
 International Journal of Engineering & Technology IJET-IJENS Vol:14 No:01 1

 149301-7575-IJET-IJENS © February 2014 IJENS
I J E N S

Implementation of Efficient Multilayer Perceptron ANN

Neurons on Field Programmable Gate Array Chip
Emmanuel ADETIBA*

1
, F.A. IBIKUNLE

2
, S.A. DARAMOLA

3
, A.T. OLAJIDE

4

1,3
Department of Electrical & Information Engineering, School of Engineering and Technology, College of Science and

Technology, Covenant University, Ota, Ogun State, Nigeria.
2 Department of Computer, Information and Telecommunications Engineering, College of Science and Technology, Botswana

International University of Science and Technology,

Gaborone, Botswana.
4
Department of Computer Science, Kwara State Polytechnics, Ilorin, Kwara State, Nigeria.

*Correspondence Author: emmanuel.adetiba@covenantuniversity.edu.ng

Abstract-- Artificial Neural Network is widely used to learn

data from systems for different types of applications. The

capability of different types of Integrated Circuit (IC) based

ANN structures also depends on the hardware backbone used for

their implementation. In this work, Field Programmable Gate

Array (FPGA) based Multilayer Perceptron Artificial Neural

Network (MLP-ANN) neuron is developed. Experiments were

carried out to demonstrate the hardware realization of the

artificial neuron using FPGA. Two different activation functions

(i.e. tan-sigmoid and log-sigmoid) were tested for the

implementation of the proposed neuron. Simulation result shows

that tan-sigmoid with a high index (i.e. k >= 40) is a better choice

of sigmoid activation function for the harware implemetation of a

MLP-ANN neuron.
Index Term-- ANN, ASIC, DSP, FPGA, MLP

 1.0 INTRODUCTION

An artificial neuron was inspired principally from the structure

and functions of the biological neuron. It learns through an

iterative process of adjustment of its synaptic weights and a

neuron becomes more knowledgeable after each iteration of

the learning process. The ultimate aim of learning by the

neuron is to adjust the weights and update the output for a new

actual output which coincides with the desired output.

However, the capability of a single artificial neuron is very

limited. For instance, the Perceptron (a threshold neuron)

cannot learn non-linearly separable function [1]. To learn

functions that cannot be learned by a single neuron, an

interconnection of multiple neurons called Neural Network

(NN) or Artificial Neural Network (ANN) must be employed.

Apart from the artificial neuron which is the basic processing

units in ANN, there are patterns of connections between the

neurons and the propagation of data called network topology.

There are two main types of ANN topology which are; feed-

forward and recurrent network topologies. In feed-forward

networks, the data flow from input to output strictly in a

forward direction and there is no feedback of connections

while in recurrent networks, there are feedback connections. A

commonly used feed-forward network topology is Multi-

Layer Perceptron (MLP). MLP caters for learning of non-

linear functions and Figure 1.0 shows its architectural

representation.

Fig. 1.0. Multi-Layer Perceptron (MLP) topology [2].

The MLP networks are typically trained with the training

algorithm called the Backpropagation (BP) algorithm which is

a supervised learning method that maps the process inputs to

the desired outputs by minimizing the errors between the

desired outputs and the calculated outputs [2]. BP is an

application of the gradient method or other numerical

Output layer

...

X1

X2

Xn

y1

y2

ym

Input layer Hidden layer
wjk wkj

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Landmark University Repository

https://core.ac.uk/display/162155769?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:emmanuel.adetiba@covenantuniversity.edu.ng

 International Journal of Engineering & Technology IJET-IJENS Vol:14 No:01 2

 149301-7575-IJET-IJENS © February 2014 IJENS
I J E N S

optimization methods to an ANN with feed-forward

architecture in order to minimize the error function. The

algorithm is the most popular method for performing

supervised learning [3]. There are different variants of BP

algorithm which include; conjugate gradient, Levenberg

Marquardt (LM), gradient descent, quasi-Newton and etc.

In order to fully benefit from the massive parallelism that is

inherent in ANN, it is essential to implement it in hardware.

ANNs can be implemented in hardware using either analog or

digital electronics [4]. Analog electronics implementation of

ANN is always very efficient with respect to space and

processing speed, however, these are achieved by trading off

the accuracy of the computation elements of the network.

Digital electronics implementation of ANN can be classified

into three groups; i.) DSP-based implementation ii.) ASIC–

based implementation and iii.) FPGA-based implementation

[5]. DSP-based implementations are sequential and do not

preserve the parallel architecture of ANNs and ASIC

implementations do not support reconfigurability after

deployment. However, FPGA based implementation is very

suitable for hardware realization of ANN. It not only preserves

the parallel architecture of neural networks, but also, it offers

flexibility in reconfiguration, modularity and dynamic

adaptation for neural computation elements.

FPGA which is an acronym for Field Programmable Gate

Array is described by Stephen and Jonathan [6] as an

integrated circuit containing gate matrix which can be

programmed by the user “in the field” without using

expensive equipment. The manufacturers of FPGA include;

Xilinx, Altera, Actel, Lattice, QuickLogic and Atmel.

Majority of FPGAs are based on SRAM (Static RAM) and

they store logic cells configuration data in the static memory

organized as an array of latches. This class of FPGA must be

programmed upon start because SRAM is volatile. Examples

of SRAM based FPGAs are Virtex and Spartan families (from

Xilinx) and Cyclone and Stratix (from Altera). SRAM based

Altera Cyclone FPGA is the adopted technology for hardware

implementation of the artificial neuron in this work.

 2.0 MATERIALS AND METHODS

Generally, ANN implementation usually starts with the neuron

because it is the basic unit of any neural network. Meanwhile,

the hardware implementation of a neuron has two major parts.

The first part is the basic functional units that realise the inner

product and the second part is the implementation of the

activation function. The architecture for the hardware

implementation of an artificial neuron is shown in Figure 2.0

Fig. 2.0. Hardware architecture of an artificial neuron

2.1 Basic Functional Units

The basic functional units of a hardware neuron compute the

inner product for the neuron and it is made up of the entities

shown in Figure 2.0. The input register was implemented

with a shift register for iterative entering of the input values

into the neuron. The weights register was realized using a

shift register and it serves the purpose of entering the

corresponding weight of the current input value into the

neuron. The multiply accumulate (MAC) unit of the neuron

was realized with combinational circuits for full adder and

multiplier. Appropriate number of bits were used for the input

and output signals in the code so as to cater for the expected

data range. These units were implemented with Very High-

Level Description Language (VHDL) and the target was an

Altera’s DE2 board. This board contains an Altera Cyclone II

2C35 FPGA with a wide range of external memory, embedded

multiplier, interfaces, I/O protocols and parameterizable IP

cores [7]. The VHDL codes for the basic functional units are

shown in Figure 3.0.

Output Weight Register

Input

Register

 X +

A
c
c
u

m
u

la
to

r

Activation

Function

multiplier adder

Multiply-Accumulate (MAC) Unit

 International Journal of Engineering & Technology IJET-IJENS Vol:14 No:01 3

 149301-7575-IJET-IJENS © February 2014 IJENS
I J E N S

Figure 3.0: VHDL codes for the basic functional units of a neuron

2.2 Neuron Activation Function

The commonly used activation functions in artificial neurons are linear, sigmoid and radial functions.

The linear activation has the form;

 . (1.0)

The sigmoid activation functions are S shaped and the ones that are mostly used are the logistic and the hyperbolic tangent

(equations (2.0) and (3.0) respectively);

 (2.0)

 . (3.0)

There are different types of radial activation functions but the one that is usually adopted uses Gaussian function;

 (4.0)

However, for the hardware implementation of the neuron in

this work, the taylor series of the sigmoid activation functions

(i.e. log-sigmoid and tan-sigmoid) which are the most

commonly used activation functions in ANNs were analysed

since they cannot be implemented directly in hardware

because they both contain exponential functions. With proper

analysis, we were able to make informed decision on the

appropriate choice of sigmoid activation function for hardware

neuron implementation. The analysis are reported in the

subsequent sub-sections.

2.2.1 Taylor Series Approximations for Log-Sigmoid

and Tan-Sigmoid

Restating equation (2.0), we have;

1
()

1
x

f x

e

 ,

 (5.0)

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_signed.all;

-- declare the entity

entity mac is

 generic (r : integer := 3;

 b : integer := 32);

 port(p : in signed (b-1 downto 0);

 w : in signed(b-1 downto 0);

 clk : std_logic;

 --w_out : out signed(b-1 downto 0);

 a : out signed (2* b-1 downto 0));

 end mac;

architecture Behavioral of mac is

 type weights is array (1 to r) of signed (b-1 downto 0);

 type inputs is array(1 to r) of signed (b-1 downto 0);

begin

process(clk,w,p)

variable weight : weights; variable input : inputs;

variable prod, acc : signed (2 * b-1 downto 0);

begin

if (clk'event and clk='1') then

weight := w & weight(1 to r-1); -- weights shift register

input := p & input(1 to r-1);

end if;

--input(1):= p1; input(2) := p2; input(3) := p3;

acc :=(Others =>'0');

--output weights

--multiply-accumulate(MAC)

L1: for j in 1 to r loop

 prod := input(j) * weight(j);

 acc := acc + prod;

end loop L1;

a <= acc; --linear output of the neuron

end process;

end Behavioral;

 International Journal of Engineering & Technology IJET-IJENS Vol:14 No:01 4

 149301-7575-IJET-IJENS © February 2014 IJENS
I J E N S

The power series of e
-x

is;

0 !
(1)

n
nx

n n

x
e

 , ∀ x ∈ ℝ . (6.0)

For let
0 !
(1)

n
k

n

n

z
n

x

 (7.0)

Putting (7.0) into (5.0), Taylor’s series is obtained for (5.0)

as:

1
()

1
f z

z

 . (8.0)

Equation (8.0) is the Taylor’s series representation of log-

sigmoid activation function.

Restating equation (3.0) for tan-sigmoid activation function

gives;

()

x x

x x
f x e e

e e

 , (9.0)

The power series for e
x

is;

0 !

n

x

n n

x
e

 , ∀ x ∈ ℝ . (10.0)

For , (10.0) becomes;

0 !

n
k

n

y
n

x

 . (11.0)

Substituting equations (7.0) and (11.0) into (9.0) produces;

(,)
y z

f y z
y z

. (12.0)

Therefore, equation (12.0) is the Taylor series for tan-sigmoid

activation function. The pseudocodes from these analysis are

shown in figures 4.0 and 5.0.

Figure 4.0: Pseudocode for log-sigmoid Taylor series

Figure 5.0: Pseudocode for tan-sigmoid Taylor series

3. Experimental Results and Discussion

The VHDL codes shown in Figure 3.0 were simulated

functionally in Quartus II 9.0 Web Edition environment. The

Register Transfer Logic (RTL) of the VHDL code for the

basic functional units with 3 inputs and 3 weights is shown in

Figure 6.0 and the simulation output is shown in

LogSigmoid(X)

/* Initialize variables*/

y = 0: Prod = 1: LogSig = 0

Read k
For n = 0 To k

 Prod = ((-1) ^ n) * ((X ^ n)/Fact(n))

 y = y + Prod

EndFor

/* Compute the Taylor series LogSig */

LogSig = 1/(1 + y)

DISPLAY LogSig

End

Fact(n)

/* Initialize variable(s) */

 Factorial = n

For i = n To 2

 Factorial = Factorial * (i-1)

EndFor

Return Factorial

TanSigmoid(X)

/* Initialize variables*/

y = 0: z = 0: Prod1 = 1: Prod2 = 1: TanSig = 0

Read k
For n = 0 To k

 Prod1 = ((-1) ^ n) * ((X ^ n)/ LogSigmoid.Fact(n))

 y = y + Prod1

 Prod2 = (X ^ n)/LogSigmoid.Fact(n)

 z = z + Prod2

EndFor

/* Compute the Taylor series Tan-Sig */

TanSig = (y-z)/(y+z)

DISPLAY TanSig

End

 International Journal of Engineering & Technology IJET-IJENS Vol:14 No:01 5

 149301-7575-IJET-IJENS © February 2014 IJENS
I J E N S

Fig. 7.0.

Fig. 6.0. RTL of the basic functional units of the artificial neuron

Fig. 7.0. Simulation output of the basic functional units of the artificial neuron

The simulation output in Figure 7.0 which shows the

implementation result of multiply and accumulate (MAC)

operation on the content of the input and weight registers

illustrates a perfect output for the inputs. This is an attestation

to the correctness of our VHDL codes (Figure 3.0) for the

basic functional units part of the artificial neuron implemented

in this work.

Also, experiments were carried out so as to ascertain the

appropriate sigmoid activation function between log-sigmoid

and tan-signed for the hardware realization of artificial

neurons. The pseudocode for log-sigmoid and tan-sigmoid

and their respective Taylor series’ approximations (Figures 4.0

and 5.0) were implemented in MATLAB R2008a.

Experimental trials for k=10, 20 and 40 and for values of X

ranging from -20 to +20 (in Equations 7.0 and 11.0) for the

two activation functions were performed. The results obtained

from these experiments were graphically plotted in order to

aid our comparative analysis. These plots are shown in Figures

8.0, 8.1, 8.2, 9.0, 9.1 and 9.2.

 International Journal of Engineering & Technology IJET-IJENS Vol:14 No:01 6

 149301-7575-IJET-IJENS © February 2014 IJENS
I J E N S

-20 -15 -10 -5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Values of x

C
o
m

p
u
te

d
 L

o
g
-s

ig
m

o
id

 a
n
d
 T

a
y
lo

r'
s
 S

e
ri
e
s

log-sigmoid

Taylor series

Fig. 8.0. Log-sigmoid and it’s Taylor series approximation for 0 ≤ k ≤ 10

-20 -15 -10 -5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Values of x

C
o
m

p
u
te

d
 L

o
g
-s

ig
m

o
id

 a
n
d
 T

a
y
lo

r'
s
 s

e
ri
e
s

log-sigmoid

Taylor's series

Fig. 8.1. Log-sigmoid and it’s Taylor series approximation for 0 ≤ k ≤ 20

 International Journal of Engineering & Technology IJET-IJENS Vol:14 No:01 7

 149301-7575-IJET-IJENS © February 2014 IJENS
I J E N S

-20 -15 -10 -5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Values of x

C
o
m

p
u
te

d
 v

a
lu

e
s
 o

f
L
o
g
-s

ig
m

o
id

 a
n
d
 T

a
y
lo

r'
s
 s

e
ri
e
s

log-sigmoid

Taylor's series

Fig. 8.2. Log-sigmoid and it’s Taylor series approximation for 0 ≤ k ≤ 40

-20 -15 -10 -5 0 5 10 15 20
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Values of x

C
o
m

p
u
te

d
 T

a
n
-s

ig
m

o
id

 a
n
d
 T

a
y
lo

r
S

e
ri
e
s

tan-sigmoid

Taylor series

Fig. 9.0. Tan-sigmoid and it’s Taylor series approximation for 0 ≤ k ≤ 10

 International Journal of Engineering & Technology IJET-IJENS Vol:14 No:01 8

 149301-7575-IJET-IJENS © February 2014 IJENS
I J E N S

-20 -15 -10 -5 0 5 10 15 20
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Values of x

C
o
m

p
u
te

d
 T

a
n
-s

ig
m

o
id

 a
n
d
 T

a
y
lo

r
S

e
ri
e
s

tan-sigmoid

Taylor series

Fig. 9.1. Tan-sigmoid and it’s Taylor series approximation for 0 ≤ k ≤ 20

-20 -15 -10 -5 0 5 10 15 20
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Values of x

C
o
m

p
u
te

d
 T

a
n
-s

ig
m

o
id

 a
n
d
 T

a
y
lo

r
S

e
ri
e
s

tan-sigmoid

Taylor series

Fig. 9.2. Tan-sigmoid and it’s Taylor series approximation for 0 ≤ k ≤ 40

Figures 8.0, 8.1 and 8.2 show that for the various values of k

(i.e. 10, 20 and 40) for , there are little

convergences between the actual log-sigmoid function and its

Taylor series approximations. Meanwhile, k = 40 was

anticipated to give a good convergence but the plot in Figure

8.0 shows that for higher positive values of X, the deviation

between the actual function and the Taylors series

approximation was getting more pronounced. However, from

Figures 9.0, 9.1 and 9.2, the convergences between tan-

sigmoid function and its Taylor series approximations

improve as the values of k range from 10 to 20 to 40 for

 International Journal of Engineering & Technology IJET-IJENS Vol:14 No:01 9

 149301-7575-IJET-IJENS © February 2014 IJENS
I J E N S

. Infact, as shown in Figure 9.2, at k = 40,

there is a perfect convergence between the actual tan-sigmoid

function and its Taylor series approximation for the range

.

 4.0 CONCLUSION

The result in Figure 7.0 shows that our VHDL code in this

work is very accurate and can be reliably loaded into an FPGA

to realize the basic functional units of any artificial neuron.

Also, the plot in Figure 9.2 shows that tan-sigmoid with a high

index (i.e. k >= 40) is a better choice of sigmoid activation

function for the hardware implementation of an artificial

neuron. A Multi-Layer Perceptron (MLP) neural network can

therefore be implemented on FPGA by aggregating several of

the hardware neurons in this work based on the required MLP

configuration for a given area of application. Our next

direction for this work is to adapt an FPGA-based MLP neural

network to realize the classifier sub-module of a genomics-

based diagnostic system for lung cancer. However, FPGA-

based MLP neural network hardware can be applied in other

areas such as communications, control, next-generation

sequencing, biometrics and biomedical devices.

REFERENCES
[1] Tredennick, N., (1996). Microprocessor-based computers, IEEE

Computer: 50 years of computing, 27-37.
[2] Huang, Y. (2009). Advances in Artificial Neural Networks:

Methodological Development and Application, Algorithms, 2:

973-1007
[3] Werbos, P. J., (1994). The Roots of Backpropagation: From

ordered derivatives to Neural Networks and Political Forecasting,

John Wiley and Sons, New York.
[4] Fiesler E., and Beale, R., (1997). Handbook of Neural

Computation, E1.2:1-13, Institute of Physics Publishing and

Oxford University Publishing, New York.
[5] Pedro F., Pedro, R., Ana A., and Fernando M. D., (2007). A high

bit resolution FPGA implementation of a FNN with a new

algorithm for the activation function, Neurocomputing, 71:71–77.
[6] Stephen B., and Jonathan R., (2011). Architecture of FPGAs and

CPLDs: A Tutorial, Department of Electrical and Computer

Engineering, University of Toronto.
[7] Altera (2012). DE2 Development and Education Board User

Manual, Version 1.6, Altera Corporation, 4-6.

