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Abstract

There is an increasing evidence that smallholder farms contribute substantially to

food production globally, yet spatially explicit data on agricultural field sizes are cur-

rently lacking. Automated field size delineation using remote sensing or the estima-

tion of average farm size at subnational level using census data are two approaches

that have been used. However, both have limitations, for example, automatic field
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size delineation using remote sensing has not yet been implemented at a global

scale while the spatial resolution is very coarse when using census data. This paper

demonstrates a unique approach to quantifying and mapping agricultural field size

globally using crowdsourcing. A campaign was run in June 2017, where participants

were asked to visually interpret very high resolution satellite imagery from Google

Maps and Bing using the Geo‐Wiki application. During the campaign, participants

collected field size data for 130 K unique locations around the globe. Using this

sample, we have produced the most accurate global field size map to date and esti-

mated the percentage of different field sizes, ranging from very small to very large,

in agricultural areas at global, continental, and national levels. The results show that

smallholder farms occupy up to 40% of agricultural areas globally, which means that,

potentially, there are many more smallholder farms in comparison with the two dif-

ferent current global estimates of 12% and 24%. The global field size map and the

crowdsourced data set are openly available and can be used for integrated assess-

ment modeling, comparative studies of agricultural dynamics across different con-

texts, for training and validation of remote sensing field size delineation, and

potential contributions to the Sustainable Development Goal of Ending hunger,

achieve food security and improved nutrition and promote sustainable agriculture.
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1 | INTRODUCTION

In 2015, Fritz et al. (2015) published the first global field size map at

a 1 km2 resolution, which was generated through interpolation of

around 13 K field size samples collected using the Geo‐Wiki crowd-

sourcing tool. Such an approach was possible as a result of the

increasing availability of very high resolution satellite imagery from

Google Earth from which agricultural field boundaries could be iden-

tified in detail, particularly those of smallholder farms. This field size

product generated a considerable amount of interest because spa-

tially explicit information on field size at a global scale is currently

lacking. As a consequence, this product was used in a number of

studies. For example, Samberg, Gerber, Ramankutty, Herrero, and

West (2016) mapped mean agricultural area (MAA) by subnational

administrative units for Latin America, Sub‐Saharan Africa, and South

and East Asia using household census data, where field size was

found to be a significant predictor in the MAA model. Herrero et al.

(2017) examined the relationship between farm size, agricultural pro-

duction, and nutritional diversity where the global field size map was

used to allocate agricultural production to different farms sizes at

the country level. The results showed that small‐ and medium‐sized
farms produce up to 77% of all commodities and nutrients consid-

ered, particularly in Sub‐Saharan Africa, Southeast Asia, South Asia,

and China. The majority of global micronutrients and protein are also

produced in more diverse agricultural landscapes, so as farm sizes

increase, production diversity must also be maintained to ensure

diverse nutrient production.

Both of these studies are part of a larger debate on the role of

farm size in global food security (Meyfroidt, 2017), where farm size

is related to field size (Graesser & Ramankutty, 2017). For example,

an overall farm size may not change due to lack of capacity for

expansion but a farmer may increase their existing field sizes. Hence,

field size is an important indicator of agricultural intensity, for exam-

ple, to gain a better understanding of management practices, or to

monitor biodiversity and landscape fragmentation. Yet, there is con-

siderable uncertainty concerning estimates of the amount of agricul-

tural land within different field size categories, particularly

smallholdings. Using census data from the Food and Agriculture

Organization (FAO), Lowder, Skoet, and Raney (2016) estimate that

84% of the 570 million farms globally are <2 ha in size, which repre-

sents around 12% of agricultural land. More recently, Ricciardi,

Ramankutty, Mehrabi, Jarvis, and Chookolingo (2018) found that

farms <2 ha in size occupy 24% of agricultural gross area based on

agricultural census data and different surveys from 55 countries.

Graeub et al. (2016) estimate that family farms cover 53% of agricul-

tural land but these farms can include field sizes of >2 ha since the

definition of family farm is not based on field size. Hence, this num-

ber is not directly comparable with Lowder et al. (2016) or Ricciardi

et al. (2018). No other estimates exist, and hence, there is a clear

need for spatially explicit data on the distribution of field sizes,

which can provide an independent estimate to that derived from

FAO census data or nationally (or subnationally) representative sam-

ple surveys.
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Another approach to mapping field size is to use remote sensing.

For example, Yan and Roy (2016) developed an automated crop field

extraction method which they applied to 30 m Web Enabled Landsat

data (WELD) time series to produce a wall‐to‐wall field size map for

the contiguous USA (Yan & Roy, 2016). Graesser and Ramankutty

(2017) developed a semi‐automated approach involving edge extrac-

tion and adaptive thresholding to produce a field size map for five

countries in South America. Although the results from both studies

were good, that is, accuracies of >84%, both of these studies are

limited in geographical coverage and concern areas where field sizes

are large with a relatively precise geometry (square or round) in com-

parison with fields in other parts of the world. Therefore, to map

fields globally using remote sensing would require adjustment for

the high variability of field geometry in places such as Africa as well

as considerable processing power.

An alternative approach to the use of remote sensing or census‐
based spatial disaggregation (Samberg et al., 2016) is the crowd-

sourcing method outlined originally in Fritz et al. (2015). At the time,

around 13 K samples were collected using four categories: very

small, small, medium, and large, where the definitions were based on

simple rules of thumb to aid visual interpretation rather than area‐
based estimates. As field size estimation was not the focus of the

campaign, the sample collected was limited in size. A simple interpo-

lation method was then applied to produce the global field size map.

Although the general patterns of field size were captured globally,

there were numerous artifacts from the interpolation method when

viewing the map in more detail, and limitations were recognized at a

national level, for example, underestimation of small fields in Argen-

tina (Graesser & Ramankutty, 2017). Hence, there was a clear need

to improve this map with a much denser sample and apply a more

appropriate interpolation algorithm. To achieve this objective, a new

Geo‐Wiki campaign was run in June 2017, focused entirely on the

collection of field size data, which increased the density of field size

samples by an order of magnitude, that is, around 130 K unique

samples were collected. Although crowdsourcing and citizen science

are becoming popular ways of collecting data, for example, through

the eBird project (Sullivan et al., 2014) or Zooniverse (Reed et al.,

2013), assuring data quality still remains the most critical issue in this

field (Comber, Mooney, Purves, Rocchini, & Walz, 2016; Fonte et al.,

2017; Resnik, Elliott, & Miller, 2015; Salk, Sturn, See, Fritz, & Perger,

2016; See et al., 2013). To address this issue, we have improved the

quality control mechanism and introduced field measuring tools to

improve the accuracy of the data collected. Hence, with these

improvements, it is now also possible to estimate the percentage of

different field sizes at a global and continental scale as well as

nationally. The aim of this paper was to present the improved global

field size map and to compare estimates of different field sizes

derived from the field size sample with those currently found in the

literature. The field size samples are also available from this site,

which can be used for training or validation of automatic field size

classification algorithms or identifying priority areas for mapping, for

example, where there is a high variability in field sizes.

2 | MATERIALS AND METHODS

Figure 1 provides an overview of the main steps undertaken in this

study, which includes (a) collection of the global field size data via a

crowdsourcing campaign; (b) mapping of the dominant field sizes; (c)

F IGURE 1 Schematic showing the main steps in the methodology [Colour figure can be viewed at wileyonlinelibrary.com]
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estimation of the area percentages of the different field size cate-

gories; and (d) comparison of the crowdsourced data with other field

size data sets. These steps are described in more detail in the sec-

tions that follow.

2.1 | Collecting global field size data via
crowdsourcing

To collect information on field size globally, we designed and imple-

mented a crowdsourcing campaign that lasted 4 weeks during June

2017. As outlined in Figure 1, the campaign consisted of a series of

steps including the specification of fields and field size categories,

the design of a global sample, the development of a new branch of

Geo‐Wiki that focused specifically on field sizes, and the actual run-

ning of the campaign. The quality assurance process was also a very

important part of the campaign. These four steps and the quality

assurance process are described below.

2.2 | Specification of field and field size definitions

The first definition needed was for a “field”. We defined fields as

enclosed agricultural areas, including annual and perennial crops. We

also included pastures, hayfields and fallow in the definition to mini-

mize confusion between annual crops and pastures when visually

interpreting the images. This definition corresponds to the Food and

Agriculture Organization of the United Nations (FAO) definitions of

arable land and permanent crops (FAO, World Bank, & United

Nations Statistical Commission, 2012), with an exception that we

also included permanent pastures.

We then defined rules for determining individual fields, which

are usually separated by roads, permanent paths, trees, or shrub

shelterbelts. Field boundaries can be further defined by the presence

of different crop types or pastures. Temporary paths or signs of

machinery are not considered as field boundaries.

Finally, we defined five field size categories. These were based

on the crowdsourced results from the 2011 campaign that included

field size (Fritz et al., 2015) as well as the field size definitions pro-

vided by the Group on Earth Observations Global Agricultural Moni-

toring Initiative (GEOGLAM ‐ https://ceos.org/document_manageme

nt/Meetings/SIT/SIT-28/31b_GEOGLAM_Global_Agricultural_Moni

toring_User_Requirements_March4.pdf). The field size categories

were then adjusted to the Geo‐Wiki grid approach that we describe

below. These categories are:

� Very large fields with an area of >100 ha;
� Large fields with an area between 16 and 100 ha;
� Medium fields with an area between 2.56 and 16 ha;
� Small fields with an area between 0.64 and 2.56 ha; and
� Very small fields with an area <0.64 ha.

2.3 | Sampling design

We generated a random stratified sample of 130,000 sites globally.

This number was based on how much data were collected during

past campaigns, the potential number of participants we could

engage, and the optimal duration of the campaign. Each sample site

was visited by three different participants, so in total, there were

390,000 classifications to complete.

To stratify and hence better allocate the sample units, we devel-

oped a layer of maximum agricultural extent. We selected maps that

contain agricultural fields that either fully match the definition of

fields used in this study or partly match, that is, they contain a sub-

set of the definition, which include:

� A cropland layer derived from Globeland 30 at a 30 m resolution

(Chen, Ban, & Li, 2014);
� A cropland layer derived from the ESA CCI LC map at a 300 m

resolution for 2015 (https://www.esa-landcover-cci.org/);
� The unified cropland layer at a 250 m resolution (Waldner et al.,

2016);
� The IIASA‐IFPRI hybrid cropland layer at a 1 km resolution (Fritz

et al., 2015).

Since our definition of fields is very broad, there was no need to

harmonize the cropland definitions of these different layers.

The four maps were then aggregated to the same grid as that of

the IIASA‐IFPRI hybrid cropland map (Fritz et al., 2015). The rule we

followed was that if a pixel contained cropland in at least one of these

layers, the pixel was considered as cropland. To avoid oversampling

with a change of latitude, we re‐projected the aggregated map from

WGS84 to an equal area projection (i.e., the Goode Homolosine

projection) and randomly distributed the samples by continent.

2.4 | The Geo‐Wiki application for field size data
collection

Geo‐Wiki is an online application for crowdsourcing visual interpre-

tations of satellite imagery from Google Maps and Microsoft Bing,

for example, land cover, human impact, forest cover, which has been

used in a number of data collection campaigns over the last several

years (Fritz et al., 2012; See et al., 2015). Google Maps and Micro-

soft Bing Maps include mosaics of very high resolution satellite and

aerial imagery from different time periods and multiple image provi-

ders, from Landsat satellites operated by NASA and USGS to com-

mercial providers such as Digital Globe. More information on the

spatial and temporal distribution of very high resolution satellite ima-

gery can be found in Lesiv et al. (2018). The maps are used as the

underlying layers for visual interpretation, where users could choose

between them based on the quality of the imagery.

A new branch of Geo‐Wiki is normally implemented for each

new campaign including this recent one devoted to the collection of

field size data. Much of the satellite imagery in Google Maps and

Bing is very high resolution imagery, ranging from 50 cm to a few

meters, which allows field boundaries to be identified with a high

precision. Figure 2 is a screenshot of this Geo‐Wiki field size inter-

face, showing additionally the tools (a‐l) that were implemented to

facilitate field size estimation and general data collection.
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Before starting the campaign, the participants were shown a ser-

ies of slides designed to help them gain familiarity with the interface

and to train them in how to visually determine and select the most

appropriate field sizes for each given location. Once completed, the

participants were then shown a random location on the Geo‐Wiki

interface and were asked the following two questions: (a) what field

size categories do you see in the red box; (b) what is the dominant

field size, that is, the field size category corresponding to the fields

with the highest total area covered in the red box (Figure 2d). The

red box represents an area of 16 ha divided into 25 grid cells. If the

user selected more than one field size, they were asked to indicate

which of these was dominant. The area measuring tool (Figure 2a,b)

allows participants to delineate the fields manually to calculate the

sizes. Participants were encouraged to quickly do a visual identifica-

tion of field sizes, without measuring them, using the grid system

(Figure 2d), where yellow cells are 80 × 80 m or 0.64 ha, the red

box is 400 × 400 m or 16 ha, and the blue box is 1 × 1 km or

100 ha in size. The field sizes were determined as follows:

� Very small: fields smaller than the yellow cells;
� Small: fields of a size between one yellow cell and four yellow

cells (2.56 ha);
� Medium: fields smaller than the red box (16 ha) and bigger than

four yellow cells;
� Large: fields smaller than the blue box (100 ha) and bigger than

the red box; and
� Very large: fields larger than the blue box.

When the field size was not clear from visual inspection, for

example, when a field was close in size to two categories, par-

ticipants were encouraged to use the area measuring tool (Fig-

ure 2a). Alternatively, if either no imagery was available, or if it

was deemed too difficult to determine the field sizes, the par-

ticipant could skip a location (Figure 2g). If a location was

skipped because of being too difficult, such a location would

still have been available for other participants, whereas in the

case of the absence of imagery in both the underlying layers,

that is, Google Maps and Microsoft Bing Maps, this location

was taken out of the sample of available locations. In the case

of Microsoft Bing Maps, the imagery is not complete, which

only becomes apparent when you zoom into the maximum

extent. In the case of Google Maps, this occurs when there is

a lack of very high resolution imagery and you zoom into the

maximum extent. If you zoom out, you will see the Landsat

base imagery but it will not be possible to identify the field

sizes unless they are very large.

2.5 | Quality assurance

Insights from our previous crowdsourcing campaigns (Fritz et al.,

2012; Laso Bayas et al., 2016) indicated that we needed to invest

in the training of the participants, where there were 130 in total.

Summary information about the participants (i.e., their gender, age,

level of education, and country of residence) who filled in the sur-

vey at the end of the campaign is provided in the Supporting

F IGURE 2 Screenshot of the Geo‐Wiki interface showing: (a) the area measuring tool; (b) the actual field sizes delineated and measured
using (a); (c) the cumulative work done by a participant; (d) the main classification area, gridded; (e) the button to switch between different
background imagery, that is, Google or Bing; (f) buttons to select the field size categories: very large, large, medium, small, very small, or no
fields; (g) possible reasons to skip the current location; (h) a button to display location in Google Earth; (k) examples of field size estimation for
training; (l) a button to ask experts for help. Source of imagery: Google Maps [Colour figure can be viewed at wileyonlinelibrary.com]
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information; Figures S4, S5, S6 and Table S2. In this campaign,

we provided initial guidelines for the participants in a form of a

video and slides that were shown before the participants could

start classifying the field sizes (see Supporting information Fig-

ure S1). Additionally, the participants were asked to classify 10

training samples before contributing officially to the campaign.

They received text‐based feedback on each of these 10 samples

including the measured field size categories, with the possibility of

watching an explanatory video for each location showing

how these field sizes were selected (Videos and explanations

available here: https://www.geo-wiki.org/Application/modules/field_

size_sigma/FieldSizeSigma_gallery.html).

During the campaign, the participants were shown a sample site

that was part of a “control” or expert data set, which appeared ran-

domly during every 10 classifications. When these sites were incor-

rectly classified, the participants received text feedback, which is an

innovative component that we used for the first time in a crowd-

sourcing campaign. Our hypothesis behind this approach was that by

receiving immediate feedback on a submitted classification, a partici-

pant would learn from their mistakes and the quality of their work

would increase over time. If the text‐based feedback was insuffi-

cient, the participants could ask for more detailed explanation by

email (Figure 2‐l).
The control sample set was independent of the main sample of

130,000 sites, and it was created using the same random stratified

sampling using maximum agricultural extent as the strata. To deter-

mine the size of the control sample, two aspects were considered (a)

taking into account the complexity of this task and our past experi-

ence with campaigns, the maximum number of sample sites that one

person could complete is 40,000 locations; (b) the frequency at

which the control sample sites were provided to the participants.

Since we decided that a control sample site will appear once every

10 classifications, we needed 4,000 control sample sites (40,000/

10 = 4,000) in total. The control sample sites were classified by a

small group of experts trained by the lead author at IIASA. Each con-

trol sample site was classified twice by two different experts. Where

the two experts agreed, these sample sites were added to the final

control sample. Where disagreement occurred (approximately 25%

of cases), these sample sites were inspected by an IIASA expert and

revised accordingly. Only then was it added to the final control

sample.

Part of the campaign design was to offer prizes as one incentive

for participation. The ranking system for the prize competition was

partly linked to the quality of individual contributions (Supporting

information Table S1). Whenever a location visited by a participant

was a control sample site, the participants received some points that

accumulated over the campaign. In the design of the ranking system,

we considered both the quality of the classifications and the number

of classifications by a participant. These rules indicate how the

points (P) were calculated:

� Case 1. A sample site with fields present. The following equa-

tion was applied:

P ¼ 20�D � 10�E � 5 (1)

where D indicates whether the dominant field size is correct (1)

or incorrect (0) and E is the total number of mistakes made in identi-

fying the field sizes. Two types of mistakes were considered: (a) if

the wrong field size was identified; and (b) if the correct field size

was not identified.

� Case 2. A sample site with no fields present. The following rule

was applied:

P ¼ Pþ 20; ifcorrect; and P ¼ P� 10; ifwrong (2)

� Case 3. No imagery or very low resolution images in Google and

Bing. In this case, Equation (2) was applied.

The maximum amount of points awarded was 20 while the maxi-

mum number of points deducted was 15. By awarding 10 points for

a correct dominant field size, we emphasized the importance of this

question. The relative quality score for each participant was then cal-

culated as the total sum of points gained divided by the maximum

sum of points that this participant could have earned.

For any subsequent data analysis, we excluded classifications

from those participants whose relative quality score was <71.4%.

This threshold corresponds to an average score of 10 points at each

location (out of maximum 20 points), that is, these participants were

good in defining the dominant field sizes. In total, we removed

10,995 classifications from 32 different participants, or 2.8% of all

classifications.

Additionally, since each sample site was visited by three different

participants, we calculated the variability of the dominant field size

categories as follows: (a) full agreement, or all three participants

were in agreement; (b) medium agreement, or only two participants

agreed; (c) low agreement, or the three participants identified three

different dominant field sizes.

2.6 | Creating a global field size map

The first global field size map was produced by interpolation of

field sizes (Fritz et al., 2015). Inverse distance weighting (IDW) was

chosen as the interpolation method. As with many other interpola-

tion methods in spatial statistics such as kriging or nearest neigh-

bor, IDW assumes that pixels close by to one another have similar

values. However, this assumption does not hold for the spatial dis-

tribution of fields, for example, large fields may be neighboring

smaller fields. Therefore, we adapted the nearest neighbor

approach as follows:

� A grid of points was created with an interval of circa 1 km, which

is also the minimum distance between the sample sites;
� At each grid point, k nearest neighbors was applied to the crowd-

sourced data set where k = 5 was found to yield the best visual

representation; more than five neighbors led to a loss in spatial
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information while <5 neighbors resulted in the overestimation of

field sizes that were not dominant.

At each grid point we then summed all the answers from the

participants to determine the most frequently selected field size cat-

egory. If there were field size categories with the same frequency,

we removed the values located at the largest distance away from

the grid point and repeated this step until we arrived at one domi-

nant field size category. We only applied this procedure to grid

points that fell inside cropland areas, where we used a recent crop-

land map for 2015 to indicate cropland areas (https://www.cropland

s.org/app/map?lat=0&lng=0&zoom=2), which was originally at a

30 m resolution and then aggregated to our grid size.

The maximum distance from each grid point to the nearest

neighbors from the crowdsourced data set varied from 3 to 20 km.

This means that the final map of dominant field sizes is a map that

shows field sizes that are dominant over a certain area, for example,

within a radius of 3 km. To have finer boundaries for fields, users

can apply the 30 m meter cropland mask. However, this does not

mean that the dominant fields were determined at this spatial reso-

lution.

To evaluate the accuracy of the resulting map, we compared it

with the control sample. If any of the fields identified by the experts

matched a pixel value on the field size map, this classification was

considered to be true; otherwise, there was no match.

2.7 | Estimation of the area proportions of different
field size categories

The area proportions were calculated from the sample and not the

field size map. Therefore, we needed to calculate the dominant field

size at each sample site, where each sample site was interpreted by

three different participants, each of which had a relative quality

score. Hence, to determine the dominant field size at each sample

site, we applied a simple weighting approach using the field size

answers and the relative quality scores (Foody et al., 2018), and

removed sample sites with no fields. Moreover, 2.5% of the sample

sites were deemed impossible to classify by the participants due to

low resolution imagery, clouds or the absence of imagery. These

sample sites were also excluded from the calculations of the area

proportions. This 2.5% represents a bias in our later calculations.

We used the resulting data set on dominant field sizes to calcu-

late the agricultural area proportions at the global, continental, and

national levels. To calculate the 95% confidence intervals, we fol-

lowed the methodology described in (Sangeetha, Subbiah, & Srini-

vasan, 2013). The global administrative unit layers (GAUL) of FAO

(https://www.fao.org/geonetwork/srv/en/main.home) were used to

determine the country and continent of each sample site. Note that

these calculations at global level were made assuming that no

changes in field sizes have occurred over the period 2010–2016.
Indeed, there are homogenous patterns of imagery dates for a few

countries, for example, t Canada, Peru, Ecuador, Columbia, and

Ukraine (Supporting information Figure S2).

2.8 | Comparison with other field size data sets

We compared the crowdsourced field size data set with a field map

for the USA for 2010 produced by Yan and Roy (2016), which was

derived from Landsat imagery at a 30 m resolution. This is an openly

available wall‐to‐wall map of fields for the United States. To compare

this field map with the crowdsourced data set, the following caveats

should be noted:

� Individual fields in the US field map are those that are separated

from each other by roads or shelterbelts with a width of at least

30 m. Hence if fields are separated by a tiny road, for example,

2–3 m wide, they would most likely be classified as one field. An

example is shown in Figure 3 where the US field map shows the

presence of very large fields (on the left) while the dominant field

size from this study would be large. This can be verified from the

satellite imagery on Google Maps (shown on the right).
� Very small and small fields are not mapped as the resolution is

too coarse.
� It includes only arable land, no pasture and no hayfields.
� The smallest detected fields have an area of 1.53 ha.

First, we calculated the area of the mapped fields and converted

these values into the field size categories defined in this study. Sec-

ondly, we selected sample sites from the crowdsourced data set that

fall within the mapped fields and extracted the field sizes. We then

calculated a confusion matrix (crowdsourced dominant field size vs.

size of the mapped fields). To calculate overall agreement, we

assumed that both data sets agreed when fields on the fields map

were larger than the crowdsourced field sizes.

2.9 | Software

The field size data were collected through the Geo‐Wiki web appli-

cation as described previously. All the data analyses, including map-

ping field sizes and estimating the area proportions of the field sizes,

were done in the R environment. Bar charts were also produced in

R. The following R packages were used: raster 26–7 (https://CRAN.

R-project.org/package=raster); RANN 2.5.1 (https://CRAN.R-project.

org/package=RANN); and sp 1.2–7 (https://CRAN.R-project.org/pac

kage=sp). The figures showing the spatial distribution of the field

sizes were prepared in ArcGIS 10.1.

3 | RESULTS

3.1 | A new global field size data set

The main result of this study is a global field size data set containing

all the detected field sizes and the estimated dominant field size.

Figure 4 shows the spatial distribution of dominant field size cate-

gories. African countries such as Ethiopia, Tanzania, Mali, Nigeria

and others, along with India, China, and Indonesia are characterized

by very small fields. On the other end are Kazakhstan, Australia, the
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USA, and Brazil with very large fields. In Europe, the majority of the

fields are of a medium size. Figure 4 also highlights areas with high

variability in field sizes, for example, Europe, Turkey, central India,

northern regions in China (at the border with Russia), Nigeria, Sudan,

Zambia, and the northern states of Brazil.

To establish the quality of the data set, we estimated the agree-

ment between the participants in terms of dominant field size

category at each sample site (we had three classifications per sample

site). Overall there was complete agreement between participants in

56% of sample sites, the majority of participants agreed in 40% of

cases while complete disagreement occurred in only 4% of sample

sites. Figure 5 shows the spatial distribution of this agreement,

which shows no discernible patterns in the distribution of sample

sites where complete disagreement occurs. We selected a few

F IGURE 3 An example taken from the field map of the USA (Yan & Roy, 2016). Left image: blue indicates very large fields, green are large
fields, and turquoise are medium‐sized fields. Right image: screenshot of a satellite image from Google Maps from 2010, where the blue lines
correspond to tiny field boundaries that are not taken into account on the field map of Yan and Roy (2016). The location of the central point
is 95.771°W, 42.975°N [Colour figure can be viewed at wileyonlinelibrary.com]

F IGURE 4 The spatial distribution of dominant field size [Colour figure can be viewed at wileyonlinelibrary.com]
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sample sites where the participants disagreed and found that these

are mostly located where fields have different sizes and it is difficult

to identify a dominant one.

3.2 | Map of dominant field sizes

The map of dominant field sizes is presented in Supporting informa-

tion Figure S3 since the distribution of dominant field sizes look very

similar in overall patter to that of Figure 4. The overall accuracy of

the map was estimated to be 93%. More details on how this number

was estimated are provided in the methodology section.

3.3 | Percentage of agricultural area by field size

For better presentation of the results, we translated area proportions

to area percentages. Figure 6 provides the results of the agricultural

area estimates by field size at global and continental levels. These

results confirm that very small fields sizes have a substantial share in

the total agriculture of Asia and Africa while large fields clearly dom-

inate in Australia and North and South America. Medium field sizes

have the same percentage as large fields for European countries,

which is mainly due to inclusion of post‐Soviet countries such as

Ukraine and Russia.

Figure 7 shows the cropland area percentages for selected coun-

tries, sorted by size. Kazakhstan is the only country with a huge

share of very large fields. In general, large fields dominate in post‐
Soviet Union countries, in the USA, Brazil, Australia, Argentina,

Canada, and South Africa. As mentioned already, countries in Central

and Western Europe have medium field sizes. Countries such as

India, China, Nigeria, Ethiopia, Tanzania, Indonesia, and Pakistan are

characterized by dominant smallholder farms or family farms.

The results of all the calculations are provided in the Supporting

information (Table S3).

3.4 | Comparison with the US field map

We compared the field map for the USA (Yan & Roy, 2016) with the

dominant field sizes estimated in this study given the set of caveats

outlined in the methodology. The overall agreement between the

two data sets is 66.0% and 92.2% if we assume that fields on the

US fields map contain smaller fields delineated by tiny paths. Sup-

porting information Table S4 contains a confusion matrix between

the US field map and the crowdsourced data. It demonstrates where

there is confusion, for example large fields in the US field map con-

tain a few medium fields and very large fields consist of large fields.

The highest “wall‐to‐wall” agreement is for large fields.

3.5 | Comparison of the results with other
estimates

Finally, we compared our results with other estimates in the litera-

ture. However, to compare these estimates with our results, we con-

sider that a smallholder farm may include many very small fields

with an area of <2 ha and a few small fields. Thus, according to our

results, smallholder farms occupy a maximum of 40% of total agricul-

tural area, which is considerably larger than the figure of 12%

reported in Lowder et al. (2016). The share of smallholder farms is

much higher in Asia (~70%) and Africa (up to ~74%), which is consid-

erably higher that estimates provided in Wu et al. (2018, fig 2C),

based on the same data as that used by Lowder et al. (2016). In con-

trast, our results are smaller than the estimate of 60% reported in

Cui et al. (2018) but the latter figure cannot be traced to the original

F IGURE 5 The degree of agreement between the participants at all sample sites [Colour figure can be viewed at wileyonlinelibrary.com]
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cited source so there is huge uncertainty around the veracity of this

figure. Our results are closest to the estimate of 24% provided by

Ricciardi et al. (2018), but this figure is only based on data from 55

countries and the definition of agricultural land does not include per-

manent pastures while our definition does.

4 | DISCUSSION

The results from this paper make a significant contribution to the

current knowledge on the spatial distribution of different field sizes

globally. First, the results are independent from FAO census data

and are not related to household surveys. Secondly, the data are

more detailed and spatially denser than the previously collected data

set on field sizes (Fritz et al., 2015), with additional temporal infor-

mation. Thirdly, we have considerably improved the quality of the

data collected by providing detailed guidelines to the participants,

area measuring tools, multiple classifications per sample site, near

real‐time feedback, and ranking based on the quality performance of

each participant.

The global field size data set presented in this study can be

considered as a fundamental benchmark for the distribution of

field sizes. It could be used to expand the research study under-

taken by Samberg et al. (2016) to the global level as well as

enhancing the work on food and nutrient security (Herrero et al.,

2017). Since we recorded the dates of the underlying satellite

images (Supporting information Figure S2) used in the visual inter-

pretation, this data set may serve as training data for automated

classification of field size from remote sensing (although only for

field size categories introduced in this study). The temporal refer-

ence is crucial in mapping fields as their shape and size change

over time due to different socio‐economic factors (Yan & Roy,

2016). Only in the areas with very fragmented or hilly landscapes

do field sizes remain small or very small over time, for example,

in the mountain region of Italy, the south of China. Additionally,

the data set could also guide the choice of which sensor to use

for agricultural monitoring and crop type classification, for exam-

ple, for heterogeneous regions and regions with very small fields,

there is a need for a finer resolution sensor such as Sentinel‐2
data at a 10 m resolution.

By interpolating the global field size data set using a method

more appropriately suited to the data set, we produced a better glo-

bal field size map than the previous version (Fritz et al., 2015). This

map could be used as an input layer to global land use models or

global integrated assessment models, for example, the EPIC (Environ-

mental Policy Integrated Model) or GLOBIOM models (Havlík et al.,

2014). To improve the spatial disaggregation of cropland types, this

field size layer could also be used as a covariate in the Spatial Pro-

duction Allocation Model (SPAM) (You et al., 2014).

This study has also addressed the question of what proportion of

agricultural area different field sizes occupy at the global, continental,

and country level. Our findings confirm that small fields have a sub-

stantial percentage at the global level: very small fields with an area

<0.64 ha occupy 23.23% while small fields (with an area between

0.64 and 2.56 ha) occupy 14.47% of total agricultural areas (or 40%

in total if we count the bias of 2.5%). Although the comparison with

the US field map (Yan & Roy, 2016) showed a 92.2% agreement with

the crowdsourced data set, there are no other studies that have cal-

culated the percentage of field sizes at the global level. There are a

few studies on the distribution and percentage of different farm sizes

but field size and farm size are not the same thing as discussed in the

introduction. Moreover, farm sizes cannot be defined by taking only

the area of land owned into account (Graeub et al., 2016), as this var-

ies between country. Nevertheless, FAO defines smallholder farms as

farms with agricultural areas of <2 ha. Reports on the percentage of

smallholder farms in total agricultural areas varie considerably, for

example, 12% in Lowder et al. (2016) up to 60% in Cui et al. (2018).

Moreover, Lowder et al. (2016) include permanent pastures in their

estimates, as we do, while Ricciardi et al. (2018) do not, yet report an

estimate of 24% smallholder farms. However, we expect that non‐
permanent pastures will have a rather small share in our estimates of

area proportions. We did not look at this particular aspect in this

study because it would have complicated the task undertaken by the

crowd and, consequently, would have increased the uncertainties in

our results. If there were an accurate global layer of cropland and

permanent pastures, separated from each other, we could have

excluded non‐permanent pastures from our calculations and could

have estimated area proportions for croplands, for permanent pas-

tures, and for croplands together with permanent pastures.

F IGURE 6 Area percentages of
different field sizes by continent and at the
global level (confidence interval 95%).
Oceania includes New Zealand, Melanesia,
Micronesia, and Polynesia [Colour figure
can be viewed at wileyonlinelibrary.com]
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Unfortunately, up to now, the spatial distribution of croplands and

pastures derived from remote sensing does not yet meet user

requirements for cropland monitoring (Pérez‐Hoyos, Rembold, Ker-

diles, & Gallego, 2017). If such layers appear in the near future, the

potential users of the field size data set could repeat our approach to

estimate area proportions of field sizes.
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