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Abstract 

Studying the origin and evolution of cosmo- and geochemical reservoirs particularly 

requires knowledge about the composition and occurrence of the inert noble gases (He, Ne, Ar, 

Kr, Xe). Earth's atmosphere is characterized by a "planetary" noble gas signature, i.e., depleted 

from solar element abundances more intensively in lighter than in heavier gases, whereas Earth's 

interior hosts light noble gases (He and Ne) with a distinct "solar" composition. In particular, Ne 

isotopic ratios of both the convecting and more primitive mantle, the latter sampled by oceanic 

island basalts (OIBs), resemble the solar wind (SW) implanted Ne-B component in meteorites with 
20Ne/22NeNe-B ~12.7. The atmosphere, instead, displays a lower 20Ne/22Ne ratio of 9.80. 

The reservoir of the primitive noble gas signatures, traditionally assumed to be isolated in 

the deep mantle, is not precisely located and some models speculate about Earth’s core as possible 

source. High resolution release experiments on interior samples of the iron meteorite Washington 

County (WC) were carried out in this study to identify volume correlated trapped noble gases and 

to investigate the possibility of noble gas partitioning into metal upon core segregation. Consisting 

of a mixture of predominantly cosmogenic and solar components, with only minor atmospheric 

additions, gases are released from schreibersite ((Fe,Ni)3P) at ~1100 °C and kamacite-taenite 

(Fe,Ni) at ≳1400 °C. The solar signatures are distinct in Ne and He/Ne isotopic ratios with clear 
4He excess. Ar, Kr and Xe isotopic ratios are either dominated by spallation or are overprinted by 

air contamination. Measured 20Ne concentrations of ~4*10-8 cm³STP/g imply that solar wind-

implantation into terrestrial precursors and incorporation of <1% core material that resembled 

Washington County metal would have been sufficient to provide solar type Ne in the core that 

satisfies observed mantle fluxes. This would be consistent with the core as potential source region. 

The actual acquisition of the light solar noble gases on Earth can be either explained by solar 

nebula gas dissolution into a magma ocean or accretion of solar wind irradiated material. The solar 

wind implantation model is assessed by applying constraints for the present terrestrial influx of 

particles ranging from 10-16–1025 g, and the size-specific Ne inventory of extraterrestrial matter. 

Present-day Ne contributions to Earth’s surface peak at interplanetary dust particle sizes of ~9 µm 

which contain a mean 20Ne/22Ne ratio of 12.61±0.41. This value represents Ne-B in unablated solar 

wind saturated particle surfaces and dominates the inventory of irradiated, though volatile-poor, 

matter that accreted to form Earth in the inner Solar system. This is opposed to volatile-rich 

objects from the outer Solar system containing planetary Ne-A with 20Ne/22Ne ~8.20. The data 

compilations allow determining the mass and size dependent upper atmosphere Ne flux and infer 

the contribution during early Earth formation of a) surface correlated Ne-B, dominated by ~75 µm 

particles with high surface/volume ratio and b) volume correlated Ne-A, dominated by larger 

bodies. The Ne-acquisition scenario considers delivery of solar wind implanted Ne-B shortly after 

dissipation of disk gas and Ne incorporation into Earth with 20Ne/22Ne: 12.61±0.41 by dissolution 

into a magma ocean before the Moon-forming impact. The late veneer contribution of Ne-A to 

degassed mantle Ne-B establishes the atmospheric inventory with 20Ne/22Ne: 9.80. The model 

calculations show that, because dominated by implanted components in cosmic dust, only a 

fraction of a few % of irradiated precursor material is sufficient to account for the solar Ne budget 

of Earth, thus, demonstrating the significance of dust accretion for the origin of volatiles. 
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Kurzfassung  

Studien zu Ursprung und Entwicklung kosmo- und geochemischer Reservoire erfordern 

insbesondere Kenntnisse über Vorkommen und Zusammensetzung inerter Edelgase (He, Ne, Ar, 

Kr, Xe). Die Erdatmosphäre ist durch „planetare“ Edelgassignaturen mit starker Verarmung 

leichter gegenüber schweren Gasen relativ zu solaren Elementhäufigkeiten geprägt, während das 

Erdinnere He und Ne mit „solarer“ Signatur beinhaltet. Insbesondere die Zusammensetzung der 

Ne Isotope des konvektierenden und des primitiveren Mantels, letzterer durch Ozeaninselbasalte 

(OIBs) beprobt, entspricht der Sonnenwind-implantierten Ne-B Komponente in Meteoriten mit 
20Ne/22NeNe-B ~12.7. Die Atmosphäre hingegen zeigt einen niedrigeren 20Ne/22Ne Wert von 9.80. 

Der im unteren, isolierten Mantel vermutete Ursprungsort der primordialen Edelgase ist 

bisher nicht eindeutig lokalisiert und Modelle spekulieren über den Erdkern als potentielle 

Quelle. Hochauflösende Entgasungsexperimente an Proben aus dem Inneren des Eisenmeteoriten 

Washington County wurden in dieser Studie durchgeführt, um volumenkorrelierte Edelgase 

nachzuweisen und die Möglichkeit zu prüfen, diese bei der Kernbildung ins Metall abzusondern. 

Eine Mischung aus vorrangig kosmogenen und solaren Gasen mit nur geringem atmosphärischem 

Beitrag wurde von Schreibersit ((Fe,Ni)3P) bei ~1100 °C und Kamacit-Taenit (Fe,Ni) bei ≳1400 °C 

freigesetzt. Solare Signaturen sind durch Ne und He/Ne Isotope mit 4He Überschuss messbar. Ar, 

Kr und Xe Isotope sind spallations-dominiert oder durch Luftverunreinigungen überprägt. 

Gemessene 20Ne Mengen von ~4*10-8 cm³STP/g deuten an, dass Sonnenwind-Implantation in 

Vorläufermaterial der Erde und Eintrag von <1% Kernmaterial, das Washington County Metall 

ähnelte, ausreichend gewesen wäre, um genügend solares Ne im Erdkern aufzunehmen, so dass 

Mantelflüsse erklärt werden können. Dies wäre konsistent mit dem Erdkern als Quellregion.  

Die Ansammlung der solaren Edelgase auf der Erde kann entweder durch Lösung des 

solaren Nebels in einen Magmaozean oder durch Akkretion bestrahlten Materials erklärt werden. 

Das Sonnenwind-Implantations-Modell wurde mit Parametern zum heutigen terrestrischen 

Eintrag von Partikelmassen zwischen 10-16–1025 g und dem spezifischen Ne-Gehalt extraterres-

trischer Körper überprüft. Der derzeitige maximale Ne-Eintrag auf die Erdoberfläche liegt bei 

Staub-Größen von ~9 µm mit einem mittleren 20Ne/22Ne von 12.61±0.41. Dieser Wert repräsen-

tiert Ne-B in Sonnenwind-gesättigten Oberflächen und dominiert das Inventar von bestrahltem, 

aber volatilarmem, Material aus dem inneren Sonnensystem, das zur Erde akkretierte. Diesem 

Material stehen volatilreiche Objekte aus dem äußeren Sonnensystem mit planetarem Ne-A 

(20Ne/22Ne ~8.20) gegenüber. Daten zum massen- und größenabhängigen Ne-Eintrag auf die obere 

Erdatmosphäre ermöglichen die Beitragsbestimmung für die frühe Erdbildung von a) oberflächen-

korreliertem Ne-B, dominiert durch ~75 µm Partikel und b) volumenkorreliertem Ne-A, 

dominiert durch größere Körper. Das Ne-Akkretions-Szenario betrachtet den Eintrag von 

implantiertem Ne-B nach Auflösung des solaren Nebels und Aufnahme von Ne ins Erdinnere mit 
20Ne/22Ne: 12.61±0.41 durch Lösung in einen Magmaozean vor der Mondbildung. Durch späteren 

Ne-A Beitrag zu entgastem Mantel-Ne-B wird das atmosphärische 20Ne/22Ne mit 9.80 erzeugt. Das 

Modell zeigt, dass ein Anteil von nur einigen % bestrahlten Materials, durch implantierte 

Komponenten in kosmischem Staub dominiert, ausreicht, um das Budget der Erde an solarem Ne 

beizusteuern. Dies betont die Bedeutung von Staubakkretion für den Ursprung volatiler Elemente.  
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1 Outline 

The research presented below refers to major aspects of noble gases (He, Ne, Ar, Kr and Xe) 

in cosmochemistry and geochemistry, their elemental and isotopic compositions as well as their 

abundance, distribution and evolution in different reservoirs. These reservoirs include Earth’s 

interior and atmosphere, extraterrestrial matter like meteorites and asteroids and the solar wind 

(SW). The following chapters comprise two individual noble gas studies that intend to explore a 

possible interior reservoir of noble gases on Earth (Chapter 2) and to investigate the origin of 

terrestrial noble gases during Earth’s formation as well as tracing the evolution of Earth's 

atmosphere (Chapter 3). Each chapter contains a detailed and comprehensive introduction.  

Noble gases in geochemistry and cosmochemistry are important tracers to identify the 

sources and distribution of volatiles throughout the Solar System (Ozima and Podosek, 2002; 

Porcelli et al., 2002a; and references therein). Because of their scarcity and chemical inertness 

noble gases offer detailed insights in geochemical reservoir characteristics and terrestrial mantle 

geochemistry (Porcelli et al., 2002b; Porcelli and Ballentine, 2002). The study of these highly 

volatile elements furthermore implies unique constraints on the origin and evolution of terrestrial 

volatiles and the formation of Earth’s atmosphere (Pepin and Porcelli, 2002; Moreira, 2013; and 

references therein). 

For the purpose of the present investigations it is essential to distinguish trapped noble gases 

which are primordial components from in situ components that are secondary produced by 

nuclear interactions with cosmic radiation (cosmogenic noble gases) or radioactive decay 

(radiogenic noble gases). The trapped components are further subdivided into “solar” noble gases 

(derived, e.g., from SW-implantation) and “planetary” noble gases which are common to the 

atmospheres of the terrestrial planets (Earth, Mars and probably Venus) and to chondritic 

meteorites in which the planetary gases, however, represent again a complex mixture of various 

components, for example, presolar grains (Ott., 2014; and references therein). Overall, the 

planetary abundance pattern is universally characterized by a strong depletion of all noble gases 

compared to the solar abundances whereas the light noble gases (He, Ne) show a stronger 

depletion relative to the heavier ones (Ar, Kr, Xe). 

While Earth’s atmosphere contains planetary noble gases, Earth’s interior incorporates 

distinct He and Ne signatures of solar origin. In particular the OIB (plume) source yields high 

contributions of light solar noble gases. This becomes explicitly clear from plume derived samples 

exhibiting high primordial 3He/4He ratios and a solar-like 20Ne/22Ne ratio that is indistinguishable 

from the SW-implanted Ne-B component in meteorites (20Ne/22NeNe-B ~12.5–12.7). Systematically 

lower 3He/4He ratios and slightly lower average maximum 20Ne/22Ne ratios in MORB derived 

samples can be explained by fractionation processes during degassing of the MORB mantle, crustal 

and atmospheric contamination in combination with convective stirring in the upper mantle and 

radiogenic 4He additions. This requires at least two separate reservoirs in Earth's interior: a 

strongly degassed and well-homogenized reservoir in the upper mantle as source for MORBs and a 

pristine, isolated and gas rich reservoir deep in Earth's mantle that is sampled by plumes. Yet, this 
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primordial source region was never unambiguously located (Moreira, 2013; and references 

therein).  

Mantle models for possible source regions of He with high 3He/4He ratios are discussed in 

length by Porcelli and Ballentine (2002) and are schematically shown in Figure 1.1. Degassing of 

the upper mantle which contributes to the atmospheric reservoir (ATM) occurs in all scenarios. In 

models involving layered convection, high 3He/4He ratios in OIBs are transferred by plumes from 

an isolated gas-rich reservoir comprising the lower mantle below 660 km. In the simplified limited 

interaction box model (1), two separate reservoirs without interactions, except for a minor flux to 

OIBs, exist in the lower mantle and upper mantle. In the steady-state box model (2), there is open 

interaction between the “closed” lower mantle, the upper mantle and the atmosphere. Inflows 

into the upper mantle from transferred lower mantle noble gases, subducted atmospheric (heavy) 

noble gases and production of radiogenic noble gases are equal (in steady-state) to outflows at mid-

ocean ridges. Generally, however, models including layered convection are in conflict with 

geophysical evidence of plates subducted into the lower mantle. In models involving whole 

mantle convection across the 660 km boundary, high 3He/4He ratios in OIBs are transferred by 

plumes from a primitive gas-rich reservoir in isolated deep layers or preserved mantle 

heterogeneities (“blobs”) (3). In a lower boundary layer above the core mantle boundary, high 
3He/4He ratios are presumably sourced from a residual depleted mantle (RDM) (4) of subducted 

oceanic lithosphere (depleted in U and He) which presently yields OIB signatures but initially 

incorporated solar 3He/4He ratios. Altered oceanic crust (complementary to the oceanic 

lithosphere) in the underlying D’’ layer is strongly depleted in 3He and likely contains radiogenic 
4He due to potential U enrichments. Complications for these models arise from the fact that 

subducted material may be too depleted to cause OIB signatures alone or how an additional fixed 

primitive reservoir with high 3He/4He ratios can remain convectively isolated over long time 

scales. In another model, high 3He/4He ratios in OIBs are transferred by plumes directly from 

Earth’s core (5). This source remains possible but more speculative (Porcelli and Ballentine, 2002). 

Chapter 2 (“Earth’s core as source of light primordial noble gases”) aims to investigate the 

potential of Earth’s core to incorporate light solar noble gases (He and Ne, Fig. 1.1) and to act as 

potential source reservoir that might influence the terrestrial noble gas budget. Conclusions are 

drawn from the analysis of noble gases that are trapped within the metal of the iron meteorite 

Washington County that is, like Earth, a differentiated body and might represent a type of 

terrestrial building blocks.  

The “planetary” composition of Earth’s atmosphere and the occurrence of the “solar” 

composition (of light noble gases) in Earth’s mantle directly lead to the discussion how these 

components were acquired on Earth. This implicitly involves the question of the origin and 

evolution of the atmosphere and volatiles on Earth in general. The planetary signature of the 

atmosphere points towards a secondary origin and results from a combination of degassing from 

the interior, delivery of chondritic material and elemental and isotopic fractionation. The solar 

signatures must have been acquired during an earlier stage of Earth’s accretion. The origin of light 

noble gases (He, Ne, and Ar) on Earth was recently reviewed by Péron et al. (2018). Two 

outstanding models have been proposed for the origin of light solar noble gases within Earth: 

either dissolution of solar nebula gas into a magma ocean during early planet formation in a “gas-
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rich” environment or SW-implantation into accreting materials after dissipation of the solar 

nebula in a “gas-poor” environment (e.g., Pepin, 1991). Both models are essentially based on the 

presence of solar-like Ne within Earth, however, the recognition of Ne as the SW-implanted Ne-B 

component requires valid scenarios and models of SW-irradiation during terrestrial accretion.  

Chapter 3 (“Acquisition of solar Ne during terrestrial accretion”) considers the origin of 

solar-like Ne within Earth if the SW-implantation model is valid. This model is reviewed to 

quantify its potential to account for the terrestrial Ne budget. It takes into account early 

accretionary fluxes of dust-sized particles with high surface to volume ratio as dominant carriers 

of surface implanted components supplying Ne-B. The evolution of the atmospheric composition 

is then established by mixing of a degassed solar component from the interior with a planetary 

component that is delivered by a chondritic veneer during a later stage of terrestrial accretion. 

Conclusions can be drawn for the acquisition of terrestrial volatiles and the importance of dust-

sized matter during Earth’s accretion. 
 

 

 
Fig. 1.1: Schematic mantel models showing possible reservoirs for He with high 3He/4He ratios (orange) and He fluxes as 

arrows. In models with layered convection, high 3He/4He ratios are sourced from the lower mantle below 660 km in the 

limited interaction box model (1) and the steady-state box model (2). In the limited interaction model, fluxes of 3He from the 

lower mantle are required to compensate global He fluxes at mid-ocean ridges. In models with whole mantle convection, high 
3He/4He ratios are sourced from deep isolated layers and preserved mantle heterogeneities (3), a residual depleted mantle 

(RDM) of subducted oceanic lithosphere above the core mantle boundary (4) or from the core (5) (see text for details). 

Chapter 2 investigates the core as possible reservoir for primordial He and Ne. ATM: Atmosphere, RDM: residual depleted 

mantle (redrawn and modified from Porcelli and Ballentine, 2002).  
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2 Earth’s core as source of light 

primordial noble gases 
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2.1 Introduction 

Noble gases are chemically inert tracers that comprise information on the origin and 

evolution of Earth’s geochemical reservoirs (Porcelli and Ballentine, 2002). The interior of Earth 

hosts noble gases with a distinct solar-like component (e.g., Sarda et al., 1988; Honda et al., 1991; 

Pepin, 1998; Trieloff et al., 2000; Trieloff and Kunz, 2005; Marty, 2012; Halliday, 2013; Moreira, 

2013). Especially the isotopic composition of neon observed in the mantle end-member 

(20Ne/22Nemantle: ≳12.5–~12.9) of mid ocean ridges (MORBs) and ocean island basalts (OIBs) points 

towards a solar origin for the mantle gases (Trieloff et al., 2000; Dixon et al., 2000; Yokochi and 

Marty, 2004; Ballentine et al., 2005; Mukhopadhyay, 2012; Moreira, 2013; Péron et al., 2017). This 

mantle value was identified by Trieloff et al. (2000, 2002) and Trieloff and Kunz (2005) to be 

indistinguishable from the Ne-B component (20Ne/22NeNe-B: ~12.5–12.7, Black, 1972; Trieloff and 

Kunz, 2005; Moreira and Charnoz, 2016), which can be related to the solar wind (SW) 

composition (20Ne/22NeSW: 13.777±0.010; Heber et al., 2012 or respectively 14.001±0.042; Pepin et 

al., 2012) by isotopic fractionation during ion implantation. In order to establish the mantle 

composition, solar noble gases must have been incorporated into the deep mantle very early 

during Earth’s history for which only few processes can provide an explanation (Harper and 

Jacobsen, 1996; Porcelli et al., 2001). Among the different mechanisms for the acquisition of the 

terrestrial noble gases (see Pepin and Porcelli, 2002), accretion of volatile-rich, dominantly small 

terrestrial precursor material, that contains high concentrations of implanted light solar noble 

gases derived from SW-irradiation, is a possible solution (Podosek et al., 2000; Trieloff et al., 2002; 

Moreira, 2013; Péron et al., 2017; Jaupart et al., 2017; Vogt et al., in prep.; see Chapter 3). An 

alternative model involves dissolution of solar gases into a magma ocean, which was generated 

through the blanketing effect of a gravitationally captured dense solar nebula (Mizuno et al., 1980; 

Sasaki and Nakazawa, 1990; Harper and Jacobsen, 1996; Sasaki, 1999; Woolum et al., 1999; Porcelli 

et al., 2001).  

The flux from Earth’s core itself could be an additional source for solar noble gases in the 

deep mantle (Porcelli and Halliday, 2001; Trieloff and Kunz, 2005). So far, the iron core has been 

recognized as a speculative but viable source region of isotopically distinctive helium to assess the 

nature of the high 3He/4He OIB source (Porcelli and Halliday, 2001; Porcelli and Ballentine, 2002). 

Assuming a diffusive flux of 3He (and other noble gases) from the core into a thermal boundary 

layer at the bottom of the mantle, Moreira (2013) calculated that a thin boundary layer (~2 km in 

thickness) could be significantly enriched in helium and supply the signatures observed in OIBs. 

In this regard, primordial He isotopic ratios in hotspots may provide a tracer reflecting core-

mantle interactions if plumes originate at the core-mantle boundary and if core material is 

transferred and/or entrained back into the mantle (Macpherson et al., 1998). Possible transport 

mechanisms across the core-mantle boundary have been discussed by Porcelli and Halliday (2001) 

and Porcelli and Ballentine (2002) and involve expulsion of noble gases from the outer core, 

diffusion processes, partitioning into overlying partial melts or bulk transfer of core material. 

Overall, partitioning of noble gases from the core into the mantle should be even more effective if 
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mantle noble gases were depleted by orders of magnitude during massive mantle degassing after 

core formation (Trieloff and Kunz, 2005). 

The presence of high 3He/4He ratios within the core would have required trapping of 

sufficient primordial He during accretion unaccompanied by U and Th to prevent radiogenic 

production of 4He (Porcelli and Ballentine, 2002). Furthermore, the incorporation into the core is 

not only dependent on the metal-silicate partitioning coefficients for the noble gases under core 

forming conditions but also on the initial noble gas concentrations and their availability (Porcelli 

and Ballentine, 2002; Trieloff and Kunz, 2005). These quantities moreover depend on whether the 

mantle was molten or solid during core segregation. Initial concentrations of 0.6–70*1011 atoms 
3He/g in the mantle may have been necessary to partition sufficient 3He into the core if the present 

mantle fluxes of primordial He were assumed to be entirely maintained by this source (Porcelli 

and Halliday, 2001). On the other hand, partitioning of noble gases between metal- and silicate 

melt under pressures between 5 and 100 kbar may result in insufficient 3He to be present in the 

core because measured noble gas partitioning coefficients are very low and decrease from ~4*10-2 

to ~3*10-4 with increasing pressure (Matsuda et al., 1993). At very high core forming pressures 

(~50 GPa), however, silicate-metal partitioning coefficients are unknown for noble gases (Porcelli 

and Halliday, 2001; Moreira, 2013) and any change of physical properties of the (heavy) noble 

gases in the deep mantle might cause a different geochemical behavior; Xe for example forms 

high-density solids under these conditions (Jephcoat and Besedin, 1996; Jephcoat, 1998). 

Sequestering Xe into the metal phase could furthermore point towards an explanation for the 

‘missing Xe’ paradox (Macpherson et al., 1998; Jephcoat, 1998) since Xe would then be sited 

within the core (Ozima and Podosek, 2002). 

Although highly speculative, the scenario of incorporating primordial He into the core and 

transferring it from the core back into the mantle is also conceivable for Ne (Dixon et al., 2000; 

Trieloff and Kunz, 2005). The presence of Ne within the iron core would offer an alternative 

solution other than requiring a separate reservoir for solar-like Ne within Earth’s mantle such as 

an isolated source region or subducted material (e.g., Porcelli and Halliday 2001; Trieloff and 

Kunz, 2005). In this regard, analyses of iron meteorites as a natural analogue of segregated core 

material offer a possibility to study the feasibility of sequestering noble gases into the metal phase. 

On the other hand, only the iron meteorite Washington County (Fig. 2.1) is known to contain 

volume correlated light solar noble gases that appear to be different from surface implanted 

components or solar gases sited within silicate inclusions (Murty and Ranjith Kumar, 2014). The 

concentration of this 3He in Washington County is considered by Porcelli and Halliday (2001) as a 

possible indication for the incorporation of noble gases into the core. Similarly, Trieloff and Kunz 

(2005) consider the high concentration of 20Ne in Washington County as sufficient to account for 

the required solar Ne concentration in the Earth’s core if ~0.25% of Earth’s precursor metal 

resembled this kind of iron meteorite. 

After the first report of excess 4He in Washington County unrelated to cosmic ray 

production (Schaeffer and Fisher, 1959), high excesses of non-cosmogenic light noble gases with a 

remarkably low 3He/4He ratio were verified by Signer and Nier (1962) and Hintenberger et al. 

(1967). These studies revealed also a striking excess of 20Ne in these samples and the authors 

argued for the presence of trapped primordial gases. Signer and Nier (1962) observed the release of 
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(a factor of five) variable excesses incorporated into samples from adjacent areas even though 

yielding a constant (4He/20Ne)excess ratio of 420±40. Hintenberger et al. (1967) reported a similar 

excess 4He/20Ne ratio of 470 and postulated the pure metal phase as the only possible noble gas 

carrier. In shavings of unablated rear surface samples of Washington County Becker and Pepin 

(1982, 1984, 1987) found a ratio of trapped to spallation noble gases that was several times larger 

than in the previous studies and the inferred He, Ne, Ar elemental as well as the 20Ne/22Ne ratios 

turned out to be almost identical to those in the present-day solar wind. Murty and Ranjith Kumar 

(2014) performed a three-temperature stepwise pyrolysis analysis on surface and interior samples 

of Washington County and detected volume correlated trapped solar gases with a peak release 

temperature of 1700°C. Trapped elemental ratios were found to have fractionated solar values, 

with the Ne isotopic composition of interior samples indicative of the presence of SW-Ne within 

the metal. 

Direct implantation of SW into metal grains prior to accretion was advocated as a possible 

explanation for the origin of the trapped solar composition gases (Becker and Pepin, 1982, 1984). 

Otherwise, these can only have been acquired by the iron meteorite during the formation of its 

parent body under very specific conditions involving a sudden melting event (Hintenberger et al., 

1967; Becker and Pepin, 1984). On the other hand, similar to the case of the iron meteorite 

Kavarpura in which the trapped SW-component is attributed to inhomogeneously distributed 

inclusions rather than being hosted within the metal (Murty et al., 2008), the observed 

distribution of noble gases in Washington County might, in spite of the assertion of Hintenberger 

et al. (1967), as well point towards a heterogeneously distributed minor carrier phase (Murty and 

Ranjith Kumar, 2014). 

In the following chapter the first high resolution temperature release study on interior 

samples of Washington County is presented that was performed to trace the trapped noble gas 

component. The presented results provide unique information relevant to the question which 

particular carrier phase hosts the analyzed noble gases. Whether or not SW-gases are present in 

the interior of Washington County has direct implications for the identification of a potential 

source region of solar noble gases within Earth’s interior.  

2.2 Experimental 

2.2.1 Washington County iron meteorite 

The iron meteorite Washington County was first described as moderately nickel-rich ataxite 

(Palache and Shannon, 1928) that contains ~9.9 wt% Ni (Cech, 1962; Wasson and Schaudy, 1971; 

Malvin et al., 1984) and appears distantly related to irons of group IIIB (Buchwald, 1975). The 

massive iron disk with dimensions of 15 and 20 cm and a thickness of 6 cm (Fig. 2.1) displays a 

slightly conical “front surface” which obtained its fusion crust and radial grooves called 

regmaglypts probably during atmospheric entry. The opposite surface is much smoother and more 

smoothly domed (Palache and Shannon, 1928; Buchwald, 1975). Metallographic investigations and 

thermal history interpretations suggest rapid cooling and solidification of the metal (Chech, 1962). 
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The present structure of Washington County may be interpreted as the result of metamorphism 

that involved severe shock, shear-deformation and annealing (Buchwald, 1975). A detailed 

structural and mineralogical description of Washington County can be found in Buchwald (1975). 

A recent reinvestigation of the texture, phase composition and bulk composition by Ray and 

Ghosh (2014) reassigned Washington County to the structural group ‘Reheated Medium 

Octahedrite’, based on the formation of its thoroughly recrystallized texture (see section SEM 

analyses) and a bulk chemical composition of Co: 0.56 wt%, Cr: 0.01 wt%, Ga: 18 ppm, Ge: 33 

ppm, Ir: 0.01 ppm and Cu: 220 ppm. According to these authors, Washington County is a member 

of the fractionated group IIIAB and, more specifically, IIIB despite strong effects of secondary 

reheating caused by high intensity of shock (>750 kbar). 
 

  
Fig. 2.1: Iron meteorite Washington County (Palache and Shannon, 1928). The major axes of the 6 cm thick metal disk are 

15 and 20 cm. a) slightly conical “front surface” characterized by radial flutings. b) opposite smoothly domed surface. The 

10x7 cm plane area in the center results from shaping in 1927 (Buchwald, 1975). 

2.2.2 Sample preparation 

A 3 cm long slab of Washington County (WC_3078A, 0.75 g, Fig. 2.2) was obtained from 

Dr. Jutta Zipfel from the collection at the Senckenberg Forschungsinstitut und Naturmuseum 

Frankfurt, Germany. One end exhibits the fusion crust of the former surface of the meteorite. The 

other end represents the interior of Washington County. 

The slab surface was polished and cleaned at the Institut für Geowissenschaften in 

Heidelberg for reexamination of the previously reported (see Buchwald, 1975; Ray and Ghosh, 

2014) primary mineral phases under the SEM. Of particular interest was the distribution of 

potential (minor) noble gas carrier phases. 

After SEM analyses WC_3078A was cut with a 150 µm thick metal cutting saw blade in 

length to save one half of the slab for further investigations. The other half was cut in 15 aliquots 

(Fig. 2.2, WC_1 to WC_15 from surface to depth) of approximately equal size and weights of 7.3 to 

21.1 mg to facilitate noble gas measurements of near-surface and interior samples. 

 

a) b) 
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Fig. 2.2: Photograph of the Washington County sample slab (WC_3078A). Surface and interior orientation are indicated in 

reference to the former surface of the meteorite (fusion crust). The slab surface was polished to facilitate SEM-analyses. The 

cuttings that are aligned alongside and above the uncut polished slab-half (WC_1 to WC_15 from left to right) are aliquots 

that are intended for noble gas measurements of near-surface and interior samples. Missing in this photograph are WC_2, 

WC_5, WC_8, WC_11 and WC_14, which have been analyzed already and for which results are reported here. WC_8 was in 

preparation, but not measured. 

2.2.3 SEM analyses 

To document the texture and mineral distribution of WC_3078A the complete polished slab 

surface was investigated with 500-times magnifiction under the SEM (Fig. 2.3). The observed 

texture and phase composition corresponds to the description of Ray and Ghosh (2014) with 

respect to the complete destruction of all primary textures (thus formerly classified as chemically 

anomalous ataxite) and formation of a thoroughly recrystallized granulated kamacite matrix that 

contains common and evenly distributed taenite and schreibersite particles (Figs. 2.3, 2.4). 

Therefore, for this work, the chemical composition of the main minerals is adopted from Ray and 

Ghosh (2014): Washington County shows a recrystallized matrix (usually of 30 µm, but up to 70 

µm in size) of granular kamacite ((Fe,Ni), Ni: 7.25±0.07 wt%) and evenly distributed particles (5–

20 µm) of high-Ni taenite ((Fe,Ni), Ni: 32.30±1.12 wt%) as well as low-Ni taenite ((Fe,Ni), Ni: 22 

wt%) and Ni-rich schreibersite ((Fe,Ni)3P, Ni: 46.60±0.08 wt%). 
 

 
Fig. 2.3: SEM picture of the polished surface of WC_3078A. The granular kamacite matrix contains evenly distributed 

taenite and schreibersite particles. 



Earth’s core as source of light primordial noble gases  – 10 – 

Figure 2.4 shows the Fe, Ni and P element distributions of the investigated slab surface. The 

shown distribution of Fe corresponds essentially to the occurrence of kamacite with a phase 

abundance of about 90%. The Ni element distribution is equivalent to a phase abundance of ~7% 

taenite containing ~30 wt% Ni. The P element distribution marks the occurrence of schreibersite 

with a total phase abundance of ~3%. 
 

 
Fig. 2.4: BSE image of the WC_3078A slab surface and element distribution maps of Fe, Ni and P. The element distributions 

correspond to the occurrences of kamacite (Fe map), taenite (Ni map, ~30 wt% Ni) and schreibersite (P map). 

The presence of a sporadically occurring dispersed angular to subangular high carbon phase 

reported by Ray and Ghosh (2014) could not be confirmed for the presently investigated slab. 

Instead, a previously unreported and hitherto unknown spinel phase was observed (Fig. 2.5). 

These angular to subangular spinels of 1–10 µm in size are distributed sporadically across the 

surface of WC_3078A. Here, their total abundance is estimated to ~0.01‰. Dependent on the 

chemical composition, these spinel phases are classified as manganese bearing chromites 

(Fe2+Cr2O4) containing a few wt% Mn and up to ~0.1 wt% V, or as manganochromites 

((Mn,Fe2+)(Cr, V)2O4). In the latter, Mn exceeds the Fe content reaching ~20 wt%, while the mean 

vanadium content reaches up to about ~0.4 wt%.  
 

 

 
Fig. 2.5: Angular spinel phase. 
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2.2.4 Noble gas extraction and measurement 

To investigate the depth dependent noble gas contents of Washington County and clarify 

the presence of SW-implanted noble gas isotopic compositions in interior samples, four aliquots 

(WC_2: 17.3 mg, WC_5: 18.3 mg, WC_11: 14.2 mg, WC_14: 20.9 mg, Fig. 2.2) comprising near-

surface and interior parts of WC_3078A were selected and measured for noble gas composition 

(He, Ne, Ar and Xe, Tab. 2.1 and Tab. 2.3). Extraction and measurements were carried out at the 

Institut für Geowissenschaften, Universität Heidelberg, Germany. In order to constrain the noble 

gas release pattern a high-resolution stepwise heating schedule was applied (i.e., 25 steps, 600-

1800 °C) for the first measured sample (WC_5, Fig. 2.6). The results were used to refine the 

measurement procedure for subsequently analyzed samples, in particular by reducing the number 

of performed gas release steps and by omitting Xe from the measurements. 

All samples were weighed and wrapped in aluminum foil. The extraction and measurement 

procedures followed those described in Bartoschewitz et al. (2017), with some modifications. For 

gas extraction, a resistance heated furnace was used consisting of an outer Ta-tube containing an 

inner crucible consisting of molybdenum. Purification of the released gases was done by exposure 

to two cold Al-Zr-getters (WC_5) and two cold Ti-getters (WC_2, WC_5, WC_11, WC_14) 

during the furnace heating process. For samples WC_2, WC_11 and WC_14 only the Ti-getters 

were used. After heating, Ar and Xe were transferred to a charcoal finger cooled with liquid 

nitrogen. For WC_5 and WC_14 the remaining He and Ne were transferred to another, 

cryostatically cooled charcoal trap at ca. 20 K. Helium was then fully separated from neon at 48 K 

and subsequently measured. In case of WC_2 and WC_11 only Ne was transferred to the 

cryostatically cooled charcoal kept at ca. 48 K and the remaining He was directly measured. Neon 

release from the trap was achieved at 120 K and then measured. The heavy noble gas fraction was 

further cleaned by two hot Al-Zr-getters (ca. 400 °C, WC_5 only) and two hot Ti-getters (ca. 300 

°C / 600 °C, all samples), respectively. Ar and Xe released from WC_5 were transferred to a 

cryostatically cooled stainless steel sponge adsorber and subsequent separation of Ar from Xe was 

achieved at 90 K. In this case, about 93% of the Ar fraction was present in the Ar analysis, and 

100% of Xe in the Xe analysis. In case of WC_2, WC_11 and WC_14 Xe was not analysed and the 

full amount of Ar was available for analysis. 

Measurements were performed with a VG 3600 noble gas mass spectrometer at 120 µA trap 

current, 5 kV acceleration voltage and a nominal ionization energy of 80 eV (He, Ne) and 60 eV 

(Ar, Xe) for WC_5. The nominal ionization energy was set to 80 eV (He, Ne, Ar) for WC_2, 

WC_11 and WC_14. All isotopes except 4He and 40Ar, which were measured on a Faraday cup, 

were detected by a channeltron in a single ion counting mode. During measurement of He and Ne 

the mass spectrometer volume was connected with charcoal cooled with liquid nitrogen to reduce 

mass interferences, in particular from 40Ar. Potential interferences during Ne measurements were 

controlled by simultaneous measurement of masses 18 (H2O), 40 (Ar), 44 (dominantly CO2) and 42 

(hydrocarbons). Interference corrections were applied accordingly. Sample analyses were 

corrected for instrumental mass fractionation based on frequent measurements of calibration gas 

bracketing the sample measurements, which also were used for calculating the absolute gas 
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amounts. The isotopic composition of all calibration gases is equivalent to air ratios except for He. 

For He, an artificial gas standard enriched in 3He was used (4He/3He: 40183±87). 

For data assessment, all temperature steps were corrected for blank contributions during 

measuring procedure from the furnace, as determined from a sequence of blank measurements for 

all gases and samples between 800 °C and 1800 °C (Tables A1 and Tab. A2). Blank uncertainties 

were conservatively set to ±10% for 4He, 36Ar and 129Xe, ±5% for 20Ne (1σ-errors) to take into 

account variations observed in the measured blanks. In general, isotopic compositions of the 

blanks were indistinguishable from air. This is also assumed for He although 3He was always under 

detection limit. Thus, air composition (±20% for He, ±10% for Ar and Xe, ±5% for Ne, 1σ-errors) 

was used in blank corrections of sample analyses. Blank contributions were often substantial for 
4He, 20Ne, 22Ne, 36Ar and 40Ar (see Tab. A3), but generally low (at most few %) for the typical 

cosmogenic nuclides 3He, 21Ne and 38Ar. 

2.3 Results 

2.3.1 Noble gas data  

In Tables 2.1, 2.2 and 2.3, new bulk noble gas measurements of Washington County (WC_2, 

WC_5, WC_11, WC_14) performed at the Institut für Geowissenschaften, Universität Heidelberg, 

Germany are complemented by data obtained earlier at the Max-Planck-Institut für Chemie in 

Mainz, Germany using experimental procedures as described in Ott (1988) and Schelhaas et al. 

(1999) (WC_g: 22.40 mg bulk; WC_s: 21.87 mg bulk, WC_r: 8.54 mg residue). WC_g and WC_s 

are from different ends of a ~1 cm long piece, whileWC_r was a residue obtained by dissolution in 

sulfuric acid of 1.03 g of original material. The acid treatment left a 14.1 mg residue of almost pure 

schreibersite particles with sizes of 3–5 µm. The original Mainz-sample (0.5 cm x 0.5 cm x 1.5 cm) 

had been provided by O. Schaeffer and was subsequently obtained via H.Voshage and F. 

Begemann. Noble gas measurements on another part of this sample were previously reported by 

Hintenberger et al. (1967). The results of the combined analyses are compared in the following 

with the measurements previously reported by Schaeffer and Fisher (1959), Signer and Nier 

(1962), Merrihue (1964), Hintenberger et al. (1967) and Becker and Pepin (1984). 

The noble gas release patterns related to the performed temperature steps for the samples 

analyzed by high-resolution temperature extraction (WC_2, WC_5, WC_11, WC_14) are shown 

in Figure 2.6 and APPENDIX A. Isotopic and elemental ratios of analyzed WC_samples are shown 

together with literature data in Figures 2.7 to 2.11. To better resolve the primary solar and 

cosmogenic noble gas components, totals given as total(1) (Tab. 2.1) were calculated as the sum of 

the intermediate temperature steps only. This is because gases released at low and high 

temperatures potentially include (a) gas component(s) with atmosphere-like composition 

indicative of terrestrial contamination. In particular, extraction steps at 600 °C and 700 °C (WC_5) 

have been omitted in all calculations because of contributions from melting and degassing of the 

aluminum foil used for wrapping the samples. Up to 850 °C, still the observed gas release is 

influenced by degassing of the aluminum foil as indicated by atmospheric-like 40Ar/36Ar ratios.  
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Above 1525 °C the released gas amounts include contributions from degassing of Fe(III)- 

and Fe(II,III) oxides (melting points: 1565 °C and 1597 °C, respectively (Lide, (2009)) that possibly 

formed along cracks during atmospheric entry or during terrestrial weathering.  

Gas amounts that are missing in total(1) values can be seen as the difference to the total(2) 

values, which include all temperature steps with the exception of the 600 °C and 700 °C steps in 

case of WC_5. For 3He and 4He, this amonts to <2% and to <3% for the mostly cosmogenic 

isotopes 21Ne, 36Ar and 38Ar. Missing amounts of 22Ne are at maximum in the order of 5%, but for 

the major trapped/atmospheric isotopes (20Ne, 40Ar) the difference is larger. Data points for total(2) 

values are also shown for comparison in Figures 2.7 to 2.11 (parts a). 

 

2.3.2 Degassing pattern  

The degassing pattern for He, Ne and Ar of the first investigated sample WC_5 (Fig. 2.6) was 

used as reference for subsequent measurements (Figs. A1–A3). Figure 2.6 shows the fractional gas 

release F against the release temperature, where 𝐹 is defined as : 

 

𝐹 =
𝐶𝑖(𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛)

𝐶𝑖(𝑡𝑜𝑡𝑎𝑙) ∗  𝛥𝑇
  

 

Here, Ci(fraction) is the concentration of an isotope i for a particular release step, Ci(total) 

is the total and ΔT the width of the temperature step.  

Two major degassing peaks are apparent in the high resolution stepwise degassing, at 1100 

°C and 1425 °C. These are consistent in temperature and relative peak heights, with ~20% being 

released in the low temperature peak, for all isotopes, except for 40Ar (Tab. 2.1). The peak release 

temperatures correlate with the melting points of schreibersite at 1048 °C (La Cruz et al., 2016) 

and kamacite-taenite (Fe-Ni alloy) at >1422 °C (Swartzendruber et al., 1991), respectively. It 

should be noted, however, that Swartzendruber et al. (1991) found the most probable minimum 

liquidus temperature in the Fe-Ni system at 1440 °C and 66 at.% Ni. According to the compilation 

by these authors, a liquidus in the range 1496–1515 °C and a solidus of 1479–1504 °C should apply 

for Washington County with a bulk concentration of 9.9 wt% Ni.  

The two major degassing peaks that reflect the mineralogical composition of Washington 

County are observed also for WC_2, WC_11, and WC_14. The down-shift of the kamacite-taenite 

peak to 1380 °C for WC_2 (schreibersite peak at 1140 °C, Fig. A1) may be caused either by 

analytical problems with the temperature control or different degassing behavior of the near-

surface sample that was prone to chemical reactions during atmospheric entry or terrestrial 

weathering. For WC_11, the kamacite-taenite degassing peak occurs at a higher temperature of 

1440 °C (schreibersite peak at 1100 °C, Fig. A2). This may either also reflect analytical problems or 

may be caused by a variation in Ni content of the predominantly occurring Fe-Ni phase. A third 

possibility would be trapping of noble gases in a recrystallized structure that formed during the 

small temperature steps of 10 °C preceding the peak release temperature (see Tab. 2.1). Because of 

the lower temperature resolution, the peaks for WC_14 (1140 °C and 1480°C, Fig. A3) do not 

provide further information.  
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Fig. 2.6: Fractional degassing pattern of WC_5 for He, Ne 

and Ar in 1/K. Measured 4He/3He ratios for degassing steps 

associated with the peak release temperatures are shown at 

the top of the diagrams (see text for details). 

Additional to the major degassing peaks 

observed, a peak release of 20Ne, 22Ne and 40Ar 

occurs for WC_2 at 1450 °C indicative of an 

atmospheric contribution (Tab. 2.1, Fig. A1). 

This points towards the presence of a 

secondary phase that formed along cracks in 

the near-surface sample. If an uncertainty in 

temperature control is consider, degassing of 

iron oxides with melting points above 1525 °C 

may be responsible. If chemical reactions at 

the near-surface of Washington County were 

involved, atmospheric noble gases could have 

been trapped in a recrystallized Fe-Ni phase. 

Indeed, temperature steps for all samples above 

1525 °C are most likely influenced by 

contributions of noble gases from iron oxides 

yielding atmospheric-like compositions. 

Figure 2.6 moreover shows 4He/3He 

ratios (see Tab. 2.1) in the temperature range 

around the gas release peaks. It is obvious that 

the helium isotopic composition of each 

sample is essentially constant regardless from 

which phase, schreibersite or kamacite-taenite, 

the gas is released. In this regard, the 4He/3He 

ratios seem largely unaffected by cosmogenic 

production of helium caused by spallation 

reactions involving phosphorus in 

schreibersite. Consistently, the almost pure 

schreibersite sample (WC_r) is not 

characterized by a comparatively higher value. 

Consequently, all 4He excesses over the GCR 

end-member that are measured for WC_2, 

WC_5, WC_11 and WC_14 have to be 

ascribed to a trapped rather than to a 

cosmogenic component. 

 

 

 



Earth’s core as source of light primordial noble gases  – 17 – 

2.3.3 Helium 

The total concentrations of 4He measured for WC_samples in cm³STP/g (Tab. 2.1) range 

from 544*10-8 (WC_14, total(1)) to 2391*10-8 (WC_r) and are consistent with concentrations 

reported by Signer and Nier (1962) of (870–2570)*10-8 cm³STP/g. Higher 4He concentrations of 

(2700–3100)*10-8 cm³STP/g, 3307*10-8 cm³STP/g, 8110*10-8 cm³STP/g and 8980*10-8 cm³STP/g were 

reported by Schaeffer and Fisher (1959), Hintenberger et al. (1967), Merrihue (1964) and Becker 

and Pepin (1984), respectively. Helium isotopic ratios are diagnostic only in combination with Ne 

isotopes (see below). 

 

2.3.4 Neon 

The total concentrations of 22Ne measured for WC_samples in cm³STP/g (Tab. 2.1) range 

from 220*10-10 (WC_5, total(1)) to 460*10-10 (WC_r) and are consistent with data given by 

Schaeffer and Fisher (1959) of (220–260)*10-10 cm³STP/g, Signer and Nier (1962) of (225–387)*10-10 

cm³STP/g, Merrihue (1964) of 387*10-10 cm³STP/g, Hintenberger et al. (1967) of 250*10-10 cm³STP/g 

and Becker and Pepin (1984) of 290*10-10 cm³STP/g. Figure 2.7 shows the 20Ne/22Ne ratio against 

the 21Ne/22Ne ratio of all measured Washington County samples for totals (Fig. 2.7a) and for single 

temperature steps (Fig. 2.7b) compared to data from the literature. The isotopic compositions of 

four possible end-members are also indicated: SW is from Heber et al. (2012), Ne-B from Trieloff 

and Kunz (2005) and Air from Eberhardt et al. (1965). The range of the galactic cosmic radiation 

(GCR) end-member (shown as a bar) was determined in a twofold way: First, the cosmogenic 

production rate (Leya and Masarik, 2009) for a chemical composition of 90.1 wt% Fe, 9.9 wt% Ni 

and a pre-atmospheric meteoroid radius of 10 cm (cf. Murty and Ranjith Kumar, 2014 and section 

‘Cosmic-ray exposure ages’) was used to calculate a 20Ne/22Ne range of 0.90–0.92 and a 21Ne/22Ne 

ratio of 0.950. Second, the minimum GCR 21Ne/22Ne end-member ratio of 0.934 was compiled 

from data presented in Schultz and Franke (2004) for iron meteorites that contain a maximum 
20Ne/22Ne ratio of 0.90. Mixing lines to SW-, Ne-B- and Air composition are drawn from the most 

cosmogenic isotopic ratios measured for Washington County, which is in the 1050 °C release step 

of WC_14 (Fig. 2.7a inset). 

It is clear from Figure 2.7a that all Ne data for Washington County, except for WC_14, 

trend along a mixing line from cosmogenic towards SW composition or Ne-B. Even the 

integration of high temperature release steps (Fig. 2.7a inset) does not change this observation, 

except for WC_5. Furthermore, single temperature steps (Fig 2.7b) for all measured samples, 

except for WC_14, are within 1σ errors (2σ only for the 1200 °C temperature step of WC_5) 

consistent with the presence of a SW- or Ne-B component. Data for WC_14, on the other hand, 

suggest mixing between GCR and Air, however, are still consistent with mixing of GCR and Ne-B 

within 1σ (2σ for the 1480 °C temperature step). In general, the temperature steps for WC_11 and 

WC_14 show the most cosmogenic compositions. With increasing release temperature, isotopic 

ratios of WC_2 trend towards solar composition; for WC_14 towards air composition. No general 

trend is obvious for the release steps of WC_5 and WC_11. For WC_2, the peak release step for 

high temperatures (kamacite-taenite peak: 1380 °C) contains a slightly higher solar wind 
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contribution compared to the low temperature peak (schreibersite peak: 1140 °C). Both release 

peaks of WC_5 and WC_11 (1100 °C, 1425 °C and 1100 °C, 1440 °C, respectively) have almost 

identical isotopic ratios (within 1σ), however they are more solar-like for WC_5 and more GCR-

like for WC_11. For WC_14, the high temperature peak (1480 °C) contains a more air-like 

composition compared to the more GCR-like composition of the low temperature peak (1140 °C). 

Because of comparably large errors, literature data (Schaeffer and Fisher, 1959; Signer and Nier, 

1962; Hintenberger et al., 1967) preclude clear evidence for the presence of a solar-like Ne 

component and the data from Merrihue (1964) cannot be ascertained since they are given without 

errors. The highest 20Ne/22Ne and lowest 21Ne/22Ne ratios, including small errors, are reported by 

Becker and Pepin (1984) and denote the most remarkable trend towards SW composition. 

Concerning these data, though, concentrations of cosmogenic 21Ne are only about half of what has 

been found in the recent and other studies (Signer and Nier, 1962; Hintenberger et al., 1967; 

Murty and Ranjith Kumar, 2014), which may point towards incomplete gas release. Extraction of 

noble gases by Becker and Pepin (1984) was by combustion at 1180 °C only, and a repeat step at 

the same temperature relased more than 30% of the gas in the first step (step 1: 1.14*10-8 

cm³STP/g, step 2: 0.37*10-8 cm³STP/g). Incomplete noble gas extraction notably could also lead to 

the observed Ne isotopic ratios if the cosmogenic Ne is suppressed relative to SW-Ne.  
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Fig. 2.7: 20Ne/22Ne–21Ne/22Ne diagram showing literature and measured data for Washington County: a) WC_totals, b) 

WC_temperature steps (see Tab. 2.1). For new measurements (WC_2, WC_5, WC_11, WC_14, WC_g, WC_s, WC_r) only 

data with errors (1σ) ≤15% for 20Ne/22Ne and <5% for 21Ne/22Ne are shown. The inset of Fig. 2.7a shows total(2) values 

including high temperature steps (>1525 °C) that are probably influenced by an air component. These data points plot close 

to air composition and outside the range shown in Fig. 2.7b. For reference, mixing lines are shown from the GCR endmember 

composition towards the compositions of SW, Ne-B and Air (see text for details). 

2.3.5 He-Ne systematics 

Figure 2.8 shows the 4He/21Ne ratio against the 4He/3He ratio of all measured Washington 

County samples for calculated totals (Fig. 2.8a) and individual temperature steps (Fig. 2.8b) 

compared to data from the literature. The isotopic compositions of three possible end-members are 

also indicated: Both, SW (4He/21Ne: ~2.7*105, 4He/3He: ~2150, after Heber et al. (2012)) and Air 

(4He/21Ne: ~107.8, 4He/3He: ~7*105, after Ozima and Podosek (2002)) are off scale. The GCR end-

member that is shown for Washington County (4He/21Ne: ~150–204, 4He/3He: ~2.35–2.95) was 

determined taking into account the chemical composition of 90.1 wt% Fe and 9.9 wt% Ni and by 

assuming a pre-atmospheric meteoroid radius of 10 cm (cf. Murty and Ranjith Kumar, 2014 and 
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section ‘Cosmic-ray exposure ages’). The cosmogenic production rates for iron meteorites (Ammon 

et al., 2009) were used to calculate the respective ratios. They fall into the same range as the ratios 

obtained by applying the cosmogenic production rates for stony meteorites using the same 

chemical composition (Leya and Masarik, 2009). Typical values for cosmogenic isotopes in iron 

meteorites are: 4He/21Ne = 200–440 and 4He/3He = 3.2–4.4 (Wieler, 2002a). 

Measured 4He/21Ne ratios for WC_samples range from ~170 (WC_14, 1480 °C) to ~1000 

(WC_s, 1800 °C) and measured 4He/3He ratios from 3.4 (WC_14, 1050 °C) to 17.4 (WC_s, 800 °C) 

(Fig. 2.8). It is important to note that all available data for Washington County show excesses of 
4He with respect to the GCR end-member and all data, with few exceptions, trend towards solar 

wind composition or comprise a mixture of GCR, SW and possibly very minor contributions of 

terrestrial air. Even the most cosmogenic values observed in WC_14 exhibit an excess of 4He, 

although in two temperature steps (1050 °C and 1480 °C) this could be due to an atmospheric 

component (inset of Fig. 2.8a and Fig. 2.8b). With increasing release temperature, isotopic ratios of 

WC_2 and WC_s trend towards air composition. The high temperature step of WC_s (2000 °C) 

likewise suggests a two component mixture between GCR and Air. No general trend is obvious for 

the release steps of WC_5 and WC_11. For WC_2 and WC_14, peak release steps for high 

temperatures (kamacite-taenite peak: 1380 °C and 1480 °C, respectively) contain a more air-like 

composition compared to the low temperature peaks (schreibersite peak: both 1140 °C). For 

WC_5, the high temperature peak (1425 °C) is shifted towards the mixing line between GCR and 

SW compared to the low temperature peak (1100 °C). For WC_11, the low temperature peak 

(1100 °C) contains a more solar-like composition compared to the more GCR-like composition of 

the high temperature peak (1440 °C). Increasing 4He/3He ratios are observed for WC_g, WC_r, 

WC_11, WC_5, WC_2 and WC_s. These 4He excesses are in the range of earlier measurements 

(Schaeffer and Fisher, 1959; Signer and Nier, 1962). Data from Hintenberger et al. (1967) and 

Merrihue (1964) are consistent with a trend towards SW composition. Ratios from Merrihue 

(1964), however, are given without errors. The highest 4He/3He and 4He/21Ne values, implying the 

greatest 4He excesses, have been reported by Becker and Pepin (1984).  

In the 4He/21Ne–4He/3He diagram, their data point plots above the GCR-SW mixing line 

which is also the case for data reported by Schaeffer and Fisher (1959) and Merrihue (1964). This 

could simply be explained by incomplete sample degassing as discussed above (section on neon). 

The data for the recently investigated samples (WC_2, WC_5, WC_11, WC_14, WC_g, WC_s, 

WC_r) fall right on the GCR-SW mixing line or plot, possibly because of atmospheric 

contributions, slightly below. 
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Fig. 2.8: 4He/21Ne–4He/3He diagram showing literature and measured data for Washington County: a) WC_totals and b) 

WC_temperature steps (see Tab. 2.1). For the new measurements reported here (WC_2, WC_5, WC_11, WC_14, WC_g, 

WC_s, WC_r) only data with errors (1σ) <15% for 4He/21Ne and 4He/3He, respectively, are shown. Note that the error for 

WC_s (2000 °C) is 26% for 4He/21Ne. The inset of Fig. 2.8a shows total(2) values including high temperature steps (>1525 

°C) that appear to be influenced by an air component. These data points have uncertainties greater than the error cut or plot 

outside the range shown in Fig. 2.8b. For reference the GCR end-member composition is shown as well as mixing lines 

towards the compositions of SW, and Air (both off-scale; see text for details). 

Figure 2.9 shows the 4He/21Ne ratio against the 22Ne/21Ne ratio of all measured Washington 

County samples for totals in Fig. 2.9a and for single temperature steps in Fig. 2.9b, compared to 

data from the literature. The isotopic compositions of possible end-members are also indicated, 

where both, SW (4He/21Ne: ~2.7*105, 22Ne/21Ne: ~30.4, after Heber et al. (2012)) and Air (4He/21Ne: 

~107.8, 22Ne/21Ne: ~34.5, after Ozima and Podosek (2002)) are off scale. The range of the GCR 

end-member (4He/21Ne: ~150–204, 22Ne/21Ne: 1.050) was determined using the cosmogenic 

production rate (Ammon et al., 2009) for an iron meteorite with a chemical composition of 90.1 

wt% Fe, 9.9 wt% Ni and a pre-atmospheric meteoroid radius of 10 cm (cf. Murty and Ranjith 
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Kumar, 2014 and section ‘Cosmic-ray exposure ages’). The maximum GCR 22Ne/21Ne end-member 

ratio of 1.075 was taken from the data compiled in Schultz and Franke (2004) for iron meteorites 

with a 20Ne/22Ne ratio of <0.9. 
 

 
Fig. 2.9: 4He/21Ne–22Ne/21Ne diagram showing literature and new data for Washington County: a) WC_totals and b) 

WC_temperature steps (see Tab. 2.1). For new measurements (WC_2, WC_5, WC_11, WC_14, WC_g, WC_s, WC_r) only 

data with errors (1σ) <20% for 4He/21Ne and <10% for 22Ne/21Ne are shown. Note that the error for 4He/21Ne in WC_s (2000 

°C) is 26%. The inset of Fig. 2.9a shows total(2) values including high temperature steps (>1525 °C) that are probably 

influenced by an air component. These data points have uncertainties greater than the error cut or plot outside the range 

shown in Fig. 2.9b. For reference the GCR end-member composition is shown as well as mixing lines towards the 

compositions of SW, and Air (both off-scale; see text for details). 

Overall, the trends in Figure 2.9 are the same as in Figure 2.8, where 4He/3He ratios were 

plotted rather than 22Ne/21Ne. Increasing 4He/21Ne ratios are observed in the order WC_g, WC_11, 

WC_r, WC_2, WC_5, WC_s and are consistent, except for WC_14, with mixing of GCR, SW and 

Air (Fig. 2.9a). Only WC_14 (total) suggests mixing of GCR and Air only. A more noticeable shift 

towards air composition results when the high temperature steps are included (total(2) values). 
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This trend towards more air-like compositions becomes even more evident from single 

temperature steps, in particular for the WC_5 steps following the peak release and for the high 

temperature steps of WC_14 (1480 °C), WC_11 (1800 °C) and WC_s (2000 °C) (Fig. 2.9b). The 

trend towards solar wind falls within the range of earlier measurements (Signer and Nier, 1962). 

More significant SW contributions were found by Schaeffer and Fisher (1959), Hintenberger et al. 

(1967), Merrihue (1964) and Becker and Pepin (1984). 

Figure 2.10 shows the 4He/20Ne ratio against 21Ne/22Ne for all measured Washington County 

samples for totals (Fig. 2.10a) and single temperature steps (Fig. 2.10b) compared to data from the 

literature. The isotopic compositions of three possible end-members are also indicated: SW is from 

Heber et al. (2012), Air from Ozima and Podosek (2002). Since Ammon et al. (2009) do not give 

cosmogenic production rates for 20Ne, the cosmogenic production rates for ordinary chondrites 

(Leya and Masarik, 2009) with a chemical composition of 90.1 wt% Fe, 9.9 wt% Ni and a pre-

atmospheric meteoroid radius of 10 cm (cf. Murty and Ranjith Kumar, 2014 and section ‘Cosmic-

ray exposure ages’) were used to determine the Washington County GCR end-member: 4He/20Ne 

with a range of ~180–209 and a 21Ne/22Ne ratio of 0.95. The minimum GCR 21Ne/22Ne end-member 

ratio of ~0.93 was compiled from data presented in Schultz and Franke (2004) for iron meteorites 

that contain a maximum 20Ne/22Ne ratio of 0.9. WC_14 (1050 °C) is identical to the GCR end-

member. 

It is obvious from Figure 2.10a that, except for WC_14, all Washington County samples 

have 4He/20Ne ratios above ~200, which indicates the presence of a SW component. WC_14 

(4He/20Ne ~110–120, total) falls on the trend from GCR to Air instead. A trend towards air 

composition is also evident for the totals(2), where the high temperature steps are included. The 

influence of Air is even more evident for single temperature steps (Fig. 2.10b). A trend towards 

the Air end-member is obvious in particular for the WC_5 temperature steps following the peak 

releases and for the high temperature steps of WC_2 (1450 °C and 1800 °C), WC_11 (1800 °C), 

WC_14 (1480 °C and 1600 °C) and WC_s (2000 °C). The shift towards lower 21Ne/22Ne ratios for 

these steps is caused by progressively higher 22Ne contribution from Air. Contribution from air is 

also evident in 20Ne through progressively lower 4He/20Ne ratios. Peak release steps for all samples 

due to schreibersite (WC_2: 1140 °C, WC_5: 1100 °C, WC_11: 1100 °C, WC_14: 1140 °C) and 

kamacite-taenite (WC_2: 1380 °C, WC_5: 1425 °C, WC_11: 1440 °C) show 4He/20Ne ratios 

between ~340 (WC_2) and ~420 (WC_5) indicating a trend towards SW in reference to the GCR 

end-member. Only the high temperature peak of WC_14 (1480 °C) with a 4He/20Ne ratio of ~85 

indicates mixing between GCR and Air. Except for WC_14, (Fig. 2.10a), 4He/20Ne ratios for 

totals(1), are within the range of 331±47–371±52 reported by Signer and Nier (1962). Ratios from 

Schaeffer and Fisher (1959) of 338-620 and from Hintenberger et al. (1967) of 419 have large 

errors and the ratio from Merrihue (1964) of 687 is given without errors. The most remarkable 

trend towards SW composition including small errors with a 4He/20Ne ratio of 590±18 is reported 

by Becker and Pepin (1984). 
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Fig. 2.10: 4He/20Ne–21Ne/22Ne diagram showing literature and measured data for Washington County: a) WC_totals and b) 

WC_temperature steps (see Tab. 2.1). For new measurements (WC_2, WC_5, WC_11, WC_14, WC_g, WC_s, WC_r) only 

data with errors (1σ) <30% for 4He/20Ne and <5% for 21Ne/22Ne are shown. Note that errors of WC_2 (1800 °C) and WC_14 

(1600 °C) are 94% and 43% for 4He/20Ne, respectively. The error for WC_r (800 °C) is 10% for 21Ne/22Ne . Fig. 2.10a also 

shows total(2) values including high temperature steps (>1525 °C) that appear to be influenced by an air component. End-

member compositions of GCR, SW and Air are shown as well as mixing lines towards the GCR between these components 

(see text for details). 

In terms of the 4He/20Ne ratios, more diagnostic indication for the presence of an actual solar 

wind component is provided by ratios of excess gas compared to the cosmogenic values. A 

constant (4He/20Ne)excess ratio of 420±40, for example, was reported by Signer and Nier (1962) 

between adjacent samples, pointing towards solar values (see discussion for further 

considerations). Comparable (4He/20Ne)excess ratios for all WC_samples (Tab. 2.1) can be calculated 

with: 
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𝐻𝑒𝑒𝑥𝑒𝑠𝑠(𝑖)
4

𝑁𝑒𝑒𝑥𝑐𝑒𝑠𝑠(𝑖)
20 = (

 

𝐻𝑒3

𝐻𝑒4
𝑚𝑒𝑎𝑠(𝑖)

−
𝐻𝑒3

𝐻𝑒4
𝐺𝐶𝑅

𝐻𝑒3

𝐻𝑒4
𝑆𝑊

−
𝐻𝑒3

𝐻𝑒4
𝐺𝐶𝑅 )

 ∗ 𝐻𝑒𝑚𝑒𝑎𝑠(𝑖)
4

(

 

𝑁𝑒22

𝑁𝑒20
𝑚𝑒𝑎𝑠(𝑖)

−
𝑁𝑒22

𝑁𝑒20
𝐺𝐶𝑅

𝑁𝑒22

𝑁𝑒20
𝑆𝑊

−
𝑁𝑒22

𝑁𝑒20
𝐺𝐶𝑅 )

 ∗ 𝑁𝑒𝑚𝑒𝑎𝑠(𝑖)
20

 

 

where 𝐻𝑒𝑚𝑒𝑎𝑠(𝑖)
4 , 𝑁𝑒𝑚𝑒𝑎𝑠(𝑖)

20 ,
𝐻𝑒
3

𝐻𝑒4

𝑚𝑒𝑎𝑠(𝑖)
,

𝑁𝑒
22

𝑁𝑒20

𝑚𝑒𝑎𝑠(𝑖)
 are measured concentrations of 4He, 20Ne and  

measured isotopic ratios of 
𝐻𝑒
3

𝐻𝑒4  and 
𝑁𝑒

22

𝑁𝑒20  for a temperature step 𝑖 or a particular total value,  

respectively, 
𝐻𝑒
3

𝐻𝑒4

𝐺𝐶𝑅

 and 
𝑁𝑒

22

𝑁𝑒20

𝐺𝐶𝑅

 the isotopic ratios of the cosmogenic end-member (i.e., 
1

2.65
 and 

1

0.91
,  

respectively) and 
𝐻𝑒
3

𝐻𝑒4

𝑠𝑤

 and 
𝑁𝑒

22

𝑁𝑒20

𝑆𝑊

the isotopic ratios of the solar wind end-member (i.e. 
1

2150
 and  

1

13.777
, respectively). 

Table 2.1 lists also the calculated concentrations of 20Neexcess and the (4He/20Ne)excess ratios. 

Total 4Heexcess concentrations show variations of a factor of up to ~3.5 between adcajent samples 

(WC_11 and WC_14), but differ by a factor of more than 8 between WC_14 and WC_s. Total 
20Neexcess concentrations vary with a factor of up to ~2.5 between adcajent samples (WC_11 and 

WC_14) but are different within a factor of ~5.5 between WC_11 and WC_s. All total(1) 

(4He/20Ne)excess values have higher excess ratios compared to total(2) values because likely 

atmospheric contributions during high temperature release steps are not included in the former. 

(4He/20Ne)excess ratios based in total(1) generally range between ~450 (WC_5, WC_s), consistent 

with Signer and Nier (1962), and ~700 (WC_r). The highest total (4He/20Ne)excess ratio of 1067 is 

calculated for WC_11. The lowest excess ratios of ~110 observed for WC_14 is in accordance with 

the dominant air-like composition of the high temperature release peak for this sample (1480 °C: 

(4He/20Ne)excess = 73). As for the others, both, low and high temperature peaks (WC_2: 1140 and 

1380 °C, WC_5: 1100 and 1425 °C, WC_11: 1100 and 1440 °C, WC_14: 1140 °C), have 

(4He/20Ne)excess ratios between 584 and 1303 whereas the low temperature peaks (schreibersite) 

always show higher ratios. 

 

2.3.6 Argon 

The total concentrations of 36Ar measured for WC_samples in cm³STP/g (Tab. 2.1) range 

from 523*10-10 (WC_5, total(1)) to 1447*10-10 (WC_r) and are consistent with data given by 

Schaeffer and Fisher (1959) of (510–560)*10-10 cm³STP/g, Signer and Nier (1962) of (672–1048)*10-

10 cm³STP/g, Merrihue (1964) of 1350*10-10 cm³STP/g and Becker and Pepin (1984) of of 559*10-10 

cm³STP/g.  

Figure 2.11 shows the 40Ar/36Ar ratio against the 38Ar/36Ar ratio of all measured Washington 

County samples for totals (Fig. 2.11a) and for individual temperature steps (Fig. 2.11b) compared 

to the literature data. The isotopic compositions of four possible end-members are also indicated: 

solar is from Heber et al. (2012), planetary (Q) from Busemann et al. (2000) and Air from Ozima 
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and Podosek (2002). The GCR end-member ratio (40Ar/36Ar = 0, 38Ar/36Ar = 1.57) was inferred from 

data listed in Schultz and Franke (2004) for iron meteorites that have a 40Ar/36Ar ratio of <2. 

All available Washington County data cluster within errors around the GCR 38Ar/36Ar end-

member (Fig. 2.11b inset) or comprise a mixture of the GCR component and variable quantities of 

Air as indicated by high 40Ar/36Ar ratios. Relative to the most cosmogenic total(1) values of WC_2 

and WC_11, an increase in the Air contribution is indicated by progressively higher 40Ar/36Ar 

ratios in the order WC_14, WC_s, WC_r, WC_5 and WC_g (Fig. 2.11a). The value of WC_2 

agrees with data from Becker and Pepin (1984) and suggests mixing of GCR and a trapped 

component that is predominantly solar or planetary with possibly some small air contribution. 

The shift towards air composition becomes more evident when the high temperature steps are 

added, i.e., in the total(2) values. The highest Air contribution is seen in temperature steps of 

WC_r (800 °C), WC_2 (1450 °C), WC_5 (1150 °C and other steps following the peak release 

temperatures), WC_s (800 °C), WC_11 (1800 °C) and WC_g (1800 °C and 2000 °C) (Fig. 2.11b). 

The three temperature steps that are least influenced by Air (40Ar/36Ar <1.5) (WC_2, 1140 °C and 

1350 °C; WC_11, 1250 °C) indicate the presence of a distinct solar or planetary component (Fig. 

2.11b inset). This is also true for WC_11 (1050 °C), WC_s (1800 °C) and WC_s (total) although air 

must also contribute as shown by the enhanced 40Ar/36Ar ratio. Data from Merrihue (1964) 

likewise show a shift towards solar or planetary. No general trend is evident for peak release 

temperatures (schreibersite and kamacite-taenite peak). The high temperature peaks for WC_5 

and WC_11 (1425 °C and 1440 °C, respectively) have higher (within 2σ) 38Ar/36Ar ratios than the 

nominal GCR, reflecting uncertainties in the end-member composition. Data from Signer and Nier 

(1962) reveal maximum 40Ar/36Ar values of ~5, but 38Ar/36Ar uncertainties are larger. 

It should be noted that the high abundance of cosmogenic Ar in Washington County makes 

a reliable detection of SW-Ar difficult. For one, production of cosmogenic 36Ar on iron is much 

more efficient than that 20Ne: For the chemical composition of Washington County a cosmogenic 
36Ar/22Ne ratio of ~3 is predicted by Ammon et al. (2008, 2009) and, with cosmogenic 20Ne/22Ne 

ratio of ~0.91, the 36Ar/20Ne ratio is >3 as well. On the other hand, 36Ar is much scarcer in the solar 

wind compared to 20Ne (36Ar/20NeSW: ~0.024, Heber et al., (2012)). A 20Ne excess of ~36*10-10 

cm³STP/g (exemplified case for WC_2, 1140 °C, Tab.2.1) implies a 36Ar excess of 0.9*10-10 cm³STP/g 

which is only ~0.6% of the measured 36Ar. Therefore, the detection of solar Ar is only possible if 

measured ratios are very precise and the GCR end-member composition would be precisely 

known. This is not the case because of uncertainties in the cosmogenic 38Ar/36Ar production ratio 

(Ammon et al., 2009). 
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Fig. 2.11: 40Ar/36Ar–38Ar/36Ar diagram showing literature and measured data for Washington County: a) WC_totals and b) 

WC_temperature steps (see Tab. 2.1). For the new measurements (WC_2, WC_5, WC_11, WC_14, WC_g, WC_s, WC_r) 

only data with errors (1σ) <25% for 40Ar/36Ar and <10% for 38Ar/36Ar are shown. Fig. 2.11a also shows total(2) values 

including high temperature steps (>1525 °C) that are likely compromised by an air component. End-member compositions of 

SW (solar), planetary (Q), Air and mixing lines between these and the GCR end-member composition are indicated (see text 

for details).  

2.3.7 Krypton 

Krypton was measured for WC_g, WC_s and WC_r (Tab. 2.2). To date, no previous krypton 

measurements exist for Washington County. The total measured 84Kr concentrations (1σ errors) of 

(200.52±3.65)*10-12 cm³STP/g, (45.90±1.50)*10-12 cm³STP/g and (607.13±29.38)*10-12 for WC_g, 

WC_s and WC_r, respectively, compare to (4.98–126)*10-12 cm³STP/g 84Kr in other iron meteorites 

(Munk, 1967a, b; Hennecke and Manuel, 1977). These authors speculate about a cosmogenic 

origin of the observed krypton isotopes. In particular the iron meteorites Carbo and Costilla Peak 

show 83Kr/84Kr ratio of 0.389±0.007 and 0.381±0.005, respectively, indicating cosmogenic 
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contributions (Fig. 2.12). The present results allow identifying a cosmogenic excess from the 
83Kr/84Kr ratios of 0.2601±0.0091 and 0.2638±0.0130 in the 1800 °C steps for WC_s and WC_r, 

respectively (Tab. 2.2, Fig. 2.12). The krypton isotopic ratios for WC_g show more air-like values. 
 

 

Tab. 2.2: Kr concentrations, isotopic ratios of WC_g, WC_s, WC_r and reservoir composition of SW, planetary (Q) and Air 

 

All data are corected for blank. All uncertainties 1σ. 1)Measurements performed at MPI für Chemie, Mainz. a)from Meshik et 

al. (2014), b)from Busemann et al. (2000), c)from Basford et al. (1973) 

Figure 2.12 shows the 82Kr/84Kr–83Kr/84Kr isotopic ratios of WC_g, WC_s and WC_r in 

reference to the krypton ratios measured in the iron meteorite Carbo (Munk, 1967a) and Costilla 

Peak (Munk, 1967b). Mixing lines are drawn from the SW end-member to the spallation 

composition calculated by Munk (1967a) for iron meteorites (82Kr/84Kr = 6.41 83Kr/84Kr = 7.58) and 

to the spallation krypton composition of achondrites (82Kr/84Kr = 1.7857, 83Kr/84Kr = 2.3810) 

obtained from measurements of eucrites (Stannern and Pasamonte, Hohenberg et al. (1967)). The 

cosmogenic 83Kr/84Kr ratios for WC_s (1800 °C) and WC_r (1800 °C) plot above the achondritic 

mixing line (although errors are large) and fall together with the value of Carbo and Costilla Peak 

on the “iron meteorite” mixing line that points towards a possible cosmogenic krypton end-

member. Different cosmogenic ratios compared to achondrites may be caused by high abundances 

of platinum group elements like Ru in iron meteorites as discussed by Munk (1967a). Either or not 

this is true for Washington County, the data for WC_g, WC_s and WC_r are consistent within 

errors with cosmogenic production rates in iron meteorites and achondrites. 
 

Sample Temp. 84Kr ±

(weight) [°C]

WC_g
1)

(22.4 mg) 1800 195.64 3.51 - - 0.0442 0.0011 0.2133 0.0040 0.2095 0.0020 0.3090 0.0037

2000 4.88 0.97 - - 0.0313 0.0318 0.2276 0.0296 0.2453 0.0307 0.3199 0.0498

Total 200.52 3.65 - - 0.0439 0.0014 0.2137 0.0040 0.2104 0.0021 0.3092 0.0038

WC_s1)

(21.87 mg) 800 6.03 0.80 - - 0.0089 0.0323 0.1894 0.0323 0.2129 0.0280 0.2127 0.0959

1800 33.10 0.96 - - 0.0750 0.0061 0.2593 0.0079 0.2601 0.0091 0.2975 0.0178

2000 6.76 0.83 - - 0.0299 0.0285 0.2296 0.0331 0.2345 0.0258 0.2465 0.0843

Total 45.90 1.50 - - 0.0597 0.0075 0.2457 0.0087 0.2501 0.0085 0.2788 0.0219

WC_r
1)

(8.54 mg) 800 576.83 28.18 0.0067 0.0011 0.0370 0.0015 0.1989 0.0056 0.1987 0.0032 0.2944 0.0050

1800 93.30 8.31 0.0200 0.0069 0.0692 0.0075 0.2573 0.0223 0.2638 0.0130 0.2994 0.0276

2000 1.00 6.00 - - - - - - - - - -

Total 670.13 29.38 0.0085 0.0013 0.0415 0.0017 0.2070 0.0057 0.2078 0.0033 0.2951 0.0058

Reservoir

SWa) 0.00642 0.00005 0.0412 0.0002 0.2054 0.0002 0.2034 0.0002 0.3012 0.0004

planetary (Q)b) 0.00603 0.00003 0.03937 0.00007 0.2018 0.0002 0.2018 0.0002 0.3095 0.0005

Airc) 0.006087 0.000020 0.039599 0.000020 0.20217 0.00004 0.20136 0.00021 0.30524 0.00025

[10-12 cm³STP/g]

78Kr/84Kr ± 80Kr/84Kr ± 82Kr/84Kr ± 83Kr/84Kr ± 86Kr/84Kr ±
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Fig. 2.12: 82Kr/84Kr –83Kr/84Kr diagram showing data for Washington County (WC_g, WC_s, WC_r) and the iron meteorites 

Carbo (Munk, 1967a) and Costilla Peak (Munk, 1967b). Errors are 1σ. The “achondritic” mixing line is drawn from the SW 

(and Air) end-member to the spallation krypton composition in eucrites (Hohenberg et al., 1967). The “iron meteorite” 

mixing line is drawn from the SW (and Air) end-member to the cosmogenic iron meteorite end-member calculated by Munk 

(1967a). The 1800 °C steps of WC_s and WC_r are in agreement with the “iron meteorite” mixing line although they are also 

consistent within errors with the “achondritic” mixing line. 

2.3.8 Xenon 

Xenon was measured for WC_5, WC_g, WC_s and WC_r (Tab. 2.3). Previous xenon 

analyses for Washington County were only mentioned in an abstract in which Reynolds et al. 

(1962) noted that no excess 129Xe was found. The recent investigation reconfirms the lack of 129Xe 

excesses. Total 129Xe/132Xe ratios (1σ errors) measured for WC_g, WC_s and WC_r are 0.999±0.019, 

1.045±0.099 and 0.964±0.033, respectively. 132Xe concentrations are (25.60±1.08)*10-12 cm³STP/g, 

(6.72±2.00)*10-12 cm³STP/g and (116.59±7.67)*10-12 for WC_g, WC_s and WC_r, respectively. This 

compares to (0.57–50)*10-12 cm³STP/g 132Xe in other iron meteorites (Munk, 1967a, b; Hennecke 

and Manuel, 1977). One of them, Carbo, moreover shows an excess of 129Xe, with 129Xe/132Xe of 

1.295±0.019 (Munk, 1967a). 

The results for WC_5 have large errors because of very low gas amounts below detection 

limit or slightly above blank (Tab A2). Totals listed in Table 2.3 have been obtained by summing 

the intermediate temperature steps only (see section ‘Noble gas data’ and Tab. 2.1). No attempt 

was made to include low and high temperature release steps into to calculation of the totals. 

Within 2σ errors the isotopic compositions of temperature steps and total values of WC_5 are 

indistinguishable from SW-, planetary- and Air composition. Due to less extraction steps, 

measurements for WC_g, WC_s and WC_r result in more reliable data. In general, however, 

isotopic ratios are either indistinguishable from air or are too imprecise when gas concentrations 

are low (Tab. 2.3). Respectively, no further discussion of the Xe composition of Washington 

County is possible without higher precision data. 



Earth’s core as source of light primordial noble gases  – 30 – 

Sa
m

p
le

Te
m

p
.

1
2

9
X

e
±

1
3

2
X

e
±

(w
e

ig
h

t)
[°

C
]

W
C

_5
1

)

(1
8.

3 
m

g)
60

0
1.

15
0.

78
2.

80
2.

22
0.

00
55

0.
01

60
-

-
0.

02
20

0.
07

02
0.

41
20

0.
42

77
0.

09
1

0.
11

0
1.

63
73

1.
89

32
0.

33
0

0.
39

0
0.

15
52

0.
18

61

70
0

3.
21

0.
97

4.
64

1.
63

0.
01

42
0.

01
31

0.
00

53
0.

00
65

0.
04

39
0.

04
07

0.
69

12
0.

32
04

0.
11

1
0.

05
9

1.
11

26
0.

55
06

0.
28

8
0.

14
7

0.
25

74
0.

13
39

80
0

1.
23

0.
73

3.
68

2.
60

0.
03

68
0.

04
06

0.
00

36
0.

00
86

0.
05

13
0.

06
29

0.
33

53
0.

30
85

0.
05

1
0.

05
4

1.
79

65
1.

84
64

0.
25

9
0.

25
6

0.
15

01
0.

15
50

85
0

0.
74

0.
92

1.
50

2.
15

-
-

0.
03

74
0.

09
12

0.
60

69
1.

31
79

0.
49

65
0.

93
94

0.
25

4
0.

53
0

5.
79

58
12

.5
12

3
0.

07
5

0.
27

5
0.

20
60

0.
42

75

90
0

b
la

n
k

-
0.

94
2.

88
0.

05
53

0.
22

08
0.

10
98

0.
43

25
0.

45
12

1.
78

10
-

-
0.

06
0

0.
32

6
5.

08
44

20
.0

12
8

-
-

0.
15

02
0.

76
97

95
0

1.
23

0.
79

2.
58

1.
93

0.
03

69
0.

04
76

-
-

0.
27

76
0.

31
04

0.
47

53
0.

46
86

0.
08

0
0.

08
9

2.
12

27
2.

32
81

0.
17

3
0.

19
4

0.
17

32
0.

19
33

10
00

0.
03

0.
75

1.
23

40
.8

7
-

-
0.

00
02

0.
03

71
0.

24
90

11
.7

36
1

0.
02

55
1.

04
06

-
-

5.
31

62
25

0.
82

51
-

-
-

-

10
50

b
la

n
k

-
3.

98
13

.3
0

0.
05

26
0.

24
82

0.
01

09
0.

05
16

0.
18

34
0.

85
49

-
-

0.
00

7
0.

08
9

5.
01

14
23

.1
98

6
0.

00
3

0.
15

5
0.

01
52

0.
18

01

11
00

0.
13

0.
94

1.
57

15
.2

5
0.

05
12

0.
71

61
0.

16
90

2.
36

53
0.

25
21

3.
50

77
0.

08
27

0.
99

89
0.

00
1

0.
10

2
3.

87
21

53
.9

55
8

0.
07

5
0.

97
2

0.
15

02
2.

01
55

11
20

3.
03

1.
23

4.
75

2.
11

0.
01

51
0.

01
21

0.
02

55
0.

01
92

0.
08

71
0.

05
77

0.
63

82
0.

38
34

0.
08

8
0.

05
8

1.
53

76
0.

97
89

0.
32

3
0.

20
4

0.
26

01
0.

16
67

11
50

1.
50

1.
04

1.
70

1.
33

0.
15

38
0.

18
75

0.
17

36
0.

20
84

0.
09

66
0.

11
77

0.
88

31
0.

92
66

0.
27

7
0.

31
0

1.
80

32
2.

02
47

0.
26

6
0.

32
8

0.
44

26
0.

49
17

12
00

0.
05

0.
87

0.
92

23
.8

2
-

-
0.

14
19

5.
24

65
-

-
0.

05
00

1.
59

60
-

-
3.

15
37

11
6.

26
98

0.
29

6
10

.7
77

0.
13

63
4.

89
90

12
50

b
la

n
k

-
b

la
n

k
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

13
00

3.
64

1.
23

5.
08

1.
86

0.
01

57
0.

01
17

0.
05

81
0.

04
12

0.
04

11
0.

02
60

0.
71

66
0.

35
63

0.
14

8
0.

07
8

1.
12

46
0.

58
71

0.
25

0
0.

13
6

0.
29

71
0.

15
74

13
50

2.
55

1.
16

4.
09

2.
10

0.
02

04
0.

01
78

0.
01

80
0.

01
76

0.
05

28
0.

05
11

0.
62

24
0.

42
74

0.
06

1
0.

05
5

1.
40

73
1.

02
60

0.
24

7
0.

18
0

0.
19

72
0.

14
82

14
00

0.
06

0.
91

1.
46

32
.9

2
0.

05
69

1.
83

63
0.

05
78

1.
86

55
-

-
0.

03
84

1.
07

09
0.

05
2

1.
64

9
3.

27
27

10
5.

37
40

-
-

0.
04

04
1.

22
13

14
25

b
la

n
k

-
b

la
n

k
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

14
50

0.
39

1.
00

1.
45

4.
59

0.
11

14
0.

52
88

0.
01

43
0.

10
34

0.
21

87
1.

01
44

0.
26

78
1.

08
96

-
-

2.
12

56
9.

82
19

0.
27

7
1.

21
4

0.
03

31
0.

23
99

14
75

b
la

n
k

-
b

la
n

k
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

15
00

0.
90

1.
00

1.
12

1.
46

-
-

0.
15

88
0.

32
07

-
-

0.
79

99
1.

37
11

0.
05

2
0.

14
5

2.
89

78
5.

47
87

0.
20

7
0.

42
6

0.
08

47
0.

29
90

15
25

0.
58

0.
95

2.
58

5.
27

0.
04

34
0.

13
13

0.
02

96
0.

09
83

0.
08

55
0.

25
16

0.
22

34
0.

58
53

0.
09

5
0.

27
0

1.
61

29
4.

76
48

0.
26

2
0.

74
3

0.
12

29
0.

34
11

15
50

2.
25

0.
93

3.
59

1.
64

0.
01

91
0.

01
76

0.
01

27
0.

01
27

0.
12

76
0.

08
85

0.
62

63
0.

38
59

0.
10

2
0.

07
2

1.
88

82
1.

25
23

0.
33

4
0.

22
4

0.
31

50
0.

20
57

16
50

b
la

n
k

-
1.

03
2.

36
-

-
0.

18
14

0.
51

17
-

-
-

-
-

-
2.

25
10

6.
61

53
-

-
-

-

17
50

0.
31

0.
82

0.
84

2.
59

-
-

0.
38

55
1.

82
71

0.
13

56
0.

62
26

0.
37

46
1.

51
22

-
-

-
-

0.
37

0
1.

61
3

0.
13

91
0.

60
60

18
00

2.
58

1.
01

4.
24

1.
83

0.
00

51
0.

00
39

-
-

0.
07

93
0.

05
22

0.
60

93
0.

35
57

0.
09

7
0.

06
2

1.
43

61
0.

88
86

0.
26

9
0.

16
6

0.
23

62
0.

14
66

To
ta

l
14

.0
6

3.
46

33
.4

5
61

.7
1

0.
05

13
0.

11
76

0.
07

47
0.

20
03

0.
13

38
0.

42
09

0.
42

05
0.

78
26

0.
07

7
0.

15
2

2.
61

09
9.

46
43

0.
19

2
0.

41
8

0.
17

43
0.

34
66

W
C

_g
2

)

(2
2.

4 
m

g)
18

00
25

.5
6

1.
19

25
.6

0
1.

08
0.

00
41

0.
00

09
0.

00
38

0.
00

21
0.

08
10

0.
01

05
0.

99
86

0.
01

93
0.

15
9

0.
00

6
0.

78
86

0.
01

46
0.

39
0

0.
00

9
0.

32
78

0.
00

95

20
00

-
-

0.
66

0.
91

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

To
ta

l
25

.5
6

1.
19

25
.6

0
1.

08
0.

00
41

0.
00

09
0.

00
38

0.
00

21
0.

08
10

0.
01

05
0.

99
86

0.
01

93
0.

15
9

0.
00

6
0.

78
86

0.
01

46
0.

39
0

0.
00

9
0.

32
78

0.
00

95

W
C

_s
2

)

(2
1.

87
 m

g)
80

0
0.

86
1.

60
0.

65
1.

15
-

-
-

-
-

-
1.

33
53

0.
70

63
0.

21
8

0.
14

1
0.

81
54

0.
32

28
0.

44
9

0.
19

3
0.

18
70

0.
33

50

18
00

2.
60

1.
30

2.
39

1.
16

-
-

-
-

-
-

1.
08

77
0.

12
99

0.
14

5
0.

04
0

0.
61

96
0.

16
64

0.
33

0
0.

08
2

0.
30

86
0.

04
78

20
00

3.
56

1.
14

3.
68

1.
16

-
-

-
-

-
-

0.
96

64
0.

06
30

0.
15

2
0.

02
6

0.
64

49
0.

11
52

0.
31

1
0.

05
5

0.
29

04
0.

03
26

To
ta

l
7.

02
2.

20
6.

72
2.

00
-

-
-

-
-

-
1.

04
50

0.
09

92
0.

15
6

0.
02

7
0.

65
23

0.
09

60
0.

33
1

0.
04

9
0.

28
68

0.
04

40

W
C

_r
2

)

(8
.5

4 
m

g)
80

0
96

.5
8

6.
60

98
.5

2
5.

98
0.

00
25

0.
00

10
0.

00
29

0.
00

42
0.

05
72

0.
01

31
0.

98
03

0.
03

08
0.

14
9

0.
00

6
0.

79
76

0.
02

20
0.

43
1

0.
07

0
0.

32
77

0.
00

93

18
00

15
.7

8
4.

84
18

.0
6

4.
80

0.
01

06
0.

00
41

0.
01

40
0.

02
01

0.
01

60
0.

07
31

0.
87

35
0.

13
35

0.
14

9
0.

02
5

0.
69

01
0.

06
08

0.
68

3
0.

34
1

0.
31

32
0.

03
37

20
00

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

To
ta

l
11

2.
36

8.
35

11
6.

59
7.

67
0.

00
37

0.
00

11
0.

00
46

0.
00

47
0.

05
09

0.
01

58
0.

96
37

0.
03

33
0.

14
9

0.
00

6
0.

78
09

0.
02

08
0.

47
0

0.
07

9
0.

32
54

0.
00

94

R
e

se
rv

o
ir

SW
a

)
0.

00
48

9
0.

00
00

6
0.

00
42

0
0.

00
00

7
0.

08
42

0.
00

02
1.

04
05

0.
00

10
0.

16
48

0.
00

03
0.

82
56

0.
00

12
0.

36
98

0.
00

06
0.

30
03

0.
00

05

p
la

n
e

ta
ry

 (
Q

)b
)

0.
00

45
5

0.
00

00
2

0.
00

40
57

0.
00

00
18

0.
08

22
0.

00
02

1.
04

2
0.

00
2

0.
16

19
0.

00
03

0.
81

85
0.

00
09

0.
37

80
0.

00
11

0.
31

64
0.

00
08

A
ir

c)
0.

00
35

4
0.

00
00

1
0.

00
33

0
0.

00
00

2
0.

07
13

6
0.

00
00

9
0.

98
32

0.
00

12
0.

15
13

6
0.

00
01

2
0.

78
90

0.
00

11
0.

38
79

0.
00

06
0.

32
94

0.
00

04

1
3

0
X

e
/1

3
2
X

e
±

[1
0-1

2  c
m

³S
TP

/g
]

1
2

4
X

e
/1

3
2
X

e
±

1
2

6
X

e
/1

3
2
X

e
±

±
1

3
1
X

e
/1

3
2
X

e
±

1
3

4
X

e
/1

3
2
X

e
±

1
3

6
X

e
/1

3
2
X

e
1

2
8
X

e
/1

3
2
X

e
±

[1
0-1

2  c
m

³S
TP

/g
]

1
2

9
X

e
/1

3
2
X

e
±

T
a

b
. 
2

.3
: 

X
e 

co
n

ce
n

tr
at

io
n

s 
an

d
 i

so
to

p
ic

 r
at

io
s 

o
f 

W
C

_
5

, 
W

C
_
g

, 
W

C
_

s,
 W

C
_

r 
an

d
 r

es
er

v
o

ir
 c

o
m

p
o

si
ti

o
n

 o
f 

S
W

, 
p

la
n

et
ar

y
 (

Q
) 

an
d

 A
ir

 

A
ll

 d
at

a 
ar

e 
co

rr
ec

te
d
 f

o
r 

b
la

n
k

, 
b

la
n

k
: 

in
d

is
ti

n
g
u

is
h

ab
le

 f
ro

m
 b

la
n

k
. 

A
ll

 u
n

ce
rt

ai
n

ti
es

 a
re

 1
σ

. 
U

n
d
er

li
n

ed
 v

al
u

es
 a

re
 n

o
t 

u
se

d
 f

o
r 

ca
lc

u
la

ti
o

n
 o

f 
to

ta
ls

 b
ec

au
se

 o
f 

at
m

o
sp

h
er

ic
 i

n
te

ra
ct

io
n

s 
as

 

se
en

 f
o

r 
H

e,
 N

e 
an

d
 A

r 
(s

ee
 T

ab
. 

1
) 

an
d

 p
o

te
n

ti
al

 f
o

rm
at

io
n

 o
f 

se
co

n
d

ar
y
 i

ro
n

 o
x

id
es

. 
1
) M

ea
su

re
m

en
ts

 p
er

fo
rm

ed
 a

t 
th

e 
In

st
it

u
t 

fü
r 

G
eo

w
is

se
n

sc
h

af
te

n
, 

H
ei

d
el

b
er

g
. 

2
) M

ea
su

re
m

en
ts

 

p
er

fo
rm

ed
 a

t 
M

P
I 

fü
r 

C
h

em
ie

, 
M

ai
n

z.
 a)

fr
o

m
 M

es
h
ik

 e
t 

al
. 

(2
0

1
4

, 
2

0
1
5

),
b
) fr

o
m

 B
u

se
m

an
n

 e
t 

al
. 

(2
0
0

0
),

 c)
fr

o
m

 B
as

fo
rd

 e
t 

al
. 

(1
9
7

3
) 



Earth’s core as source of light primordial noble gases  – 31 – 

2.4 Cosmic-ray exposure ages 

Helium, neon and argon isotopic abundances in meteorites (see Schultz and Franke, 2004) 

are usually strongly influenced by spallation reactions due to exposure to high energetic cosmic 

radiation, i.e., galactic cosmic rays, during travel through space (e.g., Wieler, 2002a; Eugster, 2003; 

Eugster et al., 2006). When production rates are known (Leya and Masarik, 2009; Ammon et al., 

2009), especially the record in the commonly rare isotopes 3He, 21Ne and 38Ar allows 

determination of cosmic-ray exposure (CRE). Shielding effects cause different production rates 

related to the sample depth within the meteorite and its size. Isotopic ratios particularly of 

(22Ne/21Ne)c, (3He/21Ne)c and (38Ar/21Ne)c can therefore be used as depth indicator (Wieler, 2002a; 

Eugster, 2003; Eugster et al., 2006; Ammon et al., 2009). Cosmogenic production rates and isotopic 

compositions naturally also vary as a function of sample chemistry. They also depend on the 

primary GCR energy spectrum because, for example, production on Fe of 21Ne is dominantly by 

high energy particles whereas 4He from Fe is mostly produced from lower energies in the range of 

a few 100 MeV (Ammon et al., 2009). Due to their physical strength against collisional 

fragmentation in space, iron meteorites generally are exposed to cosmic radiation over hundreds of 

millions of years. Stony meteorites have shorter cosmic-ray exposure ages of only millions to tens 

of millions of years (Wieler, 2002a; Eugster, 2003; Eugster et al., 2006; Ammon et al., 2009). 

Voshage (1967) determined for Washington County a long exposure age of 575±80 Ma but 

noted relatively large uncertainties because of unknown radiation hardness. Murty and Ranjith 

Kumar (2014) used (38Ar/21Ne)c ratios of Washington County to estimate a sample depth of nearly 

6 cm below the surface of a pre-atmospheric meteoroid of 12±2 cm radius. Applying the models 

from Ammon et al. (2008, 2009) to deduce production rates for 21Nec and 38Arc, they calculated an 

average cosmic-ray exposure age of 276±41 Ma. Some inconsistency has to be noted, however, in 

the work by Murty and Ranjith Kumar (2014) in that the measured (3He/21Ne)c ratios indicate a 

shallower sample depth than (38Ar/21Ne)c and, hence, different production rates. A possible reason 

for the inconsistency is helium loss from the analyzed samples. 

All concentrations and ratios of cosmogenic nuclides for the recent Washington County 

measurements in Table 2.4 were calculated using an iterative procedure. The determined 

(3He/21Ne)c and (38Ar/21Ne)c ratios give a more consistent picture when compared to cosmogenic 

model production ratios from Ammon et al. (2009) indicating a shallow sample depth in the 

uppermost ~2 cm of an iron meteoroid of less than 15 cm pre-atmospheric radius (Fig. 2.13a). 

(22Ne/21Ne)c model ratios (Fig. 2.13b) show less variations for shallow sample depths and are 

therefore less indicative. The high (22Ne/21Ne)c ratios for WC_samples compared to the model 

ratios are probably caused by cosmogenic reactions on phosphorus and sulfur in Washington 

County (cf. Murty and Ranjith Kumar, 2014). 

After correcting the measured noble gas abundances for solar (3He, 21Ne) and atmospheric 

(38Ar) contributions, cosmic-ray exposure ages were calculated for the near-surface and interior 

samples (WC_2, WC_5, WC_11, WC_14). For this, production rates based on the systematics from 

Ammon et al. (2009) and using a chemical composition of 90.1 wt% Fe and 9.9 wt% Ni for a pre-
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atmospheric iron meteoroid of 10 cm radius were determined. Production rates for a sample depth 

of 0–1 cm (WC_2 and WC_5) and 2–3 cm (WC_11 and WC_14) were used. The results shown in 

Table 2.4 are overall consistent for each sample. The younger 3Hec age of WC_14 compared to the 
21Nec and 38Arc ages may be caused by He loss from the sample. An obvious trend goes from 

generally younger exposure ages for near-surface samples of 107±15–114±16 Ma (WC_2) and 

101±14–113±16 Ma (WC_5) to generally older ages for the interior samples of 126±18–136±19 Ma 

(WC_11) and 110±16–167±24 Ma (WC_14). The average exposure age for Washington County 

using abundances of 3Hec, 21Nec and 38Arc is 123±5 Ma, 150 Ma younger than determined by Murty 

and Ranjith Kumar (2014) and significantly shorter than the age reported by Voshage (1967). 
 

 
Fig. 2.13: Cosmogenic ratios of WC_2, WC_5, WC_11 and WC_14 plotted for a) (3He/21Ne)c against (38Ar/21Ne)c and b) 

(22Ne/21Ne)c against (38Ar/21Ne)c. Cosmogenic model production ratios for iron meteoroids with 5, 10 and 15 cm pre-

atmospheric radius containing 90.1 wt% Fe and 9.9 wt% Ni are also shown and are based on Ammon et al. (2009). The 

model ratios imply increasing ratios with increasing sample depth. Model (3He/21Ne)c and (38Ar/21Ne)c ratios for a sample 

depth of 2 cm in meteoroids are labeled for reference. (3He/21Ne)c and (38Ar/21Ne)c ratios for WC_samples (Tab. 2.4) best fit a 

sample depth of ≤2 cm in an pre-atmospheric meteoroid of ≤15 cm radius. Data given by Murty and Ranjith Kumar (2014) 

for their Washington County surface and interior samples (A and B, Fig. 2.13a) seem not to be in accordance with model 

ratios. (22Ne/21Ne)c model ratios (Fig. 2.13b) show less variations with sample depth. For WC_samples (22Ne/21Ne)c ratios are 

higher than the model ratios but have large uncertainties.  

Tab. 2.4: Cosmogenic gas amounts (cm³STP/g) and ratios for investigated WC_samples calculated from total(1) values. 

Cosmic-ray exposure ages are calculated from production rates ([10-8]cm³STP/g/Ma) of 3Hec, 
21Nec and 38Arc in an 10 cm 

iron meteoroid (Ammon et al., 2009) for a sample depth of 0–1 cm (WC_2, WC_5) and 2–3 cm (WC_11, WC_14). 

 
a)Assumed errors of gas measurements and production rates are 10%, respectively. All uncertainties are 1σ 

WC_2 WC_5 WC_11 WC_14

(
3
He/

21
Ne)c 58.8±0.4 69.9±2.4 61.4±0.4 46.5±0.4

(38Ar/21Ne)c 4.07±0.09 4.16±0.14 4.22±0.08 4.64±0.15

(22Ne/21Ne)c 1.064±0.005 1.080±0.006 1.057±0.005 1.084±0.008

21
Nec [10

-8
] 2.12±0.01 1.88±0.01 2.25±0.01 2.61±0.02

prod.3Hec 1.1698 1.1698 1.1002 1.1002

T3
a) [Ma] 107±15 113±16 126±18 110±16

prod.21Nec 0.0186 0.0186 0.0166 0.0166

T21
a) [Ma] 114±16 101±14 136±19 158±22

prod.38Arc 0.0758 0.0758 0.0724 0.0724

T38
a) [Ma] 114±16 103±15 131±19 167±24



Earth’s core as source of light primordial noble gases  – 33 – 

2.5 Discussion 

Because of typically long exposure ages compared to stony meteorites (Voshage, 1967; 

Wieler, 2002a; Eugster, 2003; Eugster et al., 2006; Ammon et al., 2009) most iron meteorites are 

dominated by a noble gas component for He, Ne and Ar that is produced by interactions with 

cosmic radiation and often contains pure cosmogenic He (Wieler, 2002a; Schultz and Franke, 

2004). In addition, there may be an atmospheric component that was incorporated by 

contamination during passage through Earth’s atmosphere (e.g., Wieler, 2002a; Osawa; 2012). In 

the recent noble gas study of Washington County, clear 4He excesses are found (Fig. 2.8) as well as 

helium to neon isotopic ratios clearly distinct from the GCR and Air end-member composition 

(Figs. 2.9 and 2.10). From 4He/3He ratios that show no large difference between the major 

degassing peaks (Fig. 2.6) it can be excluded that the 4He excess is from spallation reactions on 

phosphorus in schreibersite compared to spallation in kamacite and taenite. Therefore, in 

combination with 20Ne excesses and diagnostic Ne isotopic ratios (Fig. 2.7) a SW component for 

the light noble gases in Washington County that is (also) present in its interior can safely be 

identified. Ar isotopes (Fig. 2.11) may also indicate the presence of a component that differs in 

composition from GCR and Air. The Ar data are, however, less indicative and it is not possible to 

unambiguously assign this to solar wind, because mixing with planetary composition would result 

in essentially the same isotopic trends. 

The present study confirms earlier reports of excess primordial light noble gases detected in 

Washington County (Schaeffer and Fisher, 1959; Signer and Nier, 1962; Hintenberger et al., 1967; 

Becker and Pepin, 1984, 1987; Murty and Ranjith Kumar, 2014) and furthermore underlines the 

SW characteristics of the trapped gases. The most remarkable noble gas trend towards present-day 

SW was found by Becker and Pepin (1982, 1984). However, it was later questioned whether this 

represents trapped noble gases from the interior of Washington County with unfractionated solar 

elemental (He, Ne and Ar) and Ne isotopic ratios. Becker and Pepin (1987) instead concluded that 

the observed solar signatures might rather reflect more recent implantation of solar wind into 

their analyzed rear surface sample. It is known that implanted components in small particles like 

IDPs and micrometeorites (MMs) can survive atmospheric entry heating (Schwarz et al., 2005; 

Osawa, 2012). It is however unclear how surface correlated components of larger bodies should 

survive ablation processes other than in an almost unaffected rear surface. The presence of trapped 

noble gases in Washington County with fractionated solar elemental and SW-Ne isotopic ratios 

was furthermore reported in an abstract by Murty and Ranjith Kumar (2014). Based on their 

results for surface and interior samples the authors suggest that these are volume correlated rather 

than surface implanted. However, no complete dataset is reported in this abstract and depending 

on the cosmogenic end-member isotopic ratio (unspecified in their Ne 3-isotope plot) the data 

could either indicate mixing between GCR and SW or GCR and Air. In contrast, the recent study 

provides an unambiguous report for the presence of trapped SW noble gases in the interior of 

Washington County. 

The degassing patterns of WC_2, WC_5, WC_11 and WC_14 (Fig. 2.6, Figs. A1–A3) 

furthermore confirm that trapped noble gases are hosted within Washington County as reflected 
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by peak degassing from the main mineralogical constituents: schreibersite and kamacite-taenite. 

This slightly contrasts with the study of Hintenberger et al. (1967) who claimed that the pure 

metal phase was the only carrier of primordial noble gases and inclusions of silicates and 

schreibersite were excluded. That trapped gases are present in schreibersite is even more clearly 

demonstrated by the results for WC_r, a sample of almost pure schreibersite, which also shows the 

trend towards SW composition indicating the presence of primordial gases. On the other hand, it 

is not straightforward to explain why – based on the relative height of the two release peaks –

schreibersite with a total abundance of ~3% (Fig. 2.4) releases about 20% of the total noble gas 

amount (except 40Ar) from WC_5 (Tab. 2.1, Fig. 2.6) and even up to ~40% from WC_11 (Tab. 2.1, 

Fig. A2). A possible explanation would be extraction of additional noble gases during melting of 

schreibersite particles caused by eutectic melting of metal in adjacent areas. 

In general, all samples contain significant amounts of cosmogenic He, Ne and Ar, and 

temperature steps of WC_14 contain the most cosmogenic compositions for He and Ne (Figs. 2.7 

to Fig. 2.10). The strongest indication for the presence of SW among the samples is seen in WC_s, 

WC_5 and WC_2 (Figs. 2.7 to 2.9). While galactic cosmic radiation has a mean penetration depth 

of about 50 cm (Wieler, 2002a), the presence of light noble gases implanted by the solar wind is 

restricted to depths of less than 1 µm of the meteorite surface (Grimberg et al., 2006; Heber et al., 

2009). Solar wind implanted into the surface of meteorites is moreover strongly affected by 

ablation losses during atmospheric entry (e.g., Bhandari et al., 1980; Farley et al. 1997; Wieler, 

2002b; Toppani et al., 2003; Osawa, 2012; Füri et al., 2013). It is obvious from the results, however, 

that solar gases, even if once surface implanted, must have reached the interior of Washington 

County because not only the near-surface samples in depths of >2 mm (WC_2, WC_5) but also 

samples in depths of >2 cm (WC_11, WC_14) contain solar wind gases. As mentioned earlier, 

gases with atmospheric composition may have been released from a chemically distinct Fe-Ni 

phase or iron oxides that formed during atmospheric entry or terrestrial weathering (see section 

‘Noble gas data’ and ‘Degassing pattern’). Indeed, most high temperature release steps contain a 

significant atmospheric component that causes a shift towards air (Figs. 2.7 to 11). In consequence, 

both, total(1) and (2) values of WC_14 are dominated by the air contribution released in the high 

temperature peak (1480 °C). For the same reason, Ne isotopic ratios of WC_14 are the only data in 

the Ne three isotope plot (Fig. 2.7) that are located on the mixing line between GCR and Air, 

whereas all other data are consistent with mixing of GCR and SW or Ne-B. 

Variations of trapped noble gas concentrations in Washington County were noted earlier for 

samples in adjacent areas (Signer and Nier, 1962) and were found on a sub-mm scale by Becker 

and Pepin (1984) which was inferred by these authors from relative amounts of trapped and 

spallation gases that differ between the two combustion steps for the same sample. Variations of 

the trapped noble gas contents on a small scale are also observed in the present study (Tab. 2.1) 

between WC_2 and WC_5 but are more remarkable between innermost samples (WC_11 and 

WC_14). They are, however, not as substantial as reported by Signer and Nier (1962) who found 

excess noble gas variations of a factor of 5 in adjacent samples. In the present study, differences in 
4Heexcess with a factor of ~5 (Tab. 2.1) are observed between more distant samples (WC_2 and 

WC_14, WC_5 and WC_14) but reach up to a factor of more than 8 between WC_s and WC_14. 
20Neexcess variations with a factor of ~3 exist between distant samples (WC_5 and WC_11) and 
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reach up to a factor of ~5.5 between WC_s and WC_11. In contrast to the constant (4He/20Ne)excess 

ratio of 420±40 reported by Signer and Nier (1962) that was considered to rule out a 

predominantly radiogenic origin for the 4He excesses, a wider range of excess ratios can now be 

seen among samples of Washington County. A similar 4He/20Ne excess ratio as in Signer and Nier 

(1962) of 470 was reported by Hintenberger et al. (1967). Murty and Ranjith Kumar (2014) 

measured lower 4He/20Ne ratios between 150 and 320 for the trapped component that was 

identified as solar gas whereas an excess 4He/20Ne ratio of 640, derived from the data given by 

Becker and Pepin (1984), is identical to unfractionated solar wind (4He/20NeSW = 650±50; Wieler, 

2002b). Compared to these, equally high total(1) (4He/20Ne)excess ratios are observed for some of the 

new samples (e.g., WC_2: ~680, Tab. 2.1) but generally vary between ~450 and ~700. All total(2) 

values that probably include atmospheric contributions in the high temperature steps show 

consistently lower (4He/20Ne)excess ratios. The highest total(1) excess ratios of ~1070 is that for 

WC_11. Even the WC_11 total(2) value of ~890 is higher than any previously reported ratios. The 

lowest total(1) (4He/20Ne)excess ratio among the samples of ~110 is that found for WC_14 and is 

caused by air contribution in the high temperature peak (1480 °C). It is worth noting that in all 

other cases the gas released in the high temperature peak (kamacite-taenite peaks of WC_2, WC_5 

and WC_11) have “moderate” (4He/20Ne)excess ratios ranging between ~580 and ~820 whereas 

higher excess ratios ranging from ~660 to ~1300 are observed in the respective low temperature 

peaks (schreibersite peaks of WC_2, WC_5, WC_11 and WC_14). Likewise, the pure schreibersite 

sample WC_r reveals the second highest bulk (4He/20Ne)excess ratio of 700. Overall, excess 4He/20Ne 

ratios measured in Washington County are not unlike those for metal separates from ordinary 

chondrites, which contain a surface-sited solar wind component with 4He/20Ne ratios of 647±62 

(Murer et al., 1997) and possibly up to 800 (Becker and Pepin, 1991).  

In essence, the results show that SW noble gases in the interior of Washington County must 

have been acquired during the formation of its parent body (Murty and Ranjith Kumar, 2014) 

under very special conditions that may have involved a sudden melting event of chondritic 

material or of a solar wind irradiated regolith that was loaded with primordial gases (Hintenberger 

et al., 1967; Becker and Pepin, 1984). Possible origins of unfractionated solar gases in Washington 

County were further discussed by Becker and Pepin (1984). Most likely explanations would be 

occlusion of nebular gas in voids during accretion or direct implantation of solar wind into metal 

grains prior to accretion. If SW-implantation happened before accretion, this process was certainly 

not unique for a single iron meteorite (Becker and Pepin, 1984) and a similar process could have 

led to the presence of volume correlated solar noble gases not only in Washington County but also 

in the interior of Earth (Murty and Ranjith Kumar, 2014). So far, only one other iron meteorite, 

Kavarpura, has been found to show solar noble gases that are heterogeneously distributed in 

interior samples, but in this case, they have been inferred to be present in minor inclusions rather 

than in the metal phase (Murty et al., 2008). An investigation of the inhomogeneously distributed 

spinel phase now detected for Washington County may provide an insight to the question if tiny 

silicate inclusions in iron meteorites are possible carriers of SW-implanted noble gases (instead of 

or in addition to the metal phase). 

The implications of the presence of light solar noble gases in the interior of Washington 

County and possibly one other iron meteorite (Kavarpura) are of high relevance for Earth and the 
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iron core as a potential reservoir for noble gases. This is because the flux of light noble gases from 

the core is an alternative source of solar He and Ne within Earth that traditionally is believed to be 

located in a primitive deep mantle reservoir sampled by plumes (see Moreira, 2013 and references 

therein). It would furthermore remove the requirement for a separate noble gas reservoir in the 

mantle (Porcelli and Ballentine, 2002). Under certain conditions of diffusivity, a flux of 3He and 

other noble gases from the core could significantly enrich a thermal boundary layer at the bottom 

of the mantle that samples the primitive noble gas signatures observed in OIBs (Moreira, 2013). Up 

to now, however, the idea of the core as a source of primordial He and Ne is regarded as highly 

speculative (Macpherson et al., 1998; Dixon et al., 2000). Despite this, the core as possible source 

of He and the required constraints for its incorporation were discussed in length by Porcelli and 

Halliday (2001) and Porcelli and Ballentine (2002). In detail, partitioning of helium into the core 

depends on prevailing conditions during its formation, in particular on initial gas concentrations 

and partition coefficients D(He)Fe/LSi of noble gases between liquid metal and liquid silicate. These 

are, however, generally very low and actually decrease from ~4*10-2 to ~3*10-4 with increasing 

pressures of 5–100 kbar (Matsuda et al., 1993). More favorable coefficients D(He)Fe/SSi of 1*10-2 at 

high pressures (~100 kbar) result from partitioning of noble gases (i.e., He) between solid silicates 

and liquid metal (Porcelli and Halliday, 2001). This value is expected to furthermore increase up 

to ~5 with lower pressures (5 kbar) when calculated with D(He)Fe/SSi = D(He)Fe/LSi/D(He)SSi/LSi and 

using a coefficient D(He)SSi/LSi for partitioning He between solid silicate and liquid silicate of 8*10-3 

(Marty and Lussiez, 1993). Therefore, considering accretion of terrestrial building blocks that are 

sufficiently small to form in a low-pressure scenario, partitioning of light solar noble gases into 

liquid metal is feasible when SW-implanted He and/or Ne is present either in irradiated silicates or 

metal. Direct incorporation of SW-implanted light noble gases in irradiated metal grains into the 

core is not dependent on the pressure regime but would require accretion without gas losses or 

interactions with silicates, a process that seems not readily feasible. 

Incorporation of noble gases into metal in low pressure scenarios were assessed in detail by 

Trieloff and Kunz (2005). Feasible concentrations of noble gases in metal in low pressure regimes 

were thereby derived from studies of iron meteorites as natural analogues. By referring to 20Ne 

concentrations of up to 10-7 cm³STP/g reported for Washington County by Becker and Pepin 

(1984), Trieloff and Kunz (2005) estimated that only ~0.25% of Earth’s precursor metal, if 

resembling Washington County, is sufficient to cause concentrations of solar Ne in the core that 

satisfy observed OIB and MORB fluxes as calculated from global 3He fluxes of 4 atoms/cm²/s over 

4.6 Ga (Craig et al., 1975; Ozima and Podosek, 2002) and estimated mantle elemental ratios of 
3He/22Ne ~3 (Trieloff et al., 2002). With the newly determined mean 20Ne concentration in bulk 

WC_samples of ~4*10-8 cm³STP/g, the required amount of gas-rich precursor metal would 

increase to ~0.63%. In any case, metal could have carried sufficient light solar noble gases into the 

interior of Earth (Becker and Pepin, 1984) even if the solar wind irradiated only fractions of its 

protolith material and implanted solar gases into surfaces prior to accretion. 
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2.6 Conclusions 

High resolution temperature release sequences on near-surface and interior samples of the 

Washington County iron meteorite were performed for the first time, proving the existence of 

volume correlated trapped primordial noble gases in this iron meteorite. Two prominent degassing 

peaks were observed that are assigned to schreibersite at lower extraction temperatures (~1100 

°C) and kamacite-taenite at higer extraction temperatures (≳1400 °C). Analysis of an etch residue 

(WC_r) consisting of essentially pure schreibersite particles is further proof to the assignment of 

the low temperate release peak to this mineral. These sample release patterns thus reflect 

degassing of noble gas host phases which are the main mineralogical constituents of Washington 

County and confirm that noble gases are trapped in the interior of this iron meteorite.  

The analyzed samples show (mostly) minor variations in noble gas concentrations but 

always contain 4He excesses compared to GCR and Air. The He-Ne elemental and particularly Ne 

isotopic compositions allow conclusive identification of a distinct SW or Ne-B component present 

in all samples of Washington County. High temperature release steps of most samples also contain 

a significant air contribution most likely released from secondary alteration poducts. The argon 

isotopic ratios cannot be unambigiously interpreted as showing a solar wind contribution. The 

isotopic composition of krypton and xenon isotopes generally have uncertainties too large to draw 

further conclusions although cosmogenic contributions are seen in some of the Kr data. 

The acquisition of the solar gases found in the interior of Washington County most probably 

happened in a low-pressure regime that favored noble gas partitioning from silicates into metal 

during metal-silicate separation. Even though occlusion of nebular gas cannot be excluded, the 

original derivation of solar noble gases is suitably explained by SW-implantation into surfaces of 

protolith material prior to accretion; a process which is conceivable for all other Solar System 

bodies including Earth. If less than 1% of Earth’s precursor metal gained solar noble gases in 

abundance similar to that found for Washington County, the core would have incorporated 

sufficient solar Ne concentrations to satisfy observed MORB and OIB fluxes. With evidence for 

light solar noble gases in interior samples of Washington County, Earth’s core gains more 

relevance as a potential source reservoir for He and Ne than previously supposed. 

In addition, sporadically distributed silicate inclusions of up to 10 µm in diameter have been 

seen in Washington County for the first time and are identified as chromites and 

manganochromites. Their estimated abundance of 0.01‰ makes a significant contribution to the 

noble gas budget unlikely. Nevertheless, it remains to be shown in future studies if these minor 

spinel phases are possible carriers of solar noble gases in Washington County and other iron 

meteorites. 
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3 Acquisition of solar Ne during 

terrestrial accretion 
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3.1 Introduction 

The atmosphere is regarded as the major terrestrial noble gas reservoir (Ozima and Podosek, 

2002) and is assumed to have inherited its present-day noble gases from different sources 

involving mantle degassing, meteoritic additions and fractionation processes during Earth’s history 

(Pepin, 1991; 2006; Zahnle, 1998; Ozima and Podosek, 2002; Marty, 2012; Halliday, 2013). 

Excesses of radiogenic 40Ar and 129Xe in the mantle when compared to the atmosphere hint to 

intense or even “catastrophic” degassing during the first 100–200 Ma after planet formation started 

in the Solar System (Staudacher and Allègre, 1982; Ozima and Podosek, 2002; Marty and Dauphas, 

2002). The continuing decay of the radionuclides 40K (decay to 40Ar; t1/2: 1.25 Ga) and 129I (decay to 
129Xe; t1/2: 15.7 Ma) in the solid Earth coupled with early degassing of their daughter isotopes then 

resulted in further enhancement of 40Ar/36Ar and 129Xe/130Xe ratios in the mantle. Outgassing is a 

still ongoing process and takes place at mid oceanic ridges, oceanic islands and other volcanoes, 

yet contributing only negligible amounts to the atmospheric noble gas reservoir, since at least the 

upper mantle reservoir is thought to have already been degassed between 85% and up to >99% 

(Staudacher and Allègre, 1982; Allègre et al., 1987; Ozima and Podosek, 2002). 

Compared to the solar abundances the noble gases in the terrestrial atmosphere are depleted 

by several orders of magnitude, with the lightest noble gases (He, Ne) showing the strongest 

depletion (Fig. 3.1). The enrichment of heavy noble gases (Ar, Kr, Xe) on the terrestrial planets 

and in meteorites relative to the lighter ones and “solar” composition is termed “planetary” noble 

gas pattern (Signer and Suess, 1963; Pepin and Signer, 1965). For Earth and Mars, sharing similar 

abundance patterns for noble gases and Xe isotopes (Owen, 2008), the low Xe/Kr ratio compared 

to meteoritic gases has been identified as the yet unresolved “missing-Xe” paradox (Ozima and 

Podosek, 2002 and references therein).  

The overall fractionated pattern of the terrestrial noble gases compared to the sun (Fig. 3.1) 

gave rise to several models for the origin and evolution of the atmosphere, either assuming that 

terrestrial accretion took place in the presence of a solar nebula or without ambient gas. Standard 

models were constructed implying hydrodynamic escape of a gravitationally captured primordial 

atmosphere with solar nebula composition and subsequent planetary degassing (Pepin and 

Porcelli, 2002; Pepin, 2006) or include volatile delivery by chondritic material with a planetary 

component (Marty and Dauphas, 2002; Marty, 2012). 

While the noble gases in the terrestrial atmosphere must contain a component derived from 

mantle degassing, they must have been further modified. For example, 20Ne/22Ne ratios of mantle 

rocks (see for example Honda et al., 1991; Moreira et al., 1998; Trieloff et al., 2000; Ballentine et 

al., 2005; Moreira, 2013) indicate a “solar” composition (20Ne/22Ne ~12.7), indistinguishable from 

the SW-implanted Ne-B component in meteorites. This led Trieloff et al. (2000), Trieloff et al. 

(2002) and Trieloff and Kunz (2005) to suggest Ne-B as a “solar” mantle end-member that is 

sampled by all mantle derived MORB and OIB suites (Fig. 3.2). On the other hand, the atmosphere 

displays a clear “planetary” signature (20Ne/22Ne = 9.80±0.08; Eberhardt et al., 1965). This requires 

the addition of a “planetary” component, so that the compositions of Earth’s atmosphere and 



Acquisition of solar Ne during terrestrial accretion  – 40 – 

interior can be readily explained by simple mixing of various chondritic and solar components 

(Marty, 2012; Halliday, 2013). 

The occurrence of supposably solar wind implanted gases in the interior of a large planet 

like the Earth requires irradiation and implantation at the stage of small bodies or particles, which 

have a high surface to volume ratio. Indeed, He and Ne isotopes in micrometeorites (MMs) and 

interplanetary dust particles (IDPs) are dominated by SW-implantation (Wieler, 2002b; Osawa, 

2012). Moreover, even today's flux of extraterrestrial material to Earth is dominated by small MM-

sized particles in the range of ~200 µm (Love and Brownlee, 1993; Cremonese et al., 2012). Hence, 

the Ne-B component in irradiated dust can be considered as a possibly significant source for the 

origin of the terrestrial noble gases. In this context it is important to note that MMs of a few 100 

µm in size experience severe atmospheric entry heating and deliver much of their volatile 

inventory directly to the atmosphere, while smaller, tens of µm-sized IDPs are hardly degassed 

and generally richer in volatile elements (e.g., Engrand et al., 2005; Kehm et al., 2002; Osawa et 

al., 2010; Osawa, 2012, Stuart et al., 1999; Flynn et al., 2003; Marty et al., 2005). In addition, 

benefiting from their large surface/volume ratio, IDPs often carry high concentrations of surface 

correlated SW-noble gases (Nier and Schlutter, 1990, 1992, 1993; Pepin et al., 2000, 2001; Osawa, 

2012) as was also suggested by the modeling work of Farley et al. (1997) for implanted solar wind 

He. Hence, they can deliver volatile elements to Earth's surface largely unaffected by atmospheric 

entry heating (Marty et al., 2005; Schwarz et al., 2005).  

At the time before the formation of planetary embryos, when micron-sized dust with large 

surface/volume ratio was common in the young Solar System (Moreira and Charnoz, 2016), 

implanted SW-gases would have certainly governed the signatures of small volatile-rich material 

during accretion. The basic assumption of a major contribution of volatiles by MMs and IDPs as 

important carriers of these elements was noted earlier by Marty et al. (2005). The importance of 

large interplanetary dust particles (MMs) for the origin of volatiles on Earth and the formation of 

the atmosphere and oceans just after the last major impact that eroded any nascent gas phase was 

furthermore assessed by Maurette et al. (2000) and Maurette (2006). Their “early-micrometeorite-

accretion” scenario (EMMAC) describes the origin of Ne, organics, CO2, N2 and H2O with the early 

accretion of micrometeorites. 

In the following model calculations, the feasibility of the implantation mechanism will be 

explored to provide solar-type noble gases to the Earth, in particular neon. The model calculations 

take into consideration a number of well constrained and accepted framework parameters for 

Earth’s evolution and are based on recent measurements of the Ne inventory of particles and their 

fluxes to Earth. Also taken into account is the existence of isotopic and elemental fractionation, 

i.e., more or less subtle differences between solar gas, solar wind and implanted solar wind 

(Wieler, 2002b; Heber et al., 2012). For the model, concentrations of solar neon in MMs and IDPs 

are assessed by compiling data available in the literature. To obtain data for other mass ranges the 

size dependent concentration of solar wind implanted neon for smaller particles is calculated and 

literature data are used for larger bodies. By combining different particle flux models, an annual 

particle flux model is then constructed for solid matter incident on Earth, ranging from 10-16g–

1025g comprising β-meteorites, IDPs, micrometeorites, and larger particles and bodies. The size 

and mass dependent Ne concentrations as well as the annual mass flux allow for calculation of the 
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respective Ne flux to Earth. These fluxes are used as basic input parameters to model terrestrial Ne 

accretion. In the model, early delivery of solar wind type neon, degassing into a dense steam 

atmosphere, dissolution into an early magma ocean, protoatmosphere loss during the Moon-

forming impact, and late addition of a planetary neon component will be considered.  
 

 
Fig. 3.1: Noble gas abundances of 20Ne, 36Ar, 84Kr and 130Xe in the atmospheres of the terrestrial planets (Venus, Earth, 

Mars) and in CI chondrites in comparison to the solar values. Units are atoms per 106 Si atoms (redrawn from Baecker, 2014; 

modified after Pepin (2006) and references therein). 

3.2 Ne inventory of the Earth 

The 20Ne/22Ne isotopic composition of Earth’s atmosphere (ATM: 9.80±0.08, Eberhardt et al., 

1965) is distinct from the mantle values (MORB and OIB: estimated as between 12.49±0.06 and 

13.0±0.2, all given errors are 1σ, otherwise indicated, Trieloff et al., 2000; Yokochi and Marty, 

2004). This allows for comparison with specific components found as the solar wind (SW: 

13.777±0.010, Heber et al., 2012 or accordingly 14.001±0.042, Pepin et al., 2012), as fractionated 

solar wind (FSW: 11.2±0.2, Wieler, 2002b), Ne-B (~12.5–12.7, Black, 1972; Trieloff and Kunz, 

2005; Moreira and Charnoz, 2016), in phase Q (10.4±0.3, Busemann et al., 2000) and with 

“planetary” Ne-A (8.2±0.4, Black and Pepin, 1969; Black, 1972). The latter is a common 

composition often present in primitive meteorites that do not contain solar wind-derived noble 

gases and constitutes a mixture of essentially Ne-HL, Ne-Q and Ne-E (Ott, 2014) (Fig. 3.2). The Ne 

isotopic composition therefore is essential to trace the origin of noble gases in the Earth’s mantle 

and the mechanism of their incorporation. 

As 20Ne and 22Ne in Earth´s mantle are considered as primordial and non-radiogenic, 

showing only insignificant nucleogenic contributions (Mukhopadhyay, 2012; Moreira, 2013), the 
20Ne/22Ne ratio of MORB and OIB sources has not evolved over time and is thought to reflect a 

pristine mantle component with a solar-like end-member. This solar mantle signature was either 

acquired by dissolution of nebular gas into a magma ocean (Mizuno et al., 1980; Sasaki and 
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Nakazawa, 1990; Harper and Jacobsen, 1996; Porcelli et al., 2001; Marty 2012) with a 20Ne/22Ne 

ratio of 13.36±0.09 (Heber et al., 2012) or was derived from SW-irradiated planetary precursors 

containing the meteoritic Ne-B component (Trieloff et al., 2000, 2002; Trieloff, 2002, 2007; 

Ballentine et al., 2005; Jaupart et al., 2017; Péron et al., 2017, 2018) having 20Ne/22NeNe-B = 12.7±0.1 

(Moreira and Charnoz, 2016). Earth’s atmosphere, on the other hand, displays a “planetary”-like 

pattern (Fig. 3.2a). Overall, the difference in Ne isotopic ratios observed between Earth’s mantle 

and the atmosphere can be readily explained by mixing the various chondritic and solar 

components in different proportions (Marty, 2012; Halliday, 2013). In contrast to 20Ne and 22Ne, 
21Ne is produced in the mantle in significant amounts through the nuclear reactions 18O(α,n)21Ne 

and 24Mg(n,α)21Ne (Yatsevich and Honda, 1997; Leya and Wieler, 1999; Moreira, 2013). The 

(relative) 21Ne excess in the MORB source is significantly higher than in the OIB mantle since the 

upper mantle is assumed to be more extensively degassed from the primordial components. 

Among OIBs, originating from the lower mantle, the Galápagos (Fernandina) samples are derived 

from the most primitive (non-nucleogenic) source region compared to Iceland and Hawaii (Loihi) 

(Fig. 3.2a). 

A major issue in determining the pristine 20Ne/22Ne ratio of Earth’s mantle is contamination 

with an atmospheric component (e.g., Moreira, 2013; Colin et al., 2015) and, furthermore, the 

upper MORB mantle might, to some extent, be sensitive to noble gas recycling via subduction 

(e.g., Kendrick et al., 2011; Jackson et al., 2013). This process, however, is thought to be 

insignificant in case of Ne (e.g., Staudacher and Allègre, 1988; Holland and Ballentine, 2006; 

Schwarz et al., 2005). MORB derived samples show maximum 20Ne/22Ne values of 12.76±0.18 

(2пD43 “popping rock”, Moreira et al., 1998), but otherwise show values between air and 12.5 

(Moreira et al., 1998; Raquin and Moreira, 2009; Moreira, 2013). Values of the lower mantle 

reservoirs that likely represent direct measurements of the pristine component derive from 

samples of Loihi dunites, Icelandic volcanic glasses and the most primitive Galápagos volcanic 

glasses and exhibit maximum 20Ne/22Ne ratios of between 12.57±0.06 to 13.10±0.35 (Valbracht et 

al., 1997; Trieloff et al., 2000), 12.73±0.04 to 12.88±0.06 (Trieloff et al., 2000; Mukhopadhyay, 

2012; Colin et al., 2015) and 12.43±0.07 to 12.91±0.07 (Raquin and Moreira, 2009; Kurz et al., 

2009; Péron et al., 2016), respectively. Vesicles of submarine glass samples from one Galápagos 

volcano furthermore indicate a lower mantle source isotopic ratio between 12.65±0.04 (Péron et 

al., 2017) and 12.87±0.20 (Péron et al., 2016). Values up to 13.0 were found for samples from the 

Kola Peninsula by Yokochi and Marty (2004), but with large errors of ±0.4 (2σ). Overall, 

therefore, a value between ≳12.5 and ~12.9 is considered to be a reasonable range for the 
20Ne/22Ne ratio of the solar-like mantle end-member sampled by all MORB and OIB suites. A value 

of 12.7±0.2 appears a good compromise for the pristine mantle. 

Measured mantle 20Ne/22Ne ratios unaffected by atmospheric contamination are thus close to 

the Ne-B ratio. Furthermore, the Ne-B ratio was found by Trieloff et al. (2000) to be 

indistinguishable from Earth’s mantle end-member and was therefore suggested by Trieloff et al. 

(2000, 2002) and Trieloff and Kunz (2005) to represent the pristine mantle component. Ne-B itself 

was identified as its own “component” (i.e., characteristic composition) reflecting the implantation 

of SW ions in irradiated surfaces (Trieloff et al., 2002; Moreira, 2013) coupled with “space-erosion” 

(sputtering) effects (Raquin and Moreira, 2009; Moreira and Charnoz, 2016). The solar wind has a 
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20Ne/22Ne ratio of ~13.8, but 22Ne has a higher energy than 20Ne and is more deeply implanted. 

Hence, deeper surface layers are enriched in 22Ne resulting in the FSW composition of 20Ne/22Ne of 

~11.2 (Wieler, 2002b). To explain the origin and composition of Ne-B, a steady state implantation 

and sputtering model was developed by Raquin and Moreira (2009) and was extended by Moreira 

(2013) and Moreira and Charnoz (2016). In this model the attained value depends basically on the 

grain size and irradiation time at a given distance from the sun. It is the result of deeper 

implantation of the heavier isotope in combination with sputtering and removal of the superficial 

particle layer that is enriched in the lighter isotope. This leads to a residue that becomes 

continually enriched in the heavy isotope until a steady state ratio is achieved. Depending on the 

solar wind 20Ne/22Ne ratio used in this model, either 13.777±0.010 (Heber et al., 2012) or 

14.001±0.042 (Pepin et al., 2012), the steady state value for Ne-B is 12.53 or 12.73, respectively. If 

the steady state value is not reached because the irradiation time is too short, the resulting 
20Ne/22Ne ratio is higher than the steady state ratio (e.g., ~12.9) (Moreira and Charnoz, 2016). 

Within uncertainties, the Ne-B value of 12.7±0.1 favored by Moreira and Charnoz (2016) is 

compatible with the old value for Ne-B given by Black (1972) of 12.52±0.18. 
 

 
Fig. 3.2: a) Neon three-isotope-plot showing the solar wind composition (Heber et al., 2012), Ne-B (modified by Trieloff and 

Kunz, 2005 after the original Ne-B 21Ne/22Ne value of 0.0335 given by Black, 1972) and planetary Ne-A on a mass 

fractionation line (mfl). Mass dependent isotopic fractionation from solar Ne was likely responsible for the origin of Ne-B. 

The atmospheric value (ATM, Eberhardt et al., 1965) is shifted to higher 21Ne/22Ne values because of nucleogenic 21Ne 

additions. The OIB source for Galápagos (Fernandina) samples (Kurz et al., 2009; Raquin and Moreira, 2009) contains the 

most unradiogenic Ne isotopic ratios compared to the Icelandic samples (Trieloff et al., 2000; Mukhopadhyay, 2012; Colin et 

al., 2015) and Loihi samples (Valbracht et al., 1997). The most radiogenic samples are derived from the MORB (2∏D43 

“popping rock”) source (Moreira et al., 1998; Raquin and Moreira, 2009). Both, OIB and MORB trend, suggest a solar-like 
20Ne/22Ne mantle end member while the MORB source displays higher 21Ne/22Ne values compared to the OIB source 

because of nucleogenic 21Ne additions combined with a higher degree of degassing of the MORB mantle. b) Neon three-

isotope-plot showing Ne data (errors <30% for 21Ne/22Ne except two upper limits) for IDPs (data from Nier and Schlutter, 

1990; Pepin et al., 2000), micrometeorites (MMs) and cosmic spherules (CSs) (data from Osawa et al., 2000, 2003a, 2003b, 

2010; Osawa and Nagao, 2002a, 2002b; Marty et al., 2005; Bajo et al., 2011; Baecker, 2014; Okazaki et al., 2015) as well as 

the composition for SW (Heber et al., 2012), Ne-B (Trieloff and Kunz, 2005), fractionated solar wind (FSW, Wieler, 2002b), 

phase Q (Busemann et al., 2000) and the atmospheric value (ATM, Eberhardt et al., 1965). Within uncertainties (1σ) most 

MMs, CSs and IDPs cluster around FSW and plot between Ne-B and the atmospheric composition which is probably due to 

variable degrees of air contamination during atmospheric entry. The atmospheric component is prevailing in the completely 

melted cosmic spherules as consequence of severe heating during atmospheric entry. Some data points plot towards higher 
21Ne/22Ne ratios which is because of exposure to cosmic rays (20Ne/22Ne <1; 21Ne/22Ne ≈0.5–1). 

The nature of Ne-B as the dominant type of surface correlated implanted Ne in 

extraterrestrial solid matter moreover indicates that solar-like mantle Ne could have been supplied 
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by SW-irradiated materials during early accretionary stages before the formation of Earth was 

terminated (Podosek et al., 2000; Trieloff et al., 2000, 2002). As soon as the solar nebula was 

dissipated after about ~6 Ma (Haisch et al., 2001) or some tens of millions of years (Pfalzner et al., 

2014), the solar wind was able to irradiate the surfaces of solids (Trieloff et al., 2002; Trieloff, 

2007). During terrestrial accretion the implanted Ne-B may then have been delivered to Earth, 

mainly by small particles and grains with large surface/volume ratio since the protoplanetary disk 

was dust-rich (Moreira and Charnoz, 2016). 

3.3 Flux of mass and Ne to Earth  

In a model for terrestrial Ne accretion it is necessary to estimate the total amount of Ne that 

has been delivered to Earth. As a first step, the total amount of carrier material that presently 

impacts the upper atmosphere (e.g., solid matter of all masses and sizes incident on Earth) has 

therefore to be evaluated. Considering an annual particle flux to Earth over a range of 10-16–1025 g 

in combination with the respective Ne concentrations of each carrier type, the annual amount of 

Ne that is delivered to Earth can be calculated. These Ne carriers are divided from small to large 

into six groups: β-meteorites (10-16–10-10 g), IDPs (10-10–10-7 g), MMs (10-7–10-3 g), large particles 

(10-3–102 g), large bodies (102–1015 g) and very large bodies (>1015 g) (see section 3.3.3), each one 

distinct in its Ne isotopic composition as well as in its Ne concentration (see APPENDIX B, Tab. 

B1). To assess the amount of Ne delivered by all types of carriers early in Earth's history, this flux 

is scaled back in time for early mass fluxes during terrestrial accretion in order to deduce the early 

Ne delivery to Earth. It is hereby tacitly assumed that the size distribution, i.e., the relative 

contributions from larger bodies and small particles are similar, because small particles are the 

collisional outcome of the large body population. It is also assumed that the dynamics delivering 

small particles to Earth (e.g., Poynting-Robertson effect) and large bodies to Earth crossing orbits 

(gravitational perturbations by giant planets) were similar throughout Solar System history. 

 

3.3.1 Ne-inventory of particle types 

Cosmic dust consisting of MMs in the size range of 50–500 µm currently dominates the 

extraterrestrial mass flux to Earth with a major peak at ~200 µm (Love and Brownlee, 1993; 

Engrand et al., 2005; Marty et al., 2005; Cremonese et al., 2012). In addition, most small particles 

preserve SW-implanted He, Ne, and Ar (Osawa, 2012). A compilation of available Ne 

measurements of both particle types (MMs and IDPs) will therefore yield a reasonable estimate of 

the present Ne flux to Earth. The Ne concentrations of even smaller sized particles (β-meteorites) 

can be readily deduced by simple geometric downscaling of the size-correlated particle surface 

assuming a SW-saturated outermost layer given by the Ne concentration of the smallest measured 

IDPs (see section 3.3.2). Bulk Ne measurements of carbonaceous chondrites and their primordial 

components (Mazor et al., 1970) serve as the basis to estimate the inventory of large-sized Ne 

carriers (large particles, large bodies and very large bodies). 
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3.3.2 20Ne/22Ne ratio and 20Ne concentration of particle types 

Only materials with large surface/volume ratio are able to incorporate large concentrations 

of SW-implanted Ne-B and are thus efficient to distribute the Ne-B component (Moreira, 2013; 

Moreira and Charnoz, 2016). Implanted solar wind comprises the major fraction of helium and 

neon in IDPs and MMs (Pepin et al., 2001; Wieler, 2002b) and in particular Ne in IDPs is 

dominated by surface correlated SW-implanted Ne (Kehm et al., 1998). In recognition of their 

significance available data for the 20Ne/22Ne ratios and 20Ne concentrations were therefore 

compileded (Fig. 3.3) for IDPs (Nier and Schlutter, 1990; Pepin et al., 2000; Kehm et al., 2006) and 

MMs (Osawa et al., 2000, 2003a, 2003b, 2010; Osawa and Nagao, 2002a, 2002b; Bajo et al., 2011; 

Baecker, 2014; Okazaki et al., 2015). Additional data for the 20Ne concentrations only of IDPs were 

published by Pepin et al. (2001) and Kehm et al. (2002). 
 

 

 
Fig. 3.3: Ne isotopic data for measurements of IDPs, MMs and CSs. The mass range from 1*10-10 g–1*10-3 g is divided into 

decadal mass bins (gray squares) which allow calculating the mean geometric value for all data within each bin. Only values 

with uncertainties <15% for the 20Ne/22Ne ratio are shown. a) 20Ne/22Ne ratios of particles are plotted against their mass in g 

and size in µm. Data for IDPs are from Nier and Schlutter (1990), Pepin et al. (2000) and Kehm et al. (2006). Data for MMs 

and CSs are from Osawa et al. (2000, 2003a, 2003b, 2010), Osawa and Nagao (2002a, 2002b), Bajo et al. (2011), Baecker 

(2014) and Okazaki et al. (2015). For comparison, 20Ne/22Ne of SW (13.777, Heber et al., 2012), Ne-B (12.5, Trieloff and 

Kunz, 2005) and FSW (11.2, Wieler, 2002b) are shown. b) 20Ne concentrations of particles are plotted against the mass in g 

and size in µm. Data for IDPs are from Nier and Schlutter (1990), Pepin et al. (2000, 2001) and Kehm et al. (2002). Data for 

MMs and CSs are from Osawa et al. (2000, 2003a, 2003b, 2010), Osawa and Nagao (2002a, 2002b), Bajo et al. (2011), 

Baecker (2014) and Okazaki et al. (2015). Both plots display progressively lower 20Ne/22Ne ratios and 20Ne concentrations 

with progressively larger particle masses and sizes. 
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In Figure 3.3, available data for the 20Ne/22Ne ratio (Fig. 3.3a) and 20Ne concentration (Fig. 

3.3b) in IDPs, MMs and cosmic spherules (CSs: MMs that completely melted due to atmospheric 

entry heating) are plotted against the particle mass. The particle masses are divided into decadal 

mass bins ranging from 10-10 g to 10-9 g at the low end up to 10-4 g to 10-3 g at the upper end. IDPs 

occupy the range 10-10 g to 10-7 g, whereas MMs and CSs plot in the range 10-7 g to 10-3 g. For each 

mass bin the geometric mean 20Ne/22Ne ratio and the geometric mean 20Ne concentration was 

calculated. As noted by Osawa et al. (2003b) and Osawa et al. (2010), the noble gas concentrations 

in cosmic dust are not distributed normally, but log-normally, so the geometric mean is more 

appropriate than the arithmetic mean. Only data for complete particles were used. Values from 

individual fragments of initially larger particles were omitted to avoid misinterpretation. 

However, if all fragments of an initially larger particle were measured, e.g., by Baecker (2014), the 

Ne isotopic composition and the Ne amount were calculated by adding the fragments according to 

their mass. Furthermore, data below detection limits were also excluded from the compilation, so 

the mean 20Ne concentrations should be considered as upper limits.  

It is obvious from Figure 3.3 that, with progressively lower particle masses, IDPs and MMs 

display progressively higher 20Ne/22Ne ratios and 20Ne concentrations, with a maximum mean 
20Ne/22Ne ratio of 12.61±0.41 and a highest mean 20Ne concentration of 6.92*10-2 cm³STP/g in the 

smallest IDPs. Even though compiled from a limited number of data, these highest values are 

regarded as representative for the maximum Ne inventory in small particles that are unaffected by 

atmospheric entry heating (Nier and Schlutter, 1990, 1992; Love and Brownlee, 1991). The smaller 
20Ne/22Ne values in larger particles may be caused by heating and/or ablation of the outer particle 

layer during atmospheric entry in combination with evaporative loss of surface sited solar wind 

noble gases. Such losses would preferably affect the shallowly implanted solar wind neon (with 

higher 20Ne/22Ne ratio), so that the more deeply implanted FSW neon with 20Ne/22Ne of about 11.2 

would become dominant. 20Ne/22Ne ratios lower than 11.2 may be caused by the admixture of a 

volume correlated component, e.g., Ne-A, that will gain in importance relative to the implanted 

Ne-B component as the surface to volume ratio decreases with increasing particle size. However, a 

more likely explanation for most of the data is probably uptake of atmospheric neon, as, in 

particular completely melted cosmic spherules – which should have also lost the Ne-A component 

and are frequently associated with atmospheric argon - display roughly atmospheric neon 

compositions (Fig. 3.3a). 

Most 20Ne/22Ne data for IDPs and MMs plot, within errors (1σ), between SW and FSW and 

the mean values for MMs in the mass bins between 10-7 and 10-4 g of 11.14; 11.10 and 11.39, 

respectively, are all very close to FSW (20Ne/22NeFSW: 11.2). The mean values for the IDPs in the 

bins between 10-9 and 10-7g are 11.84 and 12.10, respectively, and plot above FSW, while the mean 

for the bin with the lightest IDPs (10-10–10-9 g) has the highest mean 20Ne/22Ne ratio of 12.61±0.41, 

which is compatible with Ne-B. The bin containing the heaviest MMs (10-4–10-3 g) contains the 

MMs with the lowest 20Ne/22Ne ratios and has a mean 20Ne/22Ne value of 9.55. Probably due to air 

contamination and isotopic fractionation during atmospheric entry virtually all CSs plot below 

FSW, exhibiting substantially lower 20Ne/22Ne ratios compared to unmelted MMs.  

For the 20Ne concentration the mean values for the mass bins show a progressive increase 

from the heaviest MM-particles containing the lowest concentrations (1.89*10-7 cm³STP/g for the 
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mass bin 10-4 to 10-3 g) towards the lightest IDP-particles (mean 6.92*10-2 cm³STP/g for the mass 

bin 10-10 to 10-9 g) (Fig. 3.3b). The concentration in the smallest particles with a mean diameter of 

~9 µm is almost an order of magnitude higher than the concentration of 3.25*10-3 cm³STP/g in 

similar bulk grain size fractions of 15 µm in lunar fines (Eberhardt et al., 1970). In fact, this grain 

size fraction in lunar fines is associated with the same 20Ne/22Ne ratio of 12.61±0.2 as found in the 

compiled smallest IDP data. The maximum 20Ne concentration measured in the smallest lunar 

samples with 1.4 µm is determined as 1.24*10-2 cm³STP/g with an isotopic ratio of 
20Ne/22Ne=12.83±0.15 which is in good agreement with the maximum IDP values. The 20Ne 

concentration of larger SW irradiated lunar ilmenites amounts to ~10-3 cm³STP/g for ~50 µm grain 

sizes and to ~5*10-4 cm³STP/g for >100 µm grain sizes (Eberhardt et al., 1970; Benkert et al., 1993). 

These values are more than an order of magnitude higher than the compiled data for particles of 

similar size, but it has to be kept in mind that the measured MMs and IDPs have experienced 

atmospheric ablation losses and consequently contain lower amounts of SW-implanted noble 

gases. Therefore, the highest measured 20Ne concentration in IDPs is considered as a good 

compromise to represent saturation of SW-implanted Ne after sputtering (cf. Moreira and 

Charnoz, 2016) in the outermost particle layer. The typical penetration depth of SW-He with an 

average solar wind ion speed of 400 km/s (equivalent to an energy of about 1 keV/nucleon) is 40 

nm (Heber et al., 2009; Okazaki et al., 2015). The maximum depth of about 500 nm can be reached 

by 132Xe ions that are implanted with 1200 km/s (a velocity that is, however, rarely observed for 

the solar wind, Heber et al., 2009). According to Grimberg et al. (2006) SW noble gas ions with 

300–800 km/s are implanted into the surface of dust grains up to a depth of ~200 nm. For the 

average penetration depth of SW-Ne coupled with sputtering a value of ~50 nm is assumed for the 

model calculations, which is also what was used by Maurette (2006) for the implantation depth of 

SW-Ne with an energy of typically ~1 keV/amu. 

To determine the 20Ne concentration in spherically shaped smaller particles (e.g., β-

meteorites with an assumed density of 1.5 g/cm³, cf. Pepin et al. 2000, 2001; Kehm et al., 2002), it 

is assumed that the particles have a SW-Ne saturated spherical outer particle shell of 50 nm 

thickness with the same 20Ne/22Ne ratio of 12.61±0.41 as the smallest measured IDPs. With a mean 

concentration in the lightest IDP particles of 6.92*10-2 cm³STP/g, the 20Ne concentration in this 

shell is 1.73 cm³STP/g (APPENDIX B1) if it is assumed that the entire implanted Ne inventory 

resides therein and represents pure implanted SW. Such a concentration might seem astonishing 

but no analog exists for the concentration of pure implanted solar wind Ne in nm-scale volumes. 

With the geometric downscaling of the 20Ne concentration (Tab. B2) for a particle with a weight 

of 10-16 g to 10-15 g (~74 nm in diameter) such a shell comprises the whole particle, therefore the 

lightest mass bin that are going to be included in the model described below is in this range. Here, 

it should be noted that a 74 nm particle might generally not comprise the solar wind saturated 50 

nm shell of a previously irradiated particle because the implantation/sputtering model (Moreira 

and Charnoz, 2016) implies 150–250 nm sputtering before the steady state Ne-B value is obtained.  

A model particle in the 10-16 to 10-15 g bin would have the highest possible 20Ne 

concentration of 1.73 cm³STP/g. The smallest IDPs and β-meteorites may carry almost exclusively 

the Ne-B component with 20Ne/22Ne=12.61±0.41, which is nominally higher but consistent within 

errors to the canonical Ne-B value of 12.52±0.18 from Black (1972). In the model, the 20Ne/22Ne 



Acquisition of solar Ne during terrestrial accretion  – 48 – 

ratio of 12.61±0.41 is the value of SW irradiated cosmic dust that transfers the implanted Ne-B 

component into Earth’s interior. The 20Ne concentration of large particles, large bodies and very 

large bodies is assumed to depend on the carrier type. It should be noted, however, that 20Ne/22Ne 

ratios of individual meteorite measurements indicate that meteoritic neon is a mixture of 

planetary Ne-A and solar wind implanted Ne-B, the latter probably acquired during regolith 

irradiation before meteorites were separated from their parent body. In this way the meteorite 

population may oversample surface sited regolith breccias, while large asteroids are likely to 

preserve a purer Ne-A component. Hence, for large impacting bodies from the asteroid belt or 

beyond, at first order approximation it is assumed that these bodies all contain the “planetary” Ne-

A component of primitive meteorites with a 20Ne/22Ne ratio of 8.2 (Black and Pepin, 1969; Black, 

1972), but in the model calculations a wider range is permitted (see section 3.4.4). Taking Ne-A 

and Ne-B as endmembers, the primordial Ne budget of gas rich carbonaceous chondrites given by 

Mazor et al. (1970) allows for estimation of the respective portion of both components that is 

present in large-sized matter. Mean values of bulk measurements indicate that a primordial 
20Ne/22Ne ratio of 8.90 is associated with CI chondrites, in which therefore 22.5% of 20Ne belongs 

to the Ne-B endmember (20Ne/22Ne=12.61) and 77.5% to the Ne-A endmember (20Ne/22Ne=8.2). 

This results in a mean 20Ne concentration of 2.57*10-7 cm³STP/g for the pure primordial Ne-A 

component in CI chondrites which is used as value for the planetary Ne-A component in the 

model calculations below. It should be noted that the mean primordial 20Ne/22Ne ratio of 10.76 

associated with CM chondrites implies a lower mean 20Ne concentration of 2.23*10-7 cm³STP/g for 

the pure Ne-A in CI-CM chondrites. This, however, would not significantly change the calculated 

model results. 

 

3.3.3 Particle flux to Earth 

As mentioned above, MMs are dominating the present mass flux to Earth. The most cited 

value of 40,000±20,000 tons/year incident on Earth has been determined for particles in the mass 

range of 10-9–10-4 g and shows a peak at a size of 220 µm (~10-5 g). This has been derived from the 

examination of hypervelocity impact craters on the Long Duration Exposure Facility (LDEF) 

which measured the extraterrestrial particle flux in low Earth orbit (Love and Brownlee, 1993). 

Compared to this, a more recent re-calibration of the LDEF data (Cremonese et al., 2012) yields a 

lower mass accretion rate of 7400 tons/year, if the source of the dust is asteroidal and 4200 

tons/year if cometary (Fig. 3.4a). 

Estimates by other methods for the terrestrial accretion rate also vary significantly 

depending on the sampling area and study method. Accretion rates evaluated from Antarctic MMs 

range from 2700±1400 tons/year about 500–900 years ago (Taylor et al., 1998, 2007) up to between 

11000±6600 and 16,000±9100 tons/year 27–33 kyr ago (Yada et al., 2004). A MM flux reaching 

Earth’s surface of ~20,000 tons/year has been reported by Engrand and Maurette (1998) based on 

direct particle counts in the Greenland and Antarctic ice sheets and fluxes of 30,000±15,000 

tons/year to the sea floor were estimated in a study of deep-sea sediments and marine osmium by 

Peucker-Ehrenbrink and Ravizza (2000). Comprehensive overviews of various flux estimates are 

provided by Peucker-Ehrenbrink (1996) and Karner et al. (2003). 
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Constraints on present fluxes of extraterrestrial matter to Earth can be used to construct an 

annual mass flux model (Fig. 3.5). As this model shall be used to scale present fluxes to early 

accretionary times, it has to include the complete range of masses that contribute, contributed and 

potentially contributed to the material influx during Earth’s history. For example, objects with 

sizes of the largest known asteroid Ceres could have potentially contributed during early Earth’s 

history. Compared to the LDEF-based studies, the flux models provided by Grün et al. (1985) and 

Anders (1989) include data for lower and higher masses down to 10-18 g and up to 1018 g, 

respectively (Fig. 3.4a, b). In the flux model masses from 10-18–10-16 g are neglected because the 

contribution in this range is considered to be insignificant.  
 

 
Fig. 3.4: a) Annual mass flux to Earth in kg/year δ(log m) versus mass in logarithmic units. Only the lower mass range from 

10-10 to 10-2 g is shown. The different flux models are from Love and Brownlee (1993) (violet), Cremonese et al. (2012) 

(red), both, based on LDEF-data, from Grün et al. (1985) (green) based on space observation, and from Anders (1989) 

(yellow) based on meteor and crater observations. A factor of 2 was superimposed onto the interplanetary flux model from 

Grün et al. (1985) to correct for gravitational focusing by the Earth. b) Annual mass flux to Earth in kg/year δ(log m) versus 

mass in logarithmic units. The higher mass range from 10-2 to 1020 g is shown. The different flux models are from Grün et al. 

(1985) (green) and Anders (1989) (yellow) as in Figure 3.4a, and from Bland and Artemieva (2006). As for the latter, relying 

on a compilation of flux rates at the upper atmosphere and on a model for the impact rate at the surface, data for the impactor 

flux on the upper atmosphere (blue) as well as on Earth’s surface (light green) are provided. 

For particles in the mass range from 10-16 to 10-3 g, the interplanetary dust flux model from 

Grün et al. (1985) is a good compromise between the different LDEF based estimates and 

consistent with the Anders (1989) model (Fig. 3.4a). Gravitational focusing by the Earth was 

included by scaling the given flux values with a factor of two. As pointed out by Mann et al. 

(2011), the validity of this interplanetary dust flux model at 1 AU is confirmed by more recent 

Ulysses- and Stereo-Spacecraft as well as ISS impact crater measurements. The absolute flux 

magnitude that peaks around 106 kg/year for small mass intervals is consistent with data from 

Hughes (1978) and Lal and Jull (2002). For the mass range from 10-3 to 102 g the global mass influx 

data from Anders (1989) were used which are based on meteor observations and impact crater 

statistics (Fig. 3.4a, b). Bland and Artemieva (2006) provide information for flux estimates to the 

atmosphere and to Earth’s surface for masses from 102 to 1020 g (Fig. 3.4b). Based on a comparison 

of their flux data for impactors in the range of 1015 to 1020 g with the asteroid main belt 

distribution of the same sizes (Bottke et al., 2005) the mass fluxes for the 1020 to 1025 g bins were 

extrapolated (Fig. 3.5). According to this model, the total average mass flux to Earth amounts to 
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about 2.7*1010 kg/year delivered by all particle types to Earth’s upper atmosphere. This is of the 

order of 4.5*10-15 of the total mass of the Earth of 5.97*1024 kg (Tab. B1). 

Other assessments of the total combined annual mass flux in the range of 10-18–1018 g are 

provided by Ceplecha et al. (1998) and Drolshagen et al. (2017). By also using the interplanetary 

flux model of Grün et al. (1985), the former study obtains an annual flux model comparable in size 

distribution and flux magnitude to the compiled model. The latter, however, results in an almost 

one order lower flux to Earth because the differential fluxes were calculated with the choice of 

0.001 decades which numerically lowered the magnitude for each mass bin. 
 

 
Fig. 3.5: Annual particle flux to Earth’s upper atmosphere g/year vs. mass. The mass of the different particle types ranges 

from 10-16–1025g (β-meteorites, IDP, MM, large particles, large bodies, very large bodies) and is divided in decadal mass 

bins. 

3.3.4 Ne flux to Earth 

Based on the compilation of Ne-data (section 3.3.2) in combination with the extraterrestrial 

material flux to Earth (section 3.3.3), the size and mass dependent Ne flux to Earth is calculated. 

For this purpose, the subdivision in decadal mass bins is essential to assign a particular particle 

mass range to its corresponding Ne inventory. The results shown in Figures 3.6 and 3.7 serve then 

as input parameters for the calculation of terrestrial Ne acquisition during accretionary processes. 

Assuming a steam-atmosphere induced magma ocean on early Earth, all incoming material, 

regardless of size, will release neon to the dense hot atmosphere, and incorporation into the solid 

Earth is only possible via dissolution into the magma ocean. Therefore, only the upper atmosphere 

fluxes, i.e., before atmospheric entry losses, need to be considered (section 3.5) and the actual flux 

at the surface as shown in Figure 3.6 does not affect the model including a magma ocean. A 

scenario without a magma ocean, and instead direct incorporation of irradiated material into the 

growing planet, depends on details of atmospheric ablation processes and evaporation during 

atmospheric entry and will be discussed in section 3.6. 

 



Acquisition of solar Ne during terrestrial accretion  – 51 – 

3.3.5 Mass and size dependent Ne flux to Earth 

To compute a neon influx model from annual mass-flux data the compilation of 20Ne 

concentrations of different particle types is used. Multiplying the annual particle flux in g/year of 

each decadal mass bin with the respective (average) 20Ne concentration in cm³STP/g yields the 

annual 20Ne flux in cm³STP/year to Earth (Figs. 3.6, 3.7). The compiled MM and IDP data (Fig. 3.3) 

thereby represent the flux to Earth’s surface. The flux of Ne to the upper atmosphere for all 

particles, on the other hand, is inferred from the amount of surface-correlated Ne-B found within 

the smallest IDPs in the compilation, i.e., such that escaped severe losses during atmospheric entry 

heating (see below and APPENDIX B2, Tab. B3, Tab. B4). The Ne flux to the surface from MMs 

and IDPs (Fig. 3.6), in contrast, is influenced by atmospheric entry degassing: the smaller particles 

deliver their complete neon to Earth´s surface, while larger particles are more strongly 

decelerated and heated, resulting in substantial gas loss to the atmosphere. The 20Ne influx to the 

upper atmosphere (i.e., before any losses; Fig. 3.6) peaks at the 10-7 to 10-6 g MM bin (mean 

diameter ~75 µm) which amounts to 2.14*107 cm³STP/year 20Ne. This flux follows the same trend 

as the mass influx (Fig. 3.5), but is shifted to lower particle sizes because of their higher surface to 

volume ratio and accordingly higher Ne-B contents. For the contribution from small particles to 

the surface, on the other hand, there is a maximum contribution from the 10-10 to 10-9 g IDP bin 

(mean diameter ~9 µm) which amounts to 2.39*106 cm³STP 20Ne (Fig. 3.6). This size is in very good 

agreement with the diameter value ~7 µm for particles that, according to Farley et al. (1997), carry 

most of the surface-correlated (hence, SW-implanted) He.  
 

 
Fig. 3.6: Detail of the particle mass flux from Figure 3.5 for β-meteorites, IDPs and MMs divided in decadal mass bins (blue 

triangles). The annual 20Ne flux to Earth in cm³STP/year is shown for the same mass intervals (red squares). The maximum 
20Ne flux for measured particles to Earth’s surface (orange circles) is contributed by IDPs in the mass range 10-10 g to 10-9 g 

(mean diameter ~9 µm). Note that approximate sizes of MMs and IDPs are mean values derived from the compilation; sizes 

of β-meteorites are calculated assuming a spherical particle shape. The mass flux for MMs peaks at ~200 µm whereas the 
20Ne flux to the upper atmosphere peaks at ~75 µm and is calculated from the mean 20Ne concentration of the smallest 

measured IDPs. The graph for the particle flux in g/year (blue triangles and grey circles) corresponds to the ordinate on the 

left side of the diagram and the graph for the Ne flux in cm³STP/year (orange circles and red squares) corresponds to the 

ordinate on the right side of the diagram. 
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Figure 3.7 shows the total annual influx of 20Ne (i.e., incident on Earth’s upper atmosphere) 

including all mass ranges (Tab. B4). For these, the isotopically different components planetary Ne-

A – which is volume correlated – and solar wind implanted Ne-B, which is surface correlated have 

to be distinguished. Small particles are dominated by surface correlated solar wind (Ne-B), 

whereas Ne-A is dominant in large bodies. While the main material accreting to early Earth from 

the inner Solar System likely contains only Ne-B, Ne-A is likely only present in volatile-rich 

bodies from the outer Solar System beyond the snow line. For example, carbonaceous chondrites 

carry both components, i.e., their neon flux can be computed by adding the respective Ne-A and 

Ne-B curves. Here, the subdivision in decadal mass bins furthermore allows distinguishing 

between time dependent Ne fluxes delivered by variable Ne carriers during different periods of 

terrestrial accretion. If the main accretion happened either from the outer or the inner Solar 

System then the fluxes of Ne to Earth would be dominated by either the Ne-A or the Ne-B 

component.  

The flux of Ne-A to the upper atmosphere (Fig. 3.7) would have only be dominant as part of 

a late veneer of volatile-rich carriers coming from the outer asteroid belt (Morbidelli et al., 2012 

and discussion therein). The mass and size dependent Ne-A flux in the model is computed with 

the mean primordial CI 20Ne concentration of 2.57*10-7 cm³STP/g (see section 3.3.2, Tab. B4).  

On the other hand, during the early stages of terrestrial accretion, most of the accreting 

material was not delivered from the outer asteroid belt or beyond, but from the inner Solar System 

(Hansen, 2009; Raymond et al., 2009; Walsh et al., 2011; Morbidelli et al., 2012). Based on the 

implantation/sputtering model for the young Solar System (Moreira and Charnoz, 2016) it is 

possible to achieve a steady state Ne-B value of 12.53–12.73 within several thousands of years. 

This corresponds to an irradiation age that, according to their model, is easily reached by 100 µm 

particles at distances of 0.8–1.2 AU from the sun.  

Hence, in applying the model, assumptions have to be made on the mass distribution and 

neon content of the relevant materials. Concerning mass distribution, it is assumed that inner 

Solar System objects were in a similar collisional equilibrium producing similar size distributions 

of large and small bodies and debris dust as today. Concerning neon content, it is reasonable to 

assume that these bodies were heavily depleted in volatiles and essentially devoid of any planetary 

Ne-A, and that solar wind implantation into the outermost particle layer was the only source of 

neon, i.e., Ne-B with the compiled IDP 20Ne/22Ne ratio of = 12.61±0.41.  

In the case of accretion from the inner Solar System the flux of Ne-B to the upper 

atmosphere (Fig. 3.7, Tab. B4) is the dominant source for Ne delivered to Earth. To determine the 

respective Ne concentration of each mass interval for the “inner Solar System bodies” the 

assumption of simple geometric upscaling is used (as for the geometric downscaling for β-

meteorites; section 3.3.2) with a 50 nm thick SW-Ne saturated particle surface layer and a 20Ne 

concentration of 1.73 cm³STP/g (APPENDIX B2, Tab. B3) that is based on the observed mean 20Ne 

concentration (6.92*10-2 cm³STP/g) of the smallest IDPs. For the “inner Solar System bodies” that 

were available during terrestrial accretion, the density is assumed to be 2.5 g/cm³ (after Grotheer 

and Livi, 2014). The calculated concentration represents the inventory of particles before any 

losses due to atmospheric entry heating, i.e., the maximum amount of SW-implanted Ne. This 

determines the flux of Ne-B to the upper atmosphere shown in Figures 3.6 and 3.7. 
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The thus derived total annual amount of 20Ne arriving at the Earth’s upper atmosphere today 

(Fig 3.7) is about 6.88*106cm³STP for carbonaceous chondrite-like carriers which contain the Ne-

A component and 7.82*107 cm³STP for “inner Solar System bodies” which carry Ne-B. These are 

only very tiny fractions of 10-13 and 10-12 of the present-day atmospheric 20Ne inventory of 

6.52*1019 cm³STP (Zhang, 2014). Even the largest hypothetical carbonaceous chondrite-like body 

of about 1000 km diameter included in the annual mass flux model would deliver only 3.38*106 

cm³STP 20Ne (Ne-A) to the upper atmosphere, which is similar to the amount of 20Ne (2.39*106 

cm³STP per year, Ne-B) that is delivered by small IDPs which reach the surface. Of the Ne-A 

incident on Earth’s atmosphere via carbonaceous chondrite-like material, more than 99.9% is 

contributed by “large matter” (large particles, large bodies and very large bodies) whereas only 

<0.1% is contributed by “small matter” (MMs, IDPs and β-meteorites). Concerning Ne-B, <1% of 

the 20Ne is contributed by “large matter” whereas >99% is contributed by “small matter”. 
 

 
Fig. 3.7: Annual 20Ne flux to Earth’s upper atmosphere in cm³STP/year against the mass of different particle types divided in 

decadal mass bins. The present 20Ne flux contributed by carbonaceous chondrite-like carriers containing the Ne-A component 

(turquoise squares) is compared to the annual 20Ne flux modelled for “inner Solar System bodies” (red squares). The “inner 

Solar System bodies” are devoid of any Ne component other than the SW-Ne-saturated surface layer (see text for details), 

thus, only contributing the Ne-B component. 

3.3.6 Scaling present fluxes to early Earth 

The compiled annual particle flux model is regard to be a direct consequence of the process 

that constantly produces micrometeorites and smaller particles through collisional processes 

(Cordier and Folco, 2014). Therefore, it is assumed that early mass fluxes during terrestrial 

accretion are characterized by a similar size / mass distribution and that the flux at a given time is 

given by the current flux multiplied by a factor determined by the time of contribution. 

The earliest episode of terrestrial accretion that occurred within the solar nebula may have 

been characterized by mass fluxes in the range 106 to 108 times the present flux (see Hartmann, 
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1999; Ryder, 2002; Koeberl, 2004, 2006; Maurette, 2006). Flux models for subsequent periods are 

controversially debated based on the lunar cratering record, e.g., low bombardment prior to 4.0 Ga 

culminating into a unique spike at 4.0 to 3.9 Ga, or intense cratering prior to 4.0 Ga that declined 

constantly into the present day mass flux. Alternatively, data from the late lunar impact record 

can be interpreted as multiple episodic bombardments or asteroid showers before 3.8 Ga (Mojzsis 

et al., 1999; Arrhenius and Lepland, 2000). 

Estimates for the mass flux differ significantly between decreasing flux models and models 

including a terminal lunar cataclysm (e.g., Ryder, 2002). In their noncataclysm model, Chyba and 

Hand (2006) estimate mass fluxes of 1*1012 kg/year at 4.0 Ga, which is equivalent to 180 times their 

calculated current average flux, and 5*1011 kg/year at 3.9 Ga that is 94 times the flux they calculate 

for today. On the other hand, the leading hypothesis of a post-accretion rapid decrease of the 

impactor flux predicts that after the last giant impact there was a persistent flux only about 2 times 

higher than today (Claeys and Morbidelli, 2011), until during terminal cataclysm fluxes increased 

by several orders of magnitude. Significant mass fluxes during a late heavy bombardment (LHB) of 

~5*1021 to 1023 g have been calculated for the inner Solar System (Ryder, 2001, 2002; Levison et al., 

2001). Based on lunar cratering data from Ryder et al. (2000), a terminal LHB can be linked to 

fluxes at least ~1000 times the present flux between 3.90 Ga to 3.85 Ga and still a few hundred 

times enhanced fluxes from 3.85 Ga to 3.80 Ga (Koeberl, 2004, 2006). In contrast, following the 

lunar cratering record of Hartmann (1999), the EMMAC scenario (Maurette et al., 2000; Maurette, 

2006) considers two distinct time windows: a first one, termed sterilization episode, lasting ~100 

Ma at the end of the formation time interval of the Earth at 4.45 Ga characterized by a MM influx 

~2*106 times the present flux, and a second one, termed early life episode, exhibiting a ~500 times 

greater MM flux from 4.2 to 3.9 Ga ago.  

In view of the wide range of estimates given above for the model initial mass fluxes at the 

start of accretion are considered to be enhanced up to 108 times the present flux. These mass fluxes 

were followed by decreasing rates until during late veneer acquisition mass fluxes increased by 

several orders of magnitude. In the model calculations below the compiled current average annual 

particle flux of 2.7*1010 kg/year (section 3.3.3) are continued being used to scale for early fluxes 

during Earth’s accretion according to an enhanced average mass flux discussed in detail in section 

3.4. 

3.4 Framework of Ne accretion  

The model for the terrestrial Ne acquisition during planetary accretion is based on the flux 

model described above. The advantage of the mass dependent Ne flux (section 3.3.5) is that it 

simultaneously considers, both, the interdependent amount of accreted mass and the amount of 

accreted Ne. Adequately adjusted to a framework for the terrestrial accretion and scaled for early 

mass fluxes these input data are used to perform model calculations trying to fit the current 

terrestrial atmospheric and mantle neon inventories and their isotopic compositions (Tab. 3.1). 

Values that are to be reconciled with the model for the atmosphere are 9.80 for the 
20Ne/22Ne ratio (Eberhardt et al., 1965) and 6.52*1019 cm³ for the 20Ne inventory (Zhang, 2014). As 
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discussed in section 3.2, the pristine mantle 20Ne/22Ne ratio is assumed to have a value of 12.7±0.2, 

which resembles the implanted Ne-B value of 12.7±0.1 (Moreira and Charnoz, 2016). The mantle 
20Ne inventory amounts to (6.55±3.62)*1018 cm³ (Marty, 2012) if the (whole) mantle is only 

moderately degassed (plume-type). Assuming a strongly degassed mantle (MORB is more 

intensively degassed) and a ratio MORB mantle/plume mantle = 80/20, only a fifth of this amount 

has to be considered, i.e. 1.31*1018 cm³. Following Staudacher and Allègre, (1988) and Holland and 

Ballentine (2006), substantial subduction of Ne is unlikely and negligible for the calculations. In 

the model it is further assumed that the Earth’s mass at the time of the impact of a ~Mars-size 

(~0.1–0.2 Earth masses (ME)) body about 100 Ma after Solar System origin (Wade and Wood, 2016) 

did not exceed ~95% of its final mass. A fraction of (4.86±1.63)*10-3 ME that is thought to have 

accumulated on Earth after the last giant impact by a late chondritic veneer (Jacobson et al., 2014; 

Morbidelli and Wood, 2015) is considered as another reference point for the model. 

For the framework of the terrestrial Ne accretion model (Fig. 3.8) an early pre-lunar impact 

era (“phase I”) of terrestrial accretion in a shielded disk environment is considered that prevented 

irradiation of dust in the mid-plane and subsequent completion of accretion in a cleared disk. 

Concerning accretion within the gas shielded disk, there may have been some implantation of SW 

in off-disk regions, but this is considered to be insignificant for the calculations. The formation of 

a steam atmosphere in combination with degassing of accreted material induces the dissolution of 

solar gases into a magma ocean. The assumed chronology of Ne accretion during “phase I” is as 

follows: 

 

1) Up to ca. 10 Ma: Shielded accretion within the solar nebula. High mass fluxes between 

8*106–5*107 times the present flux resulted in accretion of ~18 to 94% Earth’s present mass. 

Earth’s building blocks were largely devoid of SW implanted Ne-B and contained 

negligible amounts only of planetary Ne-A. 

2) Several Ma to tens of Ma: Accretion within a cleared disk and mass fluxes between 3*105–

2.5*107 times the present flux until a mass of ~95% ME has been reached. Earth´s accreting 

material mainly consisted of SW-irradiated dust and inner Solar System bodies. Depending 

on the volatile (water) content of incoming planetesimals, an insulating steam atmosphere 

and a magma ocean formed and most of the accreting material was degassed into the 

protoatmosphere. The accreted Ne dissolved into the magma ocean. The mass influx 

decreased until the giant Moon-forming impact.  

 

The subsequent post-lunar impact era (“phase II”) occured after atmospheric loss caused by 

the Moon-forming impact (close to 100% loss in the simplified model) at around 4.45 Ga, 

whereupon mantle degassing and the contribution of a late chondritic veneer completed the 

atmospheric inventory. The assumed chronology of Ne accretion during “phase II” is as follows: 

 

3) Intensive mantle degassing due to high convection rates, and possibly due to a brief time 

interval of a post-lunar impact magma ocean. Significantly lower mass accretion, possibly 

episodic bombardments terminating in the Lunar Heavy Bombardment 4.0-3.8 Ga ago. A 

significant portion of accreted material was volatile-rich and dominated by Ne-A. 
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4) 3.8 Ga of approximately present-day mass flux. The accreted material corresponds to the 

present-day mixture of Solar System materials, derived from small body populations in the 

asteroid belt and Kuiper belt. 
 

 
Fig. 3.8: Chronology of terrestrial Ne accretion. The fraction of accreted Earth (ME) is indicated by a steep solid line in 

sections 1 and 2 and by horizontal solid lines in sections 2 to 4 that separate the solid Earth from the overlying atmosphere. 

The 20Ne/22Ne isotopic composition prevailing within the mantle and atmosphere throughout the respective period of 

accretion is indicated by the inset boxes. Note that the widths of the sections and thickness of atmosphere are not to scale. (1) 

In the early “phase I” planetary formation starts within a solar nebula disk shielded from irradiation by the Sun, and Earth 

accretes to more than ~0.5 ME in less than 10 Ma. (2) After dissipation of the solar nebula accretion continues until ~95% of 

Earth is completed. The accreted “inner Solar System bodies” contain the Ne-B component (20Ne/22Ne = 12.61±0.41) 

implanted by SW-irradiation. Prior to the giant Moon-forming impact the Ne-B component dissolves into a magma ocean 

that is generated through thermal insulation by an atmosphere that formed from impact degassing of accreted planetesimals. 

(3) “Phase II” starts after the Moon-forming impact at ~4.45 Ga that erodes the pre-existing atmosphere. The impact-induced 

energy creates a magma ocean from which the previously dissolved Ne-B degasses. The Ne-B component mixes with a 

planetary Ne component (with a composition like Ne-A: 20Ne/22Ne = 8.2) delivered by a late chondritic veneer of CI type 

carriers until 3.8 Ga. (4) The generated atmospheric Ne inventory is not significantly altered by the material accreted after the 

late veneer which fixes the present 20Ne/22Ne value of 9.8. 

3.4.1 Earliest terrestrial accretion and protoplanetary disk lifetime 

Various numerical planetary accretion models suggest timescales of ~30–100 Ma for the 

formation of the terrestrial planets (e.g., Morbidelli et al., 2012 and references therein). The 

model-ages highly depend on the mechanisms of accretion and core formation. Kleine et al. (2002) 

used Hf-W chronometry to date core formation on Earth and Mars to 33±2 Ma and 13±2 Ma, 

respectively, after the beginning of the Solar System. Identical 182W/184W ratios of terrestrial and 

lunar rocks, however, indicate that the giant Moon-forming impact and, thus, the final stages of 

terrestrial core formation extended to more than ~50 Ma after CAIs, i.e., after 182Hf became extinct 

(Kleine et al., 2009).  

Prior to the Moon-forming event, during a probably heterogeneous accretion that included 

differentiated larger bodies and potentially differentiated smaller bodies, metal-silicate 

equilibration at high pressures was essential for core formation (Rubie et al., 2011; Wade and 

Wood, 2016). Well-developed multistage core formation models consider partial or complete 

equilibration of the metal from an impactor with a fraction of a silicate magma ocean at every step 

of accretion, followed by partitioning into the proto-core of the accreting Earth during each core 
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growth event (Rubie et al., 2011, 2015). Considering an equilibrium accretion model and taking 

into account a giant impact about 100 Ma after the start of accretion, high-pressure partitioning 

data have been used to construct a corresponding accretion scenario (Halliday and Wood, 2009). 

This scenario implies rapid early accretion and core formation suggesting that the main terrestrial 

formation phase lasted less than 10 Ma, with little further growth and a substantial accretion 

hiatus before the last giant impact that formed the Moon. 

As an alternative to formation within the solar nebula, accretion of (volatile-rich) material 

could have likewise happened after the dissipation of disk gas (Trieloff, et al., 2002; Trieloff, 2002, 

2007). This scenario is primarily constrained by the timing of disk dispersal. A lifetime of ~6 Ma is 

predicted by Haisch et al. (2001), which is much shorter than terrestrial planet formation. Thus, 

the final stages of accretion can reasonably be assumed to have taken place in a cleared disk 

environment. In support of this and as a consequence of photoevaporation, the evolution of 

protoplanetary disks surrounding T Tauri stars suggests complete dispersal on timescales of 105 

years, after a disk lifetime of just a few million years (Alexander et al., 2006). Note, however, that 

from observational data there are hints that disk lifetimes of up to tens of millions of years are also 

possible (Pfalzner et al., 2014). 

For the Ne accretion model accretion within a solar nebula environment is considered that 

is shielded from solar wind by nebula gas, followed by a subsequent period of accretion in a 

cleared disk in which SW-implantation distributes the Ne-B component (20Ne/22Ne = 12.61±0.41, 

Tab. 3.1) to the surface of “inner Solar System bodies”. This period is constrained in such a way 

that accretion under, both, shielded and cleared conditions together account for no more than 

~0.95 ME. 

 

3.4.2 Steam atmosphere and magma ocean 

The existence of early magma oceans during terrestrial planet formation is a consequence of 

the high energy of accretion that is delivered by giant impacts, early radiogenic heating and the 

insulating effect of a massive early atmosphere (Elkins-Tanton, 2012; Tucker and Mukhopadhyay, 

2014; de Vries et al., 2016). A sufficiently dense atmosphere consisting of water vapor and CO2 

favoring melting of the surface through thermal blanketing and the development of a magma 

ocean can be generated by degassing of accreted volatile-bearing planetesimals (Matsui and Abe, 

1986; Zahnle et al., 1988; Abe, 1993; Elkins-Tanton, 2008). An impact-generated steam 

atmosphere forms if the terrestrial building blocks contain a few % of chondritic planetesimals 

with H2O and CO2 (Schaefer and Fegley, 2010). Fegley et al. (2016) moreover postulate the 

formation of a massive (~1100 bar) steam atmosphere on the early Earth composed of ~75% water 

steam and 25% CO2.  

The generation of giant impact induced magma oceans during terrestrial accretion is also 

consistent with noble gas data. Based on 3He/22Ne isotopic ratios of Earth’s mantle reservoirs, 

Tucker and Mukhopadhyay (2014) modelled multiple episodes of magma ocean-degassing in 

combination with atmospheric blow-off by giant impacts. As the last generation of a magma ocean 

is associated with the Moon-forming giant impact, solubility-controlled ingassing of noble gases 
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from an insulating atmosphere should therefore be possible throughout the early history of 

terrestrial accretion. 

In the Ne accretion model including a magma ocean a given amount of 20Ne (see section 

3.5.2) has to be dissolved into a magma ocean of variable depths. This amount is prescribed by the 

amount of 20Ne (Ne-B component) that is degassing from the mantle after the giant Moon-forming 

impact (see section 3.4.3) to mix with the amount of 20Ne (Ne-A component) that is delivered 

during a late veneer (see section 3.4.4). In this way, the present atmospheric and mantle 20Ne 

inventories are generated. The dissolution of 20Ne can be either modelled using variable solubility 

coefficients or variable partial pressures of 20Ne in the atmosphere, where the latter is a function of 

the amount of accreted SW-implanted 20Ne. 

Here, the dissolution of Ne that degassed from accreted material into a magma ocean is 

modelled by assuming a fixed neon solubility of 2.5*10-4 cm³STP/g/bar in tholeiitic melt (Jambon 

et al., 1986; Paonita, 2005) and a variable partial pressure of 20Ne. To obtain the required weight of 

the melt the volume of a magma ocean with variable depths is fitted that formed on a growing 

Earth assuming a density of 2.8 g/cm³ for basaltic melts. The partial pressure of the dissolving Ne is 

calculated by dividing the total amount of 20Ne that is accreted with the particle flux model by the 

total inventory of today’s (i.e., comprising all the constituents of) dry air of 3.961*1024 cm³STP 

(Ozima and Podosek, 2002), which is presently considered as the best estimate for the atmospheric 

volume. 

 

3.4.3 Moon-forming impact and mantle degassing 

It is generally assumed that the Moon originated from the collision of the proto-Earth with 

a Mars-sized planetary embryo during the last stage of terrestrial formation (e.g., contributions in 

Canup and Righter, 2000; Canup and Asphaug, 2001; Canup, 2004). This event is also thought to 

represent the last major step in the accretion of Earth (Canup, 2008) and to be synonymous with 

the time of the last giant impact at approximately 4.45 Ga (Koeberl, 2006). Based on geochemical 

properties it is expected that the Earth-Moon system was generated by the impact of a reduced 

body of ~0.1–0.2 ME on an oxidized proto-Earth that had grown to between 50 and 95% of its final 

mass (Wade and Wood, 2016). It should be noted, however, that in contrast to multistage core 

formation scenarios heterogeneous accretion models successfully apply an oxidized impactor 

(Rubie et al., 2011). Simulations imply that after the Moon-forming impact the Earth was >95% 

accreted (Canup, 2004).  

The consequences expected from this event include almost complete loss of a primary 

atmosphere and the generation of a (renewed) magma ocean (references in Canup and Righter, 

2000; Koeberl, 2006). A natural secondary consequence of a magma ocean is the equilibration with 

the atmosphere through solubility-controlled outgassing of previously dissolved noble gases (e.g., 

the Ne-B component) and the associated atmospheric growth (Elkins-Tanton, 2008; Tucker and 

Mukhopadhyay, 2014). Partial or complete loss of the atmosphere is also implied by the presence 

of primordial 3He/22Ne ratios in the present-day mantle. Multiple episodes (at least two) of giant 

impact induced atmospheric blow-off and subsequent re-equilibration of a captured solar nebula 

(3He/22Ne ~1.5) with the mantle by magma ocean outgassing are required to generate a primitive 
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3He/22Ne ratio of ~2.3–3 in a primitive mantle reservoir (fractionated during nebular ingassing) 

and a fractionated (by outgassing) 3He/22Ne ratio of ≥10 in the depleted shallower mantle (Tucker 

and Mukhopadhyay, 2014). According to Zahnle et al. (2007), however, the Moon-forming impact 

may, but also may not, have expelled a substantial fraction of Earth’s pre-existing atmosphere and 

a giant impact that induced atmospheric blow-off by shock waves would have led to atmospheric 

loss from the impactor of 30% and only 10% from the proto-Earth (Genda and Abe, 2003). A 

significant fraction of a primary atmosphere might therefore as well have been retained. In the 

case of a protoplanet covered with a water ocean, atmospheric blow-off, however, becomes more 

effective (Genda and Abe, 2005).  

For the sake of simplicity, in a first step, a case is considered where the Moon-forming 

impact expelled the entire formerly accreted atmospheric Ne. In a next step the cases of 

incomplete atmospheric erosion are investigated, with up to 8% retained Ne. The giant impact 

generated a magma ocean which subsequently degassed from the mantle the previously dissolved 

Ne and caused its accumulation within the atmosphere. In the model including a magma ocean, 

8% retained Ne is the maximum fraction that is allowed to be present in the atmosphere before 

mantle degassing after the Moon-forming impact adds to the atmospheric reservoir to generate 

today’s Ne budget. Note though that even without a magma ocean, intense degassing would have 

occurred due to high convection rates. Very active global mantle geodynamics during the Hadean 

implies that the volatile flux from the mantle was at least one order of magnitude higher than 

today (Yokochi and Marty, 2005). 

 

3.4.4 Post-moon-forming accretion and late veneer 

According to the “Nice” model, migration of Jupiter and Saturn involving a 1:2 resonance 

crossing caused a sudden massive impactor flux consisting of a mixture of comets and asteroids 

into the inner Solar System ~700 Ma after the planets formed (Gomes et al., 2005). Tera et al. 

(1974), Wetherill (1975) and Koeberl (2004, 2006) used the term “Late Heavy Bombardment” to 

denote the intense and cataclysmic spike in bombardment in the inner Solar System around 3.85 

Ga derived from lunar chronology. Based on the arguments of Ryder et al. (2000) for the ages of 

the large impact basins on the Moon, a ~60 Ma period of considerable bombardment should have 

occurred on the Moon between 3.90 and ~3.84 Ga. 

Furthermore, to account for the abundance of highly siderophile elements (HSE) in the 

primitive upper mantle, geochemists advocate a late veneer of chondritic material by which an 

amount of <1% ME was added by to the Earth after core formation had ceased (Chou, 1978; 

Morbidelli and Wood, 2015). The Earth/Moon HSE abundance ratio is suitably explained as long 

as Earth’s veneer was contributed from large bodies including impactors with diameters of ≳500 

to 1000 km (Raymond et al., 2013). According to Halliday (2013), however, a late veneer of 

chondrites and/or comets does not explain the high H/C and C/N of the silicate Earth. Relying on 

oxygen isotopes rather than on HSE abundances, Albarède (2009) and Albarède et al. (2013) 

suggest that a late veneer of ~4% CI chondritic material played an important role in the 

acquisition of volatiles by the Earth, with direct implications for the terrestrial noble gas budget. 
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A late contribution of material after Earth’s main accretion period without an effective 

process to introduce the incident material into the mantle (e.g., dissolution into a magma ocean) 

would have supplied all volatiles contained in this matter directly to the atmospheric reservoir, if 

the impactors were large and impacted with high velocity. Hence, the isotopic Ne composition 

delivered by a late veneer will have diluted the Ne component outgassed after the Moon-forming 

impact and will have added to the existing atmospheric Ne inventory. Similar to the sudden 

massive delivery of large impactors in case of the LHB (Gomes et al., 2005; Raymond et al., 2013), 

the late chondritic veneer in the model is dominated by large bodies (large particles, large bodies 

and very large bodies). For these, a somewhat variable Ne isotopic composition of carbonaceous 

chondrite type carriers is used (20Ne/22Ne: 5.2 to 9.2, Tab. 3.1; 2.57*10-7 cm³STP/g of 20Ne). It is 

emphasized, though, that a preferable 20Ne/22Ne ratio is 8.2 (Ne-A) and a ratio of 5.2 is highly 

unlikely and rather hypothetical as only one (bulk meteorite) measurement on Alais (Zähringer, 

1968) implies a non-cosmogenic 20Ne/22Ne ratio of ~5.9. No other primordial (i.e., non-

cosmogenic) bulk Ne composition with a value that low is known for carbonaceous chondrites 

(Mazor et al., 1970). It is also important to note that the model does not require a specific timing 

for such late accreted neon other than it must have been delivered after the Moon-forming 

impact. However, delivery between 4.4 and 3.8 Ga ago is considered as most likely. 
 

Tab. 3.1: Current terrestrial atmospheric and mantle Ne inventories and isotopic compositions that are aimed to be 

reproduced with the model by using the Ne composition found in the Ne-A and Ne-B components. 

Atmosphere 
20

Ne/
22

Ne 9.80
(a)

 
20

Ne [cm³] 6.52*10
19(b)

 

moderately degassed mantle 
20

Ne/
22

Ne ≳12.5–~12.9
(c)

 
20

Ne [cm³] 6.55*10
18(d)

 

strongly degassed mantle 
20

Ne/
22

Ne ≳12.5–~12.9
(c)

 
20

Ne [cm³] 1.31*10
18(e)

 

"planetary" Ne (Ne-A) (model fluxes) 
20

Ne/
22

Ne 5.2–9.2  
20

Ne [cm³] variable 

"solar" Ne (Ne-B) (model fluxes) 
20

Ne/
22

Ne 12.61±0.41 
20

Ne [cm³] variable 
a) Eberhardt et al. (1965), b) Zhang (2014), 

c) see Moreira (2013), d) Marty (2012)  

e) modified after Marty (2012) 

3.5 Ne-accretion model including a magma ocean 

The presented model calculations are based on the most recent observations of current 

particle fluxes to Earth and measured Ne inventories of cosmic dust particles (MMs and IDPs) to 
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constrain the current terrestrial Ne acquisition. It is therefore essential to combine this 

quantitative mass dependent Ne flux to Earth (section 3.3.5) with a framework for terrestrial 

accretion (section 3.4). Because the amount of accreted Ne depends on the amount and type of 

accreted mass it is possible to double-check the results. The fundamental observations that are 

aimed to be reproduced in the Ne accretion model are the current terrestrial atmospheric and 

mantle Ne inventories and their isotopic compositions. Fit parameters that are to some extent free, 

but also interdependent, are the Ne isotopic composition of the late veneer, the degree of 

degassing of the mantle, the depth of the pre-lunar impact magma ocean and the fraction of solar 

wind irradiated material that accreted to Earth. Plausible parameter combinations are used to 

explain the terrestrial Ne signatures, in particular with respect to the isotopically solar-like Ne of 

Earth’s mantle and the “planetary” composition of the atmosphere. 

The approach can be briefly outlined as follows: As today´s mantle and atmospheric neon 

inventories are well constrained, the atmospheric contributions derived from a late veneer and by 

mantle degassing are simply constrained by the late veneer´s isotopic composition. The degree of 

mantle degassing then also determines the pre-lunar impact mantle neon content, which in turn is 

a function of solubility-controlled neon dissolution into a magma ocean of a certain depth, as well 

as the neon content of the protoatmosphere. The latter in turn is determined by the fraction of 

solar wind irradiated material accreting to Earth (Tab. B5, Tab.B6, Tab. B7). The Ne-B component 

with an isotopic ratio of 20Ne/22Ne=12.61±0.41 (section 3.3.2) implanted into the accreting particles 

is incorporated into Earth’s interior by dissolution of neon into the magma ocean from the impact 

degassed insulating atmosphere. After the enclosure of Ne-B and solidification of the magma 

ocean the isotopic composition within Earth remains unaffected by later additions to the 

atmosphere and is sampled as the pristine Ne mantle end-member observed today. 

 

3.5.1 Degree of mantle degassing and Ne from the late veneer 

The present day´s atmospheric neon inventory of 6.52*1019 cm³ 20Ne (Zhang, 2014) and its 

isotopic composition (20Ne/22Ne=9.80) strongly constrain the contributions from Earth´s mantle 

(Ne-B value in the model with 20Ne/22Ne=12.61) and the late veneer. For example, a late veneer 

with 20Ne/22Ne=8.20 (Ne-A) implies that 53% of the atmospheric 20Ne are from the late veneer, 

47% from mantle 20Ne. In turn, if 47% of the atmospheric 20Ne are degassed from the mantle (i.e., 

3.04*1019 cm³) then the degree of degassing is simply determined by the remaining mantle 

inventory of 6.55*1018 cm³ 20Ne (case of moderately degassed plume-type mantle), resulting in 82% 

degassing. A more strongly degassed MORB-type mantle containing only 1.31*1018 cm³ 20Ne would 

result in a degassing degree of 96%. These cases are shown in Figure 3.9a.  

Also shown in Fig. 3.9a is the degree of degassing when different 20Ne/22Ne isotopic ratios 

are assumed for the late veneer neon. For example, if the isotopic composition was the same as in 

today´s atmosphere (20Ne/22Ne=9.8), no mantle contribution would be needed, i.e. the required 

mantle degassing degree would be zero. It should be noted, however, that the actual degree of 

mantle degassing can be inferred from other nuclide systems like 40Ar/36Ar or 129Xe/130Xe, which 

makes such an extreme “zero scenario” unlikely. The highest degree of mantle degassing for a 

moderately or a strongly degassed mantle is ~89% and ~98%, respectively, if the late veneer 
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contributes a 20Ne/22Ne ratio as low as 5.2, which is, however, as well unlikely, as such a 

component is not found to be typical for meteorites.  

Figure 3.9b shows, as a function of the isotopic composition of the late veneer neon, the 

contribution of the late veneer to the atmospheric 20Ne inventory as well as the mass contribution, 

assuming typical carbonaceous chondrite-like concentrations. The most likely case of Ne-A 

composition (20Ne/22Ne ratio of 8.2) implies that a contribution of 2.26% ME from the late veneer 

would contribute 53% of the atmospheric 20Ne. The case of the low 20Ne/22Ne ratio of 5.2 would 

imply a mass contribution of only 0.85% ME and the contribution of approximately 20% to the 

atmospheric 20Ne (Tab. B5). Finally, the degree of mantle degassing determines the pre-lunar 

impact mantle inventory, a point which is dealt with in the following section 3.5.2. 
 

 
Fig. 3.9: a) the 20Ne/22Ne composition of the late veneer strongly influences the degree of mantle degassing after the Moon-

forming impact. The two curves pertain to different assumptions about the current 20Ne inventory of the mantle: a strongly 

degassed mantle (green) or a more moderately degassed mantle (red). The dashed lines indicates a planetary 20Ne/22Ne 

composition of ~8.2 (Ne-A), with an inferred mantle degassing of around 82–96%. No mantle degassing is required if the late 

veneer delivers the atmospheric 20Ne/22Ne ratio of 9.8. The maximum degree of 89–98% mantle degassing is necessary if the 

late veneer delivers the lowest 20Ne/22Ne ratio considered of 5.2. b) the mass contribution of the late veneer is compared to 

the resulting 20Ne contribution: ~2.26% ME delivers ~53% of the atmospheric 20Ne (dashed lines, for 20Ne/22Ne = 8.2), 

~4.24% ME delivers ~100% of the atmospheric 20Ne (20Ne/22Ne = 9.8), and ~0.85% ME delivers ~20% of the atmospheric 
20Ne (20Ne/22Ne = 5.2). 

3.5.2 Fraction of SW-irradiated material and depth of magma ocean 

A certain amount of solar wind implanted 20Ne had to be dissolved into the magma ocean 

before the Moon-forming impact in order to account for the present mantle and atmospheric neon 

compositions and concentrations that are a result of degassing from the mantle after the giant 

impact event and the addition of the late veneer. On the other hand, this amount of dissolved 20Ne 

(in the magma ocean) can be inferred by the present atmospheric and mantle 20Ne inventories. 

The pre-lunar impact mantle inventory of solar wind-implanted Ne during the early “phase I” is 

determined by i) the fraction of irradiated material that accreted to Earth and degassed into the 

hot steam-protoatmosphere and by ii) dissolution into the magma ocean.  

In the model for a moderately degassed mantle, total amounts of ~2.1*1019 cm³, ~3.7*1019 

cm³ and ~5.9*1019 cm³ 20Ne had to be present in the mantle, if Ne-A in the late veneer had 
20Ne/22Ne ratios of 9.2, 8.2 and 5.2, respectively. For a strongly degassed mantle, total amounts of 
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~1.6*1019 cm³, ~3.2*1019 cm³ and ~5.3*1019 cm³ 20Ne had to be present for late veneer Ne-A having 
20Ne/22Ne ratios of 9.2, 8.2 and 5.2, respectively (Tab. B6). These absolute values refer to any 

possible depth of a magma ocean and, assuming a fixed solubility of neon in the melt, are a 

function of the 20Ne partial pressure in the atmosphere. This partial pressure in turn reflects 

different amounts of accreted 20Ne.  

While solubilities are experimentally well constrained for Henry’s law conditions, a major 

unknown is the volume or the depth of the magma ocean. Figure 3.10 shows the fraction of 

dissolved Ne (relative to the total amount of solar wind implanted Ne) contributed by “inner Solar 

System bodies” that were irradiated after dissipation of the solar nebula. It becomes clear that less 

than 12% of the total accreted Ne is dissolved by solubility-controlled ingassing into a magma 

ocean, if the magma ocean has a depth of less than 2500 km. A shallower magma ocean requires a 

higher neon partial pressure in order to achieve the required mantle neon concentrations, i.e. it 

demands a higher fraction of irradiated accreting material and a higher concentration of dissolved 
20Ne (Tab. B6). 

 

 
Fig. 3.10: Fraction of dissolved Ne during “phase I” considering different partial pressures of 20Ne as a function of the depth 

of the early magma ocean. The fraction of dissolved Ne (from the Ne that accreted with the “inner Solar System bodies” after 

the dissipation of the solar nebula) correlates with the depth of the early magma ocean. The shown maximum value of 

slightly less than 12% of dissolved 20Ne corresponds to a ≲2% fraction of SW-irradiated material (Figs. 3.11, 3.12) that 

dissolves into a magma ocean of ~2500 km depth. A fraction of 1% irradiated material already requires an unrealistic magma 

ocean depth of >10000 km (see text). 

Amongst the terrestrial building blocks, dust-sized particles (MMs, IDPs and β-meteorites) 

with high surface/volume ratios must have been the dominant carriers of the surface-sited solar 

gases during early accretion. If a steam atmosphere and a magma ocean were present, virtually all 

neon partitioned into the protoatmosphere (>88%; Fig. 3.10) and incorporation into the proto-

mantle was only possible via dissolution into the magma ocean. The Moon-forming giant impact 

at around 4.45 Ga ago eroded the pre-existing atmosphere, so that the subsequent atmosphere 

formed by mantle degassing and from the late veneer.  

Figure 3.11 shows the fraction of SW-irradiated terrestrial precursor material that is 

required to establish Earth’s mantle Ne inventory in combination with a certain depth of the early 

magma ocean if the Moon-forming impact expelled 100% of the atmospheric Ne. This relationship 

is again a function of the Ne isotopic composition of the late veneer, for which 20Ne/22Ne ratios 
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between 5.2 and 9.2 are considered. It becomes evident that small fractions of irradiated material 

are already sufficient to explain the terrestrial Ne inventory, even when assuming a relatively 

shallow magma ocean. In the case the mantle is moderately degassed (Fig. 3.11a) somewhat higher 

fractions of SW-irradiated material and greater magma ocean depths are required compared to a 

more strongly degassed mantle (Fig. 3.11b).  

The preferred 20Ne/22Ne ratio of 8.2 (planetary Ne-A) for the Ne that is delivered by the late 

veneer requires a mantle degassing of 82% in the case of a moderately degassed mantle and 96% in 

the case of a strongly degassed mantle. This constrains the fraction of SW-irradiated material for a 

moderately degassed mantle to 10% for a magma ocean depth of ~320 km and a minimum of SW-

irradiated material of 2% for a depth of ~2430 km. For a strongly degassed mantle the limit of 10% 

applies to a magma ocean depth of ~280 km and a 2% minimum applies to a magma ocean depth 

of ~1870 km. A fraction of 1% irradiated material only requires unrealistic magma ocean depths of 

10590 km and 9880 km, respectively. For each of these and the following cases fractions of SW-

irradiated material of ~50% and more are possible but would require unrealistically shallow 

magma oceans of just several ten km depth (Tab. B7). 

For a late veneer contribution with a 20Ne/22Ne ratio of 5.2 (9.2), degassing degrees of 89% 

(69%) and 97% (91%) are required for a moderately degassed mantle and a strongly degassed 

mantle, respectively. In these cases, a fraction of SW-irradiated material of 10% limits the magma 

ocean depths to ~520 km (~180 km) and ~470 km (~140 km). For a ratio of 5.2 a minimum fraction 

of 3% of irradiated material corresponds to ~2640 km depth for a moderately degassed mantle and 

~2210 km depth for a strongly degassed mantle, while a fraction of 2% requires unrealistic magma 

ocean depths of 9480 km and 8870 km. For a ratio of 9.2 a minimum fraction of 2% irradiated 

material corresponds to ~1080 km for a moderately degassed mantle, while a fraction of 1% 

requires an unrealistic magma ocean depth of 3300 km. A minimum fraction of 1% corresponds to 

a magma ocean depth of ~1880 km for a strongly degassed mantle, while fractions <1% imply 

unrealistic magma ocean depths (Tab. B7). 
 

 
Fig. 3.11: Fraction of SW-irradiated material that is accreted during early “phase I” compared to the depth of the early 

magma ocean in which the Ne-B component is dissolved. The terrestrial inventory of SW-implanted Ne (Ne-B) is limited by 

the depth of the magma ocean. The amount of required SW-irradiated material depends on the 20Ne/22Ne composition of the 

late chondritic veneer (5.2–9.2) and also depends on the assumedt degree of mantle degassing. a) shows the case for a 

moderately degassed mantle (69–89% degassing) and b) for a strongly degassed mantle (92–98% degassing). 
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3.5.3 Atmospheric erosion by the Moon-forming impact 

Figure 3.12 shows an enlarged view of the lower (up to 12%) range for the fraction of SW-

irradiated material required to establish Earth’s Ne inventory as a function of the depth of the 

early magma ocean (see Fig. 3.11), for a late veneer 20Ne/22Ne composition of 8.2. In addition to the 

case of 100% protoatmosphere loss by the giant Moon-forming impact assumed in section 3.5.2, 

incomplete atmospheric erosion is also considered allowing retention of up to 8% of the Ne in the 

protoatmosphere. As this Ne becomes part of the secondary atmosphere and adds to the solar neon 

degassed from the mantle, it is clear that lower fractions of previously irradiated material are 

needed in this case. For a moderately degassed mantle (Fig. 3.12a) a maximum of ≤1.5% SW-

irradiated material applies to a fraction of ≳4% retained Ne and magma ocean depths of ~2500 km. 

For a strongly degassed mantle (Fig. 3.12b) a maximum of ≤1.5% SW-irradiated material 

corresponds to a fraction of ≳2% retained Ne and a magma ocean depth of ~2500 km (Tab. B8). 

The higher the fraction of retained protoatmospheric neon, the less contribution by mantle 

degassing is required, i.e., for about 8% protoatmosphere Ne retention, the depth of the magma 

ocean hardly plays a role. 
 

 
Fig. 3.12: Fraction of SW-irradiated material that is accreted during early “phase I” compared to the depth of the early 

magma ocean in which the Ne-B component is dissolved. Only the contribution of a late veneer with a 20Ne/22Ne composition 

of 8.2 is modelled for incomplete atmospheric erosion of 98%, 96%, 94% and 92% after the Moon-forming impact for a) a 

moderately degassed mantle and b) a strongly degassed mantle. These fractions (black solid lines) are compared to 100% 

atmospheric erosion (colored solid line) as shown in Figure 3.11. Smaller fractions of SW-irradiated material down to ~1% 

are needed if the amount of Ne increases from 2%, 4%, 6% up to 8%. The respective amounts of retained Ne require different 

degrees of mantle degassing (marks on black solid lines) to account for the present-day Ne compositions. 

3.5.4 Contributions of outer Solar System bodies 

In the model including a magma ocean, all material accreting before the Moon-forming 

impact is from the inner Solar System and is considered as volatile-poor, containing implanted Ne-

B only. Due to the heat of the magma ocean and the steam atmosphere, noble gases from accreting 

bodies are released into the protoatmosphere and subsequently dissolved into the magma ocean, 

thereby incorporating solar wind neon into Earth´s mantle. This ignores the possibility that a 

certain portion of Ne-A may have been brought in by outer Solar System bodies during the first 

100 Ma of accretion, causing a shift in the isotope ratios of Ne ratio that becomes dissolved into 
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Earth’s interior towards a more planetary composition. As Ne-B in the model has a 20Ne/22Ne ratio 

of 12.61 (disregarding errors) and a value as low as ~12.5 has been observed for the lower limit 

values of the Loihi and Galápagos mantle reservoir (see discussion in section 3.2) the admixture of 

a planetary Ne-A component with a 20Ne/22Ne ratio of 8.2 may have been responsible for 

decreasing the isotopic ratio. For the total delivered 20Ne before the giant impact, a flux from Ne-A 

(Fig. 3.7) of 20% would be allowed in addition to the flux from Ne-B, if the dissolved 20Ne/22Ne 

ratio in Earth´s mantle has to retain a value of ~12.5. This case, however, applies only to the most 

intense decrease of the isotopic ratio because it is recognized that most measured pristine mantle 

values clearly exceed a 20Ne/22Ne ratio of ~12.5. Consequently, only lower fractions of Ne-A fluxes 

might be allowed.  

A <20% contribution of outer Solar System bodies to the accreting Earth is therefore fully 

consistent with current terrestrial accretion scenarios. 

3.6 Neon-accretion model without a magma ocean 

An alternative mechanism to explain the solar noble gas signatures in Earth’s interior is 

direct incorporation of solid and undegassed SW-irradiated materials during accretion. This 

scenario implies retention of most of the accumulated gases in the growing planet without being 

lost by degassing into the protoatmosphere. This model requires that the terrestrial building blocks 

accreted without the formation of a magma ocean (see section 3.5). 

If a magma ocean did not exist, then small accreting particles will directly contribute their 

solar neon to the solid inner Earth, while larger particles and bodies will release part or virtually 

all neon by ablation or impact degassing into the atmosphere (Fig. 3.13). When constructing a 

neon influx model for this scenario, it is important to distinguish between neon delivered to the 

atmosphere and Ne delivered to the solid Earth. Hence, (partial) degassing of small particles upon 

atmospheric entry and complete degassing by ablation of meteoritic material during atmospheric 

passage and/or impact explosion of large crater forming bodies have to be included. 

 

3.6.1 Ablation losses upon atmospheric entry 

Depending on mass, size, density, velocity and entry angle micrometeorites suffer variable 

degrees of heating during their passage through Earth’s atmosphere (Flynn, 1989; Toppani et al., 

2001; Füri et al., 2013) resulting in different types of MMs such as fine-grained, slightly vesicular 

unmelted micrometeorites (UnMM), partially melted, highly vesicular scoriaceous 

micrometeorites (ScMM) and completely melted CSs (Toppani et al., 2001; Füri et al., 2013). 

Incoming ~50 µm particles with 15-20 km/s entry velocity experience peak temperatures above 

melting point (1350 °C) for about 2 seconds at altitudes between 85 and 90 km. Grains with a 

velocity of 20 km/s that were initially larger than 20 µm inescapably undergo melting (Love and 

Brownlee, 1991; Okazaki et al., 2015) and thermodynamic modeling by Genge (2017) suggests that 

particles larger than 150 µm with an entry velocity of 12 km/s and an entry angle greater than 10° 

will completely melt. Completely melted cosmic spherules dominate the MM influx in the >50 µm 
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fraction and occur in sizes between 50–2280 µm (Taylor et al., 2012; Cordier and Folco, 2014). 

Effects of progressive heating and evaporation were identified by Taylor et al. (2000) in a 

classification sequence amongst stony spherules. A comprehensive review of the petrology, 

geochemistry as well as the classification of micrometeorites into UnMMs, ScMMs, CS, their types 

and subtypes is provided by Kurat et al. (1994) and Genge et al. (2008). 

Atmospheric entry heating moreover causes extensive degassing of noble gases and other 

volatiles in the upper atmosphere and ScMMs and CSs are expected to retain only diminutive 

fractions of their initial inventory (Toppani et al., 2003; Füri et al., 2013). In spite of the fact that 

Osawa et al. (2010) found that about 90% of the Ne and Ar and 95% of the He had been released 

from MMs that transformed into CSs through severe heating, about 40% of the spherules still 

show preserved extraterrestrial noble gases features, albeit concentrations are very low (Osawa, 

2012). Supporting this, it is obvious from Figures 3.2b and 3.3a,b that cosmic spherules show 

stronger 20Ne/22Ne isotopic fractionation and lower 20Ne concentrations compared to unmelted 

micrometeorites. 

Roughly 60-90% of MM material is lost during atmospheric entry through melting and 

evaporation according to Cordier and Folco (2014), however most authors favor losses of 90% or 

more (Love and Brownlee, 1991; Taylor et al., 1998; Briani et al., 2013). According to Mann et al. 

(2011), objects with a diameter above 200 µm evaporate almost completely at altitudes between 80 

and 100 km. Grains with sizes below 50 µm, on the other hand, are able to radiate energy so 

rapidly that they experience only very little heating during atmospheric descent (Nier and 

Schlutter, 1990, 1992; Flynn et al., 2003; Osawa, 2012). IDPs with sizes ≤50 µm and velocities <20 

km/s can survive atmospheric entry without significant melting (Kehm et al., 2002) and those with 

12 km/s do not melt at all (Love and Brownlee, 1991). For surface correlated components like SW-

implanted noble gases, analyses of He in seafloor sediments suggest that most of the relevant 

surface area that contains implanted SW is carried by particles of ~7 µm diameter, for which the 

temperature during transit through the atmosphere must have remained below the release 

temperature for He (~600°C) (Farley et al., 1997). Similar to micrometeorites, larger particles suffer 

considerable ablation during atmospheric entry (Hughes, 1994). A cumulative size frequency 

distribution compiled for impactors on the upper atmosphere as well as on Earth’s surface (Bland 

and Artemieva, 2006) indicates that atmospheric ablation and evaporation leads to mass losses of 

>30 to >99% for projectiles between 102–1020 g depending on the respective mass interval, impact 

angle, pre-atmospheric velocity as well as on projectile properties. At still larger masses and 

sufficient impact speeds (>5 km/s; Zahnle et al. 2010), increasing destruction in the atmosphere or 

on impact (Baldwin and Sheaffer, 1971; Anders, 1989) will cause almost complete ablation or 

evaporation into the atmosphere. 

Figure 3.13 shows the presently delivered average annual mass flux incident on Earth’s 

upper atmosphere and reaching Earth’s surface intact or undegassed taking into account 

vaporization and ablation during atmospheric entry and/or on impact. In this model, the smallest 

particles (β-meteorites and IDPs) are considered to escape atmospheric entry heating providing 

intact mass transfer to Earth’s surface. Suffering from severe entry heating, micrometeorites lose 

on average 60 to 90% of their mass to the atmosphere. In the annual mass flux model (Fig. 3.13, 

Tab. B1), both, the cases for the upper and lower limit vaporization are considered. Since the 
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transition from MMs to the “large particle” group is considered as being transitional and because 

cosmic spherules that are classified as micrometeorites are found within this size range (Taylor et 

al., 2012; Cordier and Folco, 2014), the “large particle” group is tentatively assumed to suffer the 

same amount of loss (60 to 90%). In the range of the “large bodies” and “very large bodies” a 

threshold is set at 1011 to 1012 g: Large bodies below this threshold experience 88 to 99% ablation 

and evaporation processes (Bland and Artemieva, 2006). Bodies that border on the threshold are 

modelled to suffer >99% impact erosion. Above 1012 g, large bodies and very large bodies are 

entirely evaporated upon impact (Fig. 3.13). 

From the total average mass flux of 2.7*1010 kg/year (section 3.3.3) that is incident on Earth 

>99.9% is evaporated during atmospheric entry and/or on impact and is contributed by the largest 

size regimes (large particles, large bodies and very large bodies) whereas <0.1% is impacting on the 

surface and contributed by the smallest size regimes (MMs, IDPs and β-meteorites). According to 

the current particle flux estimate, up to 2.9–7.8*106 kg/year reach Earth's surface. IDPs and β-

meteorites survive atmospheric entry without being evaporated. From the mass portion that is 

ablated or evaporated during atmospheric entry and/or on impact, more than 99.9% stems from 

particle types larger than MMs of which 99.97% is contributed by very large bodies. From the 

mass portion that survives atmospheric entry and impacting the surface, ~90% is derived by small 

material (Fig. 3.13, Tab. B1). 
 

 
Fig. 3.13: Annual particle flux to Earth’s upper atmosphere and surface in g/year vs. mass. The mass of the different particle 

types ranges from 10-16–1025g (β-meteorites, IDP, MM, large particles, large bodies, very large bodies) and is divided in 

decadal mass bins. The mass that reaches Earth’s surface intact, thereby surviving atmospheric entry without ablation or 

evaporation is shown in grey, while the mass that is ablated or evaporated during atmospheric entry and/or on impact is 

shown in blue. For MMs the lighter color indicates the mass that would be lost assuming 90% vaporization instead of 60% 

(see text for details). 

3.6.2 Mass and size dependent Ne flux to Earth’s surface 

As discussed earlier, the influx of 20Ne to Earth (Tab. B4) is calculated by multiplying the 

concentration of 20Ne with the mass flux of the respective particle type (Tab. B1). Compared to the 
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upper atmosphere fluxes (see also Fig. 3.6 and Fig. 3.7) the fluxes to the surface of MMs, IDPs is 

influenced by atmospheric entry degassing (Fig. 3.14 and Fig. 3.15). Figure 3.14 shows that the 

smallest IDPs contributes the maximum amount of 2.39*106 cm³STP 20Ne to Earth´s surface and β-

meteorites deliver their complete neon inventory. As mentioned in section 3.3.4 the IDP size 

(mean diameter ~9 µm) that annually contributes the maximum amount of 20Ne to the surface is in 

very good agreement with the value of ~7 µm found by Farley et al. (1997) for particles that carry 

most surface implanted SW-He to the surface. 
 

 
Fig. 3.14: Detail of the particle mass flux from Figure 3.13 for β-meteorites, IDPs and MMs divided in decadal mass bins 

(blue triangles) and 90% mass loss for MMs (grey circles). The annual 20Ne flux to Earth in cm³STP/year is shown for the 

same mass intervals (red squares). The maximum 20Ne flux for measured particles to Earth’s surface (orange circles) is 

contributed by IDPs in the mass range 10-10 g to 10-9 g (mean diameter ~9 µm). Note that approximate sizes of MMs and 

IDPs are mean values derived from the compilation, sizes of β-meteorites are calculated assuming a spherical particle shape. 

The mass flux for MMs peaks at ~200 µm whereas the 20Ne flux to the upper atmosphere peaks at ~75 µm and is calculated 

from the mean 20Ne concentration of the smallest measured IDPs. The graph for the particle flux in g/year (blue triangles and 

grey circles) corresponds to the ordinate on the left side of the diagram and the graph for the Ne flux in cm³STP/year (orange 

circles and red squares) corresponds to the ordinate on the right side of the diagram. 

Figure 3.15 shows the combined flux of 20Ne for the Ne-A and Ne-B component to the upper 

atmosphere (see also Fig. 3.7) and the flux of both components to Earth’s surface after losses upon 

atmospheric entry. Compared to the cumulative upper atmosphere Ne flux, approximately 7% of 
20Ne reach the Earth’s surface surviving atmospheric losses and/or impact evaporation. Only small 

particles up to MM-sizes that escape severe heating and ablation during the atmospheric entry 

contribute to the surface flux of the implanted Ne-B component. Larger particles and bodies lose 

their total surface correlated Ne budget during ablation or on impact, contributing only the Ne-A 

component to the surface. An exception to that would be meteoritic material that represents 

reworked irradiated regolith, but for simplicity such material will be neglected in first order 

considerations. The amount of 5.81*106 cm³STP 20Ne that is annually delivered by the Ne-B 

surface flux with small particles compares to 5.43*102 cm³STP/year for the Ne-A surface flux from 

larger particles and bodies and amounts to 99.99% of the total flux of 20Ne to the surface (Tab. B4). 
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Fig. 3.15: The cumulative annual 20Ne flux to Earth’s upper atmosphere (squares, see Fig. 3.7) is compared to the surface 

flux of 20Ne (circles) which is derived from the accreted mass that survives atmospheric ablation and/or impact (see Fig. 

3.13). The cumulative upper atmosphere flux consists of fluxes that are dominated by Ne-B carriers (red squares) and Ne-A 

carriers (turquois squares) or consists of a mixture of Ne-B and Ne-A carriers (purple squares). The flux of Ne-B to the 

surface is only contributed by small particles up to MM-sizes whereas larger particles and large bodies deliver the Ne-A 

component to the surface after loss of the surface sited Ne-B during atmospheric entry ablation. In the diagram, carriers of 

Ne-B to the surface (β-meteorites, IDP, MM, orange circles) are separated by a straight line from carriers of Ne-A to the 

surface (large particles, large bodies, blue circes). 

3.6.3 Fraction of SW-irradiated material and Ne from the late veneer 

In an accretion scenario without a magma ocean the Ne-B inventory of Earth’s mantle is no 

longer a function of the depth of an early magma ocean. It only depends on the amount of SW-

irradiated material that was available for direct incorporation into Earth’s interior, i.e. particles 

that reach the surface without severe gas losses during entry through a protoatmosphere or losses 

caused by impact. It is assumed here that this amount is given by the Ne-B surface flux shown in 

Figure 3.15 which is derived from the data compilation for IDPs and MMs (section 3.3.4). 

According to this flux, a 20Ne/22Ne ratio of 12.55 reaches the surface (Tab. B4) that determines the 

Ne-B like value of the mantle. An additional 8*102 times higher contribution of neon (Ne-A 

surface flux) from the outer Solar System (Fig. 3.15, Tab. B4) would be necessary to decrease the 
20Ne/22Ne ratio below 12.50.  

It is furthermore assumed that the ablation processes during entry through a 

protoatmosphere affected the particles in a similar manner as today´s flux. Assuming a lower 

entry velocity for inner Solar System particles, these particles would retain a more pristine 
20Ne/22Ne ratio, i.e., up to 12.61 and deliver a higher Ne-B value to the surface. The surface flux is 

used to calculate the Ne inventory of the mantle without consideration of an early magma ocean 

in “phase I” (Fig. 3.8). All the other flux parameters in “phase I” or “phase II” remain unchanged 

according to the framework of terrestrial Ne accretion (see section 3.4). 
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Figure 3.16 shows the fraction of SW-irradiated material from the terrestrial precursor 

material that is required to establish the terrestrial Ne inventories in dependency of the 20Ne/22Ne 

composition of the late veneer in the case of a moderately and a strongly degassed mantle. It is 

obvious that, if the late veneer contributes the Ne composition of the present atmosphere 

(20Ne/22Ne = 9.80) the fraction of SW-irradiated terrestrial precursors is zero. The modeling of 

100% atmospheric erosion by the giant Moon-forming impact and a late veneer with a low 

isotopic ratio of 20Ne/22Ne = 5.20 results in fractions of irradiated material of 4.8% and 4.4% for a 

moderately and strongly degassed mantle, respectively. Lower fractions of irradiated material are 

needed for higher values for the Ne isotopic ratio delivered by the late veneer. For the preferred 

planetary ratio (20Ne/22Ne = 8.2) the fractions of irradiated material are 3.0% and 2.6% for a 

moderately and strongly degassed mantle, respectively. 

In case of incomplete atmospheric erosion by the Moon-forming impact, increasing amounts 

of retained atmospheric Ne lead to decreasing fractions of SW-irradiated materials. Moreover, 

increasing 20Ne/22Ne ratios for the late veneer demand lower degrees of mantle degassing after the 

giant Moon-forming impact. In case of a moderately degassed mantle, a maximum of 17% retained 

Ne (83% atmospheric erosion) is still consistent with the delivery of the complete range of 

possible 20Ne/22Ne ratios for the late veneer. Higher values, e.g., 30% retained atmospheric Ne 

(70% atmospheric erosion) exclude the contribution of a late veneer with 20Ne/22Ne >8.6, because 

the delivered amount of Ne would keep the retained Ne above today's atmospheric inventory even 

if assuming no degassing after the giant impact. In case of a strongly degassed mantle a portion of 

30% retained atmospheric Ne allows the contribution of the complete range of Ne isotopic ratios 

that have been considered for the late veneer but constrains the fraction of irradiated material to 

<1% (Tab. B9). 
 

 
Fig. 3.16: Fraction of SW-irradiated material that directly incorporates the implanted Ne-B (20Ne/22Ne=12.55) after ablation 

during atmospheric entry into Earth’s interior during early “phase I” in the absence of a magma ocean as a function of the 
20Ne/22Ne ratio assumed for the late veneer that is delivered during “phase II”. Cases assuming 100% atmospheric erosion by 

the Moon-forming impact are shown a) for a moderately degassed mantle (red curve) and b) for a strongly degassed mantle 

(green curve). Both imply decreasing fractions of SW-irradiated precursor material from a maximum fraction of 4.8% and 

4.4%, respectively, with increasing values for 20Ne/22Ne of the late veneer. Decreasing degrees of mantle degassing apply to 

an increasing isotopic ratio of the late veneer and are shown in Figure 3.9a for the colored curves. Increasing retention of 

atmospheric Ne after the giant impact further decreases the fraction of SW-irradiated material as well as the required degree 

of mantle degassing (see text for details). 
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3.7 Discussion 

No simple model exists so far that describes Earth’s accretion history and volatile 

acquisition, while claiming that all important aspects and parameters have been taken into 

account. In the previous section, each of the parameters that influence the developed Ne accretion 

scenario was therefore briefly discussed: the Ne inventory of accreting matter of all sizes, current 

and past mass fluxes to Earth as well as time dependent fluxes of the Ne-A and Ne-B component, 

accretion within a gas-shielded disk and after nebular dissipation, dissolution of Ne into the 

magma ocean, the Moon-forming impact and its consequences and post-lunar delivery of Ne by 

late accretion. The discussion below focuses on the two competing models for the origin of solar-

type neon within Earth (solar wind implantation and solar nebula gas dissolution) and the relation 

to the presented model. A comprehensive discussion on different models for the origin of light 

noble gases (He, Ne, and Ar) on Earth is also given in a recent review article by Péron et al. (2018). 

The existence of solar-like Ne in Earth’s mantle constrains the mechanisms of how Ne and 

other rare gases were initially incorporated and trapped within the Earth during accretion and 

how a protoatmosphere was lost afterwards (Porcelli et al., 2001). If Earth accreted within the 

solar nebula, high concentrations of the light noble gases could have been dissolved from the 

captured dense solar atmosphere into a magma ocean and could have been transported into the 

inner Earth through convection (Mizuno et al., 1980; Sasaki and Nakazawa, 1990; Harper and 

Jacobsen, 1996; Porcelli et al., 2001). The early captured atmosphere would have been 

subsequently fractionated during hydrodynamic escape triggered by giant impacts and/or intense 

ultraviolet radiation (EUV) from the young sun (Hunten et al., 1987; Pepin, 1991, 1997, 2006). 

However, the residual atmospheric composition after hydrodynamic escape (of hydrogen and 

helium) from a solar-composition gas is different for several components such as CO2 (63.2 vol%), 

Ne (21.8 vol%) and N2 (9.7 vol%) from what we observe today (Lewis et al., 2013; Fegley, 2016 

pers. comm.).  

In addition, there would presumably have been further modifications due to (non-

fractionating) gas losses from the atmosphere and from the interior due to impact erosion (Chyba, 

1990; Ahrens, 1993) and the catastrophic Moon-forming event (Benz and Cameron, 1990). Losses 

from the interior must have also occurred during extensive mantle degassing, most likely linked to 

the solidification of a magma ocean (Elkins-Tanton, 2008). Overall, these loss processes require a 

high primordial abundance of noble gases, such as gravitational capture of nebular gas. According 

to Jaupart et al. (2017), however, dissolution of a captured solar atmosphere seems not to be an 

appropriate mechanism to account for the neon budget within Earth because this process would 

only account for less than 2.5% of their best estimate for the Ne concentration of the primitive 

mantle if the solar nebula completely disappeared before growth of planetary embryos to ~0.2 ME.  

The gravitational capture model indeed requires the growth of protoplanets to at least 

Mercury to Mars size before nebular dissipation (Porcelli and Pepin, 2011). The results of several 

numerical models, however, predict timescales of ~30–100 Ma for the formation of the terrestrial 

planets (Morbidelli et al., 2012 and references therein). Along these lines, Kleine et al. (2002, 

2009) used Hf-W chronometry to date core formation on Earth with the conclusion that it was 

completed not earlier than ~30 Ma after CAI formation and on Mars to have occurred during the 
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first ~20 Ma of the Solar System, thus supporting a protracted accretion. In contrast, a 

protoplanetary disk lifetime of ~6 Ma is predicted by Haisch et al. (2001). If so, it would have been 

dispersed well before completion of terrestrial planet formation, although observational data hint 

that in some cases disk lifetimes may be as long as tens of millions of years (Pfalzner et al., 2014). 

In contrast, the model for incorporating noble gases into the Earth together with the process 

of solar wind implantation into accreting matter could have taken place after dissipation of disk 

gas. This enables irradiation of solid surfaces with solar wind and favors the SW-implantation 

model for the origin of light noble gases on Earth (Podosek et al., 2000; Trieloff et al., 2000, 2002; 

Trieloff, 2002, 2007; Ballentine et al., 2005; Moreira and Charnoz, 2016; Jaupart et al., 2017; Péron 

et al., 2017, 2018). The scenario is primarily based on the recognition that neon in Earth´s mantle 

appears to be isotopically fractionated Ne-B, a typical component resulting from solar wind 

implantation. In a still dust-rich accretionary environment, early fluxes should have been 

dominated by SW-implanted light noble gases that contributed large amounts of the Ne-B 

component after the solar nebula was cleared; therefore, the timing of disk dispersal is crucial in 

this case.  

Before disk gas dissipation SW-implantation is already possible in less opaque off-disk 

regions (Sasaki, 1991). In regions up to 1.5 AU from the Sun implantation could occur on the 

surface of the disk and in some parts of the optically thick mid-plane (Moreira and Charnoz, 

2016). Vertical movements would then disperse the irradiated particles. A certain amount of 

irradiated dust grains before the dissipation of the solar nebula would, however, not compromise 

the described model. Rather it would just serve to decreased the amount of irradiated dust 

particles required in the presented model. 

Irrespective of incorporation of the solar wind irradiated particles before or after disk gas 

dispersal, the accreted Ne-B component should resemble the Ne inventory of currently found SW-

irradiated particles that remained largely unaffected by atmospheric entry heating. Following Nier 

and Schlutter (1990, 1992) and Love and Brownlee (1991) this is probably the case for the smallest 

IDPs (10-10 to 10-9 g) that are available for measurement in the laboratory. This is furthermore 

justified by the observation of overall increasing 20Ne concentrations and 20Ne/22Ne ratios, with 

decreasing particle size, exhibiting a maximum mean concentration of 6.92*10-2 cm³STP/g and a 

maximum mean isotopic ratio of 12.61±0.41 (Fig. 3.3) for this range. Once dissolved from the 

protoatmosphere and incorporated within Earth, the Ne-B component stays unaltered after 

solidification of the magma ocean. A late accreted Ne component of planetary Ne-A is unable to 

modify the Ne composition within Earth’s interior since substantia subduction of Ne is regarded 

unlikely (Staudacher and Allègre, 1988; Holland and Ballentine, 2006). In this way, the 20Ne/22Ne 

ratio of 12.61±0.41 that is here compiled from the smallest IDPs directly mirrors the incorporated 

Ne-B component that is sampled as the pristine mantle end-member for Ne. 

In consequence, the incorporation of solar-like neon by dissolution of SW-implanted Ne in 

cosmic dust particles must have happened during the existence of a magma ocean and therefore 

almost exclusively before the Moon-forming impact or shortly after. Constraining the acquisition 

of Ne to the magma ocean stage would also apply to scenarios that involve dissolution of a 

captured solar nebula. Of course, both types of acquisition described in the two models may have 

contributed to Earth’s Ne budget, to different extents at different periods during Earth’s accretion. 
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Despite questioning the solar gas dissolution origin for neon and advocating the solar wind 

implantation in solid grains, Péron et al. (2016) discussed the possibility of mixing both models. 

According to their estimate, ~30% of terrestrial lower mantle neon could derive from dissolution 

of solar nebula gas during formation of the Earth.  

Here, to the qualitative discussion of the solar wind irradiation model (Péron et al., 2018), 

quantitative constraints from particle fluxes and size dependent Ne concentrations are added. The 

present study shows that the SW-implantation model alone may well be even quantitatively able 

to explain Earth’s neon inventories and that this process may have a greater importance for the 

acquisition of volatiles on Earth than previously acknowledged. 

3.8 Conclusions 

The Ne accretion model proposes the origin of the solar noble gas signatures of Earth’s 

interior by the accretion of solar wind-irradiated material during an early episode of terrestrial 

formation, shortly after the dissipation of the solar nebula. A significant contribution of dust-sized 

particles with high surface/volume ratios during the early acquisition of terrestrial volatiles is 

required to explain Earth’s mantle signatures. Starting from actually observed cosmic dust 

properties like particle fluxes to Earth and Ne inventories, the model provides evidence for the 

feasibility of the SW-implantation model to explain the origin of solar Ne within Earth. 

Within the model, solubility-controlled ingassing of the accreted Ne into a magma ocean 

that underlies an insulating steam atmosphere or direct incorporation of SW-irradiated particles 

determine the amount of Ne-B in the mantle. Ne-B degassed after the giant Moon-forming impact, 

and possibly a small fraction of the protoatmosphere survived the giant impact. These mix with 

the contribution of a late veneer with a “planetary Ne” component, which completes the 

atmospheric Ne inventory and generates the atmospheric 20Ne/22Ne ratio of 9.80. 

Detailed results of the study are as follows: 

 

1) High Ne-B concentrations of accreting material correlate with low particle masses (small 

(small sizes, thus, high surface/volume ratio). The maximum present-day Ne-flux to Earth’s 

surface is contributed by IDPs with sizes that peak at ~9 µm (10-10–10-9 g). The maximum 

Ne-flux to the upper atmosphere is contributed by MMs with sizes of ~75 µm (10-7–10-6 g). 

The mean 20Ne/22Ne ratio of 12.61±0.41 of the smallest measured IDPs represents the SW-

Ne-saturated outermost particle layer and is incorporated in all particles before 

atmospheric entry losses. This ratio determines the Ne inventory of volatile-poor “inner 

Solar System bodies” that accreted to form Earth.  

2) The isotopic composition of Ne added by the late veneer has a strong influence on the 

inferred degree of mantle degassing after the Moon-forming impact. A late veneer of 

~2.26% ME with the favored planetary 20Ne/22Ne ratio of 8.2 contributes ~53% of the 

atmospheric 20Ne and requires a degree of mantle degassing between ~82 and 96%. 

3) In the case of accretion with an early magma ocean: A fraction of less than 12% of the pre-

giant impact accreted Ne is dissolved into an early magma ocean with a maximum depth of 

less than 2500 km. The dissolved Ne component has a 20Ne/22Ne ratio of 12.61±0.41 and is 
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consistent with all literature data given for the pristine lower mantle source. Low fractions 

of irradiated material are sufficient to explain the terrestrial Ne inventory, even assuming 

a relatively shallow magma ocean. A magma ocean of a few hundred km depth constrains 

the fraction of SW-irradiated material to less than 10%, whereas a depth of more than 

1000 km is consistent with fractions of less than ~5%. In any case, a minimum of ≳1% 

SW-irradiated material is needed to explain the terrestrial Ne inventories.  

The Ne inventory and isotopic ratios of Earth’s atmosphere and mantle can be reconciled 

only if the amount of pre-existing atmospheric Ne that is retained after the Moon-forming 

impact is small (≲8%, if any at all). 

4) In the case without an early magma ocean: Low fractions of SW-irradiated material that 

are directly incorporated in Earth’s interior are sufficient to explain the terrestrial Ne 

inventories. The accretion of SW-irradiated particles including atmospheric ablation 

effects generates a 20Ne/22Ne ratio of 12.55 in Earth’s mantle. This value is identical to the 

mantle endmember of 12.49±0.06 identified by Trieloff et al. (2000). If the late veneer 

delivered a low 20Ne/22Ne ratio of 5.2, a maximum of ~4.8% irradiated material is required. 

For the preferred late veneer Ne ratio of 8.2 the required fraction of irradiated material 

decreases to ~3%. If more than 30% of Ne were retained after the giant Moon-forming 

impact, the required fraction of SW-irradiated material decreases to less than 1%. 

5) The model does not put constraints on the particular point in time for terrestrial Ne 

accretion, neither for Ne accretion prior to the giant Moon-forming impact in a 

protoplanetary disk that was cleared from gas, nor for the contribution of planetary Ne by 

the late veneer. This problem needs to be addressed by studies involving noble gas tracers 

such as the time sensitive 129I/129Xe system. 

 

All in all, it is concluded that the acquisition of sufficient Ne-B and its incorporation into 

Earth´s mantle is not a major problem, as the accreted material most likely contained a dust 

population of which only a small fraction needs to be irradiated by the solar wind after solar 

nebula dissipation. The quantitative results underline the importance of the solar wind 

implantation model to explain the origin of light solar noble gases within Earth and may point 

towards a possible explanation for the acquisition of other volatiles on Earth.  

Ne-A contributions before the Moon-forming impact were likely small, and would hardly 

change the isotopically solar neon composition of a protoatmosphere that dissolved into the 

magma ocean or influence directly accreting solid materials in scenarios without a magma ocean. 

Establishing the isotopic signature of atmospheric neon requires addition of a Ne-A type 

component, likely by post lunar impact accretion of a late veneer. 
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4 Summary and prospects 

The research presented here offers new insights into the field of noble gas geo- and 

cosmochemistry and implies constraints for Earth’s core as potential source reservoir for light 

primordial noble gases (Chapter 2) and for the origin and early acquisition of volatiles, in 

particular Ne, on Earth (Chapter 3). Detailed conclusions of the individual noble gas studies are to 

be taken from the respective chapters. Remaining problems and open questions that arise from 

both studies offer chances for further investigations and are pointed out below. 

The model involving Earth’s core as possible reservoir of primordial noble gases and source 

of solar-like Ne in Earth’s mantle, formerly recognized as rather speculative, gains more 

importance as it is shown in Chapter 2 that metal in the iron meteorite Washington County is 

unambiguously identified as carrier of trapped light solar noble gases. If the origin of light solar 

noble gases in Washington County through SW-irradiation is valid, then the SW-implantation 

model further imposes that irradiation of <1% of terrestrial precursor material which gained noble 

gases in abundances similar to Washington County and which formed terrestrial precursor metal 

is sufficient to account for Ne concentrations in Earth’s core that satisfy observed mantle fluxes. 

The model must now be reinforced by confirming the presence of light solar noble gases 

within the metal or minor inclusions in other iron meteorites, such as Kavarpura (Murty et al., 

2008). First, this can be achieved by a thorough data compilation of iron meteorites that possibly 

contain solar noble gases starting with irons of the groups IIIAB and IIIB which are related to 

Washington County and possibly share a common evolutionary background. Second, the selected 

candidates have to be analyzed for noble gases. The reinvestigation of Kavarpura and the newly 

discovered spinel phases in Washington County may furthermore reveal minor silicate inclusions 

as possible noble gas carriers in iron meteorites.  

In contrast to considerations that SW-irradiation in a “gas-poor” environment after solar 

nebula dissipation might not lead to implantation of solar Ne abundances that are sufficient to 

explain the terrestrial Ne inventory, the SW-implantation model is found in Chapter 3 to be able 

to account quantitatively for the terrestrial mantle Ne budget if only a fraction of a few % of the 

total terrestrial precursor material was irradiated and was loaded with the surface implanted Ne-B 

component. The accreted Ne-B signature must have been overwhelmingly contributed by dust-

sized particles with high surface to volume ratio containing high amounts of surface implanted 

components. Delivery must have happened before the Moon-forming impact during early 

terrestrial accretion when incorporation of Ne-B into the interior of Earth was possible through 

dissolution into a magma ocean, or direct incorporation during dry accretion, while completion of 

the atmospheric reservoir was achieved during a late chondritic veneer contributing a planetary 

Ne-A component that admixed to a degassed solar Ne-B component from the interior of Earth.  

Refining of the presented model calculations is further possible if additional Ne data would 

be available to reinforce the basic input data. As the model is essentially based on the maximum 

average Ne concentration (20Ne: 6.92*10-2 cm³STP/g) and 20Ne/22Ne isotopic ratio (12.61±0.41) of a 

limited number of small IDPs, additional measurements of similarly small or even smaller particles 

would yield important information. A major issue will remain in determining the exact 
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distribution of the implanted Ne-B component in the surface of irradiated particles and the 

thickness of the SW-saturated outermost particle shell. Here, the model results will be certainly 

influenced if the assumed equal surface distribution and the Ne implantation depth of 50 nm that 

is assumed to represents the thickness of the particle shell are modified. The application of a more 

sophisticated model of early dust fluxes during accretion would furthermore sustain the validity of 

the model. As the only time constraint for the incorporation of Ne-B into Earth’ interior is the 

pre-lunar period, the implementation of radiogenic noble gas isotopes (40Ar and 129Xe) into the 

model could set further limits for the timing of accretion. This, however, requires a thorough data 

compilation (similar to Ne) for 40Ar and 129Xe data of cosmic dust and demands more 

measurements, especially for Xe isotopes, of IDPs and MMs. Because the existing models for the 

origin of light solar noble gases within Earth (SW-implantation model or solar nebula dissolution 

model) are partly built on top of the maximum measured 20Ne/22Ne values of the solar-like mantle 

end-member a re-examination and re-assessment of the Ne composition would validate the 

relevance of either model. 

Collectively, the noble gas studies carried out above suggest that only a small fraction of 

SW-irradiated material is needed to generate the Ne inventories observed on Earth. The 

significance of surface implanted SW in cosmic dust for the acquisition of Ne on Earth highlights 

the importance of a dust-sized component during planetary accretion. A SW-irradiated dust 

component might have also been an important carrier of other volatile elements during accretion. 

It was shown by Bradley et al. (2014) that water (H2O, liquid or vapor) is detectable in vesicles 

within space-weathered surfaces of IDPs that are produced by irradiation with the solar wind. If 

water in surfaces of dust particles is a common byproduct of SW-irradiation, high early 

accretionary dust fluxes might also imply an important delivery of water to Earth. Péron et al. 

(2017) furthermore advocated SW-irradiation and implantation of ions with a solar nebula δD 

value of -870‰ to infer a possible explanation of the low δD value of -218‰ measured for the 

lower mantle (Hallis et al., 2015). Hence, this could point towards a source for water on Earth. 

Another important property of IDPs is their ability to escape atmospheric entry heating and their 

potential to carry intact organic compounds to Earth’s surface. According to Anders (1989), IDPs 

in the mass range between 10-12–10-6 g currently deliver 320 tons/year intact organics to Earth. 

Early IDP fluxes, 4.4 Ga ago, may have delivered intact exogenous organics of as much as 106 

tons/year which might represent an inventory for the origin of life on Earth (Chyba and Sagan, 

1992). During the period preceding the origin of life, IDPs and MMs may have not only been the 

main source for organic carbon on Earth but also for nitrogen as both elements seem to occur in 

association (Matrajt et al., 2003). 

A combined study of the elemental and isotopic noble gas inventory of IDPs that integrates 

the investigation of other volatile components (H, C, N) seems therefore to be highly promising to 

provide relevant results for tracing the origin and evolution of volatiles on Earth and to decipher 

sources for the ingredients of the origin of life on Earth. If acquisition of considerable amounts of 

highly volatile elements during accretion of SW-irradiated cosmic dust and/or volatile-rich IDPs is 

a suitable explanation for Earth’s volatile budget this certainly implies constraints for the source of 

volatiles on other terrestrial planets. These questions, however, have to be resolved in future 

studies.  
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Tab. A1: Furnace blank contributions (He, Ne, Ar) for Washington County measurements. 

 
All uncertainties 1σ. 
1)blank series of first analyzed sample (WC_5) is affected by a minor 

leakage in the SAES getter that was removed for subsequent measurements 

 

 

 

 

 

 

 

Tab. A2: Furnace blank contributions (Xe) for WC_5 measurements 

 
All uncertainties 1σ 

 

Temp. 4He ± 20Ne ± 36Ar ±

[°C]

WC_2 blank series

800 1.86 0.15 1.39 0.04 2.18 0.16

1100 1.66 0.14 1.35 0.04 2.40 0.11

1400 1.59 0.21 1.44 0.05 3.19 0.23

1600 1.96 0.17 2.07 0.06 3.53 0.43

1800 3.38 0.15 8.38 0.25 6.39 0.27

WC_5 blank series
1)

800 1.94 0.20 3.12 0.06 6.39 0.33

1400 2.07 0.13 3.49 0.07 6.74 0.14

1600 2.31 0.13 4.78 0.09 7.80 0.25

1800 3.34 0.14 14.66 0.28 12.86 0.25

WC_11 blank series
800 1.84 0.14 1.40 0.03 2.15 0.16

1100 1.64 0.13 1.36 0.03 2.37 0.11

1400 1.74 0.21 1.27 0.03 2.98 0.26

1600 1.94 0.16 2.08 0.04 3.49 0.43

1800 3.35 0.13 8.40 0.16 6.31 0.27

WC_14 blank series

800 2.09 0.11 2.02 0.11 2.33 0.11

1150 2.90 0.12 2.05 0.11 2.58 0.24

1480 2.18 0.08 2.17 0.12 3.22 0.09

1600 2.26 0.09 2.49 0.13 3.47 0.15

1800 2.93 0.09 10.08 0.53 5.81 0.14

Blank
[10-9 cm³STP] [10-11 cm³STP] [10-12 cm³STP]

WC_5 Xe blank series
129Xe ±

800 9.94 1.50

1400 12.19 1.64

1600 8.56 1.29

1800 6.09 0.99

Temp.
[10-14 cm³STP/g]
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Tab. A3: Blank corrections [%] from measured gas amounts for temperature steps of WC_2, WC_5, WC_11 and WC_14 

 
1)measurements of first analyzed sample (WC_5) are affected by a minor leakage in the SAES getter that was removed for 

subsequent samples 

 

WC-2 Blank corrections from total released gas amounts [%]

Temp. [°C] 4He 3He 20Ne 21Ne 22Ne 36Ar 38Ar 40Ar

800 - - 354.8 8.0 155.7 62.2 22.62 57.4

1050 8.2 0.0003 27.2 0.2 4.7 4.0 0.51 84.9

1140 2.6 0.0001 8.2 0.04 1.3 1.0 0.12 66.6

1350 1.4 0.0002 4.6 0.02 0.8 0.7 0.08 77.1

1380 3.8 0.0005 10.9 0.06 1.9 1.8 0.22 101.9

1390 26.1 0.0047 58.8 0.56 15.1 13.6 1.87 85.7

1400 54.9 0.0151 105.3 1.54 38.0 32.7 4.86 122.7

1410 61.2 0.0287 118.9 2.8 55.8 44.7 7.26 126.9

1450 44.0 0.0207 7.7 1.6 6.9 24.6 5.27 45.2

1800 88.0 - 79.1 13.7 69.9 58.1 14.17 90.0

WC-5
1)

Blank corrections from total released gas amounts [%]

Temp. [°C] 4He 3He 20Ne 21Ne 22Ne 36Ar 38Ar 40Ar

600 - - 338.0 149.6 304.4 57.0 57.18 60.2

700 888.5 0.1049 314.9 86.6 265.9 22.0 21.13 21.7

800 123.5 0.0032 147.1 14.3 122.1 56.4 39.20 60.2

850 69.6 0.0017 129.0 8.4 95.6 63.3 38.38 68.5

900 41.4 0.0059 86.0 2.5 44.7 37.8 12.95 52.8

950 34.6 0.0046 74.5 1.7 33.9 33.0 7.85 59.3

1000 38.5 0.0058 68.1 1.4 30.3 30.4 6.53 65.5

1050 29.6 0.0006 69.8 1.3 29.3 27.0 4.65 69.1

1100 4.0 0.0001 21.3 0.1 4.4 3.9 0.49 63.1

1120 36.3 0.0009 62.4 1.5 30.2 25.9 4.95 57.2

1150 51.0 0.0021 77.2 3.8 51.8 36.3 8.87 60.0

1200 32.2 0.0008 56.3 1.3 26.3 17.9 3.01 51.6

1250 47.8 0.0017 61.3 2.0 33.7 24.7 4.34 63.4

1300 56.9 0.0025 61.1 3.7 43.3 39.0 8.51 71.0

1350 55.8 0.0023 57.4 3.6 41.0 40.4 9.46 72.8

1400 9.3 0.0001 34.5 0.4 9.7 7.8 1.03 61.0

1425 1.4 0.0000 9.1 0.1 1.7 1.3 0.16 76.3

1450 54.1 0.0020 74.2 3.5 47.9 41.4 9.76 80.7

1475 61.6 0.0030 77.5 5.1 55.6 50.2 12.85 78.4

1500 71.6 0.0033 88.5 5.1 61.6 49.2 11.38 87.2

1525 69.1 0.0047 89.0 7.9 69.9 50.2 11.60 88.8

1550 88.8 5.7798 96.0 74.6 94.0 61.3 39.03 63.8

1650 80.0 8.6147 91.5 79.1 92.0 86.6 57.93 92.1

1750 85.6 13.8227 63.7 62.1 64.2 65.9 60.31 77.7

1800 74.9 15.2777 49.9 49.4 50.0 75.9 75.19 74.1

WC-11 Blank corrections from total released gas amounts [%]

Temp. [°C] 4He 3He 20Ne 21Ne 22Ne 36Ar 38Ar 40Ar

1050 7.1 0.0002 23.0 0.1 3.4 2.8 0.35 70.7

1100 4.1 0.0001 12.4 0.1 1.8 1.2 0.15 80.8

1150 16.3 0.0005 44.5 0.2 7.6 5.8 0.76 101.1

1250 14.2 0.0005 32.7 0.2 5.4 3.5 0.44 89.9

1300 50.2 0.0186 76.3 0.6 18.0 15.8 2.10 130.4

1320 78.6 0.0638 107.5 2.3 47.7 43.3 6.97 127.1

1340 74.7 0.0730 110.9 3.4 61.5 52.0 9.41 120.6

1360 75.6 0.0982 107.8 4.3 65.4 62.0 11.21 124.0

1380 66.3 0.0458 101.0 2.2 44.8 44.2 7.12 135.5

1390 55.6 0.0337 66.4 1.7 33.0 32.6 5.25 93.7

1400 34.7 0.0113 66.7 0.6 16.7 15.8 2.04 139.1

1410 24.5 0.0068 50.3 0.4 10.9 9.9 1.23 128.2

1420 16.8 0.0043 37.2 0.2 7.1 6.6 0.82 128.2

1430 13.0 0.0030 29.3 0.2 5.1 4.7 0.59 125.0

1440 3.4 0.0006 9.1 0.04 1.3 0.8 0.09 76.3

1450 35.9 0.0126 70.0 0.75 19.9 14.5 1.95 100.2

1800 62.5 - 32.3 0.67 13.8 10.6 1.60 47.6

WC-14 Blank corrections from total released gas amounts [%]

Temp. [°C] 4He 3He 20Ne 21Ne 22Ne 36Ar 38Ar 40Ar

800 478.1 - 289.9 5.49 118.1 48.9 14.41 39.6

1050 35.8 0.0014 42.5 0.22 6.6 3.6 0.45 76.7

1140 12.8 0.0005 28.2 0.13 3.9 1.4 0.17 59.3

1350 8.8 0.0001 16.8 0.08 2.3 1.5 0.18 71.0

1480 3.2 0.0001 2.7 0.02 0.5 0.3 0.03 23.8

1600 79.4 0.0814 22.6 10.97 22.0 52.8 21.91 56.2

1800 114.1 1.1800 114.0 82.92 113.3 92.2 52.89 88.5
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Fig. A1: Fractional release pattern for WC_2 (He, Ne and Ar). Major degassing peaks occur at 1140 °C and 1380 °C. For 
20Ne ,22Ne and 40Ar an additional gas release peak with air-like composition is observed at 1450 °C (Tab. 2.1).  
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Fig. A2: Fractional release pattern for WC_11 (He, Ne and Ar). Major degassing peaks occur at 1100 °C and 1440 °C (Tab. 

2.1).  
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Fig. A3: Fractional release pattern for WC_14 (He, Ne and Ar). Major degassing peaks occur at 1140 °C and 1480 °C (Tab. 

2.1). 
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Tab. B1: Comparison of current average annual particle mass flux (g/year) to Earth's upper atmosphere and to Earth's surface 

for impactor masses ranging from 10-16–1025g (β-meteorites, IDP, MM, large particles, large bodies, very large bodies) 

divided in decadal mass bins. The fractions that are evaporated during atmospheric entry and/or on impact are given in % in 

the last column. 

 
a) the particle size was calculated assuming spherical shape and a mass density of 2.5 g/cm³ for MMs, large particles, large 

bodies and very large bodies (see Grotheer and Livi, 2014) and 1.5 g/cm³ for β-meteorites and IDPs (cf. Pepin et al., 2000, 

2001; Kehm et al., 2002) b) data from Grün et al. (1985); gravitational focusing for near Earth fluxes by a factor of 2 was 

superimposed onto the reported model interplanetary flux c) data from Anders (1989) d) data from Bland and Artemieva 

(2006) e) the total available main belt mass for the 1015 to 1020g mass bins from Bottke et al. (2005) and the mass flux for the 

respective bin given by Bland and Artemieva (2006) are compared to calculate the mass fluxes for the 1020 to 1025g mass bins 

assuming equal mass to flux proportions for these bins as found by the comparison of the lighter mass bins. The main belt 

size distribution given in diameter is converted into masses assuming a spherical body shape and a mass density of 2.7 g/cm³ 

(Bottke et al., 2005) f) from Cordier and Folco (2014) g) tentatively assumed equal losses for “large particles” as for 

micrometeorites h) range of particle mass flux to Earth's surface after applying atmospheric entry losses of 60 to 90% 
(Cordier and Folco, 2014). 

Upper Atmosphere Surface Evaporated

Particle-flux [g/yr] Particle-flux [g/yr] in ATM [%]

10-16 - 10-15 1.5 7.4E-08 4.88E+04b) 4.88E+04b) 0

10-15 - 10-14 1.5 1.6E-07 8.65E+04b) 8.65E+04b) 0

10-14 - 10-13 1.5 3.4E-07 1.70E+05b) 1.70E+05b) 0

10-13 - 10-12 1.5 7.4E-07 4.98E+05b) 4.98E+05b) 0

10-12 - 10-11 1.5 1.6E-06 1.93E+06b) 1.93E+06b) 0

10-11 - 10-10 1.5 3.4E-06 8.75E+06b) 8.75E+06b) 0

10-10 - 10-9 1.5 7.4E-06 3.46E+07b) 3.46E+07b) 0

10-9 - 10-8 1.5 1.6E-05 1.83E+08b) 1.83E+08b) 0

10-8 - 10-7 1.5 3.4E-05 9.16E+08b) 9.16E+08b) 0

10-7 - 10-6 2.5 6.2E-05 2.57E+09b) 1.03E+09–2.57E+08h) 60–90f)

10-6 - 10-5 2.5 1.3E-04 4.31E+09b) 1.73E+09–4.31E+08h) 60–90f)

10-5 - 10-4 2.5 2.9E-04 4.34E+09b) 1.74E+09–4.34E+08h) 60–90f)

10-4 - 10-3 2.5 6.2E-04 3.16E+09b) 1.27E+09–3.16E+08h) 60–90f)

10-3 - 10-2 2.5 1.3E-03 1.41E+09c) 5.65E+08–1.41E+08h) 60–90g)

10-2 - 10-1 2.5 2.9E-03 4.68E+08c) 1.87E+08–4.68E+07h) 60–90g)

10-1 - 100 2.5 6.2E-03 1.41E+08c) 5.65E+07–1.41E+07h) 60–90g)

100 - 101 2.5 1.3E-02 2.24E+07c) 8.96E+06–2.24E+06h) 60–90g)

101 - 102 2.5 2.9E-02 3.55E+06c) 1.42E+06–3.55E+05h) 60–90g)

102 - 103 2.5 6.2E-02 2.36E+07d) 2.94E+06d) 88

103 - 104 2.5 1.3E-01 9.65E+07d) 1.19E+07d) 88

104 - 105 2.5 2.9E-01 1.81E+08d) 2.00E+07d) 89

105 - 106 2.5 6.2E-01 2.15E+08d) 1.20E+07d) 94

106 - 107 2.5 1.3E+00 2.53E+08d) 6.64E+06d) 97

107 - 108 2.5 2.9E+00 3.07E+08d) 2.84E+06d) 99

108 - 109 2.5 6.2E+00 3.63E+08d) 2.87E+06d) 99

109 - 1010 2.5 1.3E+01 4.24E+08d) 2.64E+06d) 99

1010 - 1011 2.5 2.9E+01 5.02E+08d) 2.00E+06 99.6

1011 - 1012 2.5 6.2E+01 5.97E+08d) 5.00E+05 99.9

1012 - 1013 2.5 1.3E+02 7.05E+08d) 1.00E+04 ≈100

1013 - 1014 2.5 2.9E+02 6.51E+08d) 0 100

1014 - 1015 2.5 6.2E+02 1.72E+09d) 0 100

1015 - 1016 2.5 1.3E+03 7.72E+09d) 0 100

1016 - 1017 2.5 2.9E+03 3.15E+10d) 0 100

1017 - 1018 2.5 6.2E+03 1.14E+11d) 0 100

1018 - 1019 2.5 1.3E+04 4.58E+11d) 0 100

1019 - 1020 2.5 2.9E+04 9.73E+11d) 0 100

1020 - 1021 2.5 6.1E+04 1.61E+12e) 0 100

1021 - 1022 2.5 1.3E+05 4.87E+12e) 0 100

1022 - 1023 2.5 2.8E+05 5.53E+12e) 0 100

1024 - 1025 2.5 1.3E+06 1.32E+13e) 0 100

Particle

type
la

rg
e

 b
o

d
y

ve
ry

 la
rg

e
 b

o
d

ie
s

Diameter
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Sum 2.85E+09 - 7.79E+092.68E+13
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B1: 
20

Ne concentration within the 50 nm thick outer particle shell  

 
Assuming that the entire measured Ne-inventory in the smallest IDPs (mass bin of 10

-10
–10

-9 
g) of 6.92*10

-2
 

cm³STP/g represents saturation of SW-implanted Ne in the outermost particle shell of 50 nm thickness, the 
20

Ne 

conentration within this outer particle layer can be calculated. First, the respective volume dependent mass of 

this layer has to be calculated using a spherical shaped grain geometry with V=
4

3
𝜋𝑟3and V=

𝑚

𝜌
. In the 

calculations the mean mass (geometric) of 3.16*10
-10

 g for the smallest IDP mass bin is used. Following Pepin et 

al. (2000, 2001) and Kehm et al. (2002) the density of the smallest IDPs is 1.5 g/cm³. 

Then, the radius of the IDP particle is:  

𝑟 = √
3𝑚

4𝜋𝜌

3
  (1). 

 

Where 𝑚 is the mass and 𝜌 the density of the IDP. The volume 𝑉 of the 50 nm tick shell can be calculated by 

subsitution of eq. (1) in: 

𝑉 = (
4

3
𝜋𝑟3) − (

4

3
𝜋(𝑟 − 50 𝑛𝑚)3) (2) 

 

With eq. (2) and the desnsity of 1.5 g/cm³ the mass of the 50 nm shell can be calculated according to: 

 
𝑚 =  𝜌 ∗ 𝑉 (3) 

 

The amount of 
20

Ne that is sited within the 50 nm thick shell can be determined with the mean concentration of 

the measured particles (6.92*10
-2

 cm³STP/g) and their mean mass (3.16*10
-10

 g): 

 
𝑉 [cm3STP] = 𝑚 ∗ 20Ne concentration [cm³STP/g] (4) 

 

Dividing (4) trough (3) gives the wanted 
20

Ne concentration within the outermost 50 nm thick particle layer. This 

concentration amounts to 1.73 cm³STP/g.  

Calculating the mass of the outer particle shell for smaller sizes (β-meteorites) according to eq. (3) and using the 
20

Ne concentration of 1.73 cm³STP/g from eq. (4) the 
20

Ne inventory in cm³STP in the respective shell of β-

meteorites can be calculated (Tab. B2). Dividing this inventory through the mean mass of the mass bin yields the 
20

Ne concentration for the complete particle: 

 

𝑁𝑒20  concentration [cm³STP/g] =
𝑉 [cm3STP]

𝑚
 (5) 

 

For 𝑚 the mean geometric mass of the respective mass bin is used (Tab. B2).  

 

 
 
 
Tab. B2: Geometric downscaling of the 20Ne concentration measured in IDPs for samller particle sizes. According to the 
20Ne concentration of 1.73 cm³STP/g calculated in B1 for the 50 nm thick outermost particle shell the 20Ne inventory in this 

layer for smaller β-meteorites and the 20Ne concentration can be calculated. 

 
a) assumed density for β-meteorites following Pepin et al. (2000, 2001) and Kehm et al. (2002). 

 

 

 

 

 

 

 

10-16 - 10-15 1.5 3.69E-08 2.20E-16 3.30E-16 5.70E-16 1.73E+00

10-15 - 10-14 1.5 7.95E-08 2.00E-15 3.00E-15 5.18E-15 1.64E+00

10-14 - 10-13 1.5 1.71E-07 1.36E-14 2.04E-14 3.52E-14 1.11E+00

10-13 - 10-12 1.5 3.69E-07 7.46E-14 1.12E-13 1.93E-13 6.10E-01

10-12 - 10-11 1.5 7.95E-07 3.73E-13 5.60E-13 9.66E-13 3.05E-01

10-11 - 10-10 1.5 1.71E-06 1.79E-12 2.69E-12 4.64E-12 1.47E-01

Density

[g/cm³]a)

Mass Bin 

[g]

Particle

type

radius

[m]

mass 

(shell) [g]

vol. (shell)

[cm³]

20Ne (shell)

[cm³STP]

20Ne (part.) 

[cm³STP/g]

β
-m

et
eo

ri
te
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B2: Ne-B concentration in the 50 nm shell of “inner Solar System bodies” during accretion 

 
The 

20
Ne concentration of solar wind irradiated materials of all sizes that accreted in the inner Solar System 

during early terrestrial formation can be calculated by geometric upcaling of the surface correlated Ne-B 

component (
20

Ne/
22

Ne: 12.61). For this purpose, the 
20

Ne concentration of the SW-saturated 50 nm thick outer 

particle shell determined to 1.73 cm³STP/g (see B1) has to be multiplied with the respective volume fraction of 

the 50 nm shell from the total volume of the particle or body (Tab. B3). The density of the inner Solar System 

bodies is assumed 2.5 g/cm³ (Grotheer and Livi, 2014). Then the volume of the total particle can be calculated 

with: 

𝑉 =  
𝑚

𝜌
  (6) 

 
Where 𝑚 is the mean geometric mass of each mass interval. The volume of the 50 nm thick particle shell can be 

calculated by using equations (1) and (2). The volume fraction of the particle shell from the particle volume 

multiplied with the maximum 
20

Ne concentration of 1.73 cm³STP/g in the outer layer gives the respective 
20

Ne 

concentration for larger particles and bodies for each mass interval. 

 
20Ne concentration [cm³STP/g] =  

V(i,50 nm)

V(i,particle)
∗ 1.73 cm³STP/g (7) 

 

Where i is the index for a particular mass bin (Tab. B3). All particle sizes contain a 
20

Ne/
22

Ne ratio of 12.61. 

 
Tab. B3: Geometric upscaling of the 20Ne concentration for the surface correlated Ne-B component. 

 
a) the density of the “inner Solar System bodies” is assumed to be 2.5g/cm³ following Grotheer and Livi (2014).

10-16 - 10-15 2.5 1.26E-16 1.26E-16 1.00E+00 1.73E+00

10-15 - 10-14 2.5 1.26E-15 1.24E-15 9.83E-01 1.70E+00

10-14 - 10-13 2.5 1.26E-14 9.11E-15 7.20E-01 1.24E+00

10-13 - 10-12 2.5 1.26E-13 5.17E-14 4.08E-01 7.05E-01

10-12 - 10-11 2.5 1.26E-12 2.62E-13 2.07E-01 3.58E-01

10-11 - 10-10 2.5 1.26E-11 1.27E-12 1.00E-01 1.73E-01

10-10 - 10-9 2.5 1.26E-10 6.00E-12 4.74E-02 8.18E-02

10-9 - 10-8 2.5 1.26E-09 2.81E-11 2.22E-02 3.83E-02

10-8 - 10-7 2.5 1.26E-08 1.31E-10 1.03E-02 1.78E-02

10-7 - 10-6 2.5 1.26E-07 6.08E-10 4.81E-03 8.30E-03

10-6 - 10-5 2.5 1.26E-06 2.83E-09 2.23E-03 3.86E-03

10-5 - 10-4 2.5 1.26E-05 1.31E-08 1.04E-03 1.79E-03

10-4 - 10-3 2.5 1.26E-04 6.09E-08 4.82E-04 8.31E-04

10-3 - 10-2 2.5 1.26E-03 2.83E-07 2.24E-04 3.86E-04

10-2 - 10-1 2.5 1.26E-02 1.31E-06 1.04E-04 1.79E-04

10-1 - 100 2.5 1.26E-01 6.09E-06 4.82E-05 8.31E-05

100 - 101 2.5 1.26E+00 2.83E-05 2.24E-05 3.86E-05

101 - 102 2.5 1.26E+01 1.31E-04 1.04E-05 1.79E-05

102 - 103 2.5 1.26E+02 6.09E-04 4.82E-06 8.31E-06

103 - 104 2.5 1.26E+03 2.83E-03 2.24E-06 3.86E-06

104 - 105 2.5 1.26E+04 1.31E-02 1.04E-06 1.79E-06

105 - 106 2.5 1.26E+05 6.09E-02 4.82E-07 8.31E-07

106 - 107 2.5 1.26E+06 2.83E-01 2.24E-07 3.86E-07

107 - 108 2.5 1.26E+07 1.31E+00 1.04E-07 1.79E-07

108 - 109 2.5 1.26E+08 6.09E+00 4.82E-08 8.31E-08

109 - 1010 2.5 1.26E+09 2.83E+01 2.24E-08 3.86E-08

1010 - 1011 2.5 1.26E+10 1.31E+02 1.04E-08 1.79E-08

1011 - 1012 2.5 1.26E+11 6.09E+02 4.82E-09 8.31E-09

1012 - 1013 2.5 1.26E+12 2.83E+03 2.24E-09 3.86E-09

1013 - 1014 2.5 1.26E+13 1.31E+04 1.04E-09 1.79E-09

1014 - 1015 2.5 1.26E+14 6.09E+04 4.82E-10 8.31E-10

1015 - 1016 2.5 1.26E+15 2.83E+05 2.24E-10 3.86E-10

1016 - 1017 2.5 1.26E+16 1.31E+06 1.04E-10 1.79E-10

1017 - 1018 2.5 1.26E+17 6.09E+06 4.82E-11 8.31E-11

1018 - 1019 2.5 1.26E+18 2.83E+07 2.24E-11 3.86E-11

1019 - 1020 2.5 1.26E+19 1.31E+08 1.04E-11 1.79E-11

1020 - 1021 2.5 1.26E+20 6.10E+08 4.82E-12 8.32E-12

1021 - 1022 2.5 1.26E+21 2.83E+09 2.24E-12 3.86E-12

1022 - 1023 2.5 1.26E+22 1.32E+10 1.04E-12 1.80E-12

1024 - 1025 2.5 1.26E+24 2.79E+11 2.20E-13 3.80E-13

ID
P

M
M

la
rg

e
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Tab. B5: For exemplification a late venner 20Ne/22Ne end-member of 8.2 (Ne-A) is assumed and a Ne-B mantle end-member 

of 12.61 is considered. To generate an atmospheric 20Ne/22Ne ratio of 9.8 by mixing a late veneer component and mantle 

degassing the fraction of mantle contribution is given by 

1

9.8
 − 

1

8.2
 

1

12.61
 − 

1

8.2

 = 0.467 (=46.7%) and the fraction of late veneer 

contribution is 1 − 0.467 = 0.553 (= 53.3%). The 20Ne atmospheric inventory is known (6.52*1019 cm³STP; Zhang, 2014) 

as well as the mantle inventory (6.55*1018 cm³STP for a moderately degassed mantle and 1.31*1018 cm³STP for a strongly 

degassed mantle; Marty, 2012). An absolute amount of 0.467 ∗ 6.52 ∗ 1019𝑐𝑚³𝑆𝑇𝑃 = 3.04 ∗ 1019𝑐𝑚³𝑆𝑇𝑃 is therefore 

added to the asmosphere by mantle degassing. This amount accounts for a 
3.04∗1019𝑐𝑚³𝑆𝑇𝑃

(3.04∗1019+ 6.55∗1018)𝑐𝑚³𝑆𝑇𝑃
= 0.823 (= 82.3%) 

degassed mantle. This value is used in eq. (12) and adjusted according to the associated parameters. The respective fraction 

of Earth’s mass (ME) that is contributed by the late veneer (eq. (14)) is evaluated by applying an enhancement to the average 

annual mass flux (Tab. B1) to explain today’s atmosperic and mantle Ne inventories according to the calculations shown in 

Table B7. The results of the calculations for different late veneer end-members in case of a moderately degassed and a 

strongly degassed mantle are shown in Table B5 and Figure 3.9. 

 

 

Late veneer 

endmember

mantle 20Ne 

in atmosphere
mantle degassing

fraction of

Late veneer
ME

5.2 79.9% 88.82% 20.1% 0.85%

6.2 72.3% 87.79% 27.7% 1.18%

7.2 61.8% 86.02% 38.2% 1.62%

8.2 46.7% 82.28% 53.3% 2.26%

8.4 42.8% 80.97% 57.2% 2.43%

8.6 38.5% 79.30% 61.5% 2.61%

8.8 33.8% 77.06% 66.2% 2.81%

9.0 28.5% 73.93% 71.5% 3.03%

9.2 22.6% 69.25% 77.4% 3.28%

9.4 16.0% 61.46% 84.0% 3.56%

9.6 8.5% 45.96% 91.5% 3.88%

9.8 0.0% 0.00% 100.0% 4.24%

Late veneer 

endmember

mantle 20Ne 

in atmosphere
mantle degassing

fraction of

Late veneer
ME

5.2 79.9% 97.54% 20.1% 0.85%

6.2 72.3% 97.29% 27.7% 1.18%

7.2 61.8% 96.85% 38.2% 1.62%

8.2 46.7% 95.87% 53.3% 2.26%

8.4 42.8% 95.51% 57.2% 2.43%

8.6 38.5% 95.04% 61.5% 2.61%

8.8 33.8% 94.38% 66.2% 2.81%

9.0 28.5% 93.41% 71.5% 3.03%

9.2 22.6% 91.84% 77.4% 3.28%

9.4 16.0% 88.86% 84.0% 3.56%

9.6 8.5% 80.96% 91.5% 3.88%

9.8 0.0% 0.00% 100.0% 4.24%

moderately degassed mantle

atmospheric 20Ne [cm³]

mantle 20Ne [cm³]

6.52E+19

6.55E+18

strongly degassed mantle

Magma ocean model

Magma ocean model

atmospheric 20Ne [cm³] 6.52E+19

mantle 20Ne [cm³] 1.31E+18
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Tab. B6: According to the calculations performed in Table B7 a certain fixed amount of 20Ne has to be present in the mantle 

in function of the magma ocean depth, total accreted 20Ne and the partial pressure in the atmosphere. This amount is available 

for mantle degassing in “phase II” after the giant Moon-forming impact (eq. (11) and eq. (12)). The amount of degassed Ne 

with a 20Ne/22Ne ratio of 12.61 (Ne-B) mixes with a late veneer contributed 20Ne/22Ne component (Ne-A: 5.2, 8.2 and 9.2, see 

Tab. B6) to generate today’s atmospheric 20Ne inventory (eq. (12)) and 20Ne/22Ne ratio of 9.8. Furthermore, sufficient 20Ne 

has to be spared to achieve today’s mantle inventory (eq. (13)). In any case the fraction of 20Ne from the total accreted Ne 

(before the Moon-forming giant impact) that is dissolved (assuming a fixed Ne solubility of 2.5*10-4 cm³/g/bar) into the 

magma ocean (eq.(11)) of a certain depth is independent of the 20Ne/22Ne component of the late veneer and the related degree 

of mantle degassing. The results of the calculations are shown in Table B6 and Figure 3.10. 

 

 

8.2 8.2

82 96

magma ocean

 depth [km]

dissolved
20Ne [cm³]

diss. 20Ne 

 [cm³/g] 

total accreted 
20Ne [cm³]

 part. pres. 
20Ne [bar]

fract. diss.
20Ne [%]

magma ocean

 depth [km]

dissolved
20Ne [cm³]

diss. 20Ne 

 [cm³/g] 

total accreted 
20Ne [cm³]

 part. pres. 
20Ne [bar]

fract. diss. 
20Ne [%]

60 3.7E+19 5.36E-07 8.5E+21 2.1E-03 0.43 52 3.2E+19 5.36E-07 8.49E+21 2.1E-03 0.38

94 3.7E+19 3.46E-07 5.5E+21 1.4E-03 0.67 73 3.2E+19 3.8E-07 6.02E+21 1.5E-03 0.53

159 3.7E+19 2.07E-07 3.3E+21 8.3E-04 1.13 90 3.2E+19 3.11E-07 4.93E+21 1.2E-03 0.65

214 3.7E+19 1.56E-07 2.5E+21 6.2E-04 1.50 101 3.2E+19 2.76E-07 4.38E+21 1.1E-03 0.72

242 3.7E+19 1.38E-07 2.2E+21 5.5E-04 1.69 136 3.2E+19 2.07E-07 3.29E+21 8.3E-04 0.97

278 3.7E+19 1.21E-07 1.9E+21 4.8E-04 1.93 182 3.2E+19 1.56E-07 2.46E+21 6.2E-04 1.29

305 3.7E+19 1.11E-07 1.8E+21 4.4E-04 2.11 279 3.2E+19 1.04E-07 1.64E+21 4.1E-04 1.94

316 3.7E+19 1.07E-07 1.7E+21 4.3E-04 2.18 429 3.2E+19 6.91E-08 1.10E+21 2.8E-04 2.90

327 3.7E+19 1.04E-07 1.6E+21 4.1E-04 2.25 589 3.2E+19 5.18E-08 8.21E+20 2.1E-04 3.87

398 3.7E+19 8.64E-08 1.4E+21 3.5E-04 2.71 942 3.2E+19 3.46E-08 5.48E+20 1.4E-04 5.81

507 3.7E+19 6.91E-08 1.1E+21 2.8E-04 3.38 1870 3.2E+19 2.07E-08 3.29E+20 8.3E-05 9.68

700 3.7E+19 5.18E-08 8.2E+20 2.1E-04 4.51 9.2

900 3.7E+19 4.18E-08 6.6E+20 1.7E-04 5.59 92

1138 3.7E+19 3.46E-08 5.5E+20 1.4E-04 6.77 46 1.6E+19 3.08E-07 4.87E+21 1.2E-03 0.33

1500 3.7E+19 2.81E-08 4.4E+20 1.1E-04 8.33 58 1.6E+19 2.4E-07 3.81E+21 9.6E-04 0.42

2000 3.7E+19 2.32E-08 3.7E+20 9.3E-05 10.10 102 1.6E+19 1.38E-07 2.19E+21 5.5E-04 0.73

2430 3.7E+19 2.07E-08 3.3E+20 8.3E-05 11.28 137 1.6E+19 1.04E-07 1.64E+21 4.1E-04 0.98

9.2 208 1.6E+19 6.91E-08 1.10E+21 2.8E-04 1.46

69 433 1.6E+19 3.46E-08 5.48E+20 1.4E-04 2.93

61 2.1E+19 3.08E-07 4.87E+21 1.2E-03 0.44 767 1.6E+19 2.07E-08 3.29E+20 8.3E-05 4.88

90 2.1E+19 2.07E-07 3.29E+21 8.3E-04 0.65 1878 1.6E+19 1.04E-08 1.65E+20 4.2E-05 9.71

136 2.1E+19 1.38E-07 2.19E+21 5.5E-04 0.97 5.2

183 2.1E+19 1.04E-07 1.64E+21 4.1E-04 1.29 98

280 2.1E+19 6.91E-08 1.10E+21 2.8E-04 1.95 55 5.3E+19 8.47E-07 1.34E+22 3.4E-03 0.40

592 2.1E+19 3.46E-08 5.48E+20 1.4E-04 3.89 137 5.3E+19 3.46E-07 5.48E+21 1.4E-03 0.98

1079 2.1E+19 2.07E-08 3.29E+20 8.3E-05 6.49 232 5.3E+19 2.07E-07 3.29E+21 8.3E-04 1.63

5.2 313 5.3E+19 1.56E-07 2.46E+21 6.2E-04 2.16

89 410 5.3E+19 1.21E-07 1.92E+21 4.8E-04 2.78

61 5.9E+19 8.47E-07 1.34E+22 3.4E-03 0.44 765 5.3E+19 6.91E-08 1.10E+21 2.8E-04 4.87

151 5.9E+19 3.46E-07 5.48E+21 1.4E-03 1.07 1081 5.3E+19 5.18E-08 8.21E+20 2.1E-04 6.50

256 5.9E+19 2.07E-07 3.29E+21 8.3E-04 1.79 1889 5.3E+19 3.46E-08 5.48E+20 1.4E-04 9.74

346 5.9E+19 1.56E-07 2.46E+21 6.2E-04 2.38 2207 5.3E+19 3.14E-08 4.98E+20 1.3E-04 10.70

454 5.9E+19 1.21E-07 1.92E+21 4.8E-04 3.06

854 5.9E+19 6.91E-08 1.10E+21 2.8E-04 5.35

1218 5.9E+19 5.18E-08 8.21E+20 2.1E-04 7.14

2206 5.9E+19 3.46E-08 5.48E+20 1.4E-04 10.70

moderately degassed mantle

Late veneer 20Ne/22Ne

degree of mantle degassing [%]

strongly degassed mantle

Late veneer 20Ne/22Ne

degree of mantle degassing [%]

Late veneer 20Ne/22Ne

degree of mantle degassing [%]

Late veneer 20Ne/22Ne

degree of mantle degassing [%]

Late veneer 20Ne/22Ne

degree of mantle degassing [%]

Late veneer 20Ne/22Ne

degree of mantle degassing [%]
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Tab. B7: The model calculation are performed by adjusting the critical parameters for the late veneer isotopic composition 

and degree of mantle degassing (Tab. B5) to the related amount of pre-lunar impact dissolved 20Ne in the mantle that is 

available for degassing after the giant impact and the depth of the magma ocean in which the 20Ne is dissolved (Tab. B6). The 

adjustments of the interdependent parameters are intended to result in a Ne composition that fits today’s terrestrial Ne 

characteristics by a deviation of less then 1%. The Ne values that are aimed to be reconciled are the atmospheric 20Ne 

inventory (6.52*1019 cm³STP; Zhang, 2014) and 20Ne/22Ne ratio of 9.80 (eq. (12)) as well as the 20Ne inventory of the mantle 

(eq. (13), 6.55*1018 cm³STP for a moderately degassed mantle and 1.31*1018 cm³STP for a strongly degassed mantle; Marty, 

2012).  

First, two separate periods of enhanced mass and Ne flux during accretion have to be considered: an early “phase I” before 

the Moon-forming impact and a “pahse II” of late accretion. For exemplified calculations a late veneer contribution in “phase 

II” with an isotopic ratio of 20Ne/22Ne: 8.2 (Ne-A) shall be assumed which already constrains all previously established Ne 

components: In “phase I”, earlierst accretion happens within a gas shielded disk environment (e.g., for 5 Ma) with enhanced 

mass and Ne fluxes of 4.03*107 times the present flux (exemplified case). SW-implantation is possible in a subsequent stage 

after the dissipation of the solar nebula (e.g., for 7 Ma) with prevailing mass and Ne fluxes of 1.50*106 times the present flux 

(exemplified case). The fraction of SW irradiated material from the total terrestrial precursor material is then given by the 

time dependent flux rates: 
(1.50 ∗ 106) ∗ 7Ma

(1.50 ∗ 106) ∗ 7Ma + (4.03 ∗ 107) ∗ 5Ma
= 0.05 (= 5.00%)     (8) 

 

This is justified if ~95% of Eath’s mass is accreted before the Moon-forming impact by using the mass flux in Table B1: 

 

(4.03 ∗ 107) ∗ ( ∑ 𝑚𝑎𝑠𝑠𝑏𝑖𝑛 𝑓𝑙𝑢𝑥

1025𝑔

10−16𝑔

 [
𝑔
𝑦𝑟⁄ ]) ∗ 5𝑀𝑎 + (1.50 ∗ 106) ∗ ( ∑ 𝑚𝑎𝑠𝑠𝑏𝑖𝑛 𝑓𝑙𝑢𝑥

1025𝑔

10−16𝑔

 [
𝑔
𝑦𝑟⁄ ]) ∗ 7𝑀𝑎 = 0.95 𝑀𝐸             (9) 

 

The amount of accreted 20Ne during SW-implantation in the inner Solar System is then given using the upper atmosphere Ne-

B flux (Tab. B4): 

(1.50 ∗ 106) ∗ ( ∑ 𝑁𝑒20  𝑏𝑖𝑛 𝑓𝑙𝑢𝑥 (𝑁𝑒 − 𝐵)

1025𝑔

10−16𝑔

 [𝑐𝑚
3𝑆𝑇𝑃

𝑦𝑟⁄ ]) ∗ 7𝑀𝑎 = 8.21 ∗ 1020𝑐𝑚3𝑆𝑇𝑃 𝑁𝑒20           (10) 

 

The total amount of accreted 20Ne in “phase I” (eq. (10)) is dissolved in a magma ocean of 700 km depth (exemplified case, 

Tab. B6). Here, the Ne solubility of 2.5*10-4 cm³STP/g/bar is used (Jambon et al., 1986; Paonita, 2005). The weight of the 

melt is calculated with 2.8 g/cm³ and the volume of a 700 km deep magma ocean on a growing Earth that has reached ≳90% 

of its present size. The partial pressure of the dissolving Ne is calculated by dividing the total accreted amount of 20Ne (eq. 

(10)) through today’s atmospheric inventory (3.961*1024 cm³STP; Ozima and Podosek, 2002). The amount of dissolved 20Ne 

then is: 

(2.5 ∗ 10−4
cm3STP

g ∗ bar
) ∗ (

8.21 ∗ 1020

3.961 ∗ 1024
)𝑏𝑎𝑟 ∗ (7.2 ∗ 1026g)  =  3.7 ∗ 1019cm3STP        (11) 

 

This represents 4.51% of the total accreted 20Ne (see Tab. B6 and Fig. 3.10). 

In “phase II”, after the giant Moon-forming impact that caused total atmospheric blow-off and the generation of a magma 

ocean, mantle degassing leads to reinjection of the previously dissolved 20Ne (eq. (11)) into the atmosphere. The degassed 

Ne-B component mixes with the late veneer Ne-A component to generate the present atmospheric Ne inventory (Tab. B5). 

Here, the isotopic composition of the late veneer comes into play (exemplified case for 20Ne/22Ne: 8.2 (Ne-A)).  

To mix with a Ne-B component (20Ne/22Ne: 12.61), resulting from 82.16% mantle degassing (Tab. B5), a late veneer flux of 

1*105 times the present flux with an isotopic composition of 20Ne/22Ne: 8.2 (upper atmosphere Ne-A flux in Tab. B4, 

exemplified case) prevailing for a 50 Ma period, is neede to result in the present atmospheric 20Ne/22Ne ratio of 9.80: 

 

(3.7 ∗ 1019cm3STP ∗ 0.8216) + (1 ∗ 105) ∗ (∑ 𝑁𝑒20  𝑏𝑖𝑛 𝑓𝑙𝑢𝑥 (𝑁𝑒 − 𝐴)
1025𝑔
10−16𝑔 [𝑐𝑚

3𝑆𝑇𝑃
𝑦𝑟⁄ ]) ∗ 50 𝑀𝑎

(
3.7 ∗ 1019cm3STP ∗ 0.8216

12.61
) + (1 ∗ 105) ∗ (∑ 𝑁𝑒22  𝑏𝑖𝑛 𝑓𝑙𝑢𝑥 (𝑁𝑒 − 𝐴)

1025𝑔

10−16𝑔
[𝑐𝑚

3𝑆𝑇𝑃
𝑦𝑟⁄ ]) ∗ 50 𝑀𝑎

= 9.80       (12) 

 

The atmospheric 20Ne inventory is given by the numerator of eq. (12) and amounts to 6.52 ∗ 1019cm3STP. The remaining 
20Ne after mantle degassing determines the present mantle inventory observed today for a moderately degassed mantle and is 

calculatd with: 
3.7 ∗ 1019cm3STP ∗ (1 − 0.8216) ≈ 6.6 ∗ 1018cm3STP          (13)        

 

With an enhaced flux of 1*105 times the present flux for 50 Ma the total accreted late veneer mass is calculated by applying 

Tab. B1:  

(1 ∗ 105) ∗ ( ∑ 𝑚𝑎𝑠𝑠𝑏𝑖𝑛 𝑓𝑙𝑢𝑥

1025𝑔

10−16𝑔

 [
𝑔
𝑦𝑟⁄ ]) ∗ 50 𝑀𝑎 = 1.35 ∗ 1026𝑔        (14) 

 

This value amounts to 2.26% of the total mass of Earth of 5.97*1027 g (Tab. B5). 
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The results of the calculations for a range of parameter sets, exempliefied above for a single case, that lead to satisfactory Ne 

inventories for Earth are shown in Table B7 and Figure 3.11. 

 

 

8.2 8.2

2.26 2.26

82.16 95.7

shielded 

accretion

(e.g. 5 Ma)

duration of

SW-irrad.

(e.g. 7 Ma)

fraction of

SW-irrad

depth of

magma

ocean

shielded 

accretion

(e.g. 5 Ma)

duration of

SW-irrad.

(e.g. 7 Ma)

fraction of

SW-irrad

depth of

magma

ocean

[%] [km] [%] [km]

100 100

2.1E+07 1.6E+07 51.2% 60 2.1E+07 1.6E+07 51.2% 52

2.8E+07 1.0E+07 33.0% 94 2.7E+07 1.1E+07 36.3% 73

3.4E+07 6.0E+06 19.8% 159 3.0E+07 9.0E+06 29.7% 90

3.6E+07 4.5E+06 14.9% 214 3.1E+07 8.0E+06 26.4% 101

3.7E+07 4.0E+06 13.2% 242 3.4E+07 6.0E+06 19.8% 136

3.8E+07 3.5E+06 11.6% 278 3.6E+07 4.5E+06 14.9% 182

3.8E+07 3.2E+06 10.6% 305

3.8E+07 3.1E+06 10.2% 316

3.8E+07 3.0E+06 9.9% 327 3.8E+07 3.0E+06 9.9% 279

3.9E+07 2.5E+06 8.3% 398

4.0E+07 2.0E+06 6.6% 507 4.0E+07 2.0E+06 6.6% 429

4.0E+07 1.5E+06 5.0% 700 4.0E+07 1.5E+06 5.0% 589

4.1E+07 1.2E+06 4.0% 900

4.1E+07 1.0E+06 3.3% 1138 4.1E+07 1.0E+06 3.3% 942

4.1E+07 8.1E+05 2.7% 1500

4.1E+07 6.7E+05 2.2% 2000

4.2E+07 6.0E+05 2.0% 2430 4.2E+07 6.0E+05 2.0% 1870

4.2E+07 3.0E+05 1.0% 10590 4.2E+07 3.0E+05 1.0% 9882

9.2 9.2

3.28 3.28

69 91.47

shielded 

accretion

(e.g. 5 Ma)

duration of

SW-irrad.

(e.g. 7 Ma)

fraction of

SW-irrad

depth of

magma

ocean

shielded 

accretion

(e.g. 5 Ma)

duration of

SW-irrad.

(e.g. 7 Ma)

fraction of

SW-irrad

depth of

magma

ocean

[%] [km] [%] [km]

100 100

3.0E+07 8.9E+06 29.4% 61 3.0E+07 8.9E+06 29.4% 46

3.4E+07 6.0E+06 19.8% 90 3.3E+07 7.0E+06 23.0% 58

3.7E+07 4.0E+06 13.2% 136 3.7E+07 4.0E+06 13.2% 102

3.8E+07 3.0E+06 9.9% 183 3.8E+07 3.0E+06 9.9% 137

4.0E+07 2.0E+06 6.6% 280 4.0E+07 2.0E+06 6.6% 208

4.1E+07 1.0E+06 3.3% 592 4.1E+07 1.0E+06 3.3% 433

4.2E+07 6.0E+05 2.0% 1079 4.2E+07 6.0E+05 2.0% 767

4.2E+07 3.0E+05 1.0% 3300 4.2E+07 3.0E+05 1.0% 1878

4.2E+07 2.0E+05 0.7% 7840

5.2 5.2

0.85 0.85

88.72 97.43

shielded 

accretion

(e.g. 5 Ma)

duration of

SW-irrad.

(e.g. 7 Ma)

fraction of

SW-irrad

depth of

magma

ocean

shielded 

accretion

(e.g. 5 Ma)

duration of

SW-irrad.

(e.g. 7 Ma)

fraction of

SW-irrad

depth of

magma

ocean

[%] [km] [%] [km]

100 100

8.1E+06 2.5E+07 80.9% 61 8.1E+06 2.5E+07 80.9% 55

2.8E+07 1.0E+07 33.0% 151 2.8E+07 1.0E+07 33.0% 137

3.4E+07 6.0E+06 19.8% 256 3.4E+07 6.0E+06 19.8% 232

3.6E+07 4.5E+06 14.9% 346 3.6E+07 4.5E+06 14.9% 313

3.8E+07 3.5E+06 11.6% 454 3.8E+07 3.5E+06 11.6% 410

3.8E+07 3.1E+06 10.2% 518 3.8E+07 3.1E+06 10.2% 468

4.0E+07 2.0E+06 6.6% 854 4.0E+07 2.0E+06 6.6% 765

4.0E+07 1.5E+06 5.0% 1218 4.0E+07 1.5E+06 5.0% 1081

4.1E+07 1.0E+06 3.3% 2206 4.1E+07 1.0E+06 3.3% 1889

4.1E+07 9.1E+05 3.0% 2640 4.1E+07 9.1E+05 3.0% 2207

4.2E+07 6.0E+05 2.0% 9480 4.2E+07 6.0E+05 2.0% 8870

atmospheric loss by giant impact [%]

atmospheric loss by giant impact [%]

atmospheric loss by giant impact [%]

Late veneer 20Ne/22Ne

degree of mantle degassing [%]

flux times present
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Late veneer 20Ne/22Ne

Late veneer 20Ne/22Ne

ME [%] accreted by Late veneer

ME [%] accreted by Late veneer

ME [%] accreted by Late veneer

degree of mantle degassing [%]

degree of mantle degassing [%]

Late veneer 20Ne/22Ne

ME [%] accreted by Late veneer

degree of mantle degassing [%]

moderately degassed mantle

Late veneer 20Ne/22Ne

ME [%] accreted by Late veneer

degree of mantle degassing [%]

flux times present

strongly degassed mantle

ME [%] accreted by Late veneer

degree of mantle degassing [%]

flux times present

atmospheric loss by giant impact [%]

atmospheric loss by giant impact [%]

atmospheric loss by giant impact [%]

flux times present

flux times present

flux times present
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Tab. B8: The calculations that are performed to produce the results in Table B7 have now to be reconciled with a certain 

amount of retained 20Ne in the atmosphere in “phase II” after the giant Moon-forming impact (results for 2–8 % retained 20Ne 

shown in Tab. B8). The amount of retained 20Ne adds to the atmospheric inventory and applies to eq. (12). To generate 

today’s atmospheric and mantle Ne inventories, in particular, the depth of the magma ocean (eq. (11)) and the degree of 

mantle degassing (eq. (12)) have to be adjusted to obtain the respective needed fraction of SW irradiated material (eq. (8) and 

eq. (10)) which delivers 20Ne that is available for dissolution into the magma ocean. Decreasing amounts of SW irradiated 

material are needed if the fraction of surviving Ne after the giant impact increases. For simplicity, only the case of a late 

veneer contribution with a 20Ne/22Ne ratio of 8.2 (Ne-A) is considered. The results of the calculations are shown in Table B8 

and Figure 3.12. 

 

shielded 

accretion

(e.g. 5 Ma)

duration of

SW-irrad.

(e.g. 7 Ma)

fraction of

SW-irrad

depth of

magma

ocean

mantle 

degassing

shielded 

accretion

(e.g. 5 Ma)

duration of

SW-irrad.

(e.g. 7 Ma)

fraction of

SW-irrad

depth of

magma

ocean

mantle 

degassing

[%] [km] [%] [%] [km] [%]

3.9E+07 2.8E+06 9.2% 61 1.5 3.9E+07 2.8E+06 9.2% 13 5.0

3.9E+07 2.8E+06 9.1% 64 5.2 3.9E+07 2.8E+06 9.1% 16 21.9

3.9E+07 2.8E+06 9.1% 65 6.5 3.9E+07 2.5E+06 8.3% 46 69.7

3.9E+07 2.5E+06 8.3% 101 33.3 3.9E+07 2.3E+06 7.6% 76 80.0

4.0E+07 2.0E+06 6.6% 200 57.2 4.0E+07 2.0E+06 6.6% 129 86.4

4.0E+07 1.9E+06 6.3% 226 60.0 4.0E+07 1.7E+06 5.6% 211 90.0

4.0E+07 1.5E+06 5.0% 375 68.6 4.0E+07 1.5E+06 5.0% 275 91.3

4.1E+07 1.3E+06 4.3% 489 71.6 4.1E+07 1.3E+06 4.3% 368 92.4

4.1E+07 1.0E+06 3.3% 764 75.2 4.1E+07 1.0E+06 3.3% 592 93.6

4.1E+07 9.0E+05 3.0% 908 76.2 4.1E+07 9.0E+05 3.0% 706 93.9

4.2E+07 6.0E+05 2.0% 1805 78.7 4.1E+07 8.7E+05 2.9% 754 94.0

4.2E+07 5.6E+05 1.9% 2037 79.0 4.2E+07 6.0E+05 2.0% 1380 94.7

4.2E+07 5.1E+05 1.7% 2500 79.4 4.2E+07 4.9E+05 1.6% 2000 94.9

4.2E+07 4.4E+05 1.5% 2500 95.0

4.0E+07 1.4E+06 4.6% 126 3.5

4.0E+07 1.4E+06 4.6% 128 4.8 4.0E+07 1.4E+06 4.6% 25 1.1

4.1E+07 1.3E+06 4.3% 177 25.9 4.0E+07 1.4E+06 4.6% 26 5.0

4.1E+07 1.0E+06 3.3% 426 58.2 4.1E+07 1.3E+06 4.3% 68 60.8

4.1E+07 9.0E+05 3.0% 554 63.4 4.1E+07 1.2E+06 3.8% 152 80.0

4.1E+07 7.3E+05 2.4% 891 70.0 4.1E+07 1.0E+06 3.3% 271 86.8

4.2E+07 6.0E+05 2.0% 1320 73.5 4.1E+07 9.0E+05 3.0% 374 89.1

4.2E+07 4.5E+05 1.5% 2500 76.6 4.1E+07 8.5E+05 2.8% 433 90.0

4.2E+07 6.0E+05 2.0% 965 93.0

4.1E+07 9.3E+05 3.1% 193 4.6 4.2E+07 4.2E+05 1.4% 2000 94.2

4.1E+07 9.0E+05 3.0% 230 16.8 4.2E+07 3.9E+05 1.3% 2500 94.4

4.1E+07 6.6E+05 2.2% 717 60.0

4.2E+07 6.0E+05 2.0% 905 64.2 4.0E+07 9.3E+05 3.1% 39 4.7

4.2E+07 4.9E+05 1.6% 1486 70.3 4.1E+07 9.0E+05 3.0% 67 42.6

4.2E+07 4.0E+05 1.3% 2500 73.9 4.1E+07 7.7E+05 2.5% 231 80.0

4.2E+07 6.0E+05 2.0% 597 89.4

4.1E+07 7.0E+05 2.3% 261 5.1 4.2E+07 5.8E+05 1.9% 668 90.0

4.1E+07 6.8E+05 2.2% 306 16.1 4.2E+07 3.8E+05 1.2% 2000 93.4

4.2E+07 6.0E+05 2.0% 537 43.6 4.2E+07 3.5E+05 1.1% 2500 93.7

4.2E+07 5.0E+05 1.6% 989 60.0

4.2E+07 3.8E+05 1.3% 2138 70.0 4.1E+07 7.0E+05 2.3% 52 4.5

4.2E+07 3.7E+05 1.2% 2500 71.1 4.1E+07 6.8E+05 2.2% 83 38.5

4.2E+07 6.0E+05 2.0% 262 77.2

4.2E+07 5.8E+05 1.9% 310 80.0

4.2E+07 4.4E+05 1.5% 916 90.0

4.2E+07 3.4E+05 1.1% 2000 92.6

4.2E+07 3.1E+05 1.0% 2500 93.0
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atmospheric loss by giant impact [%]

flux times present
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2.26
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atmospheric loss by giant impact [%] 96

atmospheric loss by giant impact [%] 94

atmospheric loss by giant impact [%] 96

atmospheric loss by giant impact [%] 94

moderately degassed mantle strongly degassed mantle

flux times present

2.26ME [%] accreted by Late veneer

8.2Late veneer 20Ne/22Ne

atmospheric loss by giant impact [%] 92

atmospheric loss by giant impact [%] 98

Giant impact eroded atmosphere Giant impact eroded atmosphere

atmospheric loss by giant impact [%] 92

Late veneer 20Ne/22Ne
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Tab. B9: Without an early magma ocean in “phase I” before the Moon-forming impact, all particles reaching Earth’s surface 

after ablation losses during descent through the protoatmosphere can directly incorporate their Ne inventory into Earth’s 

interior. As for the calculations in Tab. B7, the Ne values that are aimed to be reconciled with a deviation of less than 1% are 

the atmospheric 20Ne inventory (6.52*1019 cm³STP; Zhang, 2014) and 20Ne/22Ne ratio of 9.80 (eq. (18)) as well as the 20Ne 

inventory of the mantle (eq. (19), 6.55*1018 cm³STP for a moderately degassed mantle and 1.31*1018 cm³STP for a strongly 

degassed mantle; Marty, 2012).  

During earliest accretion in “phase I”, the Ne-B flux from the inner Solar System to the surface is characterized by an 
20Ne/22Ne ratio of 12.55 (surface Ne-B flux in Tab. B4) which directly determines the isotopic ratio of Earth’s interior. Only 

if a coeval Ne-A flux to the surface (surface Ne-A flux in Tab. B4) would be enhanced by a factor of 8*102 over the Ne-B 

surface flux, the 20Ne/22Ne ratio would decrease below 12.50.  

Comparable with Tab. B7 and eq. (8) the fraction of SW irradiated material from the total terrestrial precursor material is 

given by the time dependent flux rates that are needed to result in the Ne compositions observed today. For examplification, 

the Mooon-forming impcat is considered to erode any pre-existing atmosphere and the Ne-A component has an isotopic ratio 

of 20Ne/22Ne: 8.2. In this case the irradiated fraction is given by:  

 
(9.17 ∗ 105) ∗ 7Ma

(9.17 ∗ 105) ∗ 7Ma + (4.11 ∗ 107) ∗ 5Ma
= 0.0303 (= 3.03%)      (15) 

 

As in Tab. B7 and eq. (9), this is justified if ~95% ME is accreted before the Moon-forming impact by using Tab. B1: 

 

(4.11 ∗ 107) ∗ ( ∑ 𝑚𝑎𝑠𝑠𝑏𝑖𝑛 𝑓𝑙𝑢𝑥

1025𝑔

10−16𝑔

 [
𝑔
𝑦𝑟⁄ ]) ∗ 5𝑀𝑎 + (9.17 ∗ 105) ∗ ( ∑ 𝑚𝑎𝑠𝑠𝑏𝑖𝑛 𝑓𝑙𝑢𝑥

1025𝑔

10−16𝑔

 [
𝑔
𝑦𝑟⁄ ]) ∗ 7𝑀𝑎 = 0.95 𝑀𝐸         (16) 

 

The amount of incorporated 20Ne into Earth during “phase I” is then given using the surface Ne-B flux (Tab. B4): 

 

(9.17 ∗ 105) ∗ ( ∑ 𝑁𝑒20  𝑏𝑖𝑛 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑓𝑙𝑢𝑥 (𝑁𝑒 − 𝐵)

10−3𝑔

10−16𝑔

 [𝑐𝑚
3𝑆𝑇𝑃

𝑦𝑟⁄ ]) ∗ 7𝑀𝑎 = 3.73 ∗ 1019𝑐𝑚3𝑆𝑇𝑃 𝑁𝑒20           (17) 

 

In “phase II”, after the giant Moon-forming impact that caused total atmospheric blow-off and the generation of a magma 

ocean, mantle degassing leads to reinjection of the previously incorporated 20Ne into the atmosphere. Comparable with Tab. 

B7 and eq. (12), the degassed Ne-B component (20Ne/22Ne: 12.55), resulting from 82.27% mantle degassing, mixes with a 

late veneer flux of 1*105 times the present flux with an isotopic composition of 20Ne/22Ne: 8.2 (upper atmosphere Ne-A flux 

in Tab. B4, exemplified case) prevailing for a 50 Ma period, to result in the present atmospheric 20Ne/22Ne ratio of 9.80: 

 

(3.73 ∗ 1019cm3STP ∗ 0.8227) + (1 ∗ 105) ∗ (∑ 𝑁𝑒20  𝑏𝑖𝑛 𝑓𝑙𝑢𝑥 (𝑁𝑒 − 𝐴)
1025𝑔
10−16𝑔 [𝑐𝑚

3𝑆𝑇𝑃
𝑦𝑟⁄ ]) ∗ 50 𝑀𝑎

(
3.73 ∗ 1019cm3STP ∗ 0.8227

12.55
) + (1 ∗ 105) ∗ (∑ 𝑁𝑒 𝑏𝑖𝑛22  𝑓𝑙𝑢𝑥 (𝑁𝑒 − 𝐴)

1025𝑔

10−16𝑔
[𝑐𝑚

3𝑆𝑇𝑃
𝑦𝑟⁄ ]) ∗ 50 𝑀𝑎

= 9.80       (18) 

 

The atmospheric 20Ne inventory is given by the numerator of eq. (18) and amounts to 6.52 ∗ 1019cm3STP. The remaining 
20Ne after mantle degassing determines the present mantle inventory observed today for a moderately degassed mantle and is 

calculatd with: 
3.73 ∗ 1019cm3STP ∗ (1 − 0.8227) ≈ 6.6 ∗ 1018cm3STP          (19)        

 

If incomplete atmospheric erosion by the Moon-forming impact is taken into consideration a given fraction of the pre-

existing atmosphere is retained. The amount of surviving atmospheric 20Ne is given by the percentage (retained after the giant 

impact) of the amount delivered to the upper atmosphere (cf. eq. (10), upper atmosphere Ne-B flux in Tab. B4) that is 

substracted by the amount of incorporated 20Ne within Earth (eq. (17)). For example, if the late veneer has an isotopic ratio of 
20Ne/22Ne: 8.2 (Ne-A) and 94% of the atmophere is erorded by the impactor then the amount of surviving 20Ne is: 

 

0.06*[((5.22 ∗ 105) ∗ (∑ 𝑁𝑒 𝑏𝑖𝑛20  𝑓𝑙𝑢𝑥 (𝑁𝑒 − 𝐵)
1025𝑔
10−16𝑔  [𝑐𝑚

3𝑆𝑇𝑃
𝑦𝑟⁄ ]) ∗ 7𝑀𝑎) −

((5.22 ∗ 105) ∗ (∑ 𝑁𝑒20  𝑏𝑖𝑛 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑓𝑙𝑢𝑥 (𝑁𝑒 − 𝐵)
10−3𝑔
10−16𝑔  [𝑐𝑚

3𝑆𝑇𝑃
𝑦𝑟⁄ ]) ∗ 7𝑀𝑎)] = 1.59 ∗ 1019𝑐𝑚3𝑆𝑇𝑃 𝑁𝑒20           (20) 

 

This amount adds to the atmospheric 20Ne inventory used for the caluclations in eq. (18) requiring adjustment of the 

assocaited degree of mantle degassing (i.e., 68.88%) and the amount of incorporated 20Ne before the Moon-forming impact 

(eq. (17)). Consequently, surviving atmospheric 20Ne after the Moon-forming impact decreases the needed fraction of SW 

irradiated material from the total terrestrial precursor material that is directly incorporated within Earth. For 6% surviving 

atmospheric 20Ne the fraction is determined with: 

 
(5.22 ∗ 105) ∗ 7Ma

(5.22 ∗ 105) ∗ 7Ma + (4.17 ∗ 107) ∗ 5Ma
= 1.72%      (21) 

 

These results and the results for a variety of parameters are shown in Tab. B9 and Figure 3.16. 
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Late veneer 

endmember

fraction of

SW-irrad. [%] Late veneer 

endmember

fraction of

SW-irrad. [%]

atmospheric loss by giant impact [%] 100 atmospheric loss by giant impact [%] 100

5.2 4.78% 5.2 4.36%

6.2 4.38% 6.2 3.95%

7.2 3.83% 7.2 3.41%

8.2 3.03% 8.2 2.60%

8.6 2.59% 8.6 2.17%

9.2 1.74% 9.2 1.32%

9.8 0 9.8 0

atmospheric loss by giant impact [%] 98 atmospheric loss by giant impact [%] 98

5.2 3.82% 5.2 3.48%

6.2 3.50% 6.2 3.16%

7.2 3.07% 7.2 2.72%

8.2 2.42% 8.2 2.08%

8.6 2.07% 8.6 1.73%

9.2 1.39% 9.2 1.05%

9.8 0 9.8 0

atmospheric loss by giant impact [%] 96 atmospheric loss by giant impact [%] 96

5.2 3.18% 5.2 2.90%

6.2 2.92% 6.2 2.64%

7.2 2.55% 7.2 2.27%

8.2 2.02% 8.2 1.74%

8.6 1.73% 8.6 1.45%

9.2 1.16% 9.2 0.88%

9.8 0 9.8 0

atmospheric loss by giant impact [%] 94 atmospheric loss by giant impact [%] 94

5.2 2.73% 5.2 2.49%

6.2 2.50% 6.2 2.26%

7.2 2.19% 7.2 1.94%

8.2 1.72% 8.2 1.49%

8.6 1.48% 8.6 1.24%

9.2 0.99% 9.2 0.75%

9.8 0 9.8 0

atmospheric loss by giant impact [%] 92 atmospheric loss by giant impact [%] 92

5.2 2.39% 5.2 2.17%

6.2 2.19% 6.2 1.98%

7.2 1.91% 7.2 1.70%

8.2 1.51% 8.2 1.30%

8.6 1.29% 8.6 1.08%

9.2 0.87% 9.2 0.66%

9.8 0 9.8 0

atmospheric loss by giant impact [%] 83 atmospheric loss by giant impact [%] 70

5.2 1.53% 5.2 0.92%

6.2 1.40% 6.2 0.83%

7.2 1.22% 7.2 0.71%

8.2 0.96% 8.2 0.55%

8.6 0.82% 8.6 0.45%

9.2 0.56% 9.2 0.28%

9.8 0 9.8 0

atmospheric loss by giant impact [%] 70

5.2 1.00%

6.2 0.92%

7.2 0.80%

8.2 0.63%

8.6 0.54%

9.2 -

9.8 -

0

86.63

84.45

79.63

75.56

59.89

91.45

89.74

83.10

0

87.87

85.22

0

94.89

94.38

93.46

95.53

95.08

94.28

92.53

91.03

-

-

96.81

96.49

95.92

94.66

93.59

89.43

0

96.17

95.79

95.10

93.61

92.32

87.31

0

46.55

41.65

33.10

15.40

1.20

56.05

44.30

34.85

3.65

0

58.55

38.30

0

64.85

61.63

0

77.53

75.46

71.91

64.45

78.52

75.44

68.88

63.73

46.00

73.40

68.95

53.73

0

80.33

61.40

0

83.14

81.60

78.97

85.96

84.68

82.49

77.83

74.11

82.27

79.28

69.20

0

non-Magma ocean model

strongly degassed mantle

mantle 

degassing [%]

6.52E+19

1.31E+18

97.45

97.19

96.74

95.73

94.87

91.56

0

6.55E+18

mantle 

degassing [%]

88.72

87.75

85.99

non-Magma ocean model

moderately degassed mantle

6.52E+19atmospheric 20Ne [cm³]

mantle 20Ne [cm³]

atmospheric 20Ne [cm³]

mantle 20Ne [cm³]
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