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Abstract

Systemic risk arises as a multi-layer network phenomenon. Layers represent direct fi-
nancial exposures of various types, including interbank liabilities, derivative- or foreign
exchange exposures. Another network layer of systemic risk emerges through common
asset holdings of financial institutions. Strongly overlapping portfolios lead to similar
exposures that are caused by price movements of the underlying financial assets. Based
on the knowledge of portfolio holdings of financial agents we quantify systemic risk of
overlapping portfolios. We present an optimization procedure, where we minimize the
systemic risk in a given financial market by optimally rearranging overlapping portfo-
lio networks, under the constraints that the expected returns and risks of the individual
portfolios are unchanged. We explicitly demonstrate the power of the method on the
overlapping portfolio network of sovereign exposure between major European banks
by using data from the European Banking Authority stress test of 2016. We show that
systemic-risk-efficient allocations are accessible by the optimization. In the case of
sovereign exposure, systemic risk can be reduced by more than a factor of two, with-
out any detrimental effects for the individual banks. These results are confirmed by a
simple simulation of fire sales in the government bond market. In particular we show
that the contagion probability is reduced dramatically in the optimized network.
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1. Introduction

Modern economies rely heavily on financial markets as they exercise important
functions such as capital provision to the real economy sector. Facing the high costs
associated with financial crises, there is a strong societal need of understanding finan-
cial systems and ensuring their systemic stability. When financial institutions enter
into contracts they usually only consider their individual risk position and neglect their
impact on the overall financial system. In this sense, systemic risk–the risk that a
significant fraction of the financial system will stop functioning–can be viewed as an
externality (Thurner and Poledna, 2013; Acharya et al., 2017). Systemic risk can be
characterized on three different levels: a total market level Markose et al. (2012), an
individual institution level Battiston et al. (2012c); Thurner and Poledna (2013) and
transaction-based (Poledna and Thurner, 2016). For the purpose of the following anal-
ysis we define the adverse impact of a single institution on the entire system as the
systemic risk level associated with that institution.

Economic interactions between institutions are manifold and happen on different
markets (layers). Therefore, in case of defaults financial contagion can unfold through
many different channels (Upper, 2011). Network models are frequently used to capture
these interdependencies, where every node represents an institution and a link corre-
sponds to financial assets Allen and Gale (2000), Freixas et al. (2000), Eisenberg and
Noe (2001), Upper and Worms (2004) or Boss et al. (2004). Since these links can rep-
resent various types of financial exposures, a natural representation of such systems are
multi-layer networks, where every layer is associated with a different class of financial
exposure (Bargigli et al., 2015; Montagna and Kok, 2016). For example, Poledna et al.
(2015) analyze four layers of financial exposures in the Mexican banking network,
including derivatives exposures and security-cross-holdings. They find that focusing
solely on a single layer can drastically underestimate systemic risk by more than 90%.
Systemic risk in financial markets clearly is a multi-layer network phenomenon.

While these network layers represent direct financial exposures, another essential
source of systemic risk arises through the overlap between the portfolios of different
institutions. Financial contagion in this channel can appear in the following way: an
institution under stress is forced to sell substantial amounts of a particular asset, such
that it is devaluated due to the market impact of the sale. If the same asset is held by
other firms, their portfolios suffer losses. This in turn, could trigger further sales and
subsequently lead to a fire-sale cascade which devaluates the institutions’ portfolios
significantly. In case of large losses, this can deteriorate the equity positions of the
institutions (Cifuentes et al., 2005; Thurner et al., 2012; Cont and Schaanning, 2017).
Systemic risk arising from common asset holdings is different from the examples of di-
rect exposures discussed above, since here the risk is not manifested in direct exposures
between the institutions. Systemic risk is generated indirectly by selling not perfectly
liquid assets. Caccioli et al. (2014) demonstrate that the layer of overlapping portfo-
lios can amplify financial contagion significantly and Cont and Wagalath (2013) show
that in times of financial distress, fundamentally uncorrelated assets exhibit positive
realized correlations. This can reduce positive effects of diversification for individ-
ual financial institutions. On the market level, the impact of asset diversification on
systemic risk is non-trivial (Battiston et al., 2012a,b; Caccioli et al., 2015). It is not
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straightforward to decide, which market allocations yield the most resilient systems. In
the context of systemically optimal interbank networks, agent-based approaches have
been introduced by Thurner and Poledna (2013) and Poledna and Thurner (2016) that
show how systemically risk-free financial networks can evolve in a self-organized way
under appropriate systemic-risk-based incentive schemes.

This paper studies the contagious channel of overlapping portfolios as an important
layer of the financial multi-layer system and presents a general theoretical approach
that allows us to think of systemic-risk-efficient portfolio allocations. The procedure
provides a best-case benchmark which could be a centerpiece for actively monitoring
systemic risk on a regularly basis, by observing divergence (convergence) of the market
from (to) the theoretical benchmark.

In Section 2 we introduce a general model, which allows us to quantify systemic
risk in an overlapping portfolio framework. The used data is briefly discussed in Sec-
tion 3. In Section 4 we present a method to reduce systemic risk as a generic network
optimization problem and discuss the results in Section 5. Both networks, the origi-
nal and the optimized, are compared in a fire-sale simulation in Section 6. Section 7
highlights practical implications and possible extensions of this work.

2. Systemic risk of overlapping portfolios

In this section we present a simple general model to quantify systemic risk for
overlapping portfolios, which will be used to minimize systemic risk in the market.
First, we discuss the bipartite nature of overlapping portfolios. Then we introduce a
simple linear price impact model which is needed for projecting the common asset
exposure onto the set of banks. In a final step we show how the systemic-risk measure
DebtRank (Battiston et al., 2012c; Thurner and Poledna, 2013) can be applied to this
network.

2.1. Network of overlapping portfolios

Let us consider two sets of nodes, one representing N financial institutions (for
simplicity called banks), labeled by i = 1, ...,N, and the other K different assets, labeled
by k = 1, ...,K. If bank i is invested in asset k, a weighted link is drawn between i and k.
The weight Vki represents the amount of the investment in monetary units. A schematic
bipartite bank-asset network is shown in Figure 1A.

Although banks are not directly linked, bank i can have an effective risk exposure
towards another bank j, if they hold the same, not perfectly liquid asset. If j sells the
commonly held asset k, the price pk might decrease to p′k due to market impact and the
value of i’s portfolio decreases correspondingly. A naive one-mode projection of the
bipartite network onto the set of banks cannot quantify the risk exposure between the
banks, since the appropriate price effects due to market impact must be explicitly taken
into account.
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Figure 1: Financial portfolios as a weighted bipartite graph. (A) Schematic view of an overlapping portfolio
network represented as a bipartite graph Vki. If a bank is invested in an asset, the respective nodes are linked
by a weighted edge that represents the invested amount in monetary units. (B) European government bond
market represented as a bipartite bank-bonds network with banks (blue) and bonds (red). The ten most
important bond categories are labeled.

2.2. Price impact
We assume a linear price impact model (Kyle, 1985; Bouchaud, 2010). The price

change ∆pk is a linear function of trading volume and is independent of time,

∆pk(z) = α
z

Dk
, (1)

where z denotes the signed volume in monetary units, Dk is a market depth parameter
and α = 1, if the volume of buys exceeds the volume of sells and α = −1 in the other
case. Market depth Dk is a measure of liquidity of a particular security and is defined
such that selling (buying) the value Dk

100 of security k moves the price down (up) by 1%.
Following the approach of Braverman and Minca (2014), Guo et al. (2016) and Cont
and Schaanning (2017), market depth is estimated by

Dk = c
ADVk

σk
, (2)

where c is a scaling parameter larger than zero, ADVk the average traded daily volume
in monetary units and σk the empirical volatility (not the implied) of a particular se-
curity measured as the standard deviation of the daily log-returns. We set c = 0.4 as
suggested in Cont and Schaanning (2017). Note that Dk is related to the frequently
used ‘Amihud measure’ (Amihud, 2002).

2.3. Price impact adjusted one-mode projection
Given the price impact, a proper one-mode projection of the bipartite network Vki

can be constructed, which models the exposure of asset holdings between banks. The
value of asset k in the portfolio of bank i is Vki = βki pk, where βki is the number of units
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of asset k held by i and pk is the corresponding price. The total portfolio value of bank
i is Vi =

∑
k βki pk. Consider a bank j, which holds the same asset k. The maximum loss

that j can experience from sales of k by bank i is Vk j
Vki
Dk

. The overall exposure from i to
j, i.e. the maximum impact of i on j, is

wi j =

K∑
k=1

Vk jVki
1

Dk
. (3)

In matrix form, the weighted N × N adjacency matrix is given by

w = V>D−1V , (4)

where V is the K × N matrix of asset values in the portfolios containing Vki and D is
a K × K diagonal matrix with diagonal elements Dkk = Dk. The weighted adjacency
matrix w has elements on its diagonal and thus contains self-loops which represent the
exposure towards sales from the own portfolio. Equation (4) corresponds to a simple
one-mode projection of a bipartite network that is corrected for limited liquidity of the
assets. Equation (3) is closely related to the model studied in Cont and Schaanning
(2017), where the linear price impact is also a function of monetary units. In contrast,
Braverman and Minca (2014) and Guo et al. (2016) base their definition of the price
impact on units of assets. Note that ‘liquidity is an elusive concept’ Amihud (2002) and
different concepts of liquidity and associated price impacts do exist (Bouchaud et al.,
2009; Bouchaud, 2010). The reason for our choice of Equation (3) is simplicity only.
It can be generalized easily to more refined price impact functions.

2.4. DebtRank for overlapping portfolio networks
A measure of systemic risk introduced by Battiston et al. (2012c) and applied to

the interbank market (Thurner and Poledna, 2013) is the so-called DebtRank (DR). DR
is a feedback centrality measure for financial networks that ascribes to every bank a
systemic risk level between zero and one, where one means that the entire network will
default in case of the bank’s bankruptcy (for the detailed definition see Appendix A).
DR was constructed for direct financial exposures between nodes, such as networks
of interbank liabilities, but can be adapted for indirect exposures wi j of common asset
holdings. A central element for applying DR to a financial network is the impact matrix

Wi j = min
{

1,
Ai j

E j

}
, (5)

where Ai j is the direct exposure in monetary units from j to i and E j the (Tier 1) equity
of j. By defining the relative economic value of node j as

v j =

∑
i Ai j∑

i
∑

j Ai j
, (6)

the DR of bank i can be represented as

Ri =
∑

j

h j(T )v j −
∑

j

h j(1)v j , (7)
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where h j is a state variable which sums up the financial distress in the whole network
based on the impact matrix Wi j. The state variable is necessary, since DR cannot be
represented in closed form (see Appendix A for details).

Equation (3) allows us to derive an impact matrix for the overlapping portfolio
network model. The DR impact matrix for overlapping portfolios is

W̃i j = min
{

1,
wi j

E j

}
, (8)

which is the total impact of i on j if i sells its entire portfolio. The impact W̃i j is bounded
between zero and one, where one means that the total equity buffer of j is ‘destructed’
due to the sales of i. The relative economic value in an overlapping portfolio setting is
given by

ṽi =
Vi∑

k
∑

j Vk j
. (9)

By replacing Equation (5) with Equation (8) and Equation (6) with Equation (9),
Equation (7) can be applied to financial networks of asset holdings and a systemic risk
assessments can be carried out in the usual way. To characterize the systemic risk level
of the entire market, we compute the average DR of all N banks

R̄ =
1
N

N∑
i=1

Ri . (10)

3. Data

We compute exposures from common asset holdings for the government bond port-
folios of European banks that were used in the EU-wide stress test 2016. The data is
publicly available and provided by the European Banking Authority (EBA)1. In our
analysis we include 49 major European banks that are invested in 36 different sovereign
bonds. The obtained bipartite network Vki represents investments of European banks
in government bonds, see Figure 1B. We refer to this network as the European govern-
ment bond market in the remainder of this text. The total market volume amounts to
EUR 2, 617.39 billion and corresponds to roughly 10% of the banks’ total assets. The
investment in government debt as a share of total assets varies substantially. While for
some banks government bonds account only for a few percent of the total asset size,
others spend a large fraction of up to 47% of total assets in government debt.

To estimate the market depth of the bonds we pool market price data with reported
data on trading activity and outstanding volume. A detailed description of the data and
the estimation procedure is found in the Supplementary Information. The summary
statistics of the market depths estimates is displayed in Table 1.

1http://www.eba.europa.eu/risk-analysis-and-data/eu-wide-stress-testing/2016

6

http://www.eba.europa.eu/risk-analysis-and-data/eu-wide-stress-testing/2016


4. Optimizing systemic risk

In this section we show that we can use DR to derive a mathematical optimization
problem that allows us to compute systemic-risk-efficient portfolio allocations for the
European government bond market. By rewiring the bipartite bank-bond network, we
can obtain a different impact matrix W̃i j, which leads to a lower level of systemic risk in
the market R̄. We must ensure that after the rewiring of the bipartite bank-bond network
no institution is economically worse off than before. We characterize the quality of the
banks’ portfolios within the classical mean-variance framework of Markowitz (1952).
A difficulty arising when optimizing a network with respect to its average DR R̄ is the
fact that DR is not representable in closed form. A reasonable approximation is to
focus on the direct impacts W̃ṽ instead. By doing so, a quadratic optimization problem
can be formulated.

Let σ2
kl be the covariance of bond k and l, and let rk denote the expected return of

bond k. The expected return and variance of portfolio i –the risk profile–are given by
r̃i =

∑
k Vkirk and σ̃i

2 =
∑

k
∑

l VkiVliσ
2
kl, respectively. The total value of bond k in the

market is denoted as S k. Consider the following optimization problem,

min
xki≥0 ∀k,i

f (x) =
∑

i

∑
j

1
E j

∑
k

xkixk j
1

Dk

subject to Vi =
∑

k

xki, ∀i,

S k =
∑

i

xki, ∀k,

r̃i ≤
∑

k

xkirk, ∀i,

σ̃i
2 ≥

∑
k

∑
l

xkixliσ
2
kl, ∀i ,

(11)

where f : RK×N
+ 7→ R+ and the variable xki denotes the investments that can be real-

located. Problem (11) minimizes the total direct impacts in case of defaults without
deteriorating the banks’ risk profiles. By doing so, the total portfolio volumes and the
total outstanding volumes are kept constant, i.e. the network is only rewired. The min-
imum operators in the impact matrix W̃ are dropped in order to ensure smoothness of
the objective function, which simplifies the optimization. Problem (11) can now be
reformulated as a general quadratically constrained quadratic program (QCQP) of the
form

min
y≥0

1
2

y>(P>0 + P0)y

subject to y>P1y + c1 ≤ 0
A1y + c2 ≤ 0
A2y + c3 = 0 .

(12)

Here, P0 and P1 are (KN ×KN)-matrices, A1 a (N ×KN)-matrix, A2 a
{
(K + N)×KN

}
-

matrix and c1, c2, c3 are KN-dimensional vectors. We let y = vec(X) be the ‘vec-
torization’ of the K × N-matrix X with elements xki. The exact specifications of the
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vectors and matrices are given in Appendix B. The quadratic constraint ensures that
new portfolio allocations do not increase the portfolio variances and the linear inequal-
ity constraint prevents a decrease of the portfolio returns. The linear equality constraint
controls for the basic market structure, such that the portfolios are only reshuffled, but
not changed in total size and no assets are added or removed from the market.

4.1. Solving the optimization problem

The described dataset consists of 36 bonds and 49 banks (1, 764 variables). We are
bound to 85 linear equality constraints, 49 linear inequality constraints and 49 quadratic
constraints. Expected returns are estimated from historical returns. The portfolio vari-
ances are calculated from historical price data, see Supplementary Information. The
symmetric matrix P1 is positive semidefinite since it is a block diagonal matrix of
covariance matrices. However, it turns out that in our case the matrix 1

2 (P>0 + P0) is in-
definite, which turns the problem into a non-convex QCQP problem. Its solutions are in
general NP-hard to find (Anstreicher, 2009). Nevertheless, there are solvers available
that can handle this type of problem, for instance by implementing branch-and-bound
algorithms. To solve Problem (12), we run it on four different solvers: KNITRO (Byrd
et al., 2006), BARON (Sahinidis, 1996), MINOS (Murtagh and Saunders, 1983) and
Couenne (Belotti et al., 2009). We formulated the problem in AMPL (Fourer et al.,
1990) and made use of the NEOS-server (Czyzyk et al., 1998), where we submitted
it to the four solvers. In the following we show the results from the Couenne solver,
which provides the minimal objective values.

5. Results

We first compute the DR for every bank and estimate the average total overlap-
ping portfolio systemic risk R̄orig = 6.66% in the European government bond mar-
ket. We then optimize the portfolio holdings according to Equation (12) and compute
R̄opt = 2.89%2. We see that systemic risk of the market is reduced by more than a half
(factor of 2.27) and the maximum DR in the financial network decreases from 0.22 to
0.09, see Table 1. In particular banks with originally high systemic risk levels loose
systemic relevance in the market. For some of the least systemic banks the DR levels
increase, and overall, a more systemic-risk-efficient allocation is achieved (Figure 2A).
The optimization also changes the order of systemic relevance of banks, i.e. a bank
that was considered riskier than another particular bank in the original network can be
relatively less risky in the optimized network. Overall, the order of systemic relevance
changes in the optimized network, but is still positively correlated with the original
orders, see Table 1.

Intuitively, a positive relationship between banks’ systemic relevance and market
share can be expected. Figure 2B shows that this positive relationship (slope) is reduced
in the optimized network. From a systemic risk management perspective, particularly

2Note that the scaling parameter c in Equation (2) affects the liquidity of the market and therefore also
the exposure between the banks. Appendix C discusses how the choice of c affects systemic risk in the
European government bond market and its implications for the optimization.
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Figure 2: (A) Comparison of DRs of banks before (red) and after (green) optimization. Banks are ordered
from the most to the least systemic bank in the original network. After the re-organization of the network
(green), systemic risk levels of the initially most relevant banks are reduced, whereas some of the least
significant banks increase their DRs in the optimized network. (B) DR versus market share for all banks
before (red) and after (green) optimization. Banks in the upper left corner (red) represent the group of banks
with a high DR to market share ratio. The optimization of the network improves the systemic risk relevance
of these banks dramatically (green). Overall, the slope of the positive relation between systemic relevance
and market size decreases in the optimized network.

problematic banks are those banks which are relatively small in size, but take on very
central positions in the network (upper left corner (red) in Figure 2B), meaning that the
default of a small bank has adverse effects for large fractions of the total market. The
optimization has lead to a substantial reduction of systemic risk especially in the group
of small, but originally very systemic banks.

5.1. Network topology
The optimization of systemic risk changes the network topology of the market as

can be seen by looking at basic network statistics. The density of a network is given
by dividing the number of present links by the number of potential links. In a bipartite
network the number of potential links is NK. In the given sovereign exposure bipar-
tite network the density is 0.51, i.e. about half of all possible links of the network are
actually present. The average number of bonds in a portfolio (average degree of bank
nodes) is roughly 18.27 and the average number of banks holding a particular bond
(average degree of bond nodes) is about 24.86. The liquidity adjusted bank projection
shown in Figure 3A yields a dense network (density = 0.967) with an average degree
of larger than 46. Given that the maximum number of neighbors is 48, we see that
most banks are directly connected to each other by holding same government bonds.
The (unweighted) diameter of this network is 2, meaning that financial contagion orig-
inating from any node theoretically can spread over the whole market in just two steps.
The severity of such a contagious process, however, depends on the exposure weights.

It is not trivial to answer the question in advance, whether the described optimiza-
tion procedure leads to a higher or lower connectedness of the network. As argued
by Gandy and Veraart (2017) and Battiston et al. (2012a), the stability of a financial
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(A) (B)

Figure 3: Overlapping portfolio networks before (A) and after (B) the optimization. The size of the nodes
corresponds to the total investments in the bond market, the strength of the links is based on the level of
exposure between the banks. Banks are colored according to their DR. Self-loops are not shown.

network is not a monotonic function of its degrees. Financial contagion in a highly con-
nected network will spread more evenly, but will reach nodes with a higher probability.
In a sparse network, in contrast, the probability of contagion is generally less, but this
positive effect can be outweighed by a higher severity of the financial loss due to the
more uneven spread of contagion. Thus, the optimal network topology with respect
to its completeness will depend on the financial conditions of the nodes (e.g. capital
buffers) and the type of interlinkages (e.g. high exposures between relevant banks). In
our case, the optimization leads to a denser network, see Figure 3B. In fact, the opti-
mized bipartite network is a fully connected; every bank is invested in every asset in
the market. To examine in which way the links are reshuffled, we can rank the links
according to their weight and check which nodes they connect. The results indicate a
tendency to wiring links of high exposures between less systemic banks compared to
the original network. For example, in the optimized network the largest exposure is
between two banks which belong to the ten least systemic banks, whereas in the orig-
inal network the largest weight is on the edge between banks with the third and fourth
highest DR values. This qualitative pattern can be observed for most of the largest
weighted links. In that sense, the optimization produces a network that takes the sys-
temic relevance of the banks into account. Table 1 gives an overview of some basic
network statistics. For exact definitions consult Appendix D.

To quantify how diversified the portfolios are before and after the optimization we
compute the Herfindahl-Hirschman index (HHI) for every portfolio. See Appendix E
for details on the measures. The HHI is a measure for diversification, where values
close to one indicate highly concentrated portfolios. Values close to zero indicate a
high level of diversification. The average diversification increases after optimization,
see Table 1. The results indicate that the number of small investments increase with
the optimization.

6. SR of original vs. optimized network – a fire-sale simulation

We now test the efficiency of the optimized network in a fire-sale simulation and
compare it with the original network. The assets considered for fire sales are the banks’
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original optimized
Market depth Min. 3.65E7

1st Qu. 2.91E9
Median 3.20E10
Mean 1.52E12
3rd Qu. 2.59E11
Max. 3.34E13

DebtRank Min. 0.001 0.003
1st Qu. 0.018 0.010
Median 0.046 0.020
Mean 0.067 0.029
3rd Qu. 0.090 0.052
Max. 0.215 0.087

Average degree weighted 3704.98E6 3616.37E6
unweighted 46.41 48

Clustering coefficient weighted 0.992 1
unweighted 0.975 1

Nearest-neighbor degree weighted 197.57E6 119.09E6
unweighted 46.67 48

Spearman’s ρ 0.70
Kendall’s τ 0.55
Herfindahl-Hirschman index 0.49 0.43
Contagion probability moderate fire sales 16.7% 0%

extreme fire sales 100% 0%

Table 1: Results table
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bond holdings only. This is a major simplification of a real setting, where also other
liquid securities such as stocks or derivatives can be sold. The aim of this simulation
is not to present a realistic model of banks in financial distress, but is to show the
difference between both networks in the general case of fire-sale cascades in the market.
Nothing prevents an extension of the model to include other assets if the corresponding
data is available.

6.1. Fire-sale dynamics
The basic decision rules for banks in the fire-sale simulation are inspired by the

approach of Cont and Schaanning (2017) and Greenwood et al. (2015). Let us consider
a simple model for balance sheets. The bond portfolio value of bank i at time step t is
denoted by Vi(t). The value of all other assets of bank i is denoted by the constant Oi.
Ei(t) is the equity of i. The balance sheet identity must hold for all i and every t,

Vi(t) + Oi
!
= Debti(t) + Ei(t) . (13)

The leverage ratio of bank i is defined as

Li(t) =
Vi(t) + Oi

Ei(t)
. (14)

In this framework, the only possibility to delever is by selling government bonds. Let
us introduce an exogenously specified benchmark leverage ratio L′i , which bank i must
not exceed, i.e. Li(t) ≤ L′i for all t3. Should Li(t) > L′i , the bank needs to sell a
fraction γi of its bonds to fulfill the maximum leverage L′i . Then a γi ∈ [0, 1] must be
determined such that

(1 − εi)L′i =
(1 − γi(t)) Vi(t) + Oi

Ei(t)
, (15)

with a small εi > 0 that takes into account self-triggered price effects emerging from
reducing the balance sheet. Thus, every bank evaluates at every time step

γi(t) =

min
{

V(t)+O−(1−εi)L′i
Vi(t)

, 1
}

if Li(t) > L′i
0 if Li(t) ≤ L′i .

(16)

If the whole portfolio must be liquidated (γi(t) = 1), then there is no possibility left
to delever. γi is set equal to zero for all subsequent times. Note that Equation (16)
represents a simplified case, where banks sell bonds proportionately and do not sell
more liquid assets first. The sale of government bonds leads to a linear decrease in the
price according to Equation (1),

pk(t + 1) = max
{

pk(t)
(
1 −

∑
i γiVki(t)

Dk

)
, 0

}
, (17)

3The condition could be imposed by a regulatory authority or by the bank itself as an internal business
guideline.
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and the new bond portfolio value is

Vi(t + 1) = max

(1 − γi)
∑

k

Vki(t)
(
1 −

∑
i γiVki(t)

Dk

)
, 0

 , (18)

where the maximum operators ensure non-negative prices and non-negative portfolio
values. A bank i experiences a price effect on the bonds for sale γiVi(t) as well as on
the remaining bonds (1 − γi)Vi(t) in the portfolio. The total loss of bank i is then given
by

Ci(t) =
∑

k

Vki(t)
∑

i γiVki(t)
Dk

. (19)

This loss changes the equity at t + 1 to

Ei(t + 1) = max {Ei(t) −Ci(t), 0} . (20)

If Ei(t) = 0, the bank defaults. In this case its portfolio is liquidated at the current price
and the bank is excluded in further rounds. At t + 1 all solvent banks examine again,
whether the leverage condition holds and the dynamics is repeated. The algorithm
stops, once no more selling takes place in the market.

6.2. Results

To induce a fire-sale scenario, one bank is selected and exogenously declared to be
bankrupt. Its entire portfolio is sold, which triggers a price impact on the assets. This
devaluates the portfolios of other banks and the fire-sale dynamics described above
starts. We repeat it for every single bank and compare the results from the both net-
works. We define the situation, where at least one bank goes bankrupt as a response
to the initial perturbation, as a contagion event. The contagion probability is the prob-
ability of observing a contagion event in a fire-sale simulation. We run two different
scenarios, a moderate and an extreme fire-sale scenario. Motivated by Basel III (BCBS,
2014), we use a maximum leverage threshold L′i = 33 for all i in the moderate scenario.
To induce extreme fire sales we require L′i = Li(0) for all i. Here, banks want to delever
to their initial leverage in case of shocks. This is a more drastic scenario, since every
bank that experiences a price impact will violate the leverage constraint in the first time
step and is forced to sell bonds. Obviously, this behavior is maybe more drastic than
a realistic setting, where banks will typically not try to get below an initially declared
leverage target by all means. The scenario is designed to investigate the resilience of
both network types in extreme cases, where large fractions of the market are involved.

6.2.1. Scenario 1 – moderate fire sales
Figure 4A shows the histogram of the total bond market value after the fire-sale

cascade in percent of the original market value. We see a clear difference for the orig-
inal (red) and the optimized (green) network. In some cases the portfolio values are
reduced by about 7% in the original network. In the optimized network the portfolio
values never decrease by more than 2%. The left panel of Figure 4B shows boxplots of
destroyed equity as a consequence of the initial default. Although there is only a minor
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impact on the equity levels in this scenario, one can still observe that the equity is less
affected in the optimized network. The boxplots in the right panel of Figure 4B show
the average leverage ratios of the banks after the fire sales. The horizontal black line
is the average leverage ratio before the simulation. Note that if a bank is close to de-
fault, its equity approaches zero, which may lead to high leverage ratios. The average
leverage ratios in the optimized network after the simulation remain close to the initial
levels. This shows that banks can delever successfully. In the original network, how-
ever, we see that for some simulations leverage ratios increase significantly, pointing
to an increased vulnerability of the banks. The improved resilience in the optimized
network is particularly visible in the lowered contagion probability, see Table 1. In the
original network the contagion probability is 16.7%, in the optimized network not a
single bank defaults.

6.2.2. Scenario 2 – extreme fire sales
The impact of initial defaults on the market is much stronger in this scenario than

in the moderate scenario, see Figure 4C. In the original network on average only 3.1%
of the total portfolio value remains on the balance sheets after the fire sales. There
is also a strong impact in the optimized network, however, their values are system-
atically higher, 6.7%. The impact on the banks’ equity Figure 4D is higher in the
optimized network compared to those in the original network. This might be surpris-
ing at first sight. However, when looking at the number of bankruptcies in Table 1, as
a consequence of the initial perturbation, we find that the equity buffers are used very
differently in the optimized network. The contagion probability in the original network
is 100%, i.e. in every single simulation banks are defaulting. In contrast, in the op-
timized network there is not a single default happening, the contagion probability is
zero. Thus, equity buffers fulfill their intended function much more efficiently in the
optimized network than in the empirical network. The fire sales use up more equity in
the optimized network, but this is done in a way such that the shocks are absorbed. In
the original network, however, some banks hold too little equity and will default while
others hold ‘excess’ equity, which absorptive capacity remains untouched. While bank-
ing regulation based on the Basel accords is stipulating fixed equity levels as a ratio of
risk-weighted and total assets to all banks, this result shows that the buffer performance
of equity is highly network-dependent. Improving the resilience of a financial network
efficiently would mean that the centrality of the institutions position in the network
is taken into account when defining capital requirements. This would relax capital
requirements for less systemically risky banks. This will incentivize banks to become
less systemic in a given financial network. No such incentives are present in the current
regulation scheme. The right panel of Figure 4D confirms that the optimized network
is much more resilient than the original. Average leverage ratios increase sharply in the
original network. In the optimized network the leverage ratios, even after extreme fire
sales, remain similar to the initial levels4.

It could be argued that restricting the simulation to bond holdings only will arti-

4The model was run with three values for ε = 0.01, 0.025 and 0.05. Results are not sensitive to the
different parameter values. Results are only shown for ε = 0.025.
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Figure 4: (A) Histogram of portfolio values after moderate fire sales, corrected for the exogenous deval-
uation induced by the initial default. This means that 100% refer to the total bond value in the market
excluding the portfolio of the initially defaulting bank. Portfolio values after fire sales are in general higher
in the optimized (green) than in the original (red) network. (B) Left panel: Boxplots of the destroyed equity
after moderate fire sales. More equity is destroyed as a consequence of an initial default in the original net-
work than in the optimal. The right panel shows the average leverage ratios after weak fire sales, excluding
defaulted banks. The horizontal black line indicates the average leverage ratio of the banks before being
distressed. The original network is clearly more vulnerable after fire sales than the optimized network. (C)
In the extreme fire-sales scenario large fractions of the portfolios are sold, but the overall portfolio values are
substantially higher in the optimized (green) network. (D) Left panel: Interestingly, more equity is destroyed
in the optimized network. Yet not a single institution defaults in the optimized case. In the original network
banks default in every single simulation. This demonstrates a much better usage of equity as a buffer against
financial stress in the optimized network. (D) Right panel: leverage is much lower in the optimized network,
indicating much more robust banks.
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ficially increase financial contagion in the market since other liquid assets cannot be
sold. Note however, that this is not necessarily the case. Recall that for some banks
government bonds do only account for a small fraction of the balance sheet. For these
banks a devaluation of bonds has only a minor impact on equity and leverage.

7. Discussion

We quantifiied the systemic risk arising through overlapping portfolios in the Eu-
ropean government bond market. We then proposed a general network optimization
problem, which is formulated as a standard quadratically constrained quadratic pro-
gramming problem. Network optimization allows us to compute the optimal systemic-
risk-efficient asset allocations. When looking for the optimal allocations, we control
for the expected return and the standard deviation of the individual portfolios, such that
the principal investment strategies of the banks are untouched. We then compared the
resilience of the original financial network with the optimized network.

We showed that systemic risk can be reduced substantially, by more than 50%, for
sovereign exposures between important European banks without changing the risk pro-
files of the banks’ portfolios. A simple fire-sale simulation confirms that the resilience
is indeed increased significantly by the optimization: in case of financial distress, lever-
age levels and default probabilities are much lower in the optimized network than in
the original network. The essence of the approach is that in the optimally rearranged
network the equity values absorb economic shocks much more efficiently.

The knowledge of the optimal network topology could be useful to derive optimal
benchmark networks for regulatory purposes. For example, the optimal network could
serve as a benchmark to monitor, whether empirical markets are diverging (converging)
from (to) the optimum. It could also be used as a benchmark in testing various incentive
schemes to reduce systemic risk. For example, the effect of different measures like
systemic risk taxes can be studied with agent-based models. The benchmark model
then can be used to calculate the effectiveness of the applied measures.

The method proposed here can be extended to other markets than government debt.
In particular with assets traded mostly on standardized exchanges such as stocks, reli-
able liquidity estimates can be obtained. By extending the model to other asset classes
or/and to financial institutions other than banks, the ‘curse of dimensionality’ must be
considered. Every additional asset or institution increases the number of variables by
(N) or K, respectively and increases the computational cost of the optimization dispro-
portionately. A practically viable remedy could be to exclude less risky institutions in
the optimization or to segment markets according to different asset categories and to
apply the approach to every market segment individually.

The proposed optimization uses constraints on the standard mean-variance char-
acteristics of the portfolios. However, this is only one way of defining economically
reasonable constraints and other constraints can be considered that are more appropri-
ate for specific applications. For instance, risk-weights for each asset can be derived
and a condition imposed such that risk-weighted investments remain below the total
capital level. By using asset haircuts, a liquidity-based constraint could be introduced,
which would ensure that the investments in a portfolio do not decrease below a certain
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liquidity threshold. Other constraints could be designed to limit the concentration in
the portfolios, by defining a maximum proportion of assets per portfolio.

Another interesting extension of the proposed optimization problem would be to
optimize financial networks that represent direct exposures, such as interbank liability
networks. Here, the mean-variance condition needs to be substituted by constraints that
the default risk of the individual banks.
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Appendix A. DebtRank

The DR introduced by Battiston et al. (2012c) measures the systemic relevance of
banks in a financial network where links between the institutions represent interbank
investments. These interbank relations can be represented in a matrix A with elements
Ai j denoting the exposure in monetary units of j toward i (e.g. interbank liabilities from
j to i). Let Ei be the (Tier 1) capital of i. A bank i defaults, if Ei ≤ 0. No recovery is
assumed in the short run, and therefore, bank j faces a loss of Ai j, if bank i defaults.
In that case, bank j defaults if Ai j > E j. The impact matrix W contains elements
representing the direct impact of bank i on j in the case of a default of i defined by

Wi j = min
{

1,
Ai j

E j

}
. (A.1)

The relative economic value of node j is defined as

v j =

∑
i Ai j∑

i
∑

j Ai j
. (A.2)

Clearly, we have
∑

j v j = 1. The relative value of the impact of i on its neighbors
is given by Ii =

∑
j Wi jv j. In order to take effects on nodes at distance larger 1 into

account, a PageRan-like feedback centrality measure could be defined as

Ii =
∑

j

Wi jv j + α
∑

j

Wi jI j , (A.3)

where α < 1 is a dampening factor. The problem with this definition in a financial con-
text is that the impact can exceed one in the presence of cycles. Battiston et al. (2012c)
suggest a different method which limits the maximum number of reverberations to one.
Consider two state variables for each node, hi(t) and si(t). hi(t) is a continuous vari-
able between zero and one and si(t) can take on three different states, undistressed,
distressed and inactive, i.e. si(t) ∈ {U,D, I}. Let S denote the set of banks which are in
distress at time t = 1 and ψ ∈ [0, 1] be the initial level of distress where ψ = 1 means
default. Then the initial conditions are given by

hi(1) =

ψ, ∀i ∈ S
0, ∀i < S

and si(1) =

D, ∀i ∈ S
U, ∀i < S .

The dynamics for t ≥ 2 is then characterized by

hi(t) = min

1, hi(t − 1) +
∑

j|s j(t−1)=D

W jih j(t − 1)

 , (A.4)
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and

si(t) =


D, hi(t) > 0; si(t − 1) , I
I, si(t − 1) = D
si(t − 1), else .

(A.5)

The DR is then defined as RS =
∑

j h j(T )v j −
∑

j h j(1)v j which is the total induced
financial distress (excluding the initial distress) in the network given the default of a
set of nodes S . By taking S = i, the systemic relevance of a single bank for the overall
network can be measured.

Appendix B. QCQP Parameters

In order to satisfy the equivalence between Problem 11 and Problem 12, the rows
of the (KN × KN)-matrix P0 are specified as follows:

Pr(1) =
[

1
D1

ṽ1
E1
, 0, 0, ..., 0,︸     ︷︷     ︸

(K−1)−times

1
D1

ṽ1
E1
, 0, 0, ..., 0,︸     ︷︷     ︸

(K−1)−times

...
]

Pr(2) =
[
0, 1

D2

ṽ1
E1
, 0, 0, ..., 0,︸     ︷︷     ︸

(K−2)−times

0, 1
D2

ṽ1
E1
, 0, 0, ..., 0,︸     ︷︷     ︸

(K−2)−times

...
]

...

Pr(K+1) =
[

1
D1

ṽ2
E2
, 0, 0, ..., 0,︸     ︷︷     ︸

(K−1)−times

1
D1

ṽ2
E2
, 0, 0, ..., 0,︸     ︷︷     ︸

(K−1)−times

...
]

Pr(K+2) =
[
0, 1

D1

ṽ2
E2
, 0, 0, ..., 0,︸     ︷︷     ︸

(K−2)−times

0, 1
D1

ṽ2
E2
, 0, 0, ..., 0,︸     ︷︷     ︸

(K−2)−times

...
]

...

Pr(K+N) =
[
0, 0, ..., 0,︸     ︷︷     ︸
(K−1)−times

1
DK

ṽN
EN
, 0, 0, ..., 0,︸     ︷︷     ︸

(K−1)−times

1
DK

ṽN
EN
, ...

]
.

P1 is a (KN ×KN)-block diagonal matrix, containing N-times the covariance matrix Q
of the bonds, i.e.

P1 =


Q 0 ... 0
0 Q ... 0
...

...
. . .

...
0 0 ... Q


and c1 = − (σ̃1, ..., σ̃N)> . Further, let r = (r1, ..., rk)>, then A1 is again a block diagonal
matrix of the form

A1 =


−r> 0 ... 0

0 −r> ... 0
...

...
. . .

...
0 0 ... −r>


and c2 = (r̃1, ..., r̃N)>. By denoting the N-dimensional unit vector as 1N , we can write
A2 as the block matrix
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A2 =

[
A′

A′′

]
with

A′ =


1>N 0 ... 0
0 1>N ... 0
...

...
. . .

...
0 0 ... 1>N


and

A′′ =


1>K 0 ... 0
0 1>K ... 0
...

...
. . .

...
0 0 ... 1>K


Finally, c3 = −(S 1, ..., S K ,V1, ...,VN)>.

Appendix C. Impact of market depth scaling parameter c

The parameter c scales the market depth of the whole market. An increase (de-
crease) in c increases (decreases) the level of liquidity for all securities by the same
factor. As the strong assumption of a constant market depth is imposed, c allows to
adjust the systemic risk analysis to different liquidity conditions. For example, c close
to zero could be used to approximate market conditions in times of financial distress
in the entire market. In absence of extreme market events, the parameter should be
close to one half (Cont and Schaanning, 2017). Figure C.5 shows that systemic risk
is inversely related to the level of liquidity in the market. We can see that for extreme
liquidity conditions, i.e. regions of low and high c, the systemic risk of both networks
converges. This indicates that systemic risk can hardly be reduced in cases of extreme
(il)liquidity situations.

Appendix D. Network measures

The degree of a node is the number of its links (neighbors). The weighted degree
the sum of all weights between a node and its links (also called strength). Since the
overlapping portfolio network is symmetric, we can abstract from the direction of the
links without loss of information. Let w be the weighted adjacency matrix and w′ the
unweighted adjacency matrix, i.e. w′i j = 1 if there is a positive weight between i and j
and w′i j = 0, else.

Degree. The unweighted degree of node i is du
i =

∑N
j w′i j, and the average un-

weighted degree is given by du = 1
N

∑N
i du

i . Similarly, the weighted degree (strength)
of node i is defined as dw

i =
∑N

j wi j, and the weighted average degree is dw = 1
N

∑N
i dw

i .
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Figure C.5: Impact of market depth scaling factor on systemic risk. The plot shows systemic risk as a
function of the market depth scaling parameter c. The squares at the lines indicate the value used for the
actual analysis c = 0.4.

Clustering coefficient. The clustering coefficient gives the fraction of triangles
which are present in the network. The unweighted clustering coefficient is defined
as

Cu =
number of triangles × 3

number of connected triples

and the weighted clustering coefficient for node i can be defined as Barrat et al. (2004),

Cw
i =

1
2dw

i (du
i − 1)

∑
j,h

(wi j + wih)w′i jw
′
ihw′jh .

The weighted clustering coefficient of the network is just Cw = 1
N

∑N
i Cw

i , which adjusts
the number of present closed triplets to their total relative weight.

Average nearest-neighbors degree. The average nearest-neighbors degree indicates
how closely related degrees of connected nodes are. The unweighted average nearest-
neighbors degree of node i can be expressed as

du
nn,i =

∑
(du)′

(du)′P
(
(du)′|du) ,

(Pastor-Satorras et al., 2001) and the unweighted average nearest-neighbors degree is
du

nn = 1
N

∑N
i du

nn,i. The weighted average nearest-neighbors degree of node i is

dw
nn,i =

1
dw

i

N∑
j

wi jdu
j ,

(Barrat et al., 2004) and the weighted average nearest-neighbors degree is dw
nn = 1

N
∑N

i dw
nn,i.
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Appendix E. Measuring concentration

The Herfindahl-Hirschman index (HHI) is used to measure the concentration of a
portfolio and is defined as

Hi =

K∑
k

(
Vki

Vi

)2

.

The index captures different aspects of how well investments are balanced over differ-
ent assets. Note the similarity to the definition of a sample variance.
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