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Abstract4

Feature selection has become an indispensable part of intelligent systems, especially with the proliferation of high di-

mensional data. It identifies the subset of discriminative features leading to better learning performances, i.e., higher

learning accuracy, lower computational cost and significant model interpretability. This paper proposes a new efficient

unsupervised feature selection method based on graph centrality and subspace learning called UGFS for ‘Unsuper-

vised Graph-based Feature Selection’. The method maps features on an affinity graph where the relationships (edges)

between feature nodes are defined by means of data points subspace preference. Feature importance score is then com-

puted on the entire graph using a centrality measure. For this purpose, we investigated the Google’s PageRank method

originally introduced to rank web-pages. The proposed feature selection method has been evaluated using classifica-

tion and redundancy rates measured on the selected feature subsets. Comparisons with the well-known unsupervised

feature selection methods, on gene/expression benchmark datasets, demonstrate the validity and the efficiency of the

proposed method.

Keywords: Unsupervised Feature Selection, Graph Centrality Measure, PageRank, Subspace Learning, Projected5

Densities, K-nearest neighbors.6

1. Introduction7

The explosive use of new information technologies and their various applications involves large amounts of high8

dimensional and complex data, which suffer from the curse of dimensionality (Duda et al., 2001). The data complexity9

affects the efficiency of expert and intelligent systems and their decision-making performance. To overcome these10

limitations, a selection of relevant features from these high dimensional data is needed. The selection of the best11

features to be used in expert systems is a key issue in obtaining a satisfactory performance (Martinez-Gonzalez et al.,12

2017). An efficient feature selection method identifies the subset of discriminative features leading to better learning13

performances, i.e., higher learning accuracy, lower computational cost and significant model interpretability. Hence,14
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various methods have been proposed in the literature, such as (1) feature extraction, where a feature space is computed15

based on the combination of the original features (Abdi & Williams, 2010; Aliyari et al., 2015; Choi & Choi, 2007),16

(2) feature selection, where a subset of relevant and less redundant features are selected or ranked respecting their17

relevance order (Bennasar et al., 2015; Hall, 2000; Hu et al., 2018) and (3) subspace and projected learning, where a18

subset of relevant features for a given clusters or data instance is selected/weighted and used in learning simultaneously19

(Elhamifar & Vidal, 2013; Parsons et al., 2004; Vidal, 2011). Subspace learning is currently introduced in several20

data-mining techniques, especially in data stream analysis where computational time and costs reduction are crucial21

(Hassani et al., 2014).22

Both feature extraction and feature selection are designed to improve learning performance as well as to decrease23

computational complexity and required storage. Feature extraction algorithms are very popular. However, they con-24

sist in transforming and compressing the original data which can affect data analysis efficiency. Therefore, feature25

selection methods, which select the most relevant features without any transformation, are considered as an alternative26

in processing high-dimensional data. Such methods become attractive in recent years.27

Feature selection algorithms can be categorized into (1) supervised/unsupervised methods according on whether28

the data are labeled or not, (2) filter/wrapper/embedded methods according to the degree of learning involvement29

or (3) univariate/multivariate according to the consideration of the features interaction potential. The well-known30

unsupervised feature selection algorithms, such as Laplacian Score (He et al., 2005), Spectral Feature Selection (SFS)31

(Zhao & Liu, 2007), Multi-Cluster Feature Selection (MCFS) (Cai et al., 2010), Minimum Redundancy Spectral32

Feature selection (MRSF) (Zheng et al., 2010), characterize the manifold structure by graphs where nodes are the data33

instances. The Laplacian Score and SPFS use metrics to rank features, while MCFS and MRSF rank features based34

on a multi-output sparse regression. These methods rank features by capturing the manifold structure in a given graph.35

Thus, their efficiency depends strongly on the instances graph design. Unlike the previous graph-based methods, the36

supervised EigenVector Centrality for Feature Selection (ECFS), maps features into a graph and ranks them by the37

Eigenvector centrality measure (Roffo & Melzi., 2017). The graph design proposed by ECFS is based on pairwise38

relationships between features and some basic statistical metrics to define discriminative features (mutual information,39

Fisher score, and the standard deviation). Hence, it neglects the manifold structure preservation and does not exploit40

the features combination potential. Moradi & Rostami. (2015) represented the set of features by a weighted graph,41

where features similarities, measured by Pearson product-moment correlation coefficient, are graph edges. Then,42

investigated the Louvain community detection algorithm to identify the feature clusters. Finally, a centrality measure43

is proposed to filter and rank features. This graph-based method demonstrated competitive results. Nevertheless, it44

is slow and addressed more feature redundancy than relevance. Despite the centrality measures popularity in graph45

theory and their efficiency in scoring and ranking nodes according to their topological importance and roles within the46

graph, the ranking still depends on the graph design.47

In this research, we propose a new unsupervised feature selection method called ‘Unsupervised Graph-based Fea-48

ture Selection’ (UGFS), which outputs the features ranking vector. We investigated the Google’s PageRank centrality49

2



measure (Gleich, 2015), to analysis feature graph structure and attribute to each feature an importance score. We also50

addressed the problem of defining the relationships between features, in order to establish the feature graph structure.51

This graph is designed by means of the ‘subspace preference clusters’ concept, which is driven from subspace learning52

and supports the PageRank to highly score the relevant features for classification problems.53

This paper is organized as follows: Section 2 presents related works and Section 3 describes the mathematical54

framework. In Section 4, the details of the proposed unsupervised graph-based method are given. Experimental55

results are depicted in Section 5. Finally, Section 6 concludes the study and presents perspectives.56

2. Related Work57

The high-dimensional data analysis methods attempt to reduce the number of treated features by (1) a preprocess-58

ing step in which relevant features are selected and/or highly scored and (2) adapting learning algorithms to consider59

feature subspaces in the learning task. This section overviews the unsupervised methods, both in the feature selec-60

tion field and in subspace learning. Then, it presents the well-known graph centrality measures which are a key61

contribution of this study.62

2.1. Unsupervised feature selection algorithms63

The two families of unsupervised feature selection methods are filters and embedded. Filter methods are univariate64

as they scored features individually and neglected the features interaction potential (Somol et al., 2005). Features are65

evaluated according to filter criteria such as variances among features in MaxVar (Krzanowski, 1987) and Laplacian66

score (He et al., 2005). In contrast to univariate methods, multivariate methods have been proposed as spectral67

feature selection (SFS) (Zhao & Liu, 2007). Such algorithms preserve the manifold structure of data, but they do not68

investigate discriminative information.69

Several levels of embedded methods have been proposed, which differ in terms of the used learning algorithm and70

in which step it is used. TraceRatio (Nie et al., 2008) and Unsupervised Discriminative Feature Selection (UDFS)71

(Yang et al., 2011) are the simplest embedded algorithms. They capture the manifold structure of data by performing a72

fit learning to highly score the most discriminative features. Nevertheless, these algorithms present some limitations.73

Indeed, TraceRatio generates redundant features and UDFS uses restrictive constraints.74

Algorithms based on clustering such: Multi-Class Feature selection (MCFS) (Cai et al., 2010), Similarity Pre-75

serving Feature selection (SPFS) (Zhao et al., 2013) and Minimum Redundancy Spectral Feature Selection (MRFS)76

(Zheng et al., 2010), use cluster analysis to select features after a fit learning step. Others, like the Local Learning77

based Clustering Feature Selection (Zeng & Cheung, 2010) (LLCFS), uses clustering to learn adaptive data structure78

with selected features. It updated the Laplacian graph iteratively by means of the relevance of each feature. These79

algorithms gave relevant features subsets but they are slow and not scalable.80

Data sparsity in high-dimensional spaces reduced the impact of the pairwise similarity between samples to dis-81

criminate classes. Thereby, the sparse representation studies (Zhang et al., 2017) emerged and where the of `2,1-norm82
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demonstrated high learning performances on those spaces. This norm has been implemented in recent embedded fea-83

ture selection methods. The purpose of these later consists on the minimization of the `2,1-norm based on regression84

learning, where (1) The Regularized Self-Representation method (RSR) minimizes of the error between the projected85

data and the target matrix (Zhu et al., 2015), (2) the Simultaneous Orthogonal basis Clustering Decomposition Feature86

Selection (SOFCS), decomposes the target matrix based on orthogonal constraints (Han & Kim, 2015) and (3) Ro-87

bust Unsupervised Feature Selection via Matrix Factorization (RUFSM) combines the feature selection with matrix88

factorization and manifold regularization into unified framework (Du et al., 2017).89

Table 1 summarizes a comparative study of the well-known feature selection algorithms based on their theoretical90

proprieties: (1) their categories, (2) the classes of the used filters (statistic, similarity, etc.), (3) the number of user-input91

parameters, (4) the level of sensibility to parameters values changes, (5) the scalability.92

Table 1: Comparison of various feature selection algorithms corresponding to their theoretical proprieties.

Methods category filter class parameter parameter sensibility scalability

MaxVar filter statistic 1 low high

Laplacian filter similarity 3 low low

SFS filter similarity 2 high low

UDFS Embedded sparse learning 4 high low

TraceRatio Embedded similarity 3 low low

MCFS Embedded sparse learning 4 low high

SPFS Embedded similarity 3 low low

MRFS Embedded statistic 2 high high

LLCFS Embedded clustering 4 high low

RSR Embedded sparse learning 2 high high

SOFCS Embedded sparse learning 3 low high

RURSM Embedded clustering 5 high low

2.2. Subspace and projected algorithms93

Subspace learning algorithms have been proposed to cope with the various curse of dimensionality aspects (Li94

et al., 2011), such (1) the distances concentration problem, where geometrical distances gave insignificant differences95

between different pairs of samples and (2) the hubness phenomenon related to the distance concentration problem,96

which affects the distribution of k-occurrences (Flexer & Schnitzer, 2015)97

Indeed, a pair (C, S ) is selected, where C is a set of points composing a cluster and S is a set of the most char-98

acterizing features of the considered cluster. CLIQUE is a subspace clustering algorithm based on grid (Böhm et al.,99

2004). Based on an Apriori-like method, it recursively searches the set of all possible subspaces. It used a density100
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threshold to filter cells. Based on conclusions given by Flexer & Schnitzer (2015) which demonstrated that Euclidian101

distances are not efficient, Böhm et al. (2004) proposed a weighted Euclidian distance based on subspace concepts102

and the well-founded notion of density connected clusters. Authors proposed the use of subspace preference cluster103

concepts, based on the variance of the data neighborhood along features, then weighted the Euclidian distance by104

these variances (more details are given in Section 3).105

2.3. Graph centrality measures106

The growth of social networks and web services motivated the centrality measures researches. Several points of107

view have been proposed to evaluate node importance in a graph. In ‘Degree Centrality’, node importance is the108

number of its directly connected edges. ‘Closeness Centrality’ (Opsahl et al., 2010) used distances between nodes109

and lower values reflect information on the graph. The ‘Betweenness Centrality’ (Opsahl et al., 2010) highly scored110

nodes communicated to others with few intermediaries. The ‘Eigenvector centrality’ (Opsahl et al., 2010) reflected111

the number of connections with nodes strongly connected with other graph actors. Google has proposed an efficient112

measure based on Eigenvector centrality called ‘PageRank’ to investigate web pages relevance (Gleich, 2015). This113

simple and fast measure is general and well-defined for any given graph structure to capture various relations among114

nodes. PageRank has been applied in biology and bioinformatics to find and rank genes ‘GeneRank’ (Morrison115

et al., 2005), proteins ‘ProteinRank’ (Wu et al., 2013) or even to match protein-protein interactions (IsoRank). It is116

also used in neuroscience, complex engineered systems (MoniorRank), in the Linux kernel, bibliometrics (CiteRank,117

TimedPageRank, AuthorRank), in social networks ( SuperedgeRank (Ma & Liu, 2014), BuddyRank and TwitterRank)118

as well as in other contexts (Gleich, 2015).119

3. Mathematical Framework120

This section first presents notations then recalls the bases of subspace learning and PageRank.121

3.1. Notations122

Let X be a set of n points and d−dimensional features X = {x1, . . . , xn}. Each point xi is a vector of d features123

xi = (x1
i , . . . , x

d
i ). dist(xp, xq) is the Euclidean distance between two data points xp, xq ∈ X and the distp : X × X → R124

is a metric distance function between projected points.125

Our aim is to develop a new feature selection algorithm which maps features into an undirected graph. Let126

G =< V, E > a graph, where the vertices (nodes) V are the set of features V = {x1, . . . , xd}, and E the edges linking127

the vertices. A is the adjacency matrix associated to the graph G, where each of its element ai, j represents a pairwise128

relationship between features xi and xj. ai, j is associated to a potential function φ(xi, xj) :129

ai, j = φ(xi, xj) (1)

The function φ can be a binary function as it can weight nodes composing the graph via several metrics.130
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3.2. Subspace preference clusters131

Several studies have demonstrated the capacity of subspace preference to deal with high-dimensional spaces (El-132

hamifar & Vidal, 2013; Parsons et al., 2004; Vidal, 2011; Böhm et al., 2004). In this study, we use the subspace133

preference clusters among features (Böhm et al., 2004) to define relationships between features.134

Subspace preference cluster is a set of points belonging to the same dense regions called ‘density connected135

points’, which are associated to a set of features called ‘subspace preference vector’. Subspace preference clusters are136

sets of points with small variance along one or more features, i.e. a variance smaller than a given threshold δ ∈ R.137

Let xp ∈ X a data point and k ∈ N. The variance vari(NNk(xp)) along a feature xi is defined as follows:138

vari(NNk(xp)) =

∑
xq∈NNk(xp) (distp(xi

p, x
i
q))2

|NNk(xp)|
(2)

where NNk(xp) define the set of k−nearest neighborhoods of an object xp ∈ X.139

The feature subspace preference associated to the data point xp ∈ X is the set of features with vari(NNk(xp)) ≤ δ,140

δ ∈ R, k ∈ N. This features set preserves the density in the neighborhood of the point xp. Therefore, if the selected141

set of features (subspace preference cluster) has low variance in the neighborhood of points, thus those features are142

relevant and preserve the density inside the cluster of the data point xp.143

3.3. PageRank144

The PageRank measure has been introduced originally by Google to rank web-pages. It simulated the behavior145

of users when browsing the Web to rank pages, where pages are graph nodes and hyperlinks are edges. PageRank146

denotes the ‘importance’ of nodes under the assumptions that the importance of a node is the expected sum of the147

importance of all connected nodes and the direction of edges. Its value corresponds to the probability distribution of148

nodes being accessed at random. In graph theory, PageRank computes recursively a normalized and propagated value149

for each node in a graph.150

Let x and p two nodes in a graph G, the PageRank of x is given as follows:151

PR(x) = (1 − c) + c.
∑

p∈Pntin(x)

PR(p)
|Pntout(p)|

(3)

where c is a damping factor which takes its value in [0, 1] (typically 0.85), Pntin(x) is the set of nodes pointing to152

x and Pntout(p) the set of nodes pointed by p and |Pntout(p)| is its cardinality. The PageRank operated on the directed153

graph and its value for a given node is computed iteratively based on PageRank of nodes pointing on it. In order to154

deal with undirected graphs, some variants of PageRank have been proposed (Avrachenkov et al., 2015; Zhang et al.,155

2016). In our study, we used the basic version of the algorithm. The PageRank vector is a stationary distribution of156

special formed Markov process, more details about its convergence are given in (Gleich, 2015).157
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4. Usupervised Graph-based Feature Selection method ‘UGFS’158

The purpose of this work consists in investigating the importance of features in an undirected graph using PageR-159

ank. It highlights nodes (feature) having a lot of connections. The graph design is a crucial step because features160

must be connected with respect to PageRank proprieties. We use the subspace preference clusters in order to define161

the edges linking features. Features relationships are defined according to their abilities to preserve the neighborhood162

densities of data points, i.e., features minimizing variances among projected neighborhood data of each core data163

point are linked.164

In order to define feature relationships, the proposed algorithm scans the whole dataset searching the neighborhood165

of each data point. Then, it computes the variances among these sets. Based on a given threshold and the computed166

variances (see section 3.2), the algorithm selects subspace preference clusters for each data point. Features belonging167

to the same subspace preference clusters S p associated to the neighborhood of the point xp are linked. Otherwise,168

if the subspace S p preserves the local densities into the projected neighborhoods of the data point xp, then features169

composing S p are the most relevant for the cluster of xp. That is, the edges linking those features must be created.170

The potential function associated to the graph G is given by:171

φ(xi, xj) =


1, if varsp (NNk(xp)) ≤ δ

0, otherwise
(4)

where xi, xj ∈ S p and δ ∈ R is a variance threshold.172

More details about the definition of feature relationships and graph design are given in algorithm 13.173

Finally, UGFS applies the PageRank system as a centrality measure of graph G, then features are ranked according174

to their PageRank score.175

5. Experimental Results176

5.1. Experimental Setup177

UGFS is implemented in the MATLAB R2017 software (The Mathworks Inc, Massachusetts, USA), under Win-178

dows Operating System. Experimental evaluation is done on a laptop i5 Intel dual processor 2.3 GHz/CPU and 8 GB179

DRAM.180

The evaluation of the proposed algorithm are done by means of (1) the classification rate and its standard deviation181

corresponding to feature subsets of different sizes are computed by a cross-validation representing 40% of the whole182

dataset, (2) the minimum number of features corresponding to the best classification rates and (3) the redundancy rate183

of the selected feature subsets.184

3The source code will be posted on line to provide the needed material for the use of UGFS.
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Algorithm 1 : Feature Graph design
Input: Observed data X = {x1, . . . , xn}, k, δ.

Output: G undirected graph of features.

1: Compute NNk(xi), with i = 1, . . . , n.

2: Compute Var j(NNk(xi)), with i = 1, . . . , n and j = 1, . . . , d (see section 3.2; equation 2).

3: A(i, j) = 0, i = 1, . . . , d and j = 1, . . . , d.

4: for i = 1 : n do

5: for j = 1 : d do

6: if Var j(NNk(xi)) ≤ δ then

7: VarBinarized(i, j) = 1

8: else

9: VarBinarized(i, j) = 0

10: end if

11: end for

12: end for

13: for i = 1 : n do

14: S p = {}

15: for j = 1 : d do

16: if VarBinarized(i, j) == 1 then

17: S p = S p ∪ {xj}

18: end if

19: end for

20: for l = 1 : size(S p) do

21: for m = 1 : size(S p) do

22: A(l,m) = 1

23: end for

24: end for

25: end for

26: G = ({x1, . . . , xd}, A)

The redundancy rate of a given feature subset S , is given by:185

RED(S ) =
1

d(d − 1)

∑
xi,xj∈S ,i> j

corr(xi, xj) (5)

where d is the size of feature dataset and xi, xj ∈ S . Large values of RED(s) means that features of the subset S186

are significantly correlated.187
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We use two classifiers: (1) the support vector machine (SVM) for supervised classification (Cortes & Vapnik,188

1995), which is widely used both in feature selection algorithm design and/or evaluation and (2) the k−means for189

unsupervised learning (Celebi et al., 2013), which is simple, fast and requires only the number of clusters as input190

parameter. k−means initial centroids choice influences highly its accuracy, that is why we use k−means++ algorithm191

to choose the centroids initial values.192

Best feature ranking is then demonstrated by minimization of the evaluation criteria, except the classification rate193

where higher values indicated the features relevance and their ability to discriminate classes.194

5.2. Comparison with feature selection methods195

To validate the effectiveness of the proposed feature selection algorithm, we compare it with the following feature196

selection methods:197

• Laplacian Score: Selects features preserving the similarity of the original data (He et al., 2005).198

• Unsupervised Discriminative Feature Selection (UDFS): Selects features by the local discriminative score and199

preserves manifold structure (Yang et al., 2011).200

• Local Learning-Based Clustering Feature Selection (LLCFS): Selects features by incorporating the feature rel-201

evance evaluation into local learning-based clustering algorithm (Zeng & Cheung, 2010).202

• Correlation-based Feature Selection (CFS): Selects features corresponding to the minimum pairwise correlation203

(Hall, 2000).204

• Spectral Feature Selection (SFS): Selects features using the spectrum information of the Laplacian graph (Zhao205

& Liu, 2007).206

• Eigenvector Centrality for Feature Selection (ECFS): Ranks features by measuring the eigenvector centrality of207

the pairwise features graph (Roffo & Melzi., 2017).208

Note that, all these algorithms are unsupervised, except the ECFS, which analysis feature graph to rank them. We209

compare UGFS with ECFS in order to validate the proposed graph design.210

5.3. Dataset211

We are interested in data scenarios where the dimensionality of the input space is much larger than the data size,212

so-called High Dimension Low Sample Size (HDLSS) datasets (Zhang & Lin, 2013). Most of machine learning213

algorithms are less efficient when dealing with such data, which emerged these days, particularly in bioinformatics214

where gene/expression datasets are HDLSS. We used 4 open access datasets4: Colon, leukemia, ovarian cancer and215

CLL_SUB_111 described in Table 2.216

4http://biogps.org/dataset/
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Table 2: Datasets description

Datasets Number of features Number of Instances Number of classes

Colon 2000 62 2

Leukemia 7129 72 2

Ovarian cancer 4000 216 2

CLL_SUB_111 11340 111 3

5.4. Results and discussion217

We compared the developed method (UGFS) to different feature selection methods (Laplacian Score, UDFS,218

LLCFS, CFS, SFS, and ECFS) using the 4 datasets. Figure 1, 2, 3 and 4 represent the classification rate according to219

the number of selected features, when we used an SVM (Figure 1.(a), 2.(a), 3.(a) and 4.(a) and a k−means algorithm220

(Figure 1.(b), 2.(b), 3.(b) and 4.(b)). We notice that on most of cases the classification rate decreases as the number of221

feature increases. In other words, feature selection algorithms improve the accuracy of learning algorithms by using222

only relevant features and improve also the computational time.223

Figure 1: Colon dataset: correct classification rate (%) of different feature selection algorithms, over a varied number of features.

Figure 2: leukemia dataset: correct classification rate (%) of different feature selection algorithms, over a varied number of features.

The effectiveness of the UGFS method to highly score the relevant features is demonstrated for both SVM and224

k-means classifiers, where we obtain high classification rates for the firsts features (150 features for colon datasets and225

500 for both leukemia and ovarian cancer). These results are confirmed in Table 3 and 4, where we summarized the226

classification rate (ACC), the standard deviation (STD), the redundancy rate (RED) and the selected number of features227
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Figure 3: Ovarian cancer dataset: correct classification rate (%) of different feature selection algorithms, over a varied number of features.

Figure 4: CLL_sub_111 dataset: correct classification rate (%) of different feature selection algorithms, over a varied number of features.

(# features). We notice that considering the smallest number of features and the stability of the classification rate (via228

STD values), classifiers based on UGFS ranking obtain, generally, good classification rate and a low redundancy rate.229

The ECFS algorithm, which is a supervised method, allows in most cases the best classification rate. However,230

it uses usually a large number of features. Therefore, it is not efficient in ranking relevant features. Table 3 depicts231

that ECFS allows an SVM classification rate of 78.17% using only 10 features. This result is perfect both in terms232

of classification rate and the number of features. However, in gene/expression data analysis, the use of only 10 genes233

from 4000 to describe 216 tissues is too restrictive. Therefore, comparisons of UGFS and ECFS show the efficiency234

of UGFS in dimensionality reducing while retaining the relevant features, which confirms the importance of the graph235

design in the feature ranking by centrality measure.236

Note that, in this study, the considered datasets are real-world data characterized by low linear correlations between237

their features. This explains the small variations in the redundancy rates based essentially on linear pairwise feature238

correlations (Table 3 and 4).239

In order to assess the differences between UGFS and other methods regarding the size of the retained features240

subsets (reported in Table 3 and 4), a statistical analysis was performed by the paired samples Wilcoxon test. In all241

cases, the statistical analysis shows a significant difference between UGFS and other methods.242
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Table 3: Comparison of different feature selection methods using SVM classifiers.

Datasets Measures UGFS Laplacian UDFS LLCFS CFS SFS ECFS

Colon

ACC(%)±STD 77.4±3.4 75.5±6.9 75±5.8 76.6±8.7 76.6±9.2 70.5±5.4 78.8±3.8

RED 0.21 0.22 0.23 0.23 0.22 0.29 0.225

# Features 127 338 270 236 320 1320 493

Leukemia

ACC(%)±STD 98.6±4 98.6±3.8 97.7±4. 97.3±5 97.3±5 96.8±4.5 97.7±4.5

RED 0.149 0.155 0.155 0.149 0.155 0.155 0.155

# Features 137 1284 1564 468 4987 2939 5185

Ovarian

ACC(%)±STD 71.5±2.9 72±2.4 70.8±7.3 71.5±4.3 71.8±3.7 70.4±4 78.2±5.2

RED 0.179 0.139 0.161 0.155 0.139 0.154 0.116

# Features 207 984 846 1300 785 1237 10

CLL_SUB

ACC(%)±STD 65.8±4.5 64.8±4.8 65.6±7.8 64.9±6.4 64.6±4 63.6±5.4 65.7±5.8

RED 0.31 0.52 0.38 0.42 0.28 0.45 0.31

# Features 1713 4841 1924 2631 1802 3820 2395

Table 4: Comparison of different feature selection methods using k-means classifiers.

Datasets Measures UGFS Laplacian UDFS LLCFS CFS SFS ECFS

Colon

ACC(%)±STD 80.4±3 78.7±2.9 79.5±2.8 78.7±2.9 79.5±2.9 79.7±2.8 82.35±3.3

RED 0.23 0.24 0.225 0.23 0.2 0.247 0.24

# Features 213 479 257 349 250 1341 575

Leukemia

ACC(%)±STD 91.3±4.3 88.2±5.2 90.3±4.2 87.7±4.8 86.8±4.6 79.1±6.1 86.6±5.4

RED 0.141 0.145 0.148 0.152 0.153 0.15 0.143

# Features 338 1400 486 5860 6591 5610 509

Ovarian

ACC(%)±STD 83.75±5.2 73.5±5.7 80.7±4.9 81.2±4.7 79.2±6.1 78.9±5.9 84.2±5.9

RED 0.164 0.21 0.234 0.55 0.25 0.512 0.175

# Features 280 548 659 1382 692 1245 315

CLL_SUB

ACC(%)±STD 51.3±7.5 55.6±8.2 49.8±8.8 51.4±8.4 50.6±7.1 45.6±7.5 49.6±8.1

RED 0.3 0.49 0.375 0.4 0.25 0.47 0.34

# Features 1626 4754 1894 2415 1756 3884 2045

In order to investigate the implications of feature selection algorithms in terms of runtime, we have generated a243

big dataset in a high dimensional space (10000 objects and 7000 features), and we have compared the runtime of the244

feature selection algorithms as well as the runtime of classification methods (SVM and k-means) for classifying the245

original dataset and the reduced dataset (only the features given the best classification rates are considered).246
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Table. 5 summarizes the obtained runtime of all algorithms. First, we note that filter methods are the faster ones,247

for instance, the CFS algorithm, which ranks features based only on their pairwise correlation, have needed just 90,6248

s to perform ranking. However, embedded methods such UGFS and LLCFS, are slower but support classifiers (SVM249

and k-means) to speed up the classification runtime while obtaining better accuracies.250

Table 5: Comparison of the feature selection and the classification runtime.

Algorithms original set UGFS Laplacian UDFS LLCFS CFS SFS ECFS

Feature selection - 1124.2 s 916.3 s 5523.5 s 4265.4 s 90.6 s 2124.5s 1515.7 s

SVM 286.5 s 14.9 s 66.2 s 192.1 s 97.7 s 50.3 s 137.4 s 248.2 s

k-means 197.4 s 10.6 s 49.8 s 135.4 s 65.3 s 37.8 s 98.1 s 171.6 s

To summarize, UGFS is a graph-based method for an unsupervised feature selection, it needs only one parameter251

which can be estimated from data distribution. It is a multivariate method, which leads to a higher effectiveness in252

selecting discriminative features. However, this method is slower compared to the filter methods (univariate and less253

effective feature selection methods). Indeed, it is executed in an iterative processing.254

6. Conclusion255

This paper proposes a novel unsupervised feature selection method based on graph and subspace concepts. Fea-256

tures are mapped in an undirected graph using subspace learning, where data manifold structure is preserved. We used257

the prestigious Google’s PageRank system as a centrality measure for ranking features by means of their importance258

and topological roles in the graph. Graph-based methods and centrality measures exploit the feature combination259

potential, although their effectiveness depends on the graph design. Therefore, we defined in this paper a novel fea-260

ture relationships measure based on subspace learning, it linked the features which their interaction discriminated the261

classes. Then, PageRank assigned higher scores for the most relevant features and found the smallest feature subset262

guaranteeing the best precision.263

Experimental results on real-world high dimension low sample size datasets demonstrate the effectiveness of our264

method (UGFS) against the existing unsupervised algorithms. The subsets selected by UGFS are almost the smallest,265

and they support classifiers to achieve higher classification rates in a lower runtime.266

In the future, we plan to further investigate the following aspects of UGFS: 1) the graph direction will be consid-267

ered and constraints will be added to avoid outliers and noisy data. 2) UGFS has one parameter to tune, therefore we268

plan to investigate the density threshold tuning and use a learning method such as ’association rules’ to extract feature269

relationships. 3) This paper initiated the study of feature relationships in terms of their relevance, unlike traditional270

methods which considered the features redundancy. This allows the future consideration of advanced feature rela-271

tionship measures. 4) For UGFS applications in intelligent systems, it can benefit from the domain knowledge, for272

instance, the use of ontologies knowledge in the graph design. 5) The use of the UGFS algorithm with state-of-the-art273
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classifiers such as the convolutional neural network. These methods require a large database, however, this limitation274

could be overcome using transfer learning.275
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