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Endorheic (hydrologically landlocked) basins spatially concur with arid/semiarid 

climates. Given limited precipitation but high potential evaporation, their water 

storage is vulnerable to subtle flux perturbations, which are exacerbated by 

global warming and human activities. Increasing regional evidence suggests a 

likely recent net decline in endorheic water storage, but this remains unquantified 

at a global scale. By integrating satellite observations and hydrological modeling, 

we reveal that during 2002–2016, the global endorheic system experienced a 

widespread water loss of 106.3 (±11.7) Gt yr-1, attributed to comparative losses in 

surface water, soil moisture, and groundwater. This decadal decline, disparate 

from water storage fluctuations in exorheic basins, appears less sensitive to 

ENSO-driven climate variability, implying possible responses to longer-term 

climate conditions and human water management. In the mass-conserved 

hydrosphere, such an endorheic water loss not only exacerbates local water 

stress, it also imposes excess water on exorheic basins, leading to a maximal sea 

level rise that matches the contribution of nearly half of the land glacier retreat 

(excluding Greenland/Antarctica). Given these dual ramifications, we suggest the 

necessity of long-term monitoring of water storage variation in the global 

endorheic system and inclusion of its net contribution to future sea level 

budgeting.  

 

Global endorheic basins (Fig. 1a), where surface flow is landlocked from the 

ocean, cover a fifth of the Earth’s land surface but nearly half of its water-stressed 
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regions1. Many arid and semiarid regions are inherently endorheic, where surface flow 

is unable to break topographic barriers, and retained in landlocked storage that 

equilibrates through evaporation2. Because surface flow is scarce in endorheic regions, 

water storage, particularly in sizable lakes, reservoirs, and aquifers, becomes of vital 

ecological and social importance. Endorheic water storage can be maintained only if the 

system fluxes, chiefly through precipitation, evaporation, and groundwater exchanges, 

remain in a delicate balance. However, recent climate change, notably warming and 

drying in many arid/semiarid regions3-5, has triggered observable perturbations to the 

endorheic water balance, intensified further by human water withdrawals, damming, and 

diversions5-8. Regional evidence of storage declines has been seen for decades in 

desiccating lakes (e.g., Aral Sea and Great Salt Lake)8,9, retreating glaciers (e.g., 

Tibetan and Amu Darya)10,11, and depleting aquifers (e.g., Arabian and Persian)12, 

suggesting a likely enduring decline of the total terrestrial water storage (TWS) within 

the global endorheic system.  

In the mass-conserved hydrosphere, a net endorheic water deficit not only 

aggravates water stress in endorheic regions, it also imposes the same amount of water 

surplus on the exorheic system, where surface flow reaches the ocean. Therefore, a 

persistent TWS decline in global endorheic basins signifies a potential source of sea 

level rise (SLR). The rate of SLR averaged at ~1.9 mm yr-1 during the past half 

century13, and increased to ~3.4 mm yr-1 in the current millennium despite occasional 

hiatuses due to El Niño-Southern Oscillation (ENSO)14-16. About 70–80% of the recent 

decadal SLR was attributed to ocean thermal expansion (~1.2–1.4 mm yr-1) and ice-

sheet mass loss in Greenland and Antarctica (~1.0–1.3 mm yr-1). The other ~20–30% 
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was induced by the net TWS change that integrates mountain glacier and ice cap (GIC) 

loss, groundwater depletion, reservoir impoundment, and mass changes in other stores 

(e.g., lakes, soil, and permafrost)4,15. Some of these TWS changes, however, were 

assessed without a discrete consideration of endorheic and exorheic origins, which may 

overestimate their individual impacts on the sea level budget. For example, glacial 

meltwater originating from endorheic basins produce no direct excess discharge to the 

exorheic system11, and reservoirs in endorheic basins do not detain runoff that 

otherwise drains to the ocean. Owing to observation changes, studies that explicitly 

assessed endorheic contributions are limited to major terminal lakes that are often 

considered as basin-wide integrators of climatic and hydrological conditions8,17-21. 

Particular emphases were given to the strikingly desiccating Aral Sea, and the world’s 

largest endorheic lake, the Caspian Sea, where water level has shown cyclic 

fluctuations but an overall lowering since the end of the Little Ice Age (~2 cm yr-1)22. 

Budget changes in these two lakes and their affected groundwater, if assuming a 

complete loss to exorheic regions via vapor transfer, contributed a potential SLR of 

~0.1–0.2 mm yr-1 at recent decadal to centennial timescales17-19,21,23. Aside from 

regional evidence, the overall magnitude and spatial pattern of endorheic TWS decline 

have not been quantified at a global scale, and its net contribution to recent SLR 

remains unclear.  

Here we determine the mass changes in TWS throughout the world’s endorheic 

basins and the potential impact on SLR during the early twenty-first century. Our 

monitored TWS is the vertical integration of all water forms on and below the continental 

surface24, where net mass changes are inverted from time-variable gravity fields 
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observed by NASA’s Gravity Recovery and Climate Experiment (GRACE) satellites25. 

We use the monthly mass anomalies during April 2002 through March 2016, from the 

Jet Propulsion Laboratory mascon solution26. This solution isolated TWS signals by 

removing the noise from the solid earth and improved spatial resolution over 

conventional spherical-harmonic solutions27. Monthly mascon anomalies are rescaled to 

173 endorheic units (Fig. 1a), each aggregated from refined landlocked watersheds until 

the size exceeds a mascon. Scaled endorheic mass changes are partitioned into the 

contributions of surface water, soil moisture, and groundwater, in order to contrast 

possible attributions in different regions. We implement an ensemble of multiple 

hydrological models (Table S1) to derive monthly anomalies in soil moisture and part of 

surface water compartments including snowpack and plant canopies. Modeled surface 

water anomalies are further corrected by storage variations in major lakes/reservoirs 

estimated from altimetric/optical satellite observations (Fig. S1–S10) and mass changes 

in GIC derived from stereo imagery11 (Fig. S11; Tables S2–S3). By subtracting the 

corrected anomalies in land water content from net TWS changes, we then 

disaggregate the groundwater contribution from those of surface water and soil 

moisture. Detailed data processing and uncertainty analysis are given in Methods.  

 

Net endorheic storage loss and potential impacts on sea level 

Our results confirm a widespread TWS decline within the global endorheic 

system during the studied 14 years (Fig. 1). Net water loss prevails in about three 

quarters of the endorheic units in area (23.2 out of 31.8 million km2) or number (129 out 

of 173), agglomerated particularly along the water-stressed Subtropical Ridge in Central 
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Asia, the Middle East, and northern Africa (Fig. 1a). In total, the global endorheic 

system has undergone a net storage change of –106.32 (±11.70) Gt yr-1 (uncertainties 

in 95% confidence intervals (CIs)). This is about twice the rate of concurrent TWS 

changes from the entire exorheic region (–58.44 (±27.75) Gt yr-1 excluding 

Greenland/Antarctica), although the endorheic area is only a fifth of the global landmass 

(Fig. 1b–c). While the signature in exorheic TWS anomalies is closely linked to ENSO-

driven climate variability (Fig. 2, with prominent positive/negative TWS anomalies during 

La Niña/El Niño events), endorheic anomalies appear less sensitive to such interannual 

modulations (see Fig. S12 and Table S4 for other climate oscillations). This contrast 

highlights the possible significance of longer-term climate conditions (e.g., multidecadal 

variability and anthropogenic warming) and direct human water management to TWS in 

the arid/semiarid hinderlands4,5,7-9. 

The net endorheic water loss, if it completely reaches the ocean, results in an 

average SLR of 0.29 (±0.03) mm yr-1, accounting for ~9% of the observed SLR (3.4 mm 

yr-1)16 and ~15–20% of the barystatic (mass-induced) contribution (1.6–2.0 mm yr-1)4,15 

around the same period. Compared with other barystatic sources, the endorheic water 

loss equals nearly half of the global mass decline in GIC (0.6–0.7 mm yr-1 excluding 

Greenland/Antarctica)4,15, and matches the entire contribution of groundwater depletion 

(~0.27 mm yr-1)28. This endorheic loss also exceeds the previous estimates of the net 

inland water change, e.g., in the Caspian Sea, Aral Sea, Lake Chad, Great Salt Lake, 

and Tibetan lakes8,17-19,21,29, by a factor of ~2–4, which implies substantial but poorly 

understood changes in hydrological components within the global endorheic system. 

However, we recognize that our estimated SLR contribution is only the potential 
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barystatic contribution of the net endorheic loss or its sea level equivalent. If assuming 

that the surplus of water vapor transferred from endorheic basins is evenly precipitated 

into the exorheic system (including both land and ocean with a negligible net vapor 

change28) and an average precipitation-to-discharge ratio of 2.4 from land30, we 

approximate that up to ~80% of the net endorheic TWS loss might end up in the ocean.  

 

Regional variation and links to climate and human actions 

Despite a net global decline, the change of endorheic TWS exhibits intriguing 

regional variation. On one hand, our map of TWS trends for individual endorheic units 

(Fig. 1a) shows exacerbated water scarcity in many of the world’s drought hotspots. 

They include not only drainage basins under intense human influences, such as those 

of the Caspian Sea, Aral Sea, Urmia Lake, Balkhash Lake, and Great Salt Lake, but 

also remote or sparsely populated deserts in Africa (e.g., Sahara), Central Asia (e.g., 

Taklamakan and Gobi), the Middle East (e.g., Arabian), South America (e.g., Atacama), 

western US (e.g., Great Basin and Mojave), and western Australia (e.g., Great Sandy 

and Gibson). TWS declines in these hotspots accentuate the evident impact of recent 

meteorological drought on arid/semiarid regions, which is often intertwined with human-

induced evaporative loss through surface water diversion, damming, and groundwater 

abstraction4,5,8,9,31. On the other hand, water losses across most of the endorheic 

landmass contrast markedly with water gains in the Inner Tibetan Plateau (ITP), eastern 

Australia, Sahel, Great Rift Valley, Kalahari Desert (southern Africa), and northern Great 

Basin and Great Plains (North America). However, these water gains are more spatially 

constrained and are dominantly induced by natural variability5 (Supplementary text).  
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To further contrast regional variation, we group global endorheic basins by 

continent and climatic similarities into six primary zones (Fig. 3a), where TWS 

anomalies and changing trends are compared in Fig. 3b–h and Table 1. Approximately 

two-thirds of the global endorheic water loss (–73.64 (±7.74) Gt yr-1) stems from Central 

Eurasia, the largest zone covering one-third of the endorheic landmass. Water loss 

within Central Eurasia generally weakens along an eastward gradient, as illustrated in 

four secondary zones. Over half of the total zonal loss is concentrated on the Caspian 

Sea Basin alone, 10% on the Aral Sea Basin (including nearby watersheds receiving 

transbasin diversions) but largely balanced out by the water gain in ITP, and the other 

~40% from across the remaining basins. Monthly TWS anomalies in Central Eurasia 

exhibit a strong monotonic decline since 2005, despite an earlier increase linked to the 

rise of the Caspian Sea level21, and a water gain in ITP that persisted for multiple 

decades29 but has decelerated since ~201332. The TWS in the vast desert zone of 

Sahara/Arabia underwent a continuous decrease throughout 2002–2016, resulting in 

the other one-third of the net global loss (–33.10 (±3.57) Gt yr-1). A marked storage 

decline also prevailed in Dry Andes/Patagonia (–9.61 (±1.96) Gt yr-1), but has slowed 

down and partially reversed since 2012. Net water losses in Australia and Western 

North America are less dramatic (–4.05 (±4.86) and –2.53 (±2.00) Gt yr-1, respectively) 

due to spatial dipole and short-term fluctuations. For instance, Australia’s Millennium 

Drought33 was temporarily alleviated by La Niña-induced precipitation anomalies in the 

eastern region (e.g., the Great Artesian Basin) during 2010–201234. Water declines in 

the latter three zones sum up to another 15% of the net global endorheic loss, which is, 
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however, counteracted by the water gain in Great Rift Valley/Southern Africa (GRVSA, 

16.60 (±2.28) Gt yr-1).  

 

Contributions of different water storage components 

The net TWS changes aggregate the contributions of different hydrological 

components (Fig. 4 and Table 1). During the past 14 years, the net global endorheic 

loss is attributed to comparable declines in surface water (36.08% (±9.89)), soil 

moisture (26.36% (±7.46)), and groundwater (37.56% (±16.57)), but such contributions 

result from highly unequal partitions within zonal TWS changes. In Central Eurasia, 

surface water loss outweighs that of soil moisture and is more than double that of 

groundwater (Fig. 4c). The prominent surface water loss can be observed by the recent 

shrinkage of many large lakes across Central Asia and the Middle East (e.g., Aydar, 

Aral Sea, Bosten, Caspian Sea, Khyargas, Tengiz, and Urmia; Fig. S2). In particular, 

over 70% of the global endorheic surface water loss was induced by the level drop in 

the Caspian Sea (–6.8 cm yr-1). Another ~11% was caused by the desiccation of the 

Aral Sea (–1041.7 km2 yr-1) despite the compensation of excess discharge from 

warming-induced glacier melting (Fig. S5–S8 and Table S5). Surface water losses in 

these two basins coincided with drying climate (deficient precipitation and rising 

temperature, Fig. S13o–r), along with intensive water diversion (e.g., from the Volga 

River, Amu Darya, and Syr Darya) for irrigation, which supplemented moisture supplies 

for evapotranspiration17,20,35. Diversion-based irrigation may have also increased 

regional return flow36, resulting in possible groundwater recharge despite overall soil 

moisture loss (Fig. 4d–e). In contrast, increasing precipitation and, to a lesser extent, 
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warming-induced glacier loss led to evident lake expansion in ITP9,37 (Fig. S13s–t; Table 

S5), where surface water surplus explains over 80% of the net TWS gain (Fig. 4f). As 

water relocation from glaciers to lakes does not alter the endorheic system storage, 

increasing net precipitation (i.e., precipitation minus evapotranspiration) is the primary 

contributor to the net TWS gain, which is in line with recent literature29,32,37. Surface 

freshwater is critically limited in the remaining endorheic zone of Central Eurasia (Fig. 

4g), where groundwater withdrawal easily exceeds natural recharge12. Similar to river 

diversion, groundwater depletion might enhance evaporation by cumulatively 

transferring water from aquifers to the surface, which explains 68% of the zonal TWS 

loss. 

Greater dominance of groundwater depletion to net TWS loss is seen in Australia 

(Fig. 4h) and Sahara/Arabia (Fig. 4j), where endorheic basins often remain arheic and 

groundwater becomes the only permanent water source. In Sahara/Arabia, for instance, 

annual groundwater depletion (–33.23 (±4.37) Gt yr-1) matches the rate of the zonal 

TWS loss. Our estimate is similar to that of Richey et al.7 (about –29 (±6) Gt yr-1 during 

2003–2013) if one sums up their estimated depletions of major aquifers including 

Arabian, Nubian, Northwestern Sahara, Murzuk-Djado Basin, Taoudeni-Tanezrouft 

Basin, and Lake Chad Basin, although these authors did not correct modeled surface 

anomalies by lake storage changes (e.g., minor increase in Lake Chad). In addition to 

unsustainable human withdrawal, groundwater declines in these desert zones may 

result from vadose capillary fluxes that transport water from aquifers to compensate for 

soil moisture loss38. Such declines are in sharp contrast to the groundwater gain in 
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GRVSA (16.54 (±2.70) Gt yr-1; Fig. 4i), indicating persistent recharge as a result of 

excess precipitation (Fig. S13i–j).  

In Western North America, climate-induced soil moisture decrease (Fig. S13c–d) 

dominates the net TWS loss (Fig. 4l). Meanwhile, studies8,31,39 suggest that human 

activities, such as irrigation and mining, are crucial causes of the surface water decline 

in Great Salt Lake (–0.20 Gt yr-1, consistent with –0.17 Gt yr-1 in Wurtsbaugh et al8) and 

Salton Sea39 (–0.11 Gt yr-1) (Fig. S2), accounting for 12% of the zonal TWS loss. The 

contribution is more evenly partitioned among surface, soil, and aquifers in Dry 

Andes/Patagonia (Fig. 4k), where a quarter of the net TWS loss stems from the 

shrinkage of Lakes Titicaca, Poopό, and Mar Chiquita (Fig. S2). Such concurrent losses 

in multiple water stores imply an extensive impact of the recent precipitation deficit (Fig. 

S13e–f) and human activities on South America’s endorheic hydrology8,40,41.  

 

Implications for global water cycle 

Our findings reveal the recent decadal TWS decline in global endorheic basins, 

which largely outpaces the concurrent TWS change in the exorheic region. While 

exorheic TWS modulates the sea level by directly affecting surface runoff to the ocean, 

it is also subject to natural variability of the climate system (e.g., ENSO at multiyear 

timescales) that augments/suppresses the delivery of water from the ocean4,14. From 

another perspective, we show that endorheic TWS, albeit limited in quantity, can 

dominate the variation in global TWS at decadal timescales. This decadal loss in 

endorheic TWS suggests that recent climate conditions, in conjunction with direct 

human activities, resulted in a substantial vapor outflow from the continental interiors. 
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The consequential water surplus to the exorheic system might be acting as a non-

negligible source of SLR. Limited by available TWS observations, our calculated trend 

may not imply a secular signal beyond the studied GRACE era. Nevertheless, this 

decadal endorheic loss is in line with satellite-observed decreases in surface water 

extent since ~19809,31, model-simulated increases in water stress over the past half 

century42,43, and reported declines in water volumes of major saline lakes over the past 

~140 years8, all predominantly in arid/semi-arid regions. Under the latest climate 

change scenarios, reversal of such a net decline in the next half/one century seems 

uncertain, considering projected decreases in precipitation, soil moisture, and discharge 

but increases in potential evaporation, drought duration, and water stress in many 

endorheic regions3,5,44-48.  

Apart from a widespread net TWS loss, we quantify that the loss prevails 

comparatively in all three primary hydrological stores (surface, soil, and aquifers). 

However, their relative contributions vary among endorheic zones, resulting from strong 

spatial heterogeneity in flux-storage interactions and responses to climate and water 

management. As detailed in Methods and Supplementary Information, our partitioning 

of TWS losses relies on a synergy of multi-model ensemble and satellite observations, 

and emphasizes different components in the water cycle rather than attributions to 

natural variability versus secular forces. Despite uncertainties, our analysis exemplifies 

a critical effort toward the decoupling of climate-human influences on the recent TWS 

shift from endorheic to exorheic systems. This analytical decoupling is essential for 

projecting and managing water stress in arid/semiarid regions under future climate 

change. Given such dual ramifications both to regional water sustainability and to global 
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SLR, we thereby suggest a continued understanding of long-term TWS variation in 

global endorheic basins, and an explicit inclusion of its net contribution (such as by the 

Intergovernmental Panel on Climate Change) in future sea level budgeting.   
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Methods 

Defining endorheic regions. Endorheic basin extents are mainly acquired from a total 

of 48,813 landlocked watersheds identified in the 15-second HydroSHEDS drainage 

basin dataset49 (Fig. S14a). Their spatial patterns are overall consistent with the 

depiction in the Global Drainage Basin Database50 (GDBD). Among minor 

discrepancies, 10 watersheds landlocked in ITP, Manchuria, Siberia, and western US 

are captured only in GDBD (Fig. S14a), and thus included to supplement HydroSHEDS. 

These watersheds are aggregated into three enumeration scales: (i) 173 endorheic 

units (Fig. 1a), each comparable to or larger than the size of a 3-degree spherical cap 

mascon (~100 thousand km2), (ii) 10 endorheic zones (Fig. 3a), including 6 primary 

zones in the continental level and 4 secondary zones within Central Eurasia, and (iii) the 

entire global endorheic system, i.e., the aggregated extent of all landlocked basins. 

Each endorheic unit, as further illustrated in Fig. S14b, is a single landlocked watershed 

if its size exceeds a mascon, or an agglomeration of contiguous/nearby watersheds until 

their total area exceeds a mascon. These units exclude sporadic landlocked watersheds 

smaller than a mascon and substantially detached from major endorheic clusters (black 

areas in Fig. 1a). The secondary zones of the Caspian Sea Basin and the Aral Sea 

Basin (Fig. 3a) include several surrounding endorheic watersheds to compensate for 

the GRACE signal leakage from the Caspian Sea and the Aral Sea. The Aral Sea Basin 

also integrates nearby endorheic watersheds receiving transbasin diversions from the 

Amu Darya and the Syr Darya. 
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Calculating endorheic TWS changes. GRACE-observed monthly anomalies of 

equivalent water thickness (EWT) from April 2002 to March 2016 in the JPL 3-degree 

equal-area mason solution (JPL-RL05M version 2)26,27,51,52 are rescaled to each 

enumeration level (unit, zonal, and global) by an area-weighted scaling: 𝑀𝑀 = 𝛴𝛴𝑎𝑎𝑖𝑖𝑚𝑚𝑖𝑖/𝛴𝛴𝑎𝑎𝑖𝑖, 

where 𝑀𝑀 denotes a monthly anomaly for any enumeration region, 𝑚𝑚𝑖𝑖 the original 

anomaly in each mascon 𝑖𝑖 that intersects with this region, and 𝑎𝑎𝑖𝑖 the intersection area. 

Deseasonalized time series 𝑀𝑀 (with monthly climatology removed) is used to calculate 

the TWS trend by best-fit linear regression. The RL05M solution provides 0.5-degree 

gain factors simulated by the Community Land Model27. However, this model lacks 

surface water (SW) compartments (e.g., lakes and glaciers) and human processes, and 

the least-squares correction in the factor derivation tends to be dominated by the annual 

cycles of land water storage variations. Despite a partial recovery of the signal variation, 

the gain factors may not be suitable for calculating TWS trends at sub-mascon 

resolution. For these reasons, they are not applied in our rescaling process. Instead, 

rescaling-induced uncertainties are accounted for in our estimated zonal and global 

trends.  

Specifically, uncertainties (𝑒𝑒𝑀𝑀) of monthly 𝑀𝑀 in each enumeration region are 

propagated from the inherent errors (𝑒𝑒𝑚𝑚) associated with original mascon data and the 

rescaling uncertainties (𝑒𝑒𝑟𝑟) induced by signal leakage in fringe mascons. Similar to 𝑀𝑀, a 

monthly 𝑒𝑒𝑚𝑚 is calculated as �𝛴𝛴(𝑎𝑎𝑖𝑖𝑒𝑒𝑖𝑖)2 /𝛴𝛴𝑎𝑎𝑖𝑖, where 𝑒𝑒𝑖𝑖 denotes the provided data 

uncertainty for each mascon 𝑖𝑖 that intersects with this region. To infer 𝑒𝑒𝑟𝑟, we compute 

the intersection area (𝑎𝑎𝑖𝑖) as a proportion (𝑃𝑃) of each mascon (Fig. S15). A fringe 

mascon is indicated by a value of 𝑃𝑃 between 0 and 1 (hereafter “internal fringe portion”). 
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For each month, we first calculate the average EWT anomaly in the mascons enclosed 

by this region (i.e., 𝑃𝑃 = 1). This assesses the signal in the region interior exclusive of 

external leakage impacts, despite a sacrifice of the signal in the internal fringe portion. 

We then lower the threshold (𝑡𝑡) of 𝑃𝑃 by a step of 0.05, and calculate the average 

anomaly (𝑀𝑀𝑡𝑡) in the full mascons with 𝑃𝑃 ≥ 𝑡𝑡, until 𝑡𝑡 = 0 (i.e., all fringe mascons 

included). In this way, 𝑀𝑀𝑡𝑡 gradually picks up the missing signal within this endorheic 

region as the internal fringe portion decreases. Meanwhile, it absorbs increasing signal 

leakage as the external fringe portion expands. The variance of 𝑀𝑀𝑡𝑡, therefore, reflects 

the uncertainty of signal scaling at sub-mascon resolution. Given this logic, the standard 

deviation in the array of 𝑀𝑀𝑡𝑡 (Fig. S16) is used as a measure of this monthly 𝑒𝑒𝑟𝑟. Time 

series 𝑒𝑒𝑀𝑀 and the variation of residuals from the trend fitting are then propagated to infer 

a 95% CI of the TWS trend using a Monte Carlo method as in Wang et al53. 

To further evaluate our estimated TWS changes, we determine how the EWT 

trend in each region changes from its endorheic interior to periphery. This is done by 

calculating the linear trend in monthly 𝑀𝑀𝑡𝑡 with a gradually lowered 𝑡𝑡, as shown in Fig. 

S17 (blue profiles). For a region under a net TWS decline, a rising profile implies that 

the rate of water loss tends to weaken as one moves away from the endorheic interior. 

If we assume that this pattern is also true at sub-mascon scales, the magnitude of EWT 

decline in the internal portion of a fringe mascon would be greater than that in the 

external portion. Our signal scaling based on simple area partitioning of the fringe 

mascons thus underrates the actual water loss in the peripheral endorheic areas (where 

signals of weaker decline leak into the internal portions), leading to an overall 

conservative TWS trend for this enumeration region. This case applies to the entire 
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endorheic system and most zones that experienced TWS declines. The exception in 

Dry Andes/Patagonia (Fig. S17c) is likely attributed to the complex endorheic boundary 

(Fig. S15a) and the leakage of stronger EWT declines from the exorheic Andes. In the 

Aral Sea Basin, fully enclosed mascons are found in the Amu Darya and Syr Darya 

regions (Fig. S15c) but the most significant water loss occurred in the Aral Sea. This 

explains the weak initial decline (when 𝑃𝑃 = 1 in Fig. S17i) in this region. As 𝑃𝑃 continues 

to decrease, the EWT trends are overall stable (black profile) despite increasing 

leakage of water loss in the nearby Caspian Sea (blue profile). Similarly, a decreasing 

profile for any region under a net TWS gain implies that our estimated TWS increase is 

likely underrated. This is seen in the GRVSA (Fig. S17e) and ITP (Fig. S17j). However, 

since their total water gain accounts for a marginal proportion (~17%) of the total water 

loss in the other regions, our reported net TWS decline in global endorheic basins is 

overall conservative (Fig. S17a).    

Although our results do not apply the mascon-set of 0.5-degree gain factors, their 

impact is assessed by comparing EWT trends calculated with versus without the gain 

factors for each endorheic zone (black and red profiles in Fig. S17). Because the 

inclusion of gain factors only affects signal rescaling at sub-mascon resolution, the EWT 

trends at each 𝑡𝑡 are calculated from the average anomalies within the intersected or 

internal mason portions (where 𝑃𝑃 ≥ 𝑡𝑡). The profiles illustrate how EWT trends between 

the two solutions (with and without gain factors) increasingly differ as more incomplete 

mascons are included in rescaling. The two solution profiles appear highly consistent in 

each zone, and their divergence is enclosed by the 95% CIs induced by the inherent 
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mascon data errors (transparent shades). Therefore, including the gain factors will 

make no significant difference to the estimation of global/zonal TWS trends. 

 

Estimating lake storage changes. We calculate storage changes in 142 large 

waterbodies (a total area of ~540k km2; Figs. S1–S2) that account for ~75% of the 

lakes/reservoirs in area and ~98% in volume across endorheic basins54,55. Level time 

series during our study period are collected from multi-mission altimeter observations 

(e.g., Envisat, Jason, TOPEX/Poseidon, and SARAL/AltiKa), as archived in the 

Database for Hydrological Time Series of Inland Water (DAHITI)56 (dahiti.dgfi.tum.de), 

the Hydroweb57 (hydroweb.theia-land.fr), and the USDA G-REALM 

(www.pecad.fas.usda.gov/cropexplorer/global_reservoir). Hypsometry is considered for 

38 (87% in area) of the 142 lakes, where level-area functions for 8 largest lakes (79%) 

are calibrated in this study using time-variable inundation areas mapped from MODIS 

imagery (250-m MOD09Q1) (Figs. S3–S10), and level-area functions for the other 30 

lakes (8%) are retrieved from the Hydroweb. For each of these 38 lakes, time series 

volume anomalies are calculated as the integrals of the hypsometric function from the 

average water level, and the mean volume seasonality is further removed for linear 

trend fitting. Volume anomalies in each of the remaining 104 lakes (13%) are 

approximated by water level time series that are assumed to vary with a static 

inundation area mapped from Landsat imagery acquired during 2008–2009 

(representing the middle-stage extent during our study period) using methods in Sheng 

et al55.  
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Multiple error sources are identified to propagate the uncertainties of lake volume 

anomalies, which are used to infer 95% CIs for lake storage trends by the Monte Carlo 

method53 (as for TWS trends). For the 8 lakes with calibrated hypsometry, error sources 

include (i) level uncertainties provided in the altimetric data, (ii) mapping errors for 

inundation area, estimated from a relative bias of 5% in MODIS-based large waterbody 

extraction58, and (iii) uncertainties in calibrated hypsometry, calculated as the RMSE of 

fitted level-area functions (Figs. S3–S10). For each of the remaining 134 lakes, the 

trend CI is propagated from source (i), and another error term that attempts to reflect 

the overall uncertainty due to unknown fitting errors in the hypsometry retrieved from 

Hydroweb (for the 30 lakes), the ignored lake area variation (for the other 104 lakes), 

and gaps in the acquired level time series. We quantify this error term to be 14% (95% 

CI) of each lake storage trend, inferred from the 8 lakes where storage trends estimated 

using Hydroweb hypsometry or only water levels are validated against the estimates 

using our calibrated hypsometry. For the other smaller waterbodies where storage 

changes are unquantified in our study, we consider that they in total generate a 95% 

uncertainty of 10 Gt yr-1. If assuming lake volume change is proportional to lake area 

(akin to a simple bucket model where water budget variations reflect precipitation-

evaporation residuals multiplied by the bucket cap size), we have one third of the net 

annual water loss in our studied 142 lakes to be ~10 Gt yr-1. This uncertainty is 

partitioned to different endorheic zones by their total small waterbody areas.  

 

Estimating glacier mass changes. Changes in glacier mass balance are estimated for 

three secondary zones in Central Eurasia (ITP, the Aral Sea Basin, and Others; Fig. 4a) 
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that contain ~98% of the total glacier extent in global endorheic basins (Fig. S11). Our 

estimations are based on the 30-m gridded dataset of glacier surface elevation changes 

(thereafter dh/dt) from 2000 to 2016 in High Mountain Asia (HMA)11. The rates of dh/dt 

are derived by fitting a linear regression through time series of co-registered digital 

elevation models (DEMs) constructed from ASTER stereo images during 2000–2016. 

Details are given in Brun et al.11.  

We obtain 132 dh/dt maps (in 1° grid with estimation uncertainties) covering the 

endorheic HMA. Pixels over non-glacierized regions are masked by the Randolph 

Glacier Inventory 6.059. Over the glacierized regions, pixels with absolute dh/dt rates 

above 50 m yr-1 are excluded as noise. Similar to Brun et al.11, Gardelle et al.60 and 

Neckel et al.61, glacier-hypsometry-averages are used to represent the average dh/dt for 

region-wide units. To reduce the uncertainty due to spatial heterogeneity of glacier 

changes, we divide the glacierized areas into several sub-regions11,62 including 

northwestern ITP, southern ITP, Qilian Mountains, Kunlun Mountains within the Tarim 

Basin, southern Tian Shan, northern Tian Shan, the Pamirs, and the remaining areas. 

Glacierized areas in each sub-region are considered as one virtual contiguous ice body, 

where glacier hypsometry is calculated using 100-m elevation bands discretized by the 

ALOS World 3D-30m DEM63. For each elevation band, dh/dt pixel values are filtered to 

the level of three normalized absolute deviations relative to the median of the elevation 

band11. Filtered dh/dt values are averaged for each elevation band, and the rate of 

volume change is calculated as the sum of the mean dh/dt multiplied by the glacier area 

in this band. The volume change is converted to mass change assuming a conversion 

factor of 850 (±60) kg m-3 64 and a negligible difference between the rates in 2000–2016 
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and 2002–2016. Glacier mass change rates for different elevation bands are then 

subtotaled to secondary endorheic zones (Table S2).  

Besides the above-mentioned secondary zones in Central Eurasia, small clusters 

of glaciers scattered in the Caspian Sea Basin (726 km2 or 0.02% of the zonal area), 

Dry Andes/Patagonia (438 km2 or 0.03%), and Western North America (17 km2 or 

<0.01%) (Fig. S11; Table S3). By referring to previous studies of glacier changes 

around these zones62,65,66, glacier mass changes may only account for miniscule 

portions of the zonal TWS declines (Table S3, where glacial changes are largely under 

the TWS change uncertainties). For this reason, glacier mass changes in these zones 

are not explicitly quantified, and instead considered as modeled SWE variations over 

their glacierized regions. 

 

Partitioning net TWS changes. We partition GRACE-observed net TWS changes to 

SW, soil moisture (SM), and groundwater contributions through a comprehensive 

synergy of model simulations and satellite observations. Considering that some of the 

frequently used large-scale hydrological models lack SW and groundwater 

compartments67, we rely on hydrological models only for simulating monthly anomalies 

in SM, snow water equivalent (SWE), and canopy water (CW). Storage trends in major 

waterbodies and GIC are derived from multi-mission satellite measurements (see 

previous sections), and then combined with modeled SWE and CW trends to calculate 

the net SW change (Table S5). Eventually, the groundwater contribution is separated as 

the residual between GRACE-observed TWS change and the estimated SW and SM 

changes.  
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Similar to some existing studies67,68, we consider two widely-applied global 

hydrological models (WGHM69,70 and PCR-GLOBWB71) and five land surface models 

(LSMs) from the Global Land Data Assimilation System (GLDAS)72 (CLM, Mosaic, 

Noah, VIC, and CLSM) to simulate monthly changes in SWE, CW, and SM during 

2002–2016 (see Table S1 for model descriptions). To account for model discrepancies 

induced by different climate forcing and parameterizations, we follow a typical ensemble 

approach, where deseasonalized multi-model time series are averaged to represent 

monthly anomalies and standard deviations among the model time series as ensemble 

uncertainties. Because the available modeling period for CLSM and PCR-GLOBWB 

discontinues after 2014, their time series are not included in the calculation of ensemble 

means. Instead, we compare their time series with the ensemble means from the other 

five models during 2002–2014, and use the monthly differences to further expand the 

ensemble uncertainties.  

Several studies noticed that the amplitude of SM variation from WGHM is 

substantially lower than those of other models73,74, which is also seen in our studied 

endorheic basins (Fig. S18). To avoid possible biases in trend calculation, WGHM is 

excluded from the ensemble of SM anomalies, but is used to infer additional ensemble 

uncertainties together with CLSM and PCR-GLOBWB. We also assume that the during 

the studied GRACE era, direct irrigation impacts on SM were regional and limited to 

seasonal timescales, and did not considerably alter the interannual SM trends at 

zonal/global scales (also see Supplementary Information). Our modeled SM anomalies 

are validated against in situ measurements from the Soil Climate Analysis Network 

(SCAN; www.wcc.nrcs.usda.gov/scan) in endorheic North America (Fig. S19). For most 
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SCAN stations, deseasonalized SM time series from measurements and models show 

significant correlations, and the discrepancies between their interannual trends are 

within the 95% CIs. Detailed validations are provided in Supplementary text, Fig. S20, 

and Table S6.  

As previously described, our glacier mass changes are based on detected 

elevation changes from stereo-correlated time series DEMs11. These changes include 

the contributions of both alpine glaciers and snowpack. To avoid double-counting, we 

replace modeled SWE over glacierized endorheic HMA by satellite-observed glacier 

mass changes. This replacement also minimizes the influence of modeled SWE errors 

that are often amplified in alpine environments75,76. To further validate modeled SWE 

changes in other regions, we select endorheic North America with high-quality SWE 

estimates from the Snow Data Assimilation (SNODAS) program77 (Supplementary text). 

The time series of modeled and SNODAS anomalies show evident differences in 

magnitude, but agree fairly well in interannual trend (with a discrepancy insignificant to 

the CIs; Fig. S21). Although this validation is limited in North America, the amount of 

water stored in snowpack and canopies in endorheic basins is relatively small. This is 

reflected by the combined loss of SWE and CW (3.64 (±1.90) Gt yr-1), contributing <4% 

of the global endorheic TWS loss (Table S5). Thus the influence of their modeling 

uncertainties on our TWS partitioning is likely miniscule.  

 

Assessing TWS responses to climate forcing. Climate impacts on TWS changes are 

assessed by exploring (i) the correlations between annual net TWS changes and total 

precipitation and (ii) the trends in monthly temperature anomalies, for the global 
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endorheic system and each endorheic zone (Fig. S13). We emphasize TWS changes in 

response to precipitation on an annual basis, in order to remove the influence of 

correlations dominated by seasonal variation. We calculate temperature trends to 

assess recent warming in endorheic regions and facilitate the discussion of warming-

induced glacier retreat and possible enhancement of potential evapotranspiration. It is 

worth noting that evapotranspiration responds to radiative and aerodynamic variables in 

addition to temperature78, so we do not claim that warming alone necessarily caused 

the observed TWS loss. However, since existing evapotranspiration data do not 

adequately account for the impact of open surface water, the response of TWS changes 

to actual evapotranspiration is not explored.  

To account for uncertainties in climate variables, we retrieve the monthly means 

of precipitation and temperature anomalies during 2002–2016 from multiple 

observation/assimilation sources. Sources of precipitation data include the CPC Merged 

Analysis of Precipitation (CMAP)79 

(www.esrl.noaa.gov/psd/data/gridded/data.cmap.html), the Global Precipitation 

Climatology Center (GPCC) precipitation80 (total full v7; 

www.esrl.noaa.gov/psd/data/gridded/data.gpcc.html), the Global Precipitation 

Climatology Project (GPCP)81 (www.esrl.noaa.gov/psd/data/gridded/data.gpcp.html), 

and the PRECipitation REConstruction over Land (PREC/L)82 

(www.esrl.noaa.gov/psd/data/gridded/data.precl.html). As merged analysis and 

reanalysis precipitation data tend to show evident uncertainties over ITP83, its 

precipitations are acquired from a 0.25° gridded observation dataset83-85 provided by the 

National Climate Center of China Meteorological Administration. Sources of 
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temperature data include the NOAA Global Surface Temperature86,87 

(www.esrl.noaa.gov/psd/data/gridded/data.noaaglobaltemp.html), the Berkeley Earth 

Surface Temperature88 (berkeleyearth.org/data), and mean surface air temperature 

from the GLDAS LSMs. 

 

Data availability. Calculated water storage changes in global endorheic regions are 

distributed through PANGAEA (doi: in process). Storage changes in major lakes and 

reservoirs are available upon reasonable request to the corresponding author. Glacier 

mass change data are available through Nature Geoscience article 

doi:10.1038/NGEO2999.  

 

Code availability. All analytical codes generated in this paper are available upon 

request.  
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Figure and table captions 

Figure 1. Terrestrial water storage (TWS) changes within global endorheic and 

exorheic basins from GRACE observations, April 2002 to March 2016. (a) Trends in 

individual endorheic units, each comparable to the 3-degree mascon in size (~100k 

km2). No trends are calculated for sporadic endorheic regions (black) smaller than a 

mascon. (b) Monthly anomalies in endorheic (black) and exorheic (green) regions. (c) 

Deseasonalized anomalies (axes as in b). Error bars show 95% confidence intervals 

(CIs) of monthly anomalies induced by mascon data errors. Shadings illustrate 95% CIs 

for best-fit linear trends induced by both mascon and rescaling errors (see Methods for 

uncertainty analysis). 

 

Figure 2. Linkage between TWS anomalies and El Niño-Southern Oscillation 

(ENSO). Left y-axis shows deseasonalized monthly anomalies of global exorheic 

(green) and endorheic (black) TWS (error bars as in Fig. 1c). Right y-axis shows ENSO 

intensities in multivariate ENSO index (MEI) (accessed from 

www.esrl.noaa.gov/psd/enso/mei/table.html). Positive MEI values indicate El Niño and 

negative values La Niña. Exorheic anomalies are significantly corrected with MEI 

(Pearson r = –0.50, p < 0.001), with the strongest correlation (–0.60) achieved by 

lagging MEI one season behind TWS anomalies (shown here). Under the same 

condition, endorheic anomalies appear less sensitive to ENSO modulations (also see 

Supplementary Information). 
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Figure 3. Endorheic TWS changes in different geographic zones. (a) Six primary 

zones defined as basin groups by continental and climatic similarities, where Central 

Eurasia further highlights four secondary zones, i.e., the Caspian Sea Basin, the Aral 

Sea Basin, the Inner Tibetan Plateau, and the other regions. (b) Summary of zonal 

TWS trends (gigatons of water loss per year and mm of equivalent SLR per year). Error 

bars represent 95% CIs for each TWS trend. (c–h) Monthly series of deseasonalized 

zonal TWS anomalies (as in Fig. 1; axis labels consistent with h).  

 

Figure 4. Endorheic net TWS changes partitioned into contributions of different 

hydrological storages. (a) As in Fig. 3a. (b) The global total of endorheic storage 

change and attributions to surface water, soil moisture, and groundwater (gigatons of 

water loss per year and mm of equivalent SLR per year). (c–l) Zonal net storage 

changes and different storage contributions (axis labels as in b). Error bars represent 

95% CIs. Bar colors for different water storages follow the convention for blue (surface 

water and groundwater) and green (soil moisture) water resources.  

 

Table 1. TWS changes and hydrological attributions in zonal and global endorheic 

basins from April 2002 to March 2016. All uncertainties are 95% (2-sigma) CIs. 


