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A B S T R A C T

The phenomenon of overtaking in queueing systems and queueing networks has been addressed by several
authors with various motivations in the last decades. Nevertheless, up to now, for the relatively simple M/M/2/
FCFS queue, the distribution of the number of overtakes a stationary customer suffers from was not known. In
this paper, we characterize this distribution by its probability generating function. As a consequence, we derive
the expectation (which is well-known) and the variance.

1. Introduction

For several decades, the phenomenon of overtaking queueing sys-
tems has been investigated. In general, ‘overtaking’ refers to violations
of the FIFO-principle (first in, first out). For multiple-server queueing
systems with variabilities of the service time, even the FCFS discipline
(first come, first served) allows overtaking: Customers with a relatively
long service time may be overtaken by customers with a relatively short
service time served by another server.

Early work concerning this topic is due to Whitt [1] and Gordon [2].
In [1], a major goal was relating overtakes in queueing networks to
sojourn times. In particular, the possibility of overtakes in a queueing
network implies dependencies for the sojourn times at the various
nodes of the network. In [2], overtaking is related to social injustice/
unfairness since human customers will judge violations of the principle
’first in, first out’ as unfair, see also [3].

At the beginning of the 20th century, the problem of quantifying
fairness in queueing systems once again received attention. Following
the work of [2,3] and relying on studies [4], principles for defining
fairness measures were established [5]. In particular, fairness measure
should satisfy a seniority principle: For a single-node queueing system
(no network), if two jobs with the same service requirement arrive at
the same time, the job which arrived first should be completed first. A
fairness measure should reflect this judgement in the sense that inter-
changing the order of service of these two jobs should increase the
unfairness / decrease the fairness. Amongst other suggestions (slow-
down-based measures [6], the resource allocation queueing fairness

measure [7]), the discrimination frequency was proposed [8]. For the
evaluation of the discrimination frequency, the number of overtakes a
customer suffers from has to be determined.

Another consequence of overtaking in queueing systems was
brought up by Kim and Lim [9]: Consider a production line with a
production station with c parallel servers. Then due to probabilistic
service times, even for first-come, first-served scheduling, overtakes
might occur at this station. Depending on the type of production, there
might be need for re-ordering the products after service at this station,
and hence, additional buffer for re-ordering is required. An additional
example mentioned in [9] concerns packet-switched communication
networks: In order to decrease the sojourn time, a job might be assigned
to several servers. Since overtakes can occur, after service completion, a
rearranging might be necessary.

In the literature [1,2,9], two kind of overtakes are distinguished: Let
us fix a customer whom we will refer to as tagged customer. Then skips
are overtakes he performs on other customers and slips are overtakes he
suffers from. With respect to fairness and social injustice, slips are more
interesting whereas in other applications (e.g. reordering in production
lines), the distribution of the number of skips is relevant, see [9].

In some way, the simplest queue in which overtakes might occur is
the stationary M/M/2/FCFS queue. Whereas the distribution of skips is
well-known for this queueing system (see literature review in the next
section), the distribution of slips is much more difficult to obtain, and to
the knowledge of the authors, no result characterizing the distribution
has been published before. In this paper, we find an explicit re-
presentation for the generating function and, as a consequence, for the
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variance of slips. In what follows, we will identify the terms ‘overtakes’
and ‘slips’.

2. Problem setting and literature review

For stationary M/M/c/FCFS queues with arrival rate λ and service
rate μ at each server (with = <: 1cµ ), skips are well-understood (see
e.g. [2]): Due to the PASTA property, the tagged customer finds n
customers in the system with probability πn where = =( )n n 0 is the
invariant distribution of the continuous-time Markov chain (Nt)t≥ 0 of
the number of customers in the system. For <n c 1, the tagged cus-
tomer’s service starts immediately, and we have n candidates for being
overtaken by the tagged customer. For n c 1, all other servers are
busy when our tagged customer’s service starts. Hence, we have c 1
candidates for being overtaken. Due to the service times being mem-
oryless, the residual service times of each customer being in service is
still exponentially distributed with parameter μ when our tagged cus-
tomer’s service starts. His/her service time is exponentially distributed
with parameter μ as well, and due to all service times being in-
dependent, the number of skips given m candidates for being overtaken
is uniformly distributed on … m{0, 1, , }. Using total probability, the
distribution of the number of skips a stationary customer performs can
be calculated as done in [2,9]. In particular, the expected number of
skips computes as
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and for the special case of =c 2, we obtain =+ +µ2 1 .
Using ergodic theorems for Markov chains, the stationary number of

skips can also be interpreted as the long-run average number of skips
performed by successive customers. Since each skip causes a slip for
another customer and vice versa, the long-run average of number of
skips and slips coincide. Hence, the above terms also give the expected
number of slips for a stationary customer in an M/M/c queue or an M/
M/2 queue, respectively. In the context of the above-mentioned fairness
measures, this fact was used in [10] for determining the expected dis-
crimination frequency. While this equality is true for the expectation, it
cannot be true for the distribution or higher moments. As a simple ar-
gument, note that the number of skips is bounded by c 1 whereas the
number of slips is unbounded.

To the knowledge of the authors, in no previous work, explicit
formulas for the distribution of the stationary number of slips or even
for its variance have been derived, not even for =c 2. In [9], a recursion
scheme for a generating function related to slips has been established,
but no explicit solution was obtained. The only explicit result there was
the probability that the tagged customer is overtaken by the next cus-
tomer, which is given by
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For =c 2, the next customer is the first candidate to overtake the tagged
customer, and hence, the probability of being overtaken by the next
customer coincides with the probability of suffering from at least one
slip. Simplifying the above term for =c 2 results in

> = +
+ +

OV( 0) (2 )
2(1 )(1 2 )

.
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In [2, section 5.2], the distribution of the number of slips in M/M/c
queues was derived under the additional assumption of full saturation
(all other servers are busy) during the tagged customer’s service. As we
will point out below, this assumption simplifies the analysis of the
number of slips significantly. In this paper, we will present a new ap-
proach which allows us to derive an explicit representation of the

probability generating function for the stationary number OV of slips in
an M/M/2/FCFS queue without any additional assumptions. By stan-
dard arguments (derivations in 1), we are able to obtain the variance.

Naturally, in an M/M/2 queue, we only have to consider the de-
parture pattern at the server which our tagged customer is not served
at, which we will refer to server S. Things would be quite easy if server
S never runs empty since then the interdeparture times at server S co-
incide with the service times. Due to the tagged customer’s service time
being memoryless, every customer served at server S will leave the
system before our tagged customer with probability 1

2
. If server S is busy

when our tagged customer’s service starts, the first departure of a
customer at server S is no overtake. Conversely, with probability ,1

2 the
tagged customer leaves the system before the first departure at server S
occurs and therefore, the tagged customer performs an overtake him-
self. If the tagged customer leaves the system between the first and the
second departure at server S, the tagged customer neither performs a
skip nor suffers from a slip. If the tagged customer leaves the system
between the + 1st and + 2nd departure at server S, he is overtaken
by exactly ℓ customers. Under the condition of server S never running
empty, the latter happens with probability =

+
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Unfortunately, for stable M/M/2 queues, that is, = < 1,µ2 server S
will run empty during the tagged customer’s service with a positive
probability. Then the departure pattern at server S also depends on the
arrival times, and things get complicated. Finding a way for dealing
with this problem is the main issue of this paper. Nevertheless, the
considerations leading to (2) provide a plausibility check for our main
result since (2) should be the limit for 1 .

We conclude this introductory section with summarizing our pro-
blem setting and the variables which we use throughout this paper.

• We consider an M/M/2/FCFS queue with arrival rate λ, service rate
μ at both stations, and we assume = < 1µ2 in order to guarantee
stability.

• N is the stationary number of customers in the system. Due to the
PASTA property [11, Theorem VII.6.7] this distribution coincides
with the number of customers found by the arriving tagged cus-
tomer. As is well-known [12], = =N n: ( )n is given by = 2n

n
0

for n≥ 1 and = +0
1
1 .

• OV is the number of overtakes (slips) the tagged customer suffers
from. By G, we denote the corresponding probability generating
function

= =
=

G z OV z( ) ( ) .
0

• By L, we denote the number of customers which depart during the
tagged customer’s service time.

• By B, we denote the number of customers arriving during the tagged
customer’s waiting time.

• By M, we denote the number of customers in the system when the
tagged customer’s service begins, excluding the tagged customer.

H. Baumann, B.A. Neumann Operations Research Perspectives 5 (2018) 280–287

281



3. Main results

The distribution of a random variable X taking values in …{0, 1, 2, }
is uniquely determined by its probability generating function GX where

= = ==G z z X n z( ) [ ] ( )X
X

n
n

0 ; convergence is guaranteed for
|z| ≤ 1. Given GX(z), we find the probabilities =X n( ) by expanding
G(z) into its Taylor series in 0 (or equivalently, by determining the
derivatives in 0 and scaling with n!). However, a major benefit of the
probability generating function is the easy determination of moments:
In case of existence, the kth factorial moment computes as

… + =X X X k G[ ( 1) ( 1)] (1).X
k( )

In particular, for <X[ ] ,2 the variance can be obtained via

= +X G G GVAR[ ] (1) (1) ( (1)) .X X X
2

In total, characterizing the distribution by means of the generating
function is sufficient for most practical purposes. In our main result, we
provide an explicit representation for the generating function of the
number of overtakes (slips) in an M/M/2 queue.

Theorem 3.1. Let G be the generating function for the stationary number
OV of overtakes in an M/M/2 queue. Then
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3.1. Plausibility checks
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This result coincides with (1) obtained from [9].
Next, consider the limit behaviour for 1 (heavy traffic). As in

the introductory section, let server S be the server which does not serve
the tagged customer. For 1 , the probability of server S being
busy when the tagged customer’s service starts converges to 1.
Furthermore the probability that server S runs empty during the tagged
customer’s service converges to 0. In total, by means of the considera-
tions in the Section 2, the limit behaviour should correspond to (2), that
is
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as 1 . Indeed, our main result provides
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Finally, consider +0 . Then the probability that any other customer
is served during the tagged customer’s service time converges to 0.
Hence, we should have =OV( 0) 1, that is, G(z) → 1 as +0 .
Indeed, Theorem 3.1 guarantees = =
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3.2. Expectation and variance

Using Theorem 3.1, moments of OV can be determined. Here, we
focus on OV[ ] and OVVAR[ ]. For this purpose, we first differentiate
G0. Note that =d
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Now, we consider the function G itself. We have
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In particular, we have
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coinciding with the results for skips from [2,9]. Furthermore,
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To the knowledge of the authors, this result is completely new.

3.3. Comparison to the number of skips

As pointed out in the introduction, it is quite easy to determine the
distribution of the number of skips a stationary customer performs. For
the M/M/2/FCFS model, this number is either 0 or 1 with expectation

+1
. Hence,

+1
is the probability for one skip and the variance com-

putes as

+ +
=

+1 (1 ) (1 )
.

2

2 2

Since >+ +
+2· 0,(1 )( 1 1)

1

2 2
the variance of overtakes (in the sense of

slips) is larger than that of skips. As Fig. 1 demonstrates, this difference
is significant for large ρ.

4. Proof of Theorem 3.1

Due to only having two servers, we have a deterministic relationship
between the number L of customers departing during the tagged cus-
tomer’s service time and the number OV of overtakes. It is given by

= =OV L N
L N

, 0,
max{ 1, 0}, 1,
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since for N≥ 1, the service of the first departing customer began before
the tagged customer’s service.

Furthermore, we consider the number B of customers arriving
during the tagged customer’s waiting time. Obviously, we have =B 0
for N≤ 1 since there is no need for waiting. For =N n 2, the tagged
customer has to wait for n 1 service completions. We have =B b if
and only if exactly b arrivals occur before the n 1st service comple-
tion. Due to the properties of the exponential distribution, the next
‘event’ is an arrival with probability =+ + ,µ2 1 and the next ‘event’ is

a service completion with probability =+ +
µ

µ
2

2
1

1 . Hence, =B N n| 2
follows a negative binomial distribution, we have

= = = +
+ +

B b N n b n
b

b n( | ) 2
1

1
1

, ,

2.

b n 1

0

4.1. The number of departures

Using the distributions of N and B, the distribution of M can be
determined, where M is the number of customers in the system when
the tagged customer’s service begins, that is,

=M N N
B N

if {0, 1}
if 2

Since the number L of departures during the tagged customer’s service
time is directly related to the number OV of overtakes, the key problem
is determining the probabilities

= = =L M m( ) ( | ).m

For = >M m , we have =L if and only if the server which does not
serve the tagged customer completes ℓ services before the tagged cus-
tomer leaves the system. For each new service beginning at the other
server, the probability for completing this service before the tagged
customer’s service is completed is given by 1

2
. Since ℓ services have to be

completed before the tagged customer leaves the system whereas the
+ 1st service has to be completed later, we find

= >+ m( ) 1
2

, .m 1 (3)

For m≤ ℓ, this result does not hold true since the other server can run
empty before it begins the + 1st service. Hence, for small m, the
probability of observing ℓ departures before the tagged customer leaves
the system becomes smaller. To be precise, we note that ψm(ℓ) mono-
tonically increases in m (in the non-strict sense).

We will not derive explicit formulas for all ψm(ℓ), but it turns out
that recurrence relations can be found which allow to prove our main
result. For deriving these recurrence relations, we introduce an

absorbing homogeneous discrete-time Markov chain =J K( , )n n n 0 with
state space … × …A{0, 1, 2, } { , 0, 1, 2, }, where =J 0,0 =K M0 and

• =K k 0n indicates that the tagged customer is still in the system
after the nth ‘event’ (that is, arrival or departure), and that k other
customers are in the system at this time,

• =K An indicates that the tagged customer has left the system,
• for Kn ≥ 0, Jn is the number of departures up to the nth event,
• for =K A,n =J Ln is the number of departures before the tagged

customer leaves the system .

Clearly, the memoryless property of the exponential distribution
allows this construction, and the state (j, A) with …j {0, 1, 2, } be-
come absorbing. For =K 0,n the next event is either an arrival or the
tagged customer’s departure. By standard arguments for comparison of
exponentially distributed random variables, the corresponding prob-
abilities compute as

+ µ
and + ,µ

µ respectively. For Kn > 0, the next
event can be an arrival, the tagged customer’s departure or the de-
parture of the customer served at the other server. The corresponding
probabilities are + ,µ2 +

µ
µ2

and + ,µ
µ2 respectively. In total, the tran-

sition probabilities can be illustrated by the Markov graph depicted in
Fig. 2.

From state (k, ℓ) with k≥ 0, the probability for a transition to (A, ℓ)
is at least

+
µ

µ2
. Therefore, the probability that no absorption occurs

until time n is bounded by +( )1 µ
µ

n

2 . Hence, for n→ ∞ this prob-
ability converges, that is, eventual absorption is almost sure. An ab-
sorption in state (ℓ, A) means that ℓ departures have occured before the
tagged customer leaves the system, as we start in some state of the form
(0, · ). Thus we can relate the probability = = =L M m( ) ( | ),m
which is the probability that l departures occur before the tagged cus-
tomer leaves the system given that m customers where in the system
before the service started, with the Markov chain. More precisely, this
probability is given as the probability that an absorption in state (ℓ, A)
happens given that the Markov chain starts in (0, m). Using this inter-
pretation we will now derive a recurrence scheme for ϕm(ℓ) making
extensive use of the repetitive structure of the transitions in the CTMC:
The probability for an absorption in state (ℓ, A) subject to the initial
value (1, m) coincides with the probability for an absorption in state

Fig. 1. Comparison of the variances of the number of overtakes and the number
of skips. In order to demonstrate that OVVAR[ ] is a non-linear function in ρ, we
have additionally depicted the graph of 5

4 as a dashed line.

Fig. 2. The Markov chain describing the behaviour of our queue during the
time our customer is at the server. The transition probabilities for the transi-
tions symbolized by the blue lines are given by

+
µ

µ2
. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web
version of this article.)
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A( 1, ) subject to the initial value (0, m). For m≥ 1 and ℓ ≥ 1, there
are two transitions which allow absorption in (ℓ, A):

• With probability + ,µ
µ2 a transition to m(1, 1) occurs. According

to the remark concerning the repetitive structure, then the absorp-
tion will occur in (ℓ, A) with probability ( 1)m 1 .

• With probability + ,µ2 a transition to +m(0, 1) occurs. After this
transition, the absorption will occur in (ℓ, A) with probability

+ ( )m 1 .

Therefore, we obtain

=
+

+
+ +

µ
µ µ

( )
2

( 1)
2

( )m m m1 1

for m≥ 1 and ℓ ≥ 1. An absorption in level = 0 can occur in the first
step, whereas it cannot occur once the Markov chain has reached level
1. Therefore, we have
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+

+
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µ
µ µ
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2 2
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For =m 0, a direct transition to level 1 is not possible. Note that this
fact causes slightly different transition probabilities, we have
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4.2. Equations for =OV( )

Next, we want to use the equations for ψm(ℓ) for deriving equations
for =OV( ). We begin with considering =OV M m| . For =M 0, we
have =OV L, whereas for M≥ 1, we have =OV Lmax{ 1, 0}, and
hence, we obtain
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Now, instead of conditions =M m, we want to consider conditions
=N n. Note that for N≤ 1, we have =M N since the tagged customer’s

service starts immediately on arrival. For N≥ 2, we have
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Finally, we use total probability. First, we consider =OV( ) and
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Analogously, for n≥ 1, we derive
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4.3. Generating functions and a difference equation

Define

=
=

G z z( ) ( ) .m m
0

The equations for ψ0(ℓ) directly lead to

=
+

+
+

+
+

=
+

+
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=
G z z

G z

( ) 1
1 2

2
1 2

(0) 2
1 2

( )
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1 2

2
1 2

( ).

0 1
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1

1

For m≥ 1, we obtain

=
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+
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+
+

+
+

=
+

+
+

+
+

+
=

=
+

+

G z z

z

z G z G z
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1
( )

1
2(1 ) 2(1 )

( )
1

( ).

m m m

m

m m

1
1

1

1
1

1 1

(4)

Hence, for any z with |z| ≤ 1, Gm(z) satisfies a linear (inhomogeneous)
difference equation with constant coefficients. It will turn out that the
definition of G0(z) corresponds to the use in the main result
Theorem 3.1.

4.4. Solving the difference equation

For m> ℓ, we have = +( )m
1

2 1 . Furthermore, remember that ψm(ℓ)
monotonically increases in m. Hence, for z∈ [0, 1] monotone con-
vergence guarantees that

= = = =
= =

+G z z z
z

lim ( ) lim ( )
2

1
2

· 1
1

1
2

.
m

m
m m z

0 0
1

2 (5)

By using dominated convergence, this result extends to all z with
|z| ≤ 1.

Indeed, m z
1

2 solves the difference equation (4), that is, the

constant sequence
=( )z m

1
2 0

is a solution. The general theory of in-
homogeneous linear difference equations with constant coefficients
guarantees that each solution has the form

= + +G z
z

x y( ) 1
2

,m
m m

where γ, δ, x, y are constant in m (but not in z), and x, y are the roots of
the characteristic polynomial

+
+

+
x x z

1 2(1 )
.2

Solving the corresponding quadratic equation, we find

= + +x (0, 1)z1 (1 ) 2
2

2
and = >+ + +y 1z1 (1 ) 2

2

2
. Since

Gm(z) converges to ,z
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2 we obtain = 0, and the initial condition yields
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that is,
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In particular, = +G z z( ) ( )z0
1

2 corresponds to the representation of
G0(z) in Theorem 3.1.

4.5. Relating G(z) and G0(z)

Finally, we want to relate G0(z) and

= =
=

G z OV z( ) ( ) .
0

From above, we use

= = + +
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= = + + + +
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Furthermore, (3) guarantees =(0)m
1
2 for m≥ 1, implying

+ == ( )z G z( 1) ( )m z m0
1 1

2 . Using these facts, we obtain
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m0 1

1
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Restarting with the representation (6), we also find
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= + +

= + +
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Multiplying (6) by +2 2 , (7) by 2 and (8) by z and summing up
the resulting equations leads to
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Since Gm(z) satisfies the difference equation (4) and the factor ρ occurs
on both sides of the equation, we can simplify this term to

= + +
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= + + =
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and with = + ,0
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1 we finally derive
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This concludes the proof of Theorem 3.1.

5. Conclusion and further research

We have found an explicit representation of the probability gen-
erating function of the stationary number of overtakes (slips) in an M/
M/2/FCFS queue. As a consequence, we have found an explicit term for
the variance which can be compared to the variance of the number of
skips. To the knowledge authors, up to now, only the expectation of the
number of overtakes (coinciding with the stationary number of skips)
and the probability of at least one overtake were known. Many calcu-
lations were – more or less – based on standard methods for solving
difference equations, computing probabilities by total probability, ....
We want to emphasize on the key ideas:

• Due to the possibility of server S (which does not serve the tagged
customer) running empty, the departure process does not only de-
pend on the service pattern but also on the arrival process. In order
to count the number of departures from server S during the tagged
customer’s service time, we introduced an absorbing Markov chain
for which the absorbing state corresponds to the number of

departures, resulting in the recurrence scheme for the probabilities
ψm(ℓ).

• After using this scheme for obtaining a difference equation for
=G z z( ) ( ) ,m m we have used = +( )m

1
2 1 for m> ℓ to prove

that G z( )m
m

z
1

2 . This observation enabled us to solve the dif-
ference equation for Gm(z), since otherwise we would have had only
one side condition for finding two parameters (γ and δ in the proof).

Obviously, a straight-forward generalization would be the con-
sideration of M/M/c/FCFS queues for c> 2. Most considerations still
hold true, in particular, the Markov chain can be constructed similarly
(with appropriate slight changes of the transition probabilities), re-
currence relations for ψm(ℓ) can be found again, and a difference
equation for Gm(z) arises. Hence, information on the number of de-
partures during the tagged customer’s service can be obtained.
Unfortunately, for c> 2, this is not sufficient for deriving information
on the number of overtakes: For =c 2 either all departures (for =N 0)
or all departures but the first one (for N≥ 1) are overtakes. For c> 2,
there is no such deterministic relationship. Hence, this case requires
further research.

Another interesting case is the M/M/∞/FCFS model. In constrast to
M/M/c for c> 2, we have a quite easy deterministic relationship be-
tween the deparature process and the amount of slips: We have to de-
termine the number of customers arriving and leaving during the
tagged customer’s service. Due to the infinite number of servers, for this
determination, we can ignore all customers present in the system before
the tagged customer’s service starts. Hence, we could consider a two-
dimensional Markov chain (Jn, Kn) where

• =K k 0n indicates that the tagged customer is still in the system
after the nth event, and that there are k customers in the system
which have arrived after the tagged customer,

• =K An indicates that the tagged customer has left the system,
• and Jn is the number of departures of customers arriving during the

tagged customer’s service up to the nth event or before the tagged
customer leaves the system, respectively.

With ψm(ℓ) denoting the probability of absorption in (ℓ, A) given the
initial state (0, m), we directly find that ψ0(ℓ) is the probability of ℓ slips,
that is, with Gm(z) defined as above, G0(z) is the generating function of
the stationary number of slips. On the one hand, this seems to imply an
even more direct relationship between the absorption probabilities of
the Markov chain and the distribution of the number of slips.
Unfortunately, on the other hand, the transition probabilities change in
comparison to those depicted in Fig. 2: Transitions from (m, ℓ) to

+m( 1, ) occur with probability + + ,m µ( 1) transitions to
+m( 1, 1) occur with probability + + ,mµ

m µ( 1) and transitions to the
absorbing state (m, A) occur with probability

+ +
µ

m µ( 1)
. Due to this

dependency on m, Gm(z) is no longer a solution of a difference equation
with constant coefficients anymore, and thus things get more compli-
cated. Hence, the analysis of slips in the M/M/∞/FCFS model requires
further research, too.

We have mentioned that the number of overtakes is important for
the analysis of fairness measures. A major goal for introducing fairness
measures was the comparison of fairness induced by various scheduling
disciplines. Hence, an analysis of the distribution of overtakes for other
scheduling disciplines than FCFS would be desirable. Future research
could deal with the question whether or not similar approaches can also
be applied to other service disciplines in M/M/2 or M/M/c queues.
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