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Abstract: Background: Acute normovolemic hemodilution (ANH) is considered as a blood
sparing intervention during the perioperative management. We aimed at comparing the
cardiopulmonary consequences of ANH between adult pigs and weaned piglets to
establish the effects of lowering hematocrit (Hct) in these age groups, and thereby
testing the hypothesis that difference in the age-related physiological behavior will be
reflected in the cardiorespiratory changes following ANH.
Methods: ANH was achieved in anesthetised, mechanically ventilated adult minipigs
and 5-weeks old weaned piglets by stepwise blood withdrawal (10 ml/kg) with
crystalloids replacement. Cardiorespiratory assessments consisted of measuring
airway resistance (Raw), respiratory tissue elastance (H), effective lung volume (ELV),
extravascular lung water (EVLW), mean arterial pressure (MAP), pulmonary blood flow
(PBF) and cardiac output (CO). Respiratory and hemodynamic measurements were
made at control conditions and following each ANH condition obtained with 5 to 7
steps.
Results: ANH induced immediate and progressive increases in Raw and H in both
groups with more pronounced worsening in adults despite the similar decreases in Hct.
The increases in EVLW were significantly greater in the adult population with the
differences in mean (DM) of 25.1% (95% CI 5.3%-44.9%). Progressive ANH led to
significant decreases in the DM of PBF (45.3% (95% CI 19.8%-70.8%) and MAP
(36.3% (95% CI 18.7%-53.9%) only in adults, whereas CO increased significantly only
in the piglets (DM: 51.6 (95% CI 14.2%-89.0%)).
Conclusions: While ANH led to mild detrimental cardiorespiratory changes in weaning
piglets, gradual developments of bronchoconstriction, lung tissue extravasation and
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stiffening, and deteriorations in systemic and pulmonary hemodynamics were observed
in adults. ANH may exert age-dependent cardiorespiratory effect.
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Reply to Reviewer 1: 

“Reviewer 1: 

The investigators have made substantial improvements in this manuscript based on the editors and reviewers’ 

suggestions. The statistical analysis is especially robust now. They have addressed most of my comments and 

concerns. I would like the limitations to be stated more clearly in the discussion and have the following suggestions: 

Discussion: Suggest revising the heading “Methodological considerations” to “Methodological considerations and 

limitations”. This section should be put at the end of the discussion.” 

Reply 1: We thank again the Reviewer for the thoughtful comments contributing greatly to the 

improvement of our manuscript. In agreement with this suggestion, this chapter was moved to the 

end of the discussion and the title has been expanded with the limitations (page 14, paragraphs 2-

3). 

 
““Re the paragraph; “It is of note that the blood volume expressed relative to body weight is about 30% greater in 

piglets than for adults.…….” I still think this statement/paragraph is confusing and needs a little more clarification. 

Please expand on the “the blood volume expressed relative to body weight is about 30% greater in piglets than for 

adults” What exactly is the blood volume per kg for each age group? 

Please explain what “the level of targeted Hct” is exactly and how it was “comparable between groups”.” 

Reply 2: We referred in the manuscript to the studies that determined the blood volume in piglets 

(90 +/- 6.1 ml/kg) and in pigs (67.3 +/- 3.67 ml/kg). We believe that this difference may explain 

the initial steeper drop in hematocrit observed in the adult pigs. However, when mentioning the 

level of targeted hematocrit, we meant the level obtained following hemodilution. Our goal was 

to reach no statistically significant differences in the hematocrit values between the protocol 

groups after each step of hemodilution, as it is demonstrated on the top left panel of Fig. 3. 

 
“Still I am not sure you can prove that the degree of hemodilution is no different between groups. From my line of 

reasoning; the adults may have had a larger proportion of blood removed and therefore a larger proportion of 

crystalloid replaced relative to their body weight compared to the piglets. Hemodilution may have been more in the 

adults. This is a limitation and needs to be stated clearly in this section.” 

Reply 3: The lack of difference in the degree of hemodilution between the protocol groups is 

based on the lack of evidence for a statistically significant difference in the hematocrit levels at 

any stage of the stepwise hemodilution (ANH1-ANH5; top left panel of Fig. 3). We agree that the 

relative proportions of withdrawn blood and the re-administered crystalloid may differ between 

pigs and piglets relative to their body weight. However, we feel that the end-point of the 

hemodilution maneuvers can be quantified adequately with the blood hematocrit level, which was 

similar throughout in the study protocol. 

 
“Re: “However, it cannot be excluded that some of the cardiorespiratory and hemodynamic changes observed over 

time in each group was related to the anesthesia itself”. I would add that this is a further limitation which could have 

been addressed by using an anesthetized control in each cohort.” 

Reply 4: The suggested sentence has been added to the revised version of the “Methodological 

considerations and limitations” section of the Discussion (page 14, last sentence). 

 
“Finally, perhaps the authors could comment on the reason for the intergroup variability which seem to be high in a 

number of parameters.” 

Reply 5: The relatively large intergroup variability in the responses to ANH may be due to the 

presence of a great inter-individual variability in the changes in the cardiorespiratory parameters, 

especially in those reflecting cardiac function (e.g. CO) and lung extravasation (EVLW).  



 
“There are also a few grammatical errors which need to be corrected.” 

Reply 6: The manuscript underwent a thorough grammatical revision to correct errors. 

 

 

Reply to Reviewer 2: 

“Reviewer 2: 

Major Strengths: Authors addressed major concerns raised in the original version.” 

Reply 1: We thank the Reviewer for the further comments contributing to the improvement of 

our manuscript. 

 
“Specific issues that need to be addressed by authors: P14, last sentence: Therefore, the age-dependent 

cardiorespiratory responses to ANH suggest a better tolerability of this intervention in young individuals. 

--Clinically, younger individuals have less blood volume, and thus it is difficult to perform ANH. The authors should 

consider "clinical tolerability", and add a brief sentence that a clinical study is needed to determine if this is 

applicable to human in clinical setting. 

Reply 2: We agree with the Reviewer and a short statement suggested by the Reviewer has been 

added to the revised manuscript (page 15, last sentence). 
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ABSTRACT 

Background: Acute normovolemic hemodilution (ANH) is considered as a blood sparing 

intervention during the perioperative management. We aimed at comparing the 

cardiopulmonary consequences of ANH between adult pigs and weaned piglets to establish the 

effects of lowering hematocrit (Hct) in these age groups, and thereby testing the hypothesis that 

difference in the age-related physiological behavior will be reflected in the cardiorespiratory 

changes following ANH. 

Methods: ANH was achieved in anesthetised, mechanically ventilated adult minipigs and 5-

weeks old weaned piglets by stepwise blood withdrawal (10 ml/kg) with crystalloids 

replacement. Cardiorespiratory assessments consisted of measuring airway resistance (Raw), 

respiratory tissue elastance (H), effective lung volume (ELV), extravascular lung water 

(EVLW), mean arterial pressure (MAP), pulmonary blood flow (PBF) and cardiac output (CO). 

Respiratory and hemodynamic measurements were made at control conditions and following 

each ANH condition obtained with 5 to 7 steps. 

Results: ANH induced immediate and progressive increases in Raw and H in both groups with 

more pronounced worsening in adults despite the similar decreases in Hct. The increases in 

EVLW were significantly greater in the adult population with the differences in mean (DM) of 

25.1% (95% CI 5.3%-44.9%). Progressive ANH led to significant decreases in the DM of PBF 

(45.3% (95% CI 19.8%-70.8%) and MAP (36.3% (95% CI 18.7%-53.9%) only in adults, 

whereas CO increased significantly only in the piglets (DM: 51.6 (95% CI 14.2%-89.0%)).  

Conclusions: While ANH led to mild detrimental cardiorespiratory changes in weaning piglets, 

gradual developments of bronchoconstriction, lung tissue extravasation and stiffening, and 

deteriorations in systemic and pulmonary hemodynamics were observed in adults. ANH may 

exert age-dependent cardiorespiratory effect.  
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INTRODUCTION 

 

Anesthesiologists are frequently challenged by the perioperative indication for blood 

transfusion. Despite heterogeneous results highlighted in a recent meta-analysis on the 

efficiency of acute normovolemic hemodilution (ANH) (1), this strategy is still often considered 

in the perioperative setting to reduce blood transfusion (1-4). Although there is no consensus in 

the literature about the threshold level for the lowered hematocrit (Hct), the critical level to 

initiate transfusion in pediatric and adult population differs (5-11) and is only based on expert 

opinion rather than evidence-based findings.  

 

When achieving ANH, various fluid replacements have been considered in order to maintain 

hemodynamic stability. However, administration of crystalloids or colloids leads to fluid 

extravasation, thereby affecting various organs, with the heart and the lungs being the most 

affected due to cardiopulmonary interactions (12,13). We recently demonstrated that fluid 

resuscitations with crystalloids and colloids lead to perivascular pulmonary edema with 

subsequent adverse alterations in lung tissue mechanics (13). 

 

The main factors in the development of pulmonary edema are related to capillary permeability, 

transmural hydrostatic pressure and the oncotic pressures determined by the protein balance. 

Different cellular profiles in the bronchoalveolar lavage fluid were observed between children 

and adults with normal (14) or diseased lungs (15), suggesting an age-related difference in the 

alveolar-capillary permeability following fluid replacement therapy. While this also implies 

potential dissimilarities between children and adults in the pulmonary edema development and 

subsequent impairment of lung function, the changes in the cardio-respiratory system to ANH 

between a pediatric and an adult population have not been compared. We hypothesize that the 

difference in the age-related physiological behavior will be reflected in the cardiorespiratory 
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changes following ANH. Therefore, we aimed at characterizing the age-related differences in 

the cardiorespiratory responses to ANH in a porcine model with particular focus on the separate 

description of the F mechanics and respiratory tissue viscoelasticity. 
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METHODS 

Animal preparation 

Following approval by the institutional ethics committee for experimental research of the 

University of Geneva and animal well-fare committee of the Canton of Geneva, Switzerland 

(registration number GE/44/14), studies were performed on 5-week old piglets (n=8) and 5-6 

years old adult mini pigs (n=8). Considering that pigs age at a rate of about 5 years to one of a 

human, these ages reflect infants for the piglets (under 1 year of age) and maturity (30 

years)(16). Since our primary aim was to compare the changes in the adult and pediatric model 

and not to characterize alterations in the respiratory mechanics or hemodynamics per se, no 

sham-treated control group was involved.  

 

All animals were premedicated by an intramuscular injection of a mixture of azaperone (8 

mg/kg), midazolam (0.75 mg/kg) and atropine (25 g/kg). Induction of anesthesia is achieved 

with isoflurane 3-4% until securing intravenous access via the ear vein then, tracheal intubation 

was performed after administration of fentanyl (2 g/kg) and atracurium (0.5 mg/kg). 

Anesthesia was maintained by continuous intravenous infusions of propofol (10-15 mg/kg/h) 

and fentanyl (10 µg/kg/h) via the ear vein. Animals were mechanically ventilated with volume 

controlled mode (7 ml/kg) by a commercial ventilator with additional software (Servo-i, 

Maquet Critical Care, Solna Sweden), with a frequency of 12-15/min in the adult group and 25-

30/min in the piglet group in order to obtain an end-tidal CO2 (ETCO2) in the normal range. A 

positive end-expiratory pressure (PEEP) at 5 cmH2O was kept in all animals and the inspired 

oxygen fraction (FiO2) was set to 0.3. After ensuring adequate anesthesia and analgesia level, 

via surgical preparation the right femoral artery was cannulated with a thermistor-tipped 

femoral arterial catheter (Pulsiocath 5F, 20 cm or 3F, 7 cm) for continuous arterial blood 

pressure monitoring and hemodynamic measurements using PiCCO monitoring system (PiCCO 

Plus, Pulsion Medical Systems, Germany). The left femoral artery was also cannulated for 
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blood sampling and to perform blood withdrawals for hemodilution. In addition, the right 

internal jugular vein was cannulated with a triple-lumen central venous catheter (Arrow, USA) 

for fluid administration, cold fluid indicator injections and for central venous pressure 

monitoring. Rectal temperature was monitored with a temperature sensor (Thermalert, model 

TH-8, Physitemp, Clifton, NJ, USA) and was maintained at 38°C with a heating pad (Miostar, 

Zürich, Switzerland). Airway, arterial and central venous pressures, heart rate and 

electrocardiogram were continuously displayed and recorded via PowerLab data acquisition 

hardware (PowerLab, ADInstruments, Oxfordshire, UK), and recorded on a computer with 

LabChart software (ADinstrument, Dunedin, New Zealand).  

Arterial blood was collected at control condition and after each step of hemodilution to 

determine pH, partial pressure of O2 (PaO2) and CO2 (PaCO2), bicarbonate (HCO3) and base 

excess (BE) (VetScan i-STAT1 Handheld Analyzer with EG6+ cartridge, Abaxis, Union City, 

CA, USA). Bladder catheterization was performed to ensure free urinary outflow and to avoid 

possible urinary retention. 

The core body temperature was maintained stable by warmed fluids, warming lights and a 

heating pad. 

 

Hemodynamic monitoring 

Cardiac output (CO) and volumetric variables such as extravascular lung water (EVLW) were 

measured with the single-indicator transpulmonary thermodilution technique (17-20). Briefly, 

the PiCCO values were obtained by injections of 10 ml (in piglets) or 20 ml (in adult pigs) 

boluses of cold (< 5°C) normal saline via the central venous line and temperature changes were 

measured with the thermistor tipped femoral artery catheter. Analyses of the thermodilution 

curve allow the calculation of the cardiac output (CO) and extravascular lung water 

(EVLW)(21,22). EVLW reflects all fluid that is outside of the pulmonary vasculature which 

includes interstitial and alveolar fluid. As it was demonstrated previously rapid changes in blood 
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pressure or intravascular volume affects the accuracy of the PiCCO measurements unless 

recalibrated(23). Therefore each set of PiCCO measurement was performed by recalibration by 

transpulmonary thermodilution. Pulmonary blood flow (PBF) was estimated from the 

capnodynamic monitoring as described below. 

 

Measurement of ELV and PBF  

ELV, the effective lung volume participating in gas exchange, and PBF were calculated using 

the differential Fick method (CO2) as described earlier (24,25). Briefly, a specific breathing 

pattern is used to create variations in the end tidal carbon dioxide (EtCO2) of about 0.5-1.0 kPa, 

which allows estimation of ELV and PBF using the differential Fick equation(26). This specific 

pattern of breathing is achieved by an additional software of the Servo-i ventilator that creates 

five consecutive alterations in inspiratory/expiratory ratio (1:2 to 1.5:1) by varying the 

inspiratory pause (27). Airflow and expired CO2 are measured by the ordinary Y-piece flow 

sensor and a main stream CO2-transducer. Flow and CO2 data from Servo-i are exported, via 

the RS232 port, to a laptop with a special designed software application written in Matlab™ 

(Mathworks, Natick, Massachusetts, U.S.A.).  

 

Impedance measurements 

The input impedance spectra of the respiratory system (Zrs) in the animals was measured using 

a method previously described (28,29). Briefly, the tracheal cannula was connected to a 

loudspeaker-in-box system at end-expiration, which was pressurized to the level of PEEP 

during the measurements to maintain the mean transpulmonary pressure constant during 

measurements. Small amplitude pseudorandom signal (15 non integer multiples between 0.5 

and 21 Hz) was generated by a loudspeaker and was led through a screen pneumotachograph 

(11 mm ID) connected to a differential pressure transducer (model 33NA002D, ICSensors, 

Malpitas, CA, USA) to measure tracheal airflow (V’). Another pressure transducer connected 
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to a side-port of the endotracheal tube with identical type was used to measure the airway 

opening pressure (Pao). Zrs (Zrs = Pao/V’) was calculated by Fast Fourier transformation with 

4-s time windows and 95% overlapping from the 10-s long recordings.  

 

To separate airway and respiratory tissue mechanics from Zrs spectra, a model containing 

frequency-independent airway resistance (Raw) and inertance (Iaw), in series with a constant-

phase tissue model (30)  including damping (G) and elastance (H) was fitted to Zrs by means 

of a global optimization procedure, which minimized the differences between the measured and 

modeled impedance values. As previously established, Raw reflects mainly the flow resistance 

of the airways, G describes the energy loss within the respiratory tissues (resistance) while H 

characterizes the energy storage capacity of the respiratory tissues (elastance). The reported 

Raw values were corrected for the resistance of the measurement set-up, including the tracheal 

cannula.  

 

Study protocol 

Following animal preparation and after reaching steady-state conditions in the systemic 

hemodynamic and ventilation parameters, two hyperinflation manoeuvres were performed by 

superimposing three inspiratory cycles to reach a peak pressure of 30 cmH2O to standardize the 

volume history. Three minutes later, arterial blood samples were taken for blood gas analyses 

and a set of respiratory mechanical data including 4 Zrs recordings, and hemodynamic 

parameters were recorded to establish the baseline values (BL). Continuous measurement of 

ELV and PBF with the Servo-i ventilator was then performed for 10 minutes. In the next 20-

min period, stepwise 10 ml/kg of arterial blood withdrawal manoeuvres were achieved while 

compensating with 30 ml/kg of crystalloids solution (Ringer acetate®) (Figure 1). Another lung 

volume standardization maneuver was performed 2 min before starting data collection. Arterial 

blood samples were taken and another set of respiratory mechanical and systemic 
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hemodynamic, ELV and PBF measurements were performed following achieving of at least 10 

minutes of steady state condition. This sequence, which had a duration of 30 minutes in total, 

was repeated 7 times (ANH1-ANH7 in piglets) or until severe hemodynamic impairment 

characterized by a drop in MAP below 50 mmHg (5 times in adult pigs, as ANH1-ANH5). 

 

Statistical analyses 

Unless indicated differently, group mean values with SE data are reported. Normality was 

checked with the Kolmogorov-Smirnov test with Lilliefors correction. To assess the effect of 

hemodilution in the two groups of animals, two-way repeated measures analysis of variance 

(ANOVA) with a general linear model was used with group allocation as independent factor 

(piglet or pig), and the measurement condition (baseline and hemodilution manoeuvers) as 

repeated measures (within-subject) factor. The interaction between these factors was also 

incorporated in the analyses (i.e. group-by-hemodilution level). Since the changes in the 

parameter values relative to the baseline were in the center of interest, the repeated comparisons 

were performed between the parameters obtained under the baseline conditions (BL) to those 

measured following each step of hemodilution (ANH1-ANH7). The Holm-Sidak multiple 

comparison procedure was employed to compare parameters under different conditions. 

Correlation analyses were performed by using Pearson correlation test. A sample size 

estimation was performed considering 25% absolute difference between the groups as clinically 

significant, and taking into account the mean values and the variabilities of the primary outcome 

(H) established in our previous experiments in pigs (33.14.5 cmH2O/l)(28) and the expected 

meanSD values for piglets of 3 times higher. This sample size estimation based on a 

standardized effect size of 0.92 revealed that 8 pigs are necessary in each group to detect 

statistically significant difference with  to be 0.05 and 85% power with adjustments for 

multiple comparisons (31). The statistical tests were performed with a SigmaPlot (Version 11, 
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Systat Software, Inc. Chicago, IL, USA) software package. In each test, a significance level of 

p<0.05 was applied. 
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RESULTS 

 

Baseline parameters including the body weight, systemic and pulmonary hemodynamics, and 

respiratory mechanics are shown in Table 1 for both study populations. As expected from the 

higher body weight, adult pigs exhibited higher CO, PBF and ELV levels, whereas respiratory 

mechanical parameters including Raw, G and H were lower.  

 

Changes in those parameters where markedly different magnitudes are expected between the 

study populations are presented as relative changes to the baseline following each step of ANH; 

this facilitates direct comparisons between the trends obtained in adult pigs and piglets. The 

exact values for these parameters can be anticipated in the view of the baseline parameters 

presented on Table 1.  

 

Changes in the respiratory mechanical parameters are shown in Figure 2. Statistically 

significant interactions were observed between age and hemodilution steps for all respiratory 

mechanical parameters (p<0.05, p<0.01 and p<0.001 for Raw, G and H, respectively), 

indicating that the age affects significantly the respiratory mechanical responses to ANH. 

Statistically significant differences between the study groups were observed following the ANH 

maneuvers in Raw (p<0.01 after the second ANH maneuver), G (p<0.03 after the first ANH 

maneuver), and H (p<0.05 after the third ANH maneuver). Concerning the changes in the 

parameters within a protocol group, ANH led to immediate increases in Raw (p<0.001) and H 

(p<0.001) in both study groups. Conversely, ANH led to immediate and significant decrease in 

G (p<0.01) in the adult pigs whereas, piglets exhibited less pronounced drops (Figure 2 B). 

Analyses of the interactions revealed that changes in ELV over ANH levels were not 

significantly different between groups (p=0.7), with significant within group decreases 

occurred only in the adult population (Figure 2 D, p<0.05).  
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Changes in the hemodynamical parameters obtained from the adult and pediatric porcine 

population are demonstrated on Figure 3. Progressive ANH decreased gradually the Hct level 

in both study groups (p<0.02), with no significant effect of age (p=0.13) (Figure 3 A). 

Compensating the blood extraction with crystalloids led to changes in EVLW in both groups 

that were more pronounced in the adult pigs (Figure 3 B), leading to significant differences 

between the groups after at the final stage of the protocol (group-by-hemodilution interaction 

of p<0.01). While HR increased (p<0.001 for ANH effect) similarly in both groups concomitant 

to the hemodilution (p=0.94 for group-by-hemodilution interaction), MAP remained stable in 

piglets as a result of significant increase in CO (Figure 3 E, p<0.02). Conversely, MAP 

exhibited significant decreases (p<0.03) in adult pigs following hemodilution as a result of drop 

in PBF (Figure 4 F, p< 0.005), which was not compensated by the increase in HR (Figure 3 D). 

Due to dissociated changes in MAP in the protocol groups, age had significant effects on the 

MAP responses to ANH (p<0.001 for group-by-hemodilution interaction). 

 

Parameters obtained from the arterial blood samples are demonstrated on Figure 4. No 

statistically significant differences were detected between the study groups in pH, PaCO2, 

HCO3 and BE. However, PaO2 exhibited statistically significant decreases following each ANH 

step only in the adult pigs (p<0.02). Lactate concentration was obtained at the end of the 

experimental protocol and revealed levels in the normal range for both adult pigs (1.630.71 

mmol/l (n=6)) and piglets (0.630.25 mmol/l (n=7)).  
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DISCUSSION 

 

The results of the present study revealed fundamental differences between the adult and 

pediatric porcine population in response to stepwise acute normovolemic hemodilution in 

respiratory mechanics, systemic and pulmonary hemodynamics, lung edema formation and loss 

of effective lung volume participating in gas exchange. Compared to piglets, ANH induced 

more pronounced changes in the airway and respiratory tissue mechanical parameters in the 

adult pigs. Stepwise hemodilution increased heart rate similarly in both groups with significant 

differences in the responses in CO and MAP. In adult pigs, ANH induced extravascular lung 

water accumulation that led to loss in lung volume and decreases in the arterial oxygen tension. 

 

Effects on respiratory function 

Respiratory mechanical parameters deteriorated in both age groups, with more severe alteration 

in the adult population. Since acute fluid overload elevates Raw and H (32), the initial increases 

in Raw and H observed in the present study can be attributed to the fluid overload as a result of 

the cardiopulmonary interaction. The rises in H with no further elevations in Raw after the 2nd 

hemodilution step may be attributed to the appearance of fluid extravasation. The magnitude 

and dynamics of the mechanical changes are in agreement with the observed increases in 

EVLW and the diminishment of ELV. These changes reflect pulmonary edema formation with 

lung volume loss affecting PaO2 in pigs. The link between H and EVLW is confirmed by the 

significant correlation between the changes in these parameters following ANH (r=0.44, 

p<0.05).  

 

Interestingly, G decreased significantly following hemodilution. This mechanical parameter is 

related to the resistive losses induced by the internal friction in the respiratory tissues. This 

finding may be related to decreased cell content of the blood in the pulmonary circulation (33). 
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The subsequent decreases in erythrocyte density may reduce cell-to-cell interaction thereby 

lessening energy dissipation in the blood-filled respiratory tissues. Accordingly, the decreases 

in Hct relative to the baseline correlated significantly with those in G in the initial phase of the 

protocol before fluid extravasation (i.e. before the 4th hemodilution maneuver) (r = 0.38, 

p<0.01). 

 

Effects on hemodynamics 

A common finding in both groups of animals is the presence of a compensatory cardiovascular 

mechanism maintaining physiological systemic hemodynamics until a drop in hematocrit to a 

level of 17% (Figure 3). Accordingly, ANH increased HR and CO as a compensatory 

mechanism to the reduced hemoglobin and oxygen content of the blood. The efficiency of this 

compensation can be appreciated by the maintenance of homeostasis and lack of metabolic 

acidosis.  

 

Differences between the age groups 

The most remarkable finding of the present study is the blunted adverse cardiorespiratory 

responses in piglets despite the similar decreases in Hct. The greater extravasation of 

intrapulmonary fluid in the adult model explains this age-dependence. Furthermore, the relative 

proportion of the contribution of the invariable blood viscoelasticity to the overall tissue 

damping properties of the lungs is expected to be greater in adult pigs than in piglets. As a 

consequence, significantly greater drops in G were observed in pigs than in piglets.  

 

Concerning the hemodynamic response to ANH, the two groups behaved differently beyond 

the threshold level of 17% in hematocrit. While the piglets were still able to compensate the 

further drop in hematocrit (as low as 11%), adult pigs exhibited severe hemodynamic 

deteriorations. This finding can be explained in the adult model by the development of cardiac 

failure due to the severe decrease in oxygen transport. Considering the increased myocardial 
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oxygen demand due to severe tachycardia and to the decrease in tissue perfusion due to the 

elevated vascular permeability, a decrease in hematocrit level is expected to jeopardize rapidly 

the cardiac function in adults. Since younger individuals tolerate better the increased oxygen 

demand of the myocardium (34), this adverse cardiopulmonary effect is expected to be less 

prominent in this age group. 

 

Methodological considerations and limitations 

A fixed blood volume (10 ml/kg) was removed in both study populations. It is of note that the 

blood volume expressed relative to body weight is about 30% greater in piglets than for adults 

(35,36). While this phenomenon may explain the initial steeper drops in the Hct in the adult 

pigs (Figure 3 A), the level of targeted Hct was comparable between the study populations, 

suggesting that the degree of hemodilution was comparable between the groups.   

 

Replacement of blood with a crystalloid is commonly applied to preserve normovolemia 

following acute blood loss. However, there have been only scarce objective assessments 

regarding the optimal fluid replacement strategy contributing greatly to the generation of recent 

debates around this conflicting issue. Recent international consensus recommendations 

promote the administration of crystalloids as fluid replacement in the presence of acute blood 

loss (37). In agreement with these guidelines, we applied 3:1 ratio that prove to maintain a 

stable homeostasis with no metabolic acidosis (Figure 4) indicating maintenance of oxygen 

metabolism and sufficient systemic perfusion. Furthermore, efforts were made to maintain 

respiratory stability by regular volume standardization maneuvers, to minimize any potential 

time effect of anesthesia and mechanical ventilation per se. However, it cannot be excluded that 

some of the cardiorespiratory and hemodynamic changes observed over time in each group was 

related to the anesthesia itself; this potential further limitation could have been addressed by 

using an anesthetized control in each cohort. 
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Summary and conclusions 

The results of the present study demonstrate prompt effects of ANH on the cardiorespiratory 

function with the severity of adverse symptoms depending greatly on the age of the subject.  In 

adult pigs, gradual developments of bronchoconstriction, lung tissue extravasation, lung tissue 

stiffening, and deteriorations in systemic and pulmonary hemodynamics were observed, with 

rapid exacerbation of these adverse symptoms when hematocrit was lowered below a threshold 

limit of 17%. Conversely, these detrimental changes in the cardiorespiratory system were 

markedly milder in the pediatric porcine model. Therefore, the age-dependent cardiorespiratory 

responses to ANH suggest a better tolerability of this intervention in young individuals; 

however, a clinical study is needed to clarify the applicability of these findings to humans. 
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Piglets 

(n=8) 

Adult pigs 

(n=8) 

Absolute differences 

Mean (95% CI of the difference) 

BW (kg) 9.40.85 54.37.3 44.9 (39.3 – 50.5) 

MAP (mmHg) 65.514.4 79.013.9 13.5 (-1.7 – 28.7) 

FCO (l/min) 1.70.40 2.80.82 1.1 (0.41 – 1.79) 

PBF (l/min) 1.800.54 4.831.3 3.03 (1.96 – 4.10) 

HR (1/min) 97.616.7 11931 21.4 (-5.30 – 48.1) 

ELV (ml) 27562 1702238 1427 (1240 – 1614) 

ELV (ml/kg) 29.25.4 31.53.1 2.3 (-2.42 – 7.02) 

EVLW (ml) 18379 20031 17 (-47.4 – 81.4) 

Raw (cmH2O.s/l) 3.190.51 1.320.14 1.87 (1.46 – 2.27) 

G (cmH2O/l) 23.93.4 6.081.5 17.82 (15.0 – 20.6) 

H (cmH2O/l) 11114.7 31.35.9 79.7 (67.7 – 91.7) 

 

Table 1. Baseline characteristics of the piglets and adult pigs. Data in the first two columns 

are mean  SD. Last column reports the absolute value of the differences of means and the 

95% confidence intervals (CI) for the differences. BW: body weight, MAP: mean arterial 

pressure, CO: cardiac output, PBF: pulmonary blood flow, HR: heart rate, ELV: effective 

lung volume, EVLW: extravascular lung water, Raw: airway resistance, G: tissue damping, 

H: tissue elastance. 
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FIGURE LEGENDS 

 

Figure 1. Scheme of the experimental protocol. Control measurements were initiated after 

establishing stead-state respiratory and hemodynamical conditions. Measurements were 

repeated after each step of acute normovolemic hemodilution (ANH1-ANH7). FOT: forced 

oscillatory recordings to assess airway and tissue mechanics, ELV: effective lung volume, PBF: 

pulmonary blood flow, CO: cardiac output, EVLW: extravascular lung water, MAP: mean 

arterial pressure, HR: heart rate. 

 

Figure 2. Changes in the airway resistance (Raw, panel A), tissue damping (G, panel B), tissue 

elastance (H, panel C) and effective lung volume (ELV, panel D) following stepwise acute 

normovolemic hemodilution (ANH1-ANH7) in adult pigs (n=8; open symbols) and in 5-week 

old weaning piglets (n=8; closed symbols). Data points and error bars represent meanSE 

values. *: p<0.05 vs. the corresponding baseline values. : p<0.05 between groups within a 

measurement condition. 

 

Figure 3. Hematocrit levels (Hct, panel A) and relative changes in the extravascular lung water 

(EVLW, panel B), mean arterial pressure (MAP, panel C), heart rate (HR, panel D), cardiac 

output (CO, panel E) and pulmonary blood flow (PBF, panel F) following stepwise acute 

normovolemic hemodilution (ANH1-ANH7) in adult pigs (n=8; open symbols) and in 5-week 

old weaning piglets (n=8; closed symbols). Data points and error bars represent meanSE 

values. *: p<0.05 vs. the corresponding baseline values. : p<0.05 between groups within a 

measurement condition. 

 

Figure 4. Parameter values obtained from the arterial blood samples following stepwise acute 

normovolemic hemodilution (ANH1-ANH7) in adult pigs (n=8; open symbols) and in 5-week 
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old weaning piglets (n=8, closed symbols). PaO2: partial pressure of oxygen, PaCO2: partial 

pressure of carbon dioxide, HCO3: bicarbonate, BE: base excess. Data points and error bars 

represent meanSE values. *: p<0.05 vs. the corresponding baseline values. : p<0.05 between 

groups within a measurement condition. 
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