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Abstract

Cure rate estimation is one of the most important issues in clinical trials and
cure rate models are the main models. In the past decade, the standard cure
rate model has been discussed and used. However, this model involves several
drawbacks. Chen, Ibrahim and Sinha (1999) considered Bayesian methods for
right-censored survival data for populations with a surviving (cure) fraction.
In that paper, the authors proposed the cure rate model under the Weibull
distribution which is quite different from the standard cure rate model. This
proposed cure rate model overcomes the drawbacks of the standard cure rate
model. However, it is not clear from their work whether their proposed cure
rate models can be extended to other distributions. In this practicum, we shall
extend those proposed cure rate models in Chen et al (1999) to the following
distributions: log-logistic, Gompertz, and Gamma. Prior elicitations will also
be discussed in detail, and classes of noninformative and informative prior
distributions will be proposed. Furthermore, several theoretical properties of
the proposed priors and resulting posteriors will be derived.

At the end of this practicum, a melanoma clinical trial is used to illustrate



applications of the log-logistic, Gompertz and Gamma distributions to the

proposed cure rate models for Bayesian analysis.

KEY WORDS: Cure rate model; Historical data; Current data; Posterior
distribution; Gamma distribution; Log-logistic distribution; Gompertz distri-

bution.



Acknowledgments

T am sincerely grateful to my supervisor, Dr. Yingwei Peng, for leading me to
this research field, and for his many helpful and thoughtful comments, discus-

sions and 1 hout the ion of this i This work

would not have been completed without his guidance, advice, encouragement,
understanding and support, morale-boosting conversation and arranging of
adequate financial support during my programme. He has been generous with
his ideas and time.

T am grateful to the School of Graduate Studies for financial support in the
form of Graduate Fellowships. I would like to acknowledge the Department of
Mathematics and Statistics for financial support in the form of Teaching Assis-
tantships and for providing the opportunity to enhance my teaching experience
during my study.

T would like to thank Dr. H. Gaskill, the department head, and Dr. C.
Lee, the deputy department head for providing me with a very friendly atmo-
sphere and the facilities to complete my programme. Their solid support and

constructive advice helped me to successfully navigate the shoals of graduate

iii



school.

My gratitude will also go to Drs. V. Gadag, A. Oyet, G. Sneddon, B.
Sutradhar and H. Wang for their help, friendly attitude, financial support,
encouragement and their concerns about my work and well-being in these
years.

T would also like to thank our supporting staff in the department for their
help during my programme.

Finally, I want to express my sincere appreciation to my husband, Chun-

ming, for his continued support encouragement, care, understanding and love.



Contents

-

4

Abstract

Acknowledgement

Introduction
1.1 Motivation of the Problem . . . . ... .............

12 MelanomaData . . ........................

The Cure Model and its Likelihood Function
21 “The'CUMOdEl v . 5 & v s v 5 % nEeE E B 8 S S
2.2 The Likelihood Function . . . .. ................

The Noninformative Prior Distribution
3.1 LoglogisticDistribution . . ...:...c.0cuiciecuun

3.2 Gompertz Distribution

B3 /Gommg DIStribution: v o visiwie o 0 5 s rwrgin s 08 8w

Informative Prior Distribution



o

6

4.1 Log-logistic Distribution . . . .................. 39

42 Gomperta Distribubion: « 1 4.5 Sosiews b buditussn 25 5 i, 44
43 Gamma. Distrlbution . . « sccvnms b o spmes a3 80 BEe 51
Data Analysis 55
5.1 MLE’s of the Model Parameters for the E1684 Data . . . . . . 56

5.2 The Posterior Estimates of the Model Parameters with Nonin-

formative PrOrS.. .« + » » ¢ nscnmn v v mmms g b8 %o e ol 59

5.3 The Posterior Esti of the Model F with Infor-

mative Priors . 63

54 Detailed Sensitivity Analysis by Varying the Hyperparameters 71

Conclusion and Discussion 7



List of Tables

=

12

5.2
5.3
5.4
55

Summary of E1684 Data . . . . . .............. ..

Summary of E1673 Data . . . . .. ..ot

MLE’s of the Model Parameters with Weibull Distribution . .
MLE’s of the Model Parameters with log-logistic Distribution

MLE’s of the Model Parameters with Gompertz Distribution .
MLE’s of the Model Parameters with Gamma Distribution . .
The Posterior Estimates of the Model Parameters with Weibull
Distribution Using Noninformative Priors, @ ~ I'(1,0.01) and
A N(0,10000) . o o oo
The Posterior Estimates of the Model Parameters with log-
logistic Distribution Using Noninformative Priors, a ~ T(1,0.01)
B0, ABENDI0000), oo 1 0 » & missiasis 2 8 % 8 5 e e e
The Posterior Estimates of the Model Parameters with Gom-
pertz Distribution Using Noninformative Priors, e ~ T'(1,0.01)

BBA Koro (O I0000) s 5 5 % 5 somvect o % 4 & @ wm a5 2

57
58
58
59

61

61



5.8 The Posterior Estimate of the Model Parameters with Gamma
Distribution Using Noninformative Priors, a ~ I'(1,0.01) and
A~ N(0,10000) . .
5.9 The Posterior Estimates of the Model Parameters with Weibull

Distribution Using Informative Priors, a ~ I'(1,0.01) and A ~
NOO000)] 23550 1 3 6 200 3 ) 8 s B 5 G158
5.10 The Posterior Esti of the Model P with log-

logistic Distribution Using Informative Priors, a ~ I'(1,0.01)
and A ~ N(0,10000)
5.11 The Posterior Esti of the Model P: with Gom-

pertz Distribution Using Informative Priors, a ~ I'(1,0.01) and
ATNAOO000 1o »1 2. srsimninia) sashnle: i 4s) 4 dhe s et
5.12 The Posterior Estimates of the Model Parameters with Gamma
Distribution Using Informative Priors, a ~ I'(1,0.01) and A ~
N(OTO0000) &3 55,4 & % srae et & 6 HBARTTE 308 Hise
5.13 The Posterior Estimates of the Model Parameters with Weibull

Distribution, @0 =029 . . .. ..................

5.14 The Posterior Esti of the Model P: with log-
logistic Distribution, g =029 . . . .. .............
5.15 The Posterior Esti of the Model F with Gom-

pertz Distribution, o =0.29 . . . .. ..............
5.16 The Posterior Estimates of the Model Parameters with Gamma

Distribution, @9 =029 . ... ... ... o

62

67

68

70

73

4

75



List of Figures

1.1 Kaplan-Meier Plot for E1684 Data . . ... ..........



Chapter 1

Introduction

1.1 Motivation of the Problem

Cure rate models, which are survival models incorporating a cure fraction,
have been researched and practised for nearly 50 years. The most popular type
of cure rate models introduced by Berkson and Gage (1952), is the mixture
model, which is also called the standard cure rate model. Let Si(t) be the
survivor function for the entire population, S*(£) be the survivor function for
the non-cured group in the population, and 7 be the cure rate fraction. Then

the standard cure rate model is given by

Si(t) =+ (1 - m)S* (). (11)

E ial and Weibull distributions are ly used for S*(t). This

model has been extensively discussed in the statistical literature by many au-

1



thors, such as Farewell (1982, 1986), Ghitany and Zhou (1995), Kuk and Chen
(1992), Peng and Dear (2000), Taylor (1995), and Yamaguchi (1992). Even
though this model is widely used, it still has several drawbacks. Firstly, S (t)
cannot have a proportional hazard structure, which is a desirable property for
survival models. Secondly, when including covariates through the parameter 7
via a standard binomial regression model, the standard cure rate model yields
improper posterior distributions for many types of noninformative improper
priors, including the uniform prior for the regression coefficients. This is a cru-
cial drawback of the standard cure rate model because it implies that Bayesian
inference with a standard cure rate model essentially requires a proper prior.

In 1999, Chen, Ibrahim and Sinha introduced a new model to overcome the
above mentioned drawbacks inherited in the standard cure rate model. Specif-
ically, any standard cure rate model can be written as its proposed model and
vice versa. This implies that the resulting model has a mathematical rela-
tionship with the standard cure rate model. An especially solid feature of
their model is that it yields a proper posterior distribution under a nonin-
formative improper prior for the regression coefficient, including an improper
uniform prior. However, under the noninformative priors, the standard cure
rate model in (1.1) always leads to an improper posterior distribution. This
result is stated in Theorem 1.1. This proposed model also leads to a straightfor-
ward informative prior scheme based on historical data, and the model based
on historical data yields a proper prior. But, this type of prior construction

based on the standard cure rate model (1.1) always leads to an improper prior



as well as an improper posterior distribution. This result is summarized in
Theorem 1.2. For completeness, we quote these theorems here. For detailed

proofs of these theorems, interested readers are referred to Chen et al (1999).

Theorem 1.1. We consider a joint noninformative prior for 7(8,7")  #(7*),
where 7* = (e, A) are the parameters in f(y|y") which is the density function
of the random variable Z; which is defined the random time for the ith clono-
genic cell to produce a detectable cancer mass. Detailed explanation can be
obtained in Chapter 3. In Theorem 1.2, we use the same definitions. For the
standard cure rate model given in (1.1), suppose that we relate the cure rate

fraction 7 to the covariates via a standard binomial regression.
i =G(zf),

where G(-) is a continuous cdf, z; and 3 denote a k x 1 vector of covariates and

k x 1 vector of i i ively. The detailed

can be obtained in Chapter 3. Assume that the survival function S*(-) for the
noncured group depends on the parameter 7*. Let Ly(3,7" | Doss) denote the
resulting likelihood function based on the observed data. Then, if we take an

improper uniform prior for § (i.e., 7(8) x 1), the posterior distribution
(8,7 | Do)  L1(8,7" | Do) (7") (12)

is always improper regardless of the propriety of (7).



Theorem 1.2. For the standard cure rate model given in (1.1), suppose that
we relate the cure rate fraction 7 to the covariates via a standard binomial
regression

= G(xf),

where G(-) is a continuous cdf. sume that the survival function for the
noncured group S*(-) depends on the parameter v*. Let L1(53,7" | Do,os) and
Ly(B,7" | Dops) denote the likelihood functions based on the observed historical
and current data, ag denote the dispersion parameter for the historical data
which is between 0 and 1. Do, and De, denote the observed historical
and current data. Then, if we take an improper uniform initial prior for §

(i.e., 7(8) 1), the posterior distribution is
71(8,7",0 | Doss)  [L1(B,7" | Dous)|*mo(v")a ™" (1 — ag)*e,

where & and )\ are specified hyperparameters. Then, m(8,7",a0 | Doss) is
always improper regardless of the propriety of #(7"). In addition, if we use
71(B.7", a0 | Dobs) as a prior, the resulting posterior, given by

P1(B, 7", 0 | Dobs Dots) % L1(B8,7" | Dosa)m1(B,7" 1 @0 | Do,obs)

is also improper.

Chen et al (1999) carried out Bayesian analysis for the proposed model un-

der the Weibull distribution. However, it is not clear from their work whether



their results can be extended to other distributions. In this practicum, we
extend their model to the log-logistic, Gompertz and Gamma distributions.

In Chapter 2, we provide the model including its several attractive prop-
erties and its likelihood function with covariates.

In Chapter 3, when the log-logistic, Gompertz, and Gamma distributions
are used in the model, we propose novel classes of noninformative prior distri-
butions and derive some of the theoretical properties. We also derive several
properties of the resulting posterior distributions with detailed proofs.

In Chapter 4, we propose novel classes of informative priors that are based
on historical data. We find that the proposed model leads to an informative
prior elicitation scheme based on historical data. This procedure yields a
proper prior for each distribution. These proper priors are not available using
the formulation in the standard cure rate model. We derive some of the new
model’s theoretical properties and provide detailed proofs.

In Chapter 5, we demonstrate the proposed priors with a real data from
a phase Il melanoma clinical trial conducted by the Eastern Cooperative
Oncology Group (ECOG). The dataset is discussed in section 1.2.

In Chapter 6, we conclude this practicum and discuss possible future re-

search in this area.



1.2 Melanoma Data

The Melanoma data are used in this practicum to illustrate Bayesian treatment
of the proposed model and examine several topics, including noninformative
and informative priors with covariates included.

Melanoma. incidence is increasing at a rate that exceeds all solid tumors.
Although education efforts have resulted in earlier detection of melanoma, pa-

tients who have deep primary (>4mm) or mel metastatic to

regional draining lymph nodes classified as high-risk melanoma patients, con-
tinue to have high relapse and mortality rates of 60% to 75% (Kirkwood et
al., 2000). No adjuvant therapy has previously shown a significant impact on
relapse-free and overall survival of melanoma. Several post-operative (adju-
vant) chemotherapies which are interferon (IFN) alpha of leukocyte origin and
recombinant IFN alfa-2 (IFN a-2a, Rocheo, Nutley, NJ; IFN a-2b, Schering-
Plough, Kenilworth, NJ; and IFN a-2c, Bochringer, Indianapolis, IN) have
been proposed for this class of melanoma patients, and the one which seems to
provide the most significant impact on relapse-free survival is IFN a-2b. This
chemotherapy was used in two recent ECOG phase III clinical trials, E1684
and E1673. The first trial, E1684, was a two-arm clinical trial comparing high-
dose IFN to observation. There were a total of 79=286 patients enrolled in this
study which covered the period from 1984 to 1990. The study was unblinded
in 1993. The results of this study suggested that IFN has a significant impact

on relapse-free survival and survival. These results led to U.S. Food and Drug



Administration (FDA) approval of this regimen as an adjuvant therapy for
high-risk melanoma patients. These results (E1684) have been published in
Kirkwood et al (1996).

Figure 1.1 displays a Kaplan-Meier plot for overall survival. We see that
the right tail of the survival curve appears to ‘plateau’ after sufficient follow-
up. Such a phenomenon has become quite common in melanoma as well as

other cancers.

S Functon Estmate
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Figure 1.1: Kaplan-Meier Plot for E1684 Data



Table 1.1: Summary of E1684 Data

Survival time (year) | Median 2,91

sD 2.83

Status (frequency) | Censored 110

Death 174
Age (year) Mean  47.03

SD 13.00

Gender (frequency) | Male 171

Female 113

PS (frequency) | Fully active 253
Other 31

Table 1.1 provides a summary of the E1684 data. For the survival time
summary in Table 1.1, the Kaplan-Meier estimate of the median survival and

its standard deviation (SD) are given. PS means performance status.



The second trial, denoted by E1673, served as the historical data for our
Bayesian analysis of E1684. Table 1.2 summarizes the historical data of E1673,
with a total of ng=650 patients. Three covariates which are age, gender and
performance status are considered. Chen et al (1999) compared inferences
between the standard cure rate model to their proposed model using a Weibull
distribution, and gave a complete Bayesian analysis of the treatment of the

cure rate model and examined several topics including noninformative prior

licitation and infc ive prior elicitation under the Weibull distribution. In

this practicum, we extend their results to some other distributions, such as the
log-logistic, Gompertz and Gamma distributions. PS still means performance

status.



Table 1.2: Summary of E1673 Data

Survival time (year) | Median 5.7
SD 8.20

Status (frequency) Censored 257
Death 393
Age (year) Mean  48.02
SD 13.99

Gender (frequency) Male 375
Female 275

PS (frequency) Fully active 561
Other 89




Chapter 2

The Cure Model and its

Likelihood Function

2.1 The Cure Model

The cure rate model is defined in this section. For an individual in a popu-
lation, let N denote the number of carcinogenic cells (often called clonogens)
left active for that individual after the initial treatment. Assume that N has
a Poisson distribution with mean 6, i.e.
e0gn
n!

P(N=n)= n=0,1,..

Let Zi, (i = 1,2,.....N) denote the random time for the i-th clonogenic cell
to produce a detectable cancer mass, where Z; are i.i.d with a common dis-
tribution function F(f) = 1 — §(t). Also assume that Zi(i = 1,2,....) are

1
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independent of N. The time to relapse of the cancer can be defined by the
random variable
Y = min(Z,0 <i < N),
where P(Zy = co) = 1. Hence, the survival function for the population is
given by
Sp(y) = P(no cancer by time y)
= P(N=0)+P(Z1>y,...,Zy >y, N 2 1)
5 ok
= exp(=0) + 3 5(u)* 5 exp(-6)
k=1 b

= exp(—0+05(y))

= exp(-0F(y)). (21)
Since S,(00) = exp(=6) > 0, (2.1) is not a proper survival function. We also
know from (2.1) that the cure fraction is given by

Sy(00) = P(N = 0) = exp(—0).
As 6 — oo, the cure fraction tends to 0, whereas as § — 0, the cure fraction
tends to 1. The density function corresponding to (2.1) is given by
d
fly) = dmyFy(y)
d
= ;y[l -5
= 0f(y)exp(-0F(y)).

The hazard function is given by

hpy) = 50



0 (y) exp(—0F (y))
exp(~6F(y))
= 0f(v)-

Since S, (y) is not a proper survival function, f,(y) is not a proper probability
density function and h,(y) is not a hazard function corresponding to a prob-
ability distribution. However, f(y) is a proper probability density function
and hy(y) is multiplicative in 6 and f(y). Thus, it has the proportional haz-
ard structure with the covariates modelled through 6. This structure is more
appealing than the one from the standard cure rate model in (1.1) and is com-
putationally attractive. The survival function for the noncured population is
given by

S'y) = P(Y>y|N=1)
P(N>LY >y)

P(N>1)
exp(—0F (y)) — exp(—6)
To ol ! (22)

We note that S*(0) = 1 and S*(co) = 0. So, we can say S*(y) is a proper sur-
vival function. The probability density function for the noncured population
is
. d g
) = *@5 ()
exp(=0F(y))

= moﬂy),

and the hazard function for the noncured population is given by

'@

h(y) = ]



exp(-0F(y))

— =0 f(y

SHIFG) —ex(0) )
1

PY<oo|Y >y) oly)-

The above hazard function depends on y. We can say that h*(y) does not have

a proportional hazard structure. The model can be written as

Sp(y) = exp(-0F(y))

= exp(=6) +[L - exp(=0)]S"(v),

where S*(y) is given by (2.2). Thus, S,(y) is a standard cure rate model with
cure rate m = exp(—f) and survival function for the non-cured population
given by §%(y). This shows a mathematical relationship between the model in
(L.1) and (2.1).

In this model (2.1), we let the covariates depend on ¢ through the rela-
tionship 6 = exp(z’§), where z is a p x 1 vector of covariates and Fis a p x 1

vector of regression coefficients which are the same as in (2.1).

2.2 The Likelihood Function

Following Chen, Ibrahim and Sinha (1999), we construct the likelihood func-

tion as follows. Suppose we have n subjects, and we use the following notations:

#; : the failure time for the i-th subject, i = 1,2, ..

¢; : censoring time for the i-th subject, i = 1,2,




1, failure time

G=Iti<c)= =12,
0, right censoring

Y= (Y1,U2, - Un) ¢ the observed time, where y; = min(t;, &), i = 1,2, ..., n.

6= (81,02, .. ) : censoring indicator.

Dy = (n,,6) : the observed data.

D = (n,y,6,N) : the total data, where IV is an unobserved vector of a latent
variable.

N;: the number of carcinogenic cells for the i-th subject, following a Poisson
distribution with mean 0, i = 1,2, .....,n. That is,

e~0gF
k!

P(Ni=k) =

In our model formation, the Ny’s are not observed and can be viewed as latent
variables. Further, suppose that Zi, Zis, ..., Ziy, are the i.i.d. incubation
times for the N; carcinogenic cells for the i-th subject following a cdf F(-),

,n. In this practicum we specify a parametric form for F(-), such

as log-logistic, Gompertz or Gamma distribution. We denote the indexing
parameter by 7, and thus write F(-|y) and S(-|7). We incorporate covariates
for the cure rate model through the cure rate parameter 0. When covariates
are included, we have a different cure rate parameter, 6, for each subject,
i=1,..,n. Let 2} = (za,...,7a) denote the k x 1 vector of covariates
for the ith subject, and let 3 = (B, ..., B) denote the corresponding vector
of regression coefficients. We relate 6 to the covariates by 6; = exp(z3).

Therefore, the complete-data likelihood function of the parameters (v, 3) can



be written as

LB1D) = f(D]78)
f(n,9,6,N | v,8)
T #0060 e 1 .8)
1|

I

= I_"]]/(ui,a, 17, N)P(N; | 5)

- {‘H‘ B 17 NS, h,zv.-)'-*} : {ﬁ ‘:,—""}

i=1 ”

where

Sl nN) = P(Y>y|N)

PrlZi> Y0, Zia > Yoy ooy Ziw, > i | 7, V)
= BZa>u|mN) - PZa > u |7, N) - P Zir, > i | 7.N)
Sy | 7 N)™,

and
Bolw v N) = _W

. {I"I‘(N.s(v. 1™ £ (g | 1)) - (SCai | 7),,‘),_“} ) ﬁ %
; i=1 {

n

{H(M S (S m)"-*-} S| C
=1 =1 s
= {fstimes qosw )

X exp {i(N, log(6;) — log(Ni!) — 9‘)} %
i=1



The complete-data likelihood function of (3,7) becomes
wo10) = {fIstin s ool
x exp {S7, N; log(6;) — log(N;!) — né;}
{TL 500105 vt 1 0
i=1
x exp {0 (Niaf —og(Ni)) — exp(ai))},  (2.9)

where 0; = exp(«8). Following results of Chen et al (1999), by summing out
the observed latent vector N, the complete-data likelihood function given in

(2.3) can be reduced to

L(B,7 | Dats) = %)L(/M | D)
n n—0;gNi
= [t 1rescnstn ] - L)

e gl

= ; {ﬁ {S(y« [N (N (g | )% - T]}

- lflfw.v )5 e {Z {f{ Sl [ 7)Mo N m}

=1 ~ Li=i

I
——

“;ﬁ]f(y‘ [)% eS| ‘r>J‘}
X {Z [xl_:[]S(y; | ﬂN"N,&HoN-_)\:;]}

N

[
==

(O:f (wi | 7)™ - exp(=6:(1 = S(y: | 1)))- (2.4)

B

I

1



Chapter 3

The Noninformative Prior

Distribution

In this chapter, we discuss classes of noninformative prior distributions, and
examine some of their properties under log-logistic, Gompertz and Gamma
distributions for F(.).

We suppose a joint noninformative prior for (8, 7) of the form (3, 7) &
7(y), where ¥ = (@, A) are the parameters in f(y|y). This noninformative
prior implies that 8 and v are independent priors and that m(8) o 1 is a
uniform improper prior. Hence, the posterior distribution of (3,7) based on

the observed data Dy, = (n,y,,d) is given by

Y Dobs)

P(B,7 | Dots) = ”('"(Tb)



7(Dobs | 8,7)7(8,7)
7(Dons)
LB, | Deots) - (8, )
7(Dobs)
o< L(B,7 | Doss) - 7(7)- (3.1)

From (2.4),
(8,7 | Dota) ]n_[(ﬂ.f(.v' [9)% - exp(=6:(1 = S(w [ Y)n(7).  (32)
=1

Chen et al (1999) proved that equation (3.2) with f(y|y) following a Weibull
distribution is proper whether 7(7) is proper or not. In this chapter, we
consider three distributions for f(y|y): log-logistic, Gompertz and Gamma
distributions. For each distribution we investigate properties of the posterior

distributions.

3.1 Log-logistic Distribution

When f(y | 7) follows a loglogistic distribution, we have f(y; | 7) = (2

and S(y; | 7) = 1yiys, where @ > 0,A > 0,3 > 0, @ is the shape parameter

and A is the scale parameter.

We assume throughout this subsection that

m(7) = m(a | vo, )7 (N),

where

| o, 70) o @ exp(~ma),
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and v, 7p are two specified hy With these specil i the

posterior distribution of (3,7) based on the observed data D, = (n,y,z,6)
is given by
P(8,7 | Doss) o L(B,7 | Dats) - w(ex | v, 7o) (). (33)

The following theorem gives conditions concerning the propriety of the poste-
rior distribution in (3.3), using the noninformative (3, v) o 7(7).
Theorem 3.1 Let d = Y1, & and X* be an n x k matrix with rows ,z;.
Then the posterior given in (3.3) is proper if the following conditions are sat-
isfied:

(a) X* is of full rank,

(b) 7(X) is proper,

(c) 70> 0and 1> —d.

Even though 7y = (a, )) are the log-logistic parameters in f(y|7), we can ob-
tain similar results as in Chen et al (1999). To be more specific, a proper prior
for  is not required to obtain a proper posterior. This can be observed from
condition (c), because (a | vy, 7) is no longer proper when v < 0. Based on
condition (b), 7(A) is required to be proper. Although several choices can be
made, we prefer to use a normal density for 7(\) in the data analysis, which

will be discussed in Chapter 5.

Proof of Theorem 3.1: We adapt the proof of Chen et al (1999) for this

case. In order to prove Theorem 3.1, we must first show that there exists a



21

constant M > 1, such that
(0:f (wi | 7)™ - exp(~0:(1 — S(u: | 7)) < @ - M. (34)
When & =0,
(6 (i | 1) - exp(=0(1 = S(u: | 7)) = exp(=0:i(1 = S(w | 7)) < 1.
When & =1,
(O (wi | )™ - exp(=0:(1 = S(u: | 7))
=0:f(ui|7) - exp(=0i(1 = S(u: | 7))

= ) (- 1) expl 01 = S )

a
:E(l_s(yx|,1))0'.e_xp(—0,(l—s(m|7)))
1- feavd

=0 g (= 516 - ep(-0.0 - S | M)} (9)
Let
- 1
S Y

g = {(1—5S(w|7)8:-exp(-6:(1 - Sw | M)}
The equation (3.5) becomes
vl g

Since, @ >0, A > 0, y; > 0, we know g; = W < 1and g, < 1. Therefore,

it can be shown that there exists a common constant go > 0, such that

91<g0 and g2 <go. (3.6)



Using (3.6), (3.5) is less than y;"ag2. Thus, taking M* = max.s-1){92vi '}

and M = max{1, M*}, we obtain (3.4), which is
(6 (i | 1)* - exp(=0:(1 = S(yi | 7)) < a*M.

Because X* is of full rank, there must exist k linearly independent row vectors
Ty Ty uvenny Ty, Such that &, = &, = ... = §, = 1. Using (2.4) and (3.4),

[ [ 14071 Daei(a | o mym(Ndgdadx

0 o R
= [ [ o T 1% - exp(-0i1~ S| )
xm(a | v, To)7(N)dBdadA

00 n—k
= L st - om0 - Sl )
i=1

k
) {I—I;(a"f (v | )™ - exp(=6,(1 = S(u, | 'r)))}
x(a | vo, 7o)m(A)dBdad\

Sl
< f fu e
. {ﬁ."’"’ (o 1) - exp(05(1 = ST | 7»)}

xw(a | v, o)w(A)dBdad\

i /R.(°MJ"’*]:]]/(m, )

x exp(a, B — (1= Sy, | 7)) exp(a;,8))
x| vo, To)m(A)dBdad), (3.7)

where R* denotes k-dimensional Euclidean space. We make the transformation



23

wj =z, B for j = 1,2 . This is a one-to-one linear transformation from

B to u= (u,us, ....ur)’. Thus, (3.7) is proportional to
00 00 k
/ﬂ /; /;k a”‘kgf(yi, [7)
x exp(uy — (1= S(ys; | 7)) exp(uz))
(e | v, 70)m(\)dudadA
0 oo .k
2/0 /u' at k’znl
[ 10 [ explus = (1= S0, | ) explus))du
x(a | vo, 7o)m(A)dadA
I e L [ )
_/u'/oudk[n (yzh]
(e | v, 7o)m(M)dadA. (3.8)
In (3.8), using (3.6), we have

Flyy |7 ay;!
B < K
T=8ly, 1) T+af =%

where Ko = gy max(ijer) ('} Thus, (3.8) is less than or equal to
00 foo k-
/0 /ﬂ o g(koa)ﬁ(a | oy To)m(N)derdA

ke /0 - /ﬂ * atr(a | o, 7o) (N)dad)
iy /0 i /ﬂ * a0 exp(~a)w(A)dadA. (3.9)

By noticing that 7(a | v, 7) x a0~ exp(~pa), 7o > 0, v > —d and 7(A) is

proper. Therefore, (3.9) < co. This completes the proof. (=]



3.2 Gompertz Distribution
When f(y|y) follows the Gompertz distribution, we have
— ae ot i
Hla) = aep{fa-en},
Sl = ep{fa-ew},
where @ > 0,A > 0,3 > 0, o is the shape parameter, and A is the scale
parameter. From (3.2), we know the posterior distribution is

i
(8,7 | Doss) o< [T(0:f (wi | 7)) - exp(—0:(1 = S(ui | 1)))m(7),
=i

where 7 = (, A) is the Gompertz parameters in f(y}y). We assume through-
out this subsection that

() = m(a | v, 70)m(A),
and

m(y) = 7(\ | vo, o) (),

where vy, 7 are two specified hyperparameters.

‘When
m(y) = n(a | vo, 70)m(A),
‘where

| v0, 1) o< &~ exp(—To02),
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the posterior distribution of (4, v) based on the observed data Doss = (1, ¥, 2, 6)

is given by

(8,7 | Dovs) o L(B,7 | Dats) - (| vo, To)w(A)- (3.10)

The following theorem gives conditions for the propriety of the posterior dis-
tribution in (3.10). Using the noninformative (3, 7) o 7(7), we get the first
theorem.
Theorem 3.2 Let d = Y/, & and X* be an n x k matrix with rows §;z;.
Then the posterior (3.10) is proper if the following conditions are satisfied:
(8) X* is of full rank,
(b) #()) is proper,
(c) 70> 0and v > —d.

When

w(y) =7\ | vo, To)7(a),
where
#A o0 o €™ eitp {%x [1 _ e»\(md»]nd)]}y

the posterior distribution of (8, 7) based on the observed data Doss = (n, ¥, 7, 6)

is given by
(8,7 | Dobs) o< L(B,7 | Dabs) - (A | vo, 7o)7(ax). (3.11)

Therefore, we obtain the second theorem.
Theorem 3.2° Let d = Y%, 6; and X* be an n x k matrix with rows &;z;.

Then the posterior (3.11) is proper if the following conditions are satisfied:



(a) X*is of full rank,
(b) () is proper,
(¢) 7o > 0 and v > —k'd, where k' = max{y:}.

The conditions stated in the above two theorems are sufficient but not nec-
essary for the propriety of the posterior distribution. In Theorem 3.2, we note
that a proper prior for « is not required and proper prior for A is required to
obtain a proper posterior. However, in Theorem 3.2', we note that a proper
prior for A is not required and proper prior for e is required to obtain a proper

posterior.

Proof of Theorem 3.2: The proof is very similar to the proof of Theorem
3.1. In order to obtain the propriety of the posterior distribution, we still need
to show that there exists a constant M > 1 such that

(O (yi | 1) - exp(=0i(1 = S(yi | 1)) < @™ - M. (312)
When §; = 0, (3.12) is obviously true. When & = 1 , the left side of (3.12)
can be written as:
(0: (s | )™ - exp(=6:(1 = S(u [ 7))
=0if (i | 7) - exp(~0i(1 = S(i | 7))

= L 1) 0 (-0 - S0 )
Avi a
- G o (- S0 1) G- S | )

exp(3(1 - M)

ooy (=S 1) - Grexp(=ai1 = Sl | )}




=agg: (3.13)

where

&M exp )}

1—exp{§(1—ew)}’
g2 = {(1=5(y|7) -0~ exp(=0:(1 — S(y: | 7))}

9 =

If we treat g as the function of A, and let

g1 Ay, 2= ai—cwy _ 0y + ol — e
L

then A = Xg. We also know that g; is a continuous function, and

oM exp(g(1 — )

dmg = T exp(a(i— e}
M
= lim S
= 0,
. . eMiexp{g(1—eM
T e

- ANy—a—aev
= lim

BT e T all
= L

L

Therefore, there exists a common constant go > 0, such that
gn1<g0 and gy <gp. (3.14)

Using (3.14), (3.13) < agj. Let M = max{1,g3}. Thus, we get the result
(3.12) which is

(O (wi | 7)) - exp(=0.(1 = Sy | 1)) < @* - M.
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Because X* is of full rank, there must exist k linearly independent row vectors

Ty, Ty oneens Ty, SUch that &, =6, = ..... = &, = 1. Using (3.12),
K[ [ 1071 Dxta | mmiridsdady
S | YR CL R )
xm(a | vy, 7o)m(N)dBdad)
w oo p mok
= I f Tt ) - expl=6.0 = St 1)
k
X [}'[](&,f(y., | )% - exp(=0y, (1 = S(u, I’Y)))]
xm(a | v, 7o)m(N)dBdadA
a5 peny 7 W
<[ [ Ot
]
x [’[Il(ﬂ.,/ (3 1 7)) exp(~65,(1 = S(y, | ‘1)))]
x7(a | vo, 7o)w(N)dBdadA
<[ [ Lo
k
x [}. Fug | v) exp(ai,B— (1 - S(y,, | 7)) exp(x;,m)]
x(a | vo, 7o)m(\)dBdadA. (3.15)
We make the transformation u; = a:;iﬁ for j = 1,2,....,k. This is a one-

to-one linear transformation from 3 to u = (uy, ug, ...... uk)'A Thus, (3.15) is

proportional to

L Ll a“*ﬁf(y., 1)



xexplus — (1= S(a, [ 1)) explas))aer | ,70)
xx(A)dudad\
k
= [:" /n“" ad-k ,1;!
[ty 10 explos — (1= S(us, 1) expla))s]
xr{a | vy, ro)r(N)dadA.

Integrating out u, (3.16) reduces to

oo oo g [ fr S 1)
/n /!') ot kLgmm] w(a | vo, To)m(N)dadA.

Using (3.14), we have

S ln) e exp{§(l— M)}
1- S, |7) 1—exp{§(1 - %)}

where ko = max{1, go}. Thus, (3.17) is less than or equal to

< koa,

I [ o+ [T kon(a | v m)r(dadr
o Jo =i

- f /D * atr(a | vo, mo)7(A)dad)

ke /D = /D = a1 exp(=moa)r(A)dadA.

(3.16)

(3.17)

(3.18)

Noticing that w(a | w,70) x a**!exp(—ma), 7o > 0,1 > —d and =(}) is

proper. Therefore, (3.18) < co. This completes the proof.

a

Proof of Theorem 3.2 In order to obtain the propriety of the posterior

distribution, we still need to show that there exists a constant M > 1

, such



that

(6:f (wi | 1) - exp(=6,(1 = S(si | 7)) S @™ - M.
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(3.19)

When 6 = 0, (3.19) is obviously true. When & = 1, the left side of (3.19)

can be written as:

(6: (95 | )% - exp(=6:(1 = S(y: | 7))
aexp{§(1—e¥)}

1-exp{§(1 - )}

X(1=S(yi | 7)) - 0: - exp(=0:(1 = S(wi | 7))

— M

=eMigig,,

where

aexp{(1-ev)}
1—exp{a(1-ew)}'
= (=S| 7)) 6:-exp(=0i(1 = S(u: | 7)))-

=3

9

(3.20)

We treat g; as the function of a. It is very easy to see that the function of g,

is a continuous function, and at the same time,

i = SRR )
Loz a7 ] —exp{§(1—e)}

iy avexp {%(1 = e*’/‘)}

Cm @
Py P!
=0

aexp{§(1-e)}

lim = lim
a9 n—ml,exp{%(l_ ‘)}
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Therefore, there exists a common constant go > 0, such that
g1<g and g2 <go. (3.21)

Using (3.21), we establish that (3.20) < e™igZ. Let k' = max(;s-1y{%} and
M = max{1, g3}. Then, (3.20) < e¥*M. Thus,

(6:f | 1)) - exp(=0:(1 = (g | 7)) < (X% M. (322)

Because X* is of full rank, there must exist k linear independent row vectors

Ty, Ty vy Ty StUCh thatt Gy = Gy = e = &, = L.
K o2 66,01 D o mym(@)dsdadn
= [T T exptait = St )

xr(A | vo, To)(a)dBdadA
= [ Tt 10 -0 = 1)
x Lfl (O i 120 - expl=0 (1 — 503, | 7)))}
xn(; vo, ro)(a)dBdadA
<[ f7 f I
x [ﬁ (O 1) ool 1 = S | 7)))]
xw(A | vo, 7o)m(@)dBdad)
< [ L+ T s 1
x exp(a;, 8- (1 - S(yﬂ,ﬁv)) exp(x;,3))
x7(A | oy ro)(a)dBdad. (323)
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We make the transformation u; = a; § for j = 1,2,....,k. This is a one-
to-one linear transformation from f to u = (uy,up, ......ux) . Thus, (3.23) is

proportional to

/um/um/m(e“)dik
&
x TT £, | 7) explu; — (1 — (s, | 7)) expluy))
F=1
x7(X | vo, 7o) (e)dudad)
- [ e
L] 00
x Hj(f(%, | 7)]0 exp(u; — (1 - Sy, | 7)) exp(u;))duy)
=
xm(A | vo, To)m(@)dad)
=~ | 1S 1)
=k e [H = S(a, m]
x7(A | vo, 7o)m(ct)dad). (324)
Let k' = maxgis,-1){si}. Using (3.21), we establish that

Fis 1Y)\ g ccexp{§(1—eW)} i
TG, 17 = T ey =

“ 9o-
Thus,
@2 = / / Gl kn ¥ . go)r(A | vo, To)m(c)dadA

- y“/n /n (e )d”()\ | vo, 7o) () dadA

= g [T [T Ky
= ¢
g"/o /u

xexp {’:7:(1 _ ea(w.\a))} ~(@)dadA. 5



Noticing that
(A vo,70) o e exp {?(1 _ E)(mu...,.)}
0
e = K,

70> 0,19 > —k'd and 7(a) is proper. Thus, (3.25) < co. This completes the

proof. o

3.3 Gamma Distribution

‘When f(y|y) follows a Gamma distribution, we have

e
Fwil7) ol enl-u) lf()j 2)
Swl7) = 1-10w)
/V* Aty exp(=Awi)
o )

[}

= L= dy;

2w (Ago)*~ exp(= )
- [y aow,

where & > 0,\ > 0,y; > 0, a is the shape parameter, A is the scale parameter.

‘We assume throughout this subsection that
m(7) = (o | vo, 7o)w(N),

where
(e | v, 70) ox @~ exp(=moa),

and vy, 7o are two specified hyper With these ificati the

posterior distribution of (8,7) based on the observed data Dus = (n,y,,6)



is given by
P(8,7 | Dose) < L(B,7 | Das) - w(ax | v0,70)(A)- (3:26)

The following theorem gives conditions for the propriety of the posterior dis-
tribution in (3.26) using the noninformative 7(3,7) o = (7).
Theorem 3.3. Let d = Y2, & and X" be an n x k matrix with rows §z;.
Then the posterior (3.26) is proper if the following conditions are satisfied:
(a) X* is of full rank,
(b) (A) is proper,
(c) 70> 0 and v > —d.

In this theorem, we obtain similar results as in Chen et al (1999). There-
fore, we can extend Chen et al (1999)’s work not only to the log-logistic and

Gompertz distributions, but also to the Gamma distribution.

Proof of Theorem 3.3: In order to prove Theorem 3.3, first we need to
show that there exists a constant M > 1 such that
(6:(wi | )™ - exp(~0i(1 ~ S(u: | 7)) < @ - M. (3.27)
When §; =0, (3.27) is obviously true. When &; =1, the left side of (3.27) is
written as
(O:f (s | )™ - exp(=0:(1 — S(ui | 7))
=0/ (wi | 7) - exp(=6i(1 = S(u [ 7))
fwily)

e e (1= S(wi | 7)) - 0: - exp(—0:(1 = S(u: | 7)))- (3.28)
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In the first part of (3.28),
fuly Mt
11—l v Cudrom(=du g xy;)
Ayt exp(=i)
0% (Ags)o L exp(=Ay)d(Ays)
Ay~ exp(=Ay:)
¥ (t)°~" exp(~t)d(t)"

where t = Ay;. It is very easy to see that the range of the integration is

0<t< Ay

For the denominator,
AV £y A
[ et exp(—tat > e v-/ to-dt
Jo {]
1 o ,— At
= —(ys)%e W
a

Thus,

S| 7) Y texp(=Aw) _
« = oy,
=Sl = f0wrem ~

If we take M* = max(ig,-1{y; '} and M = max{1, goM"}, then we get

fwil7)

——— < aM*
=Swln - *

and
(O:f e | )% - exp(=0:(1 = S [ 1)) < oM.

Because X* is of full rank, there must exist klinear independent row vectors

AR

i Tigy

...... , %}, such that &, = 6, = ... = &, = 1.

LI 18,7 | Diec| v o (N)dded



36

= /nw /:. ./R» l'j[(&f(yx 1 7))% - exp(=8:(1 — S(u: | 7))
x(a | vo, To)m(N)dBdadA
w po ook
ZL A /ﬂk TT(0:f (i | 7)) - exp(=6:1 — S(yi | 7))
b=
§
100 10 (8,050 )
=l
(@ | vo, To)m(\)dBdad)
00 o0 n—k
<[ fe et
) [ﬁw"f (0 1) - expl=0,0. = S m»)}
=1
x(a | vo, To)w(A)dBdadA
970 «
< A L /m(aM)d kgf(yi, 1)
x exp(zy, 0 — (1 Sy | 7)) exp(ai,8))
xm(a | vo, To)w(A)dBdadA, (3.29)

where R* denotes k-dimensional Euclidean space. We make the transformation

wj = a B forj =

2,.....,k. This is a one-to-one linear transformation from

B tou= (u,ug,...ux) . Thus, (3.29) is proportional to

00 00 k

KL fae* s 1)
x exp(u; — (1= S(yy; | 7)) exp(wy))
x(a | vo, To)m(N)dudad)

=/“wf:a“'*£[‘f(yy 1)

x [ explus = (1= S(u, | 1) exp(u))duy)
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xm(a | vo, To)m(X)dad)

—/ / d-k k f(y(,\v)
=5, 17
xm(a | VD,Tn)w(A)dadA
00 fo0 k
<[ ﬂd’kg(ﬂfa)W(a | vo, 7o) (A)dadA
= oy /:Q /‘;*” am(a | vo, o)m(A)dad)
= (M*)* /‘m /m a1 exp(—a)m(A)dadA. 3:30)
0 0

S

Noticing that =557y < aM”, m(a | v, 7o) o o exp(~mo), 70 > 0,10 >
—d and 7 () is proper. Thus, (3.32) < co. This completes the proof. o

From above, we obtain the same properties of the posterior distributions as
those of Chen et al (1999). Therefore, by incorporating noninformative priors
in the proposed models, the results of Chen et al (1999) can be extended to

the log-logistic, Gompertz and Gamma distributions.



Chapter 4

Informative Prior Distribution

In this chapter, we examine classes of informative prior distributions with
the use of historical data. This enables us to obtain more precise posterior
estimates of the parameters in the proposed model compared to posterior
estimates without the use of historical data.

Following Chen et al (1999), we now propose the informative prior con-
struction for the proposed cure rate model. In this chapter as well as in
Chapter 5, we maintain the same notations as in Chapter 3. Let ny denote
the sample size for the historical data, yo be a ng x 1 vector of right-censored
failure times for the historical data with censoring indicators &, Ny be the
uncensored vector of latent counts of carcinogenic cells, and X, be an ng x k
matrix of covariates corresponding to yo. Let Dy = (ng, yo, Xo, o, No) denote

the complete historical data. Further, let mo(f3,7) denote the initial prior dis-
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tribution for (8,7). We propose a joint informative prior distribution of the

form
a
(8,7 | Dobs, @0) [ZL(A?,’Y | Dn)} 7o(B,7), (4.1)
No

where L(8,7|Do) is the complete data likelinood given in (2.3) with D being
replaced by the historical data Dy, and Dges = (19,30, Xo,8). We take a
noninformative prior for m(8,7), such as m(8,7) o mo(v), which implies

7o(B) o< 1. A beta prior is chosen for ag leading to the joint prior distribution
a

(8,700 | Doobs) o [Z LB Do)] m0(B,7)
No
xaf ™M (1 ap), (42)
where (do, Ao) are specified prior parameters.
Chen et al (1999) proved that equation (4.2) with f(y|v) following a Weibull
distribution is proper whether mo(/3,v) is proper or not. In this chapter, we

extend this property to the log-logistic, Gompertz and Gamma distributions.

4.1 Log-logistic Distribution

‘We use the same log-logistic distribution as in Section 3.1 in this section. The
following theorem characterizes the property that equation (4.2) with f(y|y)
following a log-logistic distribution is proper when (8, 7) is improper.

Theorem 4.1. Assume that

mo(B,7) o mo(7)



Il

= mo(a | v, 70)mo(A)
o« a®exp(—am)mo()),
where v and Ty are specified hyperparameters. Let do = 312, & and Xg be
an ng x k matrix with rows 85;Xg;. Then the joint prior given in (4.2) is proper
if the following conditions are satisfied:
(a) Xj is of full rank,
(b) 1%p>0 and 7 >0,
(e) mo(X) is proper, and
(d) d>kand A >0.

Proof of Theorem 4.1: This proof is similar to that for Theorem 3.1.
First, we write the complete-data likelihood function as

SL(B %] Do) = [0 (g | )% - e-ooa-omb, @3)
% A

In order to prove Theorem 4.1, we first show that there exists a constant
M > 1 such that

(60cS (v | 7)) - exp(~b0i(1 — S(yoi | 7)) < a* - M. (44)

When 8y; = 0, (4.4) is obviously true. When dy; = 1, the left side of (4.4) can
be written as
Slwoily)
—ar—=—=(1- S
T= St

a1y

ﬂmT,
= 12 (1 - S | ) - O
TG,

(v0il)) - Boi exp(=boi(1 = S(uoil7)))
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x exp(—boi(1 — S(yoi | 7))

= g (L Sl ) o
xexp(~fs(1 = (e | 1)) (45)

We let g1 = g, and g2 = (1= S(yoi | 7)) - foi - exp(—0oi(1 = Syoi | 7))-
Using the same idea as in the proof of Theorem 3.1, we know that there exists
a common constant go > 0 such that
g1<g0 and g2 < go. (4.6)
It is very easy to see that
(4.5) < y5'ag3.

Take Mg = g3 max(is,-1}{¥' } and Mo = max(1, Mg}, we then obtain
(Boif (voi | 7))%" - exp(~oi(1 = S(uoi | 1)) < a®Mp.

Because X; is of full rank, there must exist k linearly independent row vectors

Thiys Tgigs v+ Tpiy» SUCh that 8oy, = Goi, = ... = oy, = 1. Following the proof

of Theorem 3.1, we have

FLT L fus e ooy

xo(a | o, o)mo(N)af* ™ (1 = ag) ™" dfidadAdag
[ /Dm /ﬂm /m [‘Ij](g‘)‘f@”‘ | 7))% + exp(—6oi(1 — S(yior | 7)))}
(@ | 1, 7o) - Ta(Nafy™ (L = ao) " dBdadAdag

e i "I’I”%f(ymM))én,.exp(_en,(l—s(ymI“r))) i
0 Jo 0 R | i1

]



42

E a
x [’[I‘(ﬂm,l(!m., 1)) - exp(—8os, (1 ~ S(uoi, | 1)))| (x| vo,70)

x7(N)aP (1 — ag)**~'dfdadrday

< [ I s
x l’ill(f(yrx, [ 1) exp a0z, — ao(1 — Sy | 7)) explzi, B
x1’rn(u | v, 7)o (A)ad (1 — ap)*0~'dBdadAda. %)
We make the transformation ug; = zo; 8 for j = 1,2, ..., k and ignore the con-
stant. This is a one-to-one linear transformation from 3 to u = (tor, oz, -.....Uok) -
We also know My > 1 and 0 < a < 1, 50 Mg® < Mp. Thus, (4.7) is propor-
tional to

LEL /;;-“"“""’"’jlj(f(w,lv»m

x exp(aqtio; — ao(1 — S(yoi; | 7)) exp(uoz))
xmo(a | v, 70)mo(N)ag ™ (1 — a0) ™ dugdadAdag

_ /nl/‘;m/:uala(do—h)
X,ljx [, 1% [ explaosy — ao(t — S(um, 1) explun)eun

xmo(a | v, Tn)"’n(/\)an (1 — ap)**dadAday
oo Sy, 17) 1% T(ao)
N ) ]

J-l
xmo(ex | vo, To)To(A)ae " (1 — ag) ' dadAdao, (4.8)

I



where I'(:) denotes the Gamma function.

Using (4.6), it can be shown that

fli; 1) [
1 ya,lv)Sk”a end

S 1)
= S(yi; [ 7)

Since Ky = kg is a positive constant, we have

fo 1) 1
[1—s<y1,|w)] SHo

@
} < kgoaso.

Because 0 < ag < 1,

T(ao)  ag'T(ap+1) E
Hon) _ 10+ 1) < o,

ag” a
where K, is a positive constant. Then,

[1 f(g‘(lyilil)“r)r ) F(r)

< (Kikz)a®ag".
ag

Thus,
1 poo oo k
g < ao(d—k) a0 7. =1
w8 < [ [ oo oK)
xmo(a | vo, To)mo(N)ae =} (1 — ag)**~dadAdag
1 485 H
= (k) [ [T 7 amtongtaofec | w, m)
xmo(N)ad (1 — ap)*~'dadAday
1
= ik [ [ [ amtomg(a | vo,m)
o Jo Jo
xmo(N)af™#1(1 — ap)*'dadAday
1 jo o
3 do) o—1 .
(aka)® [ [ [0+ )2t exp(-ma)

x70(N)age ¥ (1 — ap)~dadAday.
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Noticing that 7(a | v6,7) & a®~1exp(—7oa) and 0 < ag < 1, 1o > 0 and
7 > 0, mo(A) is proper and & > k and Ao > 0. Thus, (4.9) < co. This

completes the proof. o

4.2 Gompertz Distribution

We use the same Gompertz distribution as in Section 3.2. When f(y | 7) fol-
lows a Gompertz distribution, we have results for noninformative priors similar
to there obtained in Section 3.2. The following two theorems characterize this
property that equation (4.2) with f(y|y) following a Gompertz distribution is
proper when 7(/3,7) is improper.

Theorem 4.2.  Assume that

m0(B,7) o< mo(7)

= o | vo, 70)mo(\)

o ol exp(—amo)mo(A),
where vy and 7 are specified hyperparameters. Let do = Y1, §; and X be
an ng x k matrix with rows 6p; Xo;. Then the joint prior given in (4.2) is proper
if the following conditions are satisfied:
(a)X; is of full rank,
(b) 5> 0 and 75 > 0,
(c) mo(A) is proper, and
(d) do > k and Ao > 0.
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Theorem 4.2'.  Assume that

mo(,7) o mo(7)
= mo(A | v, To)mo(e)

o A% exp(—Ao)mo

)

where vy and 7 are specified hyperparameters. Let do = Y72, 8; and Xg be

an ng X k matrix with rows i Xo;. Then the joint prior

7(B,7,a0 | Dogns) = (8,7 | Doobs: 20)7(ao | Doss)
%
o [Zumwu} m(8,7)
No
xaf (1 —ap)! (4.10)

is proper if the following conditions are satisfied:
(a) Xg is of full rank,

(b) v >0and 7> k'do

(c
@

mo(a) is proper, and

8 >k and Xg > 0.

Proof of Theorem 4.2: We can write the complete-data likelihood func-

tion as

3 LB | Do) = TT(00ef (o | 1) - e-0=Stmih, (@)
No i=1
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In order to prove Theorem 4.2, we first show that there exists a constant

M > 1 such that
(604 (s | 7))% - exp(—oi(1 = S(yoi [ 7)) < @™ - M. (4.12)
Similar to the proof of Theorem (3.2), we have
(801 (woi | 7)) - exp(—oi(L — S(yoi | 7)) < @™ Mo,

where M, > 1 is a constant.
Because X3 is of full rank, there must exist k linearly independent row

VeCHOTS T, , Tiy, -envs Tosy» SUCh that doi, = doi, = ..oo. = G, = 1.

e [; L5 D@]M

(e | vo, 7o) mo(N)af (1 — ao) " dfdadAdaq

= LTI [t 1 exp(a - St )]

xo(a | vo, )mo(N)a (1 — ap) ' dfdadAday

= LI [t - exp-uta st )]

=),

k b 4
x anm,f(y% [ 7)™ - exp(—8oi, (1 — S(yoi, |7)>)} (| vo,70)
xm(\)af ™1 (1 - ag)** ' dfdadAday
i res pon Tk
< LR L My
x [H(ﬂm,ﬂw, [7))%% - exp(~60, (1~ S(yoy | 7)))}

xm(a | vo, 70)mo(A)ad ! (1 — ap)**~'dBdadAday
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< [ [ fuwmars

S
x TT(f (o | 7)) exp [a0755,8 — ao(1 — S(at, | 7)) exp(zis,B)]
-

xmo(a | vo, To)mo(A)a ! (1 — ao)*~'dBdadAda. (4.13)

Because My > 1 and 0 < ag < 1, Mg® < M, we make the transformation
ttg; = ;8 for j = 1,2,....,k and ignore the constant. This is a one-to-

.ugx)’. Thus, (4.13) is

one linear transformation from 8 to u = (uoy, up2

proportional to

/o, /: [,W /R, a""“’“""]_I:I‘(f(ym, | M)

x expl(aotio; — ao(1 — S(uoi, | 7)) exp(uoz))
xmo(a | vy, To)mo(A)a§ (1 — a0)**~ duodadAdao
L[ e T stm, 1
fe’fl’(ﬂoﬂl — ao(1 — S(yos, | 7)) exp(uo;))duo; -
xmo(e | vo, To)mo(A)aP (1 — ap)*~'dadAdag

= /l/"/”auz(drh)f[ I(MMH)_]“M
oo Jo i l1=Se [ 7] e

xmo(a | vo, To)mo(\)af ™ (1 — o)~ dad)dao, (414)

where T'(-) denotes the Gamma function. Using g1 < go and gz < go, it can be

shown that

Fi, 1) F@s 1M 1% oo
T8y ) < o ond [_s(y.-,m} e
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Let Ky = k. Then,

fy, 17 % a0
[1—s<y;,|~> < faa

Because 0 < ag < 1,

= o

< Kaag?,
g’ a5 ’

where K3 is a positive constant. Then,

Thus,

(4.14)

{Af(y';] 7). ,} o % < (KiKy)a™agt.

1— 8y |7)

IN

[ o i
xmo(a | vo, Tu)Wo(A);%ﬂ"(l — ag)™~'dadrday
= (kxkz)k/ﬂ‘ Aw/“wa“"”"a;kﬂn(a | v, 70)
xo(\)af ™ (1 = ag)**~ dadAdag
= (kka)® /01 /:o [:@ a%bry(a | v, o)
xmo(A\)a§ ™1 (1 — ag)**~'dadAdag
(kika)* /: /Dm _/Om(l + %) exp(—mycx)
xo(A)a™# (1 — ao)™ dadAdag. (4.15)

In

Noticing that m(a | vo,7) o a*® ' exp(—7oa) and 0 < a9 < 1, 1y > 0 and

75 > 0, mo()) is proper and § > k, and Ag > 0. Thus, (4.15) < oco. This
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completes the proof. [s]

Proof of Theorem 4.2': Similar to the prof of Theorem 3.2', we have
(60i (vox 1 7))* - exp(~oi(1 — S(uoi | 7)) < (X X)* Mo,
where M > 1 is a constant.
Because X is of full rank, there must exist & linear independent row vectors
iy Tpigs vevre gy, SUch that piy = doi, = ..o.. = 0y, = 1. Following the proof

of Theorem 3.2, we have

FEEL [g L(g,1 | Da)rwaa )

xo(@)ad (1 — ag) "0~ dBdadAdas

= LI o [Tasom 1 - exot-aua = sam 1]

x7o(A | vo, To)mo() - a¥ (1 — ag)*~'dBdad)da,
/o' ["" f /R‘(en My)o(a—k)
k
x I[l(f(yu, | 7)) exp(aozgs, 8 — ao(1 — S(yoy; | 7))
=

x exp(z;,8))mo(A | o, T0)mo(@) - aff (1 — a0)**~'dfdadAda. (4.16)

IA

Because Mp > 1 and 0 < ao < 1, Mg® < M, we make the transformation
to; = Ty, for j = 1,2,....,k and ignore the constant. This is a one-to-

ug)'. Thus, (4.16) is

one linear transformation from § to u = (ug, ue2,

proportional to

(dats f,,.“*'”“"“"""}:lx(f(v«u, [
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x exp(agtio; — ao(1 — S(uoi; | 7)) exp(uoz))
xmo(A | v, 70)mo(@)ad (1 — ap) e~ dugdadAdag
_ /D‘ /ﬂ“ /n“(eku)mw
& =
% TT(Flam, |90 [ explauto; = ao(1 = S(um; | 7)) expluny)) ;)
=
xmo(X | o, To)mo(e)ae " (1 — ag)**~dadAdag
= /0‘ AwAw(gk'A)o«(de]k Flyoi; 17) 1% Tao)

o
xmo(X | o, To)mo(@)ad " (1 — ag)**~dadAdag, (4.17)

1—S(yoi; | ) aj

where I'(-) denotes the Gamma function. From Theorem 3.2', it can be shown
that

Fluis 1) K, fl 1)
=S, 19 ¢ % [1—5(u.,w)

Let K, = g&° be a positive constant. Then,

L 3
" <ot

Because 0 < ag < 1,

T(ag) _ a5'T(ao+1)

< Kaag?,
ag’ ag® S

where K is a positive constant. Then,

[f(m,vh) “ I(a)

< (KiKa)e¥ *oag?.
1-Sw)] e SiEi) 0

Thus,

1 oo foo L3 ’
< ' Xyao(do—k) ¥ Aap =T
@ < [7 7 [y Tl kaog A | 1)



xo(a)a (1 — ag)~'dadda

(KuKa)* /u ! /u N /n‘” e Navdagohr () | v, 75)
wro(a)a®=1(1 — ap) ™~ daddag

k) [ ! I [T v [ar = Kol m)

xa3~*"1(1 — ag)*~'dadAdag. (4.18)

I

IA

Noticing that m(A | v, 70) o A®~Lexp(=79A), 4o > 0 and 7 > K'dg , mo(X) is

proper and &g > k and Ag > 0. Thus, (4.18) < co. s}

4.3 Gamma Distribution

We use the same Gamma distribution as in Section 3.3 and assume that

mo(B,7) o mo(7)

= mo(e | vo, To)mo(N)

x o exp(—am)mo()),
where v and 7o are specified hyperparameters. Our last theorem is.
Theorem 4.3.  Let dy = 1% &; and X3 be an n x k matrix with rows
80iXg;- Then the joint prior

(8,7, a0 | Dooss) = (8,7 | Doobs; @0)m(ao | Do,obs)
a
o |SZLBy | Do (B, (1 - ao)*

o

is proper if the following conditions are satisfied:

(8) X is of full rank,
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(b) vy>0and >0
(c) mo()\) is proper and
(d) 6> kand dg > 0.

Proof of Theorem 4.3: Similar to the proof of Theorem 3.3, we know

that there exists a constant My > 1 such that
(B0i (yoi | 7)) - exp(—8oi(1 = S(yoi | 7)) < 0™ M.

Because Xj is of full rank, there must exist k linear independent row vectors
Tgiy» Tgigs -+ Tpiy» SUCh that dgy; = Gty = ... = &gy, = 1. Following the proof

of Theorem 3.3, we have

/ux /nm /.,m A [; L@ Du)} mo(a | vo, To)mo(A)
xa§™!(1 - ag)**~*dfdad)dag
00 o0 k.
< [T ladyann 1Lty
x exp(aozy,# — ao(1 — S(yos, | 7)) -
x exp(ag;, B)mo(e | o, To)mo(N)

xad (1 = ap) ' dBdadAdag. (4.19)

Because My > 1 and 0 < ag < 1, Mg® < Mp, we make the transformation
to; = @i, B for j = 1,2,......k and ignore the constant. This is a one-to-

one linear transformation from § to u = (ug, o2, -....-uox) . Thus (4.19) is



proportional to

rr /ma“‘***’g(/(m,lv))m

x exp(aotio; — ao(1 — S(yoy, | 7)) exp(uos))
xmo(a | v, 70)mo(M)af? ™! (1 — ao) ™~ dugdadrdao

— /// ..,w.,k)n[ Sluoi, 1) ] T(ao)

i ll=Sy (1] 6®
xmg(a | vg, To)mo(N)al (1 — ag) ™~ dadAdag, (4.20)
where I'(+) denotes the Gamma function. From Theorem 3.3, it can be shown

that

Flyi 1) Fly, 1) ]“‘
T=S(a, 1 < P 2nd [1—5@; ) K

Let Ky = k§°, which is a positive constant. Then,

fl 1) 1%
[l—sm,m S

Because 0 < ag < 1,

-1
= < Kaag',

I(ao) _ 05'T(ao+1)
ag ag

where K is a positive constant. Then

S, 1) 1™ Ta) _
[_1~S(y.,|7)] o < (ikajaay

Thus,
1 poo oo ]
420) < Fo(d=Fk) 0 Kyap"
(420) < /;/o /a o jl;[l(klﬂ Kaag")

xmo(a | v, 70)mo(N)af* ™ (1 — ao) " dadAdaq



(bt [ [ [ o
xo(a | vo, 7o)mo(A)ag ™ (1 — ao)** ™ dadAdag

b [ [ [ e

xmo(a | vo, 70)mo(A)ag (1 — a0)*~'dadAdag

(bt [ [7 [+

x exp(—moa)mo(N)ad (1 — ap)~'dadAdag.  (4.21)

IA

Noticing that m(a | vo,70) o o~ exp(—ma), o > 0 and 7o > 0, mo()) is

proper, 8 > k and Ao > 0. Thus, (4.21) < oo. This completes the proof. O



Chapter 5

Data Analysis

In this chapter, we demonstrate the applications of our proposed model based
on (2.1) in previous chapters to the phase III melanoma clinical trial data de-
scribed in Chapter 1. Our first goal is to find maximum likelihood estimates
(MLE’s) of the parameters for the proposed model (2.1) under log-logistic,
Gompertz and Gamma distributions, and to compare our results with the
model under the Weibull distribution proposed in Chen et al (1999). Our
second goal is to carry out a Bayesian analysis with covariates using the non-
informative priors introduced in Chapter 3. Furthermore, using maximum pos-
terior density function and second derivatives of the posterior density function.
‘We obtain the posterior estimates of the parameters for the proposed mod-
els under log-logistic, Gompertz and Gamma distributions, and compare the

inferences between each of the three proposed models and Chen et al (1999).
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The third goal is to carry out a Bayesian analysis with covariates using the
informative priors proposed in Chapter 4. We obtain posterior estimates of
the model parameters under log-logistic, Gompertz and Gamma distributions
using informative priors, and compare each result with Chen et al (1999). The
three covariates that are considered in the analysis are age (z1), gender (z5:

male, female), and performance status (PS) (z3: fully active, other).

5.1 MLE’s of the Model Parameters for the

E1684 Data

‘We now consider the analysis for the MLE’s of the proposed model (2.1) with

to the application of the proposed models under log-

logistic, Gompertz and Gamma distributions. We also compare inferences of
the proposed models under log-logistic, Gompertz and Gamma distributions
with the model under the Weibull distribution, which was discussed in Chen
et al (1999).

Table 5.1 reports the MLE’s, their standard deviations and p-values for the
proposed model under the Weibull distribution. Our estimates for the model
parameters have some minor differences. However, these differences do not
influence the results.

Table 5.2, Table 5.3 and Table 5.4 report the maximum likelihood esti-

mates, standard deviations and p-values for the proposed models under log-



Table 5.1: MLE’s of the Model Parameters with Weibull Distribution
Variable | MLE | SD | P-value

Age 0.006 | 0.004 | 0.12

Gender | —0.15 | 0.12 0.22

Ps —0.20 | 0.26 | 0.44
a 1.31 | 0.09 | 0.00
A —1.34| 012 | 0.00

logistic, Gompertz, and Gamma distributions, respectively. Comparing the
results of Table 5.1 with each of Tables 5.2, 5.3 and 5.4, we find that all results
are similar. The p-values associated with the covariates are all greater than
0.05. This implies that none of age, gender and PS is statistically significant

at level a = 0.05.



Table 5.2: MLE’s of the Model Parameters with log-lo
— )

gistic Distribution

Variable | MLE | SD | P-value
Age | 0.007 | 0.004 [ 0.06
Gender | —-0.13 [ 0.12 [ 031
PS —0.20 | 0.26 | 0.44
a 161 | 0.13 | 0.00
A —1.28( 0.16 | 0.00

Table 5.3: MLE’s of the Model Parameters with Gom

pertz Distribution

Variable | MLE | SD | P-value
Age 0.006 | 0.004 | 0.12
Gender | —0.15 | 0.12 0.22
PS —0.20 [ 0.26 | 043
a 0.27 | 0.03 [ 0.00
A —1.97] 0.19 | 0.00

58



Table 5.4: MLE’s of the Model P with Gamma Distribution
Variable | MLE [ SD | P-value

Age 0.006 | 0.004 | 0.12
Gender | —0.15 | 0.12 | 0.22
PS —0.20 | 0.26 | 0.44
a 156 | 0.12 | 0.00

A —0.51| 0.14 | 0.00

5.2 The Posterior Estimates of the Model Pa-

rameters with Noninformative Priors

We carry out a Bayesian analysis with covariates using the proposed nonin-
formative priors to demonstrate our second application of the proposed model
(2.1) under the log-logistic, Gompertz and Gamma distributions. To be more
specific, we compare results among the proposed models under the log-logistic,
Gompertz and Gamma distributions with the proposed model (2.1) under the
Weibull distribution which was discussed in Chen et al (1999).

In this section, we use the E1684 study as current data and consider an
analysis with the proposed priors (3.2). For 7(8), we take an improper uniform
prior, and for 7(alvp, 79), we take vy — 1 and 7 = 0.01 to ensure a proper

prior. The parameter A is taken to have a normal distribution with mean 0
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and variance 10,000. We use maximum posterior density function and second
derivatives of the posterior density function to find the posterior estimates,
posterior standard deviation and p-values.

Table 5.5 reports the posterior estimates of the model parameters with the
Weibull distribution using noninformative priors. Comparing the results of
Table 5.1 with Table 5.5, we find that the results are the same. Therefore, the
result that incorporation of noninformative priors cannot affect the posterior
estimates of the model parameters was discussed by Chen et al (1999).

Table 5.6, Table 5.7 and Table 5.8 report the posterior estimates of the
model parameters with the log-logistic, Gompertz and Gamma distributions
using noninformative priors. Comparing the results of Table 5.2 with Table
5.6, Table 5.3 with Table 5.7 and Table 5.4 with Table 5.8, we find similar
results. Thus, incorporation of noninformative priors cannot affect the pos-
terior estimates of the model parameters even though F|(-) follows different
distributions. This result is similar to that of Chen et al (1999).
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Table 5.5: The Posterior Estimates of the Model Parameters with Weibull

Distribution Using Noninformative Priors, o ~ I'(1,0.01) and A ~ N (0, 10000)

Variable | Posterior estimate | Posterior SD | P-value 95% CI
Age 0.006 0.004 0.12 (—0.002,0.014)
Gender —0.15 0.12 0.22 (—0.385,0.085)
PS —0.20 0.26 0.44 (—0.710,0.310)
a 131 0.09 0.00 (1.134,1.486)
A —1.34 0.12 0.00 | (-1.575,—-1.105)

Table 5.6: The Posterior

of the Model F

with log-logisti

Distribution Using Noninformative Priors, a ~ I'(1,0.01) and A ~ N(0, 10000)

Variable | Posterior estimate | Posterior SD | P-value 95% CI
Age 0.007 0.004 0.06 | (—0.001,0.015)

Gender —0.13 0.12 031 | (—0.365,0.105)
PS -0.20 0.26 044 | (—0.710,0.310)
a 1.61 0.13 0.00 | (1.355,1.865)
A -1.28 0.16 0.00 | (—1.594, —0.966)
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Table 5.7: The Posterior Estimates of the Model Parameters with Gompertz

Distribution Using Noninformative Priors, a ~ I'(1,0.01) and X ~ N(0, 10000)

Variable | Posterior estimate | Posterior SD | P-value 95% CI
Age 0.006 0.004 0.12 (—0.002,0.014)
Gender —0.15 0.12 0.22 (—0.385,0.085)
PS -0.20 0.26 0.43 (—0.710,0.310)
@ 0.27 0.03 0.00 (0.211,0.329)
A -1.97 0.19 0.00 | (—2.342,-1.598)

Table 5.8: The Posterior Estimate of the Model Parameters with Gamma

Distribution Using Noninformative Priors, a ~ I'(L,0.01) and A ~ N(0,10000)

Variable | Posterior estimate | Posterior SD | P-value 95% CI
Age 0.007 0.004 012 | (—0.001,0.015)
Gender —0.20 0.12 0.22 (—0.435,0.035)
Ps —0.05 0.24 0.44 (—0.520, 0.420)
o 1.49 0.11 0.00 (1.274,1.706)
3 ~0.60 0.15 0.00 | (—0.894,—0.306)
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5.3 The Posterior Estimates of the Model Pa-

rameters with Informative Priors

In Section 5.2, we used the noninformative priors to conduct the Bayesian
analysis. In this section we use the informative priors for the Bayesian analysis.
Similar to Section 5.2, we use the results of the proposed model (2.1) under
the log-logistic, Gompertz and Gamma distributions to compare with those in
the model (2.1) under the Weibull distribution.

In this section, E1673 serves as the historical data for our Bayesian analysis
of E1684. Table 5.9 reports the posterior estimates for the Weibull distribu-
tions based on several choices of (d, Ao) using informative priors. We compare
the results of Table 5.9 with each of Tables 5.10, 5.11 and 5.12 which report
the posterior estimates of the parameters for the proposed models under the
log-logistic, Gompertz and Gamma distributions using informative priors, re-
spectively, it is easy to see that the results are similar to those of Chen et
al (1999) which incorporating historical data can yield more precise posterior
estimates of model parameters of age, gender and PS. The posterior estimates,
their standard deviations and 95% confidence intervals of age, gender and PS
do not change a great deal if a low or moderate weight is given to the histori-
cal data. However, if a higher than moderate weight is given to the historical

data, these posterior ries can change i For example, in

Table 5.9, when the posterior estimate of ag is less than 0.06, we can find
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that all 95% confidence intervals for age, gender and PS include 0. When the
posterior estimate of ag is greater than or equal to 0.21, the posterior 95%
confidence intervals for age and gender do not include 0. In Tables 5.10, 5.11
and 5.12, we obtain the similar results. Therefore, even though we use differ-
ent models, we obtain the same results which suggest that age and gender are
potentially important prognostic factors for predicting survival in melanoma.

We also find the posterior estimate for age is positive, implying that as age

goes up, the number of i ic cells increases. Increased
cells counts are associated with shorter relapse-free survival. Therefore, older
patients have shorter relapse-free survival. the posterior estimate of gender
is negative, implying that the number of carcinogenic cells for females are
less than the number of carcinogenic cells for males. Therefore, females have
longer relapse-free survival than males. This finding is very important. In
addition, when the historical data and current data are equally weighted (i.e.,
ag = 1), the 95% confidence intervals for age and gender both do not include 0,
therefore demonstrating again the importance of age and gender in predicting
overall survival. These results are the same as those of Chen et al (1999).
Secondly, as the posterior estimate of ag increases, the posterior estimate
for age becomes larger while the posterior cstimates for gender and PS become
smaller. The posterior standard deviations of the model parameters become
smaller and the 95% confidence intervals become narrower as the posterior
estimate of ag increases. This demonstrates that incorporation of histori-

cal data can yield precise posterior estimates of age, gender and PS parame-
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ters. For example, in Table 5.10, when ap = 1, the posterior estimates, stan-
dard deviations, and 95% confidence intervals for age and gender coefficients
are 0.012/0.002/(0.008,0.016) and - 0.31/0.07/(—0.447, —0.173), respectively,
whereas when we do not incorporate any historical data ( i.e., ap = 0), these
values are 0.007/0.004/(~0.001,0.015) and -0.13/0.12/(—0.365, 0.105) respec-
tively. We can see that there is a large difference in these estimates, especially
in the standard deviations and 95% confidence intervals. We obtain similar
results in Table 5.9, Table 5.11 and Table 5.12. Therefore, we can say that
precise estimates of the model parameters can be obtained by incorporating
historical data.

Thirdly, when a low weight is given to the historical data, the posterior
estimate of PS is negative. It implies that carcinogenic cell counts for the
patients whose P8 is fully active are more than that when PS is not fully active
after the initial treatment. When a higher weight is given to the historical
data, the posterior estimate of PS becomes positive which implies that patients
whose PS is fully active have longer relapse-free survival than patients whose
PS is not fully active. The posterior estimates for age are all positive and
their values increase when the posterior estimate of ao increases. This implies

that as age goes up, the number of i ic cells increase:

carcinogenic cell counts are associated with shorter relapse-free survival and
when the posterior estimate of aq is increasing, the carcinogenic cell counts
increase quickly. Therefore, the relapse-free survival decreases quickly. This

tells us that incorporation historical data, we can obtain better results. We
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also find that the posterior estimates for gender are all negative and becomes
smaller when the power (ao) is increasing. Therefore, in the sense that there is
a gender difference, where the number of carcinogenic cells for females is less
than the number of carcinogenic cells for males. Thus, females have longer
relapse-free survival than males. When we incorporate historical data, the

difference becomes significant.
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Table 5.9: The Posterior Estimates of the Model Parameters with Weibull

Distribution Using Informative Priors, a ~ I(1,0.01) and A ~ N(0, 10000)

Variable | Posterior estimate Posterior SD 95% CI (80, %0)
Age 0.007 004 —0.001,0.015,
Gender -0.15 .14 —0. 424 0.124
PS -0.17 .25 —0.660, 0 320 (49,49)
o 117 .07 (1.033, 1
A —1.44 .13 (~1.695, L0
a 0.03 0.0035 (0:022,0.037)
Age 0.008 .005 0.002,0.018
Gender —0.16 .19 ~0.532, 0.212
PS ~0.14 .24 0.610,0.330) (99,99
o Li2 .07 (0.983,1.2573
A 1,51 .13 (—1.765, —1.255)
a 0.06 .006 (0.05,0.07)
Age 0.009 .005 (0.000, 0,019
Gender ~0.19 .17 ~0.523,0.14:
PS —0.08 .21 —0.492,0.332)  (199,0)
o 1.06 .06 (0.942,1.1733
A —1.61 .11 —1.826, —1.394)
a 0.i4 0.0115 (0.12,0.16)
Age 0.003 (0.004, 0. 0162
Gender 0.10 (-0.406, —0.014)
PS 0.20 (=0.432,0.352)  (309,309)
o 0.05 (o.942,1.138g
A 0.10 ( 1846—144)
a 0.011 (0.19,0.23)
Age 0.01 0.002 (0.006,0.01 %
Gender —0.23 0.08 0387 ~0.073)
PS 0.00 0.18 ( .353,0.353)  (399,0)
@ 1.03 0.05 (0.932,1.128
A —1.69 0.09 (—1.866, —1.514
a 0.29 0.0161 (0.26,0.32)
Age 0.01 0.001 (0 008,0.01; %
Gender —0.33 0.03 —0.380; - 0.971)
PS 0.15 0.12 (70 085, 0.385)
a 1.00 0.04 (0.922,1.078
A -isz 0.06 (~1.938, ~1.703)
ap
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Table 5.10: The Posterior Estimates of the Model Parameters with log-logistic

Distribution Using Informative Priors, a ~ I'(L,0.01) and A ~ N(0,10000)

Variable | Posterior estimate Posterior SD 95% CI (d0, o)
Age 0.007 0.004 —0.001, 0.015
Gender —0.14 0.12 —0.375, 0,005
PS —0.16 025 —0.650,0.330  (45,45)
a 1.56 013 (1905, 1.815)
A -1.34 0.16 (—1.654, —1.026)
ao 0.03 0.004 (0.021,0.038)
Age 0.008 003 (0.002,0014)
Gender —0.16 .12 ~0.395, 0.07:
(95,95)PS —0.13 23 —0.581,0.321)  (95,95)
a 1.52 12 (11285 1755
A —1.39 15 (—1.684,-1.096)
@ 0.06 0.006 (0:050,0.070)
Age 0.009 003 (0.005,0.015)
Gender -0.19 .11 .
PS —0.08 21 0.492,0.332)  (194,0)
a 1.46 11 (1.544, 1676&6
A —1.48 14 ~1 1.206)
a9 0.14 0.010 (0:120,0.159)
Age 0.009 003 (0993.0. 0152
Gender —0.21 .10 (0406,
PS —0.04 .20 432 0. 352) (395,395)
P 1.42 10 161
b1 -1.53 13 (-1 5)
o 031 0.010 (0.190,0.230)
Age 0.010 0.003 (0.004,0.016
Gender —0.23 0.10 (—0.426, —0.034;
PS 0.00 018 (=0.353,0.353)  (390,0)
a 1.40 0.09 224, 1. 370
A —1.59 0.12 —1.825, —1.395)
ao 0.29 0.015 (0.262, 0,318)
Age 0.012 0.002 (0.008, 0.01 %
Gender —0.31 0.07 (0447, —0.173)
PS 0.14 0.13 ( 0.115,0.395)
o 131 0.06 (1192, 1428&
X -i78 0.09 (- 1956 ~1.604)
ao
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Table 5.11: The Posterior Estimates of the Model Parameters with Gompertz

Distribution Using Informative Priors, a ~ I'(1,0.01) and A ~ N(0, 10000)

Variable | Posterior estimate Posterior SD 95% CI (d0, Ao)
Age 0.007 0.004 001, 0.015!
O ot 03 880.03%)  (6.46)
o 0.25 0.04 (0.172, h:’mg) £
A —4.45 80! (~25.169, 6.269)
ao 0.03 0.004 (0.027,0.033)
o 0.008 0.004 0.000,0.016
ol | A% W ol
a 0.3 0.03 (g.in 0,380 :
X -10.23 11.26 —32.300,11.840)
a9 .06 0.006 (0.048,0.072)
A 0.01 0.003 0.004,0.016
G| o B R ey
a 021 0.03 0.151 bésgg :
o —10.87 13.98 (—38.271,16.531)
a0 .14 0.009 (0.120,0.139)
Age 0.010 0.003 (0.004,0.016
| d8 Sl G
a 0.20 0.02 (0.161 béss} !
A -11.13 14.77 (~40.079, 17.819)
ag .21 0.010 (0.190,0.229)
3 0.01 0.003 (0.004,0.016
Gender —0.23 0.10 (-~0.426, —0.034)
S 8 e (w0
A ~11.33 1518 (—41,083 is<4%3)
a0 20 0.013 (0.243,0.296)
Age 0.01 0.002 (9:906,0016)
i S
a 0.16 0.01 (0.140, 'o.iso&
A 1214 14.97 (—41.481,17.201)
a




Table 5.12: The Posterior Estimates of the Model Parameters with Gamma

Distribution Using Informative Priors, a ~ I'(1,0.01) and A ~ N(0,10000)

Variable Posterior estimate Posterior SD 95% CI (80, M)
Age 0.007 0.004 —0.001,0.015
Gender ~0.16 0.12 0.385,0.075
PS -017 0.25 —0.660,0.320)  (49,49)
@ 1.3 0.10 (1184, 1. 5763
A —0.80 0.15 (~1:094; ~0.506)
a 0.0 0.004 (0.021,0.038)
ge 0.008 0.0034 (0001, 0. 015‘_))
Gender —-0.17 0.12 ~0.403, 0.06:
PS —0.14 023 0.591,0:311)  (99,99)
a 1.2 0.09 (1.114, 146§
A —i.00 0.16 (~1:314, —0.686)
o 0.01 0.006 (0:05,0.072)
Age 0.009 0.0032 (0.003, 0,015
Gender —0.19 0.11 0.407,0.02
(199,0) PS —0.08 021 0.492,0.332)  (199,0)
o 11! 0.08 (1.033,1.347
A —i.25 0.16 (—1.564, —0.936)
a 0.i4 0.0115 (0.12,0.16)
e 0.01 0.003 (0.004,0.016
—0.22 0.10 (-0.416, —0.024)
(399 399) PS —0.034 0.20 (-0.426,0.358)  (399,399)
.15 0.08 (0.993,1 307
b —i37 0.15 (~1,664; —1.076)
a 0.1 0.011 (0.19,0. 23)
Age 0.01 0.003 (0.004,0.016
Gender —0.24 0.10 (0,436, —0,044
PS 0.004 0.18 (-0.349,0.357)  (399,0)
o 113 0.07 (0.993, 1.2673
A —1.46 0.14 (~1.734, ~1.186)
a 029 0.016 (0.26,0.32)
Age 0.012 0.002 (0008, 0.016),
Gender —0.33 0.07 0467 0.193)
PS 0.15 013 ( 0.105, 0.405)
a 1.07 0.05 .972, 1168
A —1.70 0.10 (—1.896, —1.504)
[
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5.4 Detailed Sensitivity Analysis by Varying

the Hyperparameters

We now discuss a detailed sensitivity analysis for the regression coefficients
by varying the hyperparameters for v = (e, \). For illustration purposes,
we only show results with a fixed value for ap. When other values of ao
are chosen, similar results can be obtained. To be more specific, we fix the
hyperparameters for ag = 0.29 and vary the hyperparameters for . Firstly,
varying the variance of A and a from small value to large value which implies
that shape of the A or o becomes from narrow to flat. Secondly, varying the
mean of A and a from the small to large. Based on the two conditions, we check
the influence on the regression coefficients. Through these detailed sensitivity
analysis, we find that the posterior estimates of age, gender and PS are also
robust for a wide range of hyperparameter values.

Table 5.13 reports the posterior estimates of the model parameters with
the Weibull distribution which was discussed by Chen et al (1999). Tables
5.14, 5.15 and 5.16 report the posterior estimates of the model parameters
with the log-logistic, Gompertz and Gamma distributions. Comparing the
results of Table 5.13 with each of Tables 5.14, 5.15 and 5.16, we see that the
posterior estimates of age, gender and PS are almost the same for we choose
different hyperparameter values for (e, A). To be more specific, when F(t)

follows a log-logistic, Weibull or Gamma distribution, the posterior estimates
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of age, gender and PS are the same. However, when F(t) follows the Gompertz
distribution, the posterior estimates of gender and PS have change somewhat,
but the posterior estimates of age remain the same. Overall, moderate to
informative choices of the hyperparameters for (@, A) led to almost the same

posterior estimates of age, gender and PS.



73

Table 5.13: The Posterior Estimates of the Model Parameters with Weibull

Distribution, ag = 0.29

Variable | Posterior ~Posterior 95% CI @ A
estimate SD

Age 0.01 0.002 (0.006,0.014)

Gender | —0.23 0.08 (—0.387,—-0.073)

Ps 0.00 0.18 (—0.353,0.353) | I'(1,0.01) | N(0,10000)
a 1.03 0.05 (0.932,1.128)

A ~1.69 0.09 (—1.866, —1.514)

Age 0.01 0.002 (0.006,0.014)

Gender | —0.23 0.08 (—0.387,—0.073)

PS 0.00 018  (—0.353,0.353) | T(1,1) N(0,10)
a 1.03 0.05 (0.932,1.128)

A -1.68 0.09  (~1.856,—1504)

Age 0.01 0.002 (0.006,0.014)

Gender | —0.23 0.08  (—0.387,-0.073)

PS 0.00 018  (—0.353,0.353) | T(10,0.01) | N(0,10)
a 1.05 0.05 (0.952,1.148)

A =171 0.09 (—1.886,—1.534)

Age 0.01 0.002 (0.006,0.014)

Gender —0.23 0.08 (—0.387,-0.073)

PS 0.00 0.18 (~0.353,0.353) | I(10,1) | N(10,10)
a 1.05 0.05 (0.952,1.148)

A —1.69 0.09 (—1.866,—1.514)

Age 0.01 0.002 (0.006,0.014)

Gender | —0.23 008  (~0.387,—0.073)

PS 0.00 018  (—0.353,0.353) | I'(0.01,1) | N(10,10)
@ 1.03 0.05 (0.932,1.128)

A —1.67 0.00  (—1.846,-1.494)




Table 5.14: The Posterior Esti of the Model P: with log-logisti
Distribution, ag = 0.29
Variable | Posterior Posterior 95% Cl a &
estimate SD
Age 0.01 0.003 (0.004,0.016)
Gender | —0.23 010 (—0.426,—0.034)
PS 0.0004 018 (—0.352,0.353) | I'(1,0.01) | N(0,10000)
a 1.40 0.09 (1.224,1.576)
A —1.59 012 (—1.825,-1.355)
Age 0.01 0.003 (0.004,0.016)
Gender | —0.23 0.10 (—0.426,—0.034)
PS 0.00 018  (—0.353,0.353) | T(1,1) N(0,10)
a 1.39 0.09 (1.214, 1.566)
A ~1.58 013  (-1.835,-1.325)
Age 0.01 0.003 (0.004,0.016)
Gender | —0.23 010  (~0.426,—0.034)
PS 0.00 0.18 (—0.353,0.353) | I'(10,0.01) | N(0,10)
a 145 0.09 (1.274,1.626)
A —1.58 012 (-1.815,—1.345)
Age 0.01 0.003 (0.004,0.016)
Gender | —0.23 0.10 (—0.426,—0.034)
PS 0.00 018  (—0.353,0.353) | T(10,1) | N(10,10)
a 1.44 0.09 (1.264,1.616)
A —1.57 012 (-1.805,-1.335)
Age 0.01 0.003 (0.004,0.016)
Gender | —0.23 0.10 (—0.426, —0.034)
Ps 0.00 0.18 (—0.353,0.353) | I'(0.01,1) | N(10,10)
@ 1.38 0.09 (1.204, 1.556)
A —1.57 012 (—1.805,—1.335)




75

Table 5.15: The Posterior Estimates of the Model Parameters with Gompertz

Distribution, ag = 0.29

Variable | Posterior Posterior 95% CI a A
estimate SD
Age 0.01 0.003 (0.004,0.016)
Gender | —0.23 0.10 (—0.426, —0.034)
PS 0.004 019 (~0.368,0.376) | I'(1,0.01) | N(0,10000)
3 0.19 0.02 (0.151,0.229)
A —11.33 1518 (—41.083,18.423)
Age 0.01 0.003 (0.004,0.016)
Gender | —0.23 0.10 (—0.426, —0.034)
PS 0.004 0.19 (—0.368,0.376) | T(1,1) N(0,10)
a 0.19 0.02 (0.151,0.229)
A —5.29 077 (—6.800,—3.781)
Age 0.01 0.003 (0.004,0.016)
Gender | —0.24 0.10  (—0.436,-0.044)
Ps 0.00 0.19 (-0.372,0.372) | I(10,0.01) | N(0,10)
a 0.21 0.02 (0.171,0.249)
X —5.42 086  (—7.106,—3.734)
Age 0.01 0.003 (0.004,0.016)
Gender | —0.24 010  (—0.436,—0.044)
PS 0.00 0.19 (-0.372,0372) | TI(10,1) | N(10,10)
a 0.20 0.02 (0.161,0.239)
A —4.56 063 (—5.795,—3.325)
Age 0.01 0.003 (0.004,0.016)
Gender | —0.23 0.10 (—0.426, —0.034)
PS 0.005 0.19 (—0.367,0.377) | I'(0.01,1) | N(10,10)
a 0.18 0.02 (0.141,0.219)
A —4.41 0.55 (—5.488,—-3.332)
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Table 5.16: The Posterior Estimates of the Model Parameters with Gamma

Distribution, ag = 0.29

Variable | Posterior Posterior 95% CI a A
estimate SD
Age 0.01 0.003  (0.004,0.016)
Gender | —0.24 0.10 (—0.436, —0.044)
PS 0.004 018 (—0.349,0357) | I'(1,0.01) | N(0,10000)
o 113 0.07 (0.993,1.267)
i —1.46 014  (~1.734,—1.186)
Age 0.01 0.003 (0.004,0.016)
Gender | —0.24 0.10 (—0.436, —0.044
PS 0.004 018  (—0.349,0357) | D(1,1) | N(0,10)
@ 112 0.07 (0.983,1.257)
A —1.46 0.14 (—1.734,-1.186)
Age | o001 0003 (0.004,0.016)
Gender | —0.24 0.10 (—0.436, —0.044)
PS 0.004 018  (—0.349,0357) |T(10,0.01) | N(0,10)
a 118 0.07 (1.043,1.317)
A -1.38 0.13 (—1.635,-1.125)
Age 0.01 0.003 (0.004,0.016)
Gender | —0.24 0.10 (—0.436, —0.044)
PS 0.004 018  (—0349,0.357) | r(10,1) | N(10,10)
a 118 0.07 (1.043,1.317)
A -137 0.13 (—1.625,—1.115)
Age 0.01 0.003 (0.004,0.016)
Gender | —0.24 0.10 (—0.436, —0.044)
PS 0.004 018 (—0.349,0.357) | I'(0.01,1) | N(10,10)
a 113 0.07 (0.993,1.267)
X —145 014 (-1.724,-1.176)




Chapter 6

Conclusion and Discussion

In this practicum, we extended the work of Chen, Ibrahim and Sinha (1999) to
the case where F(t) follows a log-logistic, Gompertz and Gamma distribution.
Comparing the inferences between each of the proposed models under the log-
logistic, Gompertz and Gamma distributions and the proposed model under
the Weibull distribution, we have discovered that the corresponding results
are similar. To be more specific, when we propose novel classes of noninforma-
tive and informative priors for (3,7), we obtain the results that the posterior
distributions of parameters are proper using an improper uniform prior with
the proposed models under different distributions. This enables us to carry
out noninformative or informative Bayesian inference for the regression coeffi-
cients.

We have also investigated the melanoma data using three different methods
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for each distribution: first, for data with MLE’s; then data with noninforma-
tive priors; finally, data with an informative prior. We found that the results
are the same not only for the Weibull distribution, but also for the log-logistic,
Gompertz and Gamma distributions. To be more specific, using the current
data E1684, if we compare the data (E1684) using the MLE’s with data from
noninformative priors using the results with respect to p-values, we find the p-
values are almost the same. Similarly, the values for the MLE’s and posterior
estimates of parameters are almost the same when we compare data using the
MLE’s with data using noninformative priors respectively. And using different
distributions do not affect the result that the incorporation of historical data

can improve the posterior esti standard deviations and 95% confi

intervals of age, gender and PS. And age and gender are potentially important
prognostic factors for predicting overall survival in melanoma. This demon-
strates a desirable feature of our model. Such a conclusion is not possible
based only on a frequentist or a Bayesian analysis of the current data alone.
‘Thus, incorporating historical data can yield more precise posterior estimates
of age, gender and PS.

It is possible that other distributions can be handled in a similar way.
Natural candidates for this kind of extension include generated Gamma or
generated F distributions. These problems require further investigations which

are beyond the scope of this practicum.



Bibliography

[1] Berkson, J., and Gage, R.P. (1952). “Survival Curve for Cancer Patients
Following Treatment,” Journal of the American Statistical Association,

47, 501-515.

[2] Chen, M.- H., Ibrahim, J.G., and Sinha, D. (1999). “A new Bayesian
model for survival data with a surviving fraction.” Journal of the Amer-

ican Statistical Association,” 94, 909-919.

3] Farewell, V. T. (1982). “The use of mixture models for the analysis of

survival data with long-term survivors,” Biometrics, 38, 1041-1046.

[4] Farewell, V. T. (1986). “Mixture models in survival analysis: Are they
worth the risk?” The Canadian Journal of Statistics, 14, 257-262.

[5] Ghitany, M.E., Maller, R. A., and Zhou, S. (1995). “Estimating the pro-
poration of immunes in censored samples: A simulation study.” , Statistics

in Medicine, 14, 39-49.

79



80

(6] Kirkwood, J. M., Strawderman, M. H., Ernstoff, M. S., Smith, T. J., Bor-
den, E. C., and Blum, R. H. (2000). “Interferon alfa-2b adjuvant therapy
of high-resected cutaneous melanoma: The Eastern Cooperative Oncol-
ogy Group Trial EST 1684," Journal of Clinical Oncology, 14, 7-17.

[7) Kuk, A. Y.C. and Chen, C. (1992). “A Mixture model combining logistic
regression with proportional hazards regression.” Biometrika, 79, 531-
541.

8] Peng, Y. and Dear, K. B. G. (2000). “A nonparametric mixture model
for cure rate estimation.” Biometrics, 56, 237-243.

[9] Peng, Y., Dear, K. B. G. and Carriere, K. C. (2001). “Testing for the
presence of cured patients: A simulation study.” Statistics in Medicine,
20, 1783-1796.

[10] Peng, Y., Dear, K. B. G. and Denham, J. W. (1998). “A generalized
F mixture model for cure rate estimation.” Statistics in Medicine, 17,
813-830.

[11] Taylor, J. M. G. (1995). “Semi-Parametric estimation in failure time mix-

ture models,” Biometrics, 51, 899-907.

[12] Y hi, K. (1992). “A 1 failure-ti gression models with

a regression model of surviving fraction: An application to the analysis of
‘permanent employment’ in Japan.” Journal of the American Statistical

Association, 87, 284-292.






i Lol By i
EOPN .,'J\r ; o
Jishe. JJ‘ \un -'.| -,d-:'__‘.'qn._ e I
ll 1

| ‘_“'r;- rh— E., e 1T “”T L

i
.',..,\_..H.u.-., e, B b <k

r-.-l-l-urh--wllﬂr A









	0001_Cover
	0002_Inside Cover
	0003_Blank Page
	0004_Blank Page
	0005_Copyright Information
	0006_Title Page
	0007_Abstract
	0008_Abstract ii
	0009_Acknowledgements
	0010_Acknowledgements iv
	0011_Table of Contents
	0012_Table of Contents vi
	0013_List of Tables
	0014_List of Tables viii
	0015_List of Figures
	0016_Chapter 1 - Page 1
	0017_Page 2
	0018_Page 3
	0019_Page 4
	0020_Page 5
	0021_Page 6
	0022_Page 7
	0023_Page 8
	0024_Page 9
	0025_Page 10
	0026_Chapter 2 - Page 11
	0027_Page 12
	0028_Page 13
	0029_Page 14
	0030_Page 15
	0031_Page 16
	0032_Page 17
	0033_Chapter 3 - Page 18
	0034_Page 19
	0035_Page 20
	0036_Page 21
	0037_Page 22
	0038_Page 23
	0039_Page 24
	0040_Page 25
	0041_Page 26
	0042_Page 27
	0043_Page 28
	0044_Page 29
	0045_Page 30
	0046_Page 31
	0047_Page 32
	0048_Page 33
	0049_Page 34
	0050_Page 35
	0051_Page 36
	0052_Page 37
	0053_Chapter 4 - Page 38
	0054_Page 39
	0055_Page 40
	0056_Page 41
	0057_Page 42
	0058_Page 43
	0059_Page 44
	0060_Page 45
	0061_Page 46
	0062_Page 47
	0063_Page 48
	0064_Page 49
	0065_Page 50
	0066_Page 51
	0067_Page 52
	0068_Page 53
	0069_Page 54
	0070_Chapter 5 - Page 55
	0071_Page 56
	0072_Page 57
	0073_Page 58
	0074_Page 59
	0075_Page 60
	0076_Page 61
	0077_Page 62
	0078_Page 63
	0079_Page 64
	0080_Page 65
	0081_Page 66
	0082_Page 67
	0083_Page 68
	0084_Page 69
	0085_Page 70
	0086_Page 71
	0087_Page 72
	0088_Page 73
	0089_Page 74
	0090_Page 75
	0091_Page 76
	0092_Chapter 6 - Page 77
	0093_Page 78
	0094_Bibliography
	0095_Page 80
	0096_Blank Page
	0097_Blank Page
	0098_Inside Back Cover
	0099_Back Cover

