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Network topology near criticality in adaptive epidemics
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We study structural changes of adaptive networks in the coevolutionary susceptible-infected-susceptible (SIS)
network model along its phase transition. We clarify to what extent these changes can be used as early-warning
signs for the transition at the critical infection rate λc at which the network collapses and the system disintegrates.
We analyze the interplay between topology and node-state dynamics near criticality. Several network measures
exhibit clear maxima or minima close to the critical threshold and could potentially serve as early-warning signs.
These measures include the SI link density, triplet densities, clustering, assortativity, and the eigenvalue gap. For
the SI link density and triplet densities the maximum is found to originate from the coexistence of two power
laws. Other network quantities, such as the degree, the branching ratio, or the harmonic mean distance, show
scaling with a singularity at λ = 0 (not at λc), which means that they are incapable of detecting the transition.
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I. INTRODUCTION

In recent years there has been an increasing focus on adap-
tive (or coevolving) networks [1–3]. The essence of adaptive
networks is that node-state dynamics influences the network
topology—and topology influences the node dynamics. Sev-
eral adaptive network models have been phrased in the context
of epidemics [4,5], game theory [6–8], sociodynamics [9],
self-organized criticality [10,11], financial markets [12], and
evolution [13], just to name a few. These models are un-
derstood, either by simulations or by appropriate approx-
imations, such as mean-field approximations and moment
closure [9,14–16].

Adaptive networks show bifurcations or phase transitions,
which means that they exist in at least two phases: In one
phase the network is well connected, and in the other it has
a drastically reduced density of links of a certain type [1,17]
or in general [9,13] (“collapsed” phase). The corresponding
critical parameters separate the phases and can be computed
explicitly for several models. It is known that for bifurcation-
induced critical transitions, in the vicinity of these critical
parameters (tipping points), so-called early-warning signs
(precursor signals) exist that are linked to the phenomenon
of critical slowing down, see, e.g., Ref. [18]. For stochastic
systems, slowing down can often be quantified by the autocor-
relation and variance of the process. In the context of adaptive
networks critical slowing down is observed in terms of node
properties [19,20].

A classic model for adaptive networks is the coevolving
SIS model, where the term coevolving means that links
and states—S (susceptible) and I (infected)—do not evolve
independently. In the static SIS network model, where the
network topology does not change over time, nodes are in
the S or I state. Each infected node recovers from infection

at a rate r . An infected node can transmit the disease to
connected susceptible nodes at a rate λ. In Ref. [4] rewiring
was introduced, where susceptible nodes may rewire a link
from an infected node to a susceptible node at a rate w. This
adaptive SIS model shows a different phase diagram: Besides
the disease-free phase (all nodes in state S) and the endemic
phase (a nonzero fraction of I nodes persists), which also exist
in the classical model [21], it includes a bistable phase and
an oscillatory phase [4,5,22]. In the following, we focus on
the phase transition from the endemic or bistable phase to the
disease-free state. The transition happens at a critical infection
rate, the so-called the persistence threshold, λc.

The investigation of early-warning signs for this transition
has three potential benefits. First, it can inform decision
making for appropriate measures to control the disease: One
can assess whether little effort is sufficient, say, in terms of
hygiene and medical treatment, or whether major structural
efforts are required, such as quarantines. For example, an
early warning signal could tell decision makers how far an
ongoing endemic is from the critical point where it cannot
sustain itself. This information could be used to estimate the
additional vaccination efforts necessary, to drive the effective
infection rate below the critical persistance threshold, or to
end the endemic. The larger the distance of the system to the
critical infection rate, the stronger the measures need to be.
Second, if the contagion process is not a malicious disease,
but information or some benign contagion, then early-warning
signs can help us to increase efforts to sustain its spreading.
Last, some of the lessons learned from this study of precursors
might be general, so that they can be applied to adaptive
networks in general and thus can be transferred to other
contexts.

The adaptive SIS model can be described with “macro-
scopic equations”, where the stochastic node and link update
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dynamics is reduced to a system of ordinary differential
equations that governs the fraction of infected nodes and
the densities of the various link types in the population.
The equations are derived in the so-called homogeneous pair
approximation (PA). It is possible to estimate the critical
infection rate at the persistence threshold. We denote the
fraction of infected nodes by ρ = [I]/N , where N is the
number of nodes. The per-node density of SS links, SI links,
and II links are denoted by ρSS = [SS]/N , ρSI = [SI]/N , and
ρII = [II]/N , respectively. We also consider the densities of
the motifs, ρSSI = [SSI]/N and ρISI = [ISI]/N , which denote
the respective triplet density per node. These densities are
random variables, however, we denote their expectation values
with the same variables. The evolution equations for the
expectation values (up to second order) are given by [4]

dρ

dt
= λρSI − rρ, (1a)

dρII

dt
= λρSI + λρISI − 2rρII, (1b)

dρSS

dt
= (r + w)ρSI − λρSSI. (1c)

Let 〈k〉 denote the average degree and note that since the
total link density,

ρSS + ρSI + ρII = 〈k〉
2

, (2)

is conserved in the rewiring process, the seemingly missing
ρSI equation can be eliminated. Equations (1b) and (1c) are
not closed because they depend on triplet densities. To close
them, one can use, e.g., the homogeneous pair approximation1

that neglects correlations between links,

ρSSI ≈ 2
ρSIρSS

1 − ρ
, ρISI ≈ ρSIρSI

1 − ρ
. (3)

One can now solve for the stationary solution of the PA. The
disease-free state is always a steady state but loses stability
at the so-called invasion threshold, for which the PA yields
λinvasion = (r + w)/〈k〉. In the PA the endemic state starts to
be stable at the persistence threshold,

λc = 2r

μ2

(√
1 + wμ2

r
− 1

)
, (4)

where we define μ := 〈k〉 − 1 as the approximate aver-
age excess degree. For r � wμ2, we have λc ≈ 2

√
wr/μ.

Figure 1(a) shows two time series of the prevalence ρ in a
simulation of the adaptive SIS model in the bistable regime.
For the specific initial conditions shown, the dynamics ei-
ther enters the stationary endemic state or the disease-free
state. The smaller the initial disease prevalence, the higher
the probability of ending up in the disease-free state. If the
system is in the endemic state, then it explores its phase space
stochastically. In Fig. 1(b) we show the average prevalence as
a function of the infection rate λ. It asymptotically approaches

1The quality of this approximation can be checked in simulations,
see Appendix A.

FIG. 1. (a) Disease prevalence in the adaptive SIS model. Two
time series are shown with an initial prevalence of 60% (red) and
50% (blue). The network is initialized as an Erdös Rényi graph of
size N = 400 with an average degree of 〈k〉 = 20 and the remaining
parameters are r = 0.002, λ = 0.001, and w = 0.01. The dashed line
indicates the stationary value in the endemic state. (b) Stationary
endemic prevalence as a function of infection rates (red) and its
standard deviation (blue) are shown for the same parameters. The
numerical (green dotted) and pair approximation (black dashed)
values of the persistence threshold are also indicated. Their values
for these parameters are λc = 4.2 × 10−4(±0.2 × 10−4) and λPA

c =
4.6 × 10−4 [cf. Equation (4)], respectively.

1 for large λ. Close to λc, the prevalence decreases sharply
and eventually the endemic state ceases to exist. The standard
deviation of ρ increases as the infection rate approaches λc

from above [20]. This reflects that around the critical point,
fluctuations become larger—the chance of an extinction event
increases. Setting the right-hand side of (1) to zero and solving
for ρ yields the equilibrium curve for the prevalence in the PA
and shows the leading order ρ ∝ (λ − λc )

1
2 behavior,

ρ = 1 − λμ

2(w − λ)
+

√
λ2μ2 − 4r (w − λ)

2(w − λ)
. (5)

Note that the singularity at λ = w is removable by assigning
ρ(λ = w) = 1 − μ/w − 2r/(wμ) + μ.

At this level the adaptive SIS network model is well under-
stood. In this paper we ask how critical transitions in adaptive
network dynamics are reflected in the network topology of
the underlying network(s). The practical motivation behind
this question is whether it is possible to use the monitoring
of the networks to infer the closeness to the critical point
of adaptive systems. We are interested to what extent early-
warning signals can be derived from eventual rearrangements
of network structures close to the critical transition λc. In
particular we ask, whether the networks’ structural changes
follow certain scaling laws and if those can be used for
predicting the upcoming transition. We take a first step in this
direction by studying the adaptive network model proposed in
Ref. [4]. Our main results are as follows:

(R1) For several network-related quantities, SI link densi-
ties, triplet densities, clustering, assortativity, and the eigen-
value gap, there exists a specific crossover of two scaling laws
near criticality. As a consequence, these quantities show local
extrema close to the persistence threshold. This effect can
be explained within the PA framework. These extrema might
indeed serve as potential candidates for network-based early-
warning signs. The eigenvalue gap might be an especially
practical measure.
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FIG. 2. (a) Critical curves of link densities are shown for numerical simulations (dashed) and in the PA (dotted). SI links (red), SS links
(blue), and II links (black). r = 0.002, w = 0.01, 〈k〉 = 20, and N = 400. The inset shows the position of the peak more clearly. (b) Exponents
of the tails are fitted to ∼ λβ for SI links (red), and SS links (blue) as a function of rewiring rates w and system sizes. (c) Location and (d) size
of the maxima in the SI link density as a function of w and system sizes, and for reference, also their values in the PA.

(R2) Some network-related quantities, such as the degree,
the effective branching ratio, and the harmonic mean distance,
behave as if there existed a critical point that has a singularity
located at the origin λnetwork

c ∼ 0. Their critical curves end
abruptly at the threshold λc, so that their role as early-warning
signs is limited.

(R3) Fluctuations and correlations increase for topological
measures near λc, which might be an additional signal, when
approaching the tipping point.

In summary, we show that topological changes in adaptive
networks close to the critical point carry potential information
to improve predictability of critical transitions through early-
warning signs.

II. THE CRITICAL NETWORK

We present the results of a numerical study of network
properties near the persistence threshold. We employ the
Gillespie algorithm for the simulation, which samples the
stochastic process in an unbiased way [23]. For infection rates
close to the threshold, we use the quasistationary method,
which was used in Ref. [24], and applied to epidemic networks
[25,26]. In this paper we focus on link densities of various
link types, triplet densities, the effective branching ratio, the
clustering coefficient, degree distribution, degree assortativity,
compactness, and, finally, spectral properties of the adjacency
matrix.

A. Link densities

The densities of SS, SI, and II links reveal a detailed picture
of the mechanisms that are at work near the critical persistence
threshold. In Fig. 2(a) we show the average per-node densities
for SS, SI, and II links in the endemic stationary state for a
range of infection rates near the persistence threshold. SS and
SI link densities approach 0 asymptotically for large infection
rates because rewiring cannot keep up with the infections.
Hence II links dominate that regime.

Close to the persistence threshold the density of SS links (II
links) increases (decrease). For the SI links, however, there is a
distinctive maximum that deserves attention. One can express
this observation in terms of the derivatives with respect to
the infection rate. Using Eq. (2), we have ρ ′

SI = −ρ ′
SS − ρ ′

II,
where ρ ′

AB denotes the rate of change of the AB link density.

Thus for infection rates near the threshold the SS link density
must decrease faster than II links increase; for slightly higher
infection rates the roles interchange. So we conclude that SS
and II links scale differently near the threshold, as can be seen
in Fig. 2(b). The tail of ρSS scales roughly as λ−2, and the tails
of ρSI and, by link conservation, ρII scale as λ−1. The expo-
nent for ρSI is systematically slightly overestimated, because
the square-root behavior interferes slightly. This behavior is
robust with respect to system size.

Using the PA in Eq. (1) we get the following estimate:

ρSI = rμ

2(w − λ)

[√
1 − 4r (w − λ)

λ2μ2
− 1

]
+ r

λ
. (6)

Note that the singularity at λ = w is again removable. The
functional form close to the critical point is given by

ρSI = r

λc

+
(λc − 2)rμ

√
λc

2 + r
μ2

2λc(w − λc )

√
�λ + O(�λ), (7)

where �λ = λ − λc. Obviously, the density of SI links fol-
lows a square-root behavior near the critical point with a
positive slope, as expected from the universal behavior of
the fold bifurcation [27] that is present at this point [4]. For
larger infection rates, λ 
 λc the PA predicts a decay that
is dominated by λ−1. Therefore a maximum must occur in
between. There are two (critical) exponents of the SI link
densities. In the vicinity to the threshold we expect a square-
root behavior ρSI ∼ �λ

1
2 , and for larger λ we get a power law

decay with an exponent ρSI ∼ (λ − 0)−1. Effectively, we can
write the result obtained in Eq. (6) in the functional form,

f (λ) = αλ− 3
2 (�λ)

1
2 + βλ−1 + f0. (8)

The equation has three regimes. For �λ much smaller than λc,
f (λ) ≈ γ (�λ)1/2 + δ, with γ = αλ

−3/2
c and δ = β/λc + f0.

When we identify ρSI with f we can solve for α, β, and
f0 using Eq. (7). For λ 
 λc it behaves as f (λ) ≈ ζλ−1 −
ξλ−2 + f0 with ζ = α + β and ξ = αλc/2, which can be
checked by a Taylor expansion of Eq. (8). When we identify
ρSI with f , we obtain ζ = r and ξ = r2/μ, again with an
expansion of Eq. (6) for large λ. One can then solve for α

and β. The intermediate regime contains the maximum. In
Figs. 2(c) and 2(d) we investigate the location and height of
the maximum of ρSI with respect to the rewiring rate w. Both
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FIG. 3. (a) Density of SSI triplets. The inset shows the critical
exponents of the tail for a range of rewiring rates and system sizes.
It is about −2. (b) ISI triplet density. The inset shows a critical
exponent of −1 irrespective of w and N . Parameters as before.

the distance of the maximum from the threshold and its size
seem to follow a power laws w−1/2 and w−3/2, respectively.
This behavior is also seen in the PA which is shown for
comparison. Since the PA becomes less accurate towards the
threshold, it is not surprising that the PA estimates differ in
absolute terms but not qualitatively (slope). The behavior is
again robust with respect to system size.

B. Triplet densities

We now focus on triplets where the central node is sus-
ceptible. In particular, we study the SSI and ISI motifs that
are crucial in the PA in Eq. (3). Figure 3 shows the per-node
densities for the SSI and ISI triplets. As for the SI links, one
can distinguish three regimes: the asymptotic regime of large
infection rates, the critical regime of infection rates very close
to λc, and a midrange regime, containing a maximum. The
maximum of the ISI triplets is further away from the threshold
than in the SI link case. This can be understood in the PA,
Eq. (3). The density of ISI triplets is approximately the square
of the SI link densities divided by the fraction of susceptible
nodes. The square of a function will not change the position
of its maximum; however, division will. Consider(

ρ2
SI

ρS

)′
=

(
ρ2

SI

)′

ρS
−

(
ρSI

ρS

)2

(ρS)′.

This expression is positive for the infection rate, where ρSI be-
comes maximal since the first term vanishes and the second is
positive (because of the decrement of the susceptible density).
Therefore the maximum of ρISI has not yet been attained at
this rate. A similar analysis can be done for the SSI triplet.

C. Effective branching ratio

The effective branching ratio is defined as

κ = [SSI]

[SI]
= ρSSI

ρSI
(9)

and quantifies the number of potential secondary infections
for a given primary infection. Figure 4(a) shows κ in log-log
scale. The effective branching ratio does not have a maximum
but follows a power law with an exponent α ≈ −1. The power
law is clearly of the form, κ ∝ (λ − λebr

c )−α , where λebr
c ≈ 0.

The critical transition at λc is not detected by the effective
branching ratio.

FIG. 4. (a) Effective branching ratio κ = SSI/SI (red). The inset
is a log-log plot with a fitted slope, βκ = −1.01. Parameters as
before. (b) Exponent βκ for a range of rewiring rates and system
sizes. The inset shows the fitted threshold λebr

c .

We measure the exponent βκ for various rewiring rates w

and system sizes N in Fig. 4(b). For finite system sizes, we
find that βκ decreases roughly linearly with the rewiring rate.
With larger system size this dependence becomes weaker.
Hence, we infer that the density of SSI triplets [Fig. 3(a)] is
just the product of the SI link density and a power law with
exponent −1. For secondary infections we conclude that the
risk is highest just at the threshold, even though the risk of
an initial infection—indicated by the SI link density—is not
maximal at the critical point.

D. Clustering coefficient

The clustering coefficient C measures the number of closed
triangles with respect to the total number of triangles in the
entire network. It is given in terms of the adjacency matrix A

of the network by

C = TrA3∑
ij (A2)ij − Tr(A2)

. (10)

Figure 5(a) shows the clustering coefficient near λc. The
qualitative behavior is again similar to the SI link density or
the SSI and ISI triplet densities. Since there are almost no

FIG. 5. (a) Clustering coefficient (red), its standard deviation
around the equilibrium state (blue), and the clustering coefficient
of the Erdös Rényi graph (dotted) for N = 400, 〈k〉 = 20, r =
0.002, and w = 0.01. (b) Distance and relative size (inset) of the
local maximum for various w and N . The infection rate at which
the critical curve becomes maximal is λmax. Since the clustering
coefficient vanishes as N → ∞ at constant link density, we rescale
by CER = 〈k〉/N . Parameters are otherwise the same.
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susceptible nodes in the regime of large infection rates, the
stationary network behaves like an Erdös Rényi graph, whose
clustering coefficient is given by CER = 〈k〉/N , where 〈k〉 =
1/N

∑
i ki = 2L/N and L is the total number of links. CER is

the limiting value for large infection rates (dotted horizontal
line). Rewiring creates and destroys triangles. The clustering
coefficient depends on the average net effect. The appearance
of the maximum can be explained by this net effect in the
three regimes. For high infection rates, a rewiring event has
a much higher chance of closing an open triangle rather than
destroying one, due to the high connectivity of the susceptible
graph. However, the number of rewireable links is very low,
which results in an asymptotically vanishing net effect. For
infection rates very close to λc, there are many more suscep-
tible nodes, which are only slightly more connected than the
infected nodes. So the chance for creating a closed triangle
is only a little bit larger than the chance to destroy one. The
average net effect is nevertheless present. The largest effect
occurs when the connectivity of the susceptibles is high and
their abundance not too low.

Fitting a power law to the tail of C is sensitive to the
interval choice and whether the ER limiting value is enforced
or not. Parameter values of the fitted exponent vary depending
on these choices. Since the clustering coefficient is a nonlinear
function of graph motifs, it is likely that multiple power
laws of the respective motifs interfere, which leads to the
aforementioned sensitivity.

We denote by λmax the infection rate at which the critical
curve becomes maximal. In Fig. 5(b) we show the distance of
λmax from the threshold λc as well as the size of the maximum
�C = C(λmax) − C(λc ) as a function of the rewiring rate.
The size of the maximum does not decline as a function
of w but levels out. However, �C ∝ N−1 decreases with
N in the same way as the Erdös-Rényi value CER = 〈k〉/N ,
which can be seen from the inset of Fig. 5(b). This N−1 de-
pendence is not surprising, because the clustering coefficient
itself vanishes at constant link density as N → ∞, unless
there are strong preferences for local rewiring. The distance
λmax − λc becomes slightly larger for larger N . This is due to
the dependence of the maximum location on the abundance
of the susceptible nodes: The susceptible contribution to the
clustering coefficient decreases with the absolute abundance
of susceptible nodes, again due to the size dependence. Thus,
for higher N , it requires higher infection rates to reduce this
number of the susceptible nodes to a level comparable to the
case of lower N . This effect is enhanced the more rewiring
events occur, i.e., the higher w becomes. In summary, the
maximum of the clustering coefficient is a possible robust
warning sign for the upcoming persistence threshold.

E. Degree distribution

The degree distribution pk is the fraction of nodes in
the network with degree k. The average degree is 〈k〉 =
1/N

∑
i ki = 2L/N . Note that 〈k〉 is constant due to the

conservation of links during rewiring. The nth raw moment
is given by

〈kn〉 = 1

N

∑
i

kn
i = ρ〈kn〉I + ρS〈kn〉S, (11)

FIG. 6. (a) Degree distribution of the entire graph (red), the sus-
ceptible nodes (blue), and the infected nodes (black) for N = 1000,
〈k〉 = 20, r = 0.002, λ = 0.001, and w = 0.02. The distributions are
close to Poisson distributions as one would expect from ER networks.
(b) Standard deviation of the stationary degree distribution. The inset
shows a power-law fit. The exponent is roughly βσ ≈ −0.46 and
λσ

c ≈ 0.00022 for N = 400, 〈k〉 = 20, r = 0.002, w = 0.01.

where 〈kn〉I(S) are the raw moments of the degree distribution
of infected (susceptible) nodes. The degree distribution in the
endemic state has been studied for instance in Refs. [4,28,29].
The degrees of the infected and the susceptible nodes both fol-
low distributions that are close to Poisson [28] (an indication
for ER random graphs), however, with different mean values.
The behavior in the vicinity of the phase transition at λc has
not been studied before.

Figure 6(a) shows the stationary degree distribution for a
set of parameters close to the transition. The overall distri-
bution is a superposition of the susceptible and the infected
contribution. The respective Poisson-like distributions are
seen. In Fig. 6(b) we show the critical curve of the standard
deviation σ at equilibrium. We observe a rise of the standard
deviation close to the critical point and the absence of a local
maximum. In Ref. [28] it was shown that Var > VarER = 〈k〉
if and only if w > λ. In Fig. 6(b) the equilibrium standard
deviation can be seen to be bounded from below for w > λ

by σER = √
VarER, which is indicated by the dotted horizontal

line.
The inset in Fig. 6(b) shows a power-law fit. The curve is

well described by a power law close to the transition; however,
its critical point is not at the transition. Like for the effective
branching ratio (Fig. 4) the true critical point is not sensed
by σ . The fitted critical points λσ

c for various parameters and
choices of intervals all share the feature that they are far away
from λc and close or equal to zero.

We conclude that the broadening of the degree distribution
captures the approach towards the critical point, but the true
location of the critical point λc cannot be seen from the scaling
behavior of σ .

F. Degree assortativity

Assortativity measures the correlations between the de-
grees of adjacent nodes. In terms of the adjacency matrix A

and the degree vector ki = ∑
j Aij it is

A =
∑

ij

(
Aij − kikj

N〈k〉
)
kikj∑

ij

(
kiδij − kikj

N〈k〉
)
kikj

. (12)

042313-5



HORSTMEYER, KUEHN, AND THURNER PHYSICAL REVIEW E 98, 042313 (2018)

FIG. 7. (a) Assortativity coefficient for the entire graph (red)
and for the susceptible graph (blue). For reference we also show
the density of SS links (black), which approximates the size of the
susceptible graph. N = 400, 〈k〉 = 20, r = 0.002, and w = 0.01. (b)
The distance λmax and size �A (inset) of the local maxima shown for
various w and N .

It takes values between −1 and 1. For A = 0 the network
has no degree correlations, for A = 1 it is maximally degree
correlated, and for A = −1 it is maximally anticorrelated.

Figure 7(a) shows the critical curve for the assortativity.
As for the SI link density and the clustering coefficient, the
degree assortativity exhibits a maximum. For large infection
rates the network becomes nonassortative, which is the ex-
pected Erdös-Rényi limit. At medium-range infection rates
the maximum occurs. Towards the threshold, the assortativity
decreases again.

It is instructive to decompose the assortativity coefficient
into its constituent parts. We denote by 〈kk′〉AB the expected
product of the degrees k and k′ along links of type AB. In this
notation the coefficient is

2ρSS〈kk′〉SS + 2ρSI〈kk′〉SI + 2ρII〈kk′〉II − 1
〈k〉 〈k2〉2

〈k3〉 − 1
〈k〉 〈k2〉2

. (13)

The important contribution to the overall assortativity results
from the first three terms in the numerator. The assortativity
of the susceptible subgraph rises to high values above 0.8, as
can be seen in Fig. 7(a). This means that the most important
contribution of the three terms comes from the susceptible
subgraph. There is, however, a trade-off between the abun-
dance of SS links and the expected degree correlation 〈kk′〉SS:
While the latter is increasing, the former decreases [Fig. 7(a)].
The degree correlations, however, increase faster than the SS
link density decreases, thus giving rise to the maximum.

The interference of at least two scaling laws brings about
the maximum. Its location is studied in Fig. 7(b). With respect
to the distance of the maximum from the threshold λmax − λc

one observes a slight increase in distance towards higher
rewiring rates, while the dependence on system size is not
present or negligible. The height of the maximum �A =
A(λmax) − A(λc ) [inset of Fig. 7(b)], on the other hand, has
a strong size dependence. It decreases with increasing w but
does so at a higher rate as the system becomes larger. The
decrease might follow a power law.

The degree assortativity is a purely global quantity that is
not easy to measure locally. It does, however, bear potential
as an early-warning sign because the distance to the threshold
is sizable and not strongly dependent on the rewiring rate or
system size.

G. Harmonic mean distance

The most natural way of measuring distances on a graph
is in terms of the geodesic distance. For two nodes i and
j = i the geodesic distance dij is the length of the shortest
path between them, and is infinite if i and j are not con-
nected by any path. The “farness” of a node i is given by
1/(N − 1)

∑
j =i d(i, j ) and the “closeness” by its reciprocal.

For graphs with multiple connected components the farness is
infinite and the closeness vanishes. To remedy this deficiency
one may look at the harmonic geodesic distance 1/dij . The
harmonic mean geodesic distance is then given by

HMD = 1

〈 1
d
〉 = N (N − 1)∑

i,j =i
1
dij

. (14)

It is 1 for a complete graph, infinite for a set of points without
links, and finite otherwise.

Figure 8(a) shows the HMD. For infection rates close to the
critical point, the HMD rises–the network becomes less com-
pact. A possible explanation is that a large number of paths in
the network lead through the susceptible subgraph, especially
for infected nodes. This is supported by the high branching
ratio κ = [SSI]/[SI] close to the critical point. Therefore, the
overall distances become larger in the vicinity to the critical
threshold. For large infection rates the equilibrium distances
approach the ensemble average of the Erdös-Rényi harmonic
mean distance HMDER ∼ log(N), as seen in Fig. 8(c). The
susceptible subgraph itself is at its densest near the threshold
and its HMD in comparison to that of an ER graph of the
same size grows linearly [Fig. 8(d)]. An explanation is that
the number of SS links falls by a factor of λ−1 faster than the
number of susceptible nodes S = N (1 − ρ). So the average
distances of the susceptible subgraph scale by the reciprocal
factor with respect to a baseline ER graph of size S.

Like for the effective branching ratio κ and for the standard
deviation σ (Secs. II C and II E), the HMD does not sense
the actual critical point λc. A fit to a power law reveals that
the exponent is close to −1 for a range of rewiring rates and
system sizes [Fig. 8(b)]. The fitted critical point λHMD

c is both
bigger than 0 and strictly smaller than λc.

H. Spectral properties

The network Laplacian is defined in terms of the adjacency
matrix A by L = D − A, with Dij = δij

∑
k Ajk The largest

eigenvalue of the adjacency matrix, λ1, is sometimes referred
to as the “capacity” of the graph. It carries information about
the connectivity and the number of paths in the network. It
is bounded from below by the average degree 〈k〉 and from
above by the maximal degree. We denote the gap between
the first two eigenvalues by g = λ1 − λ2. In the context of
Markov chains it measures the speed of convergence in �p to
the stationary distribution under the condition of irreducibility
and aperiodicity, see Refs. [30–32] for more details.

Figure 9(a) shows the four largest eigenvalues of the adja-
cency matrix. They all reach a maximum and then decrease to-
wards their asymptotic values. Note, however, that the largest
eigenvalue attains its maximum much closer to the threshold
than the others. In Figure 9(b) we see that the eigenvalue
gap is large when close to the threshold, drops to a local
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FIG. 8. (a) Harmonic mean distance HMD of the entire graph and a power-law fit on a log-log plot (inset). (b) Power-law exponent βHMD
c

fitted to the tail and the critical point λHMD
c as a fraction of λc (inset). (c) Fitted asymptotic value HMD∞ as a function of system size N , with the

numerical values of the Erdös-Rényi ensemble average HMDER(N ) for a reference. (d) Harmonic mean distance of the susceptible subgraph
HMD(S), measured with respect to the ER value for a graph of that size S = N (1 − ρ ). N = 400, 〈k〉 = 20, r = 0.002, and w = 0.01

minimum, and then relaxes back to its asymptotic value. The
extremum is around one order of magnitude further away from
the threshold than the extrema of the SI link density (Fig. 2),
the clustering coefficient (Fig. 5), or the degree assortativity
(Fig. 7) along a comparable range of rewiring rates. The
larger the gap the more difficult it is to dissect the graph [32]
and the faster infections would spread. The distance of the
local minimum scales linear with the rewiring rate, as can be
seen from the inset of Fig. 9(b). Therefore it becomes a very
reliable indicator of the transition and even more so, for higher
rewiring rates.

Another important spectral characteristic of the network is
the distribution of eigenvalues. It is known [33] that the empir-
ical eigenvalue distribution of the adjacency matrix converges
to the Wigner semicircle law for ER graphs. The Laplacian,
however, converges to the convolution of a Gaussian with the
semicircle distribution [34], after appropriate normalisation.
Figure 9 shows the empirical distribution of both the adja-
cency matrix [Fig. 9(c)] and the graph Laplacian [Fig. 9(d)].
Far from the threshold, the eigenvalue distribution of the
adjacency matrix approaches the semicircle around the origin,
as expected. Close to the critical threshold the distribution
changes drastically. It remains symmetric around the origin
but develops a narrow peak producing a cusp at the center.
This behavior is known from eigenvalue distributions of sev-
eral scale-free networks [32]. For the empirical eigenvalue

distribution of the Laplacian the situation is similar: An ER
limit exists for high infection. Drastic changes occur near the
critical threshold.

III. DISCUSSION—USABILITY OF NETWORK
MEASURES AS EARLY-WARNING SIGNS

In summary, we formulated the general question of the
feasibility of finding network-based precursor signals in adap-
tive network dynamics in the context of a specific epidemic
model, the coevolving SIS model. We find that several net-
work measures indicate no sensitivity whatsoever for the
critical transition. These are the effective branching ratio, the
degree distribution, and the harmonic mean distance. As a
function of the infection rate, these measures show scaling
laws, often characterized by an exponent of −1, with the
singularity located at zero or close to it but not at λc. It
means that these measures behave as if the transition was
at λ

ebr/degree/HMD
c ≈ 0, λ

ebr/degree/HMD
c � λc rather than at λc.

This has severe consequences for their use as an early warning
sign, because the fold bifurcation point is suddenly reached
without any warning. These measures can in no way anticipate
the true position of the critical point λc.

We have shown, however, that a number of other network
measures do carry potential for being used as early-warning
signs. They are able to detect the critical transition at λc,

FIG. 9. (a) The first four eigenvalues. (b) The eigenvalue gap and the distances from the threshold to the minimum for a range of rewiring
rates and system sizes (inset). (c) Distribution of eigenvalues of the adjacency matrix, and (d) the network Laplacian. Blue curves correspond
to high values of the infection rate, λ = 0.03, and show Wigner’s semicircle. Red lines correspond to the distributions for infection rates close
to the critical threshold, λc = 0.00043. Gray lines show distributions for intermediate infection rates. N = 400, 〈k〉 = 20, r = 0.002, and
w = 0.01.
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when approached from above (λ > λc). In particular, these
measures, which include the SI link densities, triplet densities,
clustering, and assortativity, show a crossover of two scaling
laws that are of a functional form as in Eq. (8). The first
scaling law shows an increase of the respective measure as
(λ − λc )1/2, slightly above the transition (λ > λc). The other
is an asymptotic scaling law (λ 
 λc), which is characterized
by negative integer exponents. Between these two scaling
regimes a local maximum exists, which is indeed visible in
the corresponding network measures and which is in line with
the pair approximation in the case of SI link densities. The
location of the maxima occur slightly above the critical point,
λmax > λc.

Both the double scaling and the maximum is also seen
in the maximum eigenvalue of the adjacency matrix, when
plotted against λ. The eigenvalue gap shows a very clear mini-
mum, well before the critical transition. In practical terms this
means that, when approaching the critical transition point, an
increase of the eigenvalue gap signals the immediate vicinity
of the transition. Given that a method to detect the eigenvalue
gap is available, such as the equilibration rate of a Markov
process on the network, or a sufficiently robust eigenvalue
estimate from data, the eigenvalue gap is a very clear and
practical early-warning sign.

Regarding advantages and disadvantages of the discussed
precursor signals, we draw the following conclusion: Com-
pared to the other quantities, the SI link density is a short-
range precursor. Its signal depends strongly on the rewiring
rate, making it unsuitable for high rewiring rates. The SI link
density can, however, be measured quite well locally. The
clustering coefficient produces a signal that does not strongly
dependent on the rewiring rate. Ignorance about the rewiring
rate is not a big problem for this signal. One can measure
the coefficient reasonably well from local connectivity infor-
mation. The assortativity coefficient suffers from its global
character, making it a hard to measure locally. Nevertheless, it
performs well for higher rewiring rates and smaller system
sizes. The eigenvalue gap outperforms all measures in its
ability to detect the signal very early; however, it hinges on the
measurability of eigenvalues, which can be hard in practice.

We tested the effects of all parameters in the coevolving
SIS model and found that our results are relatively robust. The
dependence on rewiring rate and system size has been has
been investigated especially carefully. The recovery rate sets
the time scale and can therefore can be fixed arbitrarily; we
took the choice used in Ref. [4]. The connectivity determines
the location of the threshold. The homogeneous pair
approximation becomes unreliable for very low values of 〈k〉
[29].

FIG. 10. Ratio of the exact triplet densities and their pair approx-
imation is plotted at stationarity (a) for εSSI and (b) εISI. N = 400,
〈k〉 = 20, r = 0.002, and w = 0.01.

We conclude by mentioning that the network information
that is neglected in the classical coarse-graining approach
does contain a layer of structural information that can indeed
detect the critical transition point. The next steps to take
would be to actually test the performance of the different
network measures as precursor signals in agent-based simu-
lations, where infection rates are exogenously varied slowly.
An observer can monitor the networks, the infection, and
the rewiring rates but would not know anything about the
location of the critical point. It would be interesting to see
to what extent such an observer could predict the collapse of
the system several time steps in advance.
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APPENDIX: QUALITY OF THE PAIR APPROXIMATION

In simulations the quality of the homogeneous pair approx-
imation can be measured directly through the ratio of the exact
triplet density over the approximate triplet densities,

εSSI = ρSSI

2ρSIρSS/ρS
, εISI = ρISI

ρSIρSI/ρS
. (A1)

For ratios above 1 the approximation underestimates the true
triplet density. Figure 10 indicates that the quasistationary
density of SSI and ISI triplets is systematically underesti-
mated, which confirms the conjecture that moment closure be-
comes problematic near the instability [15]. Further, it shows
that correlations between different moment orders indicate
proximity to the persistence threshold.
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