors

% phi_nn non-normalized eigenvector

for j=1:6
phi_nn(:.j)= (1/w(j)"2)*inv(m)* fmd(:.j):

% Produce the coefficients that normalize the
% eigenvectors. (non_norm_vector = ¢ * norm_vector)

% c(i) scalar normalizing coefficient
phi_nn'"transpose of non-normalized eigenvector

6
sqri(phi_nn(:.i)' * m * phi_nn(:.i)):

Normalize eigenvectors.

phi normalized eigenvector
=phi_nn(:.i)*(1/c(i));

Input the measured force vectors.

fm Measured force vectors

[filename.pathname] = uigetfile('*.dat''Input Measured FX'.50.50);



filename=lower(filename);
eval(['load '.[pathname. filename],’;'])

f=findstr(filename.’

fm(1.:)=eval(filename(1:f(1)-1))';

%

%

% Evaluate the size of the input measured FX vector
% and preallocate space for the entire vector - then
% recalculate the first row values.

%

%

[tm_r_size.fm_c_size]=size(fm);

fm=zeros(6.fm_c_size):
tm(1.:)=eval(filename(1:f(1)-1))":
%

%

[filename.pathname] = uigetfile('*.dat'. [nput Measured FY".50.50):
filename=lower(filename):

eval(['load ".[pathname.filename].":'])

f=findstr(filename.".'):
fm(2.:)=eval(filename(1:f(1)-1)y:

%

[filename.pathname] = uigetfile('*.dat'Input Measured FZ'.50.50):
filename=lower(filename):

eval(['load '.[pathname.filename].":'])

[=findstr(filename."
fm(3.:)=eval(filename(1:f(1)-1))":

%

(filename.pathname] = uigetfile('*.dat'. [nput Measured MX'.50.50):
tilename=lower(filename):

eval(['load ".[pathname.filename].":"])

f=tindstr(filename.".’):

fm(4.:)=eval(filename(1:£(1)-1))";

%

[filename.pathname] = uigetfile('*.dat' Input Measured MY".50.50):
tilename=lower(filename):

eval(['load '.[pathname. filename].""])

f=findstr(filename.".’):

fm(5.:)=eval(filename( 1:f(1)-1)):

%

[filename.pathname] = uigetfile("*.dat'. Input Measured MZ'.50.50):
tilename=lower( filename);

eval(['load '.[pathname.filename].:'])

f=findstr(filename."."):
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fm(6.:)=eval(filename(1:f(1)-1))’;

% Generates the displ. in the i inate system.

% z i in i dii system.

z=zeros(6.fm_c_size):

for t=1:fm_c_size

for i
2(i.t)y=(1/w(i)"2)*phi(:.i)* fm(:.

end

end

% zdd  second derivative of the displ; in the

% coordinate system (i.e. acceleration).
o
%

zd=zeros(6.fm_c_size):
zeros(6.fm_c_size):

n=input('nput filter order : '):
samf=input('[nput sample frequency : ')
bl=remez(n.[0 1].[0 pi*samf].'d")

for i=1:6

filter(b1.1.2(i.2)):
=filter(bl.1.zd(i.:)):

6
2dd(i.:)=zdd2(i.(n+1):fm_c_size):

end
[zdd_r.zdd_c|=size(zdd):
for i=1:6
fm2(i.:)=fm(i.1 :zdd_c): % truncate fm size
end
%
% Converts the ions from the li;
% system to the physical coordinate system.
%

% xdd  acceleration in the physical coordinate system.



%

xdd=zeros(6.fm_c_size);

xdd=phi*zdd:

%

%

% Determines the inertial force using the acceleration
% in the physical coordinate system.

% fi inertial force vector

ros(6.fm_c_size):
-1*m*xdd:

Determine real force vectors

ft real force vector. (ft = fm - fi)

eros(6.fm_c_size):

ft = fm2-fi:

%

%

% Calculate time vector (be to used for plotting)

zeros(l.zdd_c):
:h:(h*(zdd_c-1)):



% Program: FFT_matrix_attemptib.m

% Inverse Fourier Transform Method. Matrix Implementation One
% Coded by: F. Winsor

% Version Date: Sept. 13. 1999

% Load in original force data files. Three files for each
% applied load direction. These are decay test results.

load global_fx.dat %

load global_fy.dat % Load applied in X direction.
load global_fz.dat %

%

load global _y_fx.dat %

load global _y_fy.dat % Load applied in Y direction.
load global_y_fz.dat %

%

load global_z_fx.dat %

load global_z_ty.dat % Load applied in Z direction.

load global_z_fz.dat %

% Select "measured force” signal from the original files.

Qm 1 00"4) % X direction.
fm X, fz=n|obal l‘z{900l 10024): %
%
tm_y_fx=global_y N’SO}:JS’J) %
fm ‘\' Y direction.
obal_z_fx(1501::
obal_z_fy(150 Z direction.

save fm_x_fz.dat fm_x_fz -ascii



save fm_y_fx.dat fm_y_fx -ascii
save fm_y_fy.dat fm_y_fy -ascii
save fm_y_fz.dat fm_y_fz -ascii
save fm_z_fx.dat fm_z_fx -ascii

slep X tz—aloba] tz(9l7’ IOI‘):)

lobal_y_fx(3040:4063):
y=global_y_fy(3040:4063):
>\c.p y fZ‘L‘ObﬂlJ f2(3040:4063);

_fz -ascii
.dat step_y_fx -ascii

save step_y_fz.dat step
save step_z_fx.dat step_;
save step_z_fy.dat step_z_|
save step_z_fz.dat step_z_fz -ascii

%
% Call script First_deriv.m to differentiate
% each step response to obtain the impulse

% response. This must be done for the nine step
% response files. separately.

%

% For this program the step responses must be
% dlffemnua{cd in a certain order: step_x_fx.
% step_x_|

%

for diff_index=1:1:9
first_deriv



imp_:
elseif diff_inde:

imp_x_fy=zd';
elseif diff_index==3
imp_x_fz=zd';
elseif diff_index==4
imp_y_fx=zd":
elseif diff_index==5

imp_y_fy=zd":

elseif diff_index==6
imp_y_fz=zd":

elseif diff_index==7
imp_z_fx=zd".

clSﬂlfdlff index==8

% Take the fast Fourier transform (fft) of
% the so-called measured force signals. Note
% that a 1024 length fft is specified.

% Take the fast Fourier transform (fft) of the
% impulse response functions.

w
S



H_y_fy=ffi(imp_y_fy.1024);
H_y_|f fz—fft(lmpj 2.1024);
(imp_z_fx.1024);
(imp_z_fy,1024);
fz—fﬁ(lmp z_fz.1024);

Normalize the ffts of the impulse response

functions (frequency response functions. This ensures
that the diagonal terms in the "Hs" matrix have
values of 1.0.

% Copy one of the sets of measured force signals

% into a common matrix(size 3x1024). In this case.
% the measured force from a test where the load
Yo was applied in the X direction was selected.
%
for i=1:1024

FM_all(1.i

FM_all(2. fy(i.1):

FM_all(3. )—FM _fz(i.1):
end
%
% Copy the normalized frequency response function
% vectors into a common matrix. Then divide each
% column vector(3x1)in the measured force matrix.
% by the relevant frequency response matrix (3x3)
% to obtain an actual force column vector which is
% stored in an actual force matrix (3x1024).
%
% Note that two commands are available to do the
% division. One uses the Matlab operator known as
% "backslash or left matrix divide". The other



% inverts the frequency response matrix (3x3) then
% multiplies it by the measured force column vector.
%
for i=1:1024
Hs_all(1.1)=Hs_x_fx(i.1);
Hs_all(1.2)=Hs_y_fx(i.1);
Hs_all(1.3)=Hs_z_fx(i.1);
Hs_all(2.1)=Hs_x_fy( ).
Hs_all(2.2)=Hs_y_fy(i.
Hs_all(2.3)=Hs_z_fy(i ).
Hs_all(3.1)=Hs_x_fz(

Hs_all(3.2)=Hs_y_fz(i.1):
Hs_all(3.3)=Hs_z_fz(i.1):
%
%FA_all(:.iy=Hs_all\FM_all(:.i);
FA_all(:.i)=inv(Hs_all)*FM_all(.i):
end
%
% Set the first column vector in the actual
% force matrix equal to the first column vector
% of the measured force matrix. This is to
% avoid a divide by zero problem when computing
% the inverse Fourier transforms.

FA_all(.)=FM_all(:.1):
%

% Generate a vector of frequencies to be used
% in plotting the results.

freq=27.2168*(0:511)/1024:
%

% Get the inverse Fourier transform of each

% row vector. to obtain the time
% series of the actual forces.
22).1024);

2.:).1024);

3.).1024):
% Plot comparison of measured and actual
% force results.
%
plot (fm_x_fx)
hold on



plot(real(fa_fx).r)
legend('fm x fx''fa f')
title('impulse ffts normalized by initial value of diagonal terms’)

plot (fm_x_fy)

hold on

plot(real(fa_fy).r')

legend('fm x fx'/fa fx')

legend('fm x fy''fa fy')

title('impulse ffts normalized by initial value of diagonal terms')
pause

hold off

plot (fm_x_{z)

hold on

ploureal(fa_fz).r')

legend('fm x {z''fa {z')

title('impulse ffts normalized by initial value of diagonal terms’)

pause
hold off



Program: FFT_matrix_deconv_a.m

Inverse Fourier Transform Method, Matrix Implementation
% Coded by: F. Winsor

% Version Date: Jan 18. 2000

%
% Load in original force data files. Three files for each
% applied load direction. These are decay test results.

load global_fx.dat %

load global_fy.dat % Load applied in X direction.
load global_fz.dat %

%

load global_y_fx.dat %

load global_y_fy.dat% Load applied in Y direction.
load global_y_fz.dat %

%

load global_z_fx.dat %

load global_z_fy.dat% Load applied in Z direction.
load global_z_fz.dat %

%

%  Select "measured force" signal from the original files.

=global_fx(9001:10024): %
alobal_fy(9001:10024): % X direction.
fz=global_{z(9001:10024); %

alobal_y_fx(2:
_y_fy(2501:3524): % Y direction.
fz=global_y_fz(2501:3524); %

=global_z_fx(1501:2524): %
lobal_z_fy(1501:2524);%  Z direction.
lobal_z_fz(1501:2524): %
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save fm_y_fx.dat fm_y_fx -ascii

save fm_y_fy.dat fm_y_fy -ascii

save fm_y_fz.dat fm_y_fz -ascii

save fm_z_fx.dat fm_z_fx -ascii

save fm_z_fy.dat fm_z_fy -ascii

save fm_z_fz.dat fm_z_fz -ascii

%

% Select step response from original signal.
%

%  Save these files in ascii format.

%

save step_x_fx.dat step_x_fx -ascii
save step_x_fy.dat step_x_fy -ascii
save step_x i
save step_y

save step_y_fy.dat step_y_fy -ascii
save step_y_fz.dat step_y_fz -ascii
save step_z_fx.dat step_z_fx -ascii
save step_z_fy.dat step_z_fy -ascii

save step_z_fz.dat step_z_fz -ascii

% Call script First_deriv.m to differentiate

% each step response to obtain the impulse

% response. This must be done for the nine step
% response files. separately.

% For this program the step responses must be
% differentiated in a certain order: step_x_fx.
% step_x_fy. step_x_fz. etc.....

9

for diff_index=1:1:

first_deriv




|fd|ff index
x=zd'
elselfdlff de:
imp_x_fy=zd"
elseif diff_index=3
imp_x_fz=z2d":
elseif diff_index=4
imp_y_fx=zd";
elseif diff_index==5
imp_y_fy=zd"

% Create normalized impulse response
% function vectors. They are normalized
% by their own mean values times the
% number of points in the vector.

y/(-mean(imp_x_f)* 1024):
Z/(- mean(imp_x_f‘()“ 1024):

p. h/(-mean(lmp_z_fz)‘1074)
_fz=imp_z_fz/(-mean(imp_z_fz)*1024):

% Modify the first point of the impulse response signals.
%

%
%
%



if(sum(h_x_fx)<=0.0)
h_x_fx(1)=h_x_fx(1)+abs(sum(h_x_tx)+sum(h_x_fx));

else
h_x_fx(1)=h_x_fx(1)-abs(sum(h_x_fx)+sum(h_x_fx));

iftsum(h_x_fy)<=0.0)
x_fy(1)=h_x_ty(1)+abs(sum(h_x_fy)+sum(h_x_fy)):

%%

%

if(sum(h_x_fz)<=0.0)
h_x_fz(1y=h_x_fz(1)+abs(sum(h_x_fz)+sum(h_x_fz)):

else

h_x_fz(1)=h_x_fz(1)-abs(sum(h_x_fz)+sum(h_x_fz)):
end

%%
%
%
if(sum(h_y_fx)<=0.0)
h_y_fx( _y_fx(1)+abs(sum(h_y_fx)+sum(h_y_x)):

else

h_y_fx(1)=h_y_fx(1)-abs(sum(h_y_fx)+sum(h_y_fx)):

iftsum(h_y_ty)<=0.0)
h_y_fy(1)=h_y_fy(1)+abs(sum(h_y_fy)+sum(h_y_fy)):

else
h_y_fy(1)=h_y_fy(1)-abs(sum(h_y_fy)+sum(h_y_fy)):

end

%%

%

iftsum(h_y_fz)<=0.0)
h_y_fz(1)=h_y_fz(1)+abs(sum(h_y_fz)+sum(h_y_fz)):

else
h_y_fz(1)=h_y_fz(1)-abs(sum(h_y_fz)+sum(h_y_fz)):

end

%%

%

%
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iftsum(h_z_fx)<=0.0)
h_z_fx(1)=h_z_fx(1)+abs(sum(h_z_fx)+sum(h_z_fx));

else
h_z_fx(1)=h_z_fx(1)-abs(sum(h_z_fx)+sum(h_z_fx)):
d

-_f) )
h_z Fv(l)—h z fy(l)+abs(sum(h z_fy)+sum(h_z_fy)):
else
h_z_fy(1)=h_z_fy(1)-abs(sum(h_z_fy)+sum(h_z_fy)):
end
%%
%
ifisum(h_z_fz)<=0.0)
h_z_fz(1)=h_z_fz(1)+abs(sum(h_z_fz)+sum(h_z_fz)):
else
h_z_fz(1)=h_z_fz(1)-abs(sum(h_z_fz)+sum(h_z_fz)):
end
%%

fm ¥ lm X I'y:
fm_z*fm_x_fz:

% Pad measured signals with zeros to 2047 points.
%

%

%
fm_x_pad=zeros(2047..
fm y_pad=zeros(2047.

tm_y_pad(1:1024)=fm_y:
fm_z_pad(1:1024)=fm_z:



% Perform the deconvolution

[q_x1.r_x1]=deconv(fm_x_pad.h_x_fx):
[q_x2.r_x2]=deconv(fm_x_pad.h _y_f'( 2
[q_x3.r_x3]=deconv(fm_x_pad.h_z_|
[q_yl.r_yl]=deconv(fm_y_pad.h_x fy).
[q_y2. =deconv(fm_y_pad.h_y
[q_y3.r_y3|=deconv(fm_y _p'd_h_z_fy)
[q_zl.r_zl |=deconv(fm_z_pad.h_x_fz):
[q_22.r_z2|=deconv(fm_z_pad.h_y_fz):
[q_23.r_z3|=deconv(fm_z_pad.h_z_fz);
%

%

% Plot the results

%

%

%

hold off

plot (fm_x)

hold on

plot(q_x1.r)

title ('fim-x vs g-x1 from h-x-fx')
legend('measured'.'actual’)

xlabel ('Vector Element Number')
ylabel (‘Force (MN)')

pause

hold off

plot (fm_x)

hold on

plot (q_x2."r")

title ('fm-x vs q-x2 from h-y-fx')
legend('measured'.'actual’)

xlabel ('Vector Element Number')
ylabel ('Force (MN)')

pause

hold off

plot (fm_x)
hold on

plot (q_x3.r')




title (‘fm-x vs q-x3 from h-z-fx")
legend('measured'.'actual'’)

xlabel ('Vector Element Number')
ylabel ('Force (MN)')

pause

hold off
plot (fm_y)
hold on
plot(q_yl.T')

title ('fm-y vs g-y!l from h-x-fy")
legend('measured'.'actual')

xlabel ('Vector Element Number')
ylabel ('Force (MN)')

pause

hold off’
plot (fm_y)
hold on

¥ vs q-y2 from h-y-fy')
legend('measured'.'actual’)

xlabel ('Vector Element Number')
vlabel ('Force (MN)')

pause

hold off

plot (fm_y)

hold on

plot (q_y3.r)

title ('fm-y vs q-y3 from h-z-fy')
legend('measured'.'actual’)

xlabel ('Vector Element Number')
vlabel ('Force (MN)')

pause

hold off

plot (fm_z)

hold on

plot (q_zl.t")

title ('fm-z vs g-zI from h-x-fz)
legend('measured'.'actual’)

xlabel ('Vector Element Number')
vlabel ('Force (MN))



pause

hold off

plot (fm_z)

hold on

plot (q_22.7)

title (‘fm-z vs g-22 from h-y-fz - modification h-z-fz(1)= 1.133")
legend('measured'.'actual’)

xlabel ('Vector Element Number')

ylabel ('Force (MN)')

pause

hold off

plot (fm_z)

hold on

plot (q_z3.)

title (‘fm-z vs g-z3 from h-z-1Z')
legend('measured'.'actual’)

xlabel (‘Vector Element Number’)
vlabel ('Force (MN)')

pause



% Program: ift_wave_sdof.m

Single degree of freedom implementation of inverse Fourier
transform method applied to measured wave impact signals

% Coded by: F. Winsor
%

% Version Date: Jan 18. 2000

% [nput wave input sigrals

%

[filename.pathname] = uigetfile("*.dat'.'Wave Impact Signal - X Direction: .
filename=lower(filename):

eval(['load ".[pathname.filename]."'|)

t=findstr(tilename.".’):

fm_x(1.:)=eval(filename(1:f(1)-1))":

%

%

(filename.pathname] = uigetfile("*.dat'.'Wave Impact Signal - Y Direction: '.5

filename=lower(filename):

eval(['load '.[pathname.filename].":'])
f=findstr(filename."."
fm_y(1.:)=eval(filename(1:f(1)-1))";

%

%

50.50):

[filename.pathname] = uigetfile("*.dat'.'"Wave Impact Signal - Z Direction: '.50.50):

filename=lower(filename):
eval([load '.[pathname.filename].":'])
t=findstr(filename.".’):
fm_z(1.:)=eval(filename(1:f(1)-1))"
%

o [nput signal sample rate. Use to determine plotting
vectors for time and frequency scales.

input('Input Sample rate (default = 27.2168)'):
if isempty(fs)



£5=27.2168:
end
%
%
time=(0:(1/f5):(1023*(1/fs)));
%
freq=fs*(0:511)/1024;
%

% Plot the measured signal time traces.

hold off

ploy(time.fm_x)

title('Wave Impact Signal - X direction’)
legend('fm-x")

xlabel('Time (s)')

ylabel('Force (MN)')

pause

%

%

hold off’

plot(time.fm_y)

title('Wave Impact Signal - Y direction')
legend('fm-y")

xlabel('Time (s)')

ylabel(Force (MN))

pause

%

hold off

plot(time.fm_z)

title('Wave Impact Signal - Z direction')
legend('fm-z')

xlabel('Time (s)')

vlabel('Force (MNY)

pause

%

%

% Determine the FFTs of measured signals. impulse response
% signals and normalized frequency responses.

%

%

first_deriv % input step_x_fx.dat



%

hx=zd:

%

FM |_x=fft(fm_x.1024);

Hx/Hx(1):

first_deriv % input step_y_fy.dat
%

hy=zd:

%

hz=zd:

%
FM_z=tfi(fm_z.1024):
Hz=fft(hz.1024):
Hzl=Hz/Hz(1):

o Plot FFTs of measured signals and
% normalized frequency responses

hold off

plot(freq.abs(FM_x(1:512)))

title('FFT of measured signal of X Direction’)
legend('FM-x')

xlabel('Frequency (Hz)')

ylabel('FFT Magnitude’)

pause

%

%

%

hold off

plot(freq.abs(FM_y(1:512)))

title('FFT of measured signal of Y Direction’)



legend('FM-y")

xlabel(‘'Frequency (Hz)')

ylabel('FFT Magnitude')

pause

%

%

%

hold off

plot(freq.abs(FM_z(1:512)))

title('FFT of measured signal of Z Direction')
legend('FM-z')

xlabel('Frequency (Hz)')

ylabel(FFT Magnitude’)

pause

%

%

%
hold off

plot(freq.abs(Hx1(1:512)))

title (‘Normalized Frequency Response - X Direction’)
legend('Hx1")

xlabel('Frequency (Hz)")

ylabel('FFT Magnitude')

pause

%

hold off

plot(treq.abs(Hy1(1:512)))

title (‘'Normalized Frequency Response - Y Direction’)
legend('Hy1')

xlabel(‘'Frequency (Hz)")

ylabel(FFT Magnitude')

pause

%

hold off

plot(freq.abs(Hz1(1:512)))

title (‘'Normalized Frequency Response - Z Direction’)
legend('Hz1")

xlabel('Frequency (Hz)")

ylabel(FFT Magnitude')

pause

%

%

%

% Determine the FFT of the actual force signals

B
N



_y=FM_y./Hyl:
FA_z=FM _z./Hz1:

%

%

% Plot comparisons of the measured and actual force FFTs

hold off

plot(freq.abs(FM_x(1:512)))

hold on

plot(treq.abs(FA_x(1:512)).r')

title ('FFTs of measured and actual force signals - X Direction’)
legend('FM-x"/FA-x')

xlabel(‘Frequency (Hz)')

vlabel(FFT Magnitude')

pause

%

hold off

plot(freq.abs(FM _y(1:512)))

hold on

plot(freq.abs(FA _y(1:312)).'r')

title (‘FFTs of measured and actual force signals - Y Direction')
legend('FM-y''FA-~y)

xlabel('Frequency (Hz)')

ylabel('FFT Magnitude’)

pause

%

hold off

plot(treq.abs(FM_z(1:512)))

hold on

plot(freq.abs(FA_z(1:512)).r')

title (‘FFTs of measured and actual force signals - Z Direction’)
legend('FM-z''FA-Z')

xlabel('Frequency (Hz)')

vlabel(FFT Magnitude')

pause



Determine the actual force time series signals

ifft(FA_x.1024):

% Plot the measured and actual force time series signals
9

hoid oft

plot(time.real(fm_x))

hold on

plot(time.real(fa_x).'r')

title('measured and actual force signals')
legend(‘'fm-x - measured signal''fa-x - actual signal’)
xlabel('Time (s)')

ylabel('Force (MN)')

pause

%

hold off

plot(time.real(fm_y))

hold on

plot(time.real(fa_y).'r")

title('measured and actual force signals')
legend('fm-y - measured signal'.'fa-y - actual signal’)
xlabel('Time (s)')

vlabel('Force (MN)')

pause

%

hold off

plot(time.real(fm_z))

hold on

plot(time.real(fa_z).'r)



title('measured and actual force signals'’)
legend('fm-z - measured signal'.'fa-z - actual signal')
xlabel('Time (s)')

ylabel('Force (MN)')

pause

%

% Plot comparisons of the measured force FFT and
% the frequency response. This can illustrate the
% shift in the resonant peak caused by added mass.

% Note scale factor applied to (some of the) normalized
% frequency response for plotting purposes.

%

hold off

plot(freq.abs(FM_x(1:512)))

hold on

plot(freq.abs(Hx1(1:512)*1).'r')

title (‘'FFTs of M d Signal and N ized Frequency R

legend('FM-X""HxI')
xlabel('Frequency (Hz)")
ylabel(FFT Magnitude')

pause

%

%

hold off
plot(freq.abs(FM_y(1:512)))
hold on

plot(freq.abs(Hy 1(1:512)*1).'r")
title ('FFTs of M d Signal and ized Frequency R

legend('FM-y'.'Hy1")
xlabel('Frequency (Hz))
ylabel('FFT Magnitude’)

pause

%

%

hold off
plot(freq.abs(FM_z(1:512)))

hold on
plot(freq.abs(Hzl(1:512)*44.7).'’)

title ('FFTs of M d Signal and ized Frequency R

- X Direction’)

- Y Direction’)

- Z Direction')



legend('FM-z''Hz1")
xlabel('Frequency (Hz)')
ylabel('FFT Magnitude')
pause

%



% Program: FFT_matrix_wave.m

% Inverse Fourier Transform Method, Matrix Implementation One
% Coded by: F. Winsor

% Version Date: Sept. 13. 1999

% Input wave input signals

[filename.pathname] = uigetfile("*.dat'.'Wave Impact Signal - X Direction: '.50.50):
filename=lower(filename);

eval(['load '.[pathname.filename].":"])

t=findstr(filename.".

fm_x(1.:)=eval(filename(1:£(1)-1))":

%

:

[filename.pathname] = uigetfile("*.dat'’ Wave Impact Signal - Y Direction: '.50.50):
filename=lower(filename):

eval(['load '.[pathname.filename].":"])

f=findstr(filename."."):

fm_y(1.:)=eval(filename(1:f(1)-1)):

%

%

[filename.pathname] = uigetfile('*.dat'.'Wave Impact Signal - Z Direction: '.50.50):
filename=lower(filename):

eval(['load '.[pathname.filenamel.";'])

indstr(filename."."):

fm_z(1.:)=eval(filename(1:f(1)-1)):

% [nput signal sample rate. Use to determine plotting
o vectors for time and frequency scales.

nput(‘'Input Sample rate (default =
if isempty(fs)
5=27.2168:

27.2168)):

o
9



end
%
%
time=(0:(1/fs):(1023*(1/fs)));
%

freq=f5*(0:511)/1024:

% Call script First_deriv.m to differentiate

% each step response to obtain the impulse

% response. This must be done for the nine step
response files, separately.

% For this program the step responses must be
% differentiated in a certain order: step_x_fx.
step_x_fy. step_x_fz. etc.....

imp_z_fy=zd":
else diff_index==9
imp_z_fz=zd"
end
end
%
%
% Take the fast Fourier transform (fft) of
% the so-called measured force signals. Note

% that a 1024 length fft is specified.

w
&
b4



%

FM_x=fft(fm_x.1024);
FM_y=fft(fm_y.1024);
FM_z=fft(fm_z.1024):

%
% Take the fast Fourier transform (fft) of the
% impulse response functions.

% Normalize the ffts of the impulse response
% functions (frequency response functions with
% the first point in each signal. This ensures

% that the first point in the "Hs" signal has
% avalue of 1.0.

H_x_fy/H_»
fz=H_x_fz/H_x_fx(1):
H_y_fwH_y_fy(l):
fy/H_y_fy(1):

%

%

% Copy one of the sets of measured force signals
% into a common matrix(size 3x1024). In this case.
% the measured force from a test where the load

% was applied in the X direction was selected.
%

fori=1:1024
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FM_all(Li
FM_all2

FM_x(L.i);
FM_y(L.i);

FM_all(3.i)=FM_z(1.i);
end
%
% Copy the normalized frequency response function
% vectors into a common matrix. Then divide each
% column vector(3x1)in the measured force matrix.
% by the relevant frequency response matrix (3x3)
% to obtain an actual force column vector which is
% stored in an actual force matrix (3x1024).
%
% Note that two commands are available to do the
% division. One uses the Matlab operator known as
% "backslash or left matrix divide". The other
% inverts the frequency response matrix (3x3) then
% multiplies it by the measured force column vector.
%
for i=1:1024

Hs_all(1.1)=Hs_x R(l b

y_fe(i):
H> all(3 3) Hs z_fz(i.1):

=Hs_all\FM _all(:.i):
v(Hs_all)*FM_al

% Set the first column vector in the actual

% force matrix equal to the first column vector

% of the measured force matrix. This is to

% avoid a divide by zero problem when computing
% the inverse Fourier transforms.

%

FA_all(:.1)=FM_all(:.1):

%

% Generate a vector of frequencies to be used

% in plotting the results.
%

o
o
o



Get the inverse Fourier transform of each
row vector. to obtain the time
series of the actual forces.

iFR(FA_all(1,:).1024);
_fy=iff(FA_all(2.:).1024);
fa_fz=iffi(FA _all(3.:).1024):

%

% Plot comparison of measured and actual
% force results.

%

plot (time.fm_x)

hold on

plot(time.real(fa_fx).'r')

legend('measured X force'.'actual x force’)
title('MDOF - measured and actual force signals’)
xlabel('Time (s)')

ylabel('Force (MN)')

%oprint

pause

hold off

plot (time.fm_y)

hold on

plot(time.real(fa_fy).r')

legend('measured Y force'.'actual Y force')
title(MDOF - measured and actual force signals')
xlabel('Time (s)’)

vlabel('Force (MN)')

Yoprint

pause

hold off

plot (time.fm_z)

hold on

plot(time.real(fa_fz).r')

legend(‘measured Z force'.'actual Z force')
title('MDOF - measured and actual force signals')
xlabel('Time (s)’)

vlabel('Force (MN)')

%print

pause

hold off



% Program: fft_modulus_general.m

% Coded by: Fraser Winsor

% This script calculates the fft modulus and phase. The modulus or magnitude
% is scaled. that is. a sinusoidal signal of arbitrary amplitude will produce

% a fft magnitude peak at the same value.

% Information on the scaling method can be found on page 6-117 of the "Matlab
% Signal Processing Toolbox. User's Guide. Version 4"

% Input time series

%

%

[filename.pathname] = uigetfile("* dat''FX Time Series'.50.50):
filename=lower(filename):

‘.\al([ load '.[pathname.filename].":'])

findstr(filename.""):

fx=eval(filename(1:f{1)-1)):

%

[filename.pathname] = uigetfile(** .dat’'FY Time Series’.50.50):
filename=lowert( filename):

eval(['load ".[pathname. filenamel.":'])
f=findstr(filename."."
fy=eval(filename( le)-l))

[filename.pathname] = uigetfile('*.dat''FZ Time Series’.50.50):
filename=lower( filename):

eval(['load ".[pathname. filename]."?])

f=findstr(filename.".
fz=eval(filename(1:f(1)-1)):
%

[filename.pathname] = uigetfile("* .dat'"MX Time Series'.50.50):
filename=lower(filename);

eval(['load ".[pathname. filename}].":"])

f=findstr(filename.""):

mx=eval(filename(1:f(1)-1)):

%
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[filename.pathname] = uigetfile('*.dat’/MY Time Series',50.50);
filename=lower(filename);

eval(['load '.[pathname. filename].";'])

f=findstr(filename."
my=eval(filename(1:£(1)-1));
%

%

[filename.pathname] = uigetfile('*.dat''MZ Time Series'.50.50):
filename=lower(filename):

eval(['load ".[pathname.filename]."'])

t=tindstr(filename.".");

mz=eval(filename(1:£(1)-1)):

%

% Choose the degree-of-freedom being analyzed. The time series will be plotted up
o and the starting point can be selected graphically.

%

prin_dof=input('DOF of Interest (1=FX. 2=FY.etc) '):
%

if' prin_dof’
plot (fx)
title(FX")
zoom
pause
[xx '] = ginput(1)
t1=round(xxx)
zoom
elseif prin_dof==2
plot (fy)
title(FY")
zoom
pause
[x: ginput(1)
tl=round(xxx)
zoom
elseif prin_dof==3
plot (fz)
title('FZ')

zoom
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elseif prin_dof==4
plot (mx)
title('MX")
zoom
pause
[xxx.yyy] = ginpu(1)
t1=round(xxx)

elseif prin_do
plot (my)
title('MY")

zoom

elseif prin_dof==
plot (mz)
title('MZ')

zoom
pause
XX.Y:

% Input the length of the fft. and the time spacing

nput('Input FFT Length: '):

1+_fft:

input('Input time step DT: '):
% Evaluate the fft modulus and phase for each dof. and plot the results

x_fx=fx(tl2):

frex_tx._fft):

bs(x_fx_fft)*2/length(x_fx):
me_step)*(0:((1_ffv/2)-1))/1_fft:

fx=angle(x_fx_fft

X_deg=phase_fx.*180/pi;

phase_|

b
]



subplot (2.1.1).plot (frq,pn_x_x(1:1_fft/2))

title ('fft £y ulus')

subplot (2.1.2).plot (frq.phase_fx_deg(1:(1_ffv2)))
title (‘fft fx  phase’)

_th fn(x _fy.l_ff):
abs(x_fy_fft)*2/length(x_fy):
le(x_fy_ff):

_fy_fft):
deg=phase_fy.*180/pi:
.1).plot (frq.pn_x_fy(1:1_ffv2))
modulus’)
.2).plot (frq.phase_fy_deg(1:(1_ff/2)))
title ('fft fy  phase’)
pause
%

z_fft):
phase_fz_deg= phase fz.*180/pi:
subplot (2.1.1).plot (frq.pn_x_fz(1:1_ffv2))
title ('fft fz  modulus’)
subplot (2.1.2).plot (frq.phase_fz_deg(1:(1_ffv/2)))
title ('fft fz  phase’)
pause
%

1_fft):
bs(x_mx_fft)*2/length(x_mx):
x=angle(x_mx_fft):
pha>e mx_deg=phase_mx.*180/pi:
subplot (2.1.1).plot (frq.pn_x_mx(1:1_ffv2))
title ('fft mx modulus')
subplot (2.1.2).plot (frq.phase_mx_deg(1:(I_{fi/2)))
title ('fft mx  phase')
pause




%

%

x_my=my(tl:2);

x_my_ff=fft(x_my.1_fft):
pn_x_my=abs(x_my_fft)*2/length(x_my):
phase_my=angle(x_my_fft);
phase_my_deg=phase_my.*180/pi;

subplot (2.1.1).plot (frq.pn_x_my(1:1_fft/2))
title ('ftmy  modulus')

subplot (2.1.2).plot (frq.phase_my_deg(1:(l_{fv/2)))
title ('fft my phase’)

pause

%

%

x_mz=mz(tl:12):

x_mz_fit=ff(x_mz.|_fft):
pn_x_mz=abs(x_mz_fft)*2/length(x_mz):
phase_mz=angle(x_mz_ffi):
phase_mz_deg=phase_mz.*180/pi:

subplot (2.1.1).plot (frq.pn_x_mz(1:1_ffv/2))
title ('fft mz modulus')

subplot (2.1.2).plot (frq.phase_mz_deg(1:(1_ff/2)))
title ('fft mz  phase’)

pause

Yo



%

Program: Run_dof6_sim3.m

Coded by:  Fraser Winsor

Script to generate displacement and velocity vectors in 6 degree-of-freedom
based on the equation of motion.

Inputs: Mass matrix (6x6)
Stiffness matrix (6x6). see normal mode method
Damping matrix (6x6). see Rayleigh damping
Initial conditions (displacement and velocity)
Initial force value
Pulse start time and duration
Signal length or time span

Outputs: 6 force and moment vectors. plus a time vector as ascii files
Note: (1) Calls script dof6_sim3.m

(2)  Check initial conditions
(3)  Check applied force in script dof6_sim3.m

%
%
%

Define global variables

global MK C X Y Z 10 tf per_crt_start t_duration f_init

[nput mass. stiffness. and damping coefficient matrices

[filename.pathname] = uigetfile("*.dat'. Input Mass Matrix'.50.50):
filename=lower(filename):
eval(['load ".[pathname. filename},';'])

findstr(filename."."):

M=eval(filename(1:f(1)-1)):



%
[filename.pathname] = uigetfile("*.dat', Input Stiffness Matrix',50,50):
filename=lower(filename);

eval(['load '.[pathname.filename].";'])

f=findstr(filename.".");

K=eval(filename(1:f(1)-1));

%

[filename.pathname] = uigetfile('* .dat'.' Input Damping Matrix'.50.50):
filename=lower(filename);

eval(['load '.[pathname.filename].":"])

f=findstr(filename."."):

C=eval(filename(1:f( l)~l))

%

%

% Input initial force value. pulse start time. pulse duration

% (specific to the pulse type force used in dof6_sim3.m)

t_init=input(' Enter initial force value:
t_start=input(' Enter step start time: '):
t_duration=input(' Enter step duration time: ')

)

% Set up simplfied matrices for input into solver

% Use ODEMS to solve differential equations

options=odeset('MaxStep'.0.05): %This command sets the maximum step size
[t.u] = ode45('dof6_sim3".[tO tf].uC.options):

&



% Generate force signals by [K]*{d}. where {d} represents displacement vector.
% Output signals to ascii files.

SEu)

[filename.pathname] = uiputfile("*.dat""Output Force File - FX".50.50):
filename=lower(filename):

eval(['save '.[pathname.filename].’ FX'." -ascii’])

%

[filename.pathname] = uiputfile("* dat'."Output Force File - FY".50.50):
filename=lower(filename):

eval(['save *.[pathname.filename].' FY"." -ascii’])

%

[filename.pathname] = uiputfile("*.dat'.'Output Force File - FZ'.50.50):
filename=lower(filename):

eval(['save ".[pathname.filename].' FZ'" -ascii'])

%

[filename.pathname] = uiputfile('*.dat'.'Output Force File - MX'.50.50):
filename=lower( filename);

eval(['save '.[pathname.filename].' MX'." -ascii'])

%

[filename.pathname] = uiputfile(**.dat''Output Force File - MY".50.50):
filename=lower( filename);
eval(['save . [pathname.filename].' MY"," -ascii'])



%

[filename.pathname] = uiputfile(**.dat','Output Force File - MZ',50,50);
filename=lower(filename);

eval(['save ',[pathname, filename],' MZ'." -ascii'])

%

%

[filename.pathname] = uiputfile("*.dat','Output time vector File - t.50.50):
filename=lower(filename);

eval(['save '.[pathname.filename]. ' -ascii'])

%

%



% Program: Dof6_sim3.m

% Coded by: Fraser Winsor

% Script called by Run_dof6_sim3.m to generate displacement
% and velocity vectors in 6 degree-of-freedom based on the equation of motion.

% Define function name
%
%
function udot=dof6_sim3(t.u)
%

% Define global variables

o

%

global M KC X Y Z t0 tf per_cr t_start t_duration {_init

%

%

% Define applied force. In this case a step is applied. Remember to adjust

% the location of f_init for each degree-of-freedom. F(1) = Fx. F(2)=Fy. F(3)=Fz.
% F(4)= Mx. F(5)=My. F(6)=Mz.




% Set up 2nd order differential equations as a set of first order

% differential equations. Here the odd udot elements (i.e. udot(l.:).
% udot(3.:). etc.) represent the displacement vectors. while the even

% udot elements represent velocity vectors.

(XLD*u2)+X(1.2)*u(@)+X(1.3)*u(6)+X(1.4)*u(8)+X(1.5)*u(10)+X(1.6)*u(12))-...
(YCLD*u()+Y(1.2)*uG Y (L3)*uS)+Y(1L)*u(N+Y(1.5)*u(9)+Y(1L.6)*u(11)+...
(Z(LI*F(1)+Z(1.2)*F(2)+Z(1.3)*FGHZ(LA*F(4)+Z(1.5)*F(5)+Z(1.6)*F(6)):

%

udot(4.)=-

(X(2.1)*u(2)+X(2.2)*u(d)+X(2.3)* u(6)+X(2.4)*u(8)+X(2.5)*u(10)+X(2.6)*u(12))-...
(Y2.1)*u(D)+Y(2.2)*u(3)+Y(2.3)*u(5)+Y(2.4)*u(N)+ Y (2.5 *u(9)+Y(2.6)*u(1 D))+...
(ZQPF(D)+ZQ2)*F2I+Z(2.3)* FGIHZ(2.4)* F(4)+Z(2.5)* F(5)+Z(2.6)*F(6)):

Y%

udot(6.:)=-

(XG.D)*u2)+X(3.2)*u(4)+X(3.3)*u(6)+X(3.4)* u(8)+X(3.5)*u(10)+X(3.6)*u(12))-...
(YG.1)*u(1)+Y(3.2)*u(3)+ Y(3.3)*u(5)+Y(3.4)*u(7)+ Y (3.5 *u(9)+Y(3.6)*u(1 1))+...
(ZGB1)*F(1)+Z(3.2)*FQ2+Z(3.3)*F(3)+Z(3.4)*F(4)+Z(3.5)*F(5)+Z(3.6)*F(6)):

%

udo(8.:)=-

(XD U2)+X(4.2)  u(4) X (4.3)*u(6)+X(4.4)* u(8)+X(4.5)*u(10)+X(4.6)*u(12))-...
(Y D*u(1)+Y(E.2)*u(3)+Y(4.3)*u(3)+Y(4.4)*u(7)+Y(4.5)*u(9)+Y(4.6)*u( 1 1)+...
(ZE)*F()+Z(4.2)*FQIAZ(4.3)* F(3)+Z(4.4)*F(4)+Z(4.5)*F(5)+Z(4.6)*F(6)):

%
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udot(10.:)=-

(XG.1)*u2)+X(5.2)* u(4)+X(5.3)* u(6)+X(5.4)* u(8)+X(5.5)*u(10)+X(5.6)*u(12))-...
(Y1) u()+Y(5,2)*uG)+Y(5.3)*u(3)+ Y(5.4)* u(7)+Y(5.5) u(9)+ Y(5.6)* u(1 1))+...
(Z5.)*F()+Z(5.2) FQRIHZ(5.3)* FG)HZ(54)* F(A)+Z(5.5)* F(5)+Z(5.6)*F(6)):

%

udot(12.:)=-

(X(6.1)*u(2)+X(6.2)*u(4)+X(6.3)*u(6)+X(6.4)*u(8)+X(6.5)*u(10)+X(6.6)*u(12))-...
(Y(6.1)*u(1)+Y(6.2)*u(3)*+Y(6.3)*u(5)+Y(6.4)*u(7)+Y(6.5)*u(9)+Y(6.6)*u(1 1))+...
(Z(6.1)*F(1)+Z(6.2)*F(2)+Z(6.3)*F(3)+Z(6.4)*F(3)+Z(6.5)*F(5)+Z(6.6)*F(6)):

%



% Program: First_deriv.m
% Coded by: F. Winsor

% Script to calculate the first derivative of a signal (fx)

% using the central-difference expression with error of order h*4. The first

% two and last two point are calculated using forward-di and

% differnce expressions with error of order h"2. These expression can be found
% in "Applied Numerical Methods for Digital Computation” (2nd ed.) by James.
% Smith. Wolford.

%
h=input(‘Input time step (default = 0.036742)'):
i isempty(h)

h=0.036742:
end
%
%
%
[filename.pathname] = uigetfile('*.dat'.' Input signal to be differentiated: '.50.50):
filename=iower(filename):
eval(['load ".[pathname.filename]."'])
f=findstr(filename."."):
fx(1.:)=eval(filename(1:f{1)-1));
%

[fm_r_size.fm_c_size]=size(fx):

%
z=fx:
%
zd=zeros(fm_r_size.1):
%
zd( 1)=(-z( 3)+4*2( 2)-3*2( 1))/(2*h):
zd( 2)=(-z( 4)+4*2( 3)-3*2( 2))/(2*h):
%
zd( fm_r_size)=(3*z( fm_r_size)-4*z( fm_r_size-1)+z( fm_r_size-2)}/(2*h):
zd( fm_r_size-1)=(3*z( fm_r_size-1)-4*2( fm_r_size-2)+z( fm_r_size-3))/(2*h):



%
for t=3:(fm_r_size-2)

zd( t)=(-z( t+2)+8*z( t+1)-8*2( t-1)+2z( t-2))/(12*h);
end
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% Program: Spline_fit.m

% Coded by: Fraser Winsor

% Script to fit a cubic spline (with uniform point spacing) through

% time series with unequal point spacing. This was written to spline fit the

% results of run_dof6_sim3.m. which produces simulated decay signal with unequal
% point spacing.

% Load time series vectors

%

[filename.pathname] = uigetfile("*.dat'.'Signal Vector FX'.50.50):
filename=lower(filename):

eval(['load ".[pathname.filename]."'])

f=findstr(filenam:
FX=eval(filename(
%

%

[filename.pathname] = uigetfile('* .dat'.'Signal Vector FY'.50.50):
filename=lower( filename):

eval(['load '.[pathname.filename].":'])

f=findstr(filename.".'):

FY=eval(filename(1:f(1)-1)):

A(1)-1):

[filename.pathname] = uigetfile("* .dat'.'Signal Vector FZ'.50.50);
filename=lower(filename);
eval(['load '.[pathname.filename].":"])

[filename.pathname] = uigetfile("*.dat'.'Signal Vector MX'.50.50):
filename=lower(filename);

eval(['load '.[pathname.filename].])

f=findstr(filename.".'):

o



MX=eval(filename(1:£(1)-1));
%

"/

[filename.pathname] = uigetfile('*.dat'.'Signal Vector MY".50.50):
filename=lower(filename);

eval(['load *.[pathname.filename].";'])

f=findstr(filename.".");
MY=eval(filename(1 m )-1))

%

%

[filename.pathname] = uigetfile('*.dat'.'Signal Vector MZ'.50.50):
filename=lower(filename):

eval(['load '.[pathname.filename).".'])

f=findstr(filename.""):

MZ=eval(filename(1:f(1)-1));

%

%

[filename.pathname] = uigetfile("*.dat’. Time Vector '.50.50):
filename=lower(filename):

eval(['load *.[pathname.filename)."'])

f=findstr(filename."."):

TV=eval(filename( 1:f{1)-1)):

%

%

% Select point spacing. and length of signal
%

%

TVi=0:0.01:50:

% Use Spline.m to fit cubic splines

MZi=spline(TV.MZ.TVi):

%

%

% Transpose signals for output
%

%

w
o
i3



FX2=FXi’;
ik

Xi'
Vs
Zi",
TVi':
% Output spline fit signals as ascii files
%
%

[filename.pathname] = uiputtile("*.dat','Output Interpolated Force File - FX'.50.50):
filename=lower( filename):

eval(['save '.[pathname.filename].' FX2'. -ascii'])

%

%

[filename.pathname] = uiputfile("*.dat'.'Output [nterpolated Force File - FY'.50.50);
tilename=lower(filename);

eval(['save [pathname.filename).' FY2'." -ascii'])

%

%

[tilename.pathname] = uiputfile("*.dat’'Output Interpolated Force File - FZ'.50.50):

filename=lower(filename):

eval(['save '.[pathname.filename).' FZ2"." -ascii'])

%

%

[tilename.pathname] = uiputfile("*.dat''Output Interpolated Force File - MX'.50.50):
filename=lower(filename):

eval(['save ".[pathname.filename].' MX2'." -ascii'])

%

%

[filename.pathname| = uiputfile("*.dat'.'Output Interpolated Force File - MY'.50.50):
filename=lower( filename);

eval(['save '.[pathname.filename].' MY2"" -ascii'])

%

%

[filename.pathname] = uiputfile("*.dat'.'Output Interpolated Force File - MZ'.50.50):
filename=lower(filename):

eval(['save '[pathname.filename].’ MZ2', -ascii'))

%

%

[filename.pathname] = uiputfile("*.dat'.'Output Time Series'.50.50):
filename=lower(filename):



eval(['save ',[pathname. filename],’ TV2'," -ascii'])
%



% Program: mov_avg_v2.m
% Coded by: F. Winsor

%  Based on Algorithms provided in:

%
% "The Scientist and Engineer's Guide to
% Digital Signal Processing - Second Edition".

% Steven W. Smith. California Technical Publishing.
% 1997-1999.

% Several versions of the moving average filter are
% implemented. and compared to results obtained
% by convolution with various windows.

%

% Input signal to be filtered

%

[tilename.pathname] = uigetfile("*.dat'.'Input Signal'.50.50):
filename=lower(filename):

% Input filter length

M=input('Moving Average Filter length (default=11) must be ODD:'):
if isempty(M)

M=11.0:
end

% Input sample rate to calculate frequency
and time scales for plotting.

fs=input('Input Sample rate (default = 27.2168)'):
if isempty(fs)

w
o
o



f5=27.2168:
end
%
%
f_axis=fs*(0:511)/1024;
t_axis=(0:(1/fs):(1023*(1/fs))):

% Moving Average Filter - One Sided

len_x=length(x):

y=zeros(len_x.1):

Ni)=y(iyM:
end

% Moving Average Filter - Symmetrical
len_x=length(x):

y2=zeros(len_x.1):

for i=((M-1)/2)+1:(len_x-(M-1)/2)

for j=(-(M-1)/2):((M-1)/2)
Y2i)=y2(i)y+x(i%)):
nd

e
Y2(i)=y2(i)M:
end

% Moving Average Filter - Recursive

=length(x):

v3=zeros(len_x.1):
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¥3((M-1)/2)=(sum(x(1:M)))/M;
Y3(((M-1)/2)+1)=(sum(x(2:(M+1))))/M;

for i=((M-1)/2)+2):len_x-((M-1)/2)+1)

Y3(O=(M*y3(-D))xEHM-1)2)x(-(M-1)/2)+1)M:
end

% Convolution using M length rectangular pulse
%

h=zeros(M.1):

h(1:M)=1/M:

y4=conv(x.h):

% Convolution using M length Blackman window

Blackman(M):
bk2=bk I /(trapz(bk1)):
y5=conv(x.bk2):

% Convolution using M length Gaussian

h2=conv(h.h):
gauss=conv(h2.]

gauss2=resample(gauss.M.(M+M-1)+M+M-1)-1)):
gauss3=gauss2/trapz(gauss2);

y6=conv(x.gauss3):

%

%

% Compare results
%

t_axis2=(0:(1/fs):((length(y4)-1)*(1/fs))):
%

plot(t_axis.x.'b")



plol(l axis v4 'm')
plot(t_axi k)
plot(t_axis2.y6.'y")

legend('input''output - one sided'.'output - symmetrical'.'output - recursive'.'output - conv
rec pulse’.'output - conv Blackman'.'output - conv Gaussian')

hold off

pause

%
% Step response
%

s_h=cumtrapz(h): % step response of rectangular pulse
s_bk2=cumtrapz(bk2): %step response Blackman window
s_gauss3=cumtrapz(gauss3): %step response Blackman window

plot(s_h.m")

hold on

plot(s_bk2.'K')

plot(s_gauss3.'y")

legend ('step response - rec pulse'.'step response - Blackman'.'step response - Gaussian')
pause

hold off

%
% Freq. response
%

h_1024=zeros(1024.1):
h_1024(1:M)=h:
H_1024=ffi(h_1024):

bk2_102. —zems(]074 )

gauss3_1024=zeros(1024.1);



gauss3_1024(1:M)=gauss3:
Gauss3_1024=fft(gauss3_1024);

plot(f_axis.abs(H_1024(1:len_x/2)).m’)

hold on

plot(f_axis.abs(BK2_1024(1:len_x/2)). k")

plot(f_axis.abs(Gauss3_1024(1 X/2)).'y")

legend ('freq response - rec pulse','freq response - Blackman'.'freq response - Gaussian')

% Moving Average Filter - Symmetrical
% Applied to delta function to obtain the
% impulse response.

load delta2.dat
len_delta2=length(delta2):
imp=zeros(len_delta2.1):

for i=((M-1)/2)+1:(len_delta2-(M-1)/2)
for j=(-(M-1)/2):((M-1)/2)
imp(i)=imp(i)+delta2(i+j):
end
imp(i)=imp(i)/M:
ene

freq=fft(imp.len_delta2):
step=cumtrapz(imp):

pause

hold off
ploy(f_axis.abs(X(1:(len_x/2))/(X(1)}),'b")
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hold on

plot(f_axis.abs(Y2(1:(len_x/2))/(Y2(1))).r')
plot(f_axis.abs(freq(1:(len_x/2))).' m")

legend('X - fft of input','Y - fft of output','frequency response')
title('Moving Average Filter - Symmetrical’)
Yogtext(streat('filter length ='.num2str(M)))

pause

hold off

plot(imp)

legend('impulse response’)

title('Moving Average Filter - Symmetrical')
pause

hold ofl"

plot(step)

legend('step response’)

title('Moving Average Filter - Symmetrical’)
pause

hold off

plot(f_axis.abs(freq(1:(len_x/2))))
legend('frequency response')

title('Moving Average Filter - Symmetrical')
pause

abs_freq=abs(freq):

abs_X=abs(X):
abs_Y2=abs(Y2):
break

%

% Save files in ascii format.

%

eval(['save ' strcat('mov_avg_h_".num2str(M).".dat') ' imp -ascii'])

eval(['save ' strcat('mov_avg_step_'.num2str(M).".dat’) ' step -ascii'])
eval(['save ' streat('mov_avg_freq_".num2str(M)."dat) ' abs_freq -ascii'])
eval(['save ' strcat('mov_avg_input_" ') ' X -asci’

eval(['save ' strcat('mov_avg_output_'.num2str(M)."dat’) ' y2 -ascii'])
eval(['save ' streat('mov_avg_input_fft_'.num2str(M),".dat') ' abs_X -ascii'])
eval(['save ' strcat('mov_avg_output_fft_'.num2str(M)."dat’) ' abs_Y2 -ascii'])
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%

% Program: single_pole_v2.m
%

% Coded by: F. Winsor

%

% Based on Algorithms provided in:

% "The Scientist and Engineer's Guide to

% Digital Signal Processing - Second Edition”.

% Steven W. Smith. California Technical Publishing.
% 1997-1999.

% Implement single pole low pass filter in
% single stage and four stage form.

% [nput signal to be filtered

%

[filename.pathname] = uigetfile('*.dat'Input Signal'.50.50):
filename=lower(filename):

eval(['load ".[pathname. filename].".'])

indstr(filename."."):

val(filename(1:f(1)-1)):

=input('Cutoff Frequency - between 0.0 and 0.5 (default 0.5) :"):
if isempty(FC)

FC=0.5:
end
Y%
%
% Input sample rate to calculate frequency
% and time scales for plotting.
%

fs=input('Input Sample rate (default = 27.2168)'):
if isempty(fs)
5=27.2168:



end

%

%

f_axis=fs*(0:511)/1024:
t_axis=(0:(1/fs):(1023*(1/fs))):
%

%

x_decay=exp(-2*pi*FC):

%

% Single pole recursive low pass
%

a0=(1-x_decay):

bl=x_decay:

%

len_x=length(x):

y=zeros(len_x.1):
¥(1)=a0*x(1):

for i=2:(len_x)
v(i)=a0*x(i)+b1*y(i-1):

end

%

%

plot(t_axis.x)

hold on

plot(t_:

legend('input''output - single pole recursive low pass’)

hold off

% Four stage low pass

x_decay2=exp(-14.445*FC);
%

a0=(1-x_decay2)"4:

b2=-6*x_decay2"2:
b3=4*x_decay2"3;
bd=-x_decay2"4:
%

len_x=length(x):
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y2=zeros(len_x.1):

¥2(1)y=a0*x(1):
¥22)=a0*x(2)+b1°y2(1);
Y2(3)=a0*x(3)+b1*y2(2)+b2*y2(1):

for i=4:(len_x)
¥2(1)=a0%x(i)+b1 *y2(i-1)+b2*y2(i-2)+b3*y2(i-3):
end
%
%
hold off
plot(t_axis.x)
hold on
plot(t_axis.y.'r')
plot(t_: ‘g
legend('input'.'output - single pole recursive low pass'.'output - four stage low pass')
hold oft'

%

hold off
ploy(f_axis.abs(X(1:len_x/2)).b")
hold on
ploy(f_axis.abs(Y(1:len_x/2)).'r)

plot(f_axis.abs(Y2(1:len_x/2)).'m’)

legend('input fft'.'output fft - single pole recursive low pass'.'output fft- four stage low
pass’)

hold off

pause

%

% Repeat procedures from above using a delta function
% to obtain the impulse responses.

load delta2 dat

%
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%
x_decay=exp(-2*pi*FC);
%

% Single pole recursive low pass (for impulse response).

a0=(1-x_decay).
bl=x_decay:

len_delta2=length(delta2):
hi=zeros(len_delta2.l):
hi(1)=a0*delta2(1):

for i=2:(len_delta2)

h1(i)=a0*delta2(i)+b1*hi(i-1):
end

% Four stage low pass (for impulse response).

d;ca\")"-&

b3=4*x decay""}
bd=-x_decay2"4:
%

len_delta2=length(delta2):
h2=zeros(len_delta2.1):
h’( 1)=a0*delta2(1):

0*delta2(2)+b1*h2(1):
=a0*delta2(3)+b1*h2(2)+b2*h2(1):

:(len_delta2)
=a0*delta2(i)+b1*h2(i-1)+b2*h2(i-2)+b3*h2(i-3):



Hi=ffi(hl.len_deita2);
H2=fft(h2.len_delta2);
%
stepl=cumtrapz(hl):
step2=cumtrapz(h2):
%

abs_Hl=abs(H1):
abs_H2=abs(H2):

abs_X=abs(X):
abs_Y=abs(Y):
abs_Y2=abs(Y2):

break

save sin_pole_hl.dat hl -ascii
save sin_pole_stepl.dat stepl -ascii
save sin_pole_freql.dat abs_H1 -ascii

save sin_pole_h2.dat h2 -ascii

save sin_pole_step2.dat step2 -ascii
save sin_pole_freq2.dat abs_H2 -ascii
save sin_pole_input.dat x -ascii

save sin_pole_outputl.dat y -ascii
save sin_pole_output2.dat y2 -ascii

save sin_pole_input_fft.dat abs_X -ascii

save sin_pole_outputl _fft.dat abs_Y -ascii

save sin_pole_output2_fft.dat abs_Y?2 -ascii
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%

% Program: win_sinc_v2.m

%

% Coded by: F. Winsor

%

% Based on Algorithms provided in:

%

% "The Scientist and Engineer's Guide to

% Digital Signal Processing - Second Edition".

% Steven W. Smith. California Technical Publishing.
% 1997-1999.

% Windowed sinc filter is implemented. Filter kernel is generated
% in two halves. about the point of symmetry. and then normalized.

% Input signal to be filtered
%

[filename.pathname] = uigetfile("* .dat'.'Input Signal'.50.50):
filename=lower(filename):

eval(['load '.[pathname.filename].":'})

f=findstr(filenam
x=eval(filename(1:f(1)-1)):

%
Ms=input(‘Filter length - must be EVEN (default=10) :'):
if isempty(M)
M=10.0:
end
%
%
% Input sample rate to calculate frequency
% and time scales for plotting.
%
%
%

fs=input('Input Sample rate (default = 27.2168)"):
if isempty(fs)
15=27.2168:



%

_axis=fs*(0:511)/1024;
_axis=(0:(1/fs):(1023*(1/fs))):
9

%

hold off
len_x=length(x):
X=ffi(x.len_x):
plo(f_axis.abs(X(1:len_x/2)))
pause
%
%
%
FC=input('Cutoff Frequency - between 0.0 and 0.5 (default 0.5) :'):
if isempty(FC)

FC=0.5:

% Calculate filter kernel

((M/2))

h(i)=((sin(2*pi* FC*(i((M/2)+ I N)V(-((M/2)+1)))*(0.42 - 0.5%cos(2*pi*i/(M+1)) +
0.08*cos(4*pi*i/(M+1))):
end

h((M/2)+1)=2*pi*FC:

for i=((M/2)+2):M+1

h(i)=((sin(2*pi* FC* (i((M/2)+ )V(i-((M/2)+1)))*(0.42 - 0.5%cos(2*pi*i/(M+1)) +
0.08*cos(4*pi*i/(M+1))):
end

% Normalize filter kernel
%

h_n=zeros(1.len_x):
h_n(1:M+1)=h/sum(h):

%

% Convolution to produce filtered output
%

y=conv(h_n.x):

%
%



t_axis2=(0:(1/fs):((length(y)-1)*(1/fs)));

%

hold off

plot(t_axis.x)

hold on

plot(t_axis2.y.'r')

legend('x - input signal'.'y - conv using windowed sinc')
hold off

pause

%

% Determine step response

%

s_h_n=cumtrapz(h_n):

plot(s_h_n)

legend('step response')

pause

%

% Determine frequency response (padded to length of x)
%

Y=tft(y.length(x)):

H_n=fft(h_n.length(x)):

plol(l axis.abs(X(1:len_x/2)/X(1)))

hold on
plot(f_axis.abs(H_n(1:(length(x)/2))).)
plou(f_axis.abs(Y(1:len_x/2)/Y(1)).'m’)
legend('input fft'.'frequency response'.'output fft')
pause

hold off'

abs_H_n=abs(H_n):
abs_X=abs(X):
abs_Y=abs(Y):

break

eval(['save ' strcat('win_sinc_h_'.num2str(M)."dat’) ' h_n -ascii'])
eval(['save ' strcat('win_sinc_step_".num2str(M).".dat’) ' s_h_n -ascii'])
eval(['save ' strcat('win_sinc_freq_'.num2str(M).".dat’) ' abs H_n -ascii'])
eval(['save ' strcat('win_sinc_input_'.num2str(M).".dat') ' x -ascii'
eval(['save ' strcat{'win_sinc_output_".num2str(M)."dat') ' y -ascii'])
eval(['save ' strcat('win_sinc_input_fft_".num2str(M).".dat’) ' abs_X -ascii'])
eval(['save ' strcat('win_sinc_output_fft_'.num2str(M)."dat’) ' abs_Y -ascii'])
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% Program: kaiser_lp_v3.m

% Coded by: F. Winsor

% Use MATLAB commands kaiserord. firl. and filter
% to generate a kaiser window.

% Input signal to be filtered

[filename.pathname] = uigetfile('*.dat'' [nput Signal'.50.50):
filename=lower(filename):

(['load '.[pathname.filename]."'])

indstr(filename.’

% [nput sample rate to calculate frequency
% and time scales for plotting.
%
%
%
fs=input('Input Sample rate (default = 27.2168)'):
if isempty(fs)
£5=27.2168:
end
%

fs*(0:511)/1024:
0:(1/£5):(1023*(1/£5))):



pause
%

%
fsamp=input(‘'Sample Rate (default=1) :):% sampling rate
if isempty(fsamp)
fsamp=1.0:
end
%
%
Yo Defines start and stop of transition band
%

%

feuts_1=input('Passband Edge :'):fcuts_2=input(‘Stopband Edge
feuts=[feuts_1 feuts_2]:

%

mags_|=input('Passband Amplitude (default=1.0)
if isempty(mags_1)
mags_1=1.0:
end
%
mags_2=input('Stopband Amplitude (default=0.0) :'):
if isempty(mags_2)
mags_2=0.0:
end

mags=[mags_| mags_2]:
9

%

%

% Deviation allowed in pass and stop band
% two values are required but only the

% lowest is used.




if isempty(devs_pr)
devs_pr=1;
end
devs=[devs_pr/100 devs_pr/100];
%

%
[n.Wn.beta.ftype]=kaiserord(fcuts.mags.devs.fsamp):
%

% n = filter order

% Wn = normalized freq band edges
% beta = Kaiser window parameter

%

% Use MATLAB command firl.m to determine
% the impulse response.

%

hh=tirl(n.Wn.ftype kaiser(n+1.beta)):

%

%

% Determine the filtered output signal.
%

%

y2=tilter(hh.1.x):

%

%

% Plot results.

%

%

plot(t_axis ")

hold on
plot(t_axis.y2.'r')
legend(‘input'.'output’)

title('low pass filter - kaiser window')
pause

X=fft(x.length(x)):
Y2=fft(y2.length(x)):
fi(hh.length(x)):

H

hold off
plot(f_axis.abs(X(1:length(x)/2)/X(1)))
hold on

n



plot(f_axis.abs(Y2(1:length(x)/2))/Y2(1),'*)
plo(f_axis.abs(HH(1:length(x)/2)).'g")

legend('input fft'.'output fft", 'freq resp)
title('low pass filter - kaiser window')
pause

step=cumtrapz(hh):

hold off

plot(hh)

legend('hh - impulse response’)
pause

hold off
plot(abs(HH(1:length(x)/2)).'b')
legend('HH - freq response’)
pause

hold off

plot(step)

legend('step response’)
pause

abs_HH=abs(HH):
abs_X=abs(X):
abs_Y2=abs(Y2):

break

eval(['save * streat('ksr_h_p".num2str(fcli).’_s'.num2str(fc2i).’_pr.num2str(devs_pr)."dat’)
* hh -ascii’])

eval(['save’
streat(’ksr_step_p'.num2str(fc1i).”_s'.num2str(fc2i).’_pr'.num2str(devs_pr)."dat’) " step -
ascii'])

eval(['save’
streat('ksr_freq_p'.num2str(fcli).’_s'.num2str(fc2i)."_pr'.num2str(devs_pr)."dat") ' abs_HH
-ascii'])

eval(['save '
streat('ksr_input_p'.num2str(fcli).'_s'.num2str(fc2i).'_pr'.num2str(devs_pr).".dat’) ' x -
ascii’])

eval(['save '
streat('ksr_output_p'.num2str(fcli).’_s'.num2str(fc2i).’_pr'.num2str(devs_pr)."dat’)’ y2 -
ascii'])




eval(['save

streat(‘ksr_input_fft_p".num2str(fcli).’_s".num2str(fc2i),’_pr' .num2str(devs_pr)."dat’)'
abs_X -ascii'])

eval(['save’
streat(‘ksr_output_fft_p'.num2str(fcli).’_s.num2str(fc2i),’_pr'.num2str(devs_pr)."dat’)
abs_Y2 -ascii'])
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%

% Program: cheb_v3.m

%

% Coded by: F. Winsor

%

% Based on Algorithms provided in:

%

% “The Scientist and Engineer's Guide to

% Digital Signal Processing - Second Edition".
% Steven W. Smith, California Technical Publishing,
% 1997-1999.

% Generates a Chebychev type 1 filter. Calls seript
% sub_cheb_vl.m

% Input signal to be filtered

%

%

%

[filename.pathname] = uigetfile('*.dat' Input Signal'.50.50):
tilename=lower(filename):

eval(['load '.[pathname.filename].":"])

f=findstr(filename."):

x=eval(filename(1:£(1)-1)):

Input sample rate to calculate frequency
and time scales for plotting.

input('Input Sample rate (default = 27.2168)");
if isempty(fs)
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5=27.2168;
end
%
%
f_axis=fs*(0:511)/1024;
axis=(0:(1/fs):(1023*(1/fs))):
%
%
%
global FC LH PR NP k
global AO Al A2BI1 B2
%
%
for i=1:23

% Input parameters

FC=input('Cutoff Freq (0 to 0.5) :'):
LH=input(‘Enter 0 for LP. | for HP
PR=input('Percent ripple (0 to 29)

NP=input('Number of poles (2.

% Call subroutine sub_cheb_vl.m
%

o
for k=1:NP/2
)




TB()=B():
end

3

A()=AO*TAGY+AI*TA(-1)+A2*TAG-2):
B(j)=TB(j)-B1*TB(j-1)-B2*TB(j-2):

end

Combine the coefficients.

0

SA=SA+A(i):

end

if LH==(
SB=SB+B(i);

end

if LH==1
SA=SA+AIP (-1

end

if LH==1
SB=SB+B(i)*(-1)"i:

end
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AL0_F=A(11):
ALLF=A(12):
A12_F=A(13):
AL3_F=A(14):
Al4_F=A(15):
Al5_F=A(16):
Al6_F=A(17):
Al7_F=A(I8):
A18_F=A(19):
A19_F=A(20):
A20_F=A(21):

BOiF=B( I



Bl _F=B(2);
B2_F=B(3):
B3_F=B(4):
B4_F=B(3);
B3_F=B(6):
B6_F=B(7):
B7_F=B(8):
B8_F=B(9):
B9_F=B(10):

Apply the recursion coefficients depending on the
number of poles selected.

=A0_F*x(1):
O_F*x(2)+A1_F*x(1)+B1_F*y(1);

3:(len_x)
AQ_F*x(i)+AL_F*x(i-1)+A2_F*x(i-2)+B1_F*y(i-1)+B2_F*y(i-2):

¥
end
end
%
%
i NP==4
¥(1)=A0_F*x(1);
¥(2)=A0_F*x(2)+Al_F*x(1)+BI_F*y(1);
Y3)=A0_F*X(3)+A1_F*x()+A2_F*x(1)+B1_F*y(2)+B2_F*y(l):
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VY=AO_F*x()+AL_F*X(3)+A2_F*X(2)+A3_F*x(1)+B1_F*y(3)+B2_F*y(2)+B3_F*y(
1):

y(iy A0 F“((l}+AI _F*x(i-1)+A2_F*x(i-2)+A3_F*x(i-3)+A4_F*x(i-
$)+B1_F*y(i-1)+B2_F*y(i-2)+B3_F*y(i-3)+B4_F*y(i-4);
end
end
%
%
%
%
%
if NP==t

Y(D=A0_F*x(1):
V2I=A0_F*X(2)+AL_F*x(1)+B1_F*y(1):
YOIRAD_F*x()+AL_F*x(2)+A2_F*x(1)+BI_F*y(2)+B2_F*y(1):

YH=A0_F*x()+A1_F*X(3)+A2_F*X(2)+A3_F*x(1)+Bl_F*y(3)+B2_F*y(2)+B3_F*y(
1

Y(5)=A0_F*X(5)+AL_F*x()+A2_F*X(3)+A3_F*x(2)+Ad_F*x(1)+B1_F*y(4)+B2_F*y(

3)+B3_Fry(2)+B4_Fry(1):
V(6)=A0_F*X(6)+A1_F*X(5)+A2_F*x(4)+A3_F*x(3)+Ad_F*x(2)+A5_F*x(1)+B

1_F*y(5)+B2_Fry(4)+B3_F*y(3)+B4_F*y(2)+B5_Fry(1):

for i=7:(len_x)

Y()=AO_F*x(i)+A1_F*x(i-1)+A2_F*x(i-2)+A3_F*x(i-3)+A4_F*x(i-
4)+AS_F*x(i-5)+A6_F*x(i-6)+B1_F*y(i-1)+B2_F*y(i-2)+B3_F*y(i-3)+B4_F*y(i-
)+B5_F*y(i-3)+B6_F*y(i-6):

end

if NP==
Y(1)=A0_F*x(1):
¥(2)=A0_F*x(2)+A1_F*x(1)+B1_F*y(1):
Y(3)=A0_F*X()+A1_F*x(2)+A2_F*x(1)+B1_F*y(2+B2_F*y(1):
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Y(A)=AO_F*x(4)+A1_F*x(3)+A2_F*x(2)+A3_F*x(1)+B1_F*y(3)+B2_F*y(2)+B3_F*y(
1)

Y(5)=A0_F*x(5)+Al_F*x(4)+A2_F*X(3)+A3_F*X(2)+Ad_F*x(1)+B1_F*y(4)+B2_F*y(
3)+B3_F*y(2)+B4_F*y(1);

Y(6)=A0_F*x(6)+Al_F*X(5)+A2_F*x(4)+A3_F*x(3)+A4_F*x(2)+A5_F*x(1)+B
1 F‘\(>)+B7 _Fry(4)+B3_F*y(3)+B4_F*y(2)+B5_Fy(1):

Y(7)=A0_F*x(T)+Al_F*x(6)+A2_F*x(5)+A3_F*x(4)+A4_F*x(3)+A5_F*x(2)+
A6_F*x(1)+B1_F*y(6)+B2_F*y(5y+B3_F*y(4)+B4_F*y(3)+B5_F*y(2)+B6_F*y(1):

Y(8)=A0_F*x(8)+Al_F*x(7)+A2_F*x(6)+A3_F*x(5)+Ad_F*x(4)+A5_F*x(3)+
A6_F*x(2)+A7_F*x(1)+BI_F*y(7)+B2_F*y(6)+B3_F*y(5)+B4_F*y(4)+B5_F*y(3)+B6
_F*y()+B7_Fy(1):

for i=9:(len_x)

O_F*x(i)+AI_F*x(i-1)+A2_F*x(i-2)+A3_F*x(i-3)+A4_F*x(i-

3 A6_F*x(i-6)+AT_F*x(i-7)+A8_F*x(i-8)+BI_F*y(i-1)+B2_F*y(i-

2)+B3_F*y(i-3)+B4 _F*y(i-4)+B5_F*y(i-5)+B6_F*y(i-6)+B7_F*y(i-7)+B8_F*y(i-8):
end

end

if NP:

y(1)=A0_F*x(1):
¥(2)=A0_F*x(2)+A1_F*x(1)+B1_F*y(1):
Y(3)=A0_F*x(3)+A1_F*x(2)+A2_F*x(1)+BI_F*y(2)+B2_F*y(l):

¥(4)=A0_F*x(4)+A1_F*x(3)+A2_F*x(2)+A3_F*x(1)+B1_F*y(3)+B2_F*y(2)+B3_F*y(
)z

¥(5)=A0_F*x(5)+A1_F*x(4)+A2_F*x(3)+A3_F*x(2)+A4_F*x(1)+B1_F*y(4)+B2_F*y(
3)+B3_F*y(2)+B4_F*y(1);
AOQ_F*x(6)+AI_F*x(5)+A2_F*x(4)+A3_F*x(3)+A4_F*x(2)+A5_F*x(1)+B
1_F*y(5)+B2_Fry(4y+B3_Fry(3)+B4_Fry(2)+B5_Fry(1):

Y(1)=A0_F*x(7T)+Al_F*x(6)+A2_F*x(5)+A3_F*x(4)+A4_F*x(3)+A5_F*x(2)+
AG6_F*x(1)+B1_F*y(6)+B2_F*y(5)+B3_F*y(4)+B4_F*y(3)+B5_F*y(2)+B6_F*y(1):

¥(8)=A0_F*x(8)+Al_F*x(7)+A2_F*x(6)+A3_F*x(S)+Ad_F*x(4)+A5_F*x(31+
A6_F*x(2)+AT_F*x(1)+B1_F*y(7)+B2_F*y(6)+B3_F*y(5)+B4_F*y(4)+B5_F*y(3)+B6
_F*yQ1+B7_F*y(1):

YO)=A0_F*X(9)+Al_F*x(8)+A2_F*x(7)+A3_F*x(6)+Ad4_F¥x(5)+AS_F*x(4)+A6_F*x(
31+AT_Frx2)+A8_F*x(1)+B1_F*y(8)+B2_F*y(7)+B3_F*y(6)+B4_F*y(5)+B5_F*y(4)
+B6_F*y(31+B7_F*y(2)+B8_F*y(1);



y(10)=A0_F*x(10)+A1_F*x(9)+A2_F*x(8)+A3_F*x(7)+A4_F*x(6)+A5_F*x(5)+A6_F
*X(4)+AT_F*x(3)+A8_F*x(2)+A9_F*x(1)+B1_F*y(9)+B2_F*y(8)+B3_F*y(7)+B4_F*y
(6)+B5_F*y(5)+B6_F*y(4)+B7_F*y(3)+B8_F*y(2)+B9_F*y(l):

for i=11:(len_x)
O_F*x(i)+A1_F*x(i-1)+A2_F*x(i-2)+A3_F*x(i-3)+A4_F*x(i-
)+A6_F*x(i-6)+AT7_F*x(i-7)+A8_F*x(i-8)+A9_F*x(i-9)+A10_F*x(i-

4)tAS_F*x(

10)+B1_F*y(i-1)+B2_F*y(i-2)+B3_F*y(i-3)+B4_F*y(i-4)+B5_F*y(i-5)+B6_F*y(i-
6)+B7 F*v(|-7)+BS F‘y(1~8)+B9 F*y(i-9)+B10_F*y(i-10);
end
end
Y%

AO_F*x(1):
»(’)‘AO F*x(2)+Al_F*x(1)+B1_F*y(1):
¥(3)=A0_F*x(3)+Al_F*x(2)+A2_F*x(1)+B1_F*y(2)+B2_F*y(1):

YE=AO_FEX()+A1_F*x(3)+A2_F*x(2)+A3_F*x(1)+B1_F*y(3)+B2_F*y(2)+B3_F*y(
83

¥(3)=A0_F*x(3)+A1_F*x(4)+A2_F*x(3)+A3_F*x(2)+A4_F*x(1)+BI_F*y(4)+B2_F*y(
3)+B3_F*y(2)+B4_F*y(1):
AQ_F*x(6)+Al_F*x(5)+A2_F*x(4)+A3_| F'x(;)+A-I F*x(2)+A5_F*x(1)+B
1_F*y(5)+B2_F*y(4)+B3_Fry(3)+B4_Foy(2)+B5_F7y(1):
V(T)=A0_F*X(T)+A1_F*xX(6)+A2_F*x(5)+A3_F*x(4)+Ad_F*x(3)+A5_F*x(2)+
A6_F*x(1)+B1_F*y(6)+B2_F*y(5)+B3_F*y(4)+B4_F*y(3)+B5_F*y(2)+B6_F*y(l):
Y(8)=A0_F*x(8)+AI_F*X(T)+A2_F*x(6)+A3_F*x(5)+Ad_F*x(4)+A5_F*x(3)+
A6_F*X(2)+AT_F*x(1)+BI_F*y(7)+B2_F*y(6)+B3_F*y(5)+B4_F*y(4)+B5_F*y(3)+B6
_F*y(21+B7_F*y(1):

YO)=A0_F*X(9)1+A1_F*x(8)y+A2_F*x(T)+A3_F*x(6)+A4_F*x(5)*A5_F*x(4)+A6_F*x(
31+AT_FRx()+A8_F*x(1)+BI_F*y(8)+B2_F*y(7)+B3_F*y(6)+B4_F*y(5)+B5_Fry(4)
+B6_F*y(3)+B7_F*y(2)+B8_F*y(1):

Y(10)=A0_F*x(10)+A1_F*x(9)+A2_F*x(8)+A3_F*x(7)+Ad_F*x(6)+A5_F*x(5)+A6_F
*X(4)HAT_F*X(3)+AB_F*X(2)+A9_F*x(1)+BI_F*y(9)+B2_F*y(8)+B3_F*y(7)+B4_F*y
(6)+BS_F*y(5)+B6_F*y(4)+B7_F¥y(3)+B8_F*y(2)+B9_F*y(1):

YD=AO_F*x(11)+A1_F*x(10)+A2_F*x(9)+A3_F*x(8)+Ad_F*x(7)+A5_F*x(6)+A6_

F*X(5)+AT_F*x(4)+A8_F*X(3)+A9_F*x(2)+A10_F*x(1)+BI_F*y(10)+B2_F*y(9)+B3_
F*y(8)+B4_F*y(7)+B5_F*y(6)+B6_F*y(5)+B7_F*y(4)+B8_F*y(3)+B9_F*y(2)+BI10_F
*v(l):



y(12)=A0_F*x(12)+Al_F*x(11)+A2_F*x(10)+A3_F*x(9)+A4_F*x(8)+A5_F*x(
7)+A6_F*x(6)+AT_F*x(5)+A8_F*x(4)+A9_F*x(3)+A10_F*x(2)+All_F*x(1)+B1_F*y
(11)+B2_F*y(10)+B3_F*y(9)+B4_F*y(8)+B5_F*y(7)+B6_F*y(6)+B7_F*y(5)+B8_F*y
(4)+B9_F*y(3)+B10_F*y(2)+B11_F*y(1):

for i=13:(len_x)
y(i)=A0_F*x(i)+tAl1_F*x(i-1)+A2_F*x(i-2)+A3_F*x(i-3)+Ad_F*x(i-
41+AS_F*x(i-35)+A6_F*x(i-6)+A7_F*x(i-7)+A8_F*x(i-8)+A9_F*x(i-9)+A10_F*x(i-
10)+ATL_F*x(i-11)+A12_F*x(i-12)+B1_F*y(i-1)+B2_F*y(i-2)+B3_F*y(i-3)+B4_F*y(i-
4)+B5_Foy(i-51+B6_F*y(i-6)+B7_F*y(i-7)+B8_F*y(i-8)+B9_F*y(i-9)*BI10_F*y(i-
10)+BT1_F*y(i-11)*B12_F*y(i-12):
end

end

%

%

iFNP==14

1)=A0_F*x(1):

0_F*x(2)+Al_F*x(1)+BI_F*y(1):
AQ_F*x(3)+A1_F*x(2)+A2_F*x(1)+BI_F*y(2)+B2_F*y(1):

V)=A0_F*x(4)+A1_F*x(3)+A2_F*x(2)+A3_F*x(1)+B1_F*y(3)+B2_F*y(2)*B3_F*y(
1):

V(5)=A0_Fox(5)+AL_Fx(4)+A2_F*x(3)+A3_F*x(2)*A4_Fox(1)+B1_F*y(4)+B2_F*x(
3)+B3_F*y(2)+B4_Foy(1):

Y(6)=A0_F*x(6)+A1_F*X(5)+A2_F*x(4)+A3_F*x(3/+A4_F*x(2)+A5_F*x(1)+B
1_F*y(5)+B2_Fry(4)+B3_F*y(3)+B4_F*y(2)+B5_Fry(l);

V(7)=A0_F*S(TI+AL_F*x(6)+A2_F*x(5)+A3_F*x(4)+Ad_F*x(3)+AS_F*x(2)+
A6_F*x(1)+B1_F*y(6)+B2_F*y(5)+B3_F*y(4)+B4_F*y(3)+BS_F*y(2)+B6_F*y(1):

V(8)=A0_F*X(8)+AL_F*x(T)+A2_F*x(6)+A3_F*x(3)+AJ_F*X(#)+A5_F*x(3)
A6_F*X(2+AT_F*x(1)+Bl_F*y(7)+B2_F*y(6)+B3_F*y(5)*B4_F*y(4)*B5_F*y(3)+B6
_F*y(2)+B7_Fy(1):

V(9)=A0_F*x(9)+Al_F*x(8)+A2_F*x(7)*A3_F*x(6)+Ad_F*x(5)+AS_F*x(4)+A6_F*x(
3)+A7_F*x(2)+A8_F*x(1)*B1_F*y(8)+B2_F*y(7)+B3_F*y(6)*B4_F*y(5)+B5_Fry(4)
+B6_F*y(3)+B7_F*y(2)+B8_F*y(1):

¥(10)=A0_F*x(10)+A1_F*x(9)+A2_F*x(8)+A3_F*x(7)+A4_F*x(6)+AS_F*X(5)+A6_F
*X(4)+AT_F*x(3)+AB_F*X(2)+A9_F*x(1)*BI_F*y(9)+B2_F*y(8)+B3_F*y(7)+B4_F*y
(6)+B3_F*y(5)+B6_F¥y(4)+B7_F*y(3)+B8_F*y(2)+B9_Fry(I):

Y(I=A0_F*x(11)+Al_F*x(10)+A2_F*x(9)+A3_F*x(8)+Ad_F*x(7)+A5_F*X(6)+A6_
F*x(3)+AT7_F*x(4)+A8_F*x(3)+A9_F*x(2)+A10_F*x(1)+Bl1_F*y(10)+B2_F*y(9)+B3_
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F*y(8)+B4_F*y(7)+BS_F*y(6)+B6_F*y(5)+B7_F*y(4)+B8_F*y(3)+B9_F*y(2)+B10_F
*y(l):

V(12)=A0_F*x(12)+A1_F*x(11)+A2_F*x(10)+A3_F*x(9)+A4_F*x(8)+A5_F*x(
T)+A6_F*x(6)+AT_F*x(5)+A8_F*x(4)+A9_F*x(3)+A10_F*x(2)+All_F*x(1)+B1_F*y
(11)+B2_F*y(10)+B3_F*y(9)+B4_F*y(8)+BS_F*y(7)+B6_F*y(6)+B7_F*y(5)+B8_F*y
(4)+B9_F*y(3)+BI0_F*y(2)+B11_F*y(l):

Y(13)=A0_F*x(13)+A1_F*x(12)+A2_F*x(11)+A3_F*x(10)+A4_F*x(9)+A5_F*
X(8)+AG_F*X(7)+AT_F*x(6)+A8_F*X(5)+A9_F*x(4)+A10_F*x(3)+All_F*x(2)+Al12_
Fox(1+B1_F*y(12)+B2_F*y(11)+B3_F*y(10)+B4_F*y(9)+B5_F*y(8)+B6_F*y(7)+B7
_F*y(6)+B8_F*y(5)+B9_F*y(4)+B10_F*y(3)+B11_F*y(2)+B12_F*y(I):

Y(IH=A0_F*x(14)+A1_F*x(13)+A2_F*x(12)+A3_F*x(11)+A4_F*x(10)+A5_F
*X(9)FAG_F*x(8)+AT_F*x(7)+A8_F*x(6)+A9_F*x(51+A10_F*x(4)+Al1_F*x(3)+Al12
_FrQ1ALS_FEx(1)+BI_F*y(137+B2_F*y(12)+B3_F*y(11)+B4_F*y(10)+B5_F*y(9)
“B6_F*y(8)+B7_F*y(7)+B8_F*y(6)+B9_F*y(5)+B10_F*y(4)+BI1_F*y(3)+BI2_F*y(2
»*BI3_F*y(1):

for i=15:(len_x)
V(D=A0_F*x(i)+Al_F*x(i-1)+A2_F*x(i-2)+A3_F*x(i-3)+A4_F*x(i-
H+AS_FAX(i-3)+A6_F*x(i-6)+AT_F*x(i-7)+A8_F*x(i-8)+A9_F*x(i-9)+A10_F*x(i-
TOATL_F*X(i-1D)+A12_F*x(i-12)+A13_F*x(i-13)+Al4_F*x(i-14)+BI_F*y(
11+B2_F*y(i-2)+B3_F*y(i-3)+B4_F*y(i-4)+B5_F*y(i-5)+B6_F*y(i-6)+B7_F*y(i-

7)+B8_F*y(i-8)+B9_F*y(i-9)+B10_F*y(i-10)+B11_F*y(i-11)+B12_F*y(i-
12)~B13_F*y(i-13)+Bl4_F*y(i-14):
end
end
%
%
it NP:
1)=A0_F*x(1):
¥(2)=A0_F*x(2)+Al_F*x(1)+B1_F*y(1):
V(3)=A0_F*x(3)+A1_F*x(2)+A2_F*x(1)+B1_F*y(2y+B2_F*y(1):

YAH=AD_FX(+AL_FX(3)+A2_F*x(2)+A3_F*x(1)+B1_F*y(3)+B2_F*y(2)+B3_F*y(
1

Y(3)=A0_F*x(S)+AL_F*x(4)+A2_F*x(3)+A3_F*x(2)+A4_F*x(1)+Bl1_F*y(4)+B2_F*y(
3)+B3_F*y(2)+B4_F*y(l):
AO_F*X(6)+A1_F*x(5)+A2_F*x(4)+A3_F*x(3)+A4_F*x(2)+A5_F*x(1)+B
2_F*y(4)+B3_F*y(3)+B4_F*y(2)+B5_F*y(l):

Y(T)=AO_F*x(T)+AI_F*x(6)+A2_F*x(5)+A3_F*x(4)+A4_F*x(3)+A5_F*x(2)+
A6_F*x(1)+B1 _F*y(6)+B2_F*y(5)+B3_F*y(4)+B4_F*y(3)+B5_F*y(2)+B6_F*y(1):

¥(8)=A0_F¥x(8)+AI_F*x(7)+A2_F*x(6)+A3_F*x(5)+Ad_Frx(4)+A5_F*x(3)+
A6_F*x(2)+AT_F*x(1)+B1_F*y(7)+B2_F*y(6)+B3_F*y(5)+B4_F*y(4)+B5_F*y(3)+B6
_F*v(2)+B7_F*y(1):

w
%
s



VOI=A0_F*x(9+AL_F*x(8)+A2_F*x(T)+A3_F*x(6)+Ad_F*X(S)+AS_F*x(4)+A6_F*x(
3)+A7_F*x(2)+A8_F*x(1)+B1_F*y(8)+B2_F*y(7)+B3_F*y(6)+B4_F*y(5}*B5_F*y(4)
+B6_F*y(3)+B7_F*y(2)+B8_F*y(1):

Y(10)=A0_F*x(10)+A1_F*x(9)+A2_F*x(8)+A3_F*X(7)+Ad_F*X(6)+A5_F*x(5)+A6_F
*X(AIFAT_F*X(3)+A8_F*X(2)+A9_F*x(1)+B1_F*y(9)+B2_F*y(8)+B3_F*y(7)+B4_F*y
(6)+B3_F*y(5)+B6_F*y(4)+B7_F*y(3)+B8_F*y(2)+B9_F*y(l);

Y 1)=A0_F*x(11)+A1_F*x(10)+A2_F*x(9)+A3_F*x(8)+A4_F*x(7)+A5_F*X(6)+A6_
F*x(3)+AT_F*x(4)+A8_F*x(3)+A9_F*x(2)+A10_F*x(1)+BI_F*y(10)+B2_F*y(9)+B3_
F*y(8)+B4_F*y(7)+B5_F*y(6)+B6_F*y(5)+B7_F*y(4)+B8_F*y(3)+B9_F*y(2)+B10_F
*y(l);

V(12)=A0_F*x(12)+A1_F*x(11)+A2_F*x(10)+A3_F*x(9)+Ad_F*x(8)+A5_F*x(
7)+A6_F*x(6)+AT_F*X(S/FAB_F*x(4)+A9_F*x(3)+A10_F*x(2+AlI_F*x(1)+BI_F*y
(117+B2_F*y(101+B3_F*y(9)+B4_F*y(8)+BS_F*y(7)+B6_F*y(6)+B7_F*y(5)+B8_F*y
(4)+B9_F*y(3)+B10_F*y(2)+B11_F*y(1):

V(13)=A0_F*x(13)+Al_F*x(12)+A2_F*x(11)+A3_F*x(10)+A4_F*x(9)+A5_F*
X(8Y+A6_F*x(T)*AT_F*x(6)+A8_F*x(5)+A9_F*x(4)+A10_F*x(3)+Al1_F*x(2)+AT2_
F*x(1)+B1_F*y(12)+B2_F*y(11)+B3_F*y(10)+B4_F*y(9)+B5_F*y(8)+B6_F*y(7)+B7
_F*y(6)+B8_F*y(5)+BO_F*y(41+B10_F*y(3)+B11_F*y(2)+BI12_F*y(I):

YUI4)=A0_F*x(1)+A1_F*x(13)+A2_F*x(12)+A3_F*x(11)+A4_F*x(10)*A5_F
*X(9)+A6_F*x(8)+AT_F*x(T)+A8_F*x(6)+A9_F*x(5)+AT0_F*x(4)+AT1_F*x(3)+A12
_F*X(2)+A13_Frx(1)+B1_F*y(13y+B2_F*y(12)+B3_F*y(11)+B4_F*y(10)+B5_F*y(9)
*B6_F*y(8)+B7_F*y(7)+B8_F*y(6)+B9_F*v(5)+BI0_F*y(4)+BL1_F*y(3)+BI2_F*y(2
J+BI3_Fy(1):

V(I5)=A0_F*x(I5)+A1_F*x(14)+A2_F*x(13)+A3_F*x(12)+Ad_F*x(11}+A5_F
*x(10)+A6_F*x(9)+A7_F*x(8)+A8_F*x(7)+A9_F*x(6)+A10_F*x(5)+Al1_F*x(4)+Al
2_F*X()1+A13_F*x(2)+A14_F*x(1)+B1_F*y(13)+B2_F*y(13)+B3_F*y(12)+B4_F*y(l
1)+B5_F*y(10)+B6_F*y(9)+B7_F*y(8)+B8_F*y(7)+B9_F*y(6)+BI0_F*y(5)+BI1_F*y
(4+BI2_F*y(3)+B13_F*y(2)+B14_F*y(1):

V(16)=A0_F*x(16)+A1_F*x(15)+A2_F*x(14)+A3_F*x(13)+Ad_F*x(12)+A5_F
*x(11+A6_F*x(10)+A7_F*x(9)+A8_F*X(8)+A9_F*x(T)*A10_F*X(6)+Al1_F*x(5)+A
12_F*x(4)+AI3_F*X(3)FAL4_F*x(2J+A15_F*x(T)+B1_F*y(15)+B2_F*y(14)+B3_F*y(
137+B4_F*y(12)+B5_F*y(11)+B6_F*y(10)+B7_F*y(9)+B8_F*y(8)+B9_F*y(7)+B10_F
*y(6)+B11_Fry(5)+B12_F*y(4)+B13_F*y(3)+Bl4_F*y(2)+B15_F*y(1):

for i=17:(len_x)

_E*x(i)+AL_F*x(i-1)+A2_F*x(i-2)+A3_F*x(i-3)+A4_F*x(i-

4)+AS F“((l 5)+A6_F*x(i-6)+A7_F*x(i-7)+A8_F*x(i-8)+A9_F*x(i-9)+A10_F*x(i-
10)+ATT_F*x(i-11)+A12_F*x(i-12)+A13_F*x(i-13)+A14_F*x(i-14)+A15_F*x(i-
15)+A16_F*x(i-16)+B1_F*y(i-1)+B2_F*y(i-2)+B3_F*y(i-3)+B4_F*y(i-4)+B5_F*y(i-
5)+B6_F*y(i-6)+B7_F*y(i-7)+B8_F*y(i-8)+B9_F*y(i-9)+B10_F*y(i-10)+B11_F*y(i-
1H)+BI12 F‘y(:»l")+Bl; _F*y(i-13)+B14_F*y(i-14)+B15_F*y(i-15)+B16_F*y(i-16):
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end
end
%
%
ifNP==18
y(1)=A0_F*x(1):
¥(2)=A0_F*x(2)+A1_F*x(1)+B1_F*y(1):
Y(3)=A0_F*x(3)+A1_F*x(2)+A2_F*x(1)+B1_F*y(2)+B2_F*y(1);

V(H1=A0_F*x(4)+Al_F*x(3)+A2_F*x(2)+A3_F*x(1)+Bl_F*y(3)+B2_F*y(2)+B3_F*y(
83

V(5)=A0_F*x(5)+Al_F*x(d)+A2_F*x(3)+A3_F*x(20+Ad_F*x(1)+B1_F*y(4)+B2_F*y(
31+B3_F*y(2)+B4_Fry(l);
(6)=A0_F*x(6)*Al_F*X(5)+A2_F*X(d4)+A3_F*x(3)+A4_F*x(2)+A5_F*x(1}+B

)+B2_F*y(4)+B3_F*y(3)+Bd_F*y(2)+BS_F*y(1):
V(T)=A0_F*x(T)+A1_F*x(6)+A2_F*x(5)+A3_F*x(4)+Ad_F*x(3)+A5_F*x(2)+
A6_F*x(1)+B1_F*y(6)+B2_F*y(5)+B3_F*y(d)+B4_F*y(3)+B5_F*v(2)+B6_F*y(1):

V(8)=A0_F*x(8)+Al_F*x(7)+A2_F*X(6)+A3_F*x(5)+Ad_F*x(4)+A5_F*x(3)+
A6_F*X(2)+A7_F*x(1)+B1_F*y(7)+B2_F*y(6)+B3_F*y(5)+B4_F*y(4)+B5_F*y(3)+B6
_FFy(Q)+B7_Fry(l):

YO)=A0_F*x(9)+A1_F*x(8)+A2_F*x(T)+A3_F*x(6)+A4_F*X(5)+AS_F*x(4)+A6_F*x(
31+A7_Frx(2)+A8_F*x(1)+B1_F*y(8)+B2_F*y(7)+B3_F*y(6)+B4_F*y(5)+B5_Fy(4)
+B6_F*y(3)+B7_F*y(2)+B8_F*y(1):

Y(10)=A0_F*x(10)+A1_F*x(9)+A2_F*x(8)+A3_F*X(7)+A4_F*x(6)+A5_F*X(5)+A6_F
X()+AT_F*X(3)+AB_F*x(2)+A9_F*x(1)+B1_F*y(9)+B2_F*y(8)+B3_F*y(7)+B4_F*y
(6)+B5_F*y(5)+B6_F*y(4)+B7_F*y(3)+B8_F*y(2)+B9_F¥y(l):

YL 1)=A0_F*x(11)+A1_F*x(10)+A2_F*X(9)+A3_F*x(8)+Ad_F*x(T)+AS5_F*X(6)+A6_
F*x(5)+A7_F*x(4)+A8_F*x(3)+A9_F*x(2)+A10_F*x(1)+B1_F*y(10)+B2_F*y(9)+B3_
F*y(8)+B4_F*y(7)+BS_F*y(6)+B6_F*y(5)+B7_F*y(4)+B8_F*y(3)+B9_F*v(2)+BI10_F
(1

Y(12)=A0_F*x(12)+Al_F*x(11)+A2_F*X(10)+A3_F*x(9)+A4_F*x(8)+A5_F*x(
T)+A6_F*X(6)+AT_F*x(5)+A8_F*x(4)+A9_F*x(3)+A10_F*x(2)+Al1l_F*x(1)+B1_F*y
(11y+B2_F*y(10)+B3_F*y(9)+B4_F*y(8)+BS_F*y(7)+B6_F*y(6)+B7_F*y(5)+B8_F*y
(4)+B9_F*y(3)+B10_F*y(2)+B11_F*y(1):

¥(13)=A0_F*x(13)+Al_F*x(12)+A2_F*x(11)+A3_F*x(10)+Ad_F*x(9)+A5_F*
X(8)*A6_F*X(7)+AT_F*X(6)+A8_F*X(5)+A9_F*x(4)+A10_F*x(3)+Al1_F*x(2)+A12_
F*x(1)+B1_F*y(12)¥B2_F*y(11)+B3_F*y(10)+B4_F*y(9)+B5_F*y(8)+B6_F*y(7)+B7
_F*y(6)+B8_F*y(5)+B9_F*y(4)+B10_F*y(3)+B11_F*y(2)+B12_F*y(l):

y(14)=A0_F*x(14)+Al_F*x(13)+A2_F*x(12)+A3_F*x(11)+A4_F*x(10)+A5_F
*X(9)+A6_F*X(8)+AT_F*x(7)+AB_F*x(6)+A9_F*x(5)+A10_F*x(4)+AT1_F*x(3)+A12



_F*x(2)+A13_F*x(1)+B1_F*y(13)+B2_F*y(12)+B3_F*y(11)+B4_F*y(10)+B5_F*y(9)
+B6_F*y(8)+B7_F*y(7)+B8_F*y(6)+B9_F*y(5)+BI0_F*y(4)+Bl1_F*y(3)+BI2_F*y(2
»#BI3_F*y(1);

V(I5)=A0_F*x(15)+Al_F*x(14)+A2_F*x(13)+A3_F*x(12)+Ad_F*x(11)+A5_F
*x(10)+A6_F*x(9)+A7_F*x(8)+A8_F*x(7)+A9_F*x(6)+A10_F*x(5)+All_F*x(4)+Al
2_F*x(3)+A13_F*x(2)+Al4_F*x(1)+Bl_F*y(14)+B2_F*y(13)+B3_F*y(12)+B4_F*y(1

1+B5_F*y(10)+B6_F*y(9)+B7_F*y(8)+B8_F*y(7)+B9_F*y(6)+B10_F*y(5)+BI1_F*y
($)+BI2_F*y(3)+BI3_F*y(2)+B14_F*y(1):

Y(16)=A0_F*x(16)+A1_F*x(15)+A2_F*x(14)+A3_F*x(13)+A4_F*x(12)+A5_F
*X(11)+A6_F*x(10)+A7_F*x(9)+A8_F*x(8)+A9_F*x(7)+A10_F*x(6)+All_F*x(5)+A
12_F*x(4)+A13_F*x(3)+A14_F*x(2)+A15_F*x(1)+B1_F*y(15)+B2_F*y(14)+B3_F*y(
13)+B4_F*y(12)+B5_F*y(11)+B6_F*y(10)+B7_F*y(9)+B8_F*y(8)+B9_F*y(7)+B10_F
*y(6)+B11_F*y(5)+B12_F*y(4)+B13_F*y(3)+Bl4_F*y(2)+BI5_F*y(1):

Y(17)=A0_F*x(17)+Al_F*x(16)+A2_F*x(15}+A3_F*x(14)+Ad_F*x(13)+A5_F
*X(12)+A6_F*x(11)+A7_F*x(10)+A8_F*x(9)+A9_F*x(8)-A10_F*x(T)+All_F*x(6)
AI2_F*x(5)+A13_F*x(d)+Al4_F*x(3)+A15_F*x(2)+A16_F*x(1)+BI_F*y(16)+B2_F*
Sy+B3_F*y(14)+B4_F*y(13)+BS_F*y(12)+B6_F*y(11)+B7_F*y(10)+B8_F*y(9)*!

V(8)+B10_F*y(7)+B11_F*y(6)+B12_F*y(5)+BI3_F*y(4)+Bl4_F*y(3)+BI15_F*y(
’)'Bl6 Fry(l):

y(18)=A0_F*x(18)+Al_F*x(17)+A2_F*x(16)+A3_F*x(15)+Ad_F*x(14)+A5_F
*X(13)+A6_F*x(12)+A7 F"((II)*'AB _F*x(10)+A9_F*x(9)+A10_F*x(8)+All_F*x(7)+
AL2_F*x(6)*A13_F*x(5)+Al4_F*x(4)+A15_F*x(3)+A16_F*x(2)+A17_F*x(1)+B1_F*
Y1 7)+B2_F*y(16)+B3_F*y(15)+B4_F*y(14)+B5_F*y(13)+B6_F*y(12)+B7_F*y(11)+
B8_F*y(10)+B9_F*y(9)+B10_F*y(8)+B11_F*y(7)+B12_F*y(6)+BI3_F*y(3)+B14_F*y
(4)1+BI5_F*y(3)+BI6_F*y(2)+B17_F*y(1):

for i=19:(len_x)
y(i)=A0_F*x(i)+Al_F*x(i-1)+A2_F*x(i-2)+A3_F*x(i-3)+Ad_F*x(i-
H+AS_F*x(i-5)+A6_F*x(i-6)+A7_F*x(i-7)+A8_F*x(i-8)+A9_F*x(i-9)+A10_F*x(i-
10)+ATI_F*x(i-11)+A12_F*x(i-12)+A13_F*x(i-13)+Al4_F*x(i-14)+A15_F*x(i-
15)+A16_F*x(i-16)+A17_F*x(i-17)+A18_F*x(i-18)+B1_F*y(i-1)+B2_F*y(i-
2)+B3_F*y(i-3)+B4_F*y(i-4)+B5_F*y(i-5)+B6_F*y(i-6)+B7_F*y(i-7)+B8_F*y(i-
8)+B9_F' 9)+B10_F*y(i-10)+B11_F*y(i-11)+B12_F*y(i-12)+B13_F*y(i-
13)+BT4_F*y(i-14)+B15_F*y(i-15)+B16_F*y(i-16)+B17_F*y(i-17)+BI8_F*y(i-18):
end

end

%

%

if NP==20

0_F*x(1):

O_F*x(2)+Al_F*x(1)+B1_F*y(1):
3)=A0_F*x(3)*Al_F*x(2)+A2_F*x(1)*Bl_F*y(2)+B2_F*y(1):




V(4)=A0_F*x(d)+A1_F*x(3)+A2_F*x(2)+A3_F*x(1)+Bl_F*y(3)+B2_F*y(2)+B3_F*y(
e

Y(5)=A0_F*x(S)*Al_F*x(4)+A2_F*x(3)+A3_F*x(2)+Ad_F*x(1)}+B1_F*y(4)+B2_F*y(
31+B3_F*y(2)+B4_F*y(1);

¥(6Y=A0_F*x(6)+Al_F*x(5)+A2_F*x(4)+A3_F*x(3)+Ad_F*x(2)+A5_F*x(1)+B
|_F*y(5)+B2_F*y(4)+B3_F*y(3)+B4_| F‘y(7)+B:> Fry(l):

V(7)=A0_F*x(7)+Al_F*x(6)+A2_F*x(5)+A3_F*x(4)+Ad4_F*x(3)+A5_F*x(2)}+
A6_F*x(1)+B1_F*y(6)+B2_F*y(5)+B3_F*y(4)+B4_F*y(3)+B5_F*y(2)+B6_F*y(1):

V(8)=A0_F*x(8)+Al_F*x(7)+A2_F*x(6)+A3_F*x(5)+Ad_F*x(4)+A5_F*x(3)+
A6_F*x(2)+A7_F*x(1)+BI_F*y(7)+B2_F*y(6)+B3_F*y(5)+B4_F*y(4)+B5_F*y(3)+B6
_F*y(2)+B7_F*y(1):

V(9)=A0_F*x(9)+Al_F*x(8)+A2_F*X(7)+A3_F*X(6)+Ad_F*X(5)+A5_F*x(4)+A6_F*x(
3)+AT_F*x(2)+A8_F*x(1)+B1_F*y(8)+B2_F*y(7)+B3_F*y(6)+B4_F*y(5)+B5_F*y(4)
+B6_F*y(3)+B7_F*y(2)+B8_F*y(1):

Y(10)=A0_F*x(10)+A1_F*X(9)+A2_F*x(8)+A3_F*X(7)+Ad_F*X(6)+AS_F*X(5)+A6_F
*X()FAT_FX()1+A8_F*x(2)+A9_F*x(1)+BI_F*y(9)+B2_F*y(8)+B3_F*y(7)+B4_F*y
(6)+B5_Fy(5)+B6_F y(4)+B7_F*y(3)+B8_F*y(2)+B9_Fy(1):

YID=A0_F*x(11)+Al_F*x(10)+A2_F*x(9)+A3_F*x(8)+A4_F*x(7)+A5_F*x(6)+A6_

3 AT_F*x(4)+A8_F*x(3)+A9_F*x(2)+A10_F*x(1)+BI1_F*y(10)+B2_F*y(9)+B3_
8)+B4_F*y(7)+B5_F*y(6)+B6_F*y(5)+B7_F*y(4)+B8_F*y(3)+B9_F*v(2)+BI0_F
)

V(12)=A0_F*x(12)+A1_F*x(11)+A2_F*x(10)+A3_F*x(9)+A4_F*x(8)*A5_F*x(
7)+A6_F*X(6)+AT_F*x(S)+AS_F*x(4)+A9_F*x(3)+A10_F*x(2)+AlT_F*x(1)+BI_F*y
(11)+B2_F*y(10)+B3_F*y(9)+B4_F*y(8)+BS_F*y(7)+B6_F*y(6)*B7_F*y(5)+B8_F*y
(41+B9_F*y(3)+B10_F*y(2)+B11_F*y(1):
VUI3)=A0_F*x(13)+A1_F*x(12)*A2_F*x(11)+A3_F*x(10)+A4_F*x(9)+A5_F*
X(8)+A6_F*x(7)*A7_F*x(6)+A8_F*x(3)+A9_F*x(4)+A10_F*x()+Al1_F*x(2)+A12_
Fox(1)+B1_F*y(12)¥B2_F*y(11+B3_F*y(10)+B4_F*y(9)+BS_F*y(8)+B6_F*y(7)+B7
_F*y(6)+B8_F*y(5)+B9_F*y(4)*B10_F*y(3)*B11_F*y(2)+B12_F*y(1):
V(147=A0_F*x(13)+A1_F*x(13)+A2_F*x(12)+A3_F*x(11)+A4_F*x(10)+AS_F
*X(9)+A6_F*X(8)+AT_F*X(7)+A8_F*x(6)+A9_F*x(5)+AT0_F*x(4)+Al1_F*x(3)+A12
_F*X(Q)+AI3_FAx(1)+BI_F*y(13)+B2_F*y(12)+B3_F*y(11)+B4_F*y(10)*B5_F*y(9)
TB6_F*y(8)+B7_F*y(7)+B8_F*y(6)+B9_F*y(5)+BI0_F*y(d)+BI1_F*y(3)+BI2_F*y(2
BI3_F*y(1):
V(I5)=A0_F*x(15)+A1_F*x(14)+A2_F*x(13)+A3_F*x(12)+A4_F*x(11)+A5_F
X(10)+A6_F*x(9)+A7_F*x(81+A8_F*X(7)+A9_F*X(6)+A10_F*x(3)+All_F*x(4)+Al
2 F*x(3)+A13_FX(2)*AL4_F*x(17+B1_F*y(12)+B2_F*y(13)+B3_F*y(12)+B4_F*y(1
1)+B5_F*y(10)+B6_F*y(9)+B7_F*y(8)*B8_F*y(7)+B9_| F'v(6)+BIO F*y(5)+BT1_F*y
(4)+BI2_F*y(3)+BI3_F*y(2)+Bl4_F*y(1):




V(16)=A0_F*x(16)+A1_F*x(15)+A2_F*x(14)+A3_F*x(13)+A4_F*x(12)+A5_F
*x(11)+A6_F*x(10)+A7_F*x(9)+A8_F*x(8)+A9_F*x(T)+A10_F*x(6)+A11_F*x(5}*A
12_F*x(4)+A13_F*x(3)FA14_F*x(2)+A15_F*x(1)+BI_F*y(15)+B2_F*y(14)+B3_F*y(
13)-B4_F*y(12)+B5_F*y(11)+B6_F*y(10)+B7_F*y(9)+B8_F*y(8)+B9_F*y(7)*BI0_F
*y(6)+B11_F*y(S)+B12_F*y(4)+B13_F*y(3)+Bl4_F*y(2)+BI5_F*y(1):
Y(17)=A0_F*x(17)+A1_F*x(16)+A2_F*x(15)+A3_F*x(I13)+Ad_F*x(13)+A5_F
*X(12)+A6_F*x(11)+A7_F*x(10)+A8_F*x(9)+A9_F*x(8)+A10_F*x(7)+Al1_F*x(6}+
AI2_F*x(3)+A13_F*x(d)+Al4_F*x()+A15_F*x(2)+A16_F*x(1)+BI_F*y(16)+B2_F*
V(157+B3_F*y(14)+B4_F*y(13)+BS_F*y(12)+B6_F*y(11)+B7_F*y(10)+B8_F*y(9)*B
9_F*y(8)FB10_F*y(7)+Bl1_F*y(6)+BI12_F*y(5)*B13_F*y(4)+B14_F*y(3)+BI5_F*y(
2)+B16_F*y(1):
V(I8)=A0_F*x(18)+A1_F*x(17)+A2_F*x(16)+A3_F*x(15)+*A4_F*x(14)+A5_F
X(13)7A6_F*x(12)+A7_F*x(11)+A8_F*x(10)+A9_F*x(9)+A10_F*x(8)+Al1_F*x(7)+
AI2_F*x(6)+A13_F*x(5)+Al4_F*x(d)+A15_F*x(3)+A16_F*x(2)+A17_F*x(1)+B1_F*
V(17)+B2_F*y(16)+B3_F*y(15y+B4_F*y(14)+B5_F*y(13)+B6_F*y(12)+B7_F*y(11)+
BS_F*y(10)+B9_F*y(9)+B10_F*y(8)+B11_F*y(7)+B12_F*y(6)+B13_F*y(5)+B14_F*y
(4)+B13_F*y(3)¥B16_F*y(2)+B17_F*y(1);
Y(19)=A0_F*X(19)+A1_F*x(18)+A2_F*x(17)+A3_F*x(16)+Ad_F*x(15)+A5_F
*X(14)7A6_F*x(131+A7_F*x(12)+A8_F*x(11)+A9_F*x(10)+A10_F*x(9)+Al1_F*x(8)
“AI2_F*x(T)+A13_F*X(6)+Al4_F*x(3)+AI5_F*x(d)+A16_F*x(3)+A17_F*x(I)1+AI8_
Fox(1)+B1_F*y(18)+B2_F*y(17y+B3_F*y(16)+B4_F*y(15)+B5_F*y(14)+B6_F*y(13)
~B7_F*y(12)+B8_F*y(11)+B9_F*y(10)+B10_F*y(9)+BI1_F*y(8)+B12_F*y(7)+B13_
F*y(6)+BI4_F*y(35)+BI15_F*y()+B16_F*y(3)+B17_F*y(2)+B18_F*y(1):
Y(20/=A0_F*x(20)+A1_F*x(19)+A2_F*x(18)+A3_F*x(17)+A4_F*x(16)*A5_F
*X(15)+A6_F*x(14)+A7_F*x(13)+A8_F*x(12)+A9_F*x(11)+A10_F*x(10)*A11_F*x(9
JAL2_FPx(8)+AL3_F*x(T)+Al4_F*X(6)+A15_F*x(S)*A16_F*x(3)+A17_F*x(3)+Al8
_F*x(QA19_F*x(1)+B1_F*y(19)+B2_F*y(18)+B3_F*y(17y+B4_F*y(16)+B5_F*y(15)
ZB6_F*y(14)*B7_F*y(131+B8_F*y(12)+B9_F*y(11)+B10_F*y(10)+B11_F*y(9)+B12_
Foy(8)+B13_F*y(7)+B14_F*y(6)+B15_F*v(3)*B16_F*y(4)+B17_F*y(3)*BI8_F*y(2)
+B19_F*y(I):

for i=21:(len_x)

Y(I)=A0_F*x(if+Al_F*x(i-1)+A2_F*x(i-2+A3_F*x(i-3)+A4_F*x(i-
4)+AS_Frx(i-3)+A6_F*x(i-6)+A7_F*x(i-7)+A8_F*x(i-8)+A9_F*x(i-9)+A10_F*x(i-
10)+ATT_F*x(i-11)+A12_F*x(i-12)+A13_F*x(i-13)+A14_F*x(i-14)+A15_F*x(i-
15)+A16_F*x(i-16)+A17_F*x(i-17)+A18_F*x(i-18)+A19_F*x(i-19)+A20_F*x(i-
2)+B3_F*y(i-3)+B4_F*y(i-4)+B5_F*y(i-5)+B6_F*y(i-
6)+B7_I F’v(x 7)+B8 F’y(l-8)+89 F*y(i-9)+B10_F*y(i-10)+B11_F*y(i-11)+B12_F*y(i-
12)+B13_F*y(i-13)+B14_F*y(i-14)+B15_F*y(i-15)+B16_F*y(i-16)+B17_F*y(i-
17)+BI18_F*y(i-18)+B19_F*y(i-19)+B20_F*y(i-20):

end

end
%
%



hold off

plot(t_axis.x)

hold on

plot(t_axis.y.T)
legend('input’’output - Chebychev')
hold off

pause

%

X=tfi(x.len_x):

Y=ffi(y.len_x):

hold off
plot(f_axis.abs(X(1:len_x/2)).'b")
hold on
plot(f_axis.abs(Y(1:len_x/2)).'r')
legend('input fft'/'output fft- Chebychev')
pause

%

%

% Repeat procedure for delta function
%

%

%

%

load delta2.dat

%

%

len_x=length(x):

h=zeros(len_x.1):
9

Y%
%
%
ifNP==2
h(1)=A0_F*delta2(1):
h(2)=A0_F*delta2(2)+A1_F*delta2(1)+B1_F*h(1):
for i=3:(len_x)
h(i)=A0_F*delta2(i)+Al_F*delta2(i-1)+A2_F*delta2(i-2)+B1_F*h(i-
1)+B2_F*h(i-2):
end
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iFNP=4
h(1)=A0_F*delta2(1);
h(2)=A0_F*dclta2(2)+Al_F*delta2(1)+B1_F*h(1):
h(3)=A0_F*deltad(3)+A1_F*delta2(2)+A2_F*delta2(1)*B1_F*h(2)+B2_F*h(1):

h(4)=A0_F*delta2(4)+A1_F*delta2(3)+A2_F*delta2(2)+A3_F*delta2(1)+B1_F*h(3)+B
2_F*h(2)+B3_F*h(1):

“(len_x)
h(i)=A0_F*delta2(i)+Al_F*delta2(i-1)+A2_F*delta2(i-2)+A3_F*delta2(i-
3)+Ad_F*delta2(i-4)+B1_F*h(i-1)+B2_F*h(i-2)+B3_F*h(i-3)+B4_F*h(i-4):
end

ifNP==6
h(1)=A0_F*delta2(1):
h(2)=A0_F*delta2(2)+A1_F*delta2(1)+Bl_F*h(1):
h(3)=A0_F*delta2(3)+Al F'della_(")*A_ _F*delta2(1)+B1_F*h(2)+B2_F*h(1):

h(4)=A0_F*delta2(4)+Al_F*delta2(3)+A2_F*delta2(2)~A3_F*delta2(1)+B1_F*h(3)+B
2_F*h(2)+B3_F*h(1):

h(35)=A0_F*delta2(5)+A1_F*delta2(4)+A2_F*delta2(3)+A3_F*delta2(2)+A4_F*delta2(

1)+B1_F*h(4)+B2_F*h(3)+B3_F*h(2)+B4_F*h(1):
h(6)=A0_F*delta2(6)+A1_F*delta2(5)+A2_F*deita2(4)+A3_F*delta2(3)+A4_F*

delta2(2)+AS5_F*delta2(1)+B1_F*h(5)+B2_F*h(4)+B3_F*h(3)+B4_F*h(2)+B5_F*h(1):

for i=7:(len_x)
h(i)=A0_F*delta2(i)+A1_F*delta2(i-1)+A2_F*delta2(i-2)+A3_F*delta2(i-

3)+A4_F*delta2(i-4)+A5_F*delta2(i-5)+A6_F*delta2(i-6)+B1_F*h(i-1)+B2_F*h(i-
2)+B3_F*h(i-3)+B4_F*h(i-4)+B5_F*h(i-5)+B6_F*h(i-6):

end
end
%
%
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%
ifNP=8
h(1)=A0_F*delta2(1):
h(2)=A0_F*delta2(2)+Al_F*delta2(1)+B1_F*h(1);
h(3)=A0_F*delta2(3)+Al_F*delta2(2)+A2_F*delta2(1)+BI_F*h(2)+B2_F*h(1):

h(4)=A0_F*delta2(4)+A1_F*delta2(3)+A2_F*delta2(2)+A3_F*delta2(1)+B1_F*h(3)+B
2_F*h(2)+B3_F*h(1):

h(5)=A0_F*delta2(5)+A1_F*delta2(4)+A2_F*delta2(3)+A3_F*delta2(2)+A4_F*delta2(
1)+BI1_F*h(4)+B2_F*h(3)+B3_F*h(2)+B4_F*h(1):
h(6)=A0_F*delta2(6)+Al_F*delta2(5)+A2_F*delta2(4)+A3_F*delta2(3)+A4_F*
delta2(2)+AS5_F*delta2(1)+B1_F*h(5)+B2_F*h(4)+B3_F*h(3)+B4_F*h(2)+B5_F*h(1):
h(7)=A0_F*delta2(7)+A1_F*delta2(6)+A2_F*delta2(5)+A3_F*delta2(4)+A4_F*
delta2(3)+A5_F*delta2(2)+A6_F*delta2(1)+B1_F*h(6)+B2_F*h(5)+B3_F*h(4)+B4_F*
h(3)+B5_F*h(2)+B6_F*h(1):
h(8)=A0_F*delta2(8)+A1_F*delta2(7)+A2_F*delta2(6)+A3_F*delta2(5)+A4_F*
delta2(4)+AS F’della.(J)+A6_F‘delm_(7)+r\7_F'delm.(l)+Bl_F‘h(7)*B7_F‘h(6)+B
3_F*h(5)+B4_F*h(4)+B5_F*h(3)+B6_F*h(2)+B7_F*h(1):

for i=9:(len_x)
h(i)=A0_F*delta2(i)+A1_F*delta(i-1)+A2_F*delta2(i-2)+A3_F*delta2(i-
3)+A4_F*delta2(i-4)+A5_F*delta2(i-5)+A6_F*delta2(i-6)+A7_F*delta2(i-
7)+A8_F*delta2(i-8)+B1_F*h(i-1)+B2_F*h(i-2)+B3_F*h(i-3)+B4_F*h(i-4)+B5_F*h(i-
5)+B6_F*h(i-6)+B7_F*h(i-7)+B8_F*h(i-8):
end

h(1)=A0_F*delta2(1):
h(2)=A0_F*delta2(2)+A1_F*delta2(1)+B1_F*h(1):
h(3)=A0_F*delta2(3)+A1_F*delta2(2)+A2_F*delta2(1)+B1_F*h(2)+B2_F*h(1):

h(4)=A0_F*delta2(4)+Al_F*delta2(3)+A2_F*delta2(2)+A3_F*delta2(1)+B1_F*h(3)+B
2_F*h(2)+B3_F*h(1):

h(5)=A0_F*delta2(5)+A1_F*delta2(4)+A2_F*delta2(3)+A3_F*delta2(2)+A4_F*delta2(
1)+B1_F*h(4)+B2_F*h(3)+B3_F*h(2)+B4_F*h(1):
h(6)=A0_F*delta2(6)+A1_F*delta2(5)+A2_F*delta2(4)+A3_F*delta2(3)+A4_F*
delta2(2)+A5_F*delta2(1)+B1_F*h(5)+B2_F*h(4)+B3_F*h(3)+B4_F*h(2)+B5_F*h(l):
h(7)=A0_F*delta2(7)+A1_F*delta2(6)+A2_F*delta2(5)+A3_F*delta2(4)+A4_F*
delta2(3)+A5_F*delta2(2)+A6_F*delta2(1)+BI_F*h(6)*B2_F*h(5)+B3_F*h(4)+B4_F*
h(3)+B5_F*h(2)+B6_F*h(1):




h(8)=A0_F*delta2(8)+A1_F*delta2(7)+A2_F*delta2(6)+A3_F*delta2(5)+Ad_F*
delta2(4)+A5_Fodelta2(3)+A6_F*delta(2)+A7_F*delta2(1)+BI_F*h(7}+B2_F*h(6)+B
3_F*h(5)+B4_F*h(4)+B5_F*h(3)+B6_F*h(2)+B7_F*h(1);

h(9)=A0_F*delta2(9)+Al_F*delta2(8)+A2_F*deltad(7)+A3_F*delta2(6)+A4_F*delta2(
5)+AS_F*delia2(4)+A6_F*delta2(3)+A7_F*delta2(2)+A8_F*delta2(1)+Bl_F*h(8)+B2_
F*h(7)+B3_F*h(6)+B4_F*h(5)+B5_F*h(#)+B6_F*h(3)+B7_F*h(2)+B8_F*h(1):

h(10)=A0_F*delta2(10)+A1_F*delta2(9)+A2_F*delta2(8)+A3_F*deita2(7)+A4_F*delta
26)+A3_F*delta2(5)+A6_F*delta2(4)+A7_F*delta2(3)+A8_F*delta2(2)+A9_F*delta2(
1)+B1_F*h(9)+B2_F*h(8)+B3_F*h(7)+B4_F*h(6)+B5_F*h(5)+B6_F*h(4)+B7_F*h(3)
+B8_F*h(2)+B9_F*h(1):

for i=11:(len_x)
h(i)=A0_F*delta2(i)+A1_F*delta2(i-1)+A2_F*delta2(i-2)+A3_F*delta2(i-
3)+Ad_F*delta2(i-4)+A5_F*delta2(i-5)+A6_F*delta2(i-6)+A7_F*delta2(i-
7)+A8_F*delta(i-8)+A9_F*delta2(i-9)+A10_F*delta(i-10)+B1_F*h(i-1)+B2_F*h(i-
2)+B3_F*h(i-3)+B4_F*h(i-4)+B5_F*h(i-5)+B6_F*h(i-6)+B7_F*h(i-7)+B8_F*h(i-
8)+B9_F*h(i-9)+B10_F*h(i-10):
end
end
%
%
iFNP==12
h(1)=A0_F*delta2(1):
h(2)=A0_F*delta2(2)+Al_F*delta2(1)+B1_F*h(1):
h(3)=A0_F*delta2(3)+Al_F*delta2(2)+A2_F*delta2(1)+B1_F*h(2)+B2_F*h(l):

h(4)=A0_F*delta2(4)+A1_F*delta2(3)+A2_F*delta2(2)+A3_F*delta2(1)+B1_F*h(3)+B
2_F*h(2)+B3_F*h(1):

h(5)=A0_F*delta2(5)+A1_F*delta2(4)+A2_F*delta2(3)+A3_F*delta2(2)+Ad_F*delta(
1)+B1_F*h(4)+B2_F*h(3)+B3_F*h(2)+B4_F*h(1):
h(6)=A0_F*delta2(6)+A1_F*delta2(5)+A2_F*deltad(4)+A3_F*delta2(3)+Ad_F*
delta2(2)+AS5_F*deitad(1)+B1_F*h(5)+B2_F*h(4)+B3_F*h(3)+B4_F*h(2)+B3_F*h(1):
0_F*delta2(7)+A1_F*delta2(6)+A2_F*delta(5)+A3_F*delta2(4)+Ad_F*
delta2(3)+A5_F*delta2(2)+A6_F*deltad(1)+B1_F*h(6)+B2_F*h(5)+B3_F*h(4)+B4_F*
h(3)+B5_F*h(2)+B6_F*h(1):
h(8)=A0_F*deltad(8)+A1_F*delta2(7)+A2_F*delta2(6)+A3_F*deltad(5)+A4_F*
deltad(4)+AS_F*delta2(3)+A6_F*delia2(2)+AT_F*delta2(1)+B1_F*h(7)+B2_F*h(6)*B
3_F*h(5)+B4_F*h(4)+B3S_F*h(3)+B6_F*h(2)+B7_F*h(1):

h(9)=A0_F*delta2(9)+A1_F*deltad(8)+A2_F*deltad(7)+A3_F*delta2(6)+A4_F*delta2(



5)+AS_F*delta2(4)+A6_F*delta2(3)+A7_F*delta2(2)+A8_F*delta2(1)+B1_F*h(8)+B2_
F*h(7)+B3_F*h(6)+B4_F*h(5)+B5_F*h{3)+B6_F*h(3)+B7_F*h(2)+B8_F*h(1);

h(10)=A0_F*delta2(10)+A1_F*delta2(9)+A2_F*delta2(8)+A3_F*delta2(7y+A4_F*delta
2(6)+A5_F*delta2(5)+A6_F*delta2(d4)+A7_F*delta(3)+A8_F*delta2(2)+A9_F*delta2(
1)+B1_F*h(9)+B2_F*h(8)+B3_F*h(7)+B4_F*h(6)+B5_F*h(5)+B6_F*h(4)+B7_F*h(3)
+BS_F*h(2)+B9_F*h(1);

h(11)=A0_F*delta2(11}+A1_F*delta2(10)+A2_F*delta2(9)+A3_F*delta2(8)+A4_F*delt
22(7)+AS5_F*delta2(6)+A6_F*delta2(5)+A7_F*delta2(4)+A8_F*delta2(3}+A9_F*delta2
(2)+A10_F*delta2(1)+B1_F*h(10y+B2_F*h(9)+B3_F*h(8)+B4_F*h(7)*B5_F*h(6)+B6
_F*h(5)+B7_F*h(4)+B8_F*h(3)+B9_F*h(2)+BI0_F*h(l):

h(12/=A0_F*delia2(12)+A1_F*delta2(11)+A2_F*delta2(10)+A3_F*delta2(9)+A

4_F*delta2(8)+A5_F*delta2(7)+A6_F*delta2(6)+A7_F*delia2(5)+A8_F*delta2(4)+A9_

F*delta2(3)+A10_F*delta2(2)+A11_F*delta2(1)+B1_F*h(11)+B2_F*h(10)+B3_F*h(9)+
B4_F*h(8)+B5_F*h(7)+B6_F*h(6)+B7_F*h(5)+B8_F*h(4)+B9_F*h(3)+B10_F*h(2)+B
11_F*h(1):

3:(len_x)
h(i)=A0_F*delta2(i)+A1_F*delta2(i-1)+A2_F*delta2(i-2)+A3_F*delta2(i-
3)+A4_F*delta2(i-4)+A5_F*delta2(i-5)+A6_F*delta2(i-6)+A7_F*deltal(i-
7)+A8_F*delta2(i- sp,\()_F'delmZ 9)+A10_F*delta2(i-10)+A11_F*delta2(i-
11)+A12_F*delta2(i-12)+B1_F*h(i-1)+B2_F*h(i-2)+B3_F*h(i-3)+B4_F*h(i-
4)+B5_F*h(i-5)+B6_F*h(i-6)+B7_F*h(i-7)+B8_F*h(i-8)+B9_F*h(i-9)+B10_F*h(i-
10)+B11_F*h(i-11)+B12_F*h(i-12):

for i=

end
end
%
%
ifNP==
h(1)=A0_F*delta2(1):
h(2)=A0_F*delta2(2)+A1_F*delta2(1)+B1_F*h(l):

h(3)=A0_F*delta2(3)+A1_F*delta2(2)+A2_F*delta2(1)+B1_F*h(2)+B2_F*h(1):
h(4)=A0_F*delta2(4)+Al_F*delta2(3)+A2_F*delta2(2)+A3_F*delta2(1)+B1_F*h(3)+B
2_F*h(2)+B3_F*h(1):

h(5)=A0_F*delta2(5)+A1_F*delta2(4)+A2_F*deltad(3)+A3_F*delta2(2)+A4_F*delta2(
1)+B1_F*h(4)+B2_F*h(3)+B3_F*h(2)+B4_F*h(1):
1(6)=A0_F*delta2(6)+A1_F*deltad(5)+A2_F*delta2(4)+A3_F*delta2(3)+Ad_F*
delta2(2)+A5_F*delta2(1)+B1_F*h(5)+B2_F*h(4)+B3_F*h(3)+B4_F*h(2)+B5_F*h(1):
h(7)=A0_F*delta2(7)+Al_F*delta2(6)+A2_F*delta2(5)+A3_F*delta(4)+Ad_F*
delta2(3)+A5_F*delta2(2)+A6_F*delia2(1)+B1_F*h(6)+B2_F*h(5)+B3_F*h(4)+B4_F*
h(3)+B3_F*h(2)+B6_F*h(1);
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h(8)=A0_F*delta2(8)+A1_F*delta2(7)+A2_F*delta2(6)+A3_F*delta2(5)+A4_F*
delta2(4)+A5_F*delta2(3)+A6_F*delta2(2)+A7_F*delta2(1)+B1_F*h(7)+B2_F*h(6)+B
3_F*h(5)+B4_F*h(4)+B5_F*h(3)+B6_F*h(2)+B7_F*h(1);

h(9)=A0_F*delta2(9)+A1_F*delta2(8)+A2_F*delta2(7)+A3_F*delta2(6)+A4_F*delta2(
5)+A5_F*delta2(4)+A6_F*delta2(3)+A7_F*delta2(2)+A8_F*delta2(1)+B1_F*h(8)+B2_
F*h(7)+B3_F*h(6)+B4_F*h(5)+B5_F*h(4)+B6_F*h(3)+B7_F*h(2)+B8_F*h(1):

h(10)=A0_F*delta2(10)+A1_F*delta2(9)+A2_F*delta2(8)+A3_F*delta2(7)+A4_F*delta
2(6)+A5_F*delta2(5)+A6_F*delta2(4)+A7_F*delta2(3)+A8_F*delta2(2)+A9_F*delta2(
1)+B1_F*h(9)+B2_F*h(8)+B3_F*h(7)+B4_F*h(6)+B5_F*h(5)+B6_F*h(4)+B7_F*h(3)
+B8_F*h(2)+B9_F*h(1):

h(11)=A0_F*delta2(11)+A1_F*delta2(10/+A2_F*delta2(9)+A3_F*delta2(8)+A4_F*delt
22(7)+A5_F*delta2(6)+A6_F*delta2(5)+A7_F*delta2(4)+A8_F*delta2(3)+A9_F*delta2
(2)+A10_F*delta2(1y+B1_F*h(10)+B2_F*h(9)+B3_F*h(8)+B4_F*h(7)+B5_F*h(6)+B6
_F*h(5)¥B7_F*h(4)+B8_F*h(3)+B9_F*h(2)+B10_F*h(1);
h(12)=A0_F*delta2(12)+A1_F*delta2(11)+A2_F*delta2(10)+A3_F*delta2(9y+A
4_F*delta2(8)+A5_F*delta2(71+A6_F*delta2(6)+A7_F*delta2(5)+A8_F*delta2(4)+A9_
F*delta2(3)+A10_F*delta2(2)+A11_F*delta2(1)+B1_F*h(11)+B2_F*h(10)+B3_F*h(9)+
B4_F*h(8)+B5_F*h(7)+B6_F*h(6)+B7_F*h(5)+B8_F*h(4)+B9_F*h(3)+B10_F*h(2)+B
11 F*h(l):
h(13)=A0_F*delta2(13)+A1_F*delta2(12)+A2_F*delta2(11)+A3_F*delta2(10)+
Ad_F*delta2(9)+A5_F*delta2(8)+A6_F*delta2(7)+A7_F*delta2(6)+A8_F*delta2(5)+A9
_Frdelta2(4)+A10_F*delta2(3)+A1 |_F*delta2(2)+A13_F*delta2(1)+BI_F*h(12)+B2_F
*h(11)+B3_F*h(10)+B4_F*h(9)+B5_F*h(8)+B6_F*h(7)+B7_F*h(6)+B8_F*h(5)+B9_F
*h(4)+B10_F*h(3)+B11_F*h(2)+B12_F*h(1);
h(13)=A0_F*delta2(14)+A1_F*delta2(13)+A2_F*delta2(12)+A3_F*delta2(1 1)+
Ad_F*deltad(10)*A5_F*deltad(9)+A6_F*delta2(8)+A7_F*delta2(7)+A8_F*delta2(6)+A
9_F*delta2(5)+A10_F*delta2(4)+Al1_F*delta2(3)+A12_F*delta2(2)+A13_F*delta2(1)
+BI1_F*h(13)+B2_F*h(12)+B3_F*h(11)+B4_F*h(10)+B5_F*h(9)+B6_F*h(8)+B7_F*h(
7)+B8_F*h(6)+BI_F*h(5)+BI0_F*h(4)+B11_F*h(3)+B13_F*h(2)+Bi3_F*h(1):

for i=15:(len_x)

h(i)=A0_F*delta2(i)+A1_F*delta2(i-1)+A2_F*delta2(i-2)+A3_F*delta2(i-
3)+A4_F*delta2(i-4)+A5_F*delta2(i-5)+A6_F*delta2(i-6)+A7_F*delta2(i-
7)+A8_F*delta2(i-8)+A9_F*delta2(i-9)+A10_F*delta2(i-10)+A11_F*deltal(i-
11)+A12_F*delta2(i-12)+A13_F*delta2(i-13)+A14_F*delta2(i-14)+B1_F*h(i-
1)+B2_F*h(i-2)+B3_F*h(i-3)+B4_F*h(i-4)+B5_F*h(i-5)+B6_F*h(i-6)+B7_F*h(i-
7)+B8_F*h(i-8)+B9_F*h(i-9)+B10_F*h(i-10)+B11_F*h(i-11)+B12_F*h(i-
12)+B13_F*h(i-13)+B14_F*h(i-14):

end

end
%



%
ifNP=16
h(1)=A0_F*delta2(1):
h(2)=A0_F*delta2(2)+Al_| F‘d:llx_(l)-\‘-Bl _F*h(1):
h(3)=A0_F*delta2(3)+A1_F*delta2(2)+A2_F*delta2(1)+B1_F*h(2)+B2_F*h(1):

h(4)=A0_F*delta2(4)+Al_F*delta2(3)+A2_F*delta2(2)+A3_F*dela2(1)+B1_F*h(3)+B
2_F*h(2)+B3_F*h(1):

h(5)=A0_F*delta2(5)+Al_F*delta2(4)+A2_F*delta2(3)+A3_F*delta2(2)+A4_F*deltad(
1)+B1_F*h(4)+B2_F*h(3)+B3_F*h(2)+B4_F*h(1);
h(6)=A0_F*delta2(6)+A1_F*delta2(5)+A2_F*delta2(4)+A3_F*delta2(3)+Ad_F*
delta2(2)+A5_Fdelta2(1)+B1_F*h(5)+B2_F*h(4)+B3_F*h(3)+B4_F*h(2)+BS_F*h(1):
h(7)=A0_F*delta2(7)+Al_F*delta2(6)+A2_F*delta2(5)+A3_F*delta2(4)+Ad_F
delta2(3)+A5_F*delta2(2)+A6_F*delta2(1)+Bl_F*h(6)+B2_F*h(5)+B3_F*h(4)+B4_F*
h(3)+B5_F*h(2)+B6_F*h(1);
h(8)=A0_F*delta2(8)+A1_F*delta2(7)+A2_F*delta2(6)+A3_F*delta2(5)+A4_F*
delta2(4)+A5_F*delta2(3)+A6_F*delta2(2)+A7_F*delta2(1)+B1_F*h(7)+B2_F*h(6)+B
3_F*h(51+B4_F*h(4)+B35_F*h(3)+B6_F*h(2)+B7_F*h(1):

h(9)=A0_F*delta2(9)+Al_F*delta2(8)+A2_F*delta2(7)+A3_F*delta2(6)+A4_F*delta2(
5)+AS5_F*delta2(4)+A6_F*delta2(3)+A7_F*delta2(2)+A8_F*delta2(1)+B1_F*h(8)+B2_
F*h(7)+B3_F*h(6)+B4_F*h(5)+B5_F*h(4)+B6_F*h(3)+B7_F*h(2)+B8_F*h(1):

h(10)=A0_F*delta2(10)+A1_F*delta2(9)+A2_F*delta2(8)+A3_F*delta2(7)+A4_F*delta
2(6)+A5_F*deltad(5)+A6_Frdelta2(4)+A7_F*delta2(3)+A8_F*delta2(2)+A9_F*delta2(
1)+B1_F*h(9)+B2_F*h(8)+B3_F*h(7)+B4_F*h(6)+BS_F*h(5)+B6_F*h(4)+B7_F*h(3)
+B8_F*h(2)+B9_F*h(1):

h(11)=A0_F*delta2(11)+A1_F*delta2(10)+A2_F*delta2(9)+A3_F*delta2(8)+A4_F*delt
22(7)+A3_F*delta2(6)+A6_F*delta2(5)+A7_F*delta2(4)+A8_F*delta2(3)+A9_F*delta
(2)+A10_F*deita2(1)+B1_F*h(10)+B2_F*h(9)+B3_F*h(8)+B4_F*h(7)+B5_F*h(6)+B6
_F*h(5)+B7_F*h(4)+B8_F*h(3)+B9_F*h(2)+B10_F*h(1):
h(12)=A0_F*delta2(12)+A1_F*delta2(11)+A2_F*delta2(10)+A3_F*delta2(9)+A
4_F*delta2(8)+A5_F*delta2(7)+A6_F*delta2(6)+A7_F*delta2(5)+A8_F*delta2(4)+A9_
F*delta2(3)+A10_F*delta2(2)+A11_F*delta2(1)+BI_F*h(11)+B2_F*h(10)+B3_F*h(9)+
B4_F*h(8)*B5_F*h(7)+B6_F*h(6)+B7_F*h(5)+B8_F*h(4)+B9_F*h(3)+B10_F*h(2)+B
11F*h(1):
h(13)=A0_F*delta2(13)+A1_F*delta2(12)+A2_F*delta2(11)+A3_F*delta2(10)+
A4_F*delta2(9)+A5_F*delta2(8)+A6_F*delia2(7)+A7_F*delta2(6)+A8_F*deltad(5)+A9
_Frdelta2(4)+A10_F*delta2(3)+Al |_F*delta2(2)+A13_F*delta2(1)+BI_F*h(12)+B2_F
*h(11)+B3_F*h(10)+B4_F*h(9)+B3_F*h(8)+B6_F*h(7)+B7_F*h(6)+B8_F*h(5)+B9_F
*h(4)+B10_F*h(3)+B11_F*h(2)+B12_F*h(1):



h(14)=A0_F*delta2(14)+A1_F*delta2(13)+A2_F*delta2(12)+A3_F*delta2(11)+
A4_F*delta2(10)+A5_F*delta2(9)+A6_F*delta2(8)+A7_F*delta2(7)+A8_F*delta2(6)+A
9_F*delta2(5)+A10_F*delta2(4)+A11_F*delta2(3)+A12_F*delta2(2)+A13_F*delta2(1)
+B1_F*h(13)+B2_F*h(12)+B3_F*h(11)+B4_F*h(10)+B5_F*h(9)+B6_F*h(8)+B7_F*h(
7)+B8_F*h(6)+B9_F*h(5)+B10_F*h(4)+B11_F*h(3)+BI12_F*h(2)+B13_F*h(1);

h(15)=A0_F*delta2(15)+A1_F*delta2(14)+A2_F*delta2(13)+A3_F*delta2(12)+
A4_F*delta2(11)+A5_F*deita2(10)+A6_F*delta2(9)+A7_F*delta2(8)+A8_F*delta2(7)+
A9_F*delta2(6)+A10_F*delta2(5)+Al1_F*delta2(4)+A12_F*delta2(3)+A13_F*delta2(2
)+Al4_F*delta2(1)+B1_F*h(14)+B2_F*h(13)+B3_F*h(12)+B4_F*h(11)+B5_F*h(10)+
B6_F*h(9)+B7_F*h(8)+B8_F*h(7)+B9_F*h(6)+B10_F*h(5)+B11_F*h(4)+B12_F*h(3)
+B13_F*h(2)+B14_F*h(l);

h(16)=A0_F*delta2(16)+A1_F*delta2(15)+A2_F*delta2(14)+A3_F*delta2(13)+
Ad_F*delta2(12)+A5_F*delta2(11)+A6_F*delta2(10)+A7_F*delta2(9)+A8_F*delta2(8)
+A9_F*delta2(7)+A10_F*delta2(6)+A11_F*delta2(5)+A12_F*delta2(4)+A13_F*delta(
3)+Al4_F*delta2(2)+A15_F*delta2(1)+B1_F*h(15)+B2_F*h(14)+B3_F*h(13)+B4_F*h
(12)+B5_F*h(11)+B6_F*h(10)+B7_F*h(9)+B8_F*h(8)+B9_F*h(7)+B10_F*h(6)+B11_
F*h(5)+B12_F*h(4)+B13_F*h(3)+B14_F*h(2)+B15_F*h(l):

for i=17:(len_x)
h(i)=A0_F*deltad(i}+A1_F*delta2(i-1)+A2_F*delta2(i-2)+A3_F*delta2(i-
3)1+A4_F*delta2(i-4)+AS5_F*delta2(i-5)+A6_F*delta2(i-6)+A7_F*deltal(i-
7)+A8_F*delta2(i-8)+A9_F*delta2(i-9)+A10_F*delta(i-10)+A11_F*delta2(i-
D+A12_F*delta2(i-12)+A13_F*delta2(i-13)+Al4_F*delta2(i-14)+A15_F*deltal(i-
15)+A16_F*delta2(i-16)+BI_F*h(i-1)+B2_F*h(i-2)+B3_F*h(i-3)+B4_F*h(i-
4)+B5_F*h(i-5)+B6_F*h(i-6)+B7_F*h(i-7)+B8_F*h(i-8)+B9_F*h(i-9)+B10_F*h(i-
10)+B11_F*h(i-11)+B12_F*h(i-12)+B13_F*h(i-13)+B14_F*h(i-14)+B15_F*h(i-
15)+B16_F*h(i-16):
end
end
%
Y%
ifNP==
h(l)vAO F*delta2(1);
h(2)=A0_F*delta2(2)+A1_F*delta2(1)+B1_F*h(1):
h(3)=A0_F*delta2(3)+Al_F*delta2(2)+A2_F*delta2(1)+B1_F*h(2)+B2_F*h(1):

h(4)=A0_F*delta2(4)+Al_F*delta2(3)+A2_F*delta2(2)+A3_F*delta2(1)+B1_F*h(3)+B
2_F*h(2)+B3_F*h(1):

h(35)=A0_F*delta2(5)+A1_F*delta2(4)+A2_F*delta2(3)+A3_F*delta2(2)+A4_F*delta2(

1)+B1_F*h(4)+B2_F*h(3)+B3_F*h(2)+B4_F*h(1):
h(6)=A0_F*delta2(6)+A1_F*delta2(5)+A2_F*delta2(4)+A3_F*delta2(3)+A4_F*

delta2(2)+A5_F*delta2(1)+B1_F*h(5)+B2_F*h(4)+B3_F*h(3)+B4_F*h(2)+B5_F*h(1):



h(7)=A0_F*delta2(7)+A1_F*delta2(6)+A2_F*delta2(5)+A3_F*delta2(4)+Ad_F*
delta2(3)+AS_Fdelta2(2)+A6_F*delta2(1)+B1_F*h(6)+B2_F*h(5)+B3_F*h(4)+B4_F*
h(3)+B5_F*h(2)+B6_F*h(1);
h(8)=A0_F*delta2(8)+A1_F*delta2(7)+A2_F*delta2(6)+A3_F*delta(5)+A4_F*
delta2(4)+A5_F*delta2(3)+A6_F*delta2(2)+A7_F*delta2(1)+B1_F*h(7)+B2_F*h(6)+B
3_F*h(5)+B4_F*h(4y+BS_F*h(3)+B6_F*h(2)+B7_F*h(1);

h(9)=A0_F*delta2(9)+A1_F*delta2(8)+A2_F*delta2(7)+A3_F*delta2(6)+A4_F*delta2(
5)+A5_F*delta2(4)+A6_F*delta2(3)+A7_F*delta2(2)+A8_F*delta2(1)+B1_F*h(8)+B2_
F*h(7)+B3_F*h(6)+B4_F*h(5)+B5_F*h(4)+B6_F*h(3)+B7_F*h(2)+B8_F*h(1):

h(10)=A0_F*delta2(10)+A1_F*delta2(9)+A2_F*delta2(8)+A3_F*delta2(7)+A4_F*delta
2(6)+A5_F*delta2(5)+A6_F*delta2(4)+A7_F*delta2(3)+A8_F*delta2(2)+A9_F*delta2(
1)+B1_F*h(9)+B2_F*h(8)+B3_F*h(7)+B4_F*h(6)+B5_F*h(3)*B6_F*h(4)+B7_F*h(3)
+B8_F*h(2)+B9_F*h(1):

h(11)=A0_F*delta2(11)+A1_F*delta2(10)*A2_F*delta2(9)+A3_F*delta2(8)+A4_F*delt
2(7)+A5_F*delta2(6)+A6_F*deltad(5)+A7_F*delta2(4)+A8_F*delta2(3)+A9_F*delta2
(2)+A10_F*delta2(1)+B1_F*h(10)+B2_F*h(9)+B3_F*h(8)+B4_F*h(7)+BS_F*h(6)-B6
_F*h(5)+B7_F*h(4)+B8_F*h(3)+B9_F*h(2)+B10_F*h(1):
h(12)=A0_F*delta2(12)+A1_F*delta2(11)+A2_F*delta2(10)+A3_F*delta2(9)}+A
4_F*delta2(8)+A35_F*delta2(7)+A6_F*delta2(6)+A7_F*delta2(5)+A8_F*delta2(4)+A9_
Frdelia2(3)+A10_F*delta2(2)+Al1_F*delta2(1)+BI_F*h(11)+B2_F*h(10)+B3_F*h(9)+
B4_F*h(8)+BS_F*h(7)+B6_F*h(6)+B7_F*h(3)+B8_F*h(4)+B9_F*h(3)+B10_F*h(2)+B
1 F*h(1):
h(13)=A0_F*delta2(13)+A1_F*delta2(12)+A2_F*delta2(11)+A3_F*delta2(10)+
Ad_F*delia2(9)+AS_F*delta2(8)+A6_F*delta2(7)+A7_F*delta2(6)+A8_F*delta2(5)+A9
_Fdelta2(4)+A10_F*delta2(3)+A1|_F*delta2(2)+A13_F*delia2(1)+BI_F*h(12)+B2_F
*h(11)+B3_F*h(10y+B4_F*h(9)+B5_F*h(8)+B6_F*h(7)+B7_F*h(6)+BS_F*h(5)+BY_F
*h(4)+B10_F*h(3)+B11_F*h(2)+B12_F*h(l):
h(13)=A0_F*delta2(14)+A1_F*delta2(13)+A2_F*delta2(12)+A3_F*delta2(11)+
A4_F*delta2(10)+A5_F*delta2(9)+A6_F*delta2(8)+A7_F*delta2(7)+A8_F*delta2(6)+A
9_F*deltad(5)+A10_F*delta2(4)*Al1_F*delta2(3)+A13_F*delta2(2)+A13_F*delia2(1)
<BI_F*h(13)+B2_F*h(12)+B3_F*h(11)+B4_F*h(10)+B5_F*h(9)+B6_F*h(8)+B7_F*h(
7)+B8_F*h(6)+B9_F*h(5)+B10_F*h(4)+B11_F*h(3)+B12_F*h(2)+BI3_F*h(1):
h(15)=A0_F*delta2(15)+A1_F*delta2(14)+A2_F*delta2(13)+A3_F*dela2(12)+
Ad_F*delta2(11)+A5_F*delta2(10)+A6_F*delta2(9)+A7_F*delta2(8)+A8_F*delta2(7)+
A9_F*delta2(6)+A10_F*delta2(5)+A11_F*delta2(4)+A12_F*delta2(3)+AT3_F*delta2(2
)+Al4_F*delta2(1)+B1_F*h(14)+B2_F*h(13)+B3_F*h(13)+B4_F*h(11)+B5_F*h(10)+
B6_F*h(9)+B7_F*h(8)+B8_F*h(7)+B9_F*h(6)+BI0_F*h(5)*B11_F*h(d)+B12_F*h(3)
+BT3_F*h(2)+B14_F*h(1);
h(16)=A0_F*delta2(16)+A1_F*delta2(15)+A2_F*delta2(14)+A3_F*delta2(13)+
Ad_F*delta2(12)7A5_F*delia2(11)+A6_F*delta2(10)+A7_F*delta2(9)+A8_F*delta2(8)
+AD_F*delta2(7)+A10_F*delta2(6)+Al1_F*delta2(5)}+*A12_F*delta2(4)+A13_F*delta2(
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3)+A14_F*delta2(2)+A1S_F*delta2(1)+B1_F*h(15)+B2_F*h(14)+B3_F*h(13}+B4_F*h
(12)+B5_F*h(11)+B6_F*h(10)+B7_F*h(9)+B8_F*h(8)+B9_F*h(7)+B10_F*h(6)}+B11_
F*h(3)+B12_F*h(4)+B13_F*h(3)+B14_F*h(2)+B1S_F*h(1);

h(17)=A0_F*delta2(17)+A1_F*delta2(16)+A2_F*delta2(15)+A3_F*delta2(14)+
Ad_F*deltad(13)+A5_F*deltad(12)+A6_F*delta2(11)¥A7_F*delta2(10)+A8_F*delta2(9
J+A9_F*delta2(8)+AT0_F*delta2(7y+A11_F*delta2(6)+AT2_F*delta2(5)+AI3_F*delta2
(HHAL4_Fdeliad(3)+AlS_F*deltad(2)+A16_F*delta2(1)+B1_F*h(16)+B2_F*h(15)+B

3_F*h(13)+B4_F*h(13)+B5_F*h(12)+B6_F*h(11)+B7_F*h(10)+BS_F*h(9)+B9_F*h(8)

3 10_F*h(7)+B11_F*h(6)+B12_F*h(5)+B13_F*h(4)+B14_F*h(3)+B15_F*h(2)*B16_
F*h(1):

h(18)=A0_F*delta2(18)+A1_F*delta2(17y+A2_F*delta2(16)+A3_F*delta2(15)+
Ad_F*delta2(14)+A5_F*delta2(13)+A6_F*delta2(12)*A7_F*delta2(11)*A8_F*delta2(1
0)+A9_F*delta2(9)+A10_F*delta2(8)+Al |_F*delta2(7)+A12_F*delta2(6)+Al13_F*delta
25y+AL4_F*delta2(4)+A15_F*delta2(3)+A16_F*delta2(2)+A17_F*delta2(1)+B1_F*h(
17)+B2_F*h(16)+B3_F*h(15)+B4_F*h(14)+B5_F*h(13)+B6_F*h(12)+B7_F*h(11)+B8
_F*h(10)+B9_F*h(9)+B10_F*h(8)+B11_F*h(7)+B12_F*h(6)+B13_F*h(5)+B14_F*h(4)
+BI5_F*h(3)+B16_F*h(2)+B17_F*h(1)’

for i=19:(len_x)

h(i)=A0_F*delta2(i)+A1_F*delta2(i-1)+A2_F*delta2(i-2)+A3_F*delta2(i-
3)+Ad_F*delta2(i-4)+A5_F*delta2(i-5)+A6_F*delta2(i-6)+A7_F*delta2(i-
7)y-A8_F*delta2(i-8)+A9_F*delta2(i-9)~A10_F*delta2(i-10)+A11_F*deltad(i-
11)+A12_F*delta2(i-12)+A13_F*delta2(i-13)+A14_F*delta2(i-14)+A15_F*delta2(i-
15)+A16_F*delta2(i-16)+A17_F*delta2(i-17)+A18_F*delta2(i-18)+B1_F*h(i-
1)+B2_F*h(i-2)+B3_F*h(i-3)+B4_F*h(i-4)+B5_F*h(i-5)+B6_F*h(i-6)+B7_F*h(i-
7)+B8_F*h(i-8)+B9_F*h(i-9)+B10_F*h(i-10)+B11_F*h(i-11)+BI2_F*h(i-
12)+B13_F*h(i-13)+B14_F*h(i-14)+B15_F*h(i-15)+B16_F*h(i-16)+B17_F*h(i-
17)+B18_F*h(i-18):

end

==20
AQ_F*delta2(1):
h(2)=A0_F*delta2(2)+A1_F*delta2(1)+B1_F*h(l):
h(3)=A0_F*delta2(3)+Al_F*delta2(2)+A2_F*delta2(1)+B1_F*h(2)+B2_F*h(1):

h(4)=A0_F*delta2(4)+A1_F*delta2(3)+A2_F*delta2(2)+A3_F*delta2(1)+B1_F*h(3)+B
2_F*h(2)+B3_F*h(1):

h(5)=A0_F*delta2(5)+A1_F*delta2(4)+A2_F*delta2(3)+A3_F*delta2(2)+A4_F*delta(

1)+B1_F*h(4)+B2_F*h(3)+B3_F*h(2)+B4_F*h(1);
h(6)=A0_F*delta2(6)+A1_F*delta2(3)+A2_F*delta2(4)+A3_F*delta2(3)+A4_F*

delta2(2)+AS5_F*delta2(1)+B1_F*h(5)+B2_F*h(4)+B3_F*h(3)+B4_F*h(2)+B5_F*h(1):



h(7)=A0_F*delta2(7)+Al_F*delta2(6)+A2_F*delta2(5)+A3_F*delta2(d)+A4_F*
delta2(3)+A5_F*delta2(2)+A6_F*delta2(1y+B1_F*h(6)+B2_F*h(5)+B3_F*h(4)+B4_F*
h(3)+B5_F*h(2)+B6_F*h(1);
h(8)=A0_F*delta2(8)+Al_F*delta2(7)+A2_F*delta2(6)+A3_F*delta2(5)+A4_F*
delta2(4)+A5_F*delta2(3)+A6_F*delta2(2)+A7_F*delta2(1)+B1_F*h(7)+B2_F*h(6)+B
3_F*h(5)+B4_F*h(4)+BS_F*h(3)+B6_F*h(2)+B7_F*h(1):

h(9)=A0_F*delta2(9)+A1_F*delta2(8)+A2_F*delta2(7)+A3_F*delta2(6)+A4_F*delta2(
3)+A5_F*delta2(4)+A6_F*delta2(3)+A7_F*delta2(2)+A8_F*delta2(1)+B1_F*h(8)+B2_
F*h(7)+B3_F*h(6)+B4_F*h(5)+B5_F*h(4)+B6_F*h(3)+B7_F*h(2)+B8_F*h(1):

h(10)=A0_F*delta2(10)+A1_F*delta2(9)+A2_F*delta2(8)+A3_F*delta2(7)+A4_F*delia
2(6)+AS_F*delta2(5)+A6_F*delta2(4)+A7_F*delta2(3)+A8_F*delta2(2)+A9_F*delta2(
1)+B1_F*h(9)+B2_F*h(8)+B3_F*h(7)+B4_F*h(6)+BS_F*h(5)+B6_F*h(4)+B7_F*h(3)
+B8_F*h(2)+B9_F*h(1);

h(11)=A0_F*delta2(11)+A1_F*delta2(10)+A2_F*delta2(9)+A3_F*delta2(8)+A4_F*delt
a2(7)+A5_F*delta2(6)+A6_F*delta2(5)+A7_F*delta2(4)+A8_F*delta2(3)+A9_F*delta2
(2)+A10_F*delta2(1)+B1_F*h(10)+B2_F*h(9)+B3_F*h(8)+B4_F*h(7)+B5_F*h(6)+B6
_F*h(5)+B7_F*h(4)+B8_F*h(3)+B9_F*h(2)+B10_F*h(1):
h(12)=A0_F*delta2(12)+A1_F*delta2(11)+A2_F*delta2(10)+A3_F*delta2(9)+A
+_F*delta2(8)+AS_F*delta2(7)+A6_F*delta2(6)+A7_F*delta2(5)+A8_F*delta2(4)+A9_
F*delta2(3)+A10_F*delta2(2)+A11_F*delta2(1)+B1_F*h(11)+B2_F*h(10)+B3_F*h(9)+
B4_F*h(8)+B5_F*h(7)+B6_F*h(6)+B7_F*h(5)+B8_F*h(4)+B9_F*h(3)+B10_F*h(2)+B
11_F*h(l):
h(13)=A0_F*delta2(13)+A1_F*delta2(12)+A2_F*delta2(11)+A3_F*delta2(10)+
Ad_F*delta2(9)+A5_F*delta2(8)+A6_F*delta2(7)+A7_F*delta2(6)+A8_F*delta2(5)+A9
_F*delta2(4)+A10_F*delta2(3)+A11_F*delta2(2)+A12_F*delta2(1)+B1_F*h(12)+B2_F
*h(11)+B3_F*h(10)+B4_F*h(9)+B5_F*h(8)+B6_F*h(7)+B7_F*h(6)+B8_F*h(5)+B9_F
*h(4)+B10_F*h(3)+B11_F*h(2)+B12_F*n(1);
h(14)=A0_F*delta2(14)+A1_F*delta2(13)+A2_F*delta2(12)+A3_F*dela2(11)+
Ad4_F*delta2(10)+AS5_F*delta2(9)+A6_F*delta2(8)+A7_F*delta2(7)+A8_F*delta2(6)+A
9_F*delta2(5)+A10_F*delta2(4)+A11_F*delta2(3)+A12_F*delta2(2)+A13_F*delta2(1)
+B1_F*h(13)+B2_F*h(12)+B3_F*h(11)+B4_F*h(10)+B5_F*h(9)+B6_F*h(8)+B7_F*h(
7)+B8_F*h(6)+B9_F*h(5)+B10_F*h(4)+B11_F*h(3)+B12_F*h(2)+B13_F*h(1):
h(15)=A0_F*delta2(15)+A1_F*delta2(14)+A2_F*delta2(13)+A3_F*delta2(12)+
Ad4_F*delta2(11)+A5_F*delta2(10)+A6_F*delta2(9)+A7_F*delta2(8)+A8_F*delta2(7)+
A9_F*delta2(6)+A10_F*delta2(5)+A11_F*delta2(4)+A12_F*delta2(3)+A13_F*delta2(2
)*A14_F*delta2(1)+B1_F*h(14)+B2_F*h(13)+B3_F*h(12)+B4_F*h(11)+B5_F*h(10)+
B6_F*h(9)+B7_F*h(8)+B8_F*h(7)+B9_F*h(6)+B10_F*h(5)+B11_F*h(4)+BI12_F*h(3)
+BI13_F*h(2)+B14_F*h(1);
h(16)=A0_F*delta2(16)+A1_F*delta2(15)+A2_F*delta2(14)+A3_F*delta2(13)+
Ad_F*delta2(12)+A5_F*delta2(11)+A6_F*delta2(10)+A7_F*delta2(9)+A8_F*delta2(8)
+A9_F*delta2(7)+A10_F*delta2(6)+Al1_F*delta2(5)+A12_F*delta2(4)+A13_F*delta2(



3)+Al4_F*delta2(2)+A15_F*delta2(1)+B1_F*h(15)+B2_F*h(14)+B3_F*h(13)+B4_F*h
(12)+B5_F*h(11)+B6_F*h(10)+B7_F*h(9)+B8_F*h(8)+B9_F*h(7)+B10_F*h(6)+B11_
F*h(3)+B12_F*h(4)+BI13_F*h(3)+B14_F*h(2)+B15_F*h(1);
h(17)=A0_F*delta2(17)+A1_F*delta2(16)+A2_F*delta2(15)+A3_F*delta2(14)+
A4_F*delta2(13)+A5_F*delta2(12)+A6_F*delta2(11)+A7_F*delta2(10)+A8_F*delta2(9
)+A9_F*delta2(8)+A10_F*delta2(7)+A11_F*delta2(6)+A12_F*delta2(5)+A13_F*delta2
(4)+Al4 F*delta2(3)+A15_F*delta2(2)+A16_F*delta2(1)+B1_F*h(16)+B2_F*h(15)+B
3_F*h(14)+B4_F*h(13)+B5_F*h(12)+B6_F*h(11)+B7_F*h(10)}+B8_F*h(9)+B9_F*h(8)
+BIO _F*h(7)+B11_F*h(6)+B12_F*h(5)+B13_F*h(4)+B14_F*h(3)+B15_F*h(2)+B16_
F*h(1):
h(18)=A0_F*delta2(18)+A1_F*delta2(17)+A2_F*delta2(16)+A3_F*delta2(15)+
A4_F*delta2(14)+A5_F*delta2(13)+A6_F*delta2(12)+A7_F*delta2(11)+A8_F*delta2(l
0)+A9_F*delta2(9)+A10_F*delta2(8)+A11_F*delta2(7)+A12_F*delta2(6)+A13_F*delta
2(5)+Al4_F*dela2(4)+Al5_F*delta2(3)+A16_F*delta2(2)+A17_F*delta2(1)+B1_F*h(
17)+B2_F*h(16)+B3_F*h(15)+B4_F*h(14)+B5_F*h(13)+B6_F*h(12)+B7_F*h(11)+B8
_F*h(10)+B9_F*h(9)+B10_F*h(8)+B11_F*h(7)+B12_F*h(6)+B13_F*h(5)+B14_F*h(4)
+B15_F*h(3)+B16_F*h(2)+B17_F*h(1):
h(19)=A0_F*delta2(19)+A1_F*delta2(18)+A2_F*delta2(17)+A3_F*delta2(16)+
A4_F*delta2(15)+A5_F*delta2(14)+A6_F*delta2(13)+A7_F*delta2(12)+A8_F*delta2(1
1)+A9_F*delta2(101+A10_F*delta2(9)+A11_F*delta2(8)+A12_F*delta2(7)+A13_F*delt
a2(6)+Al4_F*delta2(5)+A15_F*delta2(4)+A16_F*delta2(3)+A17_F*delta2(2)+A18_F*
delta2(1)+B1_F*h(18)+B2_F*h(17)+B3_F*h(16)+B4_F*h(15)+B5_F*h(14)+B6_F*h(13
)+B7_F*h(12)+B8_F*h(11)+B9_F*h(10)+B10_F*h(9)+B11_F*h(8)+BI12_F*h(7)+B13_
F*h(6)+B14_F*h(5)+B15_F*h(4)+B16_F*h(3)+B17_F*h(2)+B18_F*h(1):
h(20)=A0_F*delta2(20)+A1_F*delta2(19)+A2_F*delta2(18)+A3_F*delta2(17)+
Ad4_F*delta2(16)+A5_F*delta2(15)+A6_F*delta2(14)+A7_F*delta2(13)+A8_F*delta2(1
2)+A9_F*delta2(11)+A10_F*delta2(10)+A11_F*delta2(9)+A12_F*delta2(8)+A13_F*de
Ita2(7)+A14_F*delta2(6)+A15_F*delta2(5)+A16_F*delta2(4)+A17_F*delta2(3)+A18_F
*delta2(2)+A19_F*delta2(1)+B1_F*h(19)+B2_F*h(18)+B3_F*h(17)+B4_F*h(16)+B5_
F*h(15)+B6_F*h(14)+B7_F*h(13)+B8_F*h(12)+B9_F*h(11)+B10_F*h(10)+B11_F*h(
9)+B12_F*h(8)+B13_F*h(7)+B14_F*h(6)+B15_F*h(5)+B16_F*h(4)+B17_F*h(3)+B18
_F*h(2)+B19_F*h(1):

for i=21:(len_x)
h(i)=A0_F*delta2(i)+A1_F*delta2(i-1)+A2_F*delta2(i-2)+A3_F*delta2(i-
3)+A4_F*delta2(i-4)+A5_F*delta2(i-5)+A6_F*delta2(i-6)+A7_F*delta2(i-
7)+A8_F*delta2(i-8)+A9_F*delta2(i-9)+A10_F*delta2(i-10)+A11_F*delta2(i-
11)+A12_F*delta2(i-12)+A13_F*delta2(i-13)+A14_F*delta2(i-14)+A15_F*delta2(i-
15)+A16_F*delta2(i-16)+A17_F*delta2(i-17)+A18_F*delta2(i-18)+A19_F*delta2(i-
19)+A20_F*delta2(i-20)+B1_F*h(i-1)+B2_F*h(i-2)+B3_F*h(i-3)+B4_F*h(i-
4)+BS_F*h(i-5)+B6_F*h(i-6)+B7_F*h(i-7)+B8_F*h(i-8)+B9_F*h(i-9)+B10_F*h(i-
10)+B11_F*h(i-11)+B12_F*h(i-12)+B13_F*h(i-13)+B14_F*h(i-14)+B15_F*h(i-
15)+B16_F*h(i-16)+B17_F*h(i-17)+B18_F*h(i-18)+B19_F*h(i-19)+B20_F*h(i-20):
end

400



% Plot results

H=ffi(h.len_x):

step=cumtrapz(h):

%

%

hold off
plot(t_axis.abs(X(1:(len_x/2))/(X(1))).'b)
hold on
plot(f_axis.abs(Y(1:(len_x/2))/(Y(1))).r)
plot(f_axis.abs(H(1:(ls 2)))'m")
legend('X - fft of input'.'Y - fft of output'.'frequency response’)
title('Chebychev Filter')

pause

hold off

plot(h)

legend('impulse response’)
title('Chebychev Filter')
pause

hold off

plot(step)

legend('step response’)
title('Chebychev Filter')

abs_Y=abs(Y):
break

eval(['save ' strcat('cheb_h_PR'.num2str(PR),’_NP".num2str(NP).".dat") ' h -ascii'])
eval(['save ' strcat('cheb_step_PR'.num2str(PR dat') ' step -ascii'])
eval(['save ' strcat('cheb_| freq_PR' num2str(PR).'_NP'.num2str(NP).".dat’) ' abs_H -ascii'])
eval(['save ' strcat('cheb_input_PR'. num,str(PR) '_NP'.num2str(NP)."dat’) \c-ascu])
eval(['save ' streat('cheb_output_PR’.num2str(PR)."_NP'.num2str(NP).".dat") ' y -ascii'])
eval(['save ' streat('cheb_input_fft_PR'.num2str(PR)."_NP'.num2str(NP)."dat’) ' abs_X -
ascii'])

401



eval(['save ' strcat('cheb_output_fft_PR'.num2str(PR),’_NP'.num2str(NP)."dat’) ' abs_Y -
ascii'])



%

% Program: sub_cheb_v2.m

%

% Coded by: F. Winsor

%

% Based on Algorithms provided in:

%

% "The Scientist and Engineer's Guide to

% Digital Signal Processing - Second Edition".

% Steven W. Smith. California Technical Publishing.
% 1997-1999.

% Subroutine called by Cheb_v3.m

%

%

global FC LH PR NP k
global A0 Al A2 BI B2

% Calculate the pole location on the unit circle.

RP=-cos(pi/(NP*2)+(k-1)*pi/NP):
IP=sin(pi/(NP*2)+(k-1)*pi/NP):
%

% Warp froma circle to an ellipse.
%

it PR~=0
ES=sqrt((100/(100-PR))"2-1):
VX=(1/NP)*log((I/ES)+sqrt((1/ES"2)+1)):
KX=(1/NP)*log((1/ES)+sqrt((1/ES"2)-1)):
KX=(exp(KX)+exp(-KX))/2:
RP=RP*((exp(VX)-exp(-VX))2)/KX:
[P=IP*((exp(VX)+exp(-VX))2)/KX:

end

%

% s domain to z domain conversion.



T=2*tan(1/2);
W=2#pi*FC:

*RPATHMATA2;
~/D:

EMATA2)/D:
44*RPFT-M*TA2)D:

% Iptp Ip. or Ip to hp transform.

if LH==
K=-cos(W/2+1/2)/cos(W/2-1/2):
elseif LH==(
K=sin(1/2-W/2)/sin(1/2+W/2):
end

D=1+Y1*K-Y2*K"2:
A0=(X0-X1*K+X2*K"2)/D:

Al=(-2*X0*K+X1+X1*K"2-2*X2*K)/D:
A 0*K2-X1*K+X2)/D:

B *K+Y1+Y1*K"2-2*Y2*K)/D:

B.

K*2)-Y1*K+Y2)/D:
1

Al=-Al:
Bl=-Bl:
end
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%  Program:  Band_reject_recur_v2.m

% Coded by: F. Winsor

%

%  Based on Algorithms provided in:

%

% "The Scientist and Engineer's Guide to

% Digital Signal Processing - Second Edition".
% Steven W. Smith, California Technical Publishing.
% 1997-1999.

% Input signal to be filtered

[filename.pathname] = uigetfile("*.dat'Input Signal'.50.50):
filename=lower(filename):

eval(['load ".[pathname.filename].":"])

f=findstr(filename.

% Input sample rate to calculate frequency
% and time scales for plotting.

fs=input('Input Sample rate (default = 27.2168)'):
if isempty(fs)
fs=27.2168:
end
%

405

% Generates a band reject filter using a recursive algorithm.



$%(0:511)/1024;
0:(1/£s):(1023*(1/6s)));

X=fft(x.length(x));
plot(f_axis.abs(X(1:(length(x)/2))))
legend('input signal fft')

pause

hold off

[nput cutoff frequency and transition bandwidth.

*K*cos(2*pi*F):

.R"l:os('_"‘pi‘F):
~.

Apply recursion.

%
%
len_x=length(x):

y=zeros(len_x.1):

Y(1)=A0*x(1):
Y(2)=A0*X2)+AL*x(1)+BI*y(1)



for i=3:(len_x)
Y(=AO*X()+AT*x(i-1)+A2*x(i-2)+B1*y(i-1)+B2*y(i-2):
end

% Plot results

plot(t_axis.x)

hold on

plot(t_axis.y.'r')

legend(‘input signal''output signal’)

title('Band Reject - Recursive')

pause

hold off
ffr(x):

Y=ty

plot(f_axis.abs(X(1:512))/X(1))

hold on

plot(f_axis.abs(Y(1:512))/Y(1).r')

legend(‘input signal Tt (scaled for plot)'output signal fft (scaled for plot)’)
title('Band Reject - Recursive’)

pause

hold off

%

%

% Repeat procedure using a delta function to
% obtain the impulse response.

%

%

delta=zeros(len_x.1):

Yedelta(1)=1.0:

delta(len_x/2)=1.0:

%

len_x=length(x):

imp=zeros(len_x.1):

imp(1)=A0*delta(1):
imp(2)=A0*delta(2)+A 1 *delta(1)+B1*imp(1):
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(len_x)
imp(i)=A0*delta(i)+A1*delta(i-1)+A2*delta(i-2)+B1*imp(i-1)+B2*imp(i-2);
nd

%

% Determine step response

%

step=cumtrapz(imp):
plot(step)

legend('step response’)
title('Band Reject - Recursive’)
pause

%

%

FR=ffi(imp.len_x):
%

plot(f_axis.abs(X(1:512))/X(1))

hold on

plot(f_axis.abs(Y(1:512))/Y(1).'r')

ployt_axis.abs(FR(1:512)).'m")

legend(‘input signal fft (scaled for plot)'.'output signal fft (scaled for plot)'.'frequency
response’)

title('Band Reject - Recursive')

pause

hold oft’

%

break

abs_FR=abs(FR):
abs_X=abs(X):
abs_Y=abs(Y):

F_I=F*10000:

BW_[=BW*10000:

eval(['save " streat('br_rec_h_F.int2str(F_[).'_BW'.int2str(BW _I).".
eval(['save ' streat( br rec_step_F'.int2str(F_[)." BW'.int2str(BW _|
eval(['save " strcat('br_rec_freq_F'.int2str(F_[)._BW'.int2str(BW_|
ascii'])

eval(['save " strcat('br_rec_input_F'.int2str(F_I).’_BW".int2str(BW_I).".dat") ' x -ascii'])
eval(['save ' strcat('br_rec_output_F".int2str(F_| W.in2str(BW_I).'dat') " y -ascii'])
eval(['save " streat('br_rec_input_fft_F'.int2str(F_| l). BW'.int2str(BW_I)." dzu) abs_X -
ascii'])

at’) " imp -ascii'])
at') ' step -ascii'])
.dat’) " abs_FR -




eval(['save ' streat('br_rec_output_fft_F'.int2str(F_I).'_BW'int2str((BW _I)."dat’) ' abs_Y -
ascii’])



%

% Program: Band_reject_win_sinc_v2.m
%

% Coded by: F. Winsor

%

% Based on Algorithms provided in:

%

% "The Scientist and Engineer's Guide to

% Digital Signal Processing - Second Edition".

% Steven W. Smith, California Technical Publishing,
% 1997-1999.

% Generates a band reject filter using the algoritm
% for the windowed sinc filter. using spectral inversion.

% [nput signal to be filtered

[filename.pathname| = uigetfile("*.dat'.'[nput Signal'.50.50):
filename=lower(filename):

eval(['load '.[pathname.filename].;])

findstr(filename."."):

x=eval(filename(1:£(1)-1)):

%

%

%

% Input sample rate to calculate frequency
% and time scales for plotting.

%

nput('Input Sample rate (default = 27.2168)');
if isempty(fs)
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%

%

f_axis=fs*(0:511)/1024:
t_axis=(0:(1/fs):(1023*(1/fs))):
%

%

X=ftt(x.length(x)):
plot(f_axis.abs(X(1:(length(x)/2))))
legend('input signal fft')

pause

hold off

%

Input filter length

input('Filter length - must be EVEN (default=10) :"):
mpty(M)
M=10.0:
end
%
%

% Input low cutoff frequency (recall Nyquist=0.5)

FCL=input('Low Frequency Cutoff - between 0.0 and 0.5 (default 0.5) '):
if isempty(FCL)

FCL=0.5:
end
%
% Calculate 'low frequency' filter kernel

e

for i=1:((M/2))

hl(i)=((sin(2*pi*FCL*(i-((M/2)+ )))/(i-((M/2)+1)))*(0.42 - 0.5*cos(2*pi*i/(M+1)) +
0.08*cos(4*pi*i/(M+1))):
end

hl((M/2)+1)=2*pi*FCL:

for i=((M/2)+2):M+1

hl(i)=((sin(2*pi*FCL*(i-((M/2)+1)))/(i-((M/2)+1)))*(0.42 - 0.5*cos(2*pi*i/(M+1)) +
0.08*cos(4*pi*i/(M+1))):
end



%
% Input low cutoff frequency (recall Nyquist=0.5)
%
%
FCH=input('High Frequency Cutoff - between 0.0 and 0.5 (default 0.5) -'):
if isempty(FCH)
FCH=0.5:
end
%
% Calculate 'high frequency’ filter kernel
%

for i=1:(M/2))

hh(i)=((sin(2*pi* FCH*(i-((M/2)+ D))/(i-((M/2)+1)))*(0.42 - 0.5*cos(2*pi*i/(M+1)) +
0.08*cos(4*pi*i/(M+1))):
end

hh((M/2)+1)=2*pi*FCH:

for i=((M/2)+2):M+1
hh(i)=((sin(2*pi* FCH*(i-(M/2)+ )V(-((M/2)+1)))*(0.42 - 0.5*cos(2*pi*i/(M+1)) +
0.08*cos(4*pi*i/(M+1))):
end
%
% Normalize ‘high frequency’ filter kernel
%
hh_n=hh/sum(hh):
%

%

% Use spectral inversion to obtain actual high freq filter kernel
%

%

hh_n_si=hh_n*-1.0:
hh_n_si(M/2+1)=hh_n_si(M/2+1)+1.0:

%

% Add filter kernels to get band reject kernel
%

h_n_br=hl_n+hh_n_si:

%

%



% Convolution to produce filtered output
%

y=conv(h_n_br.x);

%
%
t_axis2=(0:(1/fs):((length(y)-1)*(1/£s)));
%

plot(t_axis.x)

hold on

plot(t_axis2.y.r) .

legend('x - input signal'.'y - output signal')

title('Band Reject - Windowed Sinc using Spectral Inversion')
hold off

pause

%

% Determine step response

n_br=cumtrapz(h_n_br):

plot(s_h_n_br)

legend('step response’)

title('Band Reject - Windowed Sinc using Spectral Inversion')

%

H_n_br=ffi(h_n_br.length(x)):

Y=ft(y.length(x)):

plot(f_axis.abs(H_n_br(1:(length(x)/2))))

hold on

plot(f_axis.abs(X(1:(length(x)/2))/X(1)).")
plot(f_axis.abs(Y(1:(length(x)/2))/Y(1)).'m")
legend('frequency response'.'input signal fft (scaled for plot)'.output signal fft (scaled for
plot))

title('Band Reject - Windowed Sinc using Spectral Inversion’)
pause

hold off

%

%

%

abs_H_n_br=abs(H_n_br):
abs_X=abs(X):
abs_Y=abs(Y):
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FCH_I=FCH*10000;
break

eval(['save " strcat(’brw_h_M'int2str(M).’_L".int2str(FCL_I)."_H'.in2str(FCH_I).".dat’) '
h_n_br -ascii'])

eval(['save " streat(brw_step_M"int2str(M)."_L'int2st(FCL_l).'_H'.int2str(FCH_I).".dat’)
's_h_n_br -ascii'])

eval(['save " streat(’brw_freq_M.int2str(M).’_L".in2str(FCL_I).’_H'int2st(FCH_I)." dat’)
"abs_H_n_br -ascii'])

eval(['save’

streat(’brw_input_M".int2str(M)."_L"int2str(FCL _[)."_H".int2str(FCH_I)."dat’) " x -ascii'])
eval(['save
streat('brw_output_M.int2str(M).'_L".int2str(FCL_I)."_H".int2str(FCH_I)."dat’) 'y -
ascii'])

eval(['save’
streat('brw_input_fft_M'.int2str(M).'_L".int2ste(FCL_I)."_H".int2str(FCH_).".dat’) ' abs_X
-ascii'])

eval(['save "
streat('brw_output_fft_M".in2str(M).'_L".int2str(FCL_I)."_H'.int2ste(FCH_I).".dat’)'
abs_Y -ascii'])
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