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Dynamics of wet granular hexagons
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The collective behavior of vibrated hexagonal disks confined in a monolayer is investigated experimentally.
Due to the broken circular symmetry, hexagons prefer to rotate upon sufficiently strong driving. Due to the
formation of liquid bridges, short-ranged cohesive interactions are introduced upon wetting. Consequently, a
nonequilibrium stationary state with the rotating disks self-organized in a hexagonal structure arises. The bond
length of the hexagonal structure is slightly smaller than the circumdiameter of a hexagon, indicating geometric
frustration. This investigation provides an example where the collective behavior of granular matter is tuned by
the shape of individual particles.
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Each grain of sand has a unique shape [1]. Understanding
how shape matters in the collective behavior of granular
matter [2–5] is crucial for geophysical and industrial
applications [6–8]. For instance, a change from a spherical to
ellipsoidal shape effectively enhances the packing density [9].
Due to dissipative particle-particle interactions [10–13], con-
tinuous energy injection is necessary to keep granular matter
in various nonequilibrium stationary states (NESS) that share
common features with their equilibrium counterparts [14–17].
Such features indicate the possibility of extending recent
advances on shape mediated self-assembly of thermally driven
particles [18–20] to athermal systems such as granular matter.

In a granular monolayer, understanding the collective
dynamics of spherical particles still remains a challenge [21–
24]. For elongated particles, analogs to liquid-crystal (LC)
mesophases [25–28], collective swirling [29], and giant
number fluctuations [30] have been investigated extensively.
Self-propelled particles with polar asymmetry have been used
to understand the collective dynamics of active matter [31,32].
Following recent advances on thermally driven platelets with
polygonal shapes, which yield interesting LC and rotator-
crystal (RC) mesophases [33–37], it is intuitive to explore the
nonequilibrium counterparts for identifying the universal and
nonuniversal aspects in the collective behavior of anisotropic
particles.

Here, we show that hexagonal disks confined in quasi-two-
dimensions prefer to rotate upon excitation and the rotators
self-organize into a hexagonal crystal upon wetting, while
the translational order is weakly dependent on driving. The
geometric frustration induced by cohesion leads to cooperative
rotations and nontrivial collective behavior. The preference to
rotate arises from the broken circular symmetry of the
hexagonal shape and the rotation speed can be predicted
analytically, suggesting the possibility to controllably excite
the rotational degrees of freedom of particles via shape design.

Figure 1(a) is a sketch of the experimental setup. The
particles are cut from a brass (CuZn39Pb5, density ρ =
8.5 g cm−3) hexagonal rod with a cylindrical hole of diameter
d = 8 mm in the center. They have the same inscribed circle
diameter a = 10 mm and height h = 2 mm. After mixing
with Vliq of purified water (LaborStar TWF, surface tension
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γ = 0.072 N/m), N = 150 particles are filled in a cylindrical
polycarbonate container with height H = 1.5h to ensure a
monolayer. The inner radius is R = 9.5 cm, corresponding
to a global area fraction φ ≈ 46%. The liquid content is
defined as W = Vliq/(NAph) with Ap = 3

√
3a2/2 − πd2/4

the base area of a disk. The bottom and lid of the container are
2 cm thick to avoid bending of the container upon vibrations.
The container is driven sinusoidally by an electromagnetic
shaker (Tira TV50350) with frequency f and amplitude
z0 controlled with a function generator (Agilent FG33220).
The dimensionless acceleration � = 4π2f 2z0/g, with g the
gravitational acceleration, is measured with an accelerometer
(Dytran 3035B2). In order to distribute the wetting liquid
homogeneously and to minimize the memory effect from
particles sticking on the container due to cohesion, we apply
a high � = 50 at f = 75 Hz before each experimental run.
Using backlight light-emitting diode (LED) illumination,
high-contrast images of the particles are captured with a
synchronized high-speed camera (IDT MotionScope M3). The
captured images are subjected to an analysis algorithm that
detects the position and orientation of each particle.

Because of the capillary force Fb induced by the liquid
bridge (insets of Fig. 2), sufficiently high � is necessary to
excite the disks (i.e., detach from the container and rotate
spontaneously) [38]. As shown in Fig. 2, the excitation
rate Ñe = Ne/N with Ne the number of immobile particles
grows with � until it saturates at a critical acceleration
�c. The collapse of data for all f at W = 2% suggests
that �, which determines the force acting on the particles,
dominates the excitation process. In order to quantify the
threshold, we fit the data with Ñe(�) = a(� − �c) + b if
� � �c, and b otherwise, which yields a = 0.067 ± 0.006,
b = 0.970 ± 0.015, and �c = 22 ± 4. It shows that ≈97% of
the hexagonal disks are excited above the threshold �c ≈ 22.
Reducing the liquid content to W = 1% leads to the same
threshold �c, but a smaller slope, 0.010 ± 0.001.

Quantitatively, �c can be understood from the force balance
Fd = G + Fb, where G, Fd = �G, and Fb are gravity,
maximum driving force, and the capillary force, respectively.
For a cylinder with radius rd sticking on a wet plane, the normal
capillary force can be estimated with Fb = 2πγ rn cos β +
�pLπr2

n with contact angle β, neck radius of the liquid bridge
rn, and Laplace pressure �pL ≈ γ (r−1

s − r−1
n ) [39], where

rs corresponds to the curvature along the meridional bridge
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FIG. 1. (a) A sketch of the experimental setup with definitions
of disk dimensions. The container is vibrated sinusoidally against
gravity. (b) A representative image of positionally ordered disks with
their orientations marked with red (gray) bars captured with f =
50 Hz, � = 30, and W = 1%.

profile. Because the lower limit of the separation distance is the
surface roughness ε, we estimate rs = ε/ cos β, which yields
≈20 μm for the experimental condition with β ≈ 65◦ [40].
Note that this is only a rough estimation because in reality
neither ε nor β is a constant due to abrasion and contact angle
hysteresis [41]. Because rs � rn, the above estimation can
be simplified into Fb = γA/rs, with A the neck area of the
liquid bridge. Note that the shape of the disk does not play
a dominating role in this simplified form. Consequently, the
critical acceleration is

�c = Fb

G
+ 1 = γ

ρrshg

A

Ap
+ 1. (1)

Because of imperfect wetting, the factor A/Ap varies from
particle to particle, leading to a range of critical acceleration
to excite the disks. An estimation of the maximum critical
acceleration with A/Ap = 1 yields 22.6, which agrees with �c

obtained from the experiments. Equation (1) also indicates the
independence of �c on W . For � < �c, larger Ñc (i.e., smaller
slope a) is expected for W = 1% than W = 2% due to less
contact area A covered by the liquid.

After excitation, the disks self-organize into an ordered
state [see Fig. 1(b)], which is robust in the sense that

FIG. 2. The excitation rate Ñe as a function of � at different f

and W . The solid lines are fits to the data at different W . Inset (a):
Sketch of a liquid bridge formed between a disk and a horizontal
plane. (b) Side-view image of a hexagonal disk detaching from the
container bottom, which separates the disk from its mirror image.

FIG. 3. (a) Radial distribution function, g(r/a) of N = 150
particles driven with f = 75 Hz and � = 25 for both dry and wet
cases. The gray bars mark all possible disk-disk distances for a
perfectly hexagonal structure. The logarithmic scale of r/a is chosen
to highlight the deviation of the first peak from r/a = 1. The inset
shows the position and orientation of a representative disk with time.
(b) g(r/a) for all � > �c at fixed f = 75 Hz and W = 1%. The inset
shows the rescaled mean neighboring distance r1/a as a function of
�. The gray line marks the minimum distance of two freely rotating
disks.

different initial configurations yield the same structure [38].
As shown in Fig. 3(a), the positional order of the excited
disks is characterized with the radial distribution function
g(r/a) with r/a = 1 the edge-edge contact distance. g(r/a)
is obtained through an average over all frames captured in
the stationary state. For the wet case, the first peak location
is ≈1.141, slightly smaller than the circumdiameter of a disk
2a/

√
3 ≈ 1.155a (i.e., the minimum distance between two

freely rotating disks), indicating a slight hindrance of the
rotation by the neighbors. The disks change their sense of
rotation through intermittent interactions with their neighbors
or the container [38], leading to a stepwise change and
fluctuations of the angle [inset of Fig. 3(a)]. This geometric
constraint is named “frustration” in thermally driven colloidal
systems [33,34]. Note that this constraint cannot be attributed
to the tilting of the disks because the limited tilting angle
θ � 5.8◦ leads to a length contraction � 0.003a. A comparison
to the perfectly hexagonal structure with the same bond
length [gray bars in Fig. 3(a)] clearly illustrates the crystalline
structure formed. Moreover, there is an overlap between g(r/a)
obtained with different W , indicating that the positional order
is weakly dependent on the amount of wetting liquid added.
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A close view of the liquid dynamics indicates that the
capillary bridges only form temporarily due to rotation,
i.e., there are no permanent cohesive interactions between
neighboring particles, different from a wet granular crystal
composed of spheres [16]. Consequently, the influence of W

on the translational order is weakened. Without the wetting
liquid, the rotating disks may form clusters due to frequent
inelastic collisions as they approach each other, leading to
the agglomeration of particles [42]. However, the translational
order is much less pronounced than the wet cases.

Surprisingly, as shown in Fig. 3(b), the control parameter
� does not influence the ordered structure. Moreover, the
ordered state also persists as f varies from 50 to 100 Hz,
indicating that the detailed balance between energy injection
and dissipation does not play an essential role in determining
the NESS. Instead, as will be discussed below, the particle
shape matters. The average distance between neighboring
particles r1/a < 1.155 [inset of Fig. 3(b)] again suggests
geometric frustration. A comparison to the dry case, which
yields r1/a ≈ 1.157 > 1.155, indicates that the geometric
frustration arises from cohesion. As � grows, the slight
decrease of r1/a suggests that the disks tend to order more
closely. This counterintuitive behavior can be understood from
the reduced θ at high �, which leads to a higher chance
of forming liquid bridges and thus a stronger influence of
cohesion. As more liquid is added, the compaction is more
pronounced, until eventually the rotational degrees of freedom
are restricted and a transition into a crystalline state arises.
A more quantitative characterization of transitions between
various NESS will be a focus of further investigations.

Figure 4 shows the influence of geometric frustration
on the rotational degrees of freedom of rotating disks. As
indicated by a close view of the dynamics in the ordered state
(inset of Fig. 4), the disks rotate while being caged in the
hexagonal structure. The rotation of the disks can be either
hindered or unhindered, depending on the interactions with
their neighbors. The hindered rotational degrees of freedom

FIG. 4. Probability of angle distance P (α) for dry and wet (W =
1%) disks driven at � = 45 and 42, respectively. The gray line is a fit to
the data for dry disks with a normal distribution P0(α) = p0e

−(α/σ0)2
,

which yields p0 = 0.010 and σ0 = 2.73. The inset is a snapshot of
the disks in the ordered state with the evolution of their positions
(center of the bars) and orientations in the past 40 vibration cycles
marked with red (gray) bars with different intensities. Lighter colors
correspond to earlier time. Other parameters are the same as in Fig. 3.

are clearly illustrated with the distribution of the angular
distance P (α) for all excited disks with respect to the direction
of the hexagonal crystal formed, which fluctuates slightly
within 1.5◦ over 500 vibration cycles. For both dry and wet
cases, P (α) can be fitted with a normal distribution in the
range α ∈ [−4π/3,4π/3], in agreement with the prediction
of the central limit theorem considering the disks as random
walkers in the angular direction. However, there exists a
prominent deviation from the fit at larger |α|, demonstrating
the nontrivial aspect in the nonequilibrium system. Analyzing
the distribution in connection to other nonequilibrium systems
with “rotors” [43–45] will be a focus of further investigations.
For the wet case, the pronounced modulation of P (α) with
respect to the fit shows the tendency for the disks to align at
multiples of π/3. This feature again suggests the geometric
frustration induced by cohesion. A comparison over different
� shows that larger � leads to stronger geometric frustration,
in agreement with the above analysis of r1/a.

To understand why the disks prefer to rotate, we analyze
the single-disk dynamics. The side-view snapshots reveal
two types of motion for an excited disk: clattering [46] and
precession. In the clattering mode, the disk flaps [Fig. 5(a)]
with a period comparable to the vibration period. In order to
maintain this mode, a projection of the disk on the vibrating
plate should have a mirror symmetry along the line connecting
the two consecutive colliding points. For the case of a circular
disk with such a mirror symmetry, this mode is indeed
favorable. Since this condition is not always given, it is much
more favorable for a hexagonal disk to precess on the plane
[see Fig. 5(b)], reminiscent of a Euler’s disk [47]. Therefore,

FIG. 5. (a) and (b) are series of images showing the clattering and
precession of a hexagonal disk on a dry vibrating plane (f = 50 Hz,
� = 1.20) with a time step of 4 ms. (c) Mean angular velocity as a
function of � for both liquid contents. The gray line corresponds to
the prediction of Eq. (2). The error bars correspond to the standard
error. Inset: A disk precesses about the vertical axis ez with an angular
velocity �.
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the rotation detected from the top-view images corresponds to
a projection of the precession of the disks on the horizontal
plane. We note that the snapshots shown in Fig. 5 are taken
without the lid and wetting liquid for a better visualization of
both modes. Introducing the container lid and wetting liquid
does not change the qualitative behavior.

As sketched in the inset of Fig. 5(c), the precession of a disk
is driven by the torque T = (G + 2FL)ro cos θ ep induced by
the gravity of the disk G and the normal force from the lid
FL, where ro is the outer radius of the disk. For the ideal case
without energy loss, we have T = � × L with the precession
rate of the disk  and the angular momentum of the disk
L = Ir sin θ er, where Ir is the moment of inertia of the
disk about the radial direction er. Supposing the disk does not
slide on the container bottom, the rotation speed ω is related
to the precession rate by a factor k = ω/ = 1/ cos θ − 1.
Consequently, we have

ω = k

√
Gro(1 + 2�)

Ir sin θ
, (2)

where we consider FL = Fd = �G for the sake of simplicity.
Different from circular disks,  for the hexagonal disks varies
discontinuously at the transition from tip to edge contacts.
Moreover, the broken circular symmetry leads to a potential
energy variation at fixed θ , and consequently fluctuations of
the rotation speed. Indeed, a close view of the disk suggests a
hindered rotation during the change from edge to tip contact
with the container bottom. If the rotational kinetic energy is not
sufficiently large, the disk may change its sense of rotation, or
switch to the clattering mode. Thus, sufficient energy injection
is crucial to keep the disks excited. Otherwise, the rotating disk
tends to settle down through the clattering mode, preferably
with edge-to-edge contacts, because of the higher energy
dissipation through inelastic collisions in this mode.

Quantitatively, we compare the angular velocity ω =
〈[α(t) − α(t − dt)]/dt〉, where dt is the time step between
subsequent frames and 〈· · · 〉 denotes an average over all ex-
cited disks and frames captured, to the prediction of Eq. (2) in
Fig. 5(c). We assume that the disks always tend to maximize the
tilting angle in the driven system. From the particle geometry

and H , we derive θ = 5.8◦ and Ir
G

= h2

12g
+ 2

√
3a4/9−πd4/64

gAp
.

Together with r0 = a/2, we have an analytical prediction of
ω as a function of �, which agrees well with the experimental
results without any fit parameters. This model indicates that the
injected energy is more likely to be pumped into the rotational
degrees of freedom as � grows. Moreover, the dynamics of the
disks is not controlled by the mass because Ir ∝ G. Instead,
the geometry of the disks and confinement are key parameters
determining the rotational dynamics. Note that Eq. (2) applies
only for excited particles with a certain tilting angle.

To summarize, we demonstrate the possibility of selectively
exciting the rotational degrees of freedom of individual parti-
cles. The preference to rotate arises from the broken circular
symmetry of the disk shape, which leads to precession of the
disks on the vibrating plate. The translational order arises from
intermittent capillary interactions between neighboring disks
due to the added wetting liquid. The crystalline structure is ro-
bust against variations of the agitation frequency and strength,
suggesting that the detailed balance of energy injection and
dissipation plays a minor role. Depending on the agitation
strength and cohesion, the rotational degrees of freedom can
be geometrically frustrated, giving rise to a slight compaction
of the crystal and a modulation in the angle distributions.

The dependence of rotation speed on �, as revealed by
the analytical model, suggests the possibility to control the
rotational dynamics of particles via shape design. Such a
possibility sheds light on creating model systems (e.g., self-
propelled “rotors”) for investigating the collective dynamics of
active matter [48]. Moreover, introducing rotors into a granular
medium can be useful in effective mixing or probing local
rheology. Last but not least, the the similarity between the
NESS discovered here and the RC state with translational but
no orientational order triggers the question of how to define this
mesophase in widespread nonequilibrium systems and how to
use statistical mechanics to describe it [49].
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[7] T. Szabó, G. Domokos, J. P. Grotzinger, and D. J. Jerolmack,

Nat. Commun. 6, 8366 (2015).
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