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Abstract 

Simulation of flow processes in hyper-regulated Mediterranean watersheds is critical 

when examining general water demand and established ecological flows of River 

Basin Management Plans. Weather dynamics in the Mediterranean zone in recent 

decades have been characterised by a natural variation of drought cycles. In addition, 

exacerbated climate change proves that water fluxes must be estimated with more 

exhaustive models. The aim of this study is to assess the water balance of the Cega-

Eresma-Adaja (CEA) watershed, including a detailed assessment of land uses and 

management practices to quantify agricultural water demand for the time period 

2004-2014. We used the Soil and Water Assessment Tool (SWAT), given that it is a 

widespread tool that involves complex processes of the water cycle on a basin scale, 

providing information on water dynamics related to land use as a fundamental 

characteristic for water balance calculation. The Nash-Sutcliffe coefficient efficiency 

value, the main index of calibration and validation performance, was 0.86 for the 

Eresma-Adaja River and 0.67 for the Cega River. This presents a good result 

considering the large-scale watershed studied. Analysing dry hydrological years, we 

found that the estimation of ecological flows for sub-arid zones needs to consider the 

shallow aquifer-river relationship. During spring-summer periods, with very low flow, 

monitoring the shallow aquifer levels ensures a good ecological status. The study 

reveals that aspects such as crop rotation, soil management and their associated 

measures in Mediterranean basins are key factors for water resource management 

during drought periods. These results are expected to serve stakeholders and river 

basin authorities in conducting better-integrated water management practices in the 

watershed. 



1 Introduction 

Water availability in the Mediterranean zone has been a subject of research in recent 

decades, and its assessment on a basin scale is a priority to secure water availability 

for different users, including fresh water, industry, agriculture and hydropower in 

southern Europe (Calbó, 2010; Giorgi and Lionello, 2008; Rafael et al., 2010). 

Agriculture is the major water user in Europe, accounting on average for  32% of total 

freshwater abstractions (EUROSTAT, 2017). In southern Europe, agricultural 

abstractions are greater, accounting for an average of 52% of total freshwater 

abstractions (EUROSTAT, 2017). In sub-arid climates, agricultural water extractions 

can reach 80%, and often become a source of disputes amount water users (European 

Comission, 2012). The usual implementation of flow regulation strategies in these 

areas to meet increasing water demands, through reservoirs and artificial recharge of 

aquifers, captures the majority of the surface flow of rivers and results in a low flow 

system affecting riverine ecosystems and water availability (Tharme, 2003). 

In Mediterranean watersheds of southern Europe, irrigated agriculture is a common 

strategy to ensure crop production and is considered a key driver in water scarcity 

(Psomas et al., 2016). Because of this, agricultural water demand must be 

reformulated, based on an integrated land use management approach, considering 

both irrigated and rainfed crops. Specific mitigation and adaptation measures for 

water resources management are needed to reconcile water demands from multiple 

users, as outlined in the River Basin Management Plans (RBMPs) (European 

Comission, 2012; European Environment Agency, 2015). The EU 2020 strategy and 

the Water Framework Directive (WFD) have been promoting several policies for 

water savings and its protection. Additionally, the Programme of Measures (PoMs) 

aims to achieve a satisfactory status for surface and groundwater bodies. Several 

tools, such as remote sensing, are used to identify land uses and the application of 

hydrological models to quantify real and potential water demand for agriculture. 

Consequently, a sustainable management vision of water resources at watershed scale 

requires the inclusion of some measures at plot scale. Hence, through modelling, the 



cumulative effect of detailed land operations could be assessed for the watershed 

water fluxes.  Hydrology models that include water fluxes related to land use can help 

decision makers formulate strategies in the water-energy-land-food nexus (Dodds and 

Bartram, 2016; Hoff et al., 2012). Furthermore, the water balance model alone is not 

enough; the environmental situation, the inclusion of hydrological dynamics in 

changing environments (Wang et al., 2016), climate change (Narsimlu et al., 2013), 

land use (Zhao et al., 2016), crop practices (Ullrich and Volk, 2009) and reservoir 

operation schedules (Kalogeropoulos et al., 2011) are also required to achieve an 

integrated water management scheme.  

River basin authorities (RBA) use water management models as a tool to assess and 

guarantee water demands. Those models serve to manage water fluxes based on 

predefined and estimated water demands (e.g. water supply, irrigation and industry) 

and the associated regulatory infrastructure. Nevertheless, water balance is dynamic 

in time and space. Hence, to improve water management, more variables must be 

included to achieve a more accurate water balance. The water balance must include 

land use dynamics and cropland practices. The sensitivity of water availability in the 

catchment could be modified due to land use change for future water demands.  This 

is why detailed hydrological models can be very useful tools for planning purposes.   

As in any modelling exercise, hydrological models assume simplifications of a real-

basin system and some degree of uncertainty is thus unavoidable. Therefore, the 

assumed simplifications should be considered cautiously, as they could affect the 

results. For example, if water demand by land use is expected, as a result, 

simplifications of this subject must be fully described by the model.  

The SWAT is a spatially, semi-distributed and physically-based eco-hydrological 

model, developed by the USDA Agricultural Research Service. The application of 

SWAT, unlike other hydrological water management models, includes the viability of 

agricultural water demand in space and time. The model is largely used to evaluate 

the impact on land management over extended periods of time (Arnold et al., 1998). 

The use of SWAT as a tool to assess daily stream flows helps improve the general 



water balance, providing a new modelling trend for RBMPs. This water balance is 

influenced by crop rotations and farm practices, obtaining a better quantification and 

understanding of land management decisions in the watershed hydrology 

(Seeboonruang, 2012). At the same time, governments make an effort collecting 

accurate data from remote sensing and surveys. These have recently been used for the 

SWAT model setup (Ashraf Vaghefi et al., 2015; Guzinski et al., 2014; Laurent and 

Ruelland, 2011).  

The aim of this study is to assess the water balance of the Cega-Eresma-Adaja (CEA), a 

Mediterranean watershed currently facing serious water stress, mainly as a result of a 

growing water demand for irrigation, compounded by increasing urbanisation. During 

the period from 2010-2016, the CEA was considered one of the most profitable areas 

for farming in Spain due to the expansion in horticultural production (Antequera et al., 

2014). However, the growing demand for water is rapidly deteriorating the status of 

existing water bodies and threatening the sustainability of the basin and its economic 

activities. The situation may be worsening, as the RBMP (2015-2021) forecasts an 

increase of 18% (equivalent to 7,000 ha) in the current irrigated area by 2027, despite 

the existing water gap. The purpose of this research is also to establish a comparison 

between RBA estimates for agricultural water demand, and model results will be 

provided to study the sustainability of the irrigated area expansion in the catchment.  

2 Materials and Methods  

2.1 Study area 

The CEA is located in the central north of the Iberian Peninsula, and consists of two 

adjacent sub-basins that are jointly defined as a hydrological management system by 

the Douro River Basin Authority (DRBA) (Figure 1). The stream network defined by 

the Eresma and Adaja sub-basins represents 67% of the total CEA area, while the 

watershed defined by the Cega comprises 33%. The former are regulated at the upper 

river network, while Cega is not yet regulated. 



The Eresma and Adaja sub-basin, with a total discharge of 407 hm3 yr-1, equivalent to 

63% of the total discharge capacity of the CEA and the Cega sub-basin, provides the 

remaining 37% of CEA discharge (238 hm3 yr-1). Most of the rivers in the CEA system 

are directly connected to the aquifers (IGME, 2008). The frequent descent of the water 

table level, due to overexploitation, is causing a disconnection between the riverbed 

and the aquifer. This situation is exacerbated in dry periods, where most of the rivers 

have very low flows (CHD, 2015). 

Nine major soil groups could be found in the area: Cambisols (34%), Luvisol (26%), 

Arenosols (19%), Leptosol (11.5%), Fluvisols (4%), Regosol (3%), Solonetz (1%), 

Solonchak (1%) and Gleysol (0.5%). The soil genesis is typically developed from 

moorland limestone in the northeast, Mesozoic carbonates in the headwater area and 

is detritic in the basin landfill (IGME, 2009). Sandy soils are the representative 

textures in more than 54% of the area, causing medium-high infiltration rates to 

subsurface flow to streams and recharge of groundwater bodies.  

Agriculture is the main land use, accounting for 54.1% of the total area (Figure 2), 

followed by forestry (27%), urban (12%), shrubland and pastures (6.7%), and water 

bodies (0.1%). Rainfed crops represent 63% of total agricultural land, whereas fallow 

land accounts for 31%, irrigated annual crops for 5%, and permanent crops represent 

1%.  

2.2 SWAT model 

SWAT operates on a daily time step and this allows the assessment of hydrological 

parameters that are related to certain management practices. Thus, priority areas for 

improvement of soil and water management could be identified (Kaur et al., 

2004)(Tripathi et al., 2003). The model presents a GIS-based environment (ArcSWAT) 

that is useful in defining watershed boundaries and their sub-basins. These sub-basins 

are subsequently divided into Hydrologic Response Units (HRUs), which are unique 

combinations of homogeneous land use types, soil characteristics, management 

practices and slopes (Gassman et al., 2007), and at the scale at which SWAT simulates 

the water balance. The representation of the catchment by HRUs is a simplification 



able to reproduce very detailed biophysical processes. These processes are associated 

with water dynamics, nutrient cycling, crop growth, agricultural management, 

sedimentation patterns and the implications of regulation infrastructure (Mauro et al., 

2005). SWAT provides a distributed description of hydrological processes from HRU 

to sub-basin level.  

Water balance can be defined in the watershed and at any stream point defined by the 

user (Neitsch et al., 2005). SWAT solves the water dynamics between 

infiltration/runoff ratio (SCS curve number method), evapotranspiration (land cover, 

vegetation stage and management dependency), percolation (including soil 

properties), lateral flow (topographic dependency), channel routing (main and 

tributary) and aquifer recharge relations (Moriasi et al., 2012). Complementary 

information on management operations is needed to depict global land management 

and its influence on watershed hydric behaviour (Neitsch et al., 2002). 

2.3 Model baseline setup 

The present study uses the SWAT2012_rev664 version with ArcSWAT 2012.10.19. 

Simulation is performed based on a daily time step (2004-2014). Model setup is 

summarised in Figure 3. In addition to the standard setup process, this work 

introduces some improvements in the setup related to input data to reduce model 

uncertainty. 

Detailed descriptions and sources of the data used to set up the SWAT baseline model 

are provided in Table 1. The complete data for model setup were based on (i) 

measured data (e.g. soil samples), (ii) literature values from published studies, reports 

and official documentation of RBMPs, (iii) assumptions reported in the literature (e.g. 

soil parameters based on pedotransfer functions PTF) and (iv) SWAT predefined 

databases (e.g. crop parameters). As the scale of the CEA is wide, detailed 

management schedules associated with land uses have been included to elucidate 

their impact on the global water balance. (See Table A in supplementary material for 

more detailed information).   



CEA boundaries and sub-basins were defined using a 25-m DEM (Digital Elevation 

Map). An internal sub-basin division was also performed based on interest evaluation 

points:  flow gauge locations, reservoir discharges and predefined sub-basins of DRBA. 

In total, 121 were defined for the CEA system, including 79 for the EA and 42 for the 

Cega catchment, each comprising different HRUs. 

The CEA system, with ten reservoirs, is considered a hyper-regulated system, with all 

the reservoirs located in the headwaters of the Eresma-Adaja watershed (capacity of 

81.24 hm3). Discharge data on three reservoirs representing 86.8% of the total 

capacity are available and therefore considered for the simulations: Las Cogotas (56.8 

hm3), Serones (6.3 hm3) and Pontón Alto (7.4 hm3). The discharges from reservoirs 

were included in the model, following the operation rules and their volume capacity. 

The input required was estimated and fitted by analysing the global behaviour of 

gauging discharge series during the simulation period.  

From the 20 gauging stations located in the CEA system, only two provided daily 

stream flow data for the selected period (2004-2014): Valdestillas (VFG) monitored a 

northerly outlet covering 98.6% of the Eresma-Adaja watershed; and Lastras de 

Cuellar (LCFG), located in the middle of the Cega watershed, covered just 25% of the 

total area. 

Weather data assignation is a key step in the development of a SWAT model, as any 

error introduced with the water input would propagate in the whole model. SWAT 

usually assigns the data of the nearest weather station to the sub-basin centroid, 

providing a constant value to the whole sub-basin. This could introduce a remarkable 

model input uncertainty, especially in large sub-basins where weather could be 

spatially heterogeneous in very steep reliefs. But as (Wagner et al., 2012) remarks, the 

definition of a composite climatic value by different weights using diverse 

interpolation methods significantly improves weather input for the model. This is why 

the weather data assignation was improved, including a spatial-based 

representativeness of data for each sub-basin. To do so, an implementation of the 

Thiessen Polygon Method (TPM) (Thiessen, 1911) was carried out. This method 



allows the assignment of values by weighted portion of the climate variable to the 

overlapping polygon area of each sub-basin (Figure 4). Thus, 121 artificial weather 

stations were created assigning weighted climate values to the centroid for each sub-

basin using the TPM method. 

Definition of soil properties is also a key input for SWAT. A soil taxonomic unit map is 

currently available in the area with a scale of 1:400,000 (Figure 5). However, this map 

does not include soil properties. A common practice is to use pedotranfer functions to 

assign the soil properties required to the taxonomic units, affecting the uncertainty of 

the model (Seeger, 2007). To reduce it, a soil map was created using data from a soil 

sample database with 11 soil properties (clay percentage, sand percentage, silt 

percentage, moist soil albedo, available water content, wilting point, field capacity, 

saturated hydraulic capacity, bulk density, organic carbon content and organic 

content percentage) and the Kohonen in R tool (Wehrens and Buydens, 2007). Soil 

units in SWAT are directly related with the total number of HRUs. This tool reduces 

the number of soil units without losing spatial information. The Kohonen tool is based 

on the self-organising maps (SOMs) approach to delimit soil clusters. Each cluster 

defines a soil unit with a low variability of physical properties. Spatial variation of 

each soil parameter is complex in each unit, and different soil map scale analysis is 

required (Lin et al., 2005). The resulting clusters do not directly correspond to the 

taxonomic units, although they are interlinked. A close relationship does not apply in 

this context. (Figure 5). On the one hand, SOM represents clustering of soil properties 

and on the other, the taxonomy unit represents soil pedogenesis. However, spatial 

variability of soils properties is more complex.   

To evaluate the SOM process, two performance metrics were implemented: the mean 

distance (deviation) from the cluster centroid (Grieco et al., 2017) and the Devies-

Boulding (DB) index (Davies and Bouldin, 1979). Deviation metrics define the 

algorithm that minimises an error function computed on the sum of squared distances 

for each data point in each cluster. Low DB values represent low intra- and high inter-

cluster variability, indicating a more satisfactory mathematical cluster result. The 



similar spatial distribution of clusters and taxonomic units is suitable. Therefore, this 

comparison serves to validate the SOM soils map.  

In a traditional crop rotation setup, once the HRUs are defined, each HRU is assumed 

to have a homogeneous land use type, and therefore it rotates entirely. However, 

reality does not follow HRU boundaries for crop rotation. HRUs need to be fragmented 

(HRU_FR) and crop rotation results in a mosaic of crops representing the crop plots 

year by year. The land use model setup for crop rotations was improved with respect 

to traditional rotations by activating the land use change (LUC) module. Specific 

management operations and scheduling for the HRU_FR (e.g. irrigation, fertilisation, 

etc.) were considering by adding lines in the crop database with new codes for land 

uses with different operations. This was in the case of the same crops but with 

different crop management (e.g. rainfed winter wheat “WWHT”, irrigated winter 

wheat “WWHI”, etc.). The HRU_FR considers the different land operations as an 

independent calculation. At the end, the HRU water balance values are the results of 

this land use dynamic. 

Data for crop updates were extracted from remote sensing processed images (ITACyl, 

2015). The SWAT2009 LUU tool (Pai and Saraswat, 2011) was implemented to assign 

land cover from the satellite images (2004-2014) to the corresponding spatial HRU 

(see Table B,  in supplementary material for more detailed information). This 

geospatial tool provides the required files to update the HRUs with the corresponding 

percentage (HRU_FR) of LUU (Land Use Update) on specific dates defined by the user. 

The surface flow configuration during rainfall events is related to surface roughness 

and slope. Consequently, crop rotation is essential for the runoff process. Curve 

number (CN) is an important parameter for predicting direct runoff and infiltration 

process. 

2.4 Calibration and validation 

During the modelling run process, a warm-up period must be selected in order to 

ensure the establishment of basic flow conditions for the simulations.  Following Kim 

et al., 2018, taking into account that sandy soils are predominant in the area, a one-



year period (year 2003) was selected to warm up the model. The hydrologic processes 

need to reach an equilibrium condition for better results during calibration and 

validation.  

Calibration is a procedure to reduce model output uncertainty by adjusting model 

parameters to obtain a model representation that satisfies pre-agreed criteria. In this 

research, calibration is performed by comparing the daily streamflow output for the 

period (2005-2009) with the corresponding measured values. Validation is the 

process in which the adjusted parameters were assessed in an additional period of 

time (2010-2014) to corroborate the accuracy of the adjustment, assessing model 

output uncertainty.  

Hydrological models have some parameters that cannot be measured directly (Spaaks 

and Bouten, 2013). The main measured parameter of water flow in the watersheds is 

the streamflow, which serves as reference to determine other water flows indirectly 

(Morán-Tejeda et al., 2010). In hydrology modelling, streamflow is one of the 

measures used for calibration and validation (Benedini and Tsakiris, 2013). Other 

measures such as surface runoff, ground water recharge and evapotranspiration, 

among others, are hard to measure and the data available are limited to specific points 

in time and space. 

Model calibration, validation and sensitivity analysis were performed using the 

algorithm for Sequential Uncertainty Fitting (SUFI-2). This is included in the SWAT-

CUP package (Abbaspour, 2011). This process was settled for each of the two sub-

basins of the CEA at a daily time step. SUFI-2 is an algorithm that tries to capture most 

of the measured data within the 95% prediction uncertainty (95PPU) of the model 

using the selected parameter ranges during an iteration process consisting of 300-

1000 simulations (Abbaspour et al., 2015).  

Automatic calibration processes were conducted with a previous parameter analysis 

through trial runs (10-100 simulations). During this trial, the final selected 

parameters for calibration and validation were identified by the sensitivity analysis of 

variables related with stream flow. Homogeneous flow time series lengths for both 



processes were selected to provide consistent statistical samples and to assess the 

more recent available data. Nevertheless, a good correlation during validation could 

be an erratic result due to cumulative model input uncertainties. 

2.5 Model performance evaluation 

The model’s performance was assessed through statistical indices of the SUFI2 

algorithm, a Bayesian framework to reduce the uncertainty during the sequential and 

fitting process of some objective function.  Suitable ranges for Nash-Sutcliffe efficiency 

coefficient (NSE) (Nash and Sutcliffe, 1970), coefficient of determination (R2), and 

percentage bias (PBIAS) were selected to measure the global matching and relative 

peak matching of simulated flow with SWAT (Gassman et al., 2007). 

The NSE was selected as the objective function for evaluating simulation performance. 

R2 and PBIAS are complementary statistical criteria for efficiency statistics. The NSE is 

valid for ranges between -∞ to 1, where values between 0.0 and 1.0 represent 

acceptable levels of model performance. However, while values up to 0.5 show a 

satisfactory rating, even values up to 0.65 are usually considered good results and 

values between (0.75 - 1.0) are considered very good performance (Moriasi et al., 

2007). As statistical criterion of performance, the Kling-Gupta Efficiency (KGE) was 

selected. Similar to NSE, KGE represents the correlation, bias and relative variability 

between observed and simulated values. KGE values range from -∞ to 1, and the 

optimal value is 1. 

Model uncertainty was also evaluated, including R-factor (thickness of the 95PPU 

envelop) and P-factor (as the percentage of observed data enveloped by the modelling 

results) criteria, to constrain valid parameter ranges for CEA system modelling. Both 

judge the strength of the calibration and validation processes. Desirable ranges for the 

P-factor (> 0.7) and R-factor (< 1.5) were targeted to capture most of the matching 

observed flow into the 95PPU band of the model during an iterative process of a 

defined group of simulations (Abbaspour et al., 2004).  



3 Results and Discussion 

3.1 SWAT model setup improvements 

In the case of the weather data assignment, a water input difference of around +14% 

(59mm/yr) was found between the method of weather direct assignation by centroid 

and the proposed TPM methodology (Figure 4). This is a considerable volume 

difference compared to the mean stream flow of the CEA system (EA with 57mm/yr 

and Cega River with 83 mm/yr) and to mean rainfall in CEA (427mm/yr). Other 

authors also found differences between both methods. For example, Pande et al., 

(1978) reported a water input difference of +13% from the arithmetic mean method 

with respect to the TPM method in Kings river, California. On the contrary, (Fiedler, 

2003) estimated -3% in the Cumberland Plateau (United States). This situation was 

also reported by (Strauch et al., 2012), who showed variations in model streamflow 

arround (+1,5% in calibration and +3.5% in validation) among different rainfall 

estimation methods (including the TPM). Independently of the method used for 

weather assignation, the precipitation data are one of the most significant sources of 

uncertainty of hydrology modelling with SWAT (Aouissi et al., 2013; Rouhani et al., 

2009). As other studies have reported and the current research findings support, 

rainfall datasets tend to drag most of the input model uncertainty along with them. 

This is the only parameter considered for water input in the model, especially in 

Mediterranean basins, where the precipitation varies in space and time. 

For the soil map, soil clusters for the range from 3 to 50 soil clusters were tested 

(Figure 5.). The selected set of clusters must present the lowest value between the 

sum of the normalised mean distance and the normalised DB index (Wehrens and 

Buydens, 2007). The number of soil clusters with low values for both indices was in 

the range of 13 to 19 clusters. The comparison between clusters and spatial 

taxonomic distribution serves as validation of the SOM soil clustering map for SWAT, 

noting that 16 units is the most suitable number of clusters (Figure 6). Thus, the 

number of HRUs was reduced from 34,037 to 1,000 HRUs as an improvement 

proposed by (Luo et al., 2012). This method differs from the use of taxonomic soil 

units which, in many cases, are not based on soil properties (Burrough, 1983). Using 



this number of soil clusters, a reduced number of HRUs for each sub-basin was 

obtained, even for the wide extension of the CEA. SOM is a technique increasingly used 

in water resources for different environmental datasets due to the robustness of the 

method (Kalteh et al., 2008). However, there is no evidence of the use of SOM in soil 

clustering for SWAT modelling. Several studies use a similar approach of soil clusters 

with SOM (Merdun, 2011; Rivera et al., 2015), but not for hydrological modelling 

purposes. Comparisons between taxonomic units and SOM for the SWAT model are 

expected to be included in future research.  

From the land use cover map series, more than 75,000 different crop rotation 

possibilities were found in the CEA system during the study period. To include more 

realistic crop rotations and facilitate management scheduling, the LUU field was 

updated using the SWAT2009LUU tool, considering only the nine most representative 

crops, covering in total 86% of total crops (Table 2). As previously mentioned, the 

land use update of HRUs employs the (HRU_FR) variable, which allows us to consider 

the fragmented crop rotation patterns from remote sensing. This setup proposal 

results in a composite CN value of the HRUs. From CN values, patterns associated with 

row crops, such as potatoes (data not shown), present the highest CN values (higher 

runoff potential); this situation is also true for fallow land, while the opposite is true 

for forage cover (lower runoff potential). HRUs with HRU_FR of fallow land in more 

than 30% also present high CN values, and runoff is increased during rainfall events. 

Proportional values of CN by HRU could be provided by the different land use 

composition of the HRUs.  

The model setup for improvement of land use using the SWAT LUU tool results in a CN 

envelope for the HRUs. The composite value of CN is related with the amount of 

surface runoff in a HRU scale.  The CEA watershed CN is the average of CNs of the 

HRUs.  The average of CN in CEA is 51.6, similar to mixed forest value of CN2 of the 

SCS method. In this case, the value of CN of an HRU is a result of grouped land covers. 

Normally, hydrologic models provide an insight into runoff causes and a reduced 

strategy in this way is expected to avoid soil erosion and nutrient transport (Bundy et 

al., 2008). Nevertheless, a strategy to reduce runoff is difficult to define at HRU level 



with a CN envelope, but the assessment of the runoff slowdown effect of crop patterns 

is plausible for decision makers using this approach. To this end, HRU analysis by sub-

basins is required.  Individual land use fragmentation (plot detailed crop rotation) of 

HRUs is possible by increasing the complexity and computational requirements of the 

model.  Analysis of results in the fragmented HRUs dynamics is not reported in the 

literature and their analysis is limited to the assessment of global effect at sub-basin 

scale, due to the complexity and computational requirements to consider individual 

effect of the land cover over the HRU. 

3.2 SWAT model sensitivity analysis, calibration and validation 

Following Neitsch et al. (2002), a previous analysis was performed to detect the most 

influential parameters in the streamflow calibration process.  This process reveals 

that 25 parameters are the most sensitive to stream flow changes (Table 5). 

Parameters related with water dynamics of groundwater recharge (GW_DELAY, 

REVAPMN, ESCO, SHALLST, GWQMN and ALPHA_BF), runoff (OV_N, CN2 S, SURLAG) 

and infiltration (SOL_AWC) were respectively the most sensitive in the ranking. 

Similar parameters for sensitivity ranking were found in other Mediterranean 

catchments (Galván et al., 2009; Mateus et al., 2014; Salmoral et al., 2017). As in the 

present study, they also found that the GW_DELAY parameter is one of the most 

sensitive during the streamflow calibration process. This parameter is related with 

the lateral flow configuration between the root zone and shallow aquifer connection 

to the river bed, pointing out the importance of the shallow aquifer and main channel 

relationship in sub-arid zones. This situation is also reported for other Mediterranean 

catchments in France (Sellami et al., 2014), Spain (Jimeno-Sáez et al., 2018) or Turkey 

(Karnez, 2017). 

Another sensitive parameter is CN2 (3th place in the sensitivity ranking). This 

parameter is related with runoff of the watershed.  But the use of composite values of 

CN per HRUs is complex, as it allows us to include realistic crop rotation, which makes 

it difficult to define specific measures to manage the runoff per specific land use. Some 

of the uncertainty related with the runoff component of water balance is based on 

variability of HRU definition, and analysis of single HRUs is required.  



Daily stream flow performance during calibration (2004-2010) and validation (2011-

2014) is compared in Table 4. According to the performance ratings established by 

(Moriasi et al., 2007), the VFG monitoring point fits a “very good” class with an NSE of 

0.84 (in calibration) and 0.82 (in validation). In the case of LCFG, although the values 

found are lower, it is still considered a “good” class streamflow performance. Similar 

values of NSE and R2 were also found in several SWAT hydrological calibration studies 

in Mediterranean watersheds (Dechmi et al., 2012; Galván et al., 2009; Mateus et al., 

2014; Salmoral et al., 2017). For the quality model assessment, the PBIAS is 

considered good if its value is in the ± 25% range (Abbaspour, 2011). The resulting 

PBIAS for VFG is around -10% and for LCFG is around -18%. Accordingly, model 

performance is correct, although it underestimates values during the peak flows. 

The stream flow calibration and validation shows that VFG (Figure 7) is absolutely 

influenced by the operation of the reservoirs (Las Cogotas and Pontón Alto). If 

reservoir operation is not included, no more than an R2 of 0.13 could be achieved 

(series not shown).  

It is important to note that the weather regime during the calibration and validation 

period is not balanced; the calibration was established over three wet years and the 

validation period was basically during dry years (Figure 8). Moreover, during 

validation the outflow series show a slight inaccuracy for peak events, when 

comparing observed and measured flows, resulting in underestimates. During dry 

years (2009 and 2013) these underestimations are more evident. On the other hand, 

calibration was settled with wet years (2007, 2008 and 2010). Considering the 

unbalanced weather regime in the simulation period, the statistical performance 

indices for validation were expected to be less accurate. Nevertheless, flows are well 

fitted between simulated and measured LCFG and VFG for calibration and validation. 

The majority of the unadjusted values are inside the 95PPU band. 

Another point to consider is the situation when the model simulates low flow 

measures, between no flow and 0.4 m3/s. Nonetheless, the simulated zero flow 

situations are found in the 95PPU band. Thus, simulated low flows were in part 



responsible for negative values of PBIAS. Further analysis during very low flow days 

(measured data) is necessary (Bisantino et al., 2010; Skoulikidis et al., 2017). A 

calibration based on a seasonal scheme is needed (Ricci et al., 2018) and 

differentiated dynamic baseline flow could provide a strategy to follow (Arnold et al., 

1995). Although there are some studies that report very low flows in regulated rivers 

in Europe (Kirkby et al., 2011), or in Spain (Martinez - Capel et al., 2011; Salmoral et 

al., 2017), no discussion about this condition related with PBIAS is provided.  

It should be noted that LCFG is a gauging station that only depicts 25% of the Cega 

upstream watershed. Consequently, downstream hydrology of this point is not 

gauged, and only indirect evaluation is considered. After the LCFG point is where 

agricultural water demand increases. Further studies involving a methodology for 

ungauged watersheds are necessary to validate the Cega downwater calculations of 

the SWAT model results. 

3.3 Model uncertainty 

Model uncertainty is assessed through the statistical performance indices, P-factor 

and R-factor. Those indices are correlated and a balance must be achieved during the 

calibration process. Values of approximately 0.6 for P-factor and between 0.22-0.39 

for R-factor, show the model uncertainty degree for the calibrated ranges of 

parameters. The suggested values are  >0.7 and <1.5 respectively (Abbaspour, 2013). 

Abbaspour’s work noted that for P-factor and R-factor they should be as large as 

possible, although for large and regulated basins these values could be lower. Large-

scale and very complex systems (hyper-regulated watersheds) present high variance 

due to climate conditions. P-factor and R-factor could be targeting close to the range 

values proposed by Abbaspour in 2004, but these parameters do not necessarily 

entirely explain the biophysical process. Modellers look for the balance between 

several factors: the objective function, the function weight, the initial and boundary 

conditions, and the type and length of measured data used to calibrate (Abbaspour, 

2012). Consequently, the parameter-combination band is very complex in large 

watersheds; other research at daily time scale and large watershed also refers to 

values in the range of our P-factor and R-factor results (Begou et al., 2016; Roth et al., 



2016).  Further study is needed on a sub-basin scale to expand on details to reach 

higher performance values of the uncertainties. 

3.4 Water balance 

The water balance components (Inflow, outflows and storage volumes) and values are 

represented in the schema of Figure 9, for each two sub-basins within CEA. 

The streamflow/rainfall ratio for regulated catchments is usually lower than in 

watersheds with natural flow. This statement is borne out in the present study, with a 

ratio of 0.14 for Eresma-Adaja (regulated) and 0.18 for Cega (unregulated). Similar 

values were reported for different Mediterranean basins (Merheb et al., 2016). This 

situation highlights the implications of streamflow regulation in catchments similar to 

Eresma-Adaja and Cega. Thus, reservoir regulation rules must be seasonally 

compared to maintain similar runoff ratios between regulated and unregulated 

stream regimes in these similar catchments. This could be a target to preserve the 

natural streamflow behaviour in spite of the regulation of large headwater reservoirs. 

Streamflow volume is a key element for river authorities. The model estimates a 

streamflow of 59.4 mm/yr for Eresma-Adaja and 82.5 mm/yr for Cega. Similar results 

were reported by the DURERO project (Vicente Gonzalez et al., 2016) for the whole 

Douro watershed, with a streamflow value of 60.8 mm/yr. The more accurate water 

balance in ungauged areas of the watershed provided by the present study could 

serve as complimentary information for planning purposes at the local scale. 

Runoff is a complex component, being the sum of surface runoff and the river 

baseflow. The latter is the contribution of lateral flow and the groundwater return 

flow.  In this case, the groundwater contribution to the baseflow is higher than the 

surface runoff, as shown in Table 3.  During dry years or dry seasons, the 

disconnection between riverbed and aquifer is more frequent; this causes very low 

stream flows.  The situation is evident in stream flow series and in the decrease of 

groundwater level in piezometers. 



 SWAT model results show that the CEA system is a deficit watershed. The negative 

average net balance (-850.2 mm/yr) proves it during the simulation period. The 

comparison of the potential evapotranspiration (ETP=1,192.1 mm/yr) and real 

evapotranspiration (ET= 341.9 mm/yr) shows a large water deficit (Table 3). The 

simulation results for CEA indicate on average that only 15.7% of precipitation is 

converted into surface flow. This finding indicates that all processes during the soil-

plant-atmosphere interaction (>80%) are quantitatively more relevant than surface 

flow. For this reason, the vadose zone interface is a key factor in water dynamics in 

the CEA and merits more in-depth study. For more details on simulation ratios of 

hydrophysical processes, see supplementary material Table B. 

The CEA system is a large sub-basin of the River Douro with a variety of landscapes, 

which suggest that water balance is not homogeneous in the system. Three zones 

were defined based on environmental experts’ knowledge of landscapes and water 

management (Figure 10).  SWAT model results show that Cega highlands present the 

highest rainfall in comparison of Eresma-Adaja watershed headwaters. Regarding this 

difference, it is important to note that stream fluxes are different in volume and water 

management could be different in middle and lowland areas. In addition, Cega has an 

absence of regulation infrastructures. Peak flows and flashes were more frequent in 

the Cega River; these events were reported in communication media during the 

simulation period. The Eresma-Adaja river tributary zone presents lower rainfall 

volumes, suggesting that tougher conditions of scarcity could be located in this zone. 

This suggests that agriculture in this zone is more feasible under a rainfed regime.  

In contrast, potential evapotranspiration shows a differentiated trend of higher values 

in the lowlands and lower in the headwaters. The average ETP of all land covers in the 

headwater shows a lower value compared to the lowlands, which is due to altitude, 

predominance of forest (stomatal resistance to ET) and lower temperatures during 

the spring-summer period. Moreover, real evapotranspiration values in the southern 

west of Eresma-Adaja are more affected by the recent agricultural development in this 

area, allocating a pressure in water demand in this area that affects the Eresma-Adaja 

water availability in the middle and lowlands.  



In general, surface runoff in volume is less than groundwater fluxes in both 

watersheds (Eresma-Adaja and Cega). However, this relation is true in the lowlands 

and midland, but different in the headwaters due to water movement through the soil. 

The roughness of forest and pastures in headwaters for surface runoff slows down the 

flux. These fluxes enter these shallow soils until they meet rocks and start moving by 

gravitational forces as lateral flows. This situation limits the deep aquifer recharge in 

headwaters. The opposite processes of recharge occur in the midlands, where the 

materials are sandy composites, soil depths are higher and slopes are more flattened. 

Deep aquifer recharge is higher in the Cega River than in Eresma-Adaja, as higher 

volumes of lateral flow that comes from the headwaters infiltrates the sandy soils. 

Lateral flow in headwaters of Eresma-Adaja (south west) could be increased by 

changing the land use to natural forest covers and pastures. Reservoir and agricultural 

demand in the Eresma-Adaja headwaters limit the lateral flow and the deep aquifer 

recharge in the midlands.  

Annual water balance shows that there is no water surplus to support new demands, 

including the expected 18% irrigation expansion (49 hm3/yr). Moreover, a tendency 

of decreasing precipitation is an issue that the watershed must be adapted to. Capture 

of precipitation peak events with more reservoirs, as suggested by stakeholders, will 

have a negative impact on stream flow and consequently on aquifer recharge and soil 

water scarcity of the ecosystem. In sub-arid watersheds, the reservoirs limit riverbed 

water transfer to aquifer in the downwaters, resulting in a lower water table without 

capillarity contribution to bottomland crops (Lin, 2011). This effect could be expected 

in a reduction of groundwater “revap” volume to plants. This situation in CEA could 

affect “Tierra de Pinares”, a valuable ecosystem of conifer forest (900 ha) in 

watershed midlands that are rooted connected (2 m deep) to the water table. 

3.5 CEA water demand assessment 

According to our results, 86.64% of water demand for the CEA is allocated to 

agricultural purposes. Figure 11 shows the average real evapotranspiration (ET) of 

HRUs during simulation and the area of the dominant rotation crop pattern (9 crops). 

Annual rainfed crops use on average the same water compared to the permanent 



crops, but annual rainfed crops consume this amount of water in only 5-6 months. 

Furthermore, during the rest of the year when precipitation events are more frequent, 

fallow land contributes to reduce shallow aquifer recharge. This dynamic is explained 

by the runoff being privileged in slope land > 5%. During the rotation schema, fallow 

land is characterised by the lack of surface roughness, causing a quick response with 

the precipitation-runoff process. This situation prevents a prolonged time of 

infiltration before the start of surface runoff. Vegetated cover could be used to slow 

down runoff and increase water use efficiency. Vegetated cover is a strategy to be 

included in crop rotation schemes, mainly in schemes that include annual rainfed and 

irrigated row crops for Mediterranean watersheds (Taboada-Castro et al., 2015). 

Water efficiency can be achieved, but only if annual ET of vegetated cover is 

approximately 350 mm/yr. This assertion is based on permanent crop average water 

consumption. In addition, ET for vegetated cover for inter-annual rotations could be 

approximately 16 mm/month during the fall-winter period and 42 mm/month during 

the spring-summer period.  

Irrigated crops represent the major water consumption use. A strategy to spatially 

redistribute crop area in quantity provides a feasible solution to homogenise 

agricultural water demand. Similar to the situation in rainfed crops, the CEA 

watershed needs to decrease agricultural irrigation area that uses more than 350 

mm/yr, including crops that demand less water. Focus on barley dominant patterns 

could be an insight to achieve a balanced water demand. In addition, an economic 

analysis is also needed to assess a more convenient solution to reduce agricultural 

water consumption. 

Deep aquifer simulated recharge is estimated at 2 mm/yr (15.7 hm3/yr). On average, a 

rate of 25.4 mm/yr (196.26 hm3/yr) was used for irrigation during the simulation. 

Comparing this value with the agricultural water demand established by RBMP 

(170.42 hm3), there is a difference of 26.26 hm3 (3.34 mm/yr) that could be extracted 

from aquifers. This finding indicates that possibly shallow aquifers and deep aquifers 

have been used to extract 26.26 hm3, but only 15.7 hm3 comes from renewable 

resources. The overexploitation is more associated with the groundwater bodies of 



“Los Arenales” located downstream, and it is difficult to measure global overdraft due 

to shared boundaries with other watersheds. Further developments of aquifer 

recharge could be provided by simulating the entire watershed and aquifer shares 

with SWAT and MODFLOW. 

Most of the groundwater recharge is related to wheat and pasture land cover patterns. 

In addition to aquifer recharge, groundwater quality tracking in these sandy soils is 

mandatory. Diffuse pollution of aquifer in this zone is very sensitive, and responsible 

for the poor status of the water bodies. Fertilisation operation in wheat and pasture 

improvements needs to be included in further studies on this issue. This situation is 

also related to diffuse pollution of groundwater bodies due to the fertilisation rates 

and timing. In SWAT, the CN is relatively easy to manipulate, and any strategy or 

measure to reduce runoff can be included in the model. Hence, priority strategies for 

runoff control in potato and barley are needed. See supplementary material Table C. 

4 Conclusions 

CEA, as part of Mediterranean sub-arid catchments with low precipitation rates and 

accentuated water scarcity during summer, is a fragile ecosystem and some measures 

are needed to mitigate water resources overexploitation, as commented by other 

authors (Ricci et al., 2018). 

This study shows the ability of SWAT to simulate many complex processes as well as 

the importance of including detailed land use information to achieve satisfactory 

model performance. The model can be used to guide water management decisions by 

stakeholders who have water provision targets to meet, especially in the assigning of 

more realistic agricultural water demands. Setup improvements assessed through 

global statistic indices confirm this. Land use and soils are the most important data for 

the HRUs definition step; any effort to achieve more accurate data and maps will 

reduce the model uncertainty. The model in a daily time step has closely simulated the 

observation streamflow. However, calibration of the SWAT model with very low flows 

is still under study, as intermittent zero flows occurred during simulations with low 

flows and observation values kept measures under 0.1 m3/s.  



Flow regulation and infrastructure, such as reservoirs and artificial aquifer recharge, 

were made to respond to the agricultural demand in the CEA system. These are 

elements that define a stream’s hydric behaviour in meagre flow watersheds such as 

the CEA. Any improvement to reduce agricultural water demand is a factor that 

directly increases availability of stream flow. Flow stream increment could be 

achieved by a redefinition of operating rules for reservoir discharge and reduced 

volumes for artificial aquifer recharge. All measures addressing the reduction of net 

irrigation land, deficit irrigation strategies, and less water-demanding crops, among 

others, are suitable elements to mitigate drought periods with less economic impact. 

The main effort to preserve water resources in the CEA under the current water 

deficit state (very low flows at the outlet) must be directed to soil conservation 

strategy, due to the importance to water transfer to vegetation and to aquifer 

recharge. A reduction in water consumption of crop vegetation could contribute 

directly to increased water availability in stream flows as lateral and return flows. The 

increase in vegetated covers in fallow areas during (fall-winter) period in slopes > 5% 

could help slow down runoff and allow an increase in infiltration time and rates. Thus, 

the increment of water flux to aquifer recharge could allow the lag time of subsurface 

flow to streams. Further analysis is needed in headwaters through the application of 

land use scenarios in this sense. 

Finally, many applications are foreseen, such as conducting policy and impact studies, 

using the model for climate and LUC studies and analysing the implications of inter-

sub-basin transfers, among others.  

Acknowledgements 

Funding for this work was provided by MINECO Nº PCIN-2014-080 and Nº PCIN-

2014-085. The support provided by CEIGRAM (Centro de Estudios e Investigación para 

la Gestión de Riesgos Agrarios y Medioambientales) and IMDEA Water Institute is fully 

appreciated. Comments and suggestions provided by three anonymous reviewers 

significantly contributed to improving the flow and overall understanding of the 

manuscript.  



References  
Abbaspour, K.C., 2013. SWAT-CUP 2012: SWAT calibration and uncertainty programs–a user 

manual. Eawag Dübendorf, Switz. 103. 

Abbaspour, K.C., 2011. Swat-Cup2: SWAT Calibration and Uncertainty Programs Manual 
Version 2, Department of Systems Analysis, Integrated Assessment and Modelling 
(SIAM). 

Abbaspour, K.C., Johnson, C.A., van Genuchten, M.T., 2004. Estimating Uncertain Flow and 
Transport Parameters Using a Sequential Uncertainty Fitting Procedure. Vadose Zo. J. 3, 
1340–1352. 

Abbaspour, K.C., Rouholahnejad, E., Vaghefi, S., Srinivasan, R., Yang, H., Kløve, B., 2015. A 
continental-scale hydrology and water quality model for Europe: Calibration and 
uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 524, 733–752. 
https://doi.org/https://doi.org/10.1016/j.jhydrol.2015.03.027 

Antequera, C.M., Gamo, R.M., Rubio, J.M., 2014. Estudios preliminares para el diseño de una 
instalación de recarga artificial en la zona oriental del acuífero de “El Carracillo, Segovia.” 
Boletín geológico y Min. 125, 187–202. 

Aouissi, J., Benabdallah, S., Chabaâne, Z.L., Cudennec, C., 2013. Sensitivity analysis of SWAT 
model to the spatial rainfall distribution and watershed subdivision in streamflow 
simulations in the Mediterranean context: A case study in the Joumine watershed. 
Tunisia, in: 2013 5th International Conference on Modeling, Simulation and Applied 
Optimization (ICMSAO). pp. 1–6. https://doi.org/10.1109/ICMSAO.2013.6552706 

Arnold, J., Srinivasan, R., Muttiah, R., Williams, J., 1998. Large area hydrologic modeling and 
assessment - Part 1: Model development. J. Am. Water Resour. Assoc. 34, 73–89. 

Arnold, J.G., Allen, P.M., Muttiah, R., Bernhardt, G., 1995. Automated Base Flow Separation and 
Recession Analysis Techniques. Ground Water 33, 1010–1018. 
https://doi.org/10.1111/j.1745-6584.1995.tb00046.x 

Ashraf Vaghefi, S., Mousavi, S.J., Abbaspour, K.C., Srinivasan, R., Arnold, J.R., 2015. Integration 
of hydrologic and water allocation models in basin-scale water resources management 
considering crop pattern and climate change: Karkheh River Basin in Iran. Reg. Environ. 
Chang. 15, 475–484. https://doi.org/10.1007/s10113-013-0573-9 

Begou, J., Jomaa, S., Benabdallah, S., Bazie, P., Afouda, A., Rode, M., 2016. Multi-Site Validation 
of the SWAT Model on the Bani Catchment: Model Performance and Predictive 
Uncertainty. Water 8, 178. https://doi.org/10.3390/w8050178 

Benedini, M., Tsakiris, G., 2013. Model Calibration and Verification BT  - Water Quality 
Modelling for Rivers and Streams, in: Benedini, M., Tsakiris, G. (Eds.), . Springer 
Netherlands, Dordrecht, pp. 223–229. https://doi.org/10.1007/978-94-007-5509-3_18 

Bisantino, T., Gentile, F., Milella, P., Liuzzi, G.T., 2010. Effect of Time Scale on the Performance 
of Different Sediment Transport Formulas in a Semiarid Region. J. Hydraul. Eng. 136, 56–
61. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000125 

Bundy, L.G., Mallarino, A.P., Good, L.W., 2008. 12. Field-Scale Tools for Reducing Nutrient 



Losses to Water Resources. 

Burrough, P.A., 1983. Multiscale sources of spatial variation in soil. I. The application of fractal 
concepts to nested levels of soil variation. J. soil Sci. 34, 577–597. 

Calbó, J., 2010. Possible Climate Change Scenarios with Specific Reference to Mediterranean 
Regions BT  - Water Scarcity in the Mediterranean: Perspectives Under Global Change, in: 
Sabater, S., Barceló, D. (Eds.), . Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 1–13. 
https://doi.org/10.1007/698_2009_28 

CHD, 2015. Plan Hidrológico de la Demarcación Hidrográfica del Duero 2015-2021. 

Davies, D.L., Bouldin, D.W., 1979. A cluster separation measure. IEEE Trans. Pattern Anal. 
Mach. Intell. 224–227. 

Dechmi, F., Burguete, J., Skhiri, A., 2012. SWAT application in intensive irrigation systems: 
model modification, calibration and validation. J. Hydrol. 470, 227–238. 

Dodds, F., Bartram, J., 2016. The water, food, energy and climate Nexus: Challenges and an 
Agenda for action. Routledge. 

European Comission, 2012. Report on the Review of the European Water Scarcity and 
Droughts Policy. 

European Environment Agency, 2015. The european environment : state and outlook 2015 : 
synthesis report. Copenhagen European Environment Agency, Copenhagen. 

EUROSTAT, 2017. Annual freshwater abstraction by source and sector in Europe. 

Fiedler, F., 2003. Simple, Practical Method for Determining Station Weights Using Thiessen 
Polygons and Isohyetal Maps. J. Hydrol. Eng. 8, 219–221. 
https://doi.org/10.1061/(ASCE)1084-0699(2003)8:4(219) 

Galván, L., Olías, M., de Villarán, R.F., Santos, J.M.D., Nieto, J.M., Sarmiento, A.M., Cánovas, C.R., 
2009. Application of the SWAT model to an AMD-affected river (Meca River, SW Spain). 
Estimation of transported pollutant load. J. Hydrol. 377, 445–454. 

Gassman, P.W., Reyes, M.R., Green, C.H., Arnold, J.G., 2007. The Soil and Water Assessment 
Tool: Historical Development, Applications, and Future Research Directions. Iowa State 
Univ. 

Giorgi, F., Lionello, P., 2008. Climate change projections for the Mediterranean region. Glob. 
Planet. Change 63, 90–104. 
https://doi.org/https://doi.org/10.1016/j.gloplacha.2007.09.005 

Grieco, A., Pacella, M., Blaco, M., 2017. On the application of text clustering in Engineering 
Change process. Procedia CIRP 62, 187–192. 

Guzinski, R., Kass, S., Huber, S., Bauer-Gottwein, P., Jensen, I.H., Naeimi, V., Doubkova, M., Walli, 
A., Tottrup, C., 2014. Enabling the use of earth observation data for integrated water 
resource management in Africa with the water observation and information system. 
Remote Sens. 6, 7819–7839. 

Hoff, H., Iceland, C., Kuylenstierna, J., te Velde, D.W., 2012. Managing the Water-Land-Energy 



Nexus for Sustainable Development. Chronicle 49. 

IGME, 2009. Identificación y caracterización de la interrelación que se presenta entre aguas 
subterráneas, cursos fluviales, descargas por manantiales, zonas húmedas y otros 
ecosistemas naturales de especial interés hídrico. Demarcación Hidrográfica 021 Duero. 
SISTEM. 

IGME, 2008. Integración de las masas de agua subterranea en el modelo de gestión de la 
cuenca hidrográfica del Duero. Determinación de los parámetros de simulación 
(coeficientes de agotamiento). 

Jimeno-Sáez, P., Senent-Aparicio, J., Pérez-Sánchez, J., Pulido-Velazquez, D., 2018. A 
comparison of SWAT and ANN models for daily runoff simulation in different climatic 
zones of peninsular Spain. Water (Switzerland) 10, <xocs:firstpage xmlns:xocs=""/>. 
https://doi.org/10.3390/w10020192 

Kalogeropoulos, K., Chalkias, C., Pissias, E., Karalis, S., 2011. Application of the SWAT model for 
the investigation of reservoirs creation BT  - Advances in the Research of Aquatic 
Environment: Volume 2, in: Lambrakis, N., Stournaras, G., Katsanou, K. (Eds.), . Springer 
Berlin Heidelberg, Berlin, Heidelberg, pp. 71–79. https://doi.org/10.1007/978-3-642-
24076-8_9 

Kalteh, A.M., Hjorth, P., Berndtsson, R., 2008. Review of the self-organizing map (SOM) 
approach in water resources: Analysis, modelling and application. Environ. Model. Softw. 
23, 835–845. https://doi.org/https://doi.org/10.1016/j.envsoft.2007.10.001 

Karnez, E., 2017. Modeling Agricultural Land Management to Improve Understanding of 
Nitrogen Leaching in an Irrigated Mediterranean Area in Southern Turkey, in: Sagir, H. 
(Ed.), . IntechOpen, Rijeka, p. Ch. 7. https://doi.org/10.5772/65809 

Kaur, R., Singh, O., Srinivasan, R., Das, S.N., Mishra, K., 2004. Comparison of a Subjective and a 
Physical Approach for Identification of Priority Areas for Soil and Water Management in 
a Watershed – A Case Study of Nagwan Watershed in Hazaribagh District of Jharkhand, 
India. Environ. Model. Assess. 9, 115–127. 
https://doi.org/10.1023/B:ENMO.0000032094.92482.6f 

Kim, K.B., Kwon, H.-H., Han, D., 2018. Exploration of warm-up period in conceptual 
hydrological modelling. J. Hydrol. 556, 194–210. 

Kirkby, M., Gallart, F., Kjeldsen, T., Irvine, B., Froebrich, J., Porto, A., De Girolamo, A., Team,  the, 
2011. Classifying low flow hydrological regimes at a regional scale. Hydrol. Earth Syst. 
Sci. 15, 3741. https://doi.org/10.5194/hess-15-3741-2011 

Laurent, F., Ruelland, D., 2011. Assessing impacts of alternative land use and agricultural 
practices on nitrate pollution at the catchment scale. J. Hydrol. 409, 440–450. 

Lin, H., Wheeler, D., Bell, J., Wilding, L., 2005. Assessment of soil spatial variability at multiple 
scales. Ecol. Modell. 182, 271–290. 

Lin, Q., 2011. Influence of dams on river ecosystem and its countermeasures. J. Water Resour. 
Prot. 3, 60. 

Luo, Y., Ficklin, D.L., Zhang, M., 2012. Approaches of soil data aggregation for hydrologic 



simulations. J. Hydrol. 464–465, 467–476. 
https://doi.org/10.1016/j.jhydrol.2012.07.036 

Martinez - Capel, F., Belmar, O., Velasco, J., 2011. Hydrological classification of natural flow 
regimes to support environmental flow assessments in intensively regulated 
Mediterranean rivers, Segura River Basin (Spain) 47. https://doi.org/10.1007/s00267-
011-9661-0 

Mateus, M., Almeida, C., Brito, D., Neves, R., 2014. From Eutrophic to Mesotrophic: Modelling 
Watershed Management Scenarios to Change the Trophic Status of a Reservoir. Int. J. 
Environ. Res. Public Health 11, 3015–3031. https://doi.org/10.3390/ijerph110303015 

Mauro, D.L., G., A.J., Raghavan, S., 2005. Effect of GIS data quality on small watershed stream 
flow and sediment simulations. Hydrol. Process. 19, 629–650. 
https://doi.org/10.1002/hyp.5612 

Merdun, H., 2011. Self-organizing map artificial neural network application in 
multidimensional soil data analysis. Neural Comput. Appl. 20, 1295–1303. 
https://doi.org/10.1007/s00521-010-0425-1 

Merheb, M., Moussa, R., Abdallah, C., Colin, F., Perrin, C., Baghdadi, N., 2016. Hydrological 
response characteristics of Mediterranean catchments at different time scales: a meta-
analysis. Hydrol. Sci. J. 61, 2520–2539. 

Morán-Tejeda, E., Ceballos-Barbancho, A., Llorente-Pinto, J.M., 2010. Hydrological response of 
Mediterranean headwaters to climate oscillations and land-cover changes: The 
mountains of Duero River basin (Central Spain). Glob. Planet. Change 72, 39–49. 

Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., Veith, T.L., 2007. Model 
evaluation guidelines for systematic quantification of accuracy in watershed simulations. 
Trans. ASABE 50, 885–900. 

Moriasi, D.N., Rossi, C.G., Arnold, J.G., Tomer, M.D., 2012. Evaluating hydrology of the Soil and 
Water Assessment Tool (SWAT) with new tile drain equations. J. soil water Conserv. 67, 
513–524. 

Narsimlu, B., Gosain, A., Chahar, B., 2013. Assessment of Future Climate Change Impacts on 
Water Resources of Upper Sind River Basin, India Using SWAT Model. An Int. J. - Publ. 
Eur. Water Resour. Assoc. 27, 3647–3662. https://doi.org/10.1007/s11269-013-0371-7 

Nash, J.E., Sutcliffe, J. V, 1970. River flow forecasting through conceptual models part I — A 
discussion of principles. J. Hydrol. 10, 282–290. 
https://doi.org/https://doi.org/10.1016/0022-1694(70)90255-6 

Neitsch, S.L., Arnold, J.G., Kiniry, J.R. e a1, Srinivasan, R., Williams, J.R., 2002. Soil and water 
assessment tool user’s manual version 2000. GSWRL Rep. 202. 

Neitsch, S.L., Arnold, J.G., Kiniry, J.R., Srinivasan, R., Williams, J.R., 2005. Soiland Water 
Assessment Tool, Theorical Documentation Version 2005. Grassland Soiland Water 
Research Laboratory. Agric. Res. Serv. Blackl. Res. Center-Texas Agric. Exp. Station. USA. 

Pai, N., Saraswat, D., 2011. SWAT2009_LUC: A Tool to Activate the Land Use Change Module in 
SWAT 2009. Trans. ASABE v. 54, 1649-1658–2011 v.54 no.5. 



Pande, G., Al-Mashidani, B.B., Lal, B.B., 1978. TECHNIQUE FOR THE DETERMINATION OF 
AREAL AVERAGE RAINFALL. J Phys D Appl Phys 23, 445–453. 

Psomas, A., Dagalaki, V., Panagopoulos, Y., Konsta, D., Mimikou, M., 2016. Sustainable 
Agricultural Water Management in Pinios River Basin Using Remote Sensing and 
Hydrologic Modeling. Procedia Eng. 162, 277–283. 
https://doi.org/https://doi.org/10.1016/j.proeng.2016.11.059 

Rafael, M., Àngel, R.-A.M., Carlos, G.J., Joan, A., 2010. El Niño Southern Oscillation and climate 
trends impact reservoir water quality. Glob. Chang. Biol. 16, 2857–2865. 
https://doi.org/10.1111/j.1365-2486.2010.02163.x 

Ricci, G.F., De Girolamo, A.M., Abdelwahab, O.M.M., Gentile, F., 2018. Identifying sediment 
source areas in a Mediterranean watershed using the SWAT model. L. Degrad. Dev. 29, 
1233–1248. https://doi.org/10.1002/ldr.2889 

Rivera, D., Sandoval, M., Godoy, A., 2015. Exploring soil databases: a self-organizing map 
approach. Soil Use Manag. 31, 121–131. https://doi.org/10.1111/sum.12169 

Roth, V., Nigussie, T., Lemann, T., 2016. Model parameter transfer for streamflow and 
sediment loss prediction with SWAT in a tropical watershed. Environ. Earth Sci. 75, 1–13. 
https://doi.org/10.1007/s12665-016-6129-9 

Rouhani, H., Willems, P., Feyen, J., 2009. Effect of watershed delineation and areal rainfall 
distribution on runoff prediction using the SWAT model. Hydrol. Res. 40, 505–519. 

Salmoral, G., Willaarts, B.A., Garrido, A., Guse, B., 2017. Fostering integrated land and water 
management approaches: Evaluating the water footprint of a Mediterranean basin under 
different agricultural land use scenarios. Land use policy 61, 24–39. 
https://doi.org/https://doi.org/10.1016/j.landusepol.2016.09.027 

Seeboonruang, U., 2012. A statistical assessment of the impact of land uses on surface water 
quality indexes. J. Environ. Manage. 101, 134–142. 
https://doi.org/https://doi.org/10.1016/j.jenvman.2011.10.019 

Seeger, M., 2007. Uncertainty of factors determining runoff and erosion processes as 
quantified by rainfall simulations. CATENA 71, 56–67. 
https://doi.org/https://doi.org/10.1016/j.catena.2006.10.005 

Sellami, H., Jeunesse, I., Benabdallah, S., Baghdadi, N., Vanclooster, M., 2014. Uncertainty 
analysis in model parameters regionalization: a case study involving the SWAT model in 
Mediterranean catchments (Southern France). Hydrol. Earth Syst. Sci. 18, 2393. 
https://doi.org/10.5194/hess-18-2393-2014 

Skoulikidis, N.T., Sabater, S., Datry, T., Morais, M.M., Buffagni, A., Dörflinger, G., Zogaris, S., Del 
Mar Sánchez-Montoya, M., Bonada, N., Kalogianni, E., Rosado, J., Vardakas, L., De 
Girolamo, A.M., Tockner, K., 2017. Non-perennial Mediterranean rivers in Europe: Status, 
pressures, and challenges for research and management. Sci. Total Environ. 577, 1–18. 
https://doi.org/10.1016/j.scitotenv.2016.10.147 

Spaaks, J.H., Bouten, W., 2013. Resolving structural errors in a spatially distributed hydrologic 
model using ensemble Kalman filter state updates. Hydrol. Earth Syst. Sci. 17, 3455–
3472. 



Strauch, M., Bernhofer, C., Koide, S., Volk, M., Lorz, C., Makeschin, F., 2012. Using precipitation 
data ensemble for uncertainty analysis in SWAT streamflow simulation. J. Hydrol. 414–
415, 413–424. https://doi.org/https://doi.org/10.1016/j.jhydrol.2011.11.014 

Taboada-Castro, M.M., Rodríguez-Blanco, M.L., Palleiro, L., Taboada-Castro, M.T., 2015. Soil 
crusting and surface runoff in agricultural land in Galicia (NW Spain). Spanish J. Soil Sci. 
5. 

Tharme, R.E., 2003. A global perspective on environmental flow assessment: emerging trends 
in the development and application of environmental flow methodologies for rivers. 
River Res. Appl. 19, 397–441. https://doi.org/10.1002/rra.736 

Thiessen, A.H., 1911. Precipitation averages for large areas. Mon. Weather Rev. 39, 1082–
1089. 

Tripathi, M.P., Panda, R.K., Raghuwanshi, N.S., 2003. Identification and Prioritisation of Critical 
Sub-watersheds for Soil Conservation Management using the SWAT Model. Biosyst. Eng. 
85, 365–379. https://doi.org/10.1016/S1537-5110(03)00066-7 

Ullrich, A., Volk, M., 2009. Application of the Soil and Water Assessment Tool (SWAT) to 
predict the impact of alternative management practices on water quality and quantity. 
Agric. Water Manag. 96, 1207–1217. https://doi.org/10.1016/j.agwat.2009.03.010 

Vicente Gonzalez, D.J., Rodríguez Sinobas, L., Garrote de Marcos, L., Sánchez Calvo, R., 2016. 
Application of the System of Environmental Economic Accounting for Water SEEAW to 
the Spanish part of the Duero basin: lessons learned. Sci. Total Environ. ISSN 0048-9697, 
2016-09, Vol. 563-4. 

Wagner, P.D., Fiener, P., Wilken, F., Kumar, S., Schneider, K., 2012. Comparison and evaluation 
of spatial interpolation schemes for daily rainfall in data scarce regions. J. Hydrol. 464–
465, 388–400. https://doi.org/10.1016/j.jhydrol.2012.07.026 

Wang, G., Mang, S., Cai, H., Liu, S., Zhang, Z., Wang, L., Innes, J.L., 2016. Integrated watershed 
management: evolution, development and emerging trends. J. For. Res. 27, 967–994. 
https://doi.org/10.1007/s11676-016-0293-3 

Wehrens, R., Buydens, L.M.C., 2007. Self- and Super-organizing Maps in R: The kohonen 
Package. J. Stat. Softw. 21. https://doi.org/10.18637/jss.v021.i05 

Zhao, A., Zhu, X., Liu, X., Pan, Y., Zuo, D., 2016. Impacts of land use change and climate 
variability on green and blue water resources in the Weihe River Basin of northwest 
China. CATENA 137, 318–327. 
https://doi.org/https://doi.org/10.1016/j.catena.2015.09.018 

 

 

 

 

 



Table 1. Model input data sources for Cega-Eresma-Adaja (CEA) SWAT baseline model. 

Data Description/properties Source of data 

Digital Elevation 

model (DEM) 
25 m resolution. Map used to define two slope classes 0-3 and >3% 

MDT25, LiDAR-PNOA by © 

Instituto Geográfico Nacional 

Flow gauges 
Daily discharge (2004-2014) for 2 points: Valdestillas  VFG (Adaja river) 

and Lastras de Cuellar LCFG (Cega river) 
CHD – Douro’s RBA; CEDEX 

Reservoirs 
Three  reservoirs. Las Cogotas (58,6 hm3), Pontón Alto (7,4 hm3) and 

Serones (6,3 hm3) 
CHD – Douro’s RBA 

Land use 
20 m resolution, 31 basic land-cover categories. Including 18 different 

crops. 
ITACyL, 2013 

Soil characteristics 

16 soil types were determined using 407 soil samples and introducing 

(Saulniers et al, 1997) soil depth empirical model to obtain a total of 92 

soil different units.  

ITACyL, 2013 

Weather data 

Data for 2004 - 2014. Precipitation, daily maximum and minimum 

temperature, daily global solar radiation, surface wind speed, daily mean 

relative humidity. 

AEMET 

Agricultural 

management practices 

Surveys from ITACyL for INFORIEGO services. Database for irrigation 

districts with free access. 
ITACyL, 2013 

  



Table 2. Cega-Eresma-Adaja (CEA) main crop rotation patterns during simulation period 

Crop dominant  Number of crop patterns Percentage Area [ha] CN1 

Barley 19.762 26,11% 128.354 64,56 

Wheat 16.992 22,45% 109.940 63,13 

Fallow 7.493 9,90% 48.481 80,07 

Sunflower 7.183 9,49% 46.474 67,79 

Other cereals 5.480 7,24% 35.455 64,07 

Horticulture 3.096 4,09% 20.029 67,00 

Bean legumes 2.006 2,65% 12.977 67,80 

Forrages 1.809 2,39% 11.704 35,00 

Peas 1.082 1,43% 7.003 67,00 

Others crops* 10.786 14,25% 150.010 ----* 

1 Average calibrated of Curve Number (CN) value for different crops 

*Other crops include different land covers (forest and 17 other crops with different CN). 

  



Table 3. Water balance components for Eresma-Adaja and Cega watersheds with SWAT model. 

 

Type 

  

Period Calibration Validation 

Simulation 

mean values 

Hydrologic 

Year 
2005 2006 2007 2008 2009 2010 2011 2012 2013 

year type Average Average wet wet dry wet average average dry 

Eresma-

Adaja 

Precipitation 368.2 424.0 491.0 583.6 326.5 485.8 374.1 386.4 303.5 415.9 

ETP 1346.8 1272.1 1162.4 1154.3 1315.1 1193.8 1298.0 1301.1 690.5 1192.7 

Deficit 978.6 848.1 671.4 570.7 988.6 708.0 923.9 914.7 387.0 776.8 

ET 269.5 413.8 409.3 389.7 332.2 363.6 362.1 294.0 219.2 339.3 

Flow 29.8 49.4 68.4 81.5 59.9 59.5 57.0 33.9 95.2 59.4 

VFG-Flowobs 29.31 48.54 67.2 80.09 58.89 58.44 56.04 33.28 80.79 57.0 

Surface runoff 13.2 15.4 24.1 25.9 10.2 16.8 13.6 14.4 11.3 16.1 

Baseflow 16.6 34 44.3 55.6 49.7 42.7 43.4 19.5 83.9 43.3 

Deep aquifer 

recharge 
3.05 3.51 4.07 4.83 2.70 4.03 3.1 3.2 2.51 2.81 

Soil storage 13.45 15.48 17.93 21.31 11.92 17.74 13.66 14.11 11.08 15.19 

 
SAV + Reservoir 

regulation 
52.4 -58.19 -8.7 86.26 -80.22 40.94 -61.76 41.19 -24.49 -0.8 

Cega 

Precipitation 366.7 473.5 498.4 583.5 386.5 558.2 373.0 404.3 376.0 446.7 

ETP 1345.2 1248.1 1133.5 1127.4 1303.9 1176.3 1334.7 1333.0 717.3 1191.1 

Deficit 978.5 774.6 635.1 543.9 917.4 618.1 961.7 928.7 341.3 744.3 

ET 274.7 420.9 425.9 394.9 325.1 371.5 355.0 319.4 235.2 346.9 

Flow 34.4 64.0 90.9 106.5 86.6 118.7 60.9 42.9 137.7 82.5 

LCFG-Flowobs 144.42 269.14 382.02 447.77 363.89 498.76 255.74 180.11 507.83 338.85 

Surface runoff 12.3 15.6 20.2 20.7 11.2 17.3 11.6 12.6 12.7 14.9 

Baseflow 22.1 48.4 70.7 85.8 75.4 101.4 49.3 30.3 125 67.6 

Deep aquifer 

recharge 
4.23 5.46 5.75 6.73 4.46 6.44 4.3 4.66 4.33 5.15 

Soil storage 13.39 17.29 15.56 21.31 14.11 20.39 13.62 14.76 13.73 16.31 

 SAV 39.28 -34.15 -39.71 54.06 -43.77 41.17 0.08 65.48 122.74 78.34 

Values in [mm/yr] 

Note: VFG-Flowobs: observed flow at Valdestillas Flow gauge; LCFG-Flowobs: observed flow at 

Lastras de Cuellar Flow gauge; ETP: potential evapotranspiration; ET: evapotranspiration; Flow: 

simulated flow; Surface runoff: simulated surface runoff; SAV: Shallow aquifer variation. 

  



Table 4. Daily calibration and validation statistics for SWAT model. 

 

Statistical Index 
VFG LCFG 

Calibration Validation Calibration Validation 

R2 0.86 
(very good) 

0.85 
(very good) 

0.69 
(good) 

0.67 
(good) 

NS 
0.84 

(very good) 
0.82  

(very good) 
0.65 

(good) 
0.61  

(good) 

     

bR2 0.70 0.61 0.70 0.61 

PBIAS 
-10.8 

(good) 

-9.1 

(very good) 

-15,8 

(good) 

-18.6 

(good) 

     

KGE 0.84 0.86 0.70 0.71 

     

p_factor 0.63 0.61 0.57 0.53 

     
R_factor 0.39 0.37 0.22 0.21 

  



Table 5. Summary of calibration parameters implemented with SUFI2. 

Parameter Definition Units 
Default 

range 

Calibrated 

value 

Sensitivity 

Ranking 
t-stat P-value 

GW_DELAY.gw Groundwater delay days 30 – 450 218.79 1 6.043 0.000 

OV_N.hru 
Manning’s “n” value for 

overland flow 
na 0.01 – 30 2.13 2 -3.168 0.002 

CN2.mgt 
SCS runoff curve number for 

moisture condition 2 
na (-0.2) – 0.2 0.32 3 -2.903 0.004 

REVAPMN.gw 

Threshold depth of water in the 

shallow aquifer for “REVAP” to 

occur 

mm 0 – 500 534.74 4 -1.421 0.159 

SOL_AWC.sol 
Available water capacity of the 

soil layer 
mm/mm 0 – 0.5 0.54 5 -1.291 0.200 

SURLAG.bsn Surface runoff lag time days 0 – 24 10.41 6 -1.039 0.301 

ESCO.hru 
Soil evaporation compensation 

factor 
na 0 – 1 0.23 7 0.994 0.324 

SHALLST.gw 
Initial depth of water in the 

shallow aquifer 
mm 0 – 1000 612.32 8 -0.952 0.344 

GWQMN.gw 

Threshold depth of water in the 

shallow aquifer required for 

return flow to occur 

mm 0 – 5000 1.06 9 -0.925 0.357 

ALPHA_BF.gw Baseflow alpha factor days 0 – 1 0.057 10 -0.884 0.379 

LAT_TIME.hru Lateral flow travel time days 0 – 180 160.84 11 -0.843 0.401 

SLSOIL.hru 
Slope length for lateral 

subsurface flow 
mm 0 – 150 65.97 12 -0.723 0.472 

HRU_SLP.hru Average slope steepness m/m 0 – 0.6 0.28 13 0.688 0.494 

CH_K2.rte 
Effective hydraulic conductivity 

in main channel alluvium 
mm/hr 0 – 500 181.17 14 -0.636 0.527 

SOL_z.sol 
Depth from soil surface to 

bottom of layer 
mm 0 – 1000 776.57 15 0.544 0.610 

CH_K1.sub 
Effective hydraulic conductivity 

in tributary channel alluvium 
mm/hr 0 – 300 24.10 16 -0.607 0.546 

SLSUBBSN.hru Average slope length m 10 – 150 137.96 17 -0.595 0.553 

CANMX.hru Maximum canopy storage mm 0 – 100 57.62 18 0.387 0.699 

CH_N2.rte 
Manning’s “n” value for the 

main channel 
na 0 – 0.3 0.10 19 0.387 0.700 

CH_N1.sub 
Manning’s “n” value for the 

tributary channels 
na 0.01 – 30 5.54 20 -0.377 0.707 

EVRCH.bsn 
Reach evaporation adjustment 

factor 
na 0.5 – 1 0.85 21 -0.179 0.857 

GW_REVAP.gw 
Groundwater “REVAP” 

coefficient 
na 0 – 0.3 0.08 22 0.166 0.868 

RCHRG_DP.gw 
Deep aquifer percolation 

fraction 
fraction 0 – 1 0.20 23 -0.076 0.939 

EPCO.hru 
Plant uptake compensation 

factor 
na 0 – 1 0.39 24 0.041 0.967 

PLAPS.sub Precipitation lapse rate mm/km 0 – 100 77.58 25 -0.016 0.987 

 

 

 



Figure 1. Location of the study area in Douro’s River basin, river network and flow gauges.  

  



 

Figure 2. Land use of CEA system  

 

  



 

Figure 3. SWAT model development flowchart main steps and implemented software. 

  



 

Figure 4. Weather data definition to CEA subbasins (A) and Thiessen Polygon Method (TPM) to 

define weather stations for SWAT model (B). Weather stations assigned by subbasin centroid for 

SWAT model.



 

Figure 5. Soil and land use classifications in Cega-Eresma-Adaja (CEA) watershed, colors show 

the soil taxonomy relationship between the different scales. (A) FAO (HWSD) Soil map at scale 

1:1,000,000 (14 soil units), (B) Soils map of CyL at scale 1:400,000 (291 soil units), (C) ITACyL 

soil samples sites, (D) SOM soil clusters (16 clusters) with depth differentiation (92 soil units) at 

20m resolution. 



 

Figure 6. Comparison of D-B index and mean Distance of soil map clustering in Self-Organizing 

Map (SOM) procedure.



 

 

 

 

Figure 7. Observed and simulated daily streamflow using SWAT model for (a) VFG, (b) LCFG 

 

 

 

 

0

20

40

60

80

100

120

140

0 365 730 1095 1460 1825 2190 2555 2920 3285

S
tr

e
a
m

 f
lo

w
 o

u
t 

[m
3
/s

]

(a) VFG

Observed

Simulated

0

10

20

30

40

50

60

0 365 730 1095 1460 1825 2190 2555 2920 3285

S
tr

e
a

m
 F

lo
w

 o
u

t 
[m

3
/s

]

(b) LCFG

Observed

Simulated



 

 

Figure 8. Yearly watershed total volumes outlet and ecological flow in comparison to precipitation 

for (a) Eresma0Adaj watershed and (b) Cega watershed. 

  

2005 2006 2007 2008 2009 2010 2011 2012 2013

EA_vol_mm/ano 29.8 49.4 68.4 81.5 59.9 59.5 57.0 33.9 95.2

E-flow Drought situa 2.77 2.77

E-flow Normal situa 5.53 5.53 5.53 5.53 5.53 5.53 5.53

Precipitation [mm] 368.2 424.0 491.0 583.6 326.5 485.8 374.1 386.4 303.5
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(a) Eresma-Adaja watershed outlet volumes

2005 2006 2007 2008 2009 2010 2011 2012 2013

Cega_vol_mm/ano 34.4 64.0 90.9 106.5 86.6 118.7 60.9 42.9 137.7

E-flow Drought situa 2.02 2.02

E-flow Normal situa 4.03 4.03 4.03 4.03 4.03 4.03 4.03

Precipitation [mm] 366.7 473.5 498.4 583.5 386.5 558.2 373.0 404.3 376.0
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(b) Cega watershed outlet volumes



 

 

Figure 9. The SWAT model balance components of CEA subbasins. Cega river (left) and 

EA(Eresma-Adaja) (right). 

  



 

Figure 10. Mean annual water balance components of CEA subbasins. Values in [mm]. ET (real 

evapotranspiration), ETP (potential evapotranspiration), SURQ (surface runoff), LAT_Q(lateral 

flow), GW_Q(ground water recharge). Headwaters in the south and low lands in north-west. 
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 1 

Figure 11. Summary of land use water demand in Cega-Eresma-Adaja (CEA) watershed simulated 2 

with SWAT: Evapotranspiration (ET), mean ET and water volume (Volume).  3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

0

100

200

300

400

500

600

700

310

320

330

340

350

360

370

380

390

400

410

V
o

lu
m

e
 [

h
m

3
]

E
T

 [
m

m
/

y
r]

ET mm

Volume [hm3]

mean ET [mm]

ET [mm]

ET volume [hm3]



 46 

Supporting Information 19 

 20 

Table A. Detailed crop management operations of Cega-Eresma-Adaja (CEA) case study 21 

Land use crop 
SWAT Landuse 

code 
 Planting Date Tillage operation name Tillage date 

Auto-

Fertilization 

initial date 

Fertilizer 

composition 

Fertilizer total 

amount 

Harvest 

operation date 

Winter Wheat WWHT 08-dec 

Fallplow 03-dec 

12-oct 27-00-00 350 kg 28-jul Field Cultivator Lt15ft 05-dec 

Roller Packer Flat Roller 07-dec 

Barley BARL 25-feb Fallplow 23-feb 24-feb 27-00-00 350 kg 21-jul 

Maize CORN 01-apr 

Subsoil Chisel Plow 10-apr 

06-may 08-15-15 1000 kg 15-sep 
Rotary Hoe 25-apr 

Field Cultivator Lt15ft 25-may 

Roller Packer Flat Roller 30-may 

Potato POTA 16-apr 

Generic Spring Plowing 

Operation 
05-apr 

04-apr 08-15-15 1000 kg 22-aug Field Cultivator Lt15ft 09-apr 

Bedder disk-row 12-apr 

Beet cultivator 8 row 14-apr 

Sugar beet SGBT 01-mar 

Generic Spring Plowing 

Operation 
20-feb 

01-mar 27-00-00 1200 kg 15-may 
Field Cultivator Lt15ft 27-feb 

Disk Plow Lt23ft 28-feb 

Sunflower SUNF 25-apr 
Springtooth Harrow 

Ge15ft 
23-mar 22-mar 08-15-15 600 kg 02-sep 

Alfalfa ALFA 01-oct Fallplow 04-oct 02-oct 00-20-20 200 kg 

05-may 

05-jun 

01-jul 

05-aug 

01-sep 

30-sep 

Horticulture HORT 03-mar Fallplow 02-mar 01-mar Elem-N 500 kg 01-aug 

Aromatic herbs AROM 15-feb Fallplow 02-mar 04-mar Elem-N 500 kg 01-aug 

Peas PEAS 15-nov Fallplow 14-feb 13-feb Elem-N 300 kg 01-jul 

Canola CANA 06-oct Fallplow 16-oct 17-oct 08-15-15 250 kg 20-jul 

Olives OLIV already planted Sprgplow 02-mar 01-mar Elem-N 250 kg 15-oct 

Vineyard GRAP already planted Sprgplow 15-mar 13-apr Elem-N 250 kg 15-aug 

 22 

  23 
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Table B. Simulation details of SWAT model set-up and parameterization 24 

General details  

Simulation length [years] 11 

Warm Up [years] 1 

Hydrological response Units  << HRUs >> 1000 

Sub-basins 121 

Precipitation method Measured + TPM 

Watershed area [km2] 7,850.4 

  

Hydrology (water balance percent)  

Stream flow/precipitation 15% 

Base flow/total flow 74% 

Surface run-off/total flow 26% 

Percolation/precipitation 9% 

Deep recharge/precipitation 0.45% 

ET/precipitation 80% 

  

Hydrological parameters (all units in mm)  

Average curve number 51.57 

ET and transpiration 358.1 

Precipitation 447.5 

Surface run-off 17.66 

Lateral  flow 28.81 

Return flow 22.35 

Percolation to shallow aquifer 39.97 

Recharge to deep aquifer 2 

Revaporation from shallow aquifer 24.96 

 25 

  26 
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Table C. Yearly average water associated processes to the land use. LULC: Land Use Land 27 

Change, CN: Curve number, AWC: Available water content, USLE_LS: Universal soil loss 28 

equation value as combined slope length factor (L) and slope steepness factor (S), IRR: 29 

irrigation amount, PREC: precipitation, SURQ: Surface runoff to streams, GWQ: 30 

groundwater flow and ET: evapotranspiration. 31 

LULC Area (Km2) CN AWC (mm) USLE_LS IRR (mm) PREC (mm) SURQ (mm) GWQ (mm) ET (mm) 

AGRC 39.12 64.07 328.55 0.34 0 391.83 3.22 8.64 350.19 

AGRL 3.05 67 365.09 0.3 0 420.5 0.9 2.12 378.08 

ALFA 0.47 35 365.09 0.17 0 385.62 0 0.14 395.64 

BARL 1,783.49 64.56 273.19 0.65 0 437.04 3.33 53.23 348.66 

BERM 647.72 96.79 275.85 0.84 0 444.74 202.26 4.1 237.06 

FRSD 37.28 45 251.65 1.43 0 476.55 0.03 49.24 418.51 

FRSE 2,650.97 35.35 246.29 1.2 0 445.12 0.03 56.77 368.66 

HAY 11.12 35 250.98 1.48 0 482.67 0 62.36 403.6 

HORT 42.57 67 258.03 0.21 1.93 437.86 1.61 19.87 398.03 

POTA 5.56 67 282.08 0.2 16.63 408.04 4.15 14.37 391.14 

RNGE 486.6 49.5 244.74 2.27 0 477.79 0.16 76.36 387.46 

SGBT 3.57 67 328.3 0.21 6.83 372.37 2.12 0.58 365.58 

SUNF 143.09 67.79 259.83 0.53 0 443.16 1.9 25.15 396.94 

SWRN 1,517.10 40.26 277.17 2.05 0 455.18 0.04 48.33 390.69 

WWHT 478.17 63.13 251.91 0.66 0 452.89 2.03 74.57 344.33 
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