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Abstract

We propose a cubic regularization algorithm that is constructed to deal with non-
convex minimization problems in function space. It allows for a flexible choice of the
regularization term and thus accounts for the fact that in such problems one often has
to deal with more than one norm. Global and local convergence results are established
in a general framework.

AMS MSC 2000: 49M37, 90C30

Keywords: non-convex optimization, optimization in function space, cubic regular-
ization

1 Introduction

In broad terms, non-linear optimization algorithms rely on two types of models. A local
model qx at a given point x of the functional f to be minimized that can be treated with
techniques of linear algebra, and a rough parametrized model for the remaining difference
between qx and the functional, i.e., the local error f − qx. Usually such an error model is
based on a norm ‖ · ‖. In classical trust region methods (cf. e.g. [4]) the error model is 0
inside a ball of varying radius around the current iterate (the trust-region) and +∞ outside.
In cubic regularization methods the error model is chosen according to the assumption that
f − qx is of third order. Thus, a scaling of ‖ · ‖3 by an algorithmic parameter (called ω in
the following) is taken as a model for the error.

The reason for introducing such an error model (in contrast to a line-search approach)
is the wish to transfer information about the f − qx attained at sampling points (i.e., at
trial steps) to a whole neighborhood of the current iterate. The implicit assumption behind
this reasoning is that the error indeed behaves more or less isotropically with respect to the
chosen norm. Of course, this cannot be guaranteed in general, but in those cases where the
error model predicts the actual error well, we expect a stable and efficient behavior of our
algorithm. It is thus important, in particular for large scale problems, to choose the error
model, and thus the underlying norm, carefully. Many state-of-the-art optimization codes
incorporate this idea by allowing the use of a preconditioner for the problem, which in turn
defines a problem related norm ‖ · ‖.

In this paper we consider a cubic error model. This idea is not new, and, to the
best knowledge of the author, has first been proposed by Griewank [9] in an unpublished
technical report. Independently, Weiser, Deuflhard, and Erdmann [20] proposed a cubic
regularization in an attempt to generalize the works [6, 7] on convex optimization to the non-
convex case. Focus was laid on the construction of estimates for the third order remainder
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term. Even more recently Cartis, Gould, and Toint proposed an algorithmic framework,
similar to trust-region methods, but with a cubic regularization term, and provided detailed
first and second order convergence analysis [2] and a complexity analysis [3]. Common idea
of all these methods is the cubic regularization, but apart from this basic idea the proposed
methods differ significantly.

Compared to trust-region methods cubic regularization methods have some appealing
features which caused recent interest in them. First, as already indicated, the cubic term
can straightforwardly be interpreted as a model for the local error f − qx as long as the
model is second order consistent. At least in the smooth case Taylor expansion shows that
this difference is of third order. This allows for an elegant update of the scaling parameter
ω (cf. (26), below). Second, [3] have shown that cubic regularization methods exhibit
better worst case complexity bounds than trust-region methods. Nevertheless, both classes
of methods have many things in common, and even admit a unified convergence theory, as
shown in [16].

Many large scale optimization problems are discretizations of problems with partial
differential equations (PDEs). These may comprise problems of energy minimization, such
as nonlinear elliptic problems, or problems from optimal control of PDEs. If one wants
to apply cubic regularization methods in this setting, one is naturally led to versions that
work in function space, and the need for a convergence theory in function space arises. In
trust-region methods this topic is well understood and several works have been published
that pursue this line of thought (cf. e.g. [15, 11, 19, 18]). Concerning cubic regularization a
global convergence theory as performed in [2] may be lifted to function space in a relatively
straightforward way. If f is continuously differentiable and the second order term is bounded
above and below with respect to a norm ‖ · ‖, one ends up with a globally convergent cubic
regularization method that is equipped with the error model f−qx ∼ ‖·‖3. Thus, the error
model is based on the same norm that is used to define directions of steepest descent and
thus Cauchy points, which are needed to define acceptable search directions.

However, analysis reveals, as we will sketch in Section 2.2, that there are large classes of
infinite dimensional problems where the behaviour of f − qx is not described adequately by
the norm ‖·‖. The error term would appear highly anisotropic, when compared to the model
‖ · ‖3. Rather, one can find different third order models, which we call Rx(·), that are much
better suited as a model: f − qx ∼ Rx(·). This analytic structure calls for decoupling the
norm ‖ · ‖ used to define directions of steepest descent, and the model Rx(·) for third order
terms. In cubic regularization methods this can be realized easily. Of course, Rx(·) cannot
be chosen arbitrarily, but has to be compatible with the problem. The aim of this paper
is to find and analyse such compatibility conditions on the choice of Rx(·). Our framework
employs two norms which are used to formulate the required regularity assumptions on f .
Then conditions depending on these norms are imposed on Rx(·) which allow for a global
and a local convergence analysis.

In particular, we will introduce our flexible analytic framework in Section 2. In particu-
lar, we discuss some examples to illustrate and motivate the abstract concepts. In Section 3
we develop our algorithmic framework. It resembles in a couple of points the classical trust
region-like algorithms with the usual fraction of model decrease acceptance criterion and
a fraction of Cauchy decrease condition. However, the latter condition has to be modified
to take into account non-equivalence of norms. Also here it was our aim to leave as much
flexibility for concrete implementations of algorithms, concerning updates of regularization
parameters and computation of steps. Within this framework we show in Section 4 global
and local convergence results.

We emphasize that the focus of this paper is to establish a framework for algorithms,
rather than propose concrete implementations. In particular, we will only briefly address
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the issue of step computation and rather provide minimal requirements that acceptable
steps have to fulfill. There are excellent candidates available in the literature (cf. e.g. [4,
Chapt. 5] in a general context and [9, 20, 2] for cubic regularization) that certainly can
be used within our framework. We would like to postpone the treatment of the arising
algorithmic issues and also numerical testings to a future publication.

2 Functional analytic framework

Consider for a given function f : X → R on a linear space X the minimization problem

min
x∈X

f(x).

Suppose that we can compute for each x ∈ X a quadratic model, consisting of a linear
functional f ′x : X → R and a bilinear form Hx : X ×X → R:

qx(δx) := f(x) + f ′xδx+
1

2
Hx(δx, δx). (1)

Further, let us denote the error of the quadratic model as follows

wx(δx) := f(x+ δx)− qx(δx) (2)

with the help of a function wx : X → R. Later, we will impose various smoothness condi-
tions on f , i.e., make assumptions on the limiting behavior of wx for small δx. Depending
on the smoothness of the problem, wx(λδx) may be of higher order locally, such as o(λ),
o(λ2) or even O(λ3) as λ → 0. The last case motivates the construction of the following
cubic model for f with parameter ω > 0:

f(x+ δx)− f(x) ≈ mω
x (δx) := f ′xδx+

1

2
Hx(δx, δx) +

ω

6
Rx(δx). (3)

Here Rx is a functional, which is homogenous of order 3:

Rx(λδx) = |λ|3Rx(δx) ∀λ ∈ R (4)

and positive:

Rx(δx) > 0 ∀δx 6= 0. (5)

In (3) the parameter ω > 0 is updated adaptively during the course of the algorithm in
order to globalize the method. Comparison of (2) and (3) yields that (ω/6)Rx can be seen
as a model for wx. The subscript in Rx indicates that Rx may vary from point to point, as
long as the conditions imposed below hold independently of x.

2.1 Assumptions for global and local convergence

If X is equipped with the norm ‖ ·‖, the classic cubic regularization method uses Rx(δx) :=
‖δx‖3. However, in most function space problems an adequate analysis requires the use
of several non-equivalent norms. There are a couple of different issues, which each on its
own may require a separate choice. This is why we aim for a theoretical framework that is
flexible with respect to choosing more than one norm.
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Assumptions for global convergence. Let us collect the following set of assumptions
for later reference, which are needed to show global convergence, i.e., lim infk→∞ ‖f ′xk‖ = 0
for our algorithm.

(i) Let (X, ‖ · ‖) be a Hilbert space and X∗ its normed dual. The primary norm ‖ · ‖ on
X has to be strong enough that f is continuously differentiable on X. This means in
particular that we have for each x ∈ X the property:

‖f ′x‖ := sup
‖δx‖=1

|f ′xδx| <∞, (6)

and, moreover that xk → x∗ in (X, ‖ · ‖) implies f ′xk → f ′x∗ in X∗, i.e., w.r.t the norm
(6).

(ii) The secondary norm | · | of X is used to describe possible non-convexity of the
quadratic model qx. We assume that | · | is weaker than ‖ · ‖:

∃C <∞ : |v| ≤ C‖v‖ ∀v ∈ X.

With the help of our two norms we impose a condition of G̊arding-type:

∃γ > −∞, Γ <∞ : γ|v|2 ≤ Hx(v, v) ≤ Γ‖v‖2 ∀v ∈ X. (7)

He do not assume completeness of (X, | · |), which allows to choose | · | strictly weaker
than ‖ · ‖. Hence, Hx is assumed to be bounded below in a weaker norm than it
is bounded above. Similar conditions appear, for example, in the theory of linear
monotone operators (cf. e.g. [22, Chap. 22]). In the next section we will discuss some
examples, where this condition is fulfilled.

(iii) The main purpose of Rx is to compensate the possible non-convexity of the quadratic
models and to model the remainder term. Thus, we impose the following flexible
boundedness and coercivity condition (without a constant in the left inequality for
simplicity):

|v|3 ≤ Rx(v) ≤ C‖v‖3 ∀v ∈ X. (8)

Among these assumptions the only standing assumptions we will use is existence of f ′x in
X∗. All other assumptions will be referenced later, when needed.

Lemma 2.1. Consider a sequence xk in X that converges to some limit x∗ and sequence
δvk → 0 in X. Assume that f is continuously differentiable and (7) holds. Then for the
remainder term, defined in (2) we conclude

lim
k→∞

wxk(δvk)

‖δvk‖
= 0. (9)

Proof. Concerning (9), we conclude from a standard result of analysis (cf. e.g. [14, Thm.
25.23], an application of the fundamental theorem of calculus) that

lim
k→∞

‖δvk‖ = 0 ⇒ lim
k→∞

f(xk + δvk)− f(xk)− f ′xkδvk
‖δvk‖

= 0.

Moreover, if δvk → 0, then (7) implies Hxk(δvk, δvk) = o(‖δvk‖). Hence

wxk(δvk) = f(xk + δvk)− qxk(δvk) = f(xk + δvk)− f(xk)− f ′xkδvk + o(δvk).

Combining these two results yields (9).
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Our global convergence results will be proved by contradiction. The following lemma,
which uses reflexivity of the Hilbert space X, will serve as a key facility to obtain this
contradiction (see Theorem 4.3).

Lemma 2.2. Let xk ∈ X be a sequence such that |xk| → 0 and ‖xk‖ is bounded. Then by
reflexivity of X:

xk ⇀ 0 weakly in (X, ‖ · ‖).

Proof. Since (X, ‖ · ‖) is reflexive, xk has a weakly convergent subsequence, say xkj ⇀ x∗.
Since |xkj | → 0 we conclude that for each ε > 0, xkj is eventually contained in a ball of
| · |-radius ε, and thus also x∗ has to be contained in that ball. It follows that x∗ = 0.
This also shows that every possible weak accumulation point of our sequence is 0, so by a
standard argument the whole sequence converges weakly to 0.

Assumptions for fast local convergence. If we want to show fast local convergence we
need the following additional assumptions, which strengthen assumption (i) and (ii) from
the above list:

(i)loc Setting δxk = xk+1− xk we need a second order approximation error estimate in (2):

lim
‖xk−x∗‖→0

wxk(δxk)

‖δxk‖2
= 0, (10)

close to a local minimizer, which is fulfilled in particular, if f is twice continuously
differentiable and Hx = f ′′x .

(ii)loc Locally, we have to impose stronger assumptions on Hx. Close to a minimizer we
assume in addition to (7) ellipticity of Hx with respect to the strong norm ‖ · ‖:

∃γ > 0 : γ‖δx‖2 ≤ Hx(δx, δx). (11)

2.2 Examples

To get a feeling for the peculiarities of the class of problems that fit into our framework,
we will discuss a couple of typical examples. The purpose of Section 2.2.1 is to show that
several norms appear naturally in non-convex optimization problems in function space,
while the Section 2.2.2 illustrates, how Rx can be chosen, and why the additional flexibility
of our new framework is beneficial. In Section 2.2.3 a further important class of problems
is introduced that fall into our framework.

2.2.1 Two illustrative examples

The following well known simple examples serve as an illustration, why the choice of two
norms in (7) is quite natural in infinite dimensional optimization.

In contrast to finite dimensional problems, where existence of minimizers of lower semi-
continuous functions is obtained by the classical theorem of Weierstrass, infinite dimensional
problems are notoriously hard to analyse. The main reason is the lack of compactness of
closed and bounded sets in infinite dimensions. By turning to weak lower semi-continuity
existence of minimizers can often still be attained, but this property only holds under certain
convexity or compactness assumptions on the problem, or subtle combinations of both. As a
rule, non-convex problems are tractable, as long as there are other, additional compactness
results available, such as compact Sobolev embeddings, e.g., E : H1

0 ↪→ Lp (cf. e.g. [1]).
The interested reader is referred to the textbooks [8, 5] for a thorough introduction.
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Let us consider the following two functionals:

φ(v) :=

∫ 1

0

1

2
v(t)2 dt, ψ(v) :=

∫ 1

0

(v(t)2 − 1)2 dt.

We observe that φ : L2(0, 1) → R is convex, while ψ : L4(0, 1) → R is non-convex (the
integrand has minima at ±1) and both functionals are non-negative.

The following minimization problem, which involves the first derivative u̇ = du/dt is
well defined in H1

0 (0, 1):

min
u∈H1

0 (0,1)
f(u) := φ(u̇) + ψ(Eu).

The non-convex part of this problem appears together with the compact Sobolev embed-
ding E, which suffices to show weak lower semi-continutiy of f and conclude existence of
minimizers.

In contrast, the following minimization problem, commonly attributed to Bolza, which
is well defined on W 1,4

0 (0, 1):

min
u∈W 1,4

0 (0,1)
f̃(u) := φ(Eu) + ψ(u̇)

does not admit a global minimizer as is well known.
In view of (7), let us consider the (formal) second derivatives of f and f̃ , for example

at u∗ = 0:

f ′′u∗(δu, δu) =

∫ 1

0

(δu′)2 − 4δu2 dt ⇒ −4‖δu‖2L2
≤ f ′′u∗(δu, δu) ≤ ‖δu‖2H1

f̃ ′′u∗(δu, δu) =

∫ 1

0

δu2 − 4(δu′)2 dt ⇒ −4‖δu‖2H1 ≤ f̃ ′′u∗(δu, δu) ≤ ‖δu‖2H1 .

We observe that (7) is fulfilled with two different norms for f with the weaker norm mea-
suring the non-convexity. We may set | · | = ‖ · ‖L2

and ‖ · ‖ = ‖ · ‖H1 . For f̃ the choice of
a weaker norm for the lower bound is not possible.

The bottom line is that compactness, an important principle on which existence of
minimizers for non-convex problems rests, is closely related to the presence of two norms
in (7), where the lower bound is measured in a weaker norm than the upper bound.

2.2.2 Semi-linear elliptic PDEs

In the following let Ω ⊂ Rd (1 ≤ d ≤ 3) be a smoothly bounded open domain. Further,
let H1

0 (Ω) be the usual Sobolev space of weakly differentiable functions on Ω with zero
boundary conditions. By the Sobolev embedding theorem there is a continuous embedding
H1

0 (Ω) ↪→ L6(Ω) for d ≤ 3. Further, denote by v · w the euclidean scalar product of
v, w ∈ Rd. We denote the spatial variable by s ∈ Rd.

As a prototypical example we consider the following energy functional of a semi-linear
elliptic PDE f : H1

0 (Ω)→ R:

f(u) :=

∫
Ω

1

2
∇u(s) · ∇u(s) + a(u(s), s) ds.

Here a : R×Ω→ R is a Carathéodory function that is twice continuously differentiable with
respect to u. For more information on the theory of semi-linear PDEs and wider classed of
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problems we refer the reader to the textbooks [23, 12], variational approaches can be found
e.g. in [8, 21, 5].

In the following discussion we will consider a second order model qu, setting Hu = f ′′u .
We are looking for the solution of the minimization problem

min
u∈H1

0 (Ω)
f(u).

Its (formal) first and second derivatives are given by:

f ′uδu =

∫
Ω

∇u · ∇δu+
∂

∂u
a(u, s)δu ds

f ′′u (δu1, δu2) =

∫
Ω

∇δu1 · ∇δu2 +
∂2

∂u2
a(u, s)δu1δu2 ds.

Let us analyse these functionals. We may assume that u ∈ H1
0 (Ω), which implies that∣∣∣∣∫

Ω

∇u · ∇δu ds
∣∣∣∣ ≤ c(u)‖δu‖H1

and similarly

0 ≤
∫

Ω

∇δu · ∇δu dx ≤ ‖δu‖2H1 .

Let us now assume for simplicity that ∂
∂ua(u, ·) ∈ L2 and ∂2

∂u2 a(u, ·) ∈ L∞. We obtain the
following estimates for the second parts of the derivatives via the Hölder inequality:∣∣∣∣∫

Ω

∂

∂u
a(u, s)δu ds

∣∣∣∣ ≤ ‖ ∂∂ua(u, ·)‖L2‖δu‖L2 ≤ c(u)‖δu‖H1∣∣∣∣∫
Ω

∂2

∂u2
a(u, s)δu1δu2 ds

∣∣∣∣ ≤ ‖ ∂2

∂u2
a(u, ·)‖L∞‖δu1‖L2‖δu2‖L2

Taking these estimates together, we obtain the following results:

|f ′uδu| ≤ c(u)‖δu‖H1

c0(u)‖δu‖2L2
≤ f ′′u (δu, δu) ≤ c1(u)‖δu‖2H1 ,

where c0(u) > −∞ may be negative, and c(u), c1(u) < +∞ are positive. Our first observa-
tion is that f ′ and f ′′ can be bounded (from above) via a strong norm ‖ · ‖ := ‖ · ‖H1 , while
it only takes a weaker norm | · | := ‖ · ‖L2 to formulate a lower bound on f ′′.

Thus, the condition (8) on Ru reads in this example

‖δu‖3L2
≤ Ru(δu) ≤ C‖δu‖3H1 .

Let us take into account thatRu(δu) should model the qualitative behaviour of the difference

wu of f and its quadratic model qu (cf. (2)). Under the assumption that ∂2

∂u2 a is Lipschitz
w.r.t u with Lipschitz-constant ω, repeated application of the fundamental theorem of
calculus yields

|wu(δu)| = |f(u+ δu)− qu(δu)| =
∣∣∣∣f(u+ δu)− f(u)− f ′uδu−

1

2
f ′′u (δu, δu)

∣∣∣∣
=

∣∣∣∣∫
Ω

a(u+ δu, s)− a(u, s)− ∂

∂u
a(u, s)δu− 1

2

∂2

∂u2
a(u, s)δu2 ds

∣∣∣∣
≤ ω

6

∫
Ω

|δu|3 ds =
ω

6
‖δu‖3L3

.
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In particular, we observe that |wu(δu)| only depends on the values of δu, but not on its
derivatives. Thus, an appropriate choice for Ru in this context is

Ru(δu) := ‖δu‖3L3
.

This is allowed in our flexible framework, while without the added flexibility we would have
to choose

R̃u(δu) = ‖δu‖3H1 .

These two error models differ significantly. In particular for corrections δu that are highly
oscillating (like for example δu(s) := c sin(ν|s|), where the frequency ν is large), we get that
R̃u(δu) � Ru(δu), while for smooth corrections δu we expect R̃u(δu) ≈ Ru(δu). Thus,
in view of our calculation, R̃u would tend to overestimate |wu| for rough corrections, so
that |wu| may appear highly anisotropic w.r.t. R̃u(δu). This example also demonstrates
that the norm, induced by a good preconditioner (which would be of H1-type here) is not
automatically a suitable norm for measuring remainder terms.

2.2.3 Nonlinear optimal control: black-box approach

The aim in (PDE constrained) optimal control is to minimize a cost functional subject to
a (partial) differential equation as equality constraint. For an introduction into this topic,
we refer to the textbooks [13, 17, 10, 18]. Usually, the optimization variable is divided
into a control u which enters the differential equation as data, and the state y, which is
the corresponding solution. This relation can be described by a nonlinear operator via
y = S(u). Elimination of y then yields an optimization problem of the following form:

min
u∈U

f(S(u), u).

This general problem, however, is hardly tractable theoretically, and thus, one restricts
considerations often to the following special case:

f(S(u), u) = g1(S(u)) + g2(u) = g1(S(u)) +
α

2
‖u‖2U .

If, for example, S is the solution operator for a non-linear elliptic PDE, and U = L2(Ω),
then an appropriate choice of norms would be

‖v‖ := ‖v‖L2(Ω) |v| := ‖S′(u)v‖H1
0
.

Here | · | depends on u, an issue that is encountered frequently. We will ignore this, however,
for the sake of simplicity. Usually, S′(u) is a compact linear operator, so that | · | is strictly
weaker than ‖ · ‖.

Due to the special form of f , which only allows non-convexity in g1 ◦ S we obtain,
similarly as above the following estimates:

|f ′uδu| ≤ c(u)‖δu‖
c0(u)|δu|2 ≤ f ′′u (δu, δu) ≤ c1(u)‖δu‖2.

3 Algorithmic framework

In this work we will follow to some extent the ideas of [20] and [2] and consider algorithms
that are based on successive computation of trial steps, acceptance or rejection of these
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steps, and update of the model parameters. We consider in the following Algorithm 3.1,
which consists of a simple outer iteration in which accepted steps δxk are added to iterates
xk, and an inner loop, summarized here in the subroutine “CompAccStep”. At a given point
x “CompAccStep” computes an increasing sequence of parameters ωi and corresponding
trial steps δxi until one of them is found acceptable. Moreover, it returns a parameter
ωi+1, which is used in the next call of “CompAccStep” as a starting value ω0. The boolean
variable ιmod which appears in the algorithm is used in Condition 3.5 (below) to switch a
modification of a “fraction-of-Cauchy-decrease” condition on or off.

Concerning the naming of the indices we use the convention that an index k always
refers to the outer loop, while the index i is connected to the inner loop at a given point x.

Algorithm 3.1.
Input: initial guess x0, initial parameter ω0

k ← −1, ιmod ← 0
repeat (outer loop)

k ← k + 1
(δxk, ωk+1,0, ιmod, ωk)=CompAccStep(xk, ωk,0, ιmod)
xk+1 = xk + δxk ( δxk is an accepted step for the model mωk

xk
)

until convergence test satisfied
Output: xk+1

subroutine CompAccStep(x, ω0, ιmod)
Input: current iterate x, current parameter ω0, current value of ιmod

i← −1
Specify at x the quantities f ′x, Hx, Rx
Compute a direction ∆xC that satisfies Condition 3.4
repeat (inner loop)

i← i+ 1
Create model function mωi

x

Compute δxCi along the direction ∆xC (cf. Condition 3.4)

if
ωiRx(δxCi )

‖δxCi ‖2
≥ Cmod then ιmod ← 1

Compute δxi that satisfies Condition 3.5 (which depends on ιmod)
Compute ωi+1 as described in Section 3.4

until δxi satisfies Condition 3.7 with mωi
x .

if
ωiRx(δxCi )

‖δxCi ‖2
< Cmod then ιmod ← 0

Output: (δxi, ωi+1, ιmod, ωi)

This general algorithm offers room for a large variety of implementations. They may
differ in the way δx is computed, ω is updated, and iterates are accepted. In this section we
will discuss the main features of this algorithm and show that the subroutine “CompAcc-
Step” terminates after finitely many iteration. Global and local convergence properties of
the overall algorithm are discussed in Section 4.

In practical implementations, a convergence test (last line of the outer loop) may check,
whether ‖f ′xk+1

‖ is sufficiently small. For our theoretical purpose, where we consider a
possibly infinite sequence of iterates, it is sufficient to check whether f ′xk+1

= 0.
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3.1 Directional model minimizers

As a minimal requirement, we suppose that any trial step δx computed in Algorithm 3.1
minimizes mω

x (defined in (3)) on span{δx}. We call any such a correction δx a directional
minimizer of mω

x . Directional minimizers are easy to compute and have nice properties.
Existence of a minimizer of mω

x in X may not hold due to a possible lack of ‖·‖-coercivity
(consider e.g. the case mω

x (δx) = f ′xδx+ω/6|δx|3). However, directional minimizers of mω
x

always exist.

Lemma 3.2. For a directional minimizer δx of mω
x it holds f ′xδx ≤ 0 and

0 = f ′xδx+Hx(δx, δx) +
ω

2
Rx(δx), (12)

mω
x (δx) =

1

2
f ′xδx−

ω

12
Rx(δx) (13)

= −1

2
Hx(δx, δx)− ω

3
Rx(δx). (14)

Proof. Since the term 1
2Hx(δx, δx)+ω/6Rx(δx) is the same for +δx and −δx it follows that

mω
x (−δx) < mω

x (δx) if f ′xδx > 0. Hence, a directional minimizer of mω
x satisfies f ′xδx ≤ 0.

As first order optimality conditions for a minimizer δx of mω
x we compute:

0 = (mω
x )′(δx)v = f ′xv +Hx(δx, v) +

ω

6
R′x(δx)v ∀v ∈ span{δx}. (15)

and thus, by homogeneity (4) of Rx we conclude R′x(δx)v = 3Rx(δx)v and thus (12).
Inserting this into the definition of mω

x , we obtain (13) – (14).

The following basic property is a simple consequence:

Lemma 3.3. Denote by δx(ω) = λ(ω)∆x directional model minimizers along a fixed direc-
tion ∆x for varying ω > 0. We have

lim
ω→∞

‖δx(ω)‖ = lim
ω→∞

λ(ω) = 0. (16)

Proof. Fix ω0 > 0 and denote the corresponding directional minimizer in our direction by
∆x. For any other ω > 0 we have δx(ω) = λ∆x with some λ > 0. Inserting this into (12)
and dividing by λ we obtain the following quadratic equation for λ:

0 = f ′x∆x+Hx(∆x,∆x)λ+
ω

2
Rx(∆x)λ2 (17)

that depends on a parameter ω > 0, and which is of the form 0 = c + 2bλ + aωλ2 with
c = f ′x∆x < 0 and aω > 0. This yields exacly one non-negative solution

λ(ω) =
1

aω

(
−b+

√
b2 + |c|aω

)
Considering the limit ω →∞ we find that (16) holds.

3.2 Acceptable steps

In addition to being a directional minimizer, a trial step δx has to satisfy a “fraction of
Cauchy decrease” type condition. Classically, this involves the explicit computation of a
direction of steepest descent ∆xSD in each step of the outer loop. Its purpose is to establish
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a link between primal quantities δx and dual quantities f ′x. We emphasize that steepest
descent directions depend on the choice of the norm ‖ · ‖.

In many cases the analytically straightforward choice of ‖·‖ will lead to a rather expensive
computation of ∆xSD. For example, if ‖ · ‖H1 is used, then ∆xSD has to be computed from
f ′x via the solution of an elliptic partial differential equation. It is sufficient, however, to
compute directions of significant descent:

Condition 3.4. Let 1 ≥ µ > 0 be fixed. We compute at the beginning of each inner loop a
fixed direction ∆xC that satisfies

f ′x∆xC ≤ −µ‖f ′x‖‖∆xC‖, (18)

and call ∆xC a direction of significant descent. For given ω > 0 the directional minimizer
of mω

x in direction of ∆xC is called quasi Cauchy step δxC .

Often such steps are much cheaper to compute via a preconditioner than exact steepest
descent directions. The corresponding parameter µ does not need to be specified explicitely.
Note that δxC results from a scaling of ∆xC (cf. Lemma 3.3):

δxC = λ(ω)∆xC , for some λ(ω) > 0.

In our flexible framework Rx can be chosen quite independently of ‖ · ‖. This results
in a modification of the classical Cauchy decrease condition. This modification penalizes
irregular search directions, i.e., directions, where ‖δx‖3 � Rx(δx) and thus avoids that
iterates leave (X, ‖ · ‖).

However, since such a modification might exclude useful search directions, we will only
employ it to enforce global convergence in difficult cases. To this end we introduce the logic
variable ιmod ∈ {0, 1} which is set to 1, if during an inner loop the relation

ωiRx(δxCi )

‖δxCi ‖2
≥ Cmod for some constant Cmod > 0 (19)

holds, and it is set to 0, if after acceptance of a step the converse relation holds (cf. Al-
gorithm 3.1). We will show in the course of our analysis that the left hand side of this
inequality tends to ∞ (thus ιmod = 1 eventually), if global convergence is delayed, while it
tends to 0 (thus ιmod = 0 eventually) in case of fast local convergence.

Condition 3.5. Let 1 ≥ β > 0 be fixed and δxC be the quasi Cauchy step of mω
x . For a

given directional minimizer δx define

σ :=
Rx(δxC)

‖δxC‖3
· ‖δx‖

3

Rx(δx)
.

β :=

{
β if ιmod = 0

βmax{1,
√
σ} if ιmod = 1.

(20)

Then choose δx as a directional minimizer of mω
x , such that

mω
x (δx) ≤ βmω

x (δxC). (21)

The criterion (20) reduces to β = β, if either δx = δxC , so that δxC is always acceptable,

or Rx(·) = ‖ · ‖3, which is the classical case.
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Lemma 3.6. The following inequality holds for δxC , as defined in Condition 3.4:

µ‖f ′x‖‖δxC‖ ≤ Hx(δxC , δxC) +
ω

2
Rx(δxC). (22)

Let δx be a directional minimizer that satisfies Condition 3.5 with ιmod = 1. Then there is
c(µ, β) > 0, such that

Rx(δx)

‖δx‖
≥ cRx(δxC)

‖δxC‖
. (23)

Proof. From (12) and (18) we conclude (22):

µ‖f ′x‖‖δxC‖
(18)

≤ |f ′xδxC |
(12)
= Hx(δxC , δxC) +

ω

2
Rx(δxC).

To show (23) assume first that f ′xδx+ β|f ′xδxC | ≤ 0. Then

‖f ′x‖‖δx‖ ≥ |f ′xδx| = −f ′xδx ≥ βµ‖f ′x‖‖δxC‖,

and thus ‖δx‖ ≥ βµ‖δxC‖. Inserting (20) we obtain(
Rx(δx)

‖δx‖

)1/2

≥ βµ
(
Rx(δxC)

‖δxC‖

)1/2

which implies (23) in this case.
Otherwise, we use (13) for δx, (21), and (13) for δxC to compute

ω

6
Rx(δx) = f ′xδx− 2mω

x (δx) ≥ f ′xδx− 2βmω
x (δxC)

= f ′xδx+ β|f ′xδxC |︸ ︷︷ ︸
≥0

+β
ω

6
Rx(δxC) ≥ βω

6
Rx(δxC),

and thus, Rx(δx) ≥ βRx(δxC). Inserting once again (20) we get(
Rx(δx)

‖δx‖

)3/2

≥ β
(
Rx(δxC)

‖δxC‖

)3/2

.

and thus also (23).

3.3 Acceptance of trial steps

After a directional minimizer of our model has been computed and serves as a trial step,
we have to decide, whether this trial step is acceptable as an optimization step. For this
purpose we impose the following relative acceptance criterion, which is well known and
popular in trust-region methods. To this end, let us define the ratio of decrease in f and
in the model mω

x :

η :=
f(x+ δx)− f(x)

mω
x (δx)

=
f(x+ δx)− f(x)

mω
x (δx)−mω

x (0)
. (24)

Recall that we have chosen mω
x in a way that mω

x (0) = 0. Since mω
x (δx) < 0, we see that

η > 0 yields a decrease of f , and η = 0 means that f has remained constant. This yields
the following classical condition:

Condition 3.7. Choose η ∈]0, 1[. A trial step δx is accepted, if it satisfies the condition

η ≥ η. (25)

Otherwise it is rejected.
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3.4 Adaptive choice of ω

In this section we discuss the adaptive choice of the sequence of regularization parameters
ωi in mωi

x , needed in subroutine “CompAccSteps” at a given point x. We assume that ωi
and δxi have already been computed, and the update ωi+1 has to be made.

In [2] the choice of regularization parameters is made according to a classification of the
steps into “unsuccessful”, “successful” and “very successful”. Here we follow [20] and base
our considerations on the idea that ωi/6Rx should be a third order model for the difference
f − qx, which leads to the assignment:

ωi,raw :=
6(f(x+ δxi)− qx(δxi))

Rx(δxi)

(2)
=

6wx(δxi)

Rx(δxi)
. (26)

Of course, ωi,raw cannot be used directly as ωi+1 in our algorithm. We have to introduce
some safeguard restrictions.

In order to guarantee positivity of ωi+1 and to avoid oscillatory behavior, we assume
that the algorithm provides restrictions on updates ωi → ωi+1 to guarantee:

ωi+1 > 0

ωi+1 ≤
1

ρ

(
ωi + Cω + 2

Cf ′ |f ′xδxi|+ |Hx(δxi, δxi)|
Rx(δxi)

)
for constants 0 < ρ < 1, Cf ′ ≥ 0, Cω ≥ 0.

(27)

Positivity of ω is, of course, a basic requirement which guarantees that the term Rx is
present throughout the computation. The second condition (27) inhibits that ω is increased
too quickly, with the result that the next trial step has to be chosen much shorter than
the previous one. However, in a certain range (corresponding to Cω) the increase can be
performed freely. If Rx is much smaller than the remaining terms of mωi

x a fast increase of
ω is also possible. Technically, this restriction enters into the global convergence proof in
(54), below.

The following theory will cover algorithms that respect these restrictions, and increase
ω after a rejected trial step, according to

After rejected trial step: ωi+1 ≥ min{ωi,raw, ρ
−1ωi} (ρ as defined in (27)) (28)

Any algorithm that does not allow an increase like this, is likely to get stuck in an inner
loop. Technically this condition is used at the beginning of the proof of Theorem 3.8. Next,
we impose the restriction on our algorithm that after an increase of ω, ωi+1 should not be
chosen larger than ωi,raw:

ωi+1 ≤ max{ωi, ωi,raw}.

By (26) this implies the following estimate:

ωi+1 ≥ ωi ⇒ ωi+1Rx(δxi) ≤ 6wx(δxi). (29)

To obtain fast local convergence under weak assumptions on Rx we do not increase ω if
ηi (defined via (24) for δxi) is very close to 1. Let us choose η ∈ [η, 1[ and state

If ηi > η then ωi+1 ≤ ωi. (30)

The following simple example update that satisfies all these requirements is the following
rule (where we could replace the simple upper bound ρ−1ωi by the right hand side of (27)):
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- If ηi ≤ η: ωi+1 = max{ρωi,min{ρ−1ωi, ωi,raw}} for some 0 < ρ < 1

- If ηi > η: ωi+1 = ωi.

In our framework we deliberately dispense with a-priori restrictions like ω ≤ ωi for some
very small lower bound 0 < ω � 1. Such restrictions can, and should of course, be added
in finite precision arithmetic.

3.5 Finite termination of inner loops

Next, we show that each inner loop, i.e., the subroutine “CompAccStep” of our algorithm
accepts a finite ω after finitely many updates and thus terminates finitely. Hence, in the fol-
lowing we consider fixed x and a sequence ωi of parameters and δxi of trial steps, computed
by the subroutine “CompAccStep”.

Theorem 3.8. Assume that f is Fréchet differentiable at x and f ′x 6= 0. Moreover, assume
that the left inequalities of (7) and (8) hold at x. Then:

(i) If a trial step δxi is rejected, then ωi+1 ≥ min{ρ−1, (1− η)/2 + 1}ωi > ωi.

(ii) The inner loop terminates successfully after finitely many iterations.

Proof. In view of (28), assume that ωi+1 < ρ−1ωi. Then violation of (25) implies

ωi+1 ≥ ωi,raw =
6

Rx(δxi)
(f(x+ δxi)− qx(δxi))

=
6

Rx(δxi)

(
f(x+ δxi)− f(x)−mωi

x (δxi) +
ωi
6
Rx(δxi)

)
>

6

Rx(δxi)
(η − 1)mωi

x (δxi) + ωi

=
6

Rx(δxi)
(1− η)

(
−1/2f ′xδxi +

ωi
12
Rx(δxi)

)
+ ωi

≥ ((1− η)/2 + 1)ωi.

Hence, (i) is shown: each rejection is followed by an increase of ω by at least a fixed factor.
Next, assume for contradiction that (25) fails infinitely often during successive updates

from ωi to ωi+1. Then, we have limi→∞ ωi = ∞ so that Lemma 3.3 yields for the quasi
Cauchy steps (which are all scalings of a fixed direction: δxCi = λ(ωi)∆x

C)

lim
i→∞

‖δxCi ‖ = lim
i→∞

λ(ωi) = 0

and thus

lim inf
i→∞

ωiRx(δxCi )

2‖δxCi ‖
(22)

≥ µ‖f ′x‖ − lim
i→∞

Hx(δxCi , δx
C
i )

‖δxCi ‖

= µ‖f ′x‖ − lim
i→∞

λ(ωi)
Hx(∆xC ,∆xC)

‖∆xC‖
= µ‖f ′x‖ > 0

since ‖f ′x‖ 6= 0. This implies that

lim
i→∞

ωiRx(δxCi )

‖δxCi ‖2
=∞
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and thus ιmod = 1 by (19) for sufficiently large i. It thus follows from (23) that there exists
a constant W0 > 0 such that for the following positive sequence

ωiRx(δxi)

‖δxi‖
≥W0 > 0 ∀i ∈ N. (31)

Since ωi+1 > ωi, (29) holds for ωi+1. Thus, we conclude that

0 < W0

(31)

≤ ωiRx(δxi)

‖δxi‖
<
ωi+1Rx(δxi)

‖δxi‖
(29)

≤ 6wx(δxi)

‖δxi‖
, (32)

and hence by Fréchet differentiability and Lemma 2.1 (with xk = x the constant sequence)
there is D0 > 0 such that ‖δxi‖ ≥ D0, and hence, by (32) also

ωiRx(δxi) ≥W0D0 > 0. (33)

With this, we compute from (12) (using f ′xδxi = −|f ′xδxi|)

|f ′xδxi|
ωiRx(δxi)

=
Hx(δxi, δxi)

ωiRx(δxi)
+

1

2
.

By (7), if the middle term including the Hessian has a negative contribution it vanishes
asymptotically:

lim
i→∞

∣∣∣∣min{Hx(δxi, δxi), 0}
ωiRx(δxi)

∣∣∣∣ (7)

≤ lim
i→∞

|γ||δxi|2

ωiRx(δxi)

(8)

≤ lim
i→∞

|γ|
ω

2/3
i (ωiRx(δxi))1/3

(33)
= 0.

Thus we conclude that

lim inf
i→∞

|f ′xδxi|
ωiRx(δxi)

≥ 1

2
> 0 (34)

and thus via (31) that also

lim inf
i→∞

|f ′xδxi|
‖δxi‖

≥ W0

2
> 0. (35)

However, as a consequence of (33) and (8) we have:

ωiRxi(δxi)
(8)

≥ ωiRx(δxi)
2/3|δxi|

(33)

≥ (W0D0)2/3ω
1/3
i |δxi|. (36)

Thus, by (34) we conclude

lim
i→∞

‖δxi‖
|δxi|

≥ lim
i→∞

|f ′xδxi|
|δxi|‖f ′x‖

(34)

≥ lim
i→∞

1

2

ωiRxi(δxi)

|δxi|‖f ′x‖
(36)

≥ 1

2

(W0D0)2/3

‖f ′x‖
lim
i→∞

ω
1/3
i =∞.

Thus, limi→∞ |δxi|/‖δxi‖ = 0 and by Lemma 2.2 we conclude weak convergence δxi/‖δxi‖⇀
0 in (X, ‖ · ‖). This, however, implies

lim
k→∞

|f ′xδxi|
‖δxi‖

= 0.

in contradiction to (35).
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4 Convergence Theory

In this section we will establish first order global convergence, and second order local conver-
gence results. In the following we will consider the sequence xk, generated by Algorithm 3.1,
corresponding derivatives f ′xk ∈ X

∗, and accepted corrections δxk. We denote by ωk that
parameter for which δxk has been computed as an accepted directional minimizer of mωk

xk
.

At the end of subroutine “CompAccStep”, after the inner loop, this parameter appears as
ωi, to be distinguished from the update ωi+1 that corresponds to ωk+1,0 in the outer loop
and is computed after acceptance of δxk. Similarly, δxCk denotes a quasi-Cauchy step for
mωk
xk

and ηk is defined by (24) for δxk.
In the whole section we use that the computed quantities satisfy Conditions 3.4, 3.5,

and 3.7 and the update conditions from Section 3.4. Moreover, we assume throughout the
basic properties, introduced in the beginning of Section 2. From the assumptions Section 2.1
we only use existence of f ′x ∈ X∗ throughout, as well as all assumptions, needed to show
finite termination of the inner loops, i.e., existence of the sequence xk. All other assumptions
will be referenced explicitly, when needed.

In the whole section we exclude the trivial case that f ′xk = 0, for some k, which leads
to finite termination of our algorithm. Moreover, we may assume that the sequence of
computed function values f(xk) is bounded from below. Otherwise our algorithm, which
enforces descent, fulfills its purpose of minimization by generating a sequence xk with
limk→∞ f(xk) = −∞.

4.1 Global Convergence

Under mild assumptions we will show that our algorithm cannot converge to non-stationary
points, while slightly stronger assumptions yield convergence of derivatives to 0. Our tech-
nique will be to derive a contradiction to the case that xk converges to a non-stationary
point, so that in particular ‖f ′xk‖ remains bounded away from zero.

Lemma 4.1. Assume that Algorithm 3.1 generates an infinite sequence xk such that f(xk)
is bounded from below. Then

∞∑
k=0

‖f ′xk‖‖δx
C
k ‖ <∞ (37)

∞∑
k=0

ωkRxk(δxCk ) <∞,
∞∑
k=0

ωkRxk(δxk) <∞. (38)

Proof. We use (25) and (21) (using only β ≥ β) to compute

f(xk+1)− f(xk)
(25)

≤ ηmωk
xk

(δxk)
(12)
= η

(
1

2
f ′xkδxk −

ωk
12
Rxk(δxk)

)
(21)

≤ ηβmωk
xk

(δxCk ) ≤ η βmωk
xk

(δxCk )
(12)
= η β

(
1

2
f ′xkδx

C
k −

ωk
12
Rxk(δxCk )

)
≤
η β

2
f ′xkδx

C
k

(18)

≤ −
µη β

2
‖f ′xk‖‖δx

C
k ‖ ≤ 0.

By monotonicity and boundedness

∞∑
k=0

f(xk+1)− f(xk) = inf
k
f(xk)− f(x0) > −∞,
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and by our chain of inequalities we conclude (37) and (38).

The main observation here is that ‖f ′xk‖‖δx
C
k ‖ → 0, and to obtain ‖f ′xk‖ → 0 it remains

to prevent ‖δxCk ‖ from becoming too small, compared to ‖f ′xk‖. The extraordinary role of
δxCk has its origin in the acceptance criterion (21), which compares all steps to the quasi
Cauchy steps.

To obtain a quick understanding of the situation, take a look at (22) and observe the
following relation:

µ‖f ′xk‖
(22)

≤ Hxk(δxCk , δx
C
k )

‖δxCk ‖
+
ωk
2

Rxk(δxCk )

‖δxCk ‖
.

The undesired case is that ‖f ′xk‖ is bounded away from zero, which in turn implies that
limk→∞ ‖δxCk ‖ = 0 by (37). Taking into account the upper bounds (7) for Hx and (8) for
Rx, we see that

lim sup
k→∞

Hxk(δxCk , δx
C
k )

‖δxCk ‖
≤ 0, (39)

lim
k→∞

Rxk(δxCk )

‖δxCk ‖
= 0. (40)

In fact for all global convergence results we may replace the upper bounds of (7) and (8)
by these weaker assumptions.

In view of (39) and (40), which exclude that our iteration is stalled by Hx and Rx
being overly large, the “bad case” can only happen, if ωk is increased too rapidly. Under
smoothness assumptions on f that imply boundedness of ωk (a global Lipschitz condition
on Hx = f ′′(x)) we would be finished at this point. To cover the more general case, we have
to invest some more theoretical work. Let us start with collecting some simple consequences
of ‖f ′xk‖ being bounded away from 0:

Lemma 4.2. Assume that the sequence f(xk) is bounded from below. For fixed ν > 0
assume that the following set of indices is infinite:

Lν := {k : ‖f ′xk‖ ≥ ν}.

Assume that (39) and (40) hold for δxCk along the sequence of iterates xk for k ∈ Lν . Then

lim
k∈Lν→∞

ωkRxk(δxCk )

‖δxCk ‖2
=∞ (41)

lim
k∈Lν→∞

ωk =∞. (42)

Let δvk be any directional minimizer of mωk
xk

that satisfies Condition 3.5 with ιmod = 1.
Then

inf
k∈Lν

ωkRx(δvk)

‖f ′xk‖‖δvk‖
> 0 (43)

For iteration k ∈ Lν let δxk be the accepted step. Eventually, (for sufficiently large k) δxk
satisfies Condition 3.5 with ιmod = 1 and it holds:∑

k∈Lν
‖δxk‖ <∞. (44)
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Proof. From ‖f ′xk‖ ≥ ν we get ‖δxCk ‖ → 0 due to (37) and thus, via (22) and (39):

lim inf
k∈Lν→∞

ωkRxk(δxCk )

2‖f ′xk‖‖δx
C
k ‖

(22)

≥ µ− lim sup
k∈Lν→∞

Hxk(δxCk , δx
C
k )

‖f ′xk‖‖δx
C
k ‖

(39)

≥ µ. (45)

Since limk∈Lν→∞ ‖δxCk ‖ = 0 and ‖f ′xk‖ ≥ ν for k ∈ Lν multiplication of (45) by ‖f ′xk‖/‖δx
C
k ‖

implies (41). By (45) we compute, using again limk∈Lν→∞ ‖δxCk ‖ = 0 and (40):

2‖f ′xk‖ω
−1
k

(45)

≤ c
Rxk(δxCk )

‖δxCk ‖
(40)→ 0.

From that (42) follows from ‖f ′xk‖ ≥ ν for k ∈ Lν .
By (23) we also have

lim inf
k→∞

ωkRxk(δvk)

‖f ′xk‖‖δvk‖
≥ 2cµ > 0

and thus (43), because all members of the sequence are strictly positive.

Due to (41)
ωkRxk (δxCk )

‖δxCk ‖2
≥ Cmod eventually, i.e. for all k ∈ Lν sufficiently large. In

subroutine “CompAccStep” this relation is evaluated before δxk is computed, and thus
ιmod = 1 when δxk is computed.

Now (44) follows from (38) and (43) via the computation

∑
k∈Lν

‖f ′xk‖‖δxk‖ =
∑
k∈Lν

ωkRxk(δxk)

(
ωkRxk(δxk)

‖f ′xk‖‖δxk‖

)−1

≤
∑
k∈Lν

ωkRxk(δxk)

(
inf
k∈Lν

ωkRxk(δxk)

‖f ′xk‖‖δxk‖

)−1

<∞,

and the fact that ‖f ′xk‖ is bounded away from 0.

An important conclusion of this lemma is that if Lν = N, then by (44) xk is a Cauchy
sequence in (X, ‖ · ‖), and thus xk converges to some limit x∗.

Up to now, the smoothness of f and the lower bound in the G̊arding inequality (7)
did not enter our considerations. In the following theorem, which is the main step of our
study, we will take this and the safeguard restrictions (29) and (27) on the update of ω into
account.

We are interested in the case that our algorithm converges to a non-stationary point.
We show in this case that the following set is infinite:

I := {k ∈ N : subroutine “CompAccStep” at xk

computes at least one rejected trial step }.

In what follows, we will need for k ∈ I the last rejected trial step in the call of subroutine
“CompAccStep” at xk. We will denote this trial step by δxk,` with corresponding ωk,` and
quasi Cauchy step δxCk,`. In the context of the subroutine, if δxi is returned as acceptable

correction δxk, then (δxk,`, ωk,`, δx
C
k,`) = (δxi−1, ωi−1, δx

C
i−1).

Theorem 4.3. Let x∗ ∈ X. Assume that f is Fréchet differentiable in a neighborhood of
x∗ and f ′ is continuous at x∗. Suppose that xk converges to x∗. Assume further that along
xk (39) and (40) hold for δxCk . Further, assume that the left inequalities of (7) and (8)
hold along xk, k ∈ I for δxk,`. Then f ′x∗ = 0.
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Proof. Assume for contradiction that f ′x∗ 6= 0. Since xk → x∗ we also have ‖δxk‖ → 0 and
the sequence f(xk) is bounded from below by f(x∗) and also f ′xk → f ′x∗ in X∗, so that the
positive sequence ‖f ′xk‖ converges to a non-zero value and thus

∃ν > 0, C0 <∞ : ν ≤ ‖f ′xk‖ ≤ C0. (46)

Then by (39) Lemma 4.2 applies for Lν = N for ν > 0, and in particular ωk is increased
infinitely many times due to (42). Moreover, due to (41) we have eventually ιmod = 1 for
the computation of all trial steps. These facts will be used throughout the proof.

An increase of ω can occur in two cases: first, after an accepted trial step δxk, second
after a rejected trial step. In the first case, i.e., ωk+1,0 ≥ ωk in Algorithm 3.1, we compute
by (29):

ωkRxk(δxk) ≤ ωk+1,0Rxk(δxk)
(29)

≤ 6wxk(δxk)

and thus, by (43) we conclude that there exists c1 > 0, such that:

6wxk(δxk)

‖f ′xk‖‖δxk‖
≥ ωkRxk(δxk)

‖f ′xk‖‖δxk‖
(43)

≥ c.

It follows that there is a constant W̃0 > 0 independent of k, such that

wxk(δxk)

‖δxk‖
≥ W̃0 := νc > 0 (47)

for every k after which ωk was increased. However, since ‖δxk‖ → 0 by assumption,
Lemma 2.1 implies that the left hand side of (47) tends to 0 along the sequence xk → x∗.
Thus, the first case can only happen finitely many times.

Hence, the second case must occur infinitely many times, i.e., there must be infinitely
many rejected trial steps, and thus infinitely many calls of “CompAccStep” in which a trial
step is rejected. This means that I is a set of infinite size. The lower bound of (7) implies:

∃γ` > −∞ :
Hxk(δxk,`, δxk,`)

|δxk,`|2
≥ γ` ∀k ∈ I. (48)

We divide the remaining argumentation into 3 steps. In the following we will consider k ∈ I
only.

Step 1: For the inner loop k at xk consider the last rejected trial step δxk,` with
corresponding regularization parameter ωk,`. Recall that δxk,`, like every trial step, is a
directional minimizer of m

ωk,`
xk . After rejection of δxk,` the next regularization parameter

corresponds to the final accepted trial step in this loop δxk and is thus denoted by ωk. Let
δxCk,` be the quasi Cauchy step for ωk,` and δxCk the quasi Cauchy step for ωk. Since δxCk
and δxCk,` both point in the same direction, and since by Theorem 3.8 ωk ≥ ωk,`, we have

δxCk,` = λδxCk with λ ≥ 1.

Then by (23) and (43) for δvk = δxCk , taking into account (46), we get constants c, c̃ > 0,
such that

ωkRxk(δxk,`)

‖δxk,`‖
(23)

≥ c
ωkRxk(δxCk,`)

‖δxCk,`‖
= c

ωkRxk(λδxCk )

‖λδxCk ‖

= c
ωkλ

3Rxk(δxCk )

λ‖δxCk ‖
≥ cωkRxk(δxCk )

‖δxCk ‖
(43)

≥ c̃‖f ′xk‖ ≥ c̃ν > 0.

(49)
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By (29) this implies that there is a constant W0 > 0, such that

6wxk(δxk,`)

‖δxk,`‖
≥ ωkRxk(δxk,`)

‖δxk,`‖
≥W0 := c̃ν > 0. (50)

This in turn implies by Lemma 2.1 that there is a constant D0 > 0, such that for these
rejected trial steps ‖δxk,`‖ ≥ D0 and thus

ωkRxk(δxk,`) ≥W0D0 > 0, (51)

in contrast to (38), which holds for accepted trial steps.

Step 2: In this step we will show that there are k0 and M0 such that

|f ′xkδxk,`|
ωkRxk(δxk,`)

≥M0 > 0 ∀k ∈ I : k ≥ k0. (52)

Here our safeguard restriction for the update ωk,` → ωk (27) comes into play, which reads
now:

ρ

2
ωkRx(δxk,`)

(27)

≤ ωk,` + Cω
2

Rx(δxk,`) + Cf ′x |f
′
xδxk,`|+ |Hx(δxk,`, δxk,`)|. (53)

We insert this relation into (12), the optimality condition for directional minimizers:

|f ′xkδxk,`| = −f
′
xk
δxk,`

(12)
=

ωk,`
2
Rxk(δxk,`) +Hxk(δxk,`, δxk,`)

(53)

≥ ρωk − Cω
2

Rxk(δxk,`)− Cf ′ |f ′xδxk,`| − |Hxk(δxk,`, δxk,`)|+Hxk(δxk,`, δxk,`)

=
ρωk − Cω

2
Rxk(δxk,`)− Cf ′ |f ′xδxk,`|+ 2 min{Hxk(δxk,`, δxk,`), 0},

so that we obtain:

(1 + Cf ′)|f ′xkδxk,`|
ωkRxk(δxk,`)

≥ ρ

2
− Cω

2ωk
− 2

∣∣∣∣min{Hxk(δxk,`, δxk,`), 0}
ωkRxk(δxk,`)

∣∣∣∣ . (54)

Since ωk →∞, the second term on the right hand side of (54) tends to zero. Moreover, by
(48), (8), and (51) the same is true for the third term:

lim
k∈I→∞

∣∣∣∣min{Hxk(δxk,`, δxk,`), 0}
ωkRxk(δxk,`)

∣∣∣∣ (48)

≤ lim
k∈I→∞

|γ`||δxk,`|2

ωkRxk(δxk,`)

(8)

≤ lim
k∈I→∞

|γ`|
ωkRxk(δxk,`)1/3

(51)

≤ lim
k∈I→∞

|γ`|
ω

2/3
k (W0D0)1/3

(42)
= 0.

Hence, in the limit the left hand side of (54) is strictly positive, which implies (52).

Step 3: Let us finally derive our contradiction. Multiplication of (52) with the middle
term in (50) implies on the one hand

|f ′xkδxk,`|
‖δxk,`‖

≥M0W0 > 0 ∀k ∈ I : k ≥ k0. (55)
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On the other hand we have for k ∈ I, k ≥ k0:

‖δxk,`‖
|δxk,`|

≥
|f ′xkδxk,`|
‖f ′xk‖|δxk,`|

(52)

≥ M0
ωkRxk(δxk,`)

‖f ′xk‖|δxk,`|
(8)

≥
(

M0

‖f ′xk‖
(ωkRxk(δxk,`))

2/3

)
ω

1/3
k

(46),(51)

≥ M0

C0
(W0D0)2/3ω

1/3
k

(42)→ ∞.

and thus

lim
k∈I→∞

|δxk,`|
‖δxk,`‖

= 0.

Via Lemma 2.2 we conclude that the normalized sequence δxk,`/‖δxk,`‖ converges to 0
weakly in X. Since f ′xk → f ′∗ strongly, we obtain a contradiction to (55):

lim
k∈I→∞

|f ′xkδxk,`|
‖δxk,`‖

= f ′∗0 = 0.

This is due to a standard result in functional analysis which states that the duality product
is continuous with respect to strong convergence in the dual space and weak convergence
in the primal space.

If xk does not converge, we can still show convergence properties for f ′xk , following the
standard pattern that continuity of f ′xk yields subsequential convergence of f ′xk to 0, while
uniform continuity yields convergence of the whole sequence.

Theorem 4.4. Let f be continuously Fréchet differentiable. Assume that f(xk) is bounded
from below and Hx satisfies the G̊arding inequality (7). Further, assume that Rx satisfies
(8). Then

lim inf
k→∞

‖f ′xk‖ = 0. (56)

If xk converges, or if f ′ is uniformly continuous, then

lim
k→∞

‖f ′xk‖ = 0.

Proof. If xk converges, then ‖f ′xk‖ → 0 by Theorem 4.3.
Otherwise, for the purpose of contradiction we assume that ‖f ′xk‖ is bounded away from

zero. Then xk is a Cauchy sequence in X by (44), and hence convergent to a limit point x∗
by completeness of X. This is a contradiction our premise that xk does not converge and
hence (56) must hold.

It remains to assert that Lν is finite for any ν > 0 if f ′x is uniformly continuous. For
this we use a standard trick (cf. e.g. [4, Thm 6.4.6]), exploiting uniform continuity of the
function x→ f ′x. For any index n ∈ Lν choose the first index k(n) ∈ N \ Lν/2 that satisfies
k(n) > n. Then {j : n ≤ j < k(n)} ⊂ Lν/2 and by (44)

lim
n→∞

‖xn − xk(n)‖ ≤ lim
n→∞

j<k(n)∑
j=n

‖δxj‖ = 0

and thus, if Lν was infinite, ‖f ′xn − f
′
xk(n)
‖ → 0. However, eventually

‖f ′xn‖ ≥ ν,
‖f ′xk(n)

‖ ≤ ν/2.

Hence, we have a contradiction and Lν must be finite. This argument holds for every ν > 0
and thus implies limk→∞ ‖f ′xk‖ = 0.
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4.2 Local convergence

Next we consider local convergence of our method towards a local minimizer x∗. We will
first show under some convexity assumptions that a computed sequence converges to x∗ if is
started close enough. Then we will show under additional smoothness assumptions that our
globalization scheme does not interfere with any method to compute search directions and
finally we will show local superlinear convergence if directional minimizers along inexact
Newton steps are used as trial steps.

Let us start with some auxiliary estimates, which capture the effect of positive curvature
of Hx along a directional minimizer. These estimates do not rely on a fraction of Cauchy
decrease condition:

Lemma 4.5. Let δv be a directional minimizer and

γδv :=
Hx(δv, δv)

‖δv‖2
≥ 0.

Then we have the following estimates:

mω
x (δv) ≤ −γδv

2
‖δv‖2 (57)

γδv‖δv‖ ≤ ‖f ′x‖. (58)

Proof. Equation (57) directly follows from (14), taking into account positivity of Rx.
Equation (12) yields

γδv‖δv‖2 ≤ γδv‖δv‖2 +
ω

2
Rx(δv) = Hx(δv, δv) +

ω

2
Rx(δv) = −f ′xδv ≤ ‖f ′x‖‖δv‖

and thus (58).

4.2.1 Convergence to local minmizers

Our basic theoretical framework comprises the following assumptions, which we impose
throughout the whole section. For fast local convergence we will later impose further
smoothness assumptions.

Assumption 4.6. Let x∗ ∈ X be a local minimizer, and assume that there exists a
neighborhood U of x∗ with the following properties:

(i) The assumptions of Theorem 4.4(i) on global convergence hold in U .

(ii) For ε > 0 define the local level sets

Lε := {x ∈ U : f(x) ≤ f(x∗) + ε} ⊂ U.

Assume that these sets form a neighborhood base of x∗, i.e., each neighborhood of x∗
contains one of these level sets (and hence all with smaller ε). This implies that x∗ is
a local minimizer. The converse is not true, in general.

(iii) We have the estimate

∃α <∞ : f(x)− f(x∗) ≤ α‖f ′x‖‖x− x∗‖ ∀x ∈ U.

This holds with α = 1, if f is convex in U , and implies, together with (ii) that x∗ is
an isolated critical point.
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(iv) The ellipticity assumption (11) for Hx holds in U :

∃γ > 0 : γ‖δx‖2 ≤ Hx(δx, δx) ∀x ∈ X,∀δx ∈ X

If f is twice differentiable and Hx = f ′′x , then this implies convexity of f in U and
thus (iii).

It follows from continuity of f that the interior of Lε is non-empty, and (ii) implies
via differentiability of f that f ′x∗ = 0. Alternatively to (iii) we could assume continuous
invertibility of the mapping x→ f ′x.

First we show that if our algorithm comes close to a local minimizer with the above
properties, then it will converge towards this minimizer.

Lemma 4.7. If Assumption 4.6 holds, then there exists ε0 > 0 such that if x ∈ Lε, and δx
is an acceptable directional minimizer then x+ δx ∈ Lε for all 0 < ε < ε0.

Proof. By Assumption 4.6(ii) we can choose for any neighborhood V ⊂ U of x∗ an ε > 0,
such that Lε ⊂ V . Recall that Hx is uniformly elliptic on U and thus on V with a constant
γ > 0. By continuity of f ′x we can in turn choose V , such that ‖f ′x‖ ≤ γ−1ν for every x ∈ V ,
for every given ν > 0. It follows by (58) that ‖δx‖ ≤ ν for every acceptable directional
minimizer, and thus x+δx ∈ U , as long as V and ν have been chosen sufficiently small, and
x ∈ Lε ⊂ V . Thus, we conclude by the descent property that x+ δx ∈ Lε ⊂ V , again.

Proposition 4.8. Suppose that Assumption 4.6 holds. If the sequence of iterates, generated
by our algorithm comes sufficiently close to x∗, then it converges to x∗.

Proof. By Lemma 4.7 the sequence, generated by our algorithm remains in Lε, as long as
one iterate comes sufficiently close to x∗. Thus, ‖xk − x∗‖ remains bounded. Theorem 4.4
implies ‖f ′xkj ‖ → 0, at least for a subsequence xkj , and thus

f(xkj )− f(x∗) ≤ α‖f ′xkj ‖‖xkj − x∗‖ → 0.

So, for each ε > 0, xkj ∈ Lε, eventually. Since xk does not leave level sets by Lemma 4.7,
the same holds for the whole sequence. Since the level sets form a neighborhood base of
x∗, we conclude that xk → x∗.

4.2.2 Asymptotic behaviour of the globalization scheme

Next, we will study conditions under which the effect of globalization vanishes close to x∗.
We do this by comparing the actually computed step δx, some directional minimizer of the
model function mω

x with a step ∆x in the same direction computed for ω = 0, i.e., the
minimizer of

qx(v) = f(x) + f ′xv +
1

2
Hx(v, v) = f(x) +m0

x(v)

on span{δx}. Close to x∗ the Hessian Hx is elliptic by assumption, so that ∆x is well
defined.

Considering a sequence xk → x∗ and corresponding sequences ωk and δxk, generated
by our algorithm, we will show in the following that the quotients

λk :=
‖δxk‖
‖∆xk‖

≤ 1

tend to 1. Note that by definition of ∆xk and δxk we have δxk = λk∆xk.
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For the following we will only need a slightly weaker version of the upper bound of (8):

xk → x∗, vk → 0 implies lim
k→∞

Rxk(vk)

‖vk‖2
= 0. (59)

Lemma 4.9. Let xk be any sequence of iterates with accepted steps δxk, such that Hxk are
uniformly elliptic. Then

lim
k→∞

ωkRxk(δxk)

‖δxk‖2
= 0 ⇒ lim

k→∞
λk = 1.

Proof. To show the above equivalence we insert δxk and ∆xk into (12) and set

γk :=
Hxk(δxk, δxk)

‖δxk‖2
=
Hxk(∆xk,∆xk)

‖∆xk‖2
.

We obtain from (12) (with ω = 0 for ∆x):

‖δxk‖
(
ωk
2

Rxk(δxk)

‖δxk‖2
+ γk

)
(12)
= |f ′xkδxk|/‖δxk‖

= |f ′xk∆xk|/‖∆xk‖
(12)
=
ω=0
‖∆xk‖γk

By assumption, the sequence γk is positive and bounded away from 0 and thus we obtain
by division

1 ≥ λk =
‖δxk‖
‖∆xk‖

=
γk

ωk
2

Rxk (δxk)

‖δxk‖2 + γk

The right hand side tends to 1, if
ωkRxk (δxk)

‖δxk‖2 → 0.

The following result is an immediate consequence:

Corollary 4.10. Let xk be a converging sequence, such that Hxk are uniformly elliptic,
and suppose that (59) holds. If ωk is bounded, then limk→∞ λk = 1.

To show boundedness of ωk we consider the acceptance indicators ηk as defined in (24)
and show that they tend to 1 asymptotically if the quadratic model is really a second order
approximation of f in the sense of (10):

lim
k→∞

wxk(δxk)

‖δxk‖2
= 0.

It can be shown that such a condition holds, if f is twice continuously differentiable in a
neighborhood of x∗ and Hx = f ′′x .

Proposition 4.11. Suppose that xk → x∗ and assume that the second order approximation
error estimate (10) holds. Then, independently of the choice of ωk ≥ 0 we conclude for ηk,
defined in (24):

lim inf
k→∞

ηk ≥ 1

for any corresponding sequence of directional minimizers δvk.
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Proof. Since, by assumption xk → x∗, we also have ‖f ′xk‖ → 0 and thus ‖δvk‖ → 0 by (58).
Thus, by (10) we conclude

lim
k→∞

wxk(δvk)

‖δvk‖2
= 0, while by (57) we have

mωk
xk

(δvk)

‖δvk‖2
≤ −γ

2
.

Thus, taken together, we obtain

lim
k→∞

wxk(δvk)

mωk
xk (δvk)

= 0.

Hence, by definition (2) (recall that mωk
xk

(δvk) < 0)

lim inf
k→∞

ηk = lim inf
k→∞

f(xk + δvk)− f(xk)

mωk
xk (δvk)

= lim inf
k→∞

mωk
xk

(δvk)− ωk
6 Rxk(δvk) + wxk(δvk)

mωk
xk (δvk)

≥ lim
k→∞

(
1 +

wxk(δvk)

mωk
xk (δvk)

)
= 1.

Theorem 4.12. In addition to Assumption 4.6 suppose that (59) and (10) hold in U along
xk generated by our algorithm. If xk comes sufficiently close to x∗ then xk → x∗, ωk is
bounded and λk → 1.

Moreover, eventually, ιmod = 0 and all calls of subroutine “CompAccStep” terminate
after one iteration.

Proof. By Theorem 4.8 we conclude that xk → x∗ and by (58) ‖δvk‖ → 0 for any directional
minimizer δvk of mωk

xk
. In particular the quasi-Cauchy steps δxCk and the accepted steps

δxk tend to 0 in ‖ · ‖-norm.
By Proposition 4.11 eventually every trial step is accepted with some ηk > η. Hence,

subroutine “CompAccStep” terminates at the first step and by our algorithmic restriction
(30) ωk is not increased anymore so that it follows that ωk is bounded above. This and

‖δxCk ‖ → 0 implies via (59) that limk→∞
ωkRxk (δxCk )

‖δxCk ‖2
= 0 so that ιmod = 0, eventually.

Finally, Lemma 4.9, taking into account boundedness of ωk and ‖δxk‖ → 0 yields
λk → 1.

4.2.3 Fast local convergence along Newton directions

As an illustration of this result consider the case, where δx is computed from a Newton
direction ∆xN in case that Hx = f ′′x is elliptic:

∆xN ∈ argmin qx ⇔ f ′xv +Hx(∆xN , v) = 0 ∀v ∈ X.

In the following, we denote by ‖v‖Hx := Hx(v, v)1/2 the energy norm. Under our assump-
tions, we have equivalence of norms:

∃γ > 0,Γ <∞ : γ‖v‖2 ≤ ‖v‖2Hx ≤ Γ‖v‖2.

It is well known that the sequence, generated by these steps converges locally superlinearly
to x∗ as long as f is twice continuously differentiable in a neighbourhood of x∗. Let us
denote by δxN the directional minimizer of mω

x in Newton direction.
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Lemma 4.13. δxN satisfies the fraction of Cauchy decrease condition (21) if

β ≤ 1− ω

3

Rx(∆xN )

‖∆xN‖2Hx
. (60)

Proof. We compute, using that δxN and ∆xN are directional minimizers of mω
x and m0

x:

mω
x (δxN ) ≤ mω

x (∆xN ) = m0
x(∆xN ) +

ω

6
Rx(∆xN )

= −1

2
‖∆xN‖2Hx +

ω

6
Rx(∆xN ) = −1

2

[
1− ω

3

Rx(∆xN )

‖∆xN‖2Hx

]
‖∆xN‖2Hx .

Observing that the term in square brackets is greater or equal β by (60) we can continue
to compute:

mω
x (δxN ) ≤ −1

2
β‖∆xN‖2Hx = βm0

x(∆xN ) = β inf m0
x ≤ β inf mω

x ≤ βmω
x (δxC).

In the following we consider for a sequence xk the Newton steps ∆xNk computed at xk
and corresponding directional minimizers δxNk of mωk

xk
.

Theorem 4.14. Suppose that the conditions of Theorem 4.12 hold and assume that f is
twice continuously differentiable. Assume that β < 1 in Condition 3.5.

Then, if xk comes sufficiently close to x∗, eventually all δxNk are acceptable, so that
xk+1 = xk + δxNk , and the sequence xk converges locally superlinearly to x∗.

Proof. By boundedness of ωk, equivalence of the norms ‖ · ‖ and ‖ · ‖Hx , and (59) we obtain
that the right hand side of (60) tends to 1 and is thus larger than β, eventually. Thus,

eventually, δxNk is acceptable in terms of Condition 3.5 (recall that eventually ιmod = 0
by Theorem 4.12), and also in terms of Condition 3.7 by Proposition 4.11. Hence xk+1 =
xk + δxNk . Now we compute

‖xk + δxNk − x∗‖Hx
‖xk − x∗‖Hx

≤ ‖xk + ∆xNk − x∗‖+ ‖δxNk −∆xNk ‖Hx
‖xk − x∗‖Hx

=
‖xk + ∆xNk − x∗‖Hx
‖xk − x∗‖Hx

+
(1− λk)‖∆xNk ‖Hx
‖xk − x∗‖Hx

.

The first term of the right hand side vanishes asymptotically due to local superlinear con-

vergence of Newton’s method, which also implies
‖∆xNk ‖Hx
‖xk−x∗‖Hx

→ 1. Then the second term

vanishes asymptotically due to λk → 1 by Theorem 4.12 and thus

lim
k→∞

‖xk+1 − x∗‖Hx
‖xk − x∗‖Hx

= 0.

By induction we conclude superlinear convergence of xk to x∗, also w.r.t ‖ ·‖ by equivalence
of norms.
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