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Abstract: Depending on context, the term entropy is used for a thermodynamic quantity, a measure
of available choice, a quantity to measure information, or, in the context of statistical inference,
a maximum configuration predictor. For systems in equilibrium or processes without memory,
the mathematical expression for these different concepts of entropy appears to be the so-called
Boltzmann–Gibbs–Shannon entropy, H. For processes with memory, such as driven- or self-
reinforcing-processes, this is no longer true: the different entropy concepts lead to distinct functionals
that generally differ from H. Here we focus on the maximum configuration entropy (that predicts
empirical distribution functions) in the context of driven dissipative systems. We develop the
corresponding framework and derive the entropy functional that describes the distribution of
observable states as a function of the details of the driving process. We do this for sample space
reducing (SSR) processes, which provide an analytically tractable model for driven dissipative
systems with controllable driving. The fact that a consistent framework for a maximum configuration
entropy exists for arbitrarily driven non-equilibrium systems opens the possibility of deriving a full
statistical theory of driven dissipative systems of this kind. This provides us with the technical
means needed to derive a thermodynamic theory of driven processes based on a statistical theory.
We discuss the Legendre structure for driven systems.

Keywords: non-equilibrium; maximum configuration; maximum entropy principle; driven systems;
statistical mechanics

1. Introduction

Entropy is a single word that refers to a number of very distinct concepts, a fact that has caused
much confusion. These concepts cover areas as diverse as statistical mechanics, minimal code lengths,
or the multiplicity of available choices in statistical inference. The distinction between the concepts
underlying entropy is frequently not made properly. As long as we deal with equilibrium processes
or processes with no memory (that can be modeled as i.i.d. sampling processes), formally it does not
matter which entropy concept we use: they all lead to the same functional

H(p) = −k ∑
i∈Ω

pi log pi (1)

where k is a context- and unit-dependent positive constant, and Ω = {1, 2, · · · , W} is the sample space
containing W distinct states i = 1, · · · , W that occur (or are sampled) with relative frequencies pi.
In statistical mechanics, Ω is the set of all accessible microstates; in information theory, it is an alphabet
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of W letters that can be coded in a code-alphabet using b code-letters (typically 0 and 1 for b = 2).
Setting k = 1/ log(b) often indicates that H is used as a measure of information production. If all we
know about a class of messages is the frequency pi of letters i, then H is a sharp lower bound on
the average number of code-letters per letter, needed for coding messages in the original alphabet.
In physics, k is the Boltzmann constant, measuring entropy in units of energy per degree Kelvin.
We refer to H as the Boltzmann–Gibbs–Shannon entropy.

However, this degeneracy of entropy concepts with respect to H vanishes for processes with
memory. For systems or processes away from equilibrium, such as for processes with memory,
the different entropy (production) concepts lead to distinct, non-degenerate entropy functionals.
“Entropy”, in a way, becomes context-sensitive: the functional form of entropy measures differ from
one class of processes to another. The different concepts link structural knowledge about a given
system with the functional form of its corresponding entropy measure. We demonstrated this fact for
self-reinforcing processes, Pólya urn processes in particular [1–3], for driven dissipative systems that
can be modeled with slowly driven sample space reducing (SSR) processes [4–7] and for multinomial
mixture processes [1]. Consequently, for non-equilibrium processes, we need to properly distinguish
entropies depending on the context they are used for. In Reference [1], we distinguish three (there is
no reason that there could not be more than three) entropy concepts:

• The concept of maximum configuration (MC) predictions defines entropy, SMC, as the logarithm
of the multiplicity of possible equivalent choices and plays a central role in predicting empirical
distribution functions of a system. It plays a role in statistical mechanics [8,9] but can be extended
naturally beyond physics in the context of statistical inference [10].

• The concept of entropy in information theory [11–13] can be identified as the information production
rate (IP) of information sources. The corresponding entropy, SIP, is an asymptotically sharp lower
bound on the loss-free compression that can be achieved in the limit of infinitely long messages.

• The necessity of extensive variables (e.g., in thermodynamics) leads us to define an extensive
entropy, STD, through an asymptotic scaling expansion that relates entropy with the phase-space
volume growth as the size of a system changes [14,15]. (Consistent scaling of extensive variables
is a prerequisite for thermodynamics to make sense. We therefore call the corresponding entropy
measure “thermodynamic,” STD, despite the fact that all of the three mentioned concepts may
be required to characterize the full thermodynamics of a non-equilibrium system. However,
to avoid confusion, we will use the term thermodynamic scaling entropy whenever it is necessary to
distinguish the notion from Clausius’ thermodynamic entropy, SClausius, for which, for reversible
processes, dSClausius = dQ/T, holds.)

Here we are interested in the description of driven statistical systems. The interest is to know the
most likely probability distribution for finding the system in its possible states. Observables can then
be computed. The maximum configuration entropy is a way to compute this probability distribution.
In the following, we aim to understand entropies of driven dissipative systems that are relatively
simple in the sense that they exhibit stationary distributions. In particular, we are interested in the
functional form of their maximum configuration entropy, SMC.

Driven systems are composed from antagonistic processes: a driving process that “loads” or charges
the system (e.g., from low energy states to higher states) and a relaxing or discharging process that
brings the system towards a “ground state” (equilibrium or sink state). (Both processes by themselves
may be non-ergodic. By coupling both processes, the system may—especially when it assumes steady
states—regain ergodicity.) The driving process induces a probabilistic “current” that breaks detailed
balance. This creates a “preferred direction” in the dynamics of the system.

In previous work [4,5], we discussed driven processes in the limit of extremely slow driving
rates. We find simple functional expressions for maximum configuration entropies that depend on the
probabilities pi only. These denote the probability for the system to occupy state i. The situation for
general driving process—which constitutes the essence of this paper—is more involved. To characterize
an arbitrary (stochastic) driving process, it is necessary to specify the probability with which the system
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that is in a given state i at a given time t is driven to a “higher” state j at time t + 1. If we think of
states being associated with energy levels, that would mean εj > εi. We use p∗i to denote the probability
for the system to be “driven” when it is in state i. It is clear that entropies for processes that are driven
in a specific way will depend on the driving rate that is given by p∗i . As a consequence, the entropy
for driven dissipative systems is very different from those that were discussed in the literature of
generalized entropies. We will see that the MC entropy of driven dissipative systems is neither of trace
form, nor does it depend on one single distribution function only. The latter property means that they
violate the first Shannon–Khinchin axiom, see, e.g., [14]. The adequate entropies of driven systems
become measures that jointly describe the relaxation and the driving of the system; they depend on pi
and the (state-dependent) p∗i .

Despite these complications, we will see that the maximum configuration entropy of driven
systems remains a meaningful and useful concept for predicting distribution functions of driven
systems. We further show that the maximum entropy principle for driven systems still follows
the mantra: maximize an entropy functional + constraints. This functional corresponds (up to
a sign) to the information divergence or relative entropy of the driven process. By identifying
the constraint terms with cross-entropy, the known formula holds also within the driven context:
entropy = cross entropy − divergence.

2. The Sample Space of Driven Dissipative Systems

Imagine a driven system. It is composed of a driving process and a relaxation process. The latter
determines the dynamics of the system in the case of no driving—the system relaxes towards
an attractor-, sink-, or equilibrium-state. The driving process can be thought of as a potential that keeps
the system away from equilibrium. The system dynamics is then described by the details of the driving
and relaxation processes. The collection of states i that a system can take is called the discrete sample
space, Ω. For simplicity, we also assume discrete time steps. (All of the following can be formulated in
continuous variables. A continuous sample space we call phase space.) The dynamics of a system is
characterized by the temporal succession of states: initial state→ i → j → k · · · → final state. If the
system is stochastic, the transition probabilities, p(j|i), represent the probability that the system will
be found in state j in the next step, given that it is in state i now. States are characterized by certain
properties that allows them to be sorted. In physical systems, such properties could be energy levels,
εi, that are associated to state i. A relaxing process is a sequence of states that leads from high to lower
energy levels. In other words, p(j|i) ≥ 0 if εi > ε j, and p(j|i) = 0 if εi < ε j. This is what we call a sample
space reducing process, a process that reduces its sample space over time [4,5]. The current sample
space (and its volume) depends on the current state i the system is in. It is the set of states that can be
reached from its current state i, Ω(i) = {j|ε j < εi}. If a system relaxes in a sequence i → j → k · · · ,
then the sequence of sample spaces Ω(i) ⊃ Ω(j) ⊃ Ω(k) · · · is nested. Generally, relaxation processes
are sample space reducing processes.

A driving process typically brings a system from “low states” to “higher states”; or it brings low
states to any other state. The sample space of the driving process can be the highest state, any state
that is higher than the present state, or any state, i.e., the entire sample space, Ωdrive = Ω. In other
words, it can (but does not have to) depend on the current state. A driving event is any event that
allows the system to change from a low state to a higher state. A schematic view of a driven process
is shown in Figure 1. This particular example consists of a relaxing (SSR) process, φ, and a driving
process, φ∗, that places the system always in the highest possible state.
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Figure 1. Illustration of a driven process as a combination of a relaxing process, φ, and a driving
process, φ∗. Without driving, the ball jumps randomly to any lower stair—it never jumps upward.
It follows a sample space reducing process until it hits the ground state i = 1, upon which it is restarted.
Restarting, or driving, means that it becomes lifted to any higher state. The system is driven after it
is fully relaxed to the ground state. This scenario we call slow driving. In a more general situation,
at any state i there is a probability 1− λi that the process experiences a driving event in the next update.
Intuitively, with state-dependent driving, with probability λi, the process follows φ (black), and relaxes
(can only sample states j < i, the ball moves downward), or the process faces a driving event with
probability 1− λi, and follows the driving process, φ∗ (grey).

2.1. Slowly Driven Sample Space Reducing Processes

Let us briefly recapitulate the properties of sample space reducing processes with a simple
example. Given a sample space with W states, Ω = 1, 2, · · · , W, imagine that the process samples state
x1 ∈ Ω. Then, in the next time step, the process can only sample from Ω(x1) = 1, 2, · · · , x1 − 1 ⊂ Ω.
First assume (without loss of generality [5]) that all of the states in Ω(x1) are sampled with the same
probability. With every sample xn, the process is left with a smaller sample space, similar to a ball
bouncing down a staircase, which can only sample stairs below its current position (see Figure 1).
Once the process reaches the lowest possible state, xm = 1 at some point in the process (think of
time), m, then the sample space of the process becomes empty and the process stops at the sink state.
The process can only continue if the sample space reducing process is restarted with a driving event
that will allow it to sample from larger sample spaces again.

The simplest way to specify the driving process in this example is to allow the process to sample
from the entire sample space Ω, once it has arrived at the sink state, i = 1. This is done by setting
Ω(1) = Ω. In this case, the driving process becomes active after the system is completely relaxed.
We call that the slow driving limit. Restarting the relaxing sample space reducing process produces
an ongoing Markov process, and a stationary visiting distribution function of the states i, pi. However,
detailed balance is explicitly violated in driven processes.

For the slowly driven process, the transition probabilities are given by

p(i|j) = Θ(j− i)
qi

Qj−1
+ δj1qi (2)

where Θ(x) is the Heaviside function, δij is the Kronecker delta, and Qj = ∑
j
i=1 qi is the cumulative

distribution of weights (or prior probabilities, which determine how likely the process starts in state i)
q. Let p = (p1, · · · , pW) be the visiting distribution of states, i.e., pi is the relative frequency of state i
being visited by the driven process, then the equation pj = ∑W

i=1 p(j|i)pi holds and

pi = p1
qi
Qi

. (3)
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For the choice qi = 1/W (equidistributed prior probabilities), the transition probabilities read
p(i|j) = 1/(j− 1), and we immediately obtain

pi ∼
1
i

, (4)

i.e., Zipf’s law. Remarkably, also for almost any other choice of qi, the same result is obtained, meaning
that Zipf’s law in the probability of state visits is an attractor of slowly driven systems, regardless of
the details of the relaxing process. For details, see [4–6]. A physical example is given in [7], where
the kinetic energy of a projectile passing through a box filled with balls—with which it collides
elastically—reduces as an sample space reducing process. Zipf’s law is found in the occurrence
frequencies of projectiles with specific kinetic energies.

2.2. Driven Sample Space Reducing Processes with Arbitrary Driving

Driven sample space reducing processes on the states i = 1, · · · , W can be characterized as
a mixture of the relaxing process φ, and a (usually stochastic) driving process, φ∗. As before, let us
assume (without loss of generality) that the driving process φ∗ samples among all possible states i ∈ Ω
with probability qi. In contrast to the slow driving case, a driving event can now occur at any time,
not only after the system reaches its ground state, i = 1. Symbolically, the combination of driving and
relaxing processes reads φλ = λφ + (1− λ)φ∗, where λ is the probability that the process follows φ

(relaxes), and 1− λ is the probability for a driving event. In the ground state, i = 1, φ, and φ∗ behave
identically. In the general case, λ may depend on the state i, i.e., λ = (λ1, · · · , λW), and 1− λi becomes
a state-dependent driving rate. The transition probability from state j to state i is

pλ(i|j) = qi

(
Θ(j− i)λj

Qj−1
+ 1−Θ(j− 1)λj

)
. (5)

Note that the value of λ1 does not effect the transition probabilities of the process. Technically, we set
λ1 = 0. Using pi = ∑W

j=1 p(i|j)pj, one finds the exact asymptotic steady state solution:

pi
p1

=
qi
q1

i

∏
j=2

(
1 + λj

qj

Qj−1

)−1

. (6)

For the case where all λj = 0, we get pi = qi, as expected for processes that are dominated by the
driving process. For all λj = 1 (except for λ1), we recover the slow driving limit of Equation (3). For the
equidistributed prior probabilities, qi = 1/W, the following relation between the state-dependent
driving rate, 1− λ(x), and the (stationary) distribution function exists

λ(x) = −x
d

dx
log p(x). (7)

Here, x labels the states in a continuous way. For details, see [7].

3. The Maximum Configuration Entropy of Driven Processes

For stationary systems, the probabilities for state visits can be derived with the use of the
maximum entropy principle. We discuss the implications of driving a process for the underlying
MC entropy functional. Let ki count how often a particular state i = 1, 2, · · · , W has occurred in N
sampling steps (think of a sequence of N samples). k = (k1, · · · , kW) is the histogram of the process,
and pi = ki/N are the relative frequencies.

To find the maximally likely distribution (maximum configuration) of a process, one considers the
probability to observe the specific histogram, k, after N samples (steps), P(k|θ) = M(k)G(k|θ). Here
M(k) is the multiplicity of the process, i.e. the number of sequences x that have the histogram k. G(k|θ)



Entropy 2018, 20, 838 6 of 13

is the probability of sampling one particular sequence with histogram k, and theta parameterizes the
process. Taking logarithms on both sides of P(k|θ) = M(k)G(k|θ), we identify

1
R

log P(k|q)︸ ︷︷ ︸
−relative entropy

=
1
R

log M(k)︸ ︷︷ ︸
MC entropy SMC

+
1
R

log G(k|q)︸ ︷︷ ︸
−cross−entropy

. (8)

Here we scaled both sides by a factor, R(N), that represents the number of degrees of freedom in
the system. To arrive at relative frequencies, we use p = k/N. Given that N is sufficiently large,
p approaches the most likely distribution function.

3.1. Slowly Driven Processes

Driving a process slowly means to restart it with a rate that is lower (or of the same order) than the
typical relaxation time. In the above context of the sample space reducing process, it is restarted once
the process has reached its ground state at i = 1. The computation of the MC entropy, together with its
associated distribution functions, for slowly driven systems has been done in [1,2]. We include it here
for completeness. For simplicity, we present the following derivation in the framework of sequences.
They hold more generally for other processes and systems.

Let x = (x1, x2, · · · , xN) be a sequence that records the visits to the states i. λ = 1 means that the
process is slowly driven and restarts only in state i = 1. To compute the multiplicity, M, note that
we can decompose any sampled SSR sequence x = (x1, x2, · · · , xN) into a concatenation of shorter
sequences xr such that x = x1x2 · · · xR. Each xr starts directly after a driving event restarted the
process, and ends when the process halts at i = 1, where it awaits the next driving event. We call xr

one “run” of the SSR process. Since every run ends in the ground state i = 1, we can be sure that,
for the slowly driven process, we find R = k1: number of runs is equal to the number of times we
observe state 1. To determine M and the probability G, we represent the sequence x in a table, where
we arrange the runs xr in W columns and k1 rows, such that the entry in the rth row and ith column
contains the symbol “∗” if run r visited state i, and the symbol “−” otherwise.

r× i W W − 1 W − 2 · · · 2 1
1 − ∗ − · · · ∗ ∗
2 ∗ − ∗ · · · − ∗
3 ∗ ∗ − · · · − ∗
...

...
...

...
...

...
R− 2 − ∗ ∗ · · · − ∗
R− 1 − ∗ − · · · ∗ ∗

R − ∗ ∗ · · · − ∗
kW kW−1 kW−2 · · · k2 k1

(9)

Recognizing that each column i is k1 = R entries long and contains ki ≤ k1 items ∗, it follows that
without changing a histogram k we can rearrange the items ∗ in column i in (k1

ki
) = k1!/ki!/(k1 − ki)!

ways. M therefore is given by the product of binomial factors

M(k) =
W

∏
i=2

(
k1

ki

)
. (10)

In other words, M(k) counts all possible sequences x with histogram k. Using Stirling’s
approximation, the MC entropy, SMC(p) = 1

N log M(Np), is

SMC(p) = −
W

∑
i=2

[
pi log

(
pi
p1

)
+ (p1 − pi) log

(
1− pi

p1

)]
. (11)
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Note that for computing the MC entropy of the slowly driven process one only needs to know
that the process gets restarted at i = 1. At no point did we need to know the transition probabilities
from Equation (2).

This has an important implication: the entropy of the slowly driven process does not depend
on how a process relaxes exactly, it only matters that the process does relax somehow (replacing the
transition probabilities Equation (2) with other transition probabilities that respect the sample space
reducing structure of the processes and restarting at i = 1 only changes the expression for the sequence
probabilities, G) and is restarted in state 1.

Using Equation (2), the probability, G, for sampling a particular x can be computed in a similar
way. Each visit to any state above the ground state, i > 1, in the sequence x contributes to the
probability of the next visit to a state j < i with a factor Qi−1, independently from the state j that
will be sampled next (only if i = 1 do we not obtain such a renormalizing factor, since the process
restarts with all possible states i ∈ Ω as valid successor states of state 1, with prior probability qi.).
As a consequence, one obtains

G(k|q, N) =
W

∏
i=1

qki
i

W

∏
j=2

Q−ki
i−1. (12)

The cross-entropy Scross(p|q) = − 1
N log G(k|q, N) is given by

Scross(p|q) = −
W

∑
i=1

pi log qi +
W

∑
i=2

pi log Qi−1, (13)

and the maximum entropy functional of the slowly driven staircase process is given by ψ = SMC − Scross.
Note that −ψ(p|θ) plays the role of a divergence, generalizing the Kullback–Leibler divergence.

To obtain the maximum configuration k̂ or p̂ = k̂/N, we can solve the maximum entropy principle
by maximizing ψ with respect to p under the constraint ∑W

i=1 pi = 1. As a result, one obtains, pi = p1
qi
Qi

,
which is exactly the solution that we obtain in Equation (3).

Note that MC entropy is not of trace form and the driving process “entangles” the ground state
i = 1 with every other state. This entropy violates all but one Shannon–Khinchin axiom. For the
uniform distribution pi = 1/W, one obtains SMC(1/W, · · · , 1/W) = 0.

3.2. Arbitrarily Driven Processes

For exploring relaxing systems with arbitrary drivers, again, we have to compute the probability
of finding the histogram, P, by following the generic construction rule for the MC divergence, entropy,
and cross entropy (see [16]). We will see that, for arbitrarily driven processes, P factorizes again into
a well defined multiplicity, M, and a sequence probability, G, just as for slowly driven processes.

To find P, we analyze the properties of a sampled sequence x. First note that, by mixing φ and φ∗,
we now have to determine at each step, whether the process follows φ (relaxes) or φ∗ (is reloaded).
To model this stochastically, assume binary experiments, using, e.g., a coin ωn for every sample xn.
If the coin samples ωn = 0 with probability λxn , the process relaxes and follows φ. If the coin samples
ωn = 1 with probability 1− λxn , the process follows φ∗, and a driving event occurs. Let’s call any
instance, xn, a starting point of a run, if (i) n = 1, (ii) ωn = 0, or (iii) xn−1 = 1. We call an instance,
xn, an end point of the run, if (i) n = N, (ii) ωn = 1, or (iii) xn = 1. Except for n = 1 and n = N,
all starting points directly follow an endpoint, and we can decompose the sequence x into R runs, xr,
as before, such that x = x1x2 · · · xR. Each run, xr = (xr, · · · , xr), begins at a starting point xr, and ends
in an endpoint, xr. Note that 1 = 1, r + 1 = r + 1, and R = N. The average length of the sequences xr

is given by ¯̀ = N/R.
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3.2.1. MC Entropy of Arbitrarily Driven Processes

Let x∗ = (x1, x2, · · · , xR) be the subsequence of x containing all endpoints of runs xr.
k∗ = (k∗1, · · · , k∗W) is the histogram of x∗, with ∑i k∗i = R. We can now determine the number M(k, k∗)
of all sequences of runs x = (x1x2 · · · xR) with histograms k and k∗. Similar to the case of slow driving,
this can be done by arranging runs in a table of R rows and W columns

r× i W W − 1 W − 2 · · · 2 1
1 ∗ − − · · · • − l(x1)

2 − ∗ ∗ · · · • − l(x2)

3 ∗ − • · · · − − l(x3)
...

...
...

...
R− 2 − ∗ ∗ · · · − • l(xR−2)

R− 1 − − − · · · • − l(xR−1)

R − − ∗ · · · ∗ • l(xR)

kW kW−1 kW−2 · · · k2 k1

. (14)

We mark endpoints with the symbol “•” (one per row), other sequence elements with “∗”, and
the rest with “−”. Having fixed k∗, we can distribute the elements of x∗ in (R

k∗) = R!/ ∏i k∗i ! different
ways over R rows. Given this fact, we can reorder the rows of the table in increasing order of their
endpoints xr (compare with Figure 2). Obviously k1 = k∗1, since all visits to the ground state are
endpoints. We note further that for a state i > 1, we can redistribute kj − k∗j items ∗ over ∑

j−1
s=1 k∗s

available positions. We can now simply read off the multiplicity from the ordered table

M(k∗, k) =
(

R
k∗

) W

∏
j=2

(
∑

j−1
s=1 k∗s

kj − k∗j

)
(15)

where the product over the states j are contributions of binomial factors counting the number of ways
ki − k∗i states can be distributed over ∑

j−1
s=1 k∗s possible positions.

Figure 2. Demonstration of how the ordering of subsequences of a sequence x (in increasing order of
their endpoints) leads to a diagram that allows us to identify the combinatorial factors that determine
the multiplicity, M, of sequences with particular histograms k and k∗.

The multiplicity, M, does not explicitly depend on how exactly the system is driven. M contains
no traces of the driving rates 1− λi, nor any dependencies on transition probabilities, meaning no
dependencies on prior weights, qi. This independence, however, is paid for with the dependence of
M on a second histogram, k∗. M depends only on the combinatorial relations of the relaxing (sample
space reducing) process with the driving process. M describes the multiplicity, i.e., the a priori chances
of jointly observing k and k∗ together. Note that k∗i is the empirically observed number of driving
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events observed in state i, ki is the empirical number of visits of the process to state i, while 1− λi is
the probability of a driving event to occur when the system is in state i.

The “joint” MC entropy of the arbitrarily driven process, φλ, is the logarithm of M times a scaling
factor. If we want an entropy per driving event, the factor is 1/R = ¯̀/N, and we obtain

SMC(p∗, p, ¯̀) = 1
R log M(k∗, k) = H(p∗) + ∑W

j=2

(
∑

j−1
s=1 p∗s

)
H2

( ¯̀ pj−p∗j

∑
j−1
z=1 p∗z

)
, (16)

which depends on the average length of the runs, ¯̀ = N/R. The parameter ¯̀ corresponds to the
average free relaxation time of the process. Note that we can define the average driving rate by 1− λ̄ = 1/¯̀,
which is nothing but the ratio R/N, i.e., the average number of driving events per process step.
The MC entropy also depends on p∗ = k∗/R and p = k/N, the distributions of driving events and
state visits, respectively. H2(x) = −x log(x)− (1− x) log(1− x) is the Shannon entropy of a binary
process. From the fact that, by definition, k1 = k∗1, we obtain the constraint

p∗1 = ¯̀ p1. (17)

3.2.2. Cross-Entropy and Divergence of Arbitrarily Driven Processes

Similarly, we can collect the contributions to the sequence probability, G. Every time the sequence
x follows the relaxing (or sample space reducing) process, we obtain a factor λiqi/Qi−1, for some
i = xn, and a factor (1−λi)qi if the sequence reaches an endpoint, i = xn, of a run xr. As a consequence,
the probability of observing a sequence x with histograms k and k∗ is given by

G(k∗, k|q, λ) = qk∗1
1

W

∏
i=2

(
λiqi
Qi−1

)ki−k∗i W

∏
j=2

((
1− λj

)
qj
)k∗j

(
λj

Qj−1

)kj−k∗j
. (18)

Note that N ≥ R ≥ max(k1 · · · , kW). The joint probability of observing k∗ and k together becomes

Pλ(k∗, k|q, λ) = M(k∗, k)G(k∗, k|q, λ). (19)

This shows that the mixing of relaxing and driving processes, φ and φ∗, leads to a joint probability
that depends on k and k∗. Noting that we can define λ1 = 0, the cross entropy construction yields

Scross(p∗, p, ¯̀|q, λ) = − 1
R log G(k∗, k|q, λ)

= −∑W
j=1 p∗j

(
log(1− λj) + log qj

)
−∑W

j=2

(
¯̀ pj − p∗j

)
log
(

λjqj
Qj−1

) . (20)

The MC functional, ψ = 1
R log P, is ψ(p∗, p, ¯̀|q, λ) = SMC(p∗, p, ¯̀)− Scross(p∗, p, ¯̀|q, λ). −ψ can

be interpreted as the information divergence or relative entropy of the process. Maximizing ψ with respect
to p, p∗, and ¯̀, under the constraints ∑i p∗i = 1, ∑i pi = 1, and p∗1 = ¯̀ p1 (compare with Equation (17)),
yields the maximum configuration ( p̂, p̂∗, ˆ̀). The maximization of the MC functional,

ψ− α

(
∑

i
pi − 1

)
− α∗

(
∑

i
p∗i − 1

)
− γ

( ¯̀ p1 − p∗1
)

, (21)

with respect to p, p∗, and ¯̀, is the maximum entropy principle of a driven processes. α, α∗, and γ are
Lagrangian multipliers.
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By noting that derivatives of the MC functional Equation (21) behave differently with respect
to p1 and p∗1 , when compared with how they behave with respect to pi and p∗i (i > 1), one finds that
α = γ = 0, and, using the short hand for µi = λiqi/Qi−1, one obtains the formulas

pi = 1
¯̀

[
p∗i +

(
∑i−1

s=1 p∗s
)

µi
1+µi

]
p∗1 = 1

Z∗ ∏W
s=2

µs
1+µs

p∗i = (1−λi)qi
1+µi

p∗1
q1

∏i−1
s=2

1
1+µs

i > 1

. (22)

These allow us to compute the solution for pi recursively. The result is exactly the prediction
from the eigenvector equation in Equation (6). This fact shows that, indeed, the maximum entropy
principle yields the expected distributions. However, we learn much more here, since by construction,
exp(−ψ(p, p∗, ¯̀)), is the probability measure of the process. This allows us to study fluctuations of p
and p∗ within a common framework. This framework opens the possibility of extending fluctuation
theorems—which are of interest in statistical physics (see, e.g., [17])—to systems explicitly driven away
from equilibrium. We can immediately predict parameters of driven processes, such as the “average
free relaxation time” of the process, ¯̀ = p∗1/p1.

4. Legendre Structure and Thermodynamic Interpretation

In the standard equilibrium MC principle, one maximizes the functional H(p) − α′ ∑i pi −
β′ ∑i piεi, with respect to p, α′, and β′. α′ and β′ are Lagrange multipliers for the normalization
constraint, ∑i pi = 1, and (e.g., in a physics context) the “energy” constraint, ∑i piεi = U, where U
represents the “internal energy.” εi are “energy” states and at the extremal value, β′ = β̂ is the inverse
temperature. One can also see β′ = β̂ = β as a parameter β of the extremal principle, and think of U as
a function of βε.

The classic MC principle can be obtained from maximizing the functional
ψ(p|q) = 1

N log Pmultinomial(Np|q) (in the large N limit), under the constraint, ∑i pi = 1.
Asymptotically, one obtains ψ = H(p)− H(p|q) where H(p|q) = −∑i pi log qi is the equilibrium
cross-entropy. Using the parametrization qi(βε) = exp(−α − βεi) for the prior probabilities
in the variables βεi, one obtains ψ = H(p) − α ∑i pi − β ∑i piεi. Maximizing ψ − α′′ ∑i pi with
Lagrange multiplier α′′ allows us to absorb the term α ∑i pi into the normalization constraint
by identifying α′ = α + α′′. Since the distribution q is normalized, α = α(βε) is a function
of βε, and one obtains the MC solution, p̂ = q(βε) = 1

Z exp(−βεi). Here Z = exp(α) is the
normalization constant. Defining H̃(βε) = H( p̂), we obtain in the maximum configuration
that ψ̂(βε) = H̃ − α − βU, with U = ∑i p̂iεi. Moreover, ψ̂ can be interpreted as the Legendre
transformation of H(p) − α ∑i pi, where the term −∑i piβεi transforms the variables pi into the
adjoined variables, βεi. Since Pmultinomial(Np̂|q) asymptotically approaches 1, we obtain ψ̂ = 0
and therefore U − H̃/β = −α/β, where F = −α/β is the Helmholtz free energy. Since H̃(βε)

represents thermodynamic entropy in equilibrium thermodynamics, one might ask whether a similar
transformation exists for driven systems.

Let us parametrize the weights qi and λi as

qi = exp(−α− βεi)

1− λi = exp(−β∗ε∗i )
. (23)

Note that 1−λi need not sum to 1, so exp(−β∗ε∗i ) does not need a normalization factor. Moreover,
from λ1 = 0, it follows that ε∗1 = 0. Inserting these definitions in the cross-entropy in Equation (20),
we obtain

Scross(p∗, p, ¯̀|q, λ) = SD + ¯̀α
W

∑
i=1

pi + β∗
W

∑
i=1

p∗i ε∗i +
¯̀β

W

∑
i=1

piεi, (24)
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with—what we call—the driving entropy

SD = −
W

∑
j=2

(
¯̀ pj − p∗j

)
∆sj. (25)

Here ∆sj = log λj − log Qj−1, which, in the given parametrization, is a function of β∗ε∗

and ¯̀βε. In the maximum configuration, the terms ¯̀β ∑i piεi and β∗ ∑i p∗i ε∗i again are the
Legendre transformation from variables p and p∗ to the adjoined variables, ˆ̀βε and β∗ε∗.
ˆ̀ is the MC of ¯̀ and ψ = SMC − Scross. By defining now the “thermodynamic entropy,”
S̃MC( ˆ̀βε, β∗ε∗) = ŜMC/ˆ̀, where ŜMC = SMC( p̂, p̂∗, ˆ̀), and, analogously, the “thermodynamic driving
entropy,” S̃D( ˆ̀βε, β∗ε∗) = ŜD/ˆ̀, one obtains ψ̂( ˆ̀βε, β∗ε∗)/ˆ̀ = S̃MC − S̃D − α − β∗U∗/ˆ̀ − βU.
Here U∗ = ∑W

i=1 p̂∗i ε∗i , and U = ∑W
i=1 p̂iε

∗
i is the “internal energy.” Since asymptotically (for large

N) we have ψ̂ = 0 again, it follows that

U − S̃MC/β = −α/β− β∗U∗/β− S̃D/β. (26)

In contrast to the maximum entropy principle for i.i.d. processes, where the inverse temperature
and the normalization term of the distribution function are one-to-one related to the Lagrangian
multipliers, this is no longer true for driven systems. The parameters α, β, and β∗ are entangled
in SD! However, this fact does not—as one might expect—destroy the overall Legendre structure
of the statistical theory of driven processes. It has, however, a important consequence: we can no
longer expect notions such as the Helmholtz free energy (which has a clear interpretation for reversible
processes) to have the same meaning for driven systems. It is, however, exactly this kind of question
that the theory that we outlined in this paper may help us tackle. For example, in a driven system,
we have to decide whether we call U − S̃MC/β the Helmholtz free energy, F, or if it is −α/β. If we
identify F = −α/β and define the “driven Helmholtz free energy” as, FD = U − S̃MC/β, then we
obtain FD = F− β∗U∗/β− S̃D/β. This means that, for driven systems, it remains possible to switch
between thermodynamic potentials using Legendre transformations, e.g., by switching from U to FD.
Most importantly, the landscape of thermodynamic potentials is now enriched with two additional
terms, WD = β∗U∗/β and QD = S̃D/β, which incorporate the driving process and its interactions
with the system,

U − S̃MC/β = F−WD −QD. (27)

It is tempting to interpret WD and QD as irreversible work and dissipated heat, respectively.
However, a clear interpretation of those terms can only be achieved within the concrete context of
a given application.

5. Conclusions

We have shown that it is possible to derive a consistent maximum configuration framework for
driven dissipative systems that are a combination of a state-dependent driving process and a relaxation
process that can always can be modeled as an SSR process. The considered processes must exhibit
stationary distributions. The presented framework is a statistical theory that not only allows us to
compute visiting distribution functions p from an appropriate entropy functional but also allows
us to predict properties, such as its state-dependent driving rates, p∗, or the average relaxation
times, ¯̀. We find that the visiting distributions are in exact agreement with alternatively computable
analytical solutions.

Remarkably, the maximum configuration entropy functional that emerges within the context of
driven processes decouples completely from the detailed constraints posed by the interactions with
the driving system. In this sense, it represents a property that is universally shared by processes within
the considered class of driven processes. As a consequence, the maximum configuration mantra:
maximize entropy + constraint terms to predict the maximum configuration, remains valid also for
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driven systems. One only needs to keep in mind that the “reasonable” constraint terms that specify
the interactions of the system with the driving process may have a more complicated structure than
we are used to from i.i.d. processes. The presented theory further allows us to compute a large
number of expectation values that correspond to physically observable macro variables of the system.
This includes the possibility of studying fluctuations of the system and the driving process together in
the same framework.

The structure of the maximum configuration entropy and the corresponding maximum entropy
principle is interesting by itself. By introducing the relative frequencies p∗ of the driving process and
the average free relaxation time, ¯̀, as independent quantities, the entropy decouples from the actual
driving process and from how the system is linked to it. At the same time, this is only possible when
the distributions p∗ and p become functionally entangled. ¯̀ effectively quantifies the strength of this
entanglement. For slowly driven systems, it is the ground state that is entangled with all other states.
For fast driving, all states become “hierarchically” entangled. Remarkably, however complicated
this entanglement may be, we still can compute all of the involved distribution functions. As for
i.i.d. processes, the maximum configuration asymptotically (for large systems) dominates the system
behavior. Therefore, the maximum configuration entropy, at its maximum configuration (determined
by the macro state of the driven system), can be given a thermodynamic meaning.

Finally, we discussed the thermodynamic structure of the presented statistical theory. The type
of processes we can consistently describe with the presented framework include (kinetic) energy
dissipations in elastic collision processes (see [7]). It is therefore not only conceivable, but in fact highly
probable, that for a wide class of driven processes, a consistent thermodynamics can be derived from
the statistical theory. Despite the more complicated relations between distribution functions and system
parameters, the Legendre structure of equilibrium thermodynamics survives in the statistical theory of
the driven processes presented here. The landscape of macro variables (U, U∗, β, β∗, . . . ) and potentials
(F, FD, QD, . . . ) becomes richer, and now includes terms that describe the driving process and how it
couples to the relaxing system. Most importantly, however, the underlying statistical theory allows us
to analyze all the differential relations between macro variables and potentials that we might consider.
These may depend on the parametrization of q and λ. The presented work makes it conceivable that
statistical theories can be constructed for situations, where multiple, not just two, driving and relaxing
processes are interacting with one another. This results in more complicated functional expressions for
MC entropy, cross-entropy, additional macro state variables, and thermodynamic potentials but does
not introduce fundamental or conceptual problems.
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