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A minimax problem for sums of translates on the torus

Bálint Farkas, Béla Nagy and Szilárd Gy. Révész

Abstract

We extend some equilibrium-type results first conjectured by Ambrus, Ball and Erdélyi, and
then proved recenly by Hardin, Kendall and Saff. We work on the torus T � [0, 2π), but the
motivation comes from an analogous setup on the unit interval, investigated earlier by Fenton.

The problem is to minimize — with respect to the arbitrary translates y0 = 0, yj ∈ T,
j = 1, . . . , n — the maximum of the sum function F := K0 +

∑n
j=1 Kj(· − yj), where the

functions Kj are certain fixed ‘kernel functions’. In our setting, the function F has singularities
at functions yj , while in between these nodes it still behaves regularly. So one can consider the
maxima mi on each subinterval between the nodes yj , and minimize maxF = maxi mi. Also the
dual question of maximization of mini mi arises.

Hardin, Kendall and Saff considered one even kernel, Kj = K for j = 0, . . . , n, and Fenton
considered the case of the interval [−1, 1] with two fixed kernels K0 = J and Kj = K for
j = 1, . . . , n. Here we build up a systematic treatment when all the kernel functions can be
different without assuming them to be even. As an application we generalize a result of Bojanov
about Chebyshev-type polynomials with prescribed zero order.

1. Introduction

The present work deals with an ambitious extension of an equilibrium-type result, conjectured
by Ambrus, Ball and Erdélyi [2] and recently proved by Hardin, Kendall and Saff [18]. To
formulate this equilibrium result, it is convenient to identify the unit circle (or one-dimensional
torus) T, R/2πZ and [0, 2π), and call a function K : T → R ∪ {−∞,∞} a kernel. The setup of
[2, 18] requires that the kernel function is convex and has values in R ∪ {∞}. However, due
to historical reasons, described below, we will suppose that the kernels are concave and have
values in R ∪ {−∞}, the transition between the two settings is a trivial multiplication by −1.
Accordingly, we take the liberty to reformulate the results of [18] after a multiplication by −1,
so in particular for concave kernels (see Theorem 1.1).

The setup of our investigation is therefore that some concave function K : T → R ∪ {−∞}
is fixed, meaning that K is concave on [0, 2π). Then K is necessarily either finite valued (that
is, K : T → R) or it satisfies K(0) = −∞ and K : (0, 2π) → R (the degenerate situation when
K is constant −∞ is excluded), and K is upper semi-continuous on [0, 2π), and continuous on
(0, 2π).

The kernel functions are extended periodically to R and we consider the sum of translates
function

F (y0, . . . , yn, t) :=
n∑

j=0

K(t− yj).
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The points y0, . . . , yn are called nodes. Then we are interested in solutions of the minimax
problem

inf
y0,...,yn∈[0,2π)

sup
t∈[0,2π)

n∑
j=0

K(t− yj) = inf
y0,...,yn∈[0,2π)

sup
t∈[0,2π)

F (y0, . . . , yn, t),

and address questions concerning existence and uniqueness of solutions, as well as the
distribution of the points y0, . . . , yn (mod 2π) in such extremal situations.

In [2] it was shown that for K(t) := −|eit − 1|−2 = (−1/4) sin−2(t/2) (which comes from
the Euclidean distance |eit − eis| = 2 sin((t− s)/2) between points of the unit circle on the
complex plane), maxF is minimized exactly for the regular, in other words, equidistantly
spaced, configuration of points, that is, if we normalize by taking y0 = 0, then yj = 2πj/(n + 1)
for j = 0, . . . , n. (The authors in [2] mention that the concrete problem stems from a certain
extremal problem, called ‘strong polarization constant problem’ by [1].)

Based on this and natural heuristical considerations, Ambrus, Ball and Erdélyi conjectured
that the same phenomenon should hold also when K(t) := −|eit − 1|−p (p > 0), and, moreover,
even when K is any concave kernel (in the above sense). Next, this was proved for p = 4 by
Erdélyi and Saff [14]. Finally, in [18] the full conjecture of Ambrus, Ball and Erdélyi was
indeed settled for symmetric (even) kernels.

Theorem 1.1 (Hardin, Kendall and Saff). Let K be any concave kernel function.
such that K(t) = K(−t). For any 0 = y0 � y1 � · · · � yn < 2π write y := (y1, . . . , yn) and
F (y, t) := K(t) +

∑n
j=1 K(t− yj). Let e := ( 2π

n+1 , . . . ,
2πn
n+1 ) (together with 0 the equidistant

node system in T).

(a) Then

inf
0=y0�y1�...�yn<2π

sup
t∈T

F (y, t) = sup
t∈T

F (e, t),

that is, the smallest supremum is attained at the equidistant configuration.
(b) Furthermore, if K is strictly concave, then the smallest supremum is attained at the

equidistant configuration only.

We thank the anonymous referee for drawing our attention to a results of Erdélyi, Hardin
and Saff [13]. They reestablished Theorem 1.1 with a different method and then they applied
it in proving an inverse Bernstein-type inequality.

Although this might seem as the end of the story, it is in fact not. The equilibrium
phenomenon, captured by this result, is indeed much more general, when we interpret it from a
proper point of view. However, to generalize further, we should first analyze what more general
situations we may address and what phenomena we can expect to hold in the formulated more
general situations. Certainly, regularity in the sense of the nodes yj distributed equidistantly
is a rather strong property, which is intimately connected to the use of one single and fixed
kernel function K. However, this regularity obviously entails equality of the ‘local maxima’
(suprema) mj on the arc between yj and yj+1 for all j = 0, 1, . . . , n, and this is what is usually
natural in such equilibrium questions.

We say that the configuration of points 0 = y0 � y1 � · · · � yn � yn+1 = 2π equioscillates,
if

mj(y1, . . . , yn) := sup
t∈[yj ,yj+1]

F (y1 . . . , yn, t) = sup
t∈[yi,yi+1]

F (y1, . . . , yn, t) =: mi(y1, . . . , yn)

holds for all i, j ∈ {0, . . . , n}. Obviously, with one single and fixed kernel K, if the nodes are
equidistantly spaced, then the configuration equioscillates. In the more general setup, this — as
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will be seen from this work — is a good replacement for the property that a point configuration
is equidistant.

To give a perhaps enlightening example of what we have in mind, let us recall here a
remarkable, but regrettably almost forgotten result of Fenton (see [16]), in the analogous,
yet also somewhat different situation, when the underlying set is not the torus T, but the unit
interval I := [0, 1]. In this setting the underlying set is not a group, hence defining translation
K(t− y) of a kernel K can only be done if we define the basic kernel function K not only on
I but also on [−1, 1]. Then for any y ∈ I the translated kernel K(· − y) is well defined on I,
moreover, it will have analogous properties to the above situation, provided we assume K|I
and also K|[−1,0] to be concave. Similarly, for any node systems the analogous sum F will have
similar properties to the situation on the torus.

From here one might derive that under the proper and analogous conditions, a similar
regularity (that is, equidistant node distribution) conclusion can be drawn also for the case of
I. But this is not the only result of Fenton, who indeed did dig much deeper.

Observe that there is one rather special role, played by the fixed endpoint(s) y0 = 0
(and perhaps yn+1 = 1), since perturbing a system of nodes the respective kernels are
translated — but not the one belonging to K0 := K(· − y0), since y0 is fixed. In terms of (linear)
potential theory, K = K(· − y0) =: K0 is a fixed external field, while the other translated
kernels play the role of a certain ‘gravitational field’, as observed when putting (equal) point
masses at the nodes. The potential theoretic interpretation is indeed well observed already in
[14], where it is mentioned that the Riesz potentials with exponent p on the circle correspond
to the special problem of Ambrus, Ball and Erdélyi. From here, it is only a little step further
to separate the role of the varying mass points, as generating the corresponding gravitational
fields, from the stable one, which may come from a similar mass point and law of gravity —
or may come from anywhere else.

Note that this potential theoretic external field consideration is far from being really new.
To the contrary, it is the fundamental point of view of studying weighted polynomials (in
particular, orthogonal polynomial systems with respect to a weight), which has been introduced
by the breakthrough paper of Mhaskar and Saff [22] and developed into a far-reaching theory
in [26] and several further treatises. So in retrospect we may interpret the factual result of
Fenton as an early (in this regard, not spelled out and very probably not thought of) external
field generalization of the equilibrium setup considered above.

Theorem 1.2 (Fenton). Let K : [−1, 1] → R ∪ {−∞} be a kernel function in C2(0, 2π)
which is concave and which is monotone both on (−1, 0) and (0, 1) with K ′′ < 0 and
D±K(0) = ±∞ that is, the left- and right-hand side derivatives of K at 0 are −∞ and
+∞, respectively. Let J : (0, 1) → R be a concave function and put J(0) := limt→0 J(t),
J(1) := limt→1 J(t) which could be −∞ as well. For y = (y1, . . . , yn) ∈ [0, 1]n consider

F (y, t) := J(t) +
n+1∑
j=0

K(t− yj),

where y0 := 0, yn+1 := 1. Then the following are true:

(a) there are 0 = w0 � w1 � · · · � wn � wn+1 = 1 such that with w = (w1, . . . , wn)

inf
0�y1�···�yn�1

max
j=0,...,n

sup
t∈[yj ,yj+1]

F (y, t) = sup
t∈[0,1]

F (w, t);

(b) the sum of translates function of w equioscillates, that is,

sup
t∈[wj ,wj+1]

F (w, t) = sup
t∈[wi,wi+1]

F (w, t)

for all i, j ∈ {0, . . . , n};
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(c) we have

inf
0�y1�···�yn�1

max
j=0,...,n

sup
t∈[yj ,yj+1]

F (y, t) = sup
0�y1�···�yn�1

min
j=0,...,n

sup
t∈[yj ,yj+1]

F (y, t);

(d) if 0 � z1 � · · · � zn � 1 is a configuration such that the sum of translates function F (z, ·)
equioscillates, then w = z.

This gave us the first clue and impetus to the further, more general investigations, which,
however, have been executed for the torus setup here. As regards Fenton’s framework, that
is, similar questions on the interval, we plan to return to them in a subsequent paper. The
two setups are rather different in technical details, and we found it difficult to explain them
simultaneously — while in principle they should indeed be the same. Such an equivalency
is at least exemplified also in this paper, when we apply our results to the problem of
Bojanov on so-called ‘restricted Chebyshev polynomials’: In fact, the original result of
Bojanov (and our generalization of it) is formulated on an interval. So in order to use our
results, valid on the torus, we must work out both some corresponding (new) results on
the torus itself, and also a method of transference (working well at least in the concrete
Bojanov situation). The transference seems to work well in symmetric cases, but becomes
intractable for non-symmetric ones. Therefore, it seems that to capture full generality, not
the transference, but direct, analogous arguments should be used. This explains our decision
to restrict current considerations to the case of the torus only. Let us also mention here a
recent, interesting manuscript by Benko, Coroian, Dragnev and Orive [4] where the authors
investigate a statistical problem which is a case of the interval setting of the minimax problem
here.

Nevertheless, as for generality of the results, the reader will see that we indeed make a
further step, too. Namely, we will allow not only an external field (which, for the torus case,
would already be an extension of Theorem 1.1, analogous to Theorem 1.2), but we will study
situations when all the kernels, fixed or translated, may as well be different. (Definitely, this
makes it worthwhile to work out subsequently the analogous questions also for the interval
case.)

The following exemplifies one of the main results of this paper, formulated here without
the convenient terminology developed in the later sections. It is stated again in Theorem 11.1
in a more concise way, and it is proved in Section 11 using the techniques developed in the
forthcoming sections.

Theorem 1.3. Suppose the 2π-periodic functions K0,K1, . . . ,Kn : R → [−∞, 0) are strictly
concave on (0, 2π) and either all are continuously differentiable on (0, 2π) or for each
j = 0, 1, . . . , n

lim
t↑2π

D+Kj(t) = lim
t↑2π

D−Kj(t) = −∞, or lim
t↓0

D−Kj(t) = lim
t↓0

D+Kj(t) = ∞,

D±Kj denoting the (everywhere existing) one sided derivatives of the function Kj . For any
0 = y0 � y1 � . . . � yn < 2π write y := (y1, . . . , yn) and F (y, t) := K0(t) +

∑n
j=1 Kj(t− yj).

Then there are w1, . . . , wn ∈ (0, 2π) such that

M := inf
y∈Tn

sup
t∈T

F (y, t) = sup
t∈T

F (w, t),

and the following hold:

(a) The points 0, w1, . . . , wn are pairwise different and hence determine a permutationx
σ : {1, . . . , n} → {1, . . . , n} such that 0 < wσ(1) < wσ(2) < · · · < wσ(n) < 2π. Denote by S the
set of points (y1, . . . , yn) ∈ T

n with 0 < yσ(1) < yσ(2) < · · · < yσ(n) < 2π. A point y ∈ S
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together with y0 := 0 determines n + 1 arcs on T, denote by Ij(y) the one that starts at
yj and goes in the counterclockwise direction (j = 0, 1 . . . , n). We have

sup
t∈I0(w)

F (w, t) = · · · = sup
t∈In(w)

F (w, t),

for which we say that w is an equioscillation point.
(b) With the set S from (a) we have

inf
y∈S

max
j=0,...,n

sup
t∈Ij(y)

F (y, t) = M = sup
y∈S

min
j=0,...,n

sup
t∈Ij(y)

F (y, t).

(c) For each x,y ∈ S

min
j=0,...,n

sup
t∈Ij(x)

F (x, t) � M � max
j=0,...,n

sup
t∈Ij(y)

F (y, t).

This is called the Sandwich Property.

With the help of this result we will prove a strengthening of Theorem 1.1 in Corollary 12.1.
A particular connection of this problem with physics is the field of Calogero–Moser and

the trigonometric Calogero–Moser–Sutherland systems (of types A and BC). In those models,
there are n particles on the unit circle and the interaction potential corresponds to the kernel
1/ sin2(x). Roughly speaking, if the particles are closer, then the repulsion force among them
is stronger. The positions of n particles depend on time t. If one of the particles is fixed, and
the others are in pairs which are symmetric (say, the fixed particle is at 0, and the others are
at x and 2π − x), then it is of BC type. The equilibrium state means that the particles do
not move, in some sense it is a minimal energy configuration. Then it is a simple fact that the
equilibrium configuration is the equidistant configuration only (see, for example, [11, p. 110]).
See also [10], which is on the real line. We thank Gábor Pusztai for informing us and providing
references. In this application the kernels are the same so one can apply the result of Hardin,
Kendall and Saff.

It is not really easy to interpret the situation of different kernels in terms of physics or
potential theory anymore. However, one may argue that in physics we do encounter some
situations, for example, in sub-atomic scales, when different forces and laws can be observed
simultaneously: strong kernel forces, electrostatic and gravitational forces, etc. Also it can
be that in the one-dimensional n-body problem though the potentials are the same, but the
masses of the particles are different. This leads to our formulation with different kernels, more
specifically to Theorem 13.1, where Kj = rjK with numbers rj > 0.

In any case, the reader will see that the generality here is clearly a powerful one: for
example, the above-mentioned new solution (and generalization and extension to the torus) of
Bojanov’s problem of restricted Chebyshev polynomials requires this generality. Hopefully, in
other equilibrium-type questions the generality of the current investigation will prove to be of
use, too.

In this introduction it is not yet possible to formulate all the results of this paper, because
we need to discuss a couple of technical details first, to be settled in Section 2. One such,
but not only technical, matter is the loss of symmetry with respect to the ordering of the
nodes, cf. the statement (a) of the previous Theorem 1.3. Indeed, in case of a fixed kernel to
be translated (even if the external field is different), all permutations of the nodes y1, . . . , yn
are equivalent, while for different kernels K1, . . . ,Kn we of course must distinguish between
situations when the ordering of the nodes differ. Also, the original extremal problem can have
different interpretations according to consideration of one fixed order of the kernels (nodes), or
simultaneously all possible orderings of them. We will treat both types of questions, but the
answers will be different. This is not a technical matter: We will see that, for example, it can
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well happen that in some prescribed ordering of the nodes (that is, the kernels) the extremal
configuration has equioscillation, while in some other ordering that fails.

We will progress systematically with the aim of being as self-contained as possible and
defining notation, properties and discussing details step by step. Our main result will only be
proved in Section 11. In Section 2 we will first introduce the setup precisely, most importantly
we will discuss the role of the permutation σ appearing in Theorem 1.3, hoping that the
reader will be satisfied with the motivation provided by this introduction. In subsequent
sections we will discuss various aspects: continuity properties in Section 3, other elementary
properties motivated by Shi’s setup [27] — like the Sandwich Property in Theorem 1.3(c)
— in Sections 5 and 9, limits and approximations in Section 4, concavity, distributions of
local extrema in Sections 6, 7 and 8, existence and uniqueness of equioscillation points — as
in Theorem 1.3(b) — in Section 10. This systematic treatment is not only justified by the
final proof of Theorem 1.3 and its far-reaching consequences (an extension of the Hardin–
Kendall–Saff result, see Corollary 12.1, or Theorems 13.1 and 13.7), but also the developed
techniques, such as Lemma 6.2 or those in Section 4, are interesting in their own right and
have the potential to prove themselves to be useful attacking also problems different from the
present one. In Section 12 we sharpen the result, Theorem 1.1, of Hardin, Kendall and Saff by
dropping the condition of the symmetry of the kernel. Finally, in Section 13 we will describe
how extensions of Bojanov’s results can be derived via our equilibrium results.

2. The setting of the problem

In this section we set up the framework and the notation for our investigations.
For given 2π-periodic kernel functions K0, . . . ,Kn : R → [−∞,∞) we are interested in

solutions of minimax problems such as

inf
y0,...,yn∈[0,2π)

sup
t∈[0,2π)

n∑
j=0

Kj(t− yj),

and address questions concerning existence and uniqueness of solutions, as well as the
distribution of the points y0, . . . , yn (mod 2π) in such extremal situations. In the case when
K0 = · · · = Kn similar problems were studied by Fenton [16] (on intervals), Hardin, Kendall
and Saff [18] (on the unit circle). For twice continuously differentiable kernels an abstract
framework for handling of such minimax problems was developed by Shi [27], which in turn
is based on the fundamental works of Kilgore [19, 20], and de Boor, Pinkus [12] concerning
interpolation theoretic conjectures of Bernstein and Erdős. Apart from the fact that we do not
generally pose C2-smoothness conditions on the kernels (as required by the setting of Shi), it
will turn out that Shi’s framework is not applicable in this general setting (cf. Example 5.13
and Section 9). The exact references will be given at the relevant places below, but let us stress
already here that we do not assume the functions Kj to be smooth (in contrast to [27]), and
that they may be different (in contrast to [16, 18]).

For convenience we use the identification of the unit circle (torus) T with the interval [0, 2π)
(with addition mod 2π), and consider 2π-periodic functions also as functions on T; we will
use the terminology of both frameworks, whichever comes more handy. So that we may speak
about concave functions on T (that is, on [0, 2π)), just as about arcs in [0, 2π) (that is, in T);
this will cause no ambiguity. We also use the notation

dT(x, y) = min
{|x− y|, 2π − |x− y|} (x, y ∈ [0, 2π]), (2.1)

and

dTm(x,y) = max
j=1,...,m

dT(xj , yj) (x,y ∈ T
m). (2.2)



A MINIMAX PROBLEM FOR SUMS OF TRANSLATES ON THE TORUS 7

Let K : (0, 2π) → (−∞,∞) be a concave function which is not identically −∞, and suppose

K(0) := lim
t↓0

K(t) = lim
t↑2π

K(t) =: K(2π),

that is, the two limits exist and they are the same. Such a function K will be called a concave
kernel function and can be regarded as a function on the torus T.

One of the conditions on the kernels that will be considered is the following:

K(0) = K(2π) = −∞. (∞)

Denote by D−f and D+f the left and right derivatives of a function f defined on an interval,
respectively. A concave function f , defined on an open interval possesses at each points left
and right derivatives D−f , D+f with D−f � D+f , and these are non-increasing functions;
moreover, f is differentiable almost everywhere and (the a.e. defined) f ′ is non-increasing.
Then, under condition (∞) it is obvious that we must also have that

lim
t↑0

D+K(t) = lim
t↑2π

D+K(t) = lim
t↑2π

D−K(t) = lim
t↑0

D−K(t) = −∞, (∞′
−)

and lim
t↓2π

D−K(t) = lim
t↓0

D−K(t) = lim
t↓0

D+K(t) = lim
t↓2π

D+K(t) = ∞. (∞′
+)

We can abbreviate this by writing D±K(2π) = D±K(0) = ±∞. These assumptions then imply
K ′(±0) = ±∞. The two conditions (∞′

−) and (∞′
+) together constitute

D−K(2π) = D−K(0) = −∞ and D+K(2π) = D+K(0) = ∞. (∞′
±)

More often, however, we will make the following assumption on the kernel K:

D−K(0) = −∞ or D+K(0) = ∞. (∞′)

For n ∈ N fixed let K0, . . . ,Kn be concave kernel functions. We take n + 1 points
y0, y1, y2, . . . , yn ∈ [0, 2π), called nodes. As a matter of fact, for definiteness, we will always
take y0 = 0 ≡ 2π mod 2π. Then y = (y1, . . . , yn) is called a node system. For notational
convenience we also set yn+1 = 2π. For a given node system y we consider the function

F (y, t) :=
n∑

j=0

Kj(t− yj) = K0(t) +
n∑

j=1

Kj(t− yj). (2.3)

For a permutation σ of {1, . . . , n} we introduce the notation σ(0) = 0 and σ(n + 1) = n + 1,
and define the simplex

Sσ :=
{
y ∈ T

n : 0 = yσ(0) < yσ(1) < · · · < yσ(n) < yσ(n+1) = 2π
}
.

In this paper the term simplex is reserved exclusively for domains of this form. Then Sσ is an
open subset of T

n with ⋃
σ

Sσ = T
n

(here and in the future A denotes the closure of the set A) and the complement T
n \X of the

set X :=
⋃

σ Sσ is the union of less than n-dimensional simplexes. Given a permutation σ and
y ∈ Sσ, for k = 0, . . . , n we define the arc Iσ,σ(k)(y) (in the counterclockwise direction)

Iσ,σ(k)(y) := [yσ(k), yσ(k+1)].

For j = 0, . . . , n we have Iσ,j(y) = [yj , yσ(σ−1(j)+1)]. Of course, a priori, nothing prevents that
some of these arcs Iσ,j(y) reduce to a singleton, but their lengths sum up to 2π

n∑
j=0

|Iσ,j(y)| = 2π.
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Most of the time we will fix a simplex, hence a permutation σ. In this case we will leave out
the notation of σ, and write Ij(y) instead of Iσ,j(y). If y ∈ X the notation of σ would be even
superfluous, because, in this case, y belongs to the interior of some uniquely determined simplex
Sσ. Hence, j and y ∈ X uniquely determine Iσ,j(y). However, for σ �= σ′ and for y ∈ Sσ ∩ Sσ′

on the (common) boundary, the system of arcs is still well defined, but the numbering of the
arcs does depend on the permutations σ′ and σ.

We set

mσ,j(y) := sup
t∈Iσ,j(y)

F (y, t),

and as above, if σ is unambiguous from the context, or if it is immaterial for the considerations,
we leave out its notation, that is, simply write mj(y). Saying that S = Sσ is a simplex implies
that the permutation σ is fixed and the ordering of mj is understood accordingly.

We also introduce the functions

m :Tn → [−∞,∞), m(y) := max
j=0,...,n

mj(y) = sup
t∈T

F (y, t),

m :Tn → [−∞,∞), m(y) := min
j=0,...,n

mj(y).

(For example, here it is immaterial which σ is chosen for a particular y.) Of interest are then
the following two minimax-type expressions:

M := inf
y∈Tn

m(y) = inf
y∈Tn

max
j=0,...,n

mj(y) = inf
y∈Tn

sup
t∈T

F (y, t), (2.4)

m := sup
y∈Tn

m(y) = sup
y∈Tn

min
j=0,...,n

mj(y). (2.5)

Or, more specifically, for any given simplex S = Sσ we may consider the problems:

M(S) := inf
y∈S

m(y) = inf
y∈S

max
j=0,...,n

mj(y) = inf
y∈S

sup
t∈T

F (y, t), (2.6)

m(S) := sup
y∈S

m(y) = sup
y∈S

min
j=0,...,n

mj(y). (2.7)

For notational convenience for any given set A ⊆ T
n we also define

M(A) : = inf
y∈A

m(y) = inf
y∈A

max
j=0,...,n

mj(y) = inf
y∈A

sup
t∈T

F (y, t),

m(A) : = sup
y∈A

m(y) = sup
y∈A

min
j=0,...,n

mj(y).

It will be proved in Proposition 3.11 that m(S) = m(S) and M(S) = M(S). Observe that then
we can also write

M = min
σ

inf
y∈Sσ

m(y) = min
σ

M(Sσ), (2.8)

m = max
σ

sup
y∈Sσ

m(y) = max
σ

m(Sσ). (2.9)

We are interested in whether the infimum or supremum are always attained, and if so, what
can be said about the extremal configurations.

Example 2.1. If the kernels are only concave and not strictly concave, then the minimax
problem (2.6) may have many solutions, even on the boundary ∂S of S = Sσ. Let n be
fixed, K0 = K1 = · · · = Kn = K and let K be a symmetric kernel (K(t) = K(2π − t)) which
is constant c0 on the interval [δ, 2π − δ], where δ < π/(n + 1). Then for any node system y we
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have maxt∈Tn F (y, t) = (n + 1)c0, because the 2δ long intervals around the nodes cannot cover
[0, 2π].

Proposition 2.2. For every δ > 0 there is L = L(K0, . . . ,Kn, δ) � 0 such that for every
y ∈ T

n and for every j ∈ {0, . . . , n} with |Ij(y)| > δ one has mj(y) � −L.

Proof. Let δ ∈ (0, 2π). Each function Kj , j = 0, . . . , n is bounded from below by
−Lj := −Lj(δ) � 0 on T \ (−δ/2, δ/2). So that for y ∈ T

n the function F (y, t) is bounded
from below by −L := −(L0 + · · · + Ln) on B := T \⋃n

j=0(yj − δ/2, yj + δ/2). Let y ∈ T
n and

j ∈ {0, . . . , n} be such that |Ij(y)| > δ, then there is t ∈ B ∩ Ij(y), hence mj(y) � −L. �

Corollary 2.3. (a) The mapping m is finite valued on T
n.

(b) m is bounded.
(c) For each simplex S := Sσ we have that m(S),M(S) are finite, in particular m,M ∈ R.

Proof. Since K0, . . . ,Kn are bounded from above, say by C � 0, F (y, t) � (n + 1)C for
every t ∈ T and y ∈ T

n. This yields m(S),M(S) � (n + 1)C.
Take any y ∈ S consisting of distinct nodes, so mj(y) > −∞ for each j = 0, . . . , n. Hence

m(S) � minj=0,...,n mj(y) > −∞.
For δ := 2π/(n + 2) take L � 0 as in Proposition 2.2. Then for every y ∈ S there is

j ∈ {0, . . . , n} with |Ij(y)| > δ, so that for this j we have mj(y) � −L. This implies M(S) �
M � −L > −∞. �

3. Continuity properties

In this section we study the continuity properties of the various functions, mj , m, m, defined
in Section 2. As a consequence, we prove that for each of the problems (2.6), (2.7) extremal
configurations exist, this is Proposition 3.11, a central statement of this section.

To facilitate the argumentation we will consider R̄ = [−∞,∞] endowed with the metric

dR̄ : [−∞,∞] → R, dR̄(x, y) := | arctan(x) − arctan(y)|

which makes it a compact metric space, with convergence meaning the usual convergence of
real sequences to some finite or infinite limit. In this way, we may speak about uniformly
continuous functions with values in [−∞,∞]. Moreover, arctan : [−∞,∞] → [−π/2, π/2] is
an order preserving homeomorphism, and hence [−∞,∞] is order complete, and therefore a
continuous function defined on a compact set attains maximum and minimum (possibly ∞ and
−∞).

By assumption any concave kernel function K : T → [−∞,∞) is (uniformly) continuous in
this extended sense (e.s. for short).

Proposition 3.1. For any concave kernel functions K0, . . . ,Kn the sum of translates
function

F : T
n × T → [−∞,∞)

defined in (2.3) is uniformly continuous (in the above defined e.s.).

Proof. Continuity of F (in the e.s.) is trivial since the functions Kj are continuous in the
sense described in the preceding paragraph. Also, they do not take the value ∞. Since T

n × T

is compact, uniform continuity follows. �
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Next, a node system y determines n + 1 arcs on T, and we would like to look at the continuity
(in some sense) of the arcs as a function of the nodes. The technical difficulties are that the
nodes may coincide and they may jump over 0 ≡ 2π. Note that passing from one simplex to
another one may cause jumps in the definitions of the arcs Ij(y), entailing jumps also in the
definition of the corresponding mj . Indeed, at points y ∈ T

n \X, on the (common) boundary
of some simplexes, the change of the arcs Ij may be discontinuous. For example, when yj
and yk changes place (ordering changes between them, for example, from y� < yj � yk < yr
to y� < yk < yj < yr), then the three arcs between these points will change from the system
I� = [y�, yj ], Ij = [yj , yk], Ik = [yk, yr] to the system I� = [y�, yk], Ik = [yk, yj ], Ij = [yj , yr]. This
also means that the functions mj may be defined differently on a boundary point y ∈ T

n \X
depending on the simplex we use: the interpretation of the equality yj = yk as part of the
simplex with yj � yk in general furnishes a different value of mj than the interpretation as
part of the simplex with yk � yj (when it becomes maxt∈[yj ,yr] F (y, t)).

These problems can be overcome by the next considerations.

Remark 3.2. Let us fix any node system y0, together with a small 0 < δ < π/(2n + 2),
then there exists an arc I(y0) among the ones determined by y0, together with its center
point c = c(y0) such that |I(y0)| > 2δ, so in a (uniform-) δ-neighborhood U := U(y0, δ) :=
{x ∈ T

n : dTn(x,y0) < δ} of y0 ∈ T
n, none of the nodes of the configurations can reach

c. We cut the torus at c and represent the points of the torus T = R/2πZ by the interval
[c, c + 2π) 
 [0, 2π) and use the ordering of this interval. Henceforth, such a cut — as well as
the cutting point c — will be termed as an admissible cut. Of course, the cut depends on the
fixed point y0, but it will cause no confusion if this dependence is left out of the notation, as
we did here.

Moreover, for y ∈ U and i = 1, . . . , n we define

�i(y) := min {t ∈ [c, c + 2π) : #{k : yk � t} � i} ,
ri(y) := sup {t ∈ [c, c + 2π) : #{k : yk � t} � i} ,

Îi(y) := [�i(y), ri(y)],

and we set

Î0(y) := [c, �1(y)] ∪ [rn(y), c + 2π] =: [�0(y), r0(y)] ⊆ T (as an arc).

Then Îi(y) is the ith arc in this cut of torus along c corresponding to the node system y. We
immediately see the continuity of the mappings

U → T, y �→ �i(y) ∈ T and y �→ ri(y) ∈ T

at y0 for each i = 0, . . . , n. Obviously, the system of arcs{Iσ,j(y) : j = 0, . . . , n} is the same
as {Îi(y) : i = 0, . . . , n} independently of σ.

Proposition 3.3. Let K0, . . . ,Kn be any concave kernel functions, let y0 ∈ T
n be a node

system and let c be an admissible cut (as in Remark 3.2). Then for i = 0, . . . , n the functions

y �→ m̂i(y) := sup
t∈Îi(y)

F (y, t) ∈ [−∞,∞]

are continuous at y0 (in the e.s.).

Proof. By Proposition 3.1 the function arctan ◦F : T
n × T → [−π/2, π/2] is continuous at

{y0} × T. Hence fi(y) := maxt∈Îi(y) arctan ◦F (y, t) (and thus also m̂i = tan ◦fi) is continuous,
since �i and ri are continuous (see Remark 3.2). �
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The continuity of m̂i for fixed i involves the cut of the torus at c. However, if we consider the
system {m0, . . . ,mn} = {m̂0, . . . , m̂n} the dependence on the cut of the torus can be cured.
For x ∈ T

n+1 define

Ti(x) := min{t ∈ [c, c + 2π) : ∃k0, . . . , ki s.t. xk0 , . . . , xki
� t} (i = 0, . . . , n)

and

T (x) := (T0(x), . . . , Tn(x)).

The mapping T arranges the coordinates of x non-decreasingly and it is easy to see that
T : R

n+1 → R
n+1 is continuous.

Corollary 3.4. For any concave kernel functions K0, . . . ,Kn the mapping

T
n � y �→ T (m0(y), . . . ,mn(y))

is (uniformly) continuous (in the e.s.).

Proof. We have T (m0(y), . . . ,mn(y)) = T (m̂0(y), . . . , m̂n(y)) for any y ∈ T, while
y �→ (m̂0(y), . . . , m̂n(y)) is continuous at any given point y0 ∈ T

n and for any fixed admissible
cut. But the left-hand term here does not depend on the cut, so the assertion is proved. �

Corollary 3.5. Let K0, . . . ,Kn be any concave kernel functions. The functions m : T
n →

(−∞,∞) and m : T
n → [−∞,∞) are continuous (in the e.s.).

Proof. The assertion immediately follows from Proposition 3.3 and Corollary 2.3(a) and
(b). �

Corollary 3.6. Let K0, . . . ,Kn be any concave kernel functions, and let S := Sσ be a
simplex. For j = 0, . . . , n the functions

mj : S → [−∞,∞]

are (uniformly) continuous (in the e.s.).

Proof. Let y0 ∈ S, then there is an admissible cut at some c (cf. Remark 3.2) and there is
some i, such that we have mj(y) = m̂i(y) for all y in a small neighborhood U of y0 in S. So
the continuity follows from Proposition 3.3. �

Remark 3.7. Suppose that the kernel functions are concave and at least one of them
is strictly concave. For a fixed simplex Sσ and y ∈ Sσ also F (y, ·) is strictly concave on the
interior of each arc Ij(y) and continuous on Ij(y) (in the e.s.), so there is a unique zj(y) ∈ Ij(y)
with

mj(y) = F (y, zj(y))

(this being trivially true if Ij(y) is degenerate).

If condition (∞) holds, then it is evident that zj(y) belongs to the interior of Ij(y) (if this
latter is non-empty). However, we can obtain the same even under the weaker assumption
(∞′), for which purpose we state the next lemma.

Lemma 3.8. Suppose that K0, . . . ,Kn are concave kernel functions, with at least one of
them strictly concave.
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(a) If condition (∞′
+) holds for Kj , then for any y ∈ T

n the sum of translates function
F (y, ·) is strictly increasing on (yj , yj + ε) for some ε > 0.

(b) If condition (∞′
−) holds for Kj , then for any y ∈ T

n the sum of translates function
F (y, ·) is strictly decreasing on (yj − ε, yj) for some ε > 0.

Proof. (a) Obviously, in case Kj(0) = −∞, we also have F (y, yj) = −∞ and the assertion
follows trivially since F (y, ·) is concave on an interval (yj , yj + ε), ε > 0. So we may assume
Kj(0) ∈ R, in which case F (y, ·) is finite, continuous and concave on [yj , yj + ε] for some ε > 0.
Then for the fixed y and for the function f = F (y, ·) we have for any fixed t ∈ (yj , yj + ε) that

D+f(yj) = lim
s↓yj

n∑
k=0

D+Kk(s− yk) �
n∑

k=0,k �=j

D+Kk(t− yk) + lim
s↓yj

D+Kj(s− yj) = ∞,

since D+Kk(· − yk) is non-increasing by concavity. Therefore, choosing ε even smaller, we find
that D+F (y, ·) > 0 in the interval (yj , yj + ε), which implies that F (y, ·) is strictly increasing
in this interval.

(b) Under condition (∞′
−) the proof is similar for the interval (yj − ε, yj). �

Proposition 3.9. Suppose that K0, . . . ,Kn are concave kernel functions, with at least
one of them strictly concave. Let Sσ be a simplex and let y ∈ Sσ (so that σ is fixed, and
I0(y), . . . , Ij(y) are well defined).

(a) For each j = 0, . . . , n there is unique maximum point zj(y) of F (y, ·) in Ij(y), that is,
F (y, zj(y)) = mj(y).

(b) If condition (∞′
+) holds for Kj , and Ij(y) = [yj , yr] is non-degenerate, then zj(y) �= yj .

(c) If condition (∞′
−) holds for Kj , and I�(y) = [y�, yj ] is non-degenerate, then z�(y) �= yj .

(d) If condition (∞′
±) holds for each Kj , j = 0, . . . , n, then zj(y) belongs to the interior of

Ij(y) whenever Ij(y) is non-degenerate.

Proof. (a) Uniqueness of a maximum point, that is, the definition of zj(y) has been already
discussed in Remark 3.7.

The assertions (b) and (c) follow from Lemma 3.8 and they imply (d). �

For the next lemma we need that the function zj is well defined for each j = 0, . . . , n, so we
need F (y, ·) to be strictly concave, in order to which it suffices if at least one of the kernels is
strictly concave.

Lemma 3.10. Suppose that K0, . . . ,Kn are concave kernel functions with at least one of
them strictly concave.

(a) Let S = Sσ be a simplex. (Recall that, because of strict concavity, the maximum point
zj(y) of F (y, ·) in Ij(y) is unique for every j = 0, . . . , n.) For each j = 0, . . . , n the mapping

zj : S → T, y �→ zj(y)

is continuous.
(b) For a given y0 ∈ T

n and an admissible cut of the torus (cf. Remark 3.2) the mapping

y �→ ẑi(y)

is continuous at y0.
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Proof. Let yn ∈ S with yn → y ∈ S. Then, by Proposition 3.3, mj(yn) → mj(y) ∈
[−∞,∞). Let x ∈ T be any accumulation point of the sequence zj(yn), and by passing to
a subsequence assume zj(yn) → x.

By definition of zj , we have F (yn, zj(yn)) = mj(yn) → mj(y), and by continuity of F also
F (yn, zj(yn)) → F (y, x), so F (y, x) = mj(y). But we have already remarked that by strict
concavity there is a unique point, where F (y, ·) can attain its maximum on Ij (this provided
us the definition of zj(y) as a uniquely defined point in Ij). Thus we conclude zj(y) = x.

The second assertion follows from this in an obvious way. �

Proposition 3.11. For a simplex S = Sσ we always have M(S) = M(S) and m(S) = m(S).
Furthermore, both minimax problems (2.6) and (2.7) have finite extremal values, and both have
an extremal node system, that is, there are w∗,w∗ ∈ S such that

m(w∗) = M(S) := inf
y∈S

m(y) = M(S) = min
y∈S

m(y) ∈ R,

m(w∗) = m(S) := sup
y∈S

m(y) = m(S) = max
y∈S

m(y) ∈ R.

Proof. By Proposition 3.3 the functions m and m are continuous (in the e.s.), whence we
conclude m(S) = m(S) and M(S) = M(S). Since S is compact, the function m has a maximum
on S, that is, (2.6) has an extremal node system w∗. Similarly, m has a minimum, meaning
that (2.7) has an extremal node system w∗.

Both of these extremal values, however, must be finite, according to Corollary 2.3. �

As a consequence, we obtain the following.

Corollary 3.12. Both minimax problems (2.4) and (2.5) have an extremal node system.

To decide whether the extremal node systems belong to S or to the boundary ∂S is the
subject of the next sections.

4. Approximation of kernels

In this section we consider sequences K
(k)
j of kernel functions converging to Kj as k → ∞ for

each j = 0, . . . , n (in some sense or another). The corresponding values of local maxima and
related quantities will be denoted by m

(k)
j (x), m(k)(x), m(k)(x), m(k)(S), M (k)(S), and we

study the limit behavior of these as k → ∞. Of course, one has here a number of notions of
convergence for the kernels, and we start with the easiest ones.

Let Ω be a compact space and let fn, f ∈ C(Ω; R̄) (the set of continuous functions with
values in R̄). We say that fn → f uniformly (in the e.s.) if arctan fn → arctan f uniformly in
the ordinary sense (as real-valued functions). We say that fn → f strongly uniformly if for all
ε > 0 there is n0 ∈ N such that

f(x) − ε � fn(x) � f(x) + ε for every x ∈ K and n � n0.

Lemma 4.1. Let f, fn ∈ C(Ω; R̄) be uniformly bounded from above. We then have fn → f
uniformly (e.s.) if and only if for each R > 0, η > 0 there is n0 ∈ N such that for all x ∈ Ω and
all n � n0

fn(x) < −R + η whenever f(x) < −R and (4.1)

f(x) − η � fn(x) � f(x) + η whenever f(x) � −R.
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Proof. Let C � 1 be such that f, fn � C for each n ∈ N. Suppose first that fn → f
uniformly (e.s.), and let η > 0, R > 0 be given. The set L := arctan[−R− 1, C + 1] is compact
in (−π/2, π/2), and tan is uniformly continuous thereon. Therefore there is ε ∈ (0, 1] sufficiently
small such that

tan(s) − η � tan(t) � tan(s) + η

whenever |s− t| � ε, s ∈ arctan[−R,C], in particular tan(arctan(−R) + ε) � −R + η. Let
n0 ∈ N be so large that arctan f(x) − ε � arctan fn(x) � arctan f(x) + ε holds for every n �
n0. Apply the tan function to this inequality to obtain that f(x) − η � fn(x) � f(x) + η for
x ∈ Ω with f(x) ∈ [−R,C], and

fn(x) � tan(arctan f(x) + ε) < tan(arctan(−R) + ε) < −R + η

for x ∈ Ω with f(x) < −R.
Suppose now that condition (4.1) involving η and R is satisfied, and let ε > 0 be arbitrary.

Take R > 0 so large that arctan(t) < (−π/2) + ε whenever t < −R + 1. For ε > 0 take 1 > η >
0 according to the uniform continuity of arctan. By assumption there is n0 ∈ N such that for
all n � n0 we have (4.1). Let x ∈ Ω be arbitrary. If f(x) < −R, then

arctan f(x) − ε < −π

2
� arctan fn(x)

� arctan(−R + η) < −π

2
+ ε < arctan f(x) + ε.

On the other hand, if f(x) � −R, then by the choice of η and by the second part of (4.1) we
immediately obtain

arctan f(x) − ε < arctan fn(x) � arctan f(x) + ε. �

The previous lemma has an obvious version for sequences that are not uniformly bounded
from above. This is, however a bit more technical and will not be needed. It is now also clear
that strong uniform convergence implies uniform convergence. Furthermore, the next assertions
follow immediately from the corresponding classical results about real-valued functions.

Lemma 4.2. For n ∈ N let fn, gn, f, g ∈ C(Ω; R̄).

(a) If fn, gn � C < ∞ and fn → f and gn → g uniformly (e.s.), then fn + gn → f + g
uniformly (e.s.).

(b) If fn ↓ f pointwise, that is, if fn(x) → f(x) non-increasingly for each x ∈ Ω, then fn → f
uniformly (e.s.).

(c) If fn → f uniformly (e.s.), then sup fn → sup f in [−∞,∞].

Proof. (a) The proof can be based on Lemma 4.1.
(b) This is a consequence of Dini’s theorem.
(c) Follows from standard properties of arctan and tan, and from the corresponding result

for real-valued functions. �

Proposition 4.3. Suppose the sequence of kernel functions K
(k)
j → Kj uniformly (e.s.) for

k → ∞ and j = 0, 1, . . . , n. Then for each simplex S := Sσ we have that m
(k)
j → mj uniformly

(e.s.) on S̄ (j = 0, 1, . . . , n). As a consequence, m(k)(S) → m(S) and M (k)(S) → M(S) as
k → ∞.

Proof. The functions F (k)(x, t) =
∑n

j=0 K
(k)
j (t− xj) are continuous on T

n+1 and converge
uniformly (e.s.) to F (x, t) =

∑n
j=0 Kj(t− xj) by (a) of Lemma 4.2. So that we can apply part

(c) of the same lemma, to obtain the assertion. �
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We now relax the notion of convergence of the kernel functions, but, contrary to the above, we
will make essential use of the concavity of kernel functions. We say that a sequence of functions
over a set Ω converges locally uniformly, if this sequence of functions converges uniformly on
each compact subset of Ω.

Remark 4.4. Using the facts that pointwise convergence of continuous monotonic functions,
and pointwise convergence of concave functions, with a continuous limit function, is actually
uniform (on compact intervals, see, for example, [30, Problems 9.4.6, 9.9.1; 17), it is not hard to
see that if the kernel functions Kn converge to K pointwise on [0, 2π], then they even converge
uniformly in the e.s.

Recall the definitions of dT(x, y) and dTm(x,y) from (2.1) and (2.2). Define the compact set

D :=
{
(x, t) : ∃i ∈ {0, 1, . . . , n}, such that t = xi

}
=

n⋃
i=0

{
(x, t) : t = xi

} ⊆ T
n+1.

Lemma 4.5. Suppose the sequence of kernel functions K
(k)
j converges to the kernel function

Kj locally uniformly on (0, 2π). Then F (k)(x, t) → F (x, t) locally uniformly on T
n+1 \D, that

is, for every compact subset H ⊆ T
n+1 \D one has F (k)(x, t) → F (x, t) uniformly on H as

k → ∞.

Note that in general F can attain −∞, and that convergence in 0 of the kernels is not
postulated.

Proof. Because of compactness of H and D we have 0 < ρ := dTn+1(H,D).
Take 0 < δ < ρ arbitrarily and consider for any (x, t) ∈ H the defining expres-

sion F (k)(x, t) :=
∑n

i=0 K
(k)
i (t− xi). For points of H we have |t− xi| � min(|t− xi|,

2π − |t− xi|) = dT(t, xi) = dTn+1((x, t), (x, xi)) � ρ > δ. In other words, Φi(H) ⊂ [δ, 2π − δ]
for i = 0, 1, . . . , n, where Φi(x, t) := t− xi is continuous—hence also uniformly continuous—on
the whole T

n+1.
As the locally uniform convergence of K(k)

i (to Ki) on (0, 2π) entails uniform convergence
on [δ, 2π − δ], we have uniform convergence of f (k)

i := K
(k)
i ◦ Φi on the compact set H (to the

function Ki ◦ Φi). It follows that F (k) =
∑n

i=0 f
(k)
i converges uniformly (to F =

∑n
i=0 fi) on

H, whence the assertion follows. �

Lemma 4.6. Let K : (0, 2π) → R be any concave function (so K has limits, possibly −∞,
at 0 and 2π, defining K(0) and K(2π)). For each u, v ∈ [0, 1] we have

K(u) � K(u + v) − v
(
K(π + 1/2) −K(π − 1/2)

)
,

K(2π − u) � K(2π − u− v) + v
(
K(π + 1/2) −K(π − 1/2)

)
.

Proof. It is sufficient to prove the statement for u > 0 only, as the case u = 0 follows from
that by passing to the limit.

Also we may suppose v > 0 otherwise the inequalities are trivial. By concavity of K for any
system of four points 0 < a < b < c < d < 2π we clearly have the inequality

K(b) −K(a)
b− a

� K(d) −K(c)
d− c
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see, for example, [25, p. 2, Formula (2)]. Specifying a := u, b := u + v � 2 < c := π − 1/2 and
d := π + 1/2 yields the first inequality, while for a := π − 1/2, b := π + 1/2 < 4 < c := 2π −
u− v and d := 2π − u, we obtain the second one. �

Theorem 4.7. Suppose that the kernels are such that for all x ∈ T
n and z ∈ T with

F (x, z) = m(x) one has z �= xj , j = 0, . . . , n. If the sequence of kernel functions K
(k)
j → Kj

locally uniformly on (0, 2π), then m(k)(x) → m(x) uniformly on T
n.

Proof. Let us define the set H0 := {(x, z) : F (x, z) = m(x)} ⊂ T
n+1, which is obviously

closed by virtue of the continuity of the occurring functions. By assumption H0 ⊆ T
n+1 \D,

so the condition of Lemma 4.5 is satisfied, hence F (k) → F uniformly on H0.
Let now x ∈ T

n be arbitrary, and take any z ∈ T such that F (x, z) = m(x) (such a z exists by
compactness and continuity). Now, m(k)(x) � F (k)(x, z) > F (x, z) − ε = m(x) − ε whenever
k > k0(ε), hence lim infk→∞ m(k)(x) � m(x) is clear, moreover, according to the above, this
holds uniformly on T

n, as m(k)(x) > m(x) − ε for each x ∈ T
n whenever k > k0(ε).

It remains to see that, given x ∈ T
n and ε > 0, there exists k1(ε) such that m(k)(x) <

m(x) + ε for all k > k1(ε). Let us define the constant

C := max
j=0,1,...,n

max
k∈N

|K(k)
j (π + 1/2) −K

(k)
j (π − 1/2)|.

The inner expression is indeed a finite maximum, as K(k)
j (π ± 1/2) → Kj(π ± 1/2) for k → ∞.

By Lemma 4.6 for all u, v ∈ [0, 1]

K
(k)
j (u) � K

(k)
j (u + v) + Cv, K

(k)
j (2π − u) � K

(k)
j (2π − u− v) + Cv. (4.2)

For the given ε > 0 choose δ ∈ (0, 1/2) such that m(y) � m(x) + ε
3 holds for all y with

dTn(x,y) < δ (use Corollary 3.5, the uniform continuity of m : T
n → R). Fix moreover

0 < h < min{δ/2, ε/(3C(n + 1))} and define

H :=
{
(y, w) ∈ T

n+1 : dT(yi, w) � h (i = 0, 1, . . . , n)
}
.

For an arbitrarily given point (x, z) ∈ T
n+1 we construct another one (y, w) ∈ T

n+1, which we
will call ‘approximating point’, in two steps as follows. First, we shift them (even x0 which was
assumed to be 0 all the time), and then correct them. So we set for i = 0, 1, . . . , n

x′
i :=

{
xi if dT(xi, z) � h,
xi ± h if dT(xi, z) � h,

where we add h or −h such that dT(xi ± h, z) � h. Then we set yi := x′
i − x′

0 (i = 0, 1, . . . , n)
and w := z − x′

0. This new approximating point (y, w) has the following properties:

dTn(x,y) = max
i=1,...,n

dT(xi, yi) � 2h < δ, dT(z, w) � h < δ. (4.3)

Moreover, we have (y, w) ∈ H, since dT(yi, w) = dT(x′
i, zi) � h for i = 0, 1, . . . , n.

By construction of (y, w) we have

yi − w = xi − z if dT(xi, z) � h,

yi − w = xi − z ± h if dT(xi, z) � h. (4.4)

So using both inequalities in (4.2) we conclude

K
(k)
j (xj − z) � K

(k)
j (yj − w) + Ch (j = 0, 1, . . . , n),
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providing us

F (k)(x, z) =
n∑

j=0

K
(k)
j (xj − z) �

n∑
j=0

(K(k)
j (yj − w) + Ch) = F (k)(y, w) + (n + 1)Ch.

Now, for given x ∈ T
n let zk ∈ T be any point with F (k)(x, zk) = m(k)(x), and let (y(k), wk) ∈

H be the corresponding approximating point. So that we have

m(k)(x) = F (k)(x, zk) � F (k)(y(k), wk) + (n + 1)Ch. (4.5)

Since (y(k), wk) ∈ H ⊆ T
n \D we can invoke Lemma 4.5 to get F (k) → F uniformly on H.

Therefore, for the given ε > 0 there exists k1(ε) with

F (k)(y(k), wk) � max
{
F (y, w) : (y, w) ∈ H, dTn(x,y) � δ, dT(z, w) � δ

}
+ ε

3

for all k � k1(ε). Extending further the maximum on the right-hand side to arbitrary w ∈ T

we are led to

F (k)(y(k), wk) � max
{
m(y) : dTn(x,y) � δ

}
+ ε

3 (k > k1(ε)). (4.6)

From (4.5), (4.6) and by the choices of h, δ > 0 we conclude

m(k)(x) � F (k)(y(k), wk) + (n + 1)Ch � (m(x) + ε
3 ) + ε

3 + (n + 1)Ch < m(x) + ε

for all k > k1(ε). So that we get that uniformly on T
nlim supk→∞ m(k)(x) � m(x) holds.

Since k1(ε) does not depend on x, using also the first part we obtain limk→∞ m(k)(x) = m(x)
uniformly on T

n. �

5. Elementary properties

In this section we record some elementary properties of the function mj that are useful in the
study of minimax and maximin problems and constitute also a substantial part of the abstract
framework of [27]. Moreover, our aim is to reveal the structural connections between these
properties.

Proposition 5.1. Suppose that the kernels K0, . . . ,Kn satisfy (∞). Let S = Sσ be a
simplex. Then

lim
y→∂S
y∈S

max
k=0,...,n−1

∣∣mσ(k)(y) −mσ(k+1)(y)
∣∣ = ∞. (5.1)

Proof. Without loss of generality we may suppose that σ = id, that is, σ(k) = k. Let y(i) ∈ S
be convergent to some y(0) ∈ ∂S as i → ∞. This means that some arcs determined by the nodes
y(i) and y0 = 0 ≡ 2π shrink to a singleton. On any such arc Ij(y(i)) we obviously have, with
the help of (∞),

mj

(
y(i)

) → −∞ as i → ∞.

Of course, there is at least one such arc, say with index j0, that has a neighboring arc with
index j0 ± 1 which is not shrinking to a singleton as i → ∞. This means∣∣∣mj0

(
y(i)

)−mj0±1

(
y(i)

)∣∣∣ → ∞ as i → ∞,

and the proof is complete. �

The properties introduced below have nothing to do with the conditions we pose on the
kernel functions K0, . . . ,Kn (concavity and some type of singularity at 0 and 2π), so we can
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formulate them in whole generality. (Note that mj , in contrast to zj , is well defined even if the
kernels are not strictly concave).

Definition 5.2. Let S = Sσ be a simplex.

(a) Jacobi Property: The functions m0, . . . ,mn are in C1(S) and

det
(
∂imσ(j)

)n,n

i=1,j=0,j �=k
�= 0 for each k ∈ {0, . . . , n}.

(b) Difference Jacobi Property: The functions m0, . . . ,mn belong to C1(S) and

det
(
∂i(mσ(j) −mσ(j+1))

)n,n−1

i=1,j=0
�= 0.

Remark 5.3. Shi [27] proved that under the condition (5.1) (which is now a consequence
of the assumption (∞)) the Jacobi Property implies the Difference Jacobi Property.

Definition 5.4. Let S = Sσ be a simplex.

(a) Equioscillation Property: There exists an equioscillation point y ∈ S, that is,

m(y) = m(y) = m0(y) = m1(y) = · · · = mn(y).

(b) (Lower) Weak Equioscillation Property: There exists a weak equioscillation point
y ∈ S, that is,

mj(y)
{

= m(y), if Ij(y) is non-degenerate,
< m(y), if Ij(y) is degenerate.

Remark 5.5. For a given S = Sσ the Equioscillation Property implies the inequality
M(S) � m(S).

Proof. Let y ∈ S be an equioscillation point. Then for this particular point

m(y) = max
j=0,...,n

mj(y) = min
j=0,...,n

mj(y) = m(y),

hence

M(S) � m(y) = m(y) � m(S). �

Proposition 5.6. Given a simplex S = Sσ the following are equivalent:

(i) M(S) � m(S).
(ii) For every x ∈ S one has m(x) = minj=0,...,n mj(x) � M(S).
(iii) For every y ∈ S one has m(y) = maxj=0,...,n mj(y) � m(S).
(iv) There exists a value μ ∈ R such that for each y ∈ S

m(y) = max
j=0,...,n

mj(y) � μ � m(y) = min
j=0,...,n

mj(y).

Proof. Recalling the inequalities

m(y) = max
j=0,...,n

mj(y) � M(S) = inf
S

m, sup
S

m = m(S) � m(x) = min
j=0,...,n

mj(x)

being true for each x,y ∈ S, the equivalence of (i), (ii) and (iii) is obvious. Suppose (i) and
take μ ∈ [m(S),M(S)]. Then (iv) is evident. From (iv) assertion (i) follows trivially. �
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Definition 5.7. Let S = Sσ be a simplex. We say that the Sandwich Property is satisfied
if any of the equivalent assertions in Proposition 5.6 holds true, that is, if for each x,y ∈ S

max
j=0,...,n

mj(y) = m(y) � m(x) = min
j=0,...,n

mj(x).

Remark 5.8. For given S = Sσ the Equioscillation Property and the Sandwich Property
together imply that M(S) = m(S).

Remark 5.9. The above are fundamental properties in interpolation theory, and thus have
been extensively investigated. First, for the Lagrange interpolation on n + 1 nodes in [−1, 1]
the maximum norm of the Lebesgue function is minimal if and only if all its local maxima are
equal. This Equioscillation Property was conjectured by Bernstein [6] and proved by Kilgore
[20], using also a lemma [20, Lemma 10] whose proof, in some extent, was based on direct input
from de Boor and Pinkus [12]. Second, the property that the minimum of the local maxima
is always below this equioscillation value was conjectured by Erdős in [15], and proved in the
paper [12] of de Boor and Pinkus, which appeared in the same issue as the article of Kilgore
[20], and which is based very much on the analysis of Kilgore. This latter property is just an
equivalent formulation of the Sandwich Property (see Proposition 5.6). For more details on the
history of these prominent questions of interpolation theory see in particular [20]. The name
‘Sandwich Property’ seems to have appeared first in [28, see p. 96].

Definition 5.10. Let S = Sσ be a simplex and let x,y ∈ S. We say that x majorizes (or
strictly majorizes) y — and y minorizes (or strictly minorizes) x — if mj(x) � mj(y) (or if
mj(x) > mj(y)) for all j = 0, . . . , n. We define the following properties on S.

(a) Local (Strict) Comparison Property at z: There exists δ > 0 such that if x,y ∈ B(z, δ)
and x (strictly) majorizes y, then x = y. In other words, there are no two different x �= y ∈
B(z, δ) with x (strictly) majorizing y.

(b) Local (Strict) non-Majorization Property at y: There exists δ > 0 such that there is no
x ∈ (S ∩B(y, δ)) \ {y} which (strictly) majorizes y.

(c) Local (Strict) non-Minorization Property at y: There exists δ > 0 such that there is no
x ∈ (S ∩B(y, δ)) \ {y} which (strictly) minorizes y.

Further, we will pick the following special cases as important.

(A) (Strict) Comparison Property on S: If x, y ∈ S and x (strictly) majorizes y, then x = y.
In other words, there exists no two different x �= y ∈ S with x (strictly) majorizing y.

(B) Local (Strict) Comparison Property on S: At each point z ∈ S, the Local (Strict)
Comparison Property holds.

(C) Local (Strict) non-Majorization Property on S: At each point y ∈ S, the Local (Strict)
non-Majorization Property holds.

(D) Local (Strict) non-Minorization Property on S: At each point y ∈ S, the Local (Strict)
non-Minorization Property holds.

(E) Singular (Strict) Comparison Property on S: At each equioscillation point z ∈ S the
Local (Strict) Comparison Property holds.

(F) Singular (Strict) non-Majorization Property: At each equioscillation point y ∈ S the
Local (Strict) non-Majorization Property holds.

(G) Singular (Strict) non-Minorization Property: At each equioscillation point y ∈ S the
Local (Strict) non-Minorization Property holds.

Remark 5.11. The comparison properties are symmetric in x and y, while the non-
majorization and non-minorization properties are not. One has the following relations between
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the previously defined properties: (a)⇒(b) and (c), (A)⇒(B)⇒(E), (B)⇒(C) and (D), (E)⇒(F)
and (G), (C)⇒(F), (D)⇒(G). It will be proved in Corollary 8.1 that for strictly concave kernels
all comparison, non-majorization and non-minorization properties (A), (B), (C), (D) (with their
strict version as well) are equivalent to each other.

Remark 5.12. Shi [27] proved that (under condition (5.1)) the Jacobi Property implies the
Comparison Property, the Sandwich Property, and that the Difference Jacobi Property implies
the Equioscillation Property. Example 5.13 shows that the Comparison Property (even the
Local Strict non-Majorization Property) fails in general, even though one has the Difference
Jacobi Property. In Proposition 9.2 we will show that in our setting we always have the
Difference Jacobi Property provided the kernels are at least twice continuously differentiable
and, moreover we have the Equioscillation Property.

Example 5.13. Let n = 1 and K0 : (0, 2π) → R be a strictly concave kernel function in
C∞(0, 2π) satisfying (∞) and such that the maximum of K0 is 0, while with some fixed
0 < α < π the function K0 is increasing in (0, α) and is decreasing in (α, 2π), and let K1(t) :=
K0(2π − t). For y := y ∈ (0, 2π) we have F (y, t) = K0(t) + K1(t− y) = K0(t) + K0(2π + y −
t), so by symmetry and concavity we obtain z0(y) = y/2 and z1(y) = (2π + y)/2. So that

m0(y) = F (y, z0(y)) = K0(y2 ) + K0(2π + y − y
2 ) = 2K0(y2 ),

m1(y) = F (y, z1(y)) = K0( 2π+y
2 ) + K0(2π + y − 2π+y

2 ) = 2K0( 2π+y
2 ).

Whence we conclude that

m0(y + h) < m0(y) and m1(y + h) < m1(y),

whenever y ∈ (2α, 2π) and h > 0 with y + h ∈ (2α, 2π). This shows that the non-Majorization
Property does not hold in general. Since m′

0(2α) = 0, the Jacobi Property fails for this example
(which anyway follows from Remark 5.3). Note also that

m′
0(y) −m′

1(y) = K ′
0(

y
2 ) −K ′

0(
2π+y

2 ) > 0,

since K ′
0 is strictly decreasing, meaning that we have the Difference Jacobi Property (this holds

in general, see Proposition 9.2). Finally, we remark that we have the Singular non-Majorization
Property. Indeed, y is an equioscillation point if and only if

2K0(y2 ) = m0(y) = m1(y) = 2K0( 2π+y
2 ),

that is, at the corresponding points in the graph of K0 there is a horizontal chord of length
π. This implies that y/2 falls in the interval where K0 is strictly increasing, whereas π + y/2
belongs to the interval where K0 is strictly decreasing. Hence if we move y = y slightly, m0

and m1 will change in different directions.

This example shows that Shi’s results are not applicable in this general setting, even if we
supposed the kernels to be in C∞(0, 2π).

6. Distribution of local minima of m

In this section we start with a central perturbation result, which describes how for fixed
permutation σ the functions mσ,j(y) change for a small perturbation of y. This will allow us
to relate local minimum points of m and equioscillation points (see Proposition 6.9). Moreover,
the Equioscillation Property of the solutions of the minimax problem (2.4) is established in
Corollary 6.11 under appropriate conditions on the kernels.
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Remark 6.1. Suppose fj are (strictly) concave functions for j = 0, . . . , n and let
f =

∑n
j=0 fj . Let μj be the slope of a supporting line of fj at some point t. Then μ :=

∑n
j=0 μj

is the slope of a supporting line of f at the same point t. Conversely, if μ is given as the slope
of a supporting line at some point t, then it is not hard to find some μj , j = 0, . . . , n being the
slope of some supporting line of fj at t with μ =

∑n
j=0 μj .

Lemma 6.2 (Perturbation lemma). Suppose that K0, . . . ,Kn are strictly concave. Let
y ∈ T

n be a node system, and for k ∈ N, 1 � k � n let t1, . . . , tk ∈ (0, 2π) be all different
from the nodes in y. Let

δ := 1
2 min

{|ti − yj | : i = 1, . . . , k, j = 0, . . . , n
}
.

For i = 1, . . . , k let μ(i) be the slope of a supporting line to the graph of F (y, ·) at the point
ti. Finally, let x1, . . . ,xn−k ∈ R

n be fixed arbitrarily.

(a) Then there is a ∈ [−1, 1]n \ {0} such that x

� a = 0 for � = 1, . . . , n− k and for all

0 < h < δ we have

F (y + ha, si) < F (y, ti) + μ(i)(si − ti)

for all si with |si − ti| < δ, i = 1, . . . , k.
(b) Let S = Sσ be a simplex, and let y ∈ S. If F (y, ·) has local maximum in ti for some

i ∈ {1, . . . , k}, that is, if ti = zj(y) ∈ int Ij(y) for some j ∈ {0, . . . , n}, then

F (y + ha, si) < F (y, zj(y)) = mj(y) for all si with |si − zj(y)| < δ.

(c) For the fixed node system y consider an admissible cut of the torus (cf. Remark 3.2).
Let i1, . . . , ik ∈ {0, . . . , n} be pairwise different, and suppose that Îi1(y), . . . , Îik(y) are non-

degenerate and ẑij (y) ∈ int Îij (y) for each j = 1, . . . , k. Then there is η > 0 such that for all
0 < h < η

m̂ij (y + ha) < m̂ij (y) j = 1, . . . , k.

Proof. By Remark 6.1 for i = 1, . . . , k and j = 0, . . . , n there are μij each of them being the
slope of a supporting line to the graph of Kj at ti − yj , that is, with

μ(i) =
n∑

j=0

μij .

Take a vector a ∈ [−1, 1]n \ {0} with
n∑

j=1

ajμij � 0 for i = 1, . . . , k

and with x

� a = 0 for � = 1, . . . , n− k. Such a vector does exist by standard linear algebra. We

set a0 := 0.

(a) Since Kj is concave, it follows

Kj(si − (yj + haj)) � Kj(ti − yj) + μij(si − ti − haj)

for si with |si − ti| < δ and 0 � h < δ, because then |si − ti − haj | < δ + |aj |h < 2δ and
|ti − yj | � 2δ guarantees that the full interval between the points ti − yj and si − (yj + haj)
stays in (0, 2π), that is, the continuous change of ti − yj to si − (yj + haj) happens within the
concavity interval of Kj .
Observe that here in view of strict concavity equality holds for some i, j if and only if si − ti −
haj = 0. However, for any given value of i, this cannot occur for all j = 0, . . . , n. Indeed, if this
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were so, then a0 = 0 would imply si = ti and, by h > 0, it would follow that a = 0, which was
excluded.

Summing for all j, with at least one of the inequalities being strict, we obtain
n∑

j=0

Kj(si − (yj + haj)) <
n∑

j=0

Kj(ti − yj) +
n∑

j=0

μij(si − ti − haj)

for |si − ti| < δ, i = 1, . . . , k, that is, dropping also a0 = 0

F (y + ha, si) < F (y, ti) + μ(i)(si − ti) − h

n∑
j=1

μijaj .

Now, by the choice of a, the last sum is non-negative, and since h > 0 the last term can be
estimated from above by 0, and we obtain the first statement.

(b) In the case when ti = zj(y) for some j (and only then) the supporting line can be chosen
horizontal, that is, μ(i) = 0. Therefore, with this choice the already proven result directly
implies the second statement.

(c) Take a fixed y and an admissible cut of the torus at some c (cf. Remark 3.2). For
sufficiently small η we have ẑij (y) ∈ Îij (y + ha) for all 0 < h < η and j = 1, . . . , k. Since
x �→ ẑij (x) is continuous at y (see Lemma 3.10), for some possibly even smaller η > 0 we
have |ẑij (y) − ẑij (y + ha)| < δ, whenever 0 < h < η. From this we conclude, by the already
proven part (b), that for all j = 1, . . . , k

m̂ij (y + ha) = F (y + ha, ẑij (y + ha)) < m̂ij (y). �

The next lemma is an analogue of Lemma 3.8 for kernels in C1(0, 2π).

Lemma 6.3. Suppose the kernels K0, . . . ,Kn are in C1(0, 2π) and are non-constant. Let
S = Sσ be a simplex, let y ∈ S and let j ∈ {0, . . . , n}. Then there exists ε > 0 such that either
for all t ∈ (yj − ε, yj) or for all t ∈ (yj , yj + ε) we have F (y, t) > F (y, yj).

Proof. Let the left and right neighboring non-degenerate arcs to yj be [y�, yj ] and
[yj , yr], respectively†. Let us write y� < yj1 = · · · = yjν < yr with j1 = j (so that there exists
a degenerate arc equal to {yj} precisely when ν > 1). We can assume Kjλ > −∞ for all
λ = 1, . . . , ν, otherwise F (y, yj) = −∞, while F (y, ·) is finite valued on (y�, yj) ∪ (yj , yr), and
the statement is trivial. So summing up, F (y, ·) is concave and continuously differentiable both
on (y�, yj) and (yj , yr), and continuous on [y�, yr].

Since F (y, ·) is concave, there is a maximum point z� ∈ [y�, yj ] (which, however, need not be
unique if F is not strictly concave), and by concavity F (y, ·) is non-decreasing on [y�, z�] and
non-increasing on [z�, yj ]. It follows that F (y, z�) � F (y, yj). Moreover, in case we find strict
inequality, we are done, for then

F (y, t) � L(t) :=
yj − t

yj − z�
F (y, z�) +

t− z�
yj − z�

F (y, yj) > F (y, yj)

for all z� < t < yj .
There remains the case when F (y, z�) = F (y, yj), which means that F (y, yj) is maximum

itself on [y�, yj ], too.
By an analogous reasoning either we find an interval [yj , yj + ε], where the function is above

F (y, yj), or yj is a maximum point even for the whole of [yj , yr].

†If all nodes are positioned at y0 = 0, these arcs can be the same.
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In all, either there are intervals as needed, or we find F (y, yj) = max[y�,yr] F (y, ·). Next, we
show that this latter situation is impossible, which will conclude the proof.

So assume for a contradiction that F (y, ·) stays below F (y, yj) on [y�, yr], and hence we find

D−F (y, yj) � 0 � D+F (y, yj).

Using the non-constancy of the kernel functions Ki in the form that D−Ki(0) < D+Ki(0), we
find

D−F (y, yj) = lim
t↑yj

n∑
i=0

K ′
i(t− yi) =

n∑
λ=0

λ �=j1,...,jν

K ′
λ(yj − yλ) +

ν∑
λ=1

D−Kjλ(0)

<

n∑
λ=0

λ �=j1,...,jν

K ′
λ(yj − yλ) +

ν∑
λ=1

D+Kjλ(0) = lim
t↓yj

n∑
i=0

K ′
i(t− yi) = D+F (y, yj),

which furnishes the required contradiction. Whence the statement follows. �

Lemma 6.4. Let the kernel functions K0, . . . ,Kn be concave, let Sσ be a simplex, and let
y ∈ Sσ be such that the interval Ij(y) = [yj , yj′ ] is degenerate, that is, a singleton.

(a) Suppose that the kernel Kj satisfies condition (∞′
−). Then there exists ε > 0 such that

for all t ∈ (yj − ε, yj) we have F (y, t) > mj(y).
(b) Suppose that the kernel Kj satisfies condition (∞′

+). Then there exists ε > 0 such that
for all t ∈ (yj , yj + ε) we have F (y, t) > mj(y).

(c) Suppose the kernels K0, . . . ,Kn are in C1(0, 2π) and are non-constant. Then there exists
ε > 0 such that either for all t ∈ (yj − ε, yj) or for all t ∈ (yj , yj + ε) we have F (y, t) > mj(y).

Proof. Let Ij(y) = {yj} = {yj′} = {zj(y)} and let ε > 0 be so small that the functions
Kk(· − yk) are all finite and concave on (yj − ε, yj) and (yj , yj + ε). In particular, for a point
t in one of these intervals F (y, t) ∈ R, so in case of Kj(0) = −∞, we also have F (y, zj(y)) =
−∞ < F (y, t) and there is nothing to prove.

(a) and (b) follow from Lemma 3.8 and from the fact that F (y, yj) = mj(y).
(c) follows from Lemma 6.3 by also taking into account that F (y, yj) = mj(y). �

Corollary 6.5. Let the kernel functions K0, . . . ,Kn be concave. Let Sσ be a simplex and
suppose that Ij(y) is degenerate for some y ∈ Sσ.

(a) Suppose that at least n of the kernels K0, . . . ,Kn satisfy condition (∞′). Then for at
least one neighboring, non-degenerate arc I�(y) we have m�(y) > mj(y).

(b) Suppose the kernels are in C1(0, 2π) and are non-constant. Then for at least one
neighboring, non-degenerate arc I�(y) we have m�(y) > mj(y).

Corollary 6.6. If K0, . . . ,Kn are non-constant, concave kernel functions and either n of
them satisfy (∞′), or all belong to C1(0, 2π), then an equioscillation point e ∈ T

n must belong
to the interior of some simplex S, that is, we have e ∈ X =

⋃
σ Sσ.

Proof. Let y ∈ T \X be arbitrary, and choose a permutation σ with y ∈ ∂Sσ. Then there
exists some j with Ij(y) degenerate. According to the above, there exists some � �= j with
mj(y) < m�(y), so there is no equioscillation at y. �

Example 6.7. It can happen that an equioscillation point falls on the boundary of a
simplex S, and that maximum points of non-degenerate arcs lie on the endpoints. Indeed,
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let K0 := −4π3/|x| on [−π, π), extended periodically, and let K1(x) := K2(x) := −(x− π)2

on (0, 2π), again extended periodically. Observe that K0 satisfies (∞′
±) (and belongs to

C1((0, π) ∪ (π, 2π)), and K1,K2 ∈ C1(0, 2π). Still, for the node system y1 = y2 = π, we have
y ∈ ∂S = ∂SId, F (y, x) = F (y, 2π − x) = −4π3/x− 2x2 (0 � x � π), hence z0 = z1 = z2 = π
and m0 = m1 = m2 = F (y, π) = −6π2, showing that y is in fact an equioscillation point.

Lemma 6.8. Suppose the kernels K0, . . . ,Kn are strictly concave and either all satisfy (∞′),
or all belong to C1(0, 2π). Let w ∈ T

n and fix a permutation σ with w ∈ Sσ to determine
the ordering of the nodes. If j ∈ {0, . . . , n} is such that mj(w) = m(w), then Ij(w) is non-
degenerate and zj(w) belongs to the interior of Ij(w).

Proof. By Corollary 6.5 it follows that the arc Ij(w) = [wj , wr] is non-degenerate.
Suppose first that all kernels satisfy (∞′). In this case, F can attain global maximum neither

at wj nor at wr, because F is strictly increasing on a left or a right neighborhood of these
nodes due to condition (∞′) (use Lemma 3.8). Therefore, in this case zj(w) belongs to the
interior of Ij(w).

Next, let us suppose that the kernels are in C1(0, 2π). By an application of Lemma 6.3 we
obtain m(w) > F (w, wi) for all i = 0, 1 . . . , n. Hence, in the case m(w) = mj(w) = F (w, zj),
we cannot have zj = wj or zj = wr. �

As usual, we say that a point w ∈ T
n is a local minimum point of m if there exists η > 0

such that

m(w∗) = min{m(y) : dTn(y,w∗) < η}. (6.1)

Note that the η-neighborhood here may intersect several different simplexes.

Proposition 6.9. Suppose the kernels K0, . . . ,Kn are strictly concave and either all satisfy
(∞′), or all belong to C1(0, 2π). Let w∗ ∈ T

n be a local minimum point of m (see (6.1)). Then
w∗ is an equioscillation point, that is,

m(w∗) = m(w∗).

As a consequence, such a local minimum point belongs to X =
⋃

σ Sσ.

Proof. Consider an admissible cut of the torus (cf. Remark 3.2). Suppose for a contradiction
that i1, . . . , ik ∈ {0, . . . , n} with k � n are precisely the indices i with

m̂i(w∗) = m(w∗) =: M0.

By Lemma 6.8 tj := ẑij (w
∗) (for j = 1, . . . , k) belong to the interior of non-degenerate arcs.

With this choice we can use the Perturbation Lemma 6.2 to slightly move w∗ = (w1, . . . , wn)
to w′ = (w′

1, . . . , w
′
n), |w′ − w∗| < η and achieve

max
j=1,...,k

m̂ij (w
′) < M0,

while at the same time m̂q(w′) for q �= ij , j = 1, . . . , k do not increase too much (because by
Proposition 3.3 the functions m̂q are continuous), that is,

max
p=0,...,n

mp(w′) = max
j=1,...,k

m̂ij (w
′) < M0,

which is a contradiction.
The last assertion follows now immediately from Corollary 6.6. �
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Corollary 6.10. Suppose that the kernels K0, . . . ,Kn are strictly concave, and that either
all satisfy (∞′), or all belong to C1(0, 2π). Let S = Sσ be a simplex, and let w∗ ∈ S be an
extremal node system for (2.6). Then the following assertions hold.

(a) If w∗ ∈ S, then w∗ is an equioscillation point.
(b) Even in case w∗ ∈ ∂S we have that w∗ is a weak equioscillation point.
(c) Furthermore, if also (∞) holds, then we have {m0(w∗), . . . ,mn(w∗)} ⊆ {−∞,M(S)},

with mj(w∗) = −∞ iff Ij(w∗) is degenerate.
(d) If w∗ ∈ ∂S, then there exists another simplex S′ = Sσ′ with w∗ ∈ S ∩ S′ and M(S′) <

M(S), moreover w∗ is not even a local (conditional) minimum within S′.

Proof. (a) When the extremal node system w∗ lies in the interior of the simplex S, it is
necessarily a local minimum point, hence the previous Proposition 6.9 applies.

(b) For notational convenience we assume without loss of generality that σ = id, the identical
pertmutation. Let w∗ = (w1, . . . , wn) ∈ ∂S and assume that

0 = w0 = · · · = wi0 < wi0+1 = · · · = wi0+i1 < wi0+i1+1 = · · · = wi0+i1+i2

< · · · < wi0+···+is−1+1 = · · · = wi0+···+is < wi0+···+is+1 := 2π

is the listing of nodes with the number of equal ones being exactly i0, i1, . . . , is. Thus we have
i0 + · · · + is = n with i0 possibly 0 but the other indices ij are at least 1, and the number of
distinct nodes strictly in (0, 2π) is s.

In between the equal nodes there are degenerate arcs Ik, where — in view of Corollary 6.5
— the respective maximum mk(w∗) of the function F (w∗, ·) is strictly smaller, than one of the
maximums on the neighboring non-degenerate arcs, hence mk(w∗) is also smaller than m(w∗).

So in particular if s = 0 and there is only one non-degenerate arc Ii0 = [0, 2π], with all the
nodes merging to 0, then weak equioscillation (of this one value mi0) trivially holds.

Next, assume that there exists at least one node 0 < wk < 2π, and let us now define a new
system of s (1 � s < n) nodes y = (y1, . . . , ys) with yj = wi0+···+ij (j = 1, . . . , s) extended the
usual way by y0 = 0. Note that we will thus have 0 = y0 < y1 < · · · < ys < 2π, and the arising
s non-degenerate arcs between these nodes are exactly the same as the non-degenerate arcs
determined by the node system w∗.

Further, let us define new kernel functions Lj := Ki0+···+ij−1+1 + · · · + Ki0+···+ij for
j = 1, . . . , s, and L0 = K0 + K1 + · · · + Ki0 . Obviously, the new s + 1-element system
L0, L1, . . . , Ls consists of strictly concave kernels, either all satisfying (∞′), or all belonging to
C1(0, 2π), and now the node system y belongs to the interior of the respective s-dimensional
simplex S̃.

Observe that by construction we now have

F̃ (y, t) =
s∑

j=0

Lj(t− yj) =
n∑

i=0

Ki(t− wi) = F (w∗, t),

and so from the assumption that m(w∗) is minimal within the simplex S, it also follows that
supt∈T F̃ (y, t) is minimal within S̃. Therefore, by part (a) the maximum values m̃j of the
function F̃ on these non-degenerate arcs are all equal, and this was to be proven.

(c) is obvious once we have the weak equioscillation in view of (b).
(d) If we had w∗ being a local conditional minimum point in each of the simplexes to the

boundary of which it belongs, then altogether it would even be a local minimum point on T
n.

Then Proposition 6.9 would yield w∗ ∈ X, contradicting the assumption. So there has to be
some simplex S′, containing w∗ in ∂S′, where w∗ is not a local conditional minimum point.
Consequently, M(S′) < m(w∗) = M(S), whence the assertion follows. �
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Corollary 6.11. Suppose the kernels K0, . . . ,Kn are strictly concave and either all satisfy
(∞′), or all belong to C1(0, 2π). If w is an extremal node system for (2.4), that is,

m(w) = min
y∈Tn

m(y) = M,

then the nodes wj (j = 0, . . . , n) are pairwise different (that is, w ∈ X) and, moreover, w is
an equioscillation point, that is, we have

mj(w) = M for j = 0, . . . , n.

7. Distribution of local maxima of m

In this section we prove that the function m is (strictly) concave on any closed simplex S, if
the kernels are such. As a corollary we obtain a unique solution of the maximin problem (2.7).

Lemma 7.1. Suppose the kernels K0, . . . ,Kn are strictly concave. Let S = Sσ be a simplex.
Then F (y, s) : T

n × T → [−∞,∞) restricted to the convex open set

D := Dσ,i :=
{
(y, s) : y ∈ S and s ∈ int Ii(y)

}
is strictly concave.

Proof. First, note that the set D := Dσ,i is a convex subset of T
n+1. Indeed, let (x, r), (y, s) ∈

D and t ∈ [0, 1]. Then xi < x� and yi < y� imply txi + (1 − t)yi < tx� + (1 − t)y�, and xi < r <
x�, yi < s < y� entails also txi + (1 − t)yi < tr + (1 − t)s < tx� + (1 − t)y�.

Now, consider the sum representation of F and concavity of each K� to conclude

F (t(x, r) + (1 − t)(y, s)) =
n∑

�=0

K�(tr + (1 − t)s− (tx� + (1 − t)y�))

�
n∑

�=0

tK�(r − x�) + (1 − t)K�(s− y�)

= tF (x, r) + (1 − t)F (y, s). (7.1)

This shows concavity of F . To see strict concavity suppose t �= 0, 1 and that (x, r), (y, s) ∈ D
are different points. If r �= s, then using the strict concavity of K0 we must have

K0(tr + (1 − t)s) > tK0(r) + (1 − t)K0(s),

and if r = s, but x� �= y� for some 1 � � � n, then using strict concavity of K� (and also that
r = s) it follows that

K�(tr + (1 − t)s− (tx� + (1 − t)y�)) = K�(s− (tx� + (1 − t)y�)) > tK�(s− x�)

+ (1 − t)K�(s− y�).

Altogether we obtain strict inequality in (7.1). �

Proposition 7.2. Suppose the kernels K0, . . . ,Kn are strictly concave. Then for all
i = 0, 1, . . . , n, the functions mi(y) : S → R are also strictly concave. As a consequence,

m : S → [−∞,∞), m(y) := min
j=0,...,n

mj(y)

is a strictly concave function.
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Proof. Take i ∈ {0, 1, . . . , n}, x,y ∈ S and abbreviate w := zi(x), v := zi(y) (the unique
maximum points of F (x, ·) and F (y, ·) in Ii(x) and Ii(y), respectively, that is, mi(x) = F (x, w),
mi(y) = F (y, v)). Let ζ(t) := zi(tx + (1 − t)y), ζ(0) = v, ζ(1) = w. According to the previous
Lemma 7.1 the function F is strictly concave on Dσ,i, hence for different x �= y we necessarily
have

F (t(x, w) + (1 − t)(y, v)) > tF (x, w) + (1 − t)F (y, v) = tmi(x) + (1 − t)mi(y).

Here the left-hand side can be written as F (tx + (1 − t)y, ω(t)) with

ω(t) = tw + (1 − t)v ∈ Ii(tx + (1 − t)y).

Thus by the definition of mi we have

mi(tx + (1 − t)y) = max
s∈Ii(tx+(1−t)y)

F (tx + (1 − t)y, s) � F (t(x, w) + (1 − t)(y, v)).

Hence, the previous considerations yield even mi(tx + (1 − t)y) > tmi(x) + (1 − t)mi(y),
whence the first assertion follows. Since minimum of strictly concave functions is strictly
concave, the last assertion follows, too. �

Corollary 7.3. Suppose the kernels K0, . . . ,Kn are strictly concave, and let S := Sσ be
a simplex.

(a) In S the function m has a unique global maximum point y∗, and no local minimum
point in S.

(b) If the kernels satisfy (∞), then y∗ ∈ S.
(c) There is no other point in S majorizing y∗ than y∗ itself.

Proof. (a) Since m is strictly concave on S and continuous on S the assertion is evident.
(b) Under condition (∞) we have m|∂S = −∞, whence the assertion is immediate.
(c) If x ∈ S with mj(x) � mj(y∗) for all j = 0, 1, . . . , n, then for m = minj=0,...,n mj we

also have m(x) � m(y∗), hence x is also a maximum point, and by uniqueness (part (a)) this
entails x = y∗. �

8. Local properties of sums of translates

Exploiting concavity of m (as has been proven in the previous section), we can study now
the Comparison Property and the Sandwich Property and relate these to the non-uniqueness
of equioscillation points in a closed simplex S (see Proposition 8.2). By putting the previous
results together we can prove a version of Theorem 1.3 for a given and fixed simplex. This is
the content of Proposition 8.4.

Corollary 8.1. Suppose the kernels K0, . . . ,Kn are strictly concave. Let S := Sσ be a
simplex.

(a) Let y ∈ S, x ∈ S, x �= y be such that x majorizes y, that is, mj(x) � mj(y) for each
j = 0, . . . , n. Then there are a ∈ R

n and δ > 0 such that for every j = 0, . . . , n

mj(y + ta) > mj(y)
(
t ∈ (0, δ)

)
,

mj(y − ta) < mj(y)
(
t ∈ (0, δ)

)
.

In particular, the Local Strict non-Majorization Property (b) and non-Minorization Property
(c) fail at y.
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(b) On S the Local non-Majorization Property (C), the Local non-Minorization Property
(D), the Local Comparison Property (B) and the Comparison Property (A) are all equivalent,
also together with their strict versions.

Proof. (a) Take a := x − y and let

yt := y + ta = (1 − t)y + tx.

For sufficiently small δ > 0 we have yt ∈ S for every (−δ, 1] (since S is convex and open). By
the strict concavity of mj we obtain for t ∈ (0, 1) that

mj(yt)> (1 − t)mj(y) + tmj(x) � (1 − t)mj(y) + tmj(y) = mj(y)

and for t ∈ (−δ, 0)

mj(yt)< (1 − t)mj(y) + tmj(x) � (1 − t)mj(y) + tmj(y) = mj(y).

This proves the first assertion.
(b) The Comparison Property evidently implies the Local Comparison Property and that

implies further the Local non-Minorization and non-Majorization Properties. The already
established first assertion (a) provides the converse implications if we start with the even
weaker Local Strict non-Minorization or non-Majorization Properties. �

Proposition 8.2. Suppose that the kernel functions K0, . . . ,Kn are strictly concave. Let
S = Sσ be a fixed simplex and let e, f ∈ S be two different equioscillation points.

(a) Then we have M(S) < m(S), and the Sandwich Property (see Definition 5.7 and
Remark 5.6) fails.

(b) If m(e) � m(f) and e ∈ S, then the Local Strict non-Majorization (b) and all the
non-Minorization Properties fail to hold at e.

(c) If the kernels either all satisfy (∞′), or are all in C1(0, 2π), then the Comparison Property
(A) fails (see Definition 5.10).

Proof. For definiteness assume, as we may, that m(e) � m(f).

(a) If m(e) < m(f), then we obviously have M(S) � m(e) < m(f) = m(f) � m(S). If, on
the other hand, m(e) = m(f), then for the point g := (1/2)(e + f) ∈ S by the strict concavity
we find mj(g) > (1/2)(mj(e) + mj(f)) = m(e) for all j = 0, . . . , n, hence also m(g) > m(e)
and thus also m(S) � m(g) > m(e) � M(S). In both cases the Sandwich Property must fail,
because by Remark 5.6 this property is equivalent to M(S) � m(S).

(b) If m(e) � m(f), then f majorizes e, so Corollary 8.1(a) finishes the proof.
(c) Under the conditions we have e, f ∈ S in view of Corollary 6.6. According to the previous

part (b), we find that the Local Strict non-Majorization (b) and non-Minorization Properties
(c), (D) and (G) fail to hold at e. However, it has already been noted in Remark 5.11 that in
this case the Comparison Property (A) must fail as well. �

Corollary 8.3. Suppose the kernels K0, . . . ,Kn are strictly concave. Let S := Sσ be a
simplex and let y∗ ∈ S be a local minimum point of m (see (6.1)).

(a) Then there exists no other point different from y∗ in S majorizing y∗.
(b) Suppose the kernels either all satisfy (∞′), or all are in C1(0, 2π). Then there exists no

other local minimum point of m in the sense (6.1) in the closure S of S.

Proof. (a) Suppose x ∈ S majorizes y∗ and x �= y∗. Then by Corollary 8.1(a) there are
a ∈ R

n and δ > 0 with mj(y∗ − ta) < mj(y∗) for every t ∈ (0, δ) and j = 0, . . . , n. Hence y∗

cannot be a local minimum point for m.
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(b) By Proposition 6.9, under the conditions on the kernels the local minimum points of m
are also equioscillation points. Therefore, if y ∈ S, y �= y∗ is another local minimum point of
m, then one of y and y∗ majorizes the other. But then by part (a) the two points must be
equal. �

To sum up our findings we can state

Proposition 8.4. Suppose the kernels K0, . . . ,Kn are strictly concave and either all satisfy
(∞′), or all belong to C1(0, 2π). Let S := Sσ be a simplex. If m has a local minimum point
y∗ ∈ S, then y∗ is a unique point of equioscillation in S, and m has there its (unique, global)
maximum. In particular, then M(S) = m(S). Moreover, the Sandwich Property holds true in
S. Furthermore, the Singular non-Majorization and non-Minorization Properties hold on S.

Proof. Let y∗ ∈ S be the (unique, global) maximum point of m (see Corollary 7.3(a)).
Obviously,

min
j=0,...,n

mj(y∗) = m(y∗) � m(y∗).

By assumption we can apply Proposition 6.9 to conclude that y∗ is an equioscillation point,
that is, m(y∗) = m(y∗) = mj(y∗) for j = 0, . . . , n. Thus we find that y∗ majorizes the point
y∗. According to Corollary 8.3(a) this is not possible unless y∗ = y∗. Therefore we obtain
M(S) = m(S), and Remark 5.6 yields the Sandwich Property. If e ∈ S is another equioscillation
point, then m(e) � m(y∗) (since y∗ is a minimum point). By Proposition 8.2(a) this would
imply M(S) < m(S), which would be a contradiction. Therefore, there exists no other
equioscillation point in S than y∗ itself. Since y∗ ∈ S is a local minimum point of m, by
Corollary 8.3(a) there is no point majorizing it. But also y∗ is the unique global minimum
point of m, so there is no point in S minorizing it. �

9. The Difference Jacobi Property

In this section we show that if the kernels are in C2(0, 2π) with strictly negative second
derivative, then we have the Difference Jacobi Property on any simplex. This will result in
a global homeomorphism result (Corollary 9.3) and in the uniqueness of equioscillation points
(in a fixed simplex) under the condition (∞) (see Corollary 9.4).

Proposition 9.1. Suppose that K0, . . . ,Kn are in C2(0, 2π) with K ′′
j < 0 (j = 0, . . . , n),

and let S = Sσ be a simplex. For j = 0, . . . , n the functions mj(y) are continuously
differentiable in S and

∂mj

∂yr
(y) = −K ′

r

(
zj(y) − yr

)
for r = 1, . . . , n. (9.1)

Proof. Let y ∈ S be fixed. Recall that t = zj(y) is the unique maximum point in Ij(y), that
is, with F ′(y, t) = 0. Since

F ′′(y, t) = K ′′
0 (t) +

n∑
j=1

K ′′
j (t− yj) < 0

by the implicit function theorem, for a suitable neighborhood U × V ⊆ S × Ij(y) we have that
zj : U → V is continuously differentiable. Since mj(y) = F (y, zj(y)) we obtain that mj , too is
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continuously differentiable and

∂mj

∂yr
(y) =

∂

∂yr

(
F
(
y, zj(y)

))
=

∂F

∂yr

(
y, zj(y)

)
+

∂

∂t
F
(
y, t

)|t=zj(y)
∂

∂yr
zj
(
y
)

= −K ′
r

(
zj(y) − yr

)
. �

As a consequence, the Jacobian matrix Dm of m = (m0, . . . ,mn)
 is
r

↓

Dm = j →

⎛
⎜⎜⎝

...
· · · −K ′

r

(
zj(y) − yr

) · · ·
...

⎞
⎟⎟⎠ (9.2)

where j = 0, . . . , n and r = 1, . . . , n.
For a given permutation σ of {1, . . . , n} let us consider the mapping Δσ defined by

Δσ(y) := (mσ(1)(y) −mσ(0)(y), . . . ,mσ(n)(y) −mσ(n−1)(y))
. (9.3)

Its Jacobian matrix DΔσ is
r

↓

DΔσ(y) = j →

⎛
⎜⎜⎝

...
· · · −K ′

r

(
zσ(j)(y) − yr

)
+ K ′

r

(
zσ(j−1)(y) − yr

) · · ·
...

⎞
⎟⎟⎠ (9.4)

where j = 1, . . . , n and r = 1, . . . , n.

Proposition 9.2. Suppose that for each j = 0, . . . , n the kernel Kj belongs to C2(0, 2π)
with K ′′

j < 0. Let S = Sσ be a simplex and let y ∈ S be such that for each j = 0, 1, . . . , n we
have zj(y) ∈ int Ij(y). Then, the Jacobian matrix of Δσ(y) is non-singular. That is, on S, we
have the Difference Jacobi Property.

Proof. For the sake of brevity we may suppose σ = id, that is, σ(j) = j, otherwise we
can relabel the kernels Kj accordingly. We abbreviate zj := zj(y) and have according to the
assumption

zj−1 < yj < zj for j = 1, . . . , n.

Write A := −DΔσ(y). First, we show that A is a so-called Z-matrix, that is, the entries
are non-negative on the diagonal and are non-positive off the diagonal (see, for example,
[5, pp. 132 and 279]).

On the diagonal the entries are K ′
r(zr − yr) −K ′

r(zr−1 − yr), r = 1, . . . , n. Since 0 < zr−1 <
yr < zr < 2π we obtain zr−1 − yr < 0 < zr − yr and 2π + zr−1 − yr < 2π, furthermore, 0 <
zr − yr < 2π + zr−1 − yr < 2π. Now, using the 2π periodicity of K ′

r and that K ′
r is strictly

monotone decreasing in (0, 2π), we obtain K ′
r(zr−1 − yr) < K ′

r(zr − yr), that is, K ′
r(zr − yr) −

K ′
r(zr−1 − yr) > 0.
For j < r we have zj−1 < zj � zr−1 < yr. Therefore, −2π < zj−1 − yr < zj − yr < 0 and

using that K ′
r is strictly monotone decreasing and 2π periodic, we can write

K ′
r(zj − yr) −K ′

r(zj−1 − yr) < 0.

Therefore the elements above the diagonal of A are strictly negative.



A MINIMAX PROBLEM FOR SUMS OF TRANSLATES ON THE TORUS 31

If j > r, then yr < zr � zj−1 < zj . As above, 0 < zj−1 − yr < zj − yr < 2π and using that
K ′

r is strictly monotone decreasing, we can write

K ′
r(zj − yr) −K ′

r(zj−1 − yr) < 0,

meaning that the entries below the diagonal of A are strictly negative, too. So we have seen
that A is a Z-matrix.

We now show that the column sums of A are strictly positive. Indeed, the sum of the rth
column of A is telescopic

n∑
l=1

(
K ′

r(zl − yr) −K ′
r(zl−1 − yr)

)
= K ′

r(zn − yr) −K ′
r(z0 − yr).

Since 0 < z0 < yr < zn < 2π, we have 0 < zn − yr < 2π + z0 − yr < 2π. Since K ′
r is strictly

decreasing and 2π periodic, it follows K ′
r(zn − yr) −K ′

r(z0 − yr) > 0.
Therefore, with x = (1, 1, . . . , 1)
 ∈ R

n we have A
x is a strictly positive vector. This means
that A
 satisfies condition I27 in [5, p. 136]. Hence by Theorem 2.3 on [5, pp. 134–138] it follows
that A
 is an M-matrix and is non-singular, this yielding also the non-singularity of −A. The
proof is hence complete. �

Corollary 9.3. Suppose that for each j = 0, . . . , n the kernel Kj belongs to C2(0, 2π)
with K ′′

j < 0 and satisfies (∞). Let S = Sσ be a simplex. The mapping Δσ : S → R
n is then a

homeomorphism.

Proof. By Proposition 9.2 the mapping Δσ is locally a homeomorphism (onto its image), and
by Proposition 5.1 it carries the boundary ∂S onto the boundary of the one-point compactified
R

n. By a well-known result — see, for example, [28, Lemma 3.24, p. 105; 24, Corollary 4.3;
23, Theorem 5.3.8, pp. 136–137] — Δσ is a homeomorphism. �

Here is a proof of existence (and even uniqueness) of equioscillation points in a given simplex
under the special conditions of this section.

Corollary 9.4. Suppose that for each j = 0, . . . , n the kernel Kj belongs to C2(0, 2π) with
K ′′

j < 0 and satisfies (∞). Then all equioscillation points belong to some (open) simplex, and
in each simplex S = Sσ there is a unique equioscillation point.

Proof. An equioscillation point must belong to X according to Corollary 6.6. In a fixed
simplex Sσ, an equioscillation point is the inverse image of 0 ∈ R

n under the homeomorphism
Δσ from Corollary 9.3. �

10. Equioscillation points

In this section we prove the existence of equioscillation points in each simplex S = Sσ, and
discuss the uniqueness of such points. The main tool will be the approximation of kernels by
a sequence of kernel functions having special properties, so the arguments rely on the results
of Section 4.

Lemma 10.1. Suppose that K0, . . . ,Kn are strictly concave kernel functions and that a

sequence of strictly concave kernel functions (K(k)
j )k∈N converges uniformly (e.s.) to Kj as

k → ∞, j = 1, . . . , n. Let S = Sσ be a simplex. For each k ∈ N let e(k) ∈ S be an equioscillation
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point for the system of kernels K
(k)
j , j = 0, . . . , n. Then any accumulation point e ∈ S of the

sequence (e(k))k∈N is an equioscillation point of the system Kj , j = 0, . . . , n.

Proof. By passing to a subsequence we may assume that e(k) → e ∈ S. By assumption and
by Proposition 4.3 m

(k)
j → mj uniformly (e.s.) on S as k → ∞. It follows that m

(k)
j (ek) →

mj(e) as k → ∞, so e ∈ S is an equioscillation point. �

We need another lemma, similar to [3, Theorem 1], in order to be able to apply the previous
result.

Lemma 10.2. Let f : [0, 1) → R be a strictly concave, non-increasing function. Then for
each ε > 0 there exists another strictly concave decreasing function g : [0, 1) → R such that
g ∈ C∞[0, 1), g′′ < 0 on [0, 1), and f(x) − ε � g(x) � f(x) for each x ∈ [0, 1).

Proof. This lemma is fairly standard, but for sake of completeness, we include a proof.
Assume, without loss of generality, that f(0) = 0. Let us consider the right (hence right

continuous) derivative f ′
+ of f for our construction: We can write f(x) =

∫ x

0
φ(t)dt, where

φ(t) := f ′
+(t) and φ : [0, 1) → (−∞, 0].

It suffices to construct a C∞-approximation γ : [0, 1) → (−∞, 0] to the non-increasing
function φ, which has non-positive, continuous derivative γ′ ∈ C∞[0, 1), and which satisfies
γ(x) � φ(x) on [0, 1) and

∫ 1

0
(φ(x) − γ(x))dx < ε. Indeed, then g(x) :=

∫ x

0
γ(t)dt is a suitable

approximant to f . (If needed, we can easily achieve g′′ < 0 by adding −η · (x + 1)2 to g where
η > 0 is small enough, still satisfying f(x) − ε− 4η � g(x) − η · (x + 1)2 � f(x)).

Write φ(x) = α(x) + β(x), where α(x) is a pure jump function and β(x) is continuous. Both
α and β are non-increasing.

Approximate β with a pure jump function β1 such that β1 is non-increasing and β(x) − ε/2 �
β1(x) � β(x) for all x ∈ [0, 1).

Consider α(x) + β1(x) =
∑∞

j=1 sjH(x− rj), where H(x) is the usual Heaviside function,
H(x) = 1 for x � 0 and otherwise zero. Here sj < 0, rj ∈ [0, 1),

∑
i :ri<x |si| < ∞ (for all x < 1).

By construction, φ(x) − ε/2 �
∑∞

j=1 sjH(x− rj) � φ(x).
Take ψ ∈ C∞(R) with ψ � 0, suppψ = [−1, 0],

∫
R
ψ(t)dt = 1 and define θ(x) :=

∫ x

−∞ ψ(t)dt.
Consider the translated and dilated versions τr,h(x) := θ((x− r)/h) of θ. Then τr,h ∈ C∞[0, 1)
for any h > 0, and these functions are non-decreasing, and H(x− r) � τr,h(x) with strict
inequality holding precisely for x ∈ (r − h, r). As a result, we have

∫ 1

0
|τr,h(x) −H(x− r)|dx �

h. Approximate now the constructed pure jump function from below as follows:

∞∑
i=1

siH(t− ri) �
∞∑
i=1

siτri,hi
(t),

where both sums are absolutely and uniformly convergent for all t ∈ [0, x] for any fixed x < 1, if
only we assume hi � (1/2)(1 − ri). (Indeed, this follows for the first sum by

∑
i :ri<x |si| < ∞,

while the assumption entails that ri − hi < x ⇒ ri < x + (1/2)(1 − ri) ⇔ ri < (1 + 2x)/3 < 1,
whence the sum

∑
i :ri−hi<x |si| �

∑
i :ri<(2x+1)/3 |si| also converges.) Furthermore, we also

have

0 �
∫ x

0

∞∑
i=1

siH(t− ri) −
∞∑
i=1

siτri,hi
(t) dt =

∞∑
i=1

si

∫ x

0

H(t− ri) − τri,hi
(t) dt

�
∑

i: ri−hi<x

|si|hi <
ε

2
,
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if we also know that hi are so small that
∑∞

i=1 |si|hi < ε/2. Here we can choose
hi := min((1/2) − ri/2, 2−iε/(4|si|)).

Finally, let γ(x) :=
∑∞

i=1 siτri,hi
(t). Then φ(x) � γ(x) and

∫ 1

0
γ(x) − φ(x)dx < ε. This

finishes the proof of this lemma. �

Lemma 10.3. Let K be a strictly concave kernel function. Then for each ε > 0 there exists
another strictly concave function k ∈ C2(0, 2π), k′′ < 0 on (0, 2π), and K(x) − ε � k(x) � K(x)
for each x ∈ (0, 2π).

Proof. This approximation is indeed possible, for given ε > 0 and a given (strictly) concave
function K : (0, 2π) → R satisfying (∞), we can choose the maximum point c ∈ (0, 2π), and
consider the intervals [c, 2π) and (0, c] separately: applying Lemma 10.2 for −K((x− c)/
(2π − c)) and −K((c− x)/c) separately provides an approximating strictly concave kernel
function k ∈ C2((0, 2π) \ {c}) with k′′ < 0 and K − ε < k < K. By a modification of this
kernel function even a smooth approximating kernel function, as in the assertion, can be easily
found. �

Theorem 10.4. Suppose that for each j = 0, . . . , n the kernels Kj are strictly concave. Then
for each simplex S = Sσ there exists an equioscillation point in S.

Moreover, if the kernels are either all in C1(0, 2π) or at least n of them satisfy (∞′), then
any equioscillation point is in the open simplex S.

Proof. We split the proof into several steps.
Step 1. First, let us suppose that all the kernel functions K0, . . . ,Kn satisfy (∞). By

Lemma 10.3 we can take a sequence (K(k)
i )k∈N of strictly concave functions in C2(0, 2π)

satisfying d2

dt2K
(k)
i (t) < 0 and converging strongly uniformly (and therefore locally uniformly,

too) to the functions Ki. Note that hence we also require that K
(k)
j satisfy (∞).

According to Corollary 9.4 each system K
(k)
j , j = 0, . . . , n, has a unique equioscillation point

e(k). By Lemma 10.1 any accumulation point e of this sequence (and, by compactness, there is
one) is an equioscillation point. Finally, by Corollary 6.6 an equioscillation point is necessarily
inside S. This concludes the proof for the special case when all the kernels satisfy (∞).

Step 2. Now, let us consider the case when the kernels are strictly concave but satisfy (∞′
±)

only. Let us fix the auxiliary functions Lk(x) := log−(k|x|), which are concave, even, non-
positive functions on (−π, 0) ∪ (0, π) with singularity at 0. We extend these functions to R

periodically. For k ∈ N and j = 0, . . . , n define K
(k)
j := Lk + Kj . Then K

(k)
j ↑ Kj on T \ {0}.

By Step 1, for each k ∈ N there is an equioscillation point e(k) for the system K
(k)
j , j = 0, . . . , n.

By passing to a subsequence we can assume e(k) → e ∈ S. For j ∈ {0, . . . , n} we have

m
(k)
j (e(k)) = max

t∈Ij(e(k))
F (k)(e(k), t) � max

t∈Ij(e(k))
F (e(k), t) = mj(e(k)).

Since mj is continuous on S, we obtain

lim sup
k→∞

m
(k)
j (e(k)) � mj(e). (10.1)

Suppose first that the arc Ij(e) is non-degenerate for all j = 0, 1, . . . , n, that is, assume e ∈ S.
Then Proposition 3.9(d) yields zj(e) ∈ int Ij(e) = (ej , er), so for sufficiently large k we have
zj(e) ∈ int Ij(e(k)), too; furthermore, since by construction Kj(t) = K

(k)
j (t) for t �∈ [−1/k, 1/k],
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for sufficiently large k we even have e(k)
j + 1/k < zj(e) < e

(k)
r − 1/k, whence F (k)(e(k), zj(e)) =

F (e(k), zj(e)), too. Therefore we obtain

m
(k)
j (e(k)) = max

t∈Ij(e(k))
F (k)(e(k), t) � F (k)(e(k), zj(e)) = F (e(k), zj(e)).

This implies

lim inf
k→∞

m
(k)
j (e(k)) � lim inf

k→∞
F (e(k), zj(e)) = F (e, zj(e)) = mj(e). (10.2)

So the proof of Step 2 is complete if e ∈ S.
Finally, we show that e ∈ ∂S is impossible. Indeed, if there is a degenerate arc Ij(e), then

by Corollary 6.5 there is a neighboring non-degenerate arc Ii(e) such that mi(e) > mj(e). But
then we are led to a contradiction, because using (10.1) and (10.2) we also have

mj(e) � lim sup
k→∞

m
(k)
j (e(k)) � lim inf

k→∞
m

(k)
j (e(k)) = lim inf

k→∞
m

(k)
i (e(k)) � mi(e),

taking into account the equioscillation of m(k) at e(k).
Step 3. Finally, we suppose only that K0, . . . ,Kn are strictly concave kernel functions. We

now take the functions Lk(x) := (
√|x| − 1/k)−, which are negative only for −1/k2 < x <

1/k2 and zero otherwise, and converge uniformly to zero. Restricting Lk to [−π, π) and then
extending it periodically we thus obtain a function on T which is concave on (0, 2π) and
converges to 0 uniformly on [0, 2π]. Note that limx→0±0 L

′
k(x) = ±∞, hence the perturbed

kernels K(k)
j := Kj + Lk, j = 0, . . . , n, satisfy (∞′

±). Again, in view of the already proven case

in Step 2, there exist some equioscillation points e(k) for the system K
(k)
j , j = 0, . . . , n, and by

compactness, there exists an accumulation point e ∈ S of the sequence (e(k))k∈N. By uniform
convergence of the kernels we can apply Lemma 10.1 to conclude that e is an equioscillation
point of the system Kj , j = 0, . . . , n.

It remains to prove that e ∈ S if the additional assumptions are fulfilled, but this has already
been done in Corollary 6.6. �

Corollary 10.5. Let the kernel functions K0, . . . ,Kn be strictly concave. Then in any
simplex S = Sσ the Equioscillation Property holds, and we have M(S) � m(S).

Corollary 10.6. Let the kernel functions K0, . . . ,Kn be strictly concave and let S = Sσ

be a simplex. Suppose that M(S) = m(S). Then there is w∗ ∈ S with m(S) = m(w∗) and w∗
is the unique equioscillation point in S.

Proof. Let e ∈ S be an equioscillation point (see Corollary 10.5), and let w∗ ∈ S be such
that m(w∗) = m(S) (see Proposition 3.11). Because m(e) = m(e) � M(S) = m(S) = m(w∗),
we find that e is also a maximum point of m, and that m(e) = M(S). By Corollary 7.3(a),
e = w∗, and by M(S) = m(S) and in view of Proposition 8.2(a), the equioscillation point is
unique. �

11. Proof of Theorem 1.3, some consequences and conclusions

For the sake of better legibility we recall here Theorem 1.3 from Section 1 using the terminology
introduced in the previous sections. Then we discuss the sharpness of the result and draw some
further consequences.
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Theorem 11.1. Suppose the kernel functions K0,K1, . . . ,Kn are strictly concave and either
all satisfy (∞′), or all belong to C1(0, 2π). Then there is w∗ ∈ T

n, w∗ = (w1, . . . , wn) with

M := inf
y∈Tn

sup
t∈T

F (y, t) = sup
t∈T

F (w∗, t).

Moreover, we have the following.

(a) w∗ is an equioscillation point, that is, m0(w∗) = · · · = mn(w∗).
(b) w∗ ∈ S := Sσ for some simplex, that is, the nodes in w∗ are different, and

M(S) = inf
y∈S

max
j=0,...,n

sup
t∈Ij(y)

F (y, t) = M = sup
y∈S

min
j=0,...,n

sup
t∈Ij(y)

F (y, t) = m(S).

(c) We have the Sandwich Property on S, that is, for each x,y ∈ S

m(x) � M � m(y).

Proof. In view of Corollary 3.12, a global minimum point w∗ of m must exist. Next, Corol-
lary 6.11 furnishes part (a) and w∗ ∈ X, that is, the first half of (b). Finally, Proposition 8.4
implies the second half of (b) and the assertion in (c). �

Example 11.2. We present an example showing that on different simplexes we may have
different values of M . This will be done in several steps, and we begin with considering the
functions

K(x) := π − |x− π| for x ∈ [0, 2π],

Q(x) := x(2π − x) for x ∈ [0, 2π],

and extend them periodically to R. We take K0 = K1 = K and K2 = K3 = εQ, where ε ∈
(0, 1/4) is fixed arbitrarily. This is not yet the system of kernels that we are looking for, but
they will serve as a basis for the construction.

Note that this system of kernels almost satisfies the conditions of Theorem 11.1: two kernels
satisfy (∞′

±) and all the kernels are in C1((0, 2π) \ {π}), and the two not satisfying (∞′
±) are

even in C1(0, 2π) (which, again, could have been enough if satisfied by all).
We consider two simplexes S = Sσ for σ = (2, 1, 3) and S′ = Sσ′ with σ′ = (3, 2, 1). We prove

that there is an equioscillation point e ∈ S and for this equioscillation point we have m(e) >
m(S′). This will be done first in two steps below, then in Step 3 we will take an appropriate
sequence of kernel functions K

(k)
j converging to Kj (j = 0, 1, . . . , n) and obtain

M (k)(S) > M (k)(S′)

as required.
Step 1. We take the node system e :e0 = 0, e1 = π, e2 = π/2, e3 = 3π/2. Then we have e ∈ S

and

F (e, t) = K0(t) + K1(t− e1) + K2(t− e2) + K3(t− e3) = π + εQ(t− π
2 ) + εQ(t− 3π

2 ).

It is easy to see that

m0(e) = F (e, 0) = max
t∈[0,π2 ]

F (e, t) = π + 3επ2

2 ,

and by symmetry m0(e) = m1(e) = m2(e) = m3(e), that is, e is an equioscillation point.
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Step 2. Consider the node system x0 = 0, x1 = π + (3 − 2
√

2)επ2, x2 = (2
√

2 − 2)π, x3 = 0.
Then of course x ∈ S′ ∩ S. It is easy to see that

F (x, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−2εt2 + 2(1 + εx2)t− εx2
2 + 2π(εx2 + 1) − x1, if 0 � t � x1 − π,

−2εt2 + 2εx2t− εx2 (−2π + x2) + x1, if x1 − π � t � x2,
−2εt2 + 2ε (2π + x2) t− εx2 (2π + x2) + x1, if x2 � t � π,
−2εt2 + 2(εx2 + 2επ − 1)t− εx2(2π + x2) + x1 + 2π, if π � t � x1,
−2εt2 + 2ε (2π + x2) t− εx2(2π + x2) − x1 + 2π, if x1 � t � 2π.

For definiteness of indexing, let us consider the node system x as an element of the simplex S′

where σ′ = (3, 2, 1).
Now, an easy but tedious computation leads to the following. The maximum of F (x, ·) on

I0(x) = [x0, x3] = [0, 0] is

m0(x) = F (x, 0) = π + επ2(14
√

2 − 19),

the maximum of F (x, ·) on I1(x) = [x1, 2π] is attained at z1(x) = π + x2/2 and

m1(x) = F (x, π + w2
2 ) = π + επ2(6

√
2 − 7),

the maximum of F (x, ·) on I2(x) = [x2, x1] is attained at z2(x) = π and

m2(x) = F (x, π) = π + επ2(6
√

2 − 7),

the maximum of F (x, ·) on I3(x) = [x3, x2] = [0, x2] is attained at z3(x) = x2/2 and

m3(x) = F (x, x2
2 ) = π + επ2(6

√
2 − 7).

From this we conclude

m(x) = π + επ2(6
√

2 − 7) < π + 3επ2

2 = m(e),

and hence

M(S), M(S′) � m(x) < m(e).

Note that the equioscillation point e ∈ S thus cannot be a minimum point of m on the simplex
S, while x ∈ S ∩ S′ is a weak equioscillation point on the boundary of both simplexes.

Step 3. Now, let

K
(k)
j (x) := Kj(x) +

1
k

√
π2 − (x− π)2,

for j = 0, 1, 2, 3. Then K
(k)
0 , K(k)

1 , K(k)
2 , K(k)

3 are strictly concave, symmetric, satisfying the
condition (∞′

±) and

K
(k)
j → Kj uniformly as k → ∞ for j = 0, 1, 2, 3.

Since the configuration of the kernel functions for the simplex S is symmetric and the node
system e is symmetric, it is easy to see that e is an equioscillation point in S also in the
case of the kernels K

(k)
j . By Proposition 4.3 we have M (k)(S) → M(S), m(k)(S) → m(S) and

m
(k)
j (e) → mj(e) as k → ∞. Let w∗(k) ∈ S be such that M (k)(S) = m(w∗(k)).
Now if for some k ∈ N we have m(k)(e) �= M (k)(S), then w∗(k) ∈ ∂S (by Proposition 8.4)

and m(k)(S) � m(k)(e) > M (k)(S). By Corollary 6.10(d) we have then M (k)(S′′) < M (k)(S)
for some neighboring simplex S′′. Since by symmetry there are basically two simplexes, we
must have M (k)(S′′) = M (k)(S′) (recall S′ = Sσ′ for σ′ = (3, 2, 1)). Therefore

M (k)(S) > M (k)(S′).
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On the other hand, we cannot have m(k)(e) = M (k)(S) for all k ∈ N, because then for all
large k

M (k)(S) = m(k)(e) > m(k)(x)

would hold, and that is impossible by x ∈ S.
We sum up what has been found in this example: There are strictly concave kernel functions

K
(k)
j , j = 0, 1, 2, 3 satisfying (∞′

±), and there are two simplexes S and S′ such that M (k)(S) >
M (k)(S′).

The phenomenon observed in the previous example can be present also for strictly concave
kernels with the (∞) property.

Example 11.3. Consider some symmetric kernel functions K0, K1, K2, K3 satisfying
(∞′

±) with M(Sσ) > M(Sσ′) (see the previous Example 11.2). Let L be a strictly concave,
symmetric kernel function with (∞), and consider K(k)

j := (1/k)L + Kj , j = 0, . . . , 3. Then, as
in Example 11.2, by means of Proposition 4.3 we obtain

M (k)(Sσ) > M (k)(Sσ′)

for large k.

Example 11.4. It can happen that M(T3) < m(T3).
Indeed, let K0, K1, K2, K3 ∈ C2(0, 2π) be strictly concave symmetric kernel functions

satisfying (∞) with

M(Sσ) > M(Sσ′)

for different simplexes Sσ and Sσ′ . Consider, for example, the situation of the preceding
Example 11.3.

Let w∗ ∈ T
3 be a global minimum point of m on T

3. Let Sσ′′ denote the simplex in which
w∗ lies. We then have

M(T3) = m(Sσ′′) = M(Sσ′′) � M(Sσ′) < M(Sσ) � m(Sσ)

by Theorem 11.1(b) and by Corollary 10.5. This implies M(T3) < m(T3).

Next, let us discuss the case when all but one kernel functions are the same. This is analogous
to the setting of Fenton [16] in the interval case. Under these circumstances the phenomenon
in the previous example is not present anymore. We first need the next lemma, whose similar
versions have appeared already in [16, 18].

Lemma 11.5. Let K be strictly concave and let a, b > 0, 0 < x � y < 2π be given. Then for
0 < δ < min{x

b ,
2π−y

a } we have

1
a
K(t− (y + ah)) +

1
b
K(t− (x− bh)) <

1
a
K(t− y) +

1
b
K(t− x)

for each t ∈ (0, x− bδ) ∪ (y + aδ, 2π) and each 0 < h < δ.

Proof. By strict concavity the difference quotients of K are strictly decreasing in both
variables, so that for all h ∈ (0, δ) and t ∈ (0, x− bδ) or t ∈ (y + aδ, 2π)

K(t− x + bh) −K(t− x)
bh

<
K(t− y) −K(t− y − ah)

ah
.

But this inequality is equivalent to the assertion. �
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Theorem 11.6. Suppose the kernel functions L,K are strictly concave and either K satisfies
(∞′) or both K and L belong to C1(0, 2π). Set

F (y, t) := L(t) +
n∑

j=1

K(t− yj).

Then there is an up to permutation unique w∗ ∈ T
n, w∗ = (w1, . . . , wn) with

M := inf
y∈Tn

sup
t∈T

F (y, t) = sup
t∈T

F (w∗, t).

Moreover, we have the following.

(a) The nodes w0, . . . , wn are different and w∗ is an equioscillation point, that is,

m0(w∗) = · · · = mn(w∗).

(b) We have

M = inf
y∈Tn

max
j=0,...,n

sup
t∈Ij(y)

F (y, t) = sup
y∈Tn

min
j=0,...,n

sup
t∈Ij(y)

F (y, t) = m.

(Here it is immaterial that for a given y which permutation σ is taken with y ∈ Sσ.)
(c) We have the Sandwich Property on T

n, that is, for each x,y ∈ T
n

m(x) � m = M � m(y).

(d) If K is as in the above and L = K, then a permutation of the points w0 = 0, w1, . . . , wn

lies equidistantly in T.

Proof. First of all, note that assertion (d) is obvious by the complete symmetry of the setup.
Furthermore, again by the cyclic symmetry of the situation, even if K �= L, we still have for
any two simplexes Sσ and Sσ′ that M(Sσ) = M(Sσ′) = M and m(Sσ) = m(Sσ′) = m. Thus, if
L and K satisfies (∞′), or if both belong to C1(0, 2π), existence, uniqueness, and the assertions
(a)–(c) are contained in Theorem 11.1.

It remains to prove parts (a)–(c) in the case when K satisfies (∞′) while L does not, so that
L is a real-valued continuous function on T. Without loss of generality we may assume that K
satisfies (∞′

−).
Let w∗ = (w1, . . . , wn) be a global minimum point of m in T

n (Corollary 3.12). We first show
that w∗ ∈ X, that is, w∗ ∈ S for some simplex S. We argue by contradiction and assume that
w∗ ∈ T

n \X, that is, w∗ ∈ ∂Sσ for some permutation σ, which is now fixed for the numbering
of the nodes.

As the kernels Ki = K satisfy (∞′
−) for i = 1, . . . , n, Lemma 3.8(b) immediately provides

M > F (w∗, wi) for each wi, i = 1, . . . , n. Now if w∗ ∈ ∂Sσ is such that wi = w0 = 0 for some
i ∈ {1, 2, . . . , n}, then we also have M > F (w∗, w0), and so for any maximum point z of F (w∗, ·)
we necessarily have z ∈ T \ {w0, w1, w2, . . . , wn}. That is, for the unique local maximum points
zji(w

∗) ∈ Iji(w
∗) with M = mji(w

∗) = F (w∗, zji(w
∗)), where i = 1, . . . , k, neither of these

points can be endpoints of the respective Iji(w
∗), and so they are all located in the interior

of the respective arcs. Note that by assumption w∗ ∈ ∂Sσ, hence there are at most n non-
degenerate arcs, so k � n and the Perturbation Lemma 6.2(c) applies. This provides us some
perturbation of the node system w∗ to a new node system w′ with all the maxima mji(w

′) < M
(i = 1, . . . , k). As the other arcs had maxima strictly below M , and in view of continuity
(Proposition 3.3), altogether we would get m(w′) < M , a contradiction.

Therefore, it remains to settle the case when there is no i � 1 with wi = w0 (but we still
have w∗ ∈ ∂Sσ). So assume that (0 = w0 <)wσ(j) = · · · = wσ(j+k)(< 2π) is a complete list of
k + 1 coinciding nodes within (0, 2π). As before, in view of condition (∞′

−) Lemma 3.8(b)
applies providing M > F (w∗, wσ(j)). Consider now the perturbed system w′ obtained from
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w∗ by means of slightly pulling apart wσ(j) and wσ(j+k), that is, taking w′
σ(j) := wσ(j) − h

and w′
σ(j+k) = wσ(j+k) + h (and leaving the other nodes unchanged). Referring to Lemma 11.5

with a = b = 1, we obtain for small enough h > 0 that F is strictly decreased in T \ (wσ(j) −
h,wσ(j) + h)), whence even maxT\(wσ(j)−h,wσ(j)+h) F (w′, t) < M , while in the missing interval
of length 2h continuity of F and M > F (w∗, wσ(j)) entails max[wσ(j)−h,wσ(j)+h] F (w′, t) < M .
Altogether, we are led to m(w′) < M , a contradiction again. This proves that w∗ ∈ X, that
is, belongs to the interior of some simplex.

Now, by Theorem 10.4 there is an equioscillation point e ∈ S, which certainly majorizes w∗.
By Corollary 8.3(a) we obtain w∗ = e. This proves (a). Let w∗ be a maximum point of m in
S. Then, w∗ majorizes the equioscillation point w∗, so again Corollary 8.3(a) yields w∗ = w∗.
This proves (b) and (c). �

12. An application: a minimax problem on the torus

The aim of this section is to prove the next result, which generalizes Theorem 1.1 of Hardin,
Kendall and Saff from [18] in the extent that we do not assume the kernels to be even. We
also add some extra information about the extremal node system: It is the unique solution of
the dual maximin problem.

Corollary 12.1. Let K be any concave kernel function, and let 0 = e0 < e1 < · · · < en be
the equidistant node system in T. Consider F (y, t) = K(t) +

∑n
j=1 K(t− yj).

(a) For e = (e1, . . . , en) we have

max
t∈T

F (e, t) = M = inf
y∈Tn

max
t∈T

F (y, t),

that is, e is a minimum point of m. Moreover,

inf
y∈Tn

max
j=0,...,n

mj(y) = M = m = sup
y∈Tn

min
j=0,...,n

mj(y).

(b) If K is strictly concave, then e is the unique (up to permutation of the nodes) maximum
point of m and the unique minimum point of m.

Proof. Since the permutation of the nodes is irrelevant we may restrict the consideration
to the simplex S := Sid, where id is the identical permutation. We have M = M(S) and
m = m(S).

(a) Approximate K uniformly by strictly concave kernel functions K(k) satisfying (∞′
±)

(cf. Example 11.3). By Theorem 11.6, M (k) = m(k)(e) and M (k) = m(k) and obviously we
have M (k) = M (k)(S), m(k) = m(k)(S). By Proposition 4.3 we have M (k)(S) → M(S) =
M , m(k)(S) → m(S) = m, m(k)(e) → m(e) and m(k)(e) → m(e). So m(e) = M = M(S) =
m(S) = m.

(b) Let w∗ ∈ S be a minimum point of m. If mj(w∗) < m(w∗) = M(S) held for some
j ∈ {0, 1, . . . , n}, then by an application of Lemma 11.5 (with a = b = 1 there) and Corollary 3.6
we could arrive at a new node system w′ with m(w′) < m(w∗), which is impossible. We
conclude therefore that w∗ is an equioscillation point. Since by part (a) we have m(S) = M(S),
the equioscillation point is unique by Proposition 8.2(a). Hence w∗ = e, and uniqueness
follows. �
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13. An application: generalized polynomials and Bojanov’s result

In this section we present two applications of the previously developed theory to Chebyshev-
type problems for generalized polynomials and generalized trigonometric polynomials, thereby
refining some results of Bojanov [7] in the polynomial situation (see Theorem 13.2), and proving
the analogue of this generalization in the trigonometric situation.

We will use the following form of our main theorem.

Theorem 13.1. Suppose the kernel function K is strictly concave and either satisfies (∞′),
or is in C1(0, 2π). Let r0, r1, . . . , rn > 0, set Kj := rjK and

F (y, t) := K0(t) +
n∑

j=1

Kj(t− yj) = r0K(t) +
n∑

j=1

rjK(t− yj).

Let S = Sσ be a simplex. Then there is a unique w∗ ∈ S, w∗ = (w1, . . . , wn) with

M(S) := inf
y∈S

sup
t∈T

F (y, t) = sup
t∈T

F (w∗, t).

Moreover, we have the following.

(a) The nodes w0, . . . , wn are different and w∗ is an equioscillation point, that is,

m0(w∗) = · · · = mn(w∗).

(b) We have

inf
y∈S

max
j=0,...,n

sup
t∈Ij(y)

F (y, t) = M(S) = m(S) = sup
y∈S

min
j=0,...,n

sup
t∈Ij(y)

F (y, t).

(c) We have the Sandwich Property in S, that is, for each x,y ∈ S

m(x) � M(S) � m(y).

Proof. There is w ∈ S with M(S) = supt∈T F (w, t). By Proposition 8.4 we only need to
prove that w belongs to the interior of the simplex, that is, w ∈ S. Suppose by contradiction
that wσ(k−1) � wσ(k) = wσ(k+1) = · · · = wσ(�) < 2π = wσ(n+1) with k �= �, k ∈ {1, . . . , n} (the
case k = 0 will be considered below separately). Then we can apply Lemma 11.5 with a =
1/rσ(�), b = 1/rσ(k) and x = wσ(k), y = wσ(�), and move the two nodes wσ(k) and wσ(�) away
from each other, such that the new node system w′ still belongs to S. We conclude

F (w′, t) − F (w, t)

= Kσ(k)(t− w′
σ(k)) + Kσ(�)(t− w′

σ(�)) −Kσ(k)(t− wσ(k)) −Kσ(�)(t− wσ(�)) < 0

for all t ∈ T \ [w′
σ(k), w

′
σ(�)]. Hence we obtain

mj(w′) < mj(w) for each j ∈ {0, . . . , n} \ {σ(k), . . . , σ(�− 1)}. (13.1)

Since by Corollary 6.5 mσ(k)(w) = mσ(k+1)(w) = · · · = mσ(�−1)(w) < m(w), if we move the
two nodes wσ(k) and wσ(�) by a sufficiently small amount, by Corollary 3.6 we can achieve

mσ(k)(w′), mσ(k+1)(w′), . . ., mσ(�−1)(w′) < m(w). (13.2)

Putting together (13.1) and (13.2), we would obtain m(w′) < m(w), which is in contradiction
with the choice of w.

If finally, k = 0, that is w0 happens to coincide with some wσ(�), then we can move w0 and
wσ(�) away from each other as above and obtain a new node system w′

0 ∈ T, w′ = (w′
1, . . . , w

′
n)

with m(w′) < m(w), and then we need to rotate back all the nodes by w′
0.
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We have seen that w∗ := w ∈ S, therefore the proof is complete. �

Bojanov proved in [7] the following.

Theorem 13.2 (Bojanov). Let ν1, . . . , νn be fixed positive integers. Fix [a, b] ⊂ R. Then,
there exists a unique system of points a < x1 < · · · < xn < b such that

‖(x− x1)ν1 · · ·(x− xn)νn‖ = inf
a�y1<···<yn�b

‖(x− y1)ν1 · · ·(x− yn)νn‖

where ‖ · ‖ denotes the sup-norm over [a, b]. The extremal polynomial

P ∗(x) := (x− x1)ν1 · · ·(x− xn)νn

is uniquely characterized by the property that there exist a = s0 < s1 < · · · < sn−1 < sn = b
such that |P ∗(sj)| = ‖P ∗‖ for j = 0, 1, . . . , n. Moreover, in this situation

P ∗(sj+1) = (−1)νj+1P ∗(sj) for j = 0, 1, . . . , n− 1.

Now, we are going to establish a similar result for trigonometric polynomials and relate this
new result to Bojanov’s theorem.

It is well known (see, for example, [9, p. 10]) that a trigonometric polynomial

T (t) = a0 +
m∑

k=1

ak cos(kt) + bk sin(kt),

where |am| + |bm| > 0, can be written in the form T (t) = c
∏2m

j=1 sin((t− tj)/2) where c,
t1, . . . , t2m are numbers. More precisely, if T (t′) = 0, t′ ∈ C, �t′ ∈ [0, 2π), then t′ appears in
t1, . . . , t2m and if a0, a1, b1, . . . , am, bm ∈ R and T (t′) = 0, t′ ∈ C \ R, �t′ ∈ [0, 2π), then the
conjugate of t′ is also a zero, T (t′) = 0 and both appear among t1, . . . , t2m.

Functions of the form

a

m∏
j=1

∣∣∣sin t− tj
2

∣∣∣rj ,
where a, rj > 0, tj ∈ C for all j = 1, . . . ,m, are called generalized trigonometric polynomials
(GTP for short; see, for example, [9, Appendix 4]). The number (1/2)

∑m
j=1 rj is usually called

the degree of this GTP.
In the next theorem, we describe Chebyshev-type extremal GTPs (having minimal sup-norm

and fixed leading coefficient) when the multiplicities of the zeros are fixed and the zeros are real.
Let us mention a related result of Kristiansen (see [21, Theorem 2], which is also mentioned
in [8] as Theorem B) concerning trigonometric polynomials with prescribed multiplicities of
zeros. However, the paper [21] does not concern extremal (minimax or maximin) problems but
gives an existence and uniqueness result for trigonometric polynomials when the local extrema
are also prescribed.

Theorem 13.3. Let r0, r1, . . . , rn > 0 be fixed. Then, there exists a unique system of points
0 = w0 < w1 < · · · < wn < 2π such that∥∥∥∣∣∣sin t− w0

2

∣∣∣r0 · · · ∣∣∣sin t− wn

2

∣∣∣rn∥∥∥ = inf
0=y0�y1�...�yn�2π

∥∥∥∣∣∣sin t− y0

2

∣∣∣r0 · · · ∣∣∣sin t− yn
2

∣∣∣rn∥∥∥
where ‖ · ‖ denotes the sup-norm over [0, 2π]. The extremal GTP

T ∗(t) :=
∣∣∣sin t− w0

2

∣∣∣r0 · · · ∣∣∣sin t− wn

2

∣∣∣rn
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is uniquely determined by properties that there exist 0 < z0 < z1 < z2 < · · · < zn < 2π such
that the points wj and zj interlace, that is, 0 = w0 < z0 < w1 < · · · < wn < zn < w0 + 2π =
2π, and T ∗(zj) = ‖T ∗‖ for j = 0, 1, . . . , n.

Proof. Let K(x) := log | sin(x/2)| for −π � x � π, and extend it 2π-periodically to R. Then
K is a kernel in C2(0, 2π) with K ′′ < 0. Let Kj(x) := rjK(x), j = 0, 1, 2, . . . , n be the kernels
and consider the simplex S := Sid. Further, let T (y, t) :=

∏n
j=0 | sin((t− yj)/2)|rj where y ∈ S

and F (y, t) := log |T (y, t)|. Then F (y, t) is a sum of translates function, because

F (y, t) = K0(t) +
n∑

j=1

Kj(t− yj) =
n∑

j=0

rjK(x− yj).

Applying Theorem 13.1, we obtain that M(S) = infy∈S supt∈[0,2π) F (y, t) is attained at exactly
one point w∗ = (w1, . . . , wn) ∈ S, that is,

M(S) = sup
t∈[0,2π)

F (w∗, t) and sup
t∈[0,2π)

F (y, t) > M(S) when y �= w∗.

Moreover, there exist 0 < z0 < z1 < z2 < · · · < zn < 2π such that F (w∗, zj) = M(S), that is,
w∗ is an equioscillation point. The interlacing property obviously follows. Rewriting these
properties for T ∗(t) := expF (w∗, t), we obtain the assertions. �

We turn to the interval case. Suppose the n positive real numbers r1, r2, . . . , rn > 0 are fixed,
and consider P (x) := |x− y1|r1 . . . |x− yn|rn . Such functions are sometimes called generalized
algebraic polynomials (GAP, see, for instance, [9, Appendix 4]). Now, fix [a, b] ⊂ R and consider
the following minimization problem

inf
a�y1<···<yn�b

sup
x∈[a,b]

∣∣|x− y1|r1 . . . |x− yn|rn
∣∣. (13.3)

In order to solve this, we will investigate the problem

inf
t

sup
t∈[0,2π]

∣∣∣∣∣
∣∣∣sin t− t1

2

∣∣∣rn . . .
∣∣∣sin t− tn

2

∣∣∣r1 ∣∣∣sin t− tn+1

2

∣∣∣r1 . . . ∣∣∣sin t− t2n
2

∣∣∣rn
∣∣∣∣∣ (13.4)

where the infimum is taken for t := (t1, . . . , t2n) with 0 � t1 � · · · � tn � tn+1 � · · · � t2n � 2π
with t1 + t2n = 2π, the latter normalization being natural in view of the periodicity of the
occurring sine functions. Note that in the original Bojanov problem the nodes yj are different,
while we allow the nodes tj to coincide; this apparently larger generality leads to the same
problem actually.

Theorem 13.4. With the previous notation, the infimum in (13.4) is attained at a
unique point w∗ = (w1, w2, . . . , w2n) with w1 + (w2n − 2π) = 0 and 0 < w1 < · · · < w2n < 2π.
Furthermore, w∗ is symmetric: wk = 2π − w2n+1−k for k = 1, 2, . . . , n.

As a consequence the minimization in (13.4) has the same (unique) solution as

inf
t

sup
t∈[0,2π]

∣∣∣∣∣
∣∣∣sin t− t1

2

∣∣∣rn . . .
∣∣∣sin t− tn

2

∣∣∣r1 ∣∣∣sin t− tn+1

2

∣∣∣r1 . . . ∣∣∣sin t− t2n
2

∣∣∣rn
∣∣∣∣∣, (13.5)

where the infimum is taken for t = (t1, . . . , t2n) and 0 � t1 � · · · � tn � π satisfying tj = 2π −
t2n+1−j , for all j = 1, . . . , n.

The previous theorem follows from the next, more general, symmetry theorem.
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Theorem 13.5. Let K1, . . . ,Kn be strictly concave kernels such that Kj is even for all
j = 1, . . . , n. Assume that the kernels are either all in C1(0, 2π) or all satisfy (∞′). Take
the simplex S := {0 � y1 < y2 < · · · < y2n < 2π}. Define the symmetric sum of translates
function

Fsymm(y, t) := K1(t− y1) + · · · + Kn−1(t− yn−1) + Kn(t− yn)

+Kn(t− yn+1) + Kn−1(t− yn+2) + · · · + K1(t− y2n) (13.6)

and consider the ‘doubled’ problem

Msymm := inf
y∈S

sup
t∈[0,2π)

Fsymm(y, t). (13.7)

Then there is a unique minimum point w∗ = (w1, w2, . . . , w2n) ∈ S with w1 + (w2n − 2π) = 0.
Furthermore, w∗ is symmetric: wk = 2π − w2n+1−k (k = 1, 2, . . . , n) and there are exactly
2n points: 0 = z1 < z2 < · · · < zn+1 = π < · · · < z2n where Fsymm(w∗, ·) attains its supre-
mum. Moreover, nodes zj and nodes wj interlace and nodes zj are symmetric too:
zk = 2π − z2n+1−k (k = 1, 2, . . . , n).

Proof. Following the symmetric definition, we let Kn+k(t) := Kn+1−k(−t) where
k = 1, 2, . . . , n. By symmetry we have

Kn+k(t) = Kn+1−k(t) for k = −n + 1, . . . , n. (13.8)

Hence Fsymm(y, t) =
∑2n

j=1 Kj(t− yj).
The existence and uniqueness follow from Theorem 13.1. That is, there exists a unique

w∗ = (w1, w2, . . . , w2n) ∈ S (unique with w1 = 0) such that M(S) = m(w∗)). Furthermore,
M(S) = m(S) and F (w∗, ·) equioscillates, hence m(S) = m(w∗). Using rotation, we can assume
that w1 > 0 is such that w1 + (w2n − 2π) = 0.

Now, we establish wk = 2π − w2n+1−k (k = 1, 2, . . . , n). By the assumption, it holds for
k = 1, that is, w1 = 2π − w2n. Reflect the nodes wk: vk := 2π − w2n+1−k, k = 1, . . . , 2n and
write v := (v1, . . . , v2n). Then v1 = w1 and v2n = w2n. Furthermore, put Lk(t) := K2n+1−k(−t)
and consider

F̃ (v, t) :=
2n∑
k=1

Lk(t− vk)

the sum of translates function of the reflected configuration. We obtain, using (13.8) and the
symmetry of the kernels, that

Lk(t− vk) = K2n+1−k(vk − t) = K2n+1−k(t− vk)

= K2n+1−k(t− 2π + w2n+1−k) = K2n+1−k(t− w2n+1−k)

for all k = 1, . . . , 2n. Hence

F̃ (v, t) =
2n∑
k=1

Lk(t− vk) =
2n∑
k=1

K2n+1−k((2π − t) − w2n+1−k)

= Fsymm(w∗, 2π − t) = Fsymm(w∗,−t).

Obviously v ∈ S. By definition, m0(w∗) = m2n(w∗) = sup{Fsymm(w∗, t) : w2n − 2π � t � w1}
and mj(w∗) = sup{Fsymm(w∗, t) : wj � t � wj+1}, j = 1, . . . , 2n− 1, and similarly for v,
mj(v) = sup{F̃ (v, t) : vj � t � vj+1}, j = 1, . . . , 2n− 1 and

m0(v) = m2n(v) = sup{F̃ (v, t) : v2n − 2π � t � v1}.
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Hence, we also have for j = 1, . . . , 2n− 1

mj(w∗) = sup{Fsymm(w∗, t) : wj � t � wj+1}

= sup{Fsymm(w∗,−t) : −wj+1 � t � −wj} = sup{F̃ (v, t) : −wj+1 � t � −wj}

= sup{F̃ (v, t) : 2π − wj+1 � t � 2π − wj} = sup{F̃ (v, t) : v2n−j � t � v2n+1−j}
= m2n−j(v),

and obviously m0(v) = m2n(v) = m0(w∗) = m2n(w∗). This implies that together with
mj(w∗), also mj(v) provides m(w∗) = m(v), whence by uniqueness v = w∗. Therefore,
wk = 2π − w2n+1−k (k = 1, 2, . . . , n), too. The symmetry of the nodes wk implies the remaining
assertions (interlacing and symmetry of the nodes zj). �

We connect the ‘algebraic’ problem (13.3) and the ‘trigonometric’ problem (13.5) using a
classical idea of transferring between these situations with x = cos t (see, for example, [29]).

Lemma 13.6. Let L(x) := ((b− a)/2)x + (b + a)/2. The identities

yj = L(cos tn+1−j), tn+1−j = arccosL−1(yj), tn+j = 2π − arccosL−1(yj) (13.9)

for j = 1, . . . , n provide a one-to-one correspondence between generalized algebraic polynomials
in (13.3) and generalized trigonometric polynomials in (13.5). Similarly, for the correspond-
ing interlacing points of maxima we have sj = L(cos zn+1−j), zn+1−j = arccosL−1(sj) and
zn+j = 2π − arccosL−1(sj) for j = 0, . . . , n.

Proof. For simplicity, assume that a = −1, b = 1, hence L(x) = x. Recall

sin
t− α

2
sin

t + α− 2π
2

=
1
2
(cos t− cosα) (13.10)

hence ∣∣∣sin t− t1
2

∣∣∣rn · · ·
∣∣∣sin t− tn

2

∣∣∣r1 ∣∣∣sin t + tn − 2π
2

∣∣∣r1 · · · ∣∣∣sin t + t1 − 2π
2

∣∣∣rn
=

1
2
∑n

j=1 rj
| cos t− cos t1|rn · · · | cos t− cos tn|r1 . (13.11)

Therefore, for every GAP P (x) = |x− y1|r1 . . . |x− yn|rn there is a symmetric GTP T (t)
(of the form as in (13.5)) such that P (cos t) = 2−

∑n
j=1 rjT (t). Also to every GTP T (t) as

appearing in (13.5), there is a corresponding GAP as in (13.3) (modulo a constant factor),
where between the zeros tj , tn+1−j and yj (j = 1, . . . , n) the asserted relations (13.9) hold and
P (cos t) = 2−

∑n
j=1 rjT (t). The statement about the points of maxima is now obvious. �

From this the following generalization of Bojanov’s result can be deduced immediately:

Theorem 13.7. Let ν1, . . . , νn > 0 be fixed, and let [a, b] ⊂ R. Then, there exists a unique
system of points a < x1 < · · · < xn < b such that

‖|x− x1|ν1 . . . |x− xn|νn‖ = inf
a�y1<...<yn�b

‖|x− y1|ν1 . . . |x− yn|νn‖,

where ‖ · ‖ denotes the sup-norm over [a, b]. The extremal generalized polynomial

P ∗(x) := |x− x1|ν1 · · ·|x− xn|νn

is uniquely characterized by the existence of a = s0 < s1 < · · · < sn−1 < sn = b with |P ∗(sj)| =
‖P ∗‖ for j = 0, 1, . . . , n.
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Remark 13.8. In retrospect, we see here that considering the (in general, different) extremal
quantities and problems on each simplex separately provides us a more precise result than just
considering M and m as in (2.4) and (2.5). To obtain Bojanov’s theorem for each fixed ordered
n-tuples (ν1, . . . , νn) one needs this more precise version.
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