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Abstract-- Artificial Neural Network is widely used to learn 

data from systems for different types of applications. The 

capability of different types of Integrated Circuit (IC) based 

ANN structures also depends on the hardware backbone used for 

their implementation. In this work, Field Programmable Gate 

Array (FPGA) based Multilayer Perceptron Artificial Neural 

Network (MLP-ANN) neuron is developed. Experiments were 

carried out to demonstrate the hardware realization of the 

artificial neuron using FPGA. Two different activation functions 

(i.e. tan-sigmoid and log-sigmoid) were tested for the 

implementation of the proposed neuron. Simulation result shows 

that tan-sigmoid with a high index (i.e. k >= 40) is a better choice 

of sigmoid activation function for the harware implemetation of a 

MLP-ANN neuron. 
Index Term-- ANN, ASIC, DSP, FPGA, MLP 

 
           1.0 INTRODUCTION 

An artificial neuron was inspired principally from the structure 

and functions of the biological neuron. It learns through an 

iterative process of adjustment of its synaptic weights and a 

neuron becomes more knowledgeable after each iteration of 

the learning process. The ultimate aim of learning by the 

neuron is to adjust the weights and update the output for a new 

actual output which coincides with the desired output. 

However, the capability of a single artificial neuron is very 

limited. For instance, the Perceptron (a threshold neuron) 

cannot learn non-linearly separable function [1]. To learn 

functions that cannot be learned by a single neuron, an 

interconnection of multiple neurons called Neural Network 

(NN) or Artificial Neural Network (ANN) must be employed.  

Apart from the artificial neuron which is the basic processing 

units in ANN, there are patterns of connections between the 

neurons and the propagation of data called network topology. 

There are two main types of ANN topology which are; feed-

forward and recurrent network topologies.  In feed-forward 

networks, the data flow from input to output strictly in a 

forward direction and there is no feedback of connections 

while in recurrent networks, there are feedback connections. A 

commonly used feed-forward network topology is Multi-

Layer Perceptron (MLP).  MLP caters for learning of non-

linear functions and Figure 1.0 shows its architectural 

representation.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.0.   Multi-Layer Perceptron (MLP) topology [2]. 

The MLP networks are typically trained with the training 

algorithm called the Backpropagation (BP) algorithm which is 

a supervised learning method that maps the process inputs to 

the desired outputs by minimizing the errors between the 

desired outputs and the calculated outputs [2]. BP is an 

application of the gradient method or other numerical 
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optimization methods to an ANN with feed-forward 

architecture in order to minimize the error function. The 

algorithm is the most popular method for performing 

supervised learning [3]. There are different variants of BP 

algorithm which include; conjugate gradient, Levenberg 

Marquardt (LM), gradient descent, quasi-Newton and etc.  

In order to fully benefit from the massive parallelism that is 

inherent in ANN, it is essential to implement it in hardware. 

ANNs can be implemented in hardware using either analog or 

digital electronics [4]. Analog electronics implementation of 

ANN is always very efficient with respect to space and 

processing speed, however, these are achieved by trading off 

the accuracy of the computation elements of the network. 

Digital electronics implementation of ANN can be classified 

into three groups;  i.) DSP-based implementation  ii.) ASIC–

based implementation and  iii.) FPGA-based implementation 

[5]. DSP-based implementations are sequential and do not 

preserve the parallel architecture of ANNs and ASIC 

implementations do not support reconfigurability after 

deployment. However, FPGA based implementation is very 

suitable for hardware realization of ANN. It not only preserves 

the parallel architecture of neural networks, but also, it offers 

flexibility in reconfiguration, modularity and dynamic 

adaptation for neural computation elements. 

FPGA which is an acronym for Field Programmable Gate 

Array is described  by Stephen and Jonathan [6] as an 

integrated circuit containing gate matrix which can be 

programmed by the user “in the field” without using 

expensive equipment. The manufacturers of FPGA include; 

Xilinx, Altera, Actel, Lattice, QuickLogic and Atmel. 

Majority of FPGAs are based on SRAM (Static RAM) and 

they store logic cells configuration data in the static memory 

organized as an array of latches. This class of FPGA must be 

programmed upon start because SRAM is volatile. Examples 

of SRAM based FPGAs are Virtex and Spartan families (from 

Xilinx) and Cyclone and Stratix (from Altera). SRAM based 

Altera Cyclone FPGA is the adopted technology for hardware 

implementation of the artificial neuron in this work. 

 

           2.0 MATERIALS AND METHODS  

Generally, ANN implementation usually starts with the neuron 

because it is the basic unit of any neural network. Meanwhile, 

the hardware implementation of a neuron has two major parts. 

The first part is the basic functional units that realise the inner 

product and the second part is the implementation of the 

activation function. The architecture for the hardware 

implementation of an artificial  neuron is shown in Figure 2.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.0.  Hardware architecture of an artificial neuron  

 
2.1   Basic Functional Units 

The basic functional units of a hardware neuron compute the 

inner product for the neuron and it is made up of the entities 

shown in Figure 2.0. The input register was implemented 

with a shift register for iterative entering of the input values 

into the neuron. The weights register was realized using a 

shift register and it serves the purpose of entering the 

corresponding weight of the current input value into the 

neuron. The multiply accumulate (MAC) unit of the neuron 

was realized with combinational circuits for full adder and 

multiplier.  Appropriate number of bits were used for the input 

and output signals  in the code so as to cater for the expected 

data range. These units were implemented with Very High-

Level Description Language (VHDL) and the target was an 

Altera’s DE2 board. This board  contains an Altera Cyclone II 

2C35 FPGA with a wide range of external memory, embedded 

multiplier, interfaces, I/O protocols and parameterizable IP 

cores [7]. The VHDL codes for the basic functional units  are 

shown in Figure 3.0.  
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Figure 3.0: VHDL codes for the basic functional units of a neuron 

2.2   Neuron Activation Function 

The commonly used activation functions in artificial neurons are linear, sigmoid and radial functions.  

 

 

 

 

 

 

 

 

 

 

 
The linear activation has the form; 

                                                             .                                                                   (1.0) 

The sigmoid activation functions are S shaped and the ones that are mostly used are the logistic and the hyperbolic tangent 

(equations (2.0) and (3.0) respectively); 

                                                         (2.0)        

      .      (3.0) 

There are different types of radial activation functions but the one that is usually adopted uses Gaussian function; 

                                                          (4.0) 

 
However, for the hardware implementation of the neuron in 

this work, the taylor series of the sigmoid activation functions 

(i.e. log-sigmoid and tan-sigmoid) which are the most 

commonly used activation functions in ANNs were analysed  

since they cannot be implemented directly in hardware 

because they both contain exponential functions. With proper 

analysis, we were able to make informed decision on the 

appropriate choice of sigmoid activation function for hardware 

neuron implementation. The analysis are reported in the 

subsequent sub-sections. 

 

2.2.1 Taylor Series Approximations for Log-Sigmoid 

and Tan-Sigmoid 

Restating equation (2.0), we have; 
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    (5.0)  

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_arith.all; 

use ieee.std_logic_signed.all; 

-- declare the entity 

entity mac is 

  generic (r : integer := 3; 

           b : integer := 32); 

  port( p : in signed (b-1 downto 0); 

        w : in signed(b-1 downto 0); 

        clk : std_logic; 

        --w_out : out signed(b-1 downto 0); 

        a : out signed (2* b-1 downto 0)); 

  end mac; 

architecture Behavioral of mac is 

   type weights is array (1 to r) of signed (b-1 downto 0); 

   type inputs is array(1 to r) of signed (b-1 downto 0); 

begin 

process(clk,w,p) 

variable weight : weights; variable input : inputs; 

variable prod, acc : signed (2 * b-1 downto 0); 

begin 

if (clk'event and clk='1') then 

weight := w & weight(1 to r-1); -- weights shift register 

input := p & input(1 to r-1); 

end if; 

--input(1):= p1; input(2) := p2; input(3) := p3; 

acc :=(Others =>'0'); 

--output weights 

--multiply-accumulate(MAC) 

L1: for j in 1 to r loop 

 prod := input(j) * weight(j); 

 acc := acc + prod; 

end loop L1; 

a <= acc; --linear output of the neuron 

end process; 

end Behavioral; 
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Putting (7.0) into (5.0),  Taylor’s series is obtained for (5.0) 

as: 
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Equation (8.0) is the Taylor’s series representation of log-

sigmoid activation function. 

Restating equation (3.0) for tan-sigmoid activation function 

gives; 
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Substituting equations (7.0) and (11.0) into (9.0) produces; 
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.                        (12.0)                

Therefore, equation (12.0) is the  Taylor series for tan-sigmoid 

activation function. The pseudocodes from these analysis are 

shown in figures 4.0 and 5.0. 

 

  

 

 

 

 

 

 

 

 

Figure 4.0: Pseudocode for log-sigmoid Taylor series 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.0:   Pseudocode for tan-sigmoid Taylor series 

 
3.  Experimental Results and Discussion 

The VHDL codes shown in Figure 3.0 were simulated 

functionally in Quartus II 9.0 Web Edition environment. The 

Register Transfer Logic (RTL) of the VHDL code for  the 

basic functional units with 3 inputs and 3 weights is shown in 

Figure 6.0 and the simulation output is shown in  

 

LogSigmoid(X) 

/* Initialize variables*/ 

y = 0: Prod = 1: LogSig = 0 

Read  k 
For n = 0 To k 

    Prod = ((-1) ^ n) * ((X ^ n)/Fact(n))    

    y = y + Prod 

EndFor 

/* Compute the Taylor series LogSig */ 

LogSig =  1/(1 + y) 

DISPLAY LogSig 

End 

Fact(n) 

/* Initialize variable(s) */ 

 Factorial = n 

For i = n To 2 

    Factorial = Factorial * (i-1) 

EndFor 

Return Factorial 

 

   

TanSigmoid(X) 

/* Initialize variables*/ 

y = 0: z = 0: Prod1 = 1: Prod2 = 1: TanSig = 0 

Read  k 
For n = 0 To k 

     Prod1 = ((-1) ^ n) * ((X ^ n)/ LogSigmoid.Fact(n))    

     y = y + Prod1 

    Prod2 = (X ^ n)/LogSigmoid.Fact(n) 

    z = z + Prod2  

EndFor 

/* Compute the Taylor series Tan-Sig */ 

TanSig =  (y-z)/(y+z) 

DISPLAY TanSig 

End 
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Fig. 7.0. 

 
Fig. 6.0.  RTL of the basic functional units of the artificial neuron 

 

 
Fig. 7.0.  Simulation output  of the basic functional units of the artificial neuron 

 
The simulation output in Figure 7.0 which shows the 

implementation result of multiply and accumulate (MAC) 

operation on the content of the input and weight registers 

illustrates a perfect output for the inputs. This is an attestation 

to the correctness of our VHDL codes (Figure 3.0) for the 

basic functional units part of the artificial neuron implemented 

in this work.  

Also, experiments were carried out so as to ascertain the 

appropriate sigmoid activation function  between log-sigmoid 

and tan-signed for the hardware  realization of artificial 

neurons.  The pseudocode for log-sigmoid and tan-sigmoid 

and their respective Taylor series’ approximations (Figures 4.0 

and 5.0) were implemented in MATLAB R2008a. 

Experimental trials for k=10, 20 and  40  and for values of X 

ranging from -20 to +20 (in Equations 7.0 and 11.0) for the 

two activation functions were performed. The results obtained 

from these experiments were graphically plotted in order to 

aid our comparative analysis. These plots are shown in Figures 

8.0,  8.1,  8.2,  9.0,  9.1 and 9.2. 

 



                                    International Journal of Engineering & Technology IJET-IJENS Vol:14 No:01                                        6 

                                                                                                                         149301-7575-IJET-IJENS © February 2014 IJENS                                                                                               
I J E N S 

-20 -15 -10 -5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Values of x

C
o
m

p
u
te

d
 L

o
g
-s

ig
m

o
id

 a
n
d
 T

a
y
lo

r'
s
 S

e
ri
e
s

 

 

log-sigmoid

Taylor series

 
Fig. 8.0. Log-sigmoid and it’s Taylor series approximation for 0 ≤ k ≤ 10   
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Fig. 8.1.  Log-sigmoid and it’s Taylor series approximation for 0 ≤ k ≤ 20 
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Fig. 8.2.  Log-sigmoid and it’s Taylor series approximation for 0 ≤ k ≤ 40  
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Fig. 9.0.  Tan-sigmoid and it’s Taylor series approximation for 0 ≤ k ≤ 10  
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Fig. 9.1.  Tan-sigmoid and it’s Taylor series approximation for 0 ≤ k ≤ 20  
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Fig. 9.2.  Tan-sigmoid and it’s Taylor series approximation for  0 ≤  k ≤ 40  

 
Figures 8.0, 8.1 and 8.2 show that for the various values of k 

(i.e. 10, 20 and 40)  for , there are little 

convergences between the actual log-sigmoid function  and its 

Taylor series approximations. Meanwhile, k = 40 was 

anticipated to give a good convergence but the plot in Figure 

8.0 shows that for higher positive values of X, the deviation 

between the actual function and the Taylors series 

approximation was getting more pronounced. However, from 

Figures 9.0, 9.1 and 9.2, the convergences between tan-

sigmoid function and its Taylor series approximations 

improve as the values of k range from 10 to 20 to 40 for 
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. Infact, as shown in Figure 9.2, at k = 40, 

there is a perfect convergence between the actual tan-sigmoid 

function and its Taylor series approximation for the range 

.  

 

 

          4.0  CONCLUSION 

The result in Figure 7.0 shows that our VHDL code in this 

work is very accurate and can be reliably loaded into an FPGA 

to realize the basic functional units of any artificial neuron. 

Also, the plot in Figure 9.2 shows that tan-sigmoid with a high 

index (i.e. k >= 40) is a better choice of sigmoid activation 

function for the hardware implementation of an artificial 

neuron. A Multi-Layer Perceptron (MLP) neural network  can 

therefore be implemented on FPGA by aggregating several of 

the hardware neurons in this work based on the required MLP 

configuration for a given area of application.  Our next 

direction for this work is to adapt an FPGA-based MLP neural 

network to realize the classifier sub-module of a genomics-

based diagnostic system for lung cancer. However, FPGA-

based MLP neural network hardware can be applied in other 

areas such as communications, control, next-generation 

sequencing, biometrics and biomedical devices. 
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