SINGLE POT GREEN SYNTHESIS, CHARACTERIZATION AND ANTIMICROBIAL STUDIES OF SILVER NANOPARTICLES USING TROPICAL MEDICINAL PLANT EXTRACTS

BY

OKONKWO CHIDIOGO RITA MATRIC NO: 14CE003477 INDUSTRIAL CHEMISTRY

PROJECT SUBMITTED TO THE DEPARTMENT OF PHYSICAL SCIENCES, INDUSTRIAL CHEMISTRY PROGRAMME, COLLEGE OF SCIENCE AND ENGINEERING

LANDMARK UNIVERSITY OMU ARAN, KWARA STATE, NIGERIA

IN PARTIAL FUFILLMENT OF THE REQUIREMENT FOR THE AWARD OF BACHELOR OF SCIENCE (B.Sc) INDUSTRIAL CHEMISTRY OF LANDMARK UNIVERSITY, OMU-ARAN, KWARA STATE.

MAY, 2018

STUDENT'S CERTIFICATION

I, OKONKWO, Chidiogo Rita certify that this Thesis: SINGLE POT GREEN SYNTHESIS, CHARACTERIZATION AND ANTIMICROBIAL STUDIES OF SILVER NANOPARTICLES USING TROPICAL MEDICINAL PLANT EXTRACTS (*Tithonia diversifolia* and *Acalypha wilkesiana*) is the original research carried out by me which has never been replicated for the Degree of Bachelor of Science (B.Sc) in any University.

••••••

.....

STUDENT'S NAME

SIGNATURE AND DATE

CERTIFICATION

This work has been read and approved as meeting the requirement for the award of B.Sc (Hons) Degree in Industrial Chemistry Program, Department of Physical Sciences, College of Science and Engineering, Landmark University, Omu-Aran, Kwara State, Nigeria.

••••••	•••••
DR. DADA A. OLUWASOGO	Date
Supervisor	
PROF. F.E. ADELOWO	Date
Head of Program	
	••••••
DR. O. ADEBIMBE	Date
Head of Program	
	•••••
PROF. F.A. ADEKOLA	Date
External Supervisor	

DEDICATION

I dedicate this study to God Almighty, whom by His grace, made this study a possibility, also to my parents, Mr and Mrs Emmanuel Okonkwo, for always striving hard to get the best for me and their constant support and all the Lecturers of Industrial Chemistry, Landmark University, whose support and mentorship brought me this far in academics.

ACKNOWLEDGEMENTS

First and foremost, with a heart of appreciation to the Almighty God, for yet another rare opportunity to advance academically in this area, may His name be praised. More so, my sincere appreciation to my family, for their love and support. The entire Management of Landmark University, The Vice Chancellor, Professor Adeniyi Olayanju, The Dean and entire college of Science and Engineering, Department of Physical Sciences, the Head of Program, Professor Adelowo, the Eminent Professor, Industrial Chemistry, Professor E.M.A Olatunji, the Project Coordinator, Industrial Chemistry, Dr. Oluyori P. Abimbola, my project supervisor (Dr. Oluwasogo A. Dada) for inspiring me in academic pursuit and believing in me all through this project, my lecturers in Industrial Chemistry, Dr Inyinbor Adejumoke, Miss Temitope Abodunrin for their tutorship, special thanks to Mrs. Adelani- Akande Tabitha of the Department of Biological Sciences for her sacrificial support, guidance, assistance and supervision with the antimicrobial studies carried out in the microbiology laboratory in Landmark University, Omu-Aran, Kwara state, Dr. (Mrs) Awakan, the entire member of Faculty, Department of Physical science, Our ever resourceful laboratory technicians anad attendants, Miss Yemisi and Mrs Ajayi Elizabeth, my sinere appreciation also goes out to my ever supportive and accommodating coursemates and also the laboratory attendants of Biological Sciences for the help and support in time of need.

God bless you all abundantly.

ABSTRACT

Research on the single pot green synthesis of silver nanoparticles (AgNPs) was done using aqueous medicinal plant extract of Tithonia diversifolia and Acalypha wilkesiana. Characterization was carried out by spectroscopic techniques. Experimental optimization studies and the antimicrobial activity of the nanoparticles were investigated. Bottom-up approach was applied for the synthesis of both Tithonia diversifolia silver nanoparticles (TD-AgNPs) and Acalypha wilkesia silver nanoparticles (AW-AgNPs) using silver nitrate (AgNO₃) and the leaf extract from these tropical medicinal plants. UV-Vis spectroscopy was done to monitor the growth of nanoparticles and measure the Surface Plasmon Resonance (SPR) of the synthesized silver nanoparticles. The scan was taken within the range of 200-800nm for both TD-AgNPs and AW-AgNPs respectively. SPR peaks for both TD-AgNPs and AW-AgNPs were between the range the range of 425-465nm. Phytochemical screening confirmed the presence of saponins, steroids, flavonoids, alkaloids and triterpenes for T.diversifolia and saponins, flavonoids, phenols and triterpenes for A.wilkesiana. These phytomolecules are responsible the capping and stabilization of silver nanoparticles. Fourier Transform Infrared (FTIR) Spectroscopy confirmed the presence of functional groups responsible for bioreduction of Ag⁺. Scanning Electron Microscopy (SEM) revealed the surface morphology of AgNPs. Optimization of various parameters for the synthesis was carried out under these studies vis-à-vis effect of concentration, contact time, volume ratio, pH and temperature. Contact time of 90 minutes was observed as the optimal reaction time for the synthesized nanoparticles to attain completion, concentration of 0.001 M and 0.01 M AgNO₃, pH 9, and volume ratio 1:9 for both TD-AgNPs and AW-AgNPswere more effective in the generation of the nanoparticles. Optimal temperature of 323 K favoured rapid formation of both TD-AgNPs and AW-AgNPs and this confirmed that with the higher the temperature, the faster AgNPs formation. FTIR Antimicrobial studies of TD-AgNPs and AW-AgNPs was carried out against Staphylococcus aureus, Escherichia coli, Aspergillus flavus and this study showed that TD-AgNPs and AW-AgNPs were active against these bacteria and fungus with the zona of inhibition ranging between 8mm to 11 mm. This environmental friendly approach provides easy, simple and cost effective faster synthesis of nanoparticles than chemical methods and this can find application in medicine and food.

TABLE OF CONTENT

Title page	
Student Certification	II
Certification	III
Dedication	IV
Acknowledgement	v
Abstract	VI
Table of Contents	VII
List of Figures	XI
List of Tables	XII
CHAPTER ONE	
INTRODUCTION AND LITERATURE REVIEW	1
1.1. Background of study	1
1.2. History of Nanotechnology	2
1.2.1. Classification of Nanoparticles	2
1.2.2. Types of Nanomaterials	3
1.3. Techniques for the preparation Nanoparticles	4
1.3.1. Top Down Technique	5
1.3.2. Bottom Up Technique	5
1.4. Single pot Green synthesis	7
1.5. Medicinal plants	9
1.6. Scope of study	11
1.6.1. <i>Tithonia diversifolia</i> plant	12
1.6.2. Acalypha wilkesiana plant	13
1.6.3. Selected microorganisms for anti-microbial studies	14
1.6.3.1. Escherichia Coli (E.coli)	14
1.6.3.2. Staphylococcus aureus	15

1.6.3.3. Aspergillus flavus

16

1.7.1 Works done so far on the Green synthesis of Silver Nanoparticles Using Medicinal plant	
	17
1.8. Justification of the study	20
1.9. Aim and Objectives	21
CHAPTER TWO	
MATERIALS AND METHOD	22
2.1. Collection and Preparation of Samples	22
2.2. Preparation of Plant Extracts	22
2.3. Phytochemical Screening	22
2.3.1. Test for Phenols and Tannins	23
2.3.2. Test for Saponins	23
2.3.3. Test Triterpenes	23
2.3.4. Test for Flavonoids	23
2.3.5. Test for Alkaloids	23
2.3.6. Test for Steriods	23
2.4. Synthesis of Silver Nanoparticles	24
2.5. Characterization of Silver Nanoparticles	24
2.5.1. UV-Visible Spectroscopy	24
2.5.2 Fourier Transform Infra-red (FTIR) Spectroscopy	25
2.5.3. Scanning Electron Microscopy (SEM)	25
2.6. Optimization Studies of various Physico-Chemical Parameters	25
2.6.1. Effect of concentration	25
2.6.2. Effect of Contact Time	25
2.6.3. Effect of Volume Ratio	26

17

1.7. LITERATURE REVIEW

2.6.4. Effect of pH	26
2.6.5. Effect of Temperature	26
2.7 Anti-Microbial Studies	27
2.7.1 Preparation of Nutrient Agar	27
2.7.2 Preparation of Nutrient Broth	27
2.7.3 Preparation of Muller-Hinton Agar	28
2.7.4 Preparation of Potato Dextrose Agar	28
2.7.5 Preparation of TD-AgNPs, AW-AgNPs and Positive control agents	(Chloramphenicol and
Ketoconazole)	28
Antimicrobial studies	29
CHAPTER THREE	
RESULTS AND DISCUSSION	30
3.1 Phytochemical Screening	30
3.2 Characterization	31
3.2.1 UV-Visible Spectroscopy	31
3.2.2 Fourier Transform Infrared (FTIR) Spectroscopy	33
3.2.3 Scanning Electrode Microscopy (SEM)	38
3.3.1 Effect of Concentration	39
3.3.2 Effect of Contact time	41
3.3.3 Effect of Volume ratio	43
3.3.4 Effect of pH	44
3.3.5 Effect of Temperature	46
3.4 Antimicrobial Studies	47

CHAPTER FOUR

CONCLUSION AND RECOMMENDATION	51
4.1 Conclusion	51
4.2 Recommendations	52
4.3 References	54
4.4 Appendices	61

LIST OF FIGURES

Fig 1.6.1: Tithonia Diversifolia plant	12
Fig 1.6.2: Acalypha Wilkesiana plant	13
Fig 3.2.1a: UV-Vis spectra of TD-AgNPs with SPR peak at 450 nm	32
Fig 3.2.1b: UV-Vis spectra of AW-AgNPs with SPR peak at 460nm	32
Fig 3.2.2a: FTIR spectrum of raw TD	33
Fig 3.2.2b: FTIR spectrum of TD-AgNPs	33
Fig 3.2.2c: FTIR spectrum of raw AW	35
Fig 3.2.2d: FTIR spectrum of AW-AgNPs	36
Fig 3.2.3a: SEM Micrograph showing the surface morphology of TD-AgNPs at 200 μ m	38
Fig 3.2.3b: SEM Micrograph showing the surface morphology of AW-AgNPs at 2000 μm	39
Fig 3.3.1a: The UV-Vis spectra for the effect of concentration on TD-AgNPs	40
Fig 3.3.1b: The UV-Vis spectra for the effect of concentration on AW-AgNPs	40
Fig 3.3.2a: The UV-Vis spectra for the effect of contact time on TD-AgNPs	42
Fig 3.3.2b: The UV-Vis spectra for the effect of contact time on AW-AgNPs	42
Fig 3.3.3a: The UV-Vis spectra for the effect of volume ratio on TD-AgNPs	43
Fig 3.3.3b: The UV-Vis spectra for the effect of volume ratio on AW-AgNPs	44
Fig 3.3.4a: The UV-Vis spectra for the effect of pH on TD-AgNPs	45
Fig 3.3.4b: The UV-Vis spectra for the effect of pH on AW-AgNPs	45
Fig 3.3.5a: The UV-Vis spectra for the effect of temperature on TD-AgNPs	46
Fig 3.3.5b: The UV-Vis spectra for the effect of temperature on TD-AgNPs	47

Fig 3.4a: Antimicrobial activity of synthesized nanoparticles against Staphylococcus aureus,	
Escherichia coli and Aspergillus flavus in plate 1	49
Fig 3.4b: Antimicrobial activity of synthesized nanoparticles against Staphylococcus aureus,	
Escherichia coli and Aspergillus flavus in plate 2	50
Fig 3.4c: The plates showing the various zones of inhibitions for different microorganisms	51

LIST OF TABLES

Table 2.5.3: Volume ratio variations of extract to AgNO ₃ solution	26
Table 3.1: Phytochemical Screening test results on Tithonia diversifolia and Acalypha wilkesiana	
extracts	30
Table 3.2.2a: FTIR interpretation for <i>Tithonia diversifolia</i> (TD) extract and <i>Tithonia diversifolia</i> s	silver
nanoparticles (TD-AgNPs)	34
Table 3.2.2b: FTIR interpretation for Acalypha wilkesiana (AW) extract and Acalypha wilkesiana	<i>i</i> silver
nanoparticles (AW-AgNPs)	37
Table 3.4a: Antimicrobial result for plate 1	48
Table 3.4b: Antimicrobial result for plate 2	49