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Abstract

Image segmentation plays a vital role in many applications of computer vision.

Segmentation is not only an important task in its own right, but also a prerequisite

for many further image analysis steps. Consequently, segmentation is one of the

most active research areas of computer vision. In this thesis, line structures are

considered, which have quite different characteristics compared to common objects

in natural 2D images: Line structures are much thinner and longer, and often they

have little color or texture information such as blood vessels in medical images.

To cope with these challenges, minimal path methods are commonly used. In this

thesis, two new methods are introduced which are extensions of existing minimal

path methods.

The first method is a novel hybrid approach for automatic 3D segmentation and

quantification of high-resolution 7 Tesla magnetic resonance angiography (MRA)

images of the human cerebral vasculature. Our approach consists of two main

steps. First, a 3D model-based approach is used to segment and quantify thick

vessels and most parts of thin vessels. Second, remaining vessel gaps of the first

step in low-contrast and noisy regions are completed using a 3D minimal path

approach, which exploits directional information. We present two novel minimal

path approaches: The first is an explicit approach based on energy minimization

using probabilistic sampling, and the second is an implicit approach based on fast

marching with anisotropic directional prior.

The second method we introduce is a novel minimal path method for the

segmentation of 2D and 3D line structures. Minimal path methods perform prop-

agation of a wavefront emanating from a start point at a speed derived from image

features, followed by path extraction using backtracing. Usually, the computation

of the speed and the propagation of the wave are two separate steps, and point

features are used to compute a static speed. We introduce a new continuous min-

imal path method which steers the wave propagation progressively using dynamic

speed based on path features. We present three instances of our method, using

an appearance feature of the path, a geometric feature based on the curvature of
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the path, and a joint appearance and geometric feature based on the tangent of

the wavefront. Such features have not been used in previous continuous minimal

path methods. We compute the features dynamically during the wave propagation,

and also efficiently using a fast numerical scheme and a low-dimensional parameter

space. Our method does not suffer from discretization or metrication errors.

We conducted quantitative and qualitative experimental evaluations of our

methods using 2D and 3D images from different application areas, including syn-

thetic images, retinal images, satellite images of streets, rivers, and bridges, and

3D 7T MRA images of human brain vessels.
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Zusammenfassung

Bildsegmentierung spielt eine zentrale Rolle in vielen Anwendungen der Bildverar-

beitung. Segmentierung ist nicht nur eine wichtige Aufgabe an sich, sondern auch

eine Voraussetzung für viele weitere Schritte der Bildanalyse. Folglich ist die Bild-

segmentierung einer der aktivsten Forschungsbereiche in der Bildverarbeitung. In

dieser Dissertation werden Linienstrukturen betrachtet, die sehr unterschiedliche

Eigenschaften im Vergleich zu gewöhnlichen Objekten in 2D natürlichen Bildern

besitzen: Linienstrukturen sind viel dünner und länger, und sie haben oft kaum

Farb- oder Texturinformationen wie beispielsweise Blutgefäße in medizinischen

Bildern. Um mit diesen Herausforderungen zurechtzukommen, werden häufig

Methoden der kürzesten Pfade benutzt. In dieser Arbeit werden zwei neue Meth-

oden vorgestellt, die Erweiterungen bestehender Methoden der kürzesten Pfade

sind.

Die erste Methode ist eine neue hybride Methode für automatische 3D Seg-

mentierung und Quantifizierung von hochauflösenden 7 Tesla Bildern der Magne-

tresonanzangiographie (MRA) der menschlichen Gehirngefäße. Unsere Methode

besteht aus zwei Hauptschritten. Im ersten Schritt wird eine 3D modellbasierte

Methode angewendet, um dicke Gefäße und die meisten Teile der dünnen Gefäße

zu segmentieren und zu quantifizieren. Im zweiten Schritt werden die Lücken

zwischen den Gefäßen aus dem ersten Schritt in kontrastarmen und verrauschten

Bildregionen durch eine 3D Methode der kürzesten Pfade vervollständigt, die Rich-

tungsinformationen benutzt. Wir präsentieren zwei neue Verfahren, die auf Meth-

oden der kürzesten Pfade basieren: Das erste Verfahren ist eine explizite Methode

und basiert auf Energieminimierung mit probabilistischem Sampling. Das zweite

Verfahren ist eine implizite Methode und basiert auf der Fast-Marching-Methode

mit anisotropischer A-priori-Richtungsinformation.

Die zweite Methode, die wir vorstellen, ist eine neue Methode der kürzesten

Pfade für die Segmentierung von 2D und 3D Linienstrukturen. Methoden der

kürzesten Pfade benutzen die Ausbereitung einer Wellenfront, die von einem Start-

punkt mit einer Geschwindigkeit ausgeht, die durch Bildmerkmale bestimmt ist.
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Anschließend wird der Pfad durch Zurückverfolgung extrahiert. Häufig sind die

Berechnung der Geschwindigkeit und die Ausbereitung der Wellenfront zwei ge-

trennte Schritte. Dabei werden punktbasierte Merkmale benutzt, um eine statische

Geschwindigkeit zu berechnen. Wir stellen eine neue kontinuierliche Methode der

kürzesten Pfade vor, die die Ausbereitung der Wellenfront schrittweise steuert, und

zwar mit einer dynamischen Geschwindigkeit, die pfadbasierte Merkmale benutzt.

Wir stellen drei Instanzen unserer Methode vor, die ein Merkmal des Erschein-

ungsbildes des Pfades, ein geometrisches Merkmal basierend auf der Krümmung

des Pfades, sowie ein Verbundmerkmal aus Erscheinungsbild und Geometrie der

Tangente der Wellenfront benutzen. Solche Merkmale wurden in früheren kon-

tinuierlichen Methoden der kürzesten Pfade nicht benutzt. Die Berechnung der

Merkmale erfolgt dynamisch während der Ausbereitung der Wellenfront. Außer-

dem ist diese Berechnung effizient, indem eine schnelle numerische Methode und

ein niedrigdimensionaler Parameterraum verwendet werden. Unsere Methode wird

nicht durch Diskretisierungs- und Metrisierungsfehlern negativ beeinflusst.

Wir haben quantitative und qualitative experimentelle Auswertung unserer

Methoden mit 2D und 3D Bildern durchgeführt, einschließlich synthetischer Bilder,

Retinabilder, Satellitenbilder von Straßen, Flüssen, und Brücken, sowie 3D 7T

MRA Bilder der menschlichen Gehirngefäße.
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Chapter 1

Introduction

1.1 Motivation

Image segmentation plays a vital role in many computer vision applications. On

the one hand, segmentation is an important task in its own right. On the other

hand, for many further analysis steps, high quality segmentation is needed. Conse-

quently, segmentation is one of the most active research areas of computer vision.

Intensive research has been carried out on segmentation methods and there has

been considerable progress, both using classical methods (e.g., [1–5]), and more

recent deep learning methods (e.g., [6–10]).

However, the majority of the research work has been devoted to the segmenta-

tion of 2D natural images, this includes usually objects of everyday life. For exam-

ple, the major benchmark databases for image analysis [11–16] contain mainly 2D

natural images. Most of the objects in these images have some common character-

istics. For example, their shapes are usually relatively regular and hardly contain

thin and elongated parts. This regularity is implicitly assumed by many segmen-

tation methods which employ regularization methods. Also, the objects have rich

color and texture information, and consequently color and texture models can

be used to facilitate segmentation. Furthermore, images in these databases have

relatively high quality, i.e. they contain low noise and have high image contrast.

In contrast to common objects in everyday life acquired by a video camera,

line structures have different characteristics, which necessitates other segmentation

methods. Due to their inherently thin and long structure, many methods using

smoothness-based regularization are not suitable, because usually regularization

tends to shorten the boundary. This phenomenon is known as “shrinking bias” and

will be discussed later in the literature review in Chapter 2. Furthermore, a typical
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class of line structures are blood vessels or other fiber-like structures in medical

images. Such images contain no color information and relatively little texture, and

the noise level is high and the image contrast is often low. These characteristics

make the segmentation of line structures very challenging, and methods, which

have been applied successfully to segment common objects in everyday life, are

typically not well suited. Consequently, methods are needed which are specifically

designed for the task of segmenting line structures. In this thesis, the aim is to

develop such methods.

1.2 Applications

The segmentation of line structures has many applications. For example, the

methods and algorithms developed in this thesis have been applied to three tasks,

namely the segmentation of blood vessels in 2D medical images, the segmentation

of blood vessels in 3D medical images, and the segmentation of rivers and streets

in 2D satellite images. These applications are described below.

1.2.1 Blood Vessels in 2D Medical Images

2D medical imaging is very widely used in clinical practice. Commonly used

modalities include X-ray radiography, 2D ultrasound, and optical imaging using

fundus photography. These modalities have relatively low cost, short imaging

time, and relatively low radiation dosages, and most of them provide images with

relatively high resolution.

In this thesis, segmentation of blood vessels from 2D retinal images is studied.

These images are acquired using fundus photography. The locations of the retina

and the vessels are shown schematically in Fig. 1.1, and two fundus images of the

retina containing a network of vessels are shown in Fig. 1.2.

The analysis of the morphology of retinal vessels is crucial for the diagnosis

of diseases such as diabetes [18], stroke [19], and glaucoma [20], since these dis-

eases lead to noticeable changes of the geometry of retinal vessels. For example,

for patients of diabetes the retinal vessels can have increased tortuosity [21]. For

patients with open-angle glaucoma, the diameters of retinal vessels change signif-

icantly [22, 23]. These geometric properties can be measured by first segmenting

the retinal vessels in the images.
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Figure 1.1: Location and shapes of the retina and the retinal vessels (from [17]).

Figure 1.2: 2D fundus images of the human retina (from [24]).

1.2.2 Blood Vessels in 3D Medical Images

Using 3D medical imaging, the entire volumes are acquired so that it is possible to

observe 3D structures directly, instead of relying only on 2D projections. Common

3D imaging modalities are computed tomography (CT), magnetic resonance imag-

ing (MRI), single photon emission computed tomography (SPECT), and positron

emission tomography (PET). To acquire images of blood vessels, usually special

CT or MRI are used, i.e. computed tomography angiography (CTA) or magnetic

resonance angiography (MRA), respectively. Among these two modalities, CTA

has shorter imaging time and lower cost. In addition, bones, vessels, and soft tis-

sues can be imaged at the same time. However, the radiation of CTA is relatively

high. In contrast, MRA is more expensive and needs longer imaging time, but it

has the advantage that it is non-invasive, i.e. there is no radiation for the patient.
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With the advent of MRI scanners with high field strength, such as the 7 Tesla (7T)

scanners, the imaging resolution of MRA has been increased significantly [25].

Anterior
cerebral
artery

Middle
cerebral
artery

Internal
carotid artery

Anterior
communicating
artery

Lenticulostriate
arteries

Figure 1.3: Location and shapes of the lenticulostriate arteries (from [26]).

In this thesis, the segmentation of human brain vessels from 3D 7T MRA

images is considered. Analysis of these vessels is important for the diagnosis of

different serious diseases. For example, symptomatic and silent stroke or vascular

dementia can be caused by abnormalities of small cerebral vessels [27,28]. To de-

termine pathological changes, the vessel trees need to be segmented and quantified.

Among the available imaging modalities, magnetic resonance angiography (MRA)

is widely used to acquire 3D images of the cerebrovascular system. With the re-

cently introduced 7 Tesla (7T) MRA, high-resolution 3D images can be acquired

non-invasively. These images contain considerably more thin vessels compared to

1.5T or 3T MRA images [25]. In this work, we are concerned with the analysis of

lenticulostriate arteries (LSAs), which form a complex vascular system. The LSAs

originate from the middle cerebral arteries, and are the major microvessels sup-

plying blood to the basal ganglia and internal capsule. Fig. 1.3 shows the location

and shapes of the LSAs, and Fig. 1.4 shows 2D maximum intensity projections

(MIPs) of cerebral vessels of the LSA region in 3D images of the same subject

using 3T MRA (Fig. 1.4a, 1.4c) and 7T MRA (Fig. 1.4b, 1.4d). The basal gan-

glia and internal capsule are susceptible to diseases like ischemic and hemorrhagic

cerebral stroke [29]. Although it is well known that LSAs are involved in such

types of stroke, it remains unclear how the morphology of LSAs changes due to

stroke [27].
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Figure 1.4: Comparison of 3D 3T MRA and 3D 7T MRA images of the region
around the LSAs. The images are acquired from the same subject. (a) and (b)
show 2D MIPs of the LSA region in 3T and 7T images, respectively, and (c) and
(d) show zoomed views of the sections marked in (a) and (b), respectively. The
contrast has been enhanced to improve the visibility of thin vessels.

In this thesis, we consider the automatic segmentation and quantification of

LSAs in 3D 7T MRA images. This is a challenging task since many LSAs are

relatively thin and long, comprise parts with high curvature, and are often located

close to each other (Fig. 1.4d). Furthermore, although 7T MRA contains more

vessels, the signal-to-noise ratio is only slightly higher than that of 3T MRA [30].

Typical challenges of 7T MRA data include high noise level, highly curved vessels,

low image contrast, and tubular artifacts (Fig. 1.5).

Concerning the segmentation of cerebral vessels from 3D 7T MRA images, only

few approaches exist. In [31], segmentation is performed manually, which is very

time-consuming and not suitable for a large number of images. A semi-automatic
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(a) High noise level (b) Highly curved vessel

(c) Low image contrast (d) Tubular artifacts

Figure 1.5: Typical challenges for vessel segmentation in 3D 7T MRA images of
the cerebral vasculature. The contrast in these images is enhanced to improve the
visibility.

approach is proposed in [32], but there the vessels still need to be segmented

interactively slice by slice. Existing automatic segmentation approaches are based

on vesselness measures (e.g., [33, 34]) or region growing initialized using high-

intensity voxels (e.g. [35]). However, these approaches do not take into account the

shape of vessels. For example, in noisy images, the segmentation may leak out of

the area of interest. In addition, important properties of vessels such as the radius

are not quantified. Also note that in high-contrast regions, directional information

can be estimated reliably (e.g., using a model-based approach), which can help to

segment vessels in neighboring low-contrast and noisy regions. However, none of

the previous approaches incorporated such reliable directional information.

1.2.3 Streets, Rivers, and Bridges in Satellite Images

Analysis of remote sensing images is important for a large variety of applications,

for example, precision agriculture, assessment of biodiversity, creation of maps like

Google Maps, and quantification of damages caused by natural catastrophes. The

images are usually acquired using unmanned aerial vehicles (UAV), airplanes, or

satellites [36]. Commonly used imaging modalities are based on optical photogra-

phy or infrared photography.

In this thesis, we focus on the interactive segmentation of streets, rivers, and
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the detection of bridges over rivers in images taken from satellites using optical

photography. The user specifies the start and end points to segment the streets or

rivers. In addition, the bridges over a river are automatically detected during the

segmentation of the corresponding rivers, under the reasonable assumption that

the bridges are roughly perpendicular to the river underneath them. Examples of

the satellite images containing streets, rivers, and bridges are shown in Fig. 1.6.

(a) (b)

Figure 1.6: Satellite images of (a) Streets (b) A river with bridges.

1.3 Contribution of this Thesis

In this thesis, two different methods for the segmentation of 2D and 3D line struc-

tures are introduced. These methods significantly extend the minimal path frame-

work, which is commonly used for the segmentation of line structures. The ef-

fectiveness and versatility of our methods are demonstrated by applying them to

a variety of tasks in different application areas, i.e., segmentation of 2D and 3D

vessels, segmentation of streets and rivers, as well as detection of bridges, as shown

exemplarily in Fig. 1.7.

1.3.1 Direction-Preserving Minimal Path Methods

The first method introduced in this thesis employs direction-preserving minimal

paths. This method is used in a novel hybrid approach for automatic 3D segmen-

tation of cerebral vessels from high-resolution 7T MRA image data. Additionally,

the method is also used for semi-automatic segmentation of retinal vessels in 2D

fundus images. Our approach exploits tubular shape information to avoid the leak-

ing problem of minimal path methods. Compared to two-step approaches where

first a binary segmentation is determined and then a quantification is computed,

in our approach segmentation and quantification are performed simultaneously in
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(a) Segmentation of 2D vessels (b) Segmentation of 3D vessels

(c) Segmentation of streets (d) Segmentation of rivers
and detection of bridges

Figure 1.7: Examples of different application areas of minimal path methods. (a)
Segmentation of vessels in 2D retinal images. (b) Segmentation of vessels in 3D
7T MRA images of the human brain. (c) Segmentation of streets in 2D satellite
images. (d) Segmentation of rivers and detection of bridges in 2D satellite images.

one single step. Furthermore, our approach can cope well with thin vessels in 3D

7T MRA images and 2D retinal images. The work was published in [37–40]. Our

main contribution is twofold.

First, we present two different approaches to incorporate prior directional in-

formation into minimal path methods: A sampling-based probabilistic approach

and a fast marching approach with anisotropic directional prior. These approaches

allow taking into account the important information about the initial direction of

a vessel while previous minimal path approaches (e.g., [41–44]) do not use such

information. Compared to [45], our approach imposes only soft constraints, which

allows tolerating some deviation from the estimated initial direction.

Second, we propose a novel hybrid approach for automatic 3D segmentation

and quantification in high-resolution 7T MRA images of the human cerebral vascu-

lature. Our approach combines a minimal path approach with robust model-based

vessel segmentation [46]. The model-based approach is used to segment thick ves-
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sels and most parts of thin vessels. However, in low-contrast and noisy regions,

usually there exist gaps between segmented vessels. To complete these gaps, we

exploit the directional information obtained from the model-based approach and

use it in the minimal path approaches. Our hybrid approach allows quantifica-

tion of relevant properties of vessels such as the vessel length and local vessel

radius, and is fully automatic. We conducted an extensive evaluation of our hy-

brid 3D vessel segmentation approach using over 2300 synthetic images and 40

clinical high-resolution 3D 7T MRA images. We quantitatively compared the re-

sults with ground truth and with a previous minimal path approach. Furthermore,

our approach was applied to data from two clinical studies on stroke and vascular

dementia, and the results have been evaluated by neuroscientists. Also, we applied

our method to the segmentation of vessels in 2D retinal images.

1.3.2 Progressive Minimal Path Method

The second method introduced in this thesis is a novel progressive minimal path

method for efficient segmentation of line structures from 2D and 3D images. Our

approach uses a dynamic speed based on new path features to better steer the

propagation of a wavefront. The trace of the wavefront is then used to compute

the line structures. The work was published in [47–49]. Our main contribution is

twofold.

First, we introduce a novel efficient algorithmic framework for minimal paths.

In previous minimal path approaches, the speed of the wavefront at a point x

is computed using point features (e.g., vesselness using derivative filters [50–52]).

There also exist more elaborate features based on filterbanks or neural networks

obtained using machine learning (e.g., [53, 54]), but they are computationally ex-

pensive, especially for 3D images, and such features have not been used in minimal

path approaches. In contrast, we introduce path features by aggregating point fea-

tures along a local path γlocal(x) starting at x. The propagation of the wavefront

is constrained using these path features. Our experiments show that path fea-

tures obtained by aggregating standard point features (e.g., vesselness) improve

the result significantly compared to point features. An important property of

path features is that they need to be computed on-the-fly, i.e. during the progres-

sive propagation of the wavefront. This is not possible in classical minimal path

approaches using static speed. For example, for the line structure in Fig. 1.8a,

previous approaches with a point feature (e.g., [50]) usually lead to a short cut

(Fig. 1.8b), since the total length of all gaps due to artifacts along the desired
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Figure 1.8: Comparison of minimal path methods: (a) A line with artifacts. (b)
Using a static speed, the result (red curve) between xs and xe is usually a short cut.
(c) Using our progressive minimal path method the line is correctly segmented.
(d) Sketch of our approach: The dynamic speed is initialized with a static speed
and updated during the propagation of the wavefront, based on the functions
ComputeFeature and ComputeDynamicSpeed (see Sect. 6.1.2 and Algorithm 6.1
below). Green, blue, and orange regions represent image points where the arrival
time of the wavefront is finally determined (RA, Alive), not computed yet (RF,
Far), or temporarily determined (RT, Trial), respectively.

path is much larger than the length of the short cut. But by aggregating the

very same point features to path features of γlocal and updating the speed function

dynamically (Fig. 1.8d), the correct result can be found (Fig. 1.8c, see Sect. 6.2.1

below for more details). Note that the path features in our method can be com-

puted much more efficiently than elaborate features used, for example, in machine

learning approaches (reviewed below in Sect. 2.1.2). Our method uses isotropic

speed, so we can employ a simple and accurate numerical scheme for arbitrary

dimensions. Compared to domain lifting (reviewed below in Sect. 2.4.2), the pa-

rameter space of our method has the same dimensionality as the image, i.e. no

additional dimension for features is necessary. Furthermore, with our curvature
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constrained method we do not need to introduce additional nodes or edges as in

methods using curvature regularization [55,56] (reviewed below in Sect. 2.4.3), and

features involving a large (arbitrary) number of points can be computed efficiently.

Note that the path features in our method are not computed for all points of an

image but only for points that are actually reached by the wavefront. This reduces

the computation time significantly, especially for 3D images. In our method we

use a wider range of features compared to approaches with static speed based on

directional information, or key points (reviewed below in Sect. 2.4.5), or previous

approaches with dynamic speed using only the normal of the wavefront (reviewed

below in Sect. 2.4.6). Compared to [57–59], we use path features instead of point

features, and we exploit a larger spectrum of features. Path features cannot be

used in these previous approaches. In our work we used a continuous formula-

tion to avoid metrication or discretization errors, but our framework can also be

applied using a discrete formulation.

Second, we present several instances of our framework using different new path

features, which are computed dynamically during the propagation of the wavefront

using a continuous formulation. The features comprise an appearance feature of

the path, a geometric feature (the curvature of the path), and a joint appearance

and geometric feature (appearance of the tangent of the wavefront). Our method

was applied to image data from different application areas: Retinal vessel segmen-

tation in 2D images, brain vessel segmentation in 3D images, and segmentation

of rivers and streets as well as detection of bridges in satellite images. To the

best of our knowledge, this is the first attempt to combine segmentation based on

minimal paths with object detection in a principled way. We conducted extensive

evaluations using both 2D and 3D images, including both synthetic and real data

(satellite images, retinal images, and 3D 7T MRA images).

1.4 Thesis Organization

This thesis is organized as follows. In Chapter 2 we give a review of methods for the

segmentation of line structures. In Chapter 3, the theoretical background of min-

imal path methods, especially the fast marching method, which is the foundation

of the methods, is introduced. In Chapter 4, two direction-preserving minimal

path methods are presented, and the experimental results of these methods for

synthetic and real 3D 7T MRA images of brain vessels, as well as for 2D retinal

images, are described in Chapter 5. In Chapter 6, a progressive minimal path

method is presented, and the results of this method for synthetic and various 2D
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and 3D real images are described in Chapter 7. Finally, Chapter 8 concludes the

thesis.
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Chapter 2

Review of Approaches for

Segmentation of Line Structures

There exist a large number of segmentation approaches for common objects in

everyday life acquired by a video camera. These methods mainly deal with reg-

ular objects in images. For a general overview and introduction to segmentation

methods in computer vision we refer to classical textbooks [60–65].

In many applications besides natural natural scene analysis, the objects to

segment resemble 2D or 3D line structures. These objects include blood vessels,

fibers of biological structures, and streets and rivers in satellite images. General

segmentation methods typically do not perform well for line structures, since these

objects are often very thin and long, usually with little color information or texture.

Furthermore, the images, especially medical images, often have low contrast and

high noise level, and the line structures are often distorted, i.e., they are blurry or

contain gaps due to artifacts.

This chapter provides a review of approaches for segmentation and analysis of

2D and 3D line structures, including approaches for enhancement of line structures

(Sect. 2.1), approaches based on deformable models (Sect. 2.2), approaches based

on graph cuts (Sect. 2.3), minimal path approaches (Sect. 2.4), and hybrid methods

(Sect. 2.5). Further surveys of the segmentation methods for line structures, or

more specifically for blood vessels, can be found in [66–69].

2.1 Structure Enhancement

In this section, we review methods which are used to enhance the line structures.

Usually, the enhancement of line structures is a preprocessing step which extracts
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salient features. These features describe line structures better than the image

intensity or edge information, while suppressing background and other objects.

The result of enhancement is usually used as input by other approaches for further

segmentation and analysis.

2.1.1 Differential Measures

Approaches based on differential measures exploit partial derivatives of the images.

There are mainly two types of such measures, based on the Hessian matrix or the

image flux.

In the first type of approaches, which are based on the Hessian matrix, second-

order partial derivatives are employed. A vesselness measure is derived using

the eigenvalues and eigenvectors of the Hessian matrix (e.g., [50, 51, 70–72]). For

example, for a 2D image g, the Hessian matrix is computed for each image point

x as:

Hessian matrix

H(x) =


∂2g(x)
∂x∂x

∂2g(x)
∂x∂y

∂2g(x)
∂x∂z

∂2g(x)
∂x∂y

∂2g(x)
∂y∂y

∂2g(x)
∂y∂z

∂2g(x)
∂x∂z

∂2g(x)
∂y∂z

∂2g(x)
∂z∂z

 (2.1)

Depending on the ratio between the eigenvalues of H, the local shape of the struc-

ture can be estimated.

The second type of approaches, which are based on the flux, employ the first-

order partial derivative (e.g., [52, 73–75]). For a curve C and a vector field V , the

inward flux of V through C is defined as [52]:

Flux

f(x,v; r) =

∫
∂Sr

((∇ (G ∗ g) (x + r · n) · v) · v) · n ds (2.2)

In (2.2), the flux f depends on the position x, the direction v, and the radius r

of a potential vessel. Sr is the circle with the radius r centered at x, ∂Sr is the

boundary of Sr, G is the Gaussian function, and n is the normal at the boundary

of Sr. The optimal direction vopt is determined by

vopt = arg min
v

f(x,v; r). (2.3)

14



2.1. Structure Enhancement

(a) Synthetic line structure

(b) Retinal vessels

(c) Rivers in a satellite image

(d) Streets in a satellite image

Figure 2.1: Hessian-based vesselness measure [50] for line structures in different
types of 2D images.

Often, these methods are applied in a multiscale manner (e.g., [50–52]). Dif-

ferential measures have been applied to 2D and 3D images (e.g., [33, 34]). For

example, Fig. 2.1 shows the vesselness map for a wide variety of line structures in
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Figure 2.2: Flux-based vesselness measure [52] for vessels in a 3D MRA image
(from [52]).

2D images, including images containing synthetic lines, medical images of retinal

vessels, and satellite images of rivers and streets. Examples of 3D vessel segmen-

tation in medical images are shown in Fig. 2.2. The differential measures are not

limited to the analysis of vessels. For example, they can also be used to enhance

streets or rivers in satellite images. In contrast to machine learning based meth-

ods (see Sect. 2.1.2 below), which require a large number of annotated images for

training, differential measures usually have only a few parameters, which can be

estimated from the image data without requiring a training procedure. Therefore,

differential measures are widely used for the analysis of a broad spectrum of line

structures. However, in low-contrast and noisy regions, partial image derivatives

are difficult to estimate, and therefore these approaches alone are not well suited

for coping with the challenging 3D medical images, in particular for thin vessels.

Therefore in many approaches the differential measures are computed first, and

the result is used for further analysis using other methods, such as graph cuts or

minimal path methods.
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2.1.2 Machine Learning

In approaches based on machine learning, extraction of line structures is typically

achieved using annotated training images. In recent years, deep convolutional

neural networks (DCNN) have achieved superior results for segmentation tasks

compared to classical machine learning methods, while the latter methods are

usually easier to train. In the following, we review the methods using DCNN,

followed by a discussion on classical machine learning methods.

Using neural networks, non-linear functions can be approximated efficiently,

and the backpropagation algorithm is often used for parameter optimization. In

most of classical neural network methods, the number of layers is relatively low,

and the layers are fully connected, i.e., all neurons in one layer are connected to all

neurons in the next layer. In contrast, in DCNN a large number of layers are used,

many of which are convolutional layers, i.e., a neuron is connected to a limited

number of neurons in the next layer, and all neurons for the same convolution

operation share the weights. Using DCNN, networks are often trained end-to-end,

i.e., the user does not need to manually design features to use, since the features

are also learned automatically by DCNN. Popular frameworks for DCNN include,

for example, TensorFlow [76], Caffe [77], MXNet [78], CNTK [79], Torch [80],

Keras [81], Matconvnet [82], Lasagne [83]. Originally used for image classification

(e.g., [6, 13]), DCNN has now been applied to further application areas such as

object detection (e.g., [84, 85]) and semantic segmentation (e.g., [10, 86]). Some

methods focus on segmentation of line structures [87] for different application areas

such as retinal vessels [88], coronary artery [89], streets in satellite images [53].

However, to train DCNN usually a large number of images are needed, which are

often difficult to obtain, especially in the case for medical images. Furthermore,

the annotation of the training images can be very time consuming and prone to

error, especially for 3D images such as tomographic images. Also, training of

DCNN is not easy and very time consuming.

Most classical machine learning approaches require less parameters than DCNN.

In several approaches, features are determined manually and used as input for a

classifier. For example, in [90] boosting trees are used based to extract coronary

arteries in CT images. In contrast, there exist also approaches where the features

themselves are learned. For example, in [91], features are defined using a filter

bank, which is learned from the data, including streets in satellite images, neu-

rons in brightfield image stacks, and neurons in in vivo two-photon image stacks.

Compared to DCNN, the method in [91] requires much less parameters, and con-
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sequently significantly less training samples are needed to compute the filter bank.

The number of filters is further reduced in [54] by using separable filters (see

Fig. 2.3), and the results for a 2D retinal image are shown in Fig. 2.4. However,

(a) Learned filter bank (b) Approximation
using separable filters

Figure 2.3: The filters in (a) are approximated using a smaller number of separable
filters in (b) (from [91]).

in these approaches still large amounts of training data are required, and these

approaches are typically still very time-consuming. For 2D images, in [53] the

computation time for training is 3 days, and in [54] a large number of filters is

used (121 filters, each with 14 orientations). For 3D images, the computation time

for training and application would increase even further. Also, the discretization

of filter orientations inevitably introduces discretization errors.

2.2 Deformable Models

Deformable models are curves or surfaces which are fitted to objects in an image.

There are two main types of deformable models: Parametric intensity models and

active contour (level set) methods. Using level set methods, more global properties

can be imposed using regularization. In contrast, with parametric intensity models

it is possible to segment and quantify the structures simultaneously.
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(a) Original image (b) Result

Figure 2.4: Result of the filter bank in [91]. (a) Original 2D retinal image from
the DRIVE dataset [24]. (b) Result using the filter bank trained using retinal
images (from [91]).

2.2.1 Parametric Intensity Models

Using parametric intensity models (e.g., [46, 92–95]) the properties of line struc-

tures are described analytically. By optimizing a cost function for fitting these

models to the image data, the values of properties can be determined. For exam-

ple, in [46] the cost function is defined within a spherical region of interest (ROI)

as given below.

Parametric intensity model in [46]

∑
x∈ROI

(gM (x,p)− g (x))2 → min, (2.4)

where

gM(x,p) = a0 + (a1 − a0) gCyl(R(x,α,x0), R, σ), (2.5)

with parameters p = (R, a0, a1, σ, α, β, γ, x0, y0, z0)
T . g(x) is the image intensity at

the position x , R is the radius of a vessel, a1 and a0 are the intensity levels of the

vessel and the surrounding tissue, σ is the image blur, and gCyl is a 3D cylindrical

model. R is a rigid transform, which consists of a rotation using α = (α, β, γ)T

and a translation using x0 = (x0, y0, z0)
T .

Since usually a relatively large ROI is used, these approaches are robust against

noise. Also, no post-processing is needed to determine the parameters such as

vessel radius and orientation, since the values of these parameters are obtained by

optimization during the segmentation. However, since the model is optimized for

each ROI individually, there is no measure for the overall optimality. Furthermore,
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global constraints, such as regularity of the centerline of the line structures, are

not imposed.

2.2.2 Active Contours and Level Set Method

Methods based on active contours and level sets rely on the evolution of curves

(for the 2D case) and surfaces (for the 3D case). After being initialized in the

vicinity of the objects to segment, the curves or surfaces evolve towards the true

boundary of the objects. Originally, the active contour model is formulated using

an energy function which consists of three terms [1]:∫ 1

0

(
α · ‖Cp(p)‖2 + β · ‖Cpp(p)‖2 + gd(C(p))

)
dp. (2.6)

For a curve C, the first two terms specify the internal energy computed using the

first and second derivatives of C, and the third term specifies its external energy

computed by a function gd. These terms are computed explicitly for each point on

C, and C evolves to minimize the total energy. However, using this method, the

contour needs to be parameterized explicitly, which has two consequences. First,

it is difficult to handle topological changes during the curve evolution. Second,

tracing points on the curve leads to numerical difficulties.

To avoid these difficulties, the level set method was introduced [96]. In the

case of 2D images, the 2D contour C is embedded as the zero level set of a 3D

function u. During the evolution of u, C naturally changes as a consequence of the

changes of u. In Fig. 2.5, the evolution of u is shown in the second row, and the

blue plane represents the zero level. The shape of the corresponding C, which is

the intersection of u and the blue plane, is shown in the first row. The evolution

a of 2D curve C and its 3D embedding function u are directly related to each

other [98]. If C evolves according to

∂C
∂t

= β · N , (2.7)

where t is the time, β is the speed of the curve evolution, and N is the normal of

C, then u evolves according to

∂u

∂t
= β · ‖∇u‖ (2.8)

For example, a commonly used model is the geodesic active contour:
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Figure 2.5: Illustration of the level set method (from [97]). The evolution of the
2D curve C (first row) is the result of the evolution of the 3D embedding function
u (second row).

Geodesic active contour in [98]

∫
C
gd(‖∇g(C(s))‖)ds (2.9)

where g is the input image, and gd is a strictly decreasing function. For example,

gd(‖∇g(C(s))‖) =
1

1 + ‖∇g(C(s))‖
. (2.10)

The curve C evolves according to

∂C
∂t

= g · κC · N − (∇g · N ) · N , (2.11)

and the corresponding embedding function u evolves according to

∂u

∂t
= g · κu · ‖∇u‖ − ∇g · ∇u, (2.12)

where κC and κu are the curvature of C and u, respectively. For a comprehensive

overview and a systematic treatment of active contours and level set methods, see

the monographs [99–103].

Besides the geodesic active contours, the active contour method has also been
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extended in various other ways. For example, in [2], the gradient at edges is

propagated into regions with low gradient, resulting in a gradient vector field

(GVF). Compared to the classical snakes [1], snake models based on GVF allow

the initial contour to be further away from the actual object boundary. Also,

strong concavity can be better segmented.

So far, the methods discussed in this section are edge-based methods, in which

the energy function is determined using the contour only. In contrast, region-

based method employ the properties of regions to define the energy function. For

example, in [104], the intensities of the region inside and outside the contour are

used instead of the gradient on the contour, resulting in active contours without

edges (ACWE). Using region-based information, objects can be segmented even if

their boundary is blurry or discontinuous.

During the evolution of curves or surfaces, the level set function often de-

velops irregularity which cause numerical difficulties. To overcome the problem

of irregularity, often re-initialization is used [102, 105], which keeps the level set

function as a signed distance function, but this introduces other problems. From

a theoretical point of view, the re-initialization may change the level set func-

tion [106]. From a practical point of view, there are no obvious rules about how

re-initialization should be used [107]. In [108], a new method is introduced so

that no re-initialization is needed any more, and the level set function is always

regularized automatically.

The level set formulation is based on partial differential equations (PDE), so

naturally level set methods are usually implemented using finite difference meth-

ods. However, due to their close relationships to PDEs [109, 110], morphological

operators can also be used to approximate PDEs for curve and surface evolu-

tion [111]. For example, geodesic active contours [98] and active contour without

edges [104] can both be implemented using morphological operators. In this way,

there are no numerical stability issues which are typical for previous numerical

methods like finite difference. Also, the evolution of the level set function does

not need re-initialization.

However, typically active contour approaches penalize the length of segmented

objects, resulting in the “shrinking bias” [112], i.e., they tend to yield results where

the circumference is small compared to the enclosed area. For example, for a thin

and long 2D line structure, classifying the entire structure as background would

cause the energy function of the geodesic active contour (2.9) to be minimized

to zero, even though such a result is obviously wrong. Several remedies to this

problem have been proposed. For example, in [113] an expanding force is added
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to the energy function, and in [73, 114] differential measure is used to enhance

the local structure. However, these approaches do not change the nature of the

problem, which is the length-based regularization in the level set function itself.

2.3 Graph Cuts

Methods based on graph cuts are used to solve optimization problems formu-

lated using Markov random fields (MRF). MRF is a powerful framework for the

probabilistic modeling of images [99, 100, 115–117]. For the optimization of MRF

models, many optimization approaches exist, such as simulated annealing [118],

iterated conditional modes [119], graduated non-convexity [120], loopy belief prop-

agation [121], tree-reweighted message passing [122], quadratic pseudo-boolean op-

timization [123]. These optimization methods are reviewed in [124]. Approaches

based on graph cuts have been successfully used in many branches of computer

vision, for example, segmentation [3,4], stereo reconstruction [125], image restora-

tion [125], determination of geodesics [126], classification [5, 127, 128]. For an

overview of the theory and application of these methods, see [129–131].

The computation of graph cuts is a classical problem in combinatorial opti-

mization. To use graph cuts for segmentation, an energy function is defined using

a graph, which consists of nodes and edges on a regular discrete image grid (2D

or 3D). Typically, the energy function consists of two terms: The data term, also

referred to as fidelity term, keeps the result in accordance with the input image,

while the prior term, also referred to as smoothness term or regularization term,

imposes the prior knowledge on the result. In most MRF models using graph cuts,

the prior knowledge is the assumption that the result should be smooth, i.e., the

noise of the result should be low. Each node corresponds to a pixel, and there are

two special terminal nodes, one for the object and one for the background. The

user provides seed points for the object and the background, respectively (see the

pixels B and O in Fig. 2.6a). Each node is connected with its neighboring nodes

on the image grid, as well as with the terminal nodes (Fig. 2.6b). By computing

the minimum cut of the graph, all nodes are separated into two partitions, one

connected with the terminal node for the object, the other connected with the

terminal node for the background (Fig. 2.6c). This separation corresponds to a

binary segmentation of the original image (Fig. 2.6d). The same principle can also

be used for 3D images. For example, Fig. 2.7a shows one slice in an 3D CT image,

along with seed points provided by the user. The segmentation result is shown in

Fig. 2.7b. A remarkable feature of methods based on graph cuts is that in many
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(a) Image with seeds

(b) Graph

(d) Segmentation results

(c) Cut

Figure 2.6: Principle of segmentation using graph cuts. (a) The user-specified seed
points for the object and the background. (b) Constructed graph. (c) Minimum
cut for the graph. (d) Final binary segmentation (from [3]).

(a) Original image and user interaction (b) Segmentation result

Figure 2.7: Using graph cuts for 3D segmentation. (a) A slice of a 3D CT image,
along with user-specified seed points. (b) Segmentation result (from [3]).

cases [3], the global optimum of the energy function can be found in polynomial

time. In contrast to methods based on PDEs, such as level set methods, there is

no concern about numerical difficulties, since the algorithm is inherently discrete,

and therefore there is no numerical approximation error during the computation.

The algorithms for the computation of the minimum cut are studied and com-
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pared in [132]. [133] specifies the characteristics of energy functions which can be

minimized using graph cuts, identifies them with submodular functions in the com-

binatorial optimization, and shows how to algorithmically construct a graph for

any energy function which consists of submodular functions. [124] shows how to

handle energy functions with non-submodular functions using quadratic pseudo-

boolean optimization (QPBO). By doing so, a partial solution is computed, i.e.,

for a subset of pixels the optimal label can be determined, while other pixels are

assigned a dummy label, meaning that the label at these pixels cannot be deter-

mined. In [125], it is shown that also problems with more than two labels can also

be solved using graph cuts, even though the result is not the exact global opti-

mum, but a very close approximation of it. Besides graph cuts [3], random walker

is also a graph-based segmentation approach [134]. Methods based on graph cuts

and random walker can all be considered as special instances of a more general

framework of power watershed [135].

Unfortunately, similar to level set methods, methods based on graph cuts also

suffer form the shrinking bias [112,130]. Therefore, when applying these methods

to segment vessels, often heuristics (e.g., automatic clustering [136]) are used to

reduce the shrinking bias (e.g., [137–141]). Instead of segmenting vessels them-

selves, some methods aim at segmenting regions containing vessels [142]. Other

methods counteract the shrinking bias using more elaborate results of graph theory

(e.g., [7, 143–145]).

2.4 Minimal Paths

Using minimal path methods, a line structure is considered as a path between

given start and end points such that an energy function is minimized. The energy

of a path is defined as the integral of a potential function along the path. There

exist mainly two widely used classes of methods, which formulate and solve the

minimal path in different ways. On the one hand, the Dijkstra’s algorithm [146]

uses a discrete formulation, and employs a graph algorithm for optimization. On

the other hand, the fast marching method [147] [41] uses a continuous formulation

and employs a partial differential equation for optimization. In both cases, finding

the optimal path can be achieved by first propagating a wavefront emanating from

the start point. At each pixel the speed of the wavefront is inverse to the potential.

During the propagation, the arrival time of the wavefront at each pixel is recorded

in an action map. Upon reaching the end point, gradient descent is used to trace

the optimal path from the end point back to the start point. Usually the global
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minimum of the energy function can be obtained in polynomial time. The details

of these algorithms are described in Chapter 3.

The original minimal path methods have several limitations. For example, a

shorter path with pixels of high potential (i.e., low speed) may have lower energy

than a longer path with pixels of low potential (i.e., high speed), but usually the

latter is the desired result, and the former is referred to as a short cut. Also, often

only the centerline of the line structure is determined, but there is no information

about the radius. Furthermore, to regularize the resulting curves, only length is

used, and other properties, such as curvature, are ignored. To overcome these

limitations, several improvements have been proposed, which are reviewed in the

following.

2.4.1 Fast Marching with Anisotropic Speed

Fast marching approaches based on anisotropic speed exploit the anisotropic nature

of line structures to avoid short cuts. Examples for anisotropic speed are the

Riemannian speed and the Finsler speed. As shown in Fig. 2.8, each of these

speed functions can be intuitively characterized by the shape of the wavefront

after time τ , starting from one single point p.

(a) (b) (c)

Figure 2.8: Shape of the wavefront using different speed functions after time τ ,
starting at the point p. (a) Isotropic speed (b) Riemannian speed (c) Finsler speed
(from [148]).

In the classical fast marching method, the speed function is isotropic. When

start and end points are close to each other but the correct path is long, such

isotropic speed function can cause short cut. An example of such structures is

shown in in Fig. 2.9. At each pixel, let F‖ and F⊥ denote the speeds of the wave-

front in the directions parallel and perpendicular to the line structure, respectively.

In the isotropic case in Fig. 2.9a, F‖ = F⊥ for each pixel. Consequently, a short cut

is found. In contrast, by using anisotropic speed in Fig. 2.9b, so that F‖ becomes

much higher than F⊥, the natural shape of the line structure can be followed.
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(a) Isotropic speed (b) Anisotropic speed

Figure 2.9: Comparison of the results using isotropic and anisotropic speed. (a)
Result of classical minimal path using isotropic speed, i.e. at each pixel F‖ = F⊥.
(b) Result of [44] using anisotropic speed, i.e. F‖ is much higher than F⊥ (from
[44]).

As anisotropic speed functions, usually Riemannian metrics (e.g., [42–44, 149,

150]) or Finsler metrics (e.g., [151, 152]) are used. However, often these improved

metrics require more complex numerical schemes which are not accurate for high

anisotropy [44] or cannot be extended in a straightforward manner to higher dimen-

sional cases [151]. The computational complexity of these approaches is usually

O(N lnN), where N is the number of pixels or voxels of the image, compared

to O(N) for minimal path approaches based on the fast marching method using

isotropic speed [153].

2.4.2 Domain Lifting

Minimal path approaches based on domain lifting introduce additional dimensions

to account for features such as radii and orientations (e.g., [154–156]), i.e., the

dimensionality of the parameter space increases with the dimensionalities of both

the image and the features. The main idea is illustrated in Fig. 2.10: In addition

to the original (x, y) coordinates in the 2D image plane, a new dimension p of the

parameter space is introduced to represent a new feature. For a point P on the

vessel, the projection Pxy in the x, y plane corresponds to the 2D coordinates of

the point, while the p coordinate corresponds to the value of the new feature for

P . For example, Fig. 2.11 shows the domain lifting in [154]: The new feature is

the radius of the line structure, so projecting the 3D curve in the lifted space onto

the image space (Fig. 2.11a) results in the centerline of the line structure, while

the projection onto the r axis (Fig. 2.11b) provides the radius of the line structure

at each 2D position. The results of this method for retinal images are shown in

Fig. 2.12. It turns out that the approach [154] not only determines the radius

but also keeps the result well centered in the vessel, while the result of classical

minimal path approaches does not adhere well to the center. The radius feature

can also be used for 3D images, as shown in Fig. 2.13. In [155], the orientation
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Figure 2.10: Domain lifting for 2D images. x and y are coordinates in the original
2D image space, and p is the additional dimension for a feature.

(a) 2D vessel (b) Additional dimension: Radius

Figure 2.11: Minimal path method in with radius as an additional dimension of
the parameter space. For each point on the centerline of a 2D vessel in (a), the
(x, y) coordinates along with the radius is represented as a 3D point in the new
parameter space in (b) (from [154]).

of the line structure is introduced as a further dimension in the parameter space.

To do so, oriented filters are applied to the 2D image (Fig. 2.14a), resulting in

the new parameter space (Fig. 2.14b). This parameter space is lifted again by the

dimension for radius, in the same way as in [154], to achieve a 4D parameter space.

Using the 4D parameter space, line structures with complex structures, such as
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(a) Start and end point (b) Classical minimal path

(c) Result of [154] (d) Result of [154] with radius

Figure 2.12: Segmentation of a retinal vessel and comparison with a classical
minimal path approach. (a) Original retinal image and the start and end point.
(b) Result (centerline) of the classical minimal path approach [41]. (c) Result
(centerline) of the approach in [154]. (d) Result of the approach in [154], along
with the vessel radius (from [154]).

Figure 2.13: Segmentation result for vessels in two 3D CTA images using [154].
For 3D images with the additional dimension for the radius, the parameter space
has 4 dimensions (from [154]).

crossings, can be better segmented, as shown in Fig. 2.15.

However, while by domain lifting features can be directly incorporated into the

minimal path framework, increasing the dimensionality of the parameter space can

cause several difficulties. First, high-dimensional problems are computationally

much more demanding. To keep dimensionality reasonably low, often only 2D

images or simple features which do not require many additional dimensions are

used. For example, in [155,156] only orientations in 2D images were used. In [154],

although 3D images are used, the additional feature is radius, which requires

only one additional dimension. Similarly, [155] uses one additional dimension to
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(a) Original image (b) Orientation feature

Figure 2.14: Minimal path method with radius and orientation as additional
dimensions of the parameter space. (a) For each point on the centerline of a 2D
vessel, the (x, y) coordinates along with the radius and the orientation of the vessel
is represented as a 4D point in the new parameter space. (b) The parameter space
with dimensions for the (x, y) coordinates and for the orientation is shown, without
the dimension for radius (from [155]).

(a) Classical approach (b) Method of [154] (c) Method of [155]

Figure 2.15: For line structures with crossing, both classical minimal approach
(a) and the approach with radius as additional dimension (b) cannot follow the
natural path. With the orientation feature [155], better result can be achieved (c)
(from [155]).

represent 2D orientation, but this is not scalable to higher dimensional images

since the number of additional dimensions necessary to represent orientation in

higher dimensional parameter spaces increases exponentially. For 3D images, three

Euler angles would be needed to specify the orientations, yielding three additional

dimensions. Second, while the classical minimal path methods can be applied

in arbitrary dimensions, some more complex numerical schemes (e.g., [156]) are

inherently restricted to 2D or 3D parameter spaces, limiting their use in higher

dimensional parameter spaces. Third, for additional dimensions, only discretized
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features can be used, resulting in discretization errors. For example, in [155], only

12 values are used to represent orientations between 0 and π, thus the accuracy of

these approaches is limited.

2.4.3 Line Graph Approaches

The minimal path methods reviewed in the previous sections mainly use a con-

tinuous formulation and employ the fast marching algorithm. Their discrete

counterparts, i.e., minimal path approaches using a graph-theoretical formula-

tion (e.g., [55,56]), have also been proposed. These approaches extend the original

Dijkstra’s algorithm to incorporate more properties of the graphs. To do so, usu-

ally line graphs are used. Using line graphs, a large number of additional nodes

and edges are inserted into the graph corresponding to the image grid to represent

higher-order properties of paths. For example, Fig. 2.16 shows the three represen-

tations of a path according to [56]. In the original graph G, a path is represented as

a sequence of four nodes (green, purple, orange, and blue dots) in G (Fig. 2.16a).

The weight between two nodes describes the distance between them, and therefore

this representation yields a length regularization. Alternatively, Fig. 2.16b shows

that the same path can be represented as a sequence of three nodes in the line

graph L(G) which correspond to edges (green, purple, and orange line segments)

in the original graph G. Using this representation, the weight between neighboring

nodes in L(G) represents the curvature between edges in G, which is of a higher or-

der than length. The idea of using nodes in the line graph L(G) to represent more

complex structures in the original graph G can be further exploited. In Fig. 2.16c,

a node in the line graph L(G) corresponds to a pair of consecutive edges (green

and purple bended line segments) in the original graph G. The weight between

neighboring nodes in L(G) represents the torsion in edge sequences in G, which is

of an even higher order than the curvature.

However, methods using line graphs mainly suffer from two difficulties. First,

the weights for all combinations of neighboring edge pairs need to be computed,

and the number of nodes in the line graph increases exponentially with the number

of points involved in computing the features. This results in relatively high com-

putation time. Therefore, only features involving two points (curvature) or three

points (torsion) have been exploited. In [55], only curvature for 2D images is used.

In [56] curvature and torsion for 3D images are introduced, but this approach is

only feasible for relatively small problems. For example, one of the graphs in [56]

contained 280 billion edges. To incorporate features involving even more points,
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(a) (b) (c)

Figure 2.16: Three representations of the same path. Nodes of the path are
shown in different colors. (a) Representation using nodes of the original graph G.
(b) Representation using nodes of the line graph L(G) which correspond to edges
in the original graph G. (c) Representation using nodes of the line graph L(G)
which correspond to edge pairs in the original graph G (from [56]).

the graph size would become prohibitively large. Second, the used features are

subject to metrication errors due to the discrete nature of the graphs. For ex-

ample, these approaches have a finite resolution of orientations, limited by the

number of edges connected to a node, i.e., the size of the neighborhood. Usually

16-neighborhood is used, and [56] employs a larger neighborhood of 32 neighbors,

as displayed in Fig. 2.17a. Using the 32-neighborhood, 16 different orientations

can be represented. This is not sufficient for certain applications which require

high angular resolution (for example, the application of analyzing satellite images

in Sect. 6.2.3). Furthermore, the distribution of the represented orientations is

not homogeneous, i.e. in the region close to the horizontal and vertical axis, the

angular resolution is coarser than in other regions. This problem remains even

in the case of the much denser 72-neighborhood (Fig. 2.17b). In contrast, with

continuous formulation using the fast marching method, arbitrarily high angular

resolution of orientations can be represented at no extra computational cost.

2.4.4 Directional Information

In minimal path approaches using directional information, additional features and

criteria are introduced to constrain the propagation of the wavefront. Usually

these approaches rely on heuristics.
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(a) 32 neighbors (b) 72 neighbors

Figure 2.17: Neighborhoods in graphs for 2D images. (a) 32-neighborhood used
in [56]. (b) 72-neighborhood (images generated using the software provided by [56],
available at [157]).

In some of these approaches, the wave propagation can be stopped in undesired

directions (e.g. [158,159]). The main idea is based on the fact that the wavefront

propagates faster inside line structures but slowly outside. In classical minimal

path approaches, the wavefront propagates continuously in all directions, even

in regions which are unlike to be part of the line structure. This may cause

unnecessary computation or short cuts. For example, Fig. 2.18 shows three stages

of the propagation of a wavefront for the segmentation of branching blood vessels.

The red voxels denotes regions in which the wavefront can propagate. This region

is much larger than the actual blood vessels themselves. By ignoring regions which

Stage 1 Stage 2 Stage 3

Figure 2.18: Three stages of the wave propagation for vessel segmentation (from
[158]).

are unlikely to be part of the line structure, the wavefront can propagate faster

towards the end point. Also, short cuts through the ignored regions can be avoided.

At the time point t, by comparing the distance Uxs(v) of a voxel v to the start

point xs with the currently maximum distance Umax(t) traveled by the wavefront,

it can be heuristically determined if v is inside or outside the line structure. In the

latter case, the propagation through v is freezed. This is illustrated in Fig. 2.19,
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which shows the propagation at similar stages as in Fig. 2.18. The freezed region

is shown using gray voxels. Apparently, only a small portion of the voxel remains

unfreezed, and the wavefront propagates through a much smaller portion of the

image than in Fig. 2.18.

Stage 1 Stage 2 Stage 3

Figure 2.19: Three stages of the wave propagation for vessel segmentation. At
the gray voxels the propagation is freezed, while at the red voxels the propagation
continues (from [158]).

In some other approaches, the wave propagation is only allowed in certain

directions. For example, in [45,160], an iterative approach based on locally optimal

paths is used. In each iteration, a path must follow a specific direction d0, as

illustrated in Fig. 2.20. At the position x0, a circular ROI of radius rs is considered.

Starting from x0, the circular sector around d0 within an opening angle of 2α is the

admissible region. Only paths which lie inside this region are allowed, while other

directions are discarded. The path is optimal with respect to the local circular

ROI, and the locally optimal paths from consecutive ROIs are concatenated to

form the final result.

Figure 2.20: In each iteration, the locally optimal path starting from x0 inside
circular ROI is determined. Only paths within an opening angle of 2α are allowed.
Other paths are discarded (from [160]).

In practice, these approach have shown better performance for certain appli-

cations. However, there are some drawbacks. From an optimization point of view,

unlike the classical minimal path approaches, there does not exist an overall energy

34



2.4. Minimal Paths

function to measure the result in [45,158,159]. Furthermore, for some approaches

(e.g., [45]), there is no guarantee that the end point can be always reached, since

in the intermediate ROIs which do not contain the end point, the path can run

into a direction which eventually does not lead to the end point.

2.4.5 Additional Keypoints

There also exist minimal path approaches which rely on additional key points. The

key points can be inserted manually (e.g., [161]), which can greatly help to disam-

biguate. However, these approaches rely heavily on precise manual localization, so

they are not suited for application which require automatic analysis. Furthermore,

manually adding key points in 3D images is much more time consuming than in

2D images, and therefore these approaches are mainly limited to 2D images.

Key points can also be inserted automatically. For example, when the distance

between the wavefront and the start point xs exceeds a certain threshold, a new

key point vkey can be inserted, which plays the same role as the original start point

xs, i.e., the wavefront starts at both xs and vkey (e.g., [162–164]). The main idea

of [162] is illustrated in Fig. 2.21. For the original catheter tube image in Fig. 2.21a,

the potential function is computed based on the Laplacian operator Fig. 2.21b.

Starting from xs, which is shown as a magenta dot in the right lower corner in

Fig. 2.21c, the wavefront propagates as in classical minimal path methods, until

the distance from a certain pixel xT on the wavefront to xs reaches a threshold T .

At xT , an additional key point is inserted, and the wavefront starts propagation

there. Further key points are inserted in a similar manner, until the wavefront

reaches the end point xe, which is shown as another magenta dot in the middle in

Fig. 2.21a. By connecting each key point to the previous key point using gradient

descent, the complete path can be obtained, as displayed in Fig. 2.21d.

This method is improved in [163] such that starting from only one single point,

the complete tree structure can be segmented, i.e. the topological changes are

taken into account, and the end points are determined automatically. For example,

for the image in Fig. 2.22a, classical minimal path approaches require user-specified

start and end points for each path, and yield a short cut in Fig. 2.22b. With the

approach [162], the short cut can be avoided but all the start and end points still

need to be specified (Fig. 2.22c). In contrast, in [163] only a single start point on

the line structure is needed (Fig. 2.22d).

However, in these methods, only limited features have been used, such as the

distance between the wavefront and the start point. More complex features in

35



Chapter 2. Review of Approaches for Segmentation of Line Structures

(a) Original image (b) Potential

(c) Arrival time and key points (d) Result and key points

Figure 2.21: Minimal path approach with automatically inserted key points
in [162]. (a) Original catheter tube image. (b) Potential based on the Laplacian.
(c) Arrival time and the key points. The two magenta dots indicate the start
and end points. (d) Final result, in which key points are connected to each other
(from [162]).

terms of the path geometry, such as the curvature of the path, were not incor-

porated. Furthermore, most of these approaches (e.g., [161, 163, 164]) have been

applied only to 2D images.

2.4.6 Dynamic Speed

The above described minimal path approaches use a static speed, i.e., the speed

of the wavefront is computed before the propagation starts. In contrast, in [57–

59, 165], the speed is updated during the wave propagation using position of the

image points relative to the normal of the current wavefront.

An example is shown in Fig. 2.23. Suppose p is a point on the wavefront W .

When tracing back fromW to the start point, let w be the immediate predecessor

of p. Since w is determined using gradient descent from p, the vector #  »wp points into
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(a) Original image (b) Classical minimal path

(c) Result of [162] (d) Result of [163]

Figure 2.22: Minimal path approach with automatically inserted key points and
only one user-specified point in [163]. (a) Original image. (b) Result of the classical
minimal path approach. (c) Result of the approach with automatically inserted
key points [162], where every start and end point must be specified by the user.
(d) Result of the approach with automatically inserted key points [163], where the
user only needs to specify one single point (from [163]).

the normal direction ofW . q and r are two points which have not yet been visited

by W . In [59], the speed at q and r depend on the angles γ1 and γ2, respectively.

In other words, the speed at an unvisited point depends on how strongly this

point deviates from the normal direction of the wavefront. In contrast, in classical

minimal path approaches, the speed at q and r is determined independently of #  »wp.

Fig. 2.24 shows the result of this approach for the segmentation of an actin filament

in a microscopic image. To achieve a similar result with a classical minimal path

approach [41], several additional key points need to be inserted by the user.

However, previous approaches using dynamic speed rely only on the normal of

the wavefront. The normal is a property of a single point, but many important

appearance and geometric properties of the path, which require several points

to determine, cannot be computed using the normal alone. Furthermore, the

approaches [58,59,165] use discrete formulation, so they suffer from discretization

errors.
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γ 1 γ 2
p

q
r

w

Figure 2.23: Dynamic speed (from [59].) The wavefrontW is propagating through
the point p. The normal of W shows in the direction #  »wp. The speed at the
neighboring points q and r depends on the angles γ1 and γ2, respectively.

(a) Classical minimal path (b) Result of [59]
with key points by user

Figure 2.24: Result of classical minimal path approach [41] with user interaction
and an approach with dynamic speed [59]. An actin filament in a microscopic
image is segmented. (a) Result of a classical minimal path approach [41]. In
addition to the start and end points, several key points have been inserted by the
user. (b) Result of the approach in [59] (from [59]).

2.4.7 Integer Programming

Some recent methods (e.g., [166–168]) assume that the segments of the optimal

path form a subset of an over-connected graph, and integer programming is used

to remove unnecessary segments from the graph, so that the final result consists

of the remaining segments. Each segment is either completely included or com-

pleted excluded from the final result. Usually, the integer programming problems

for theses approaches are solved using commercial optimization solvers such as

Cplex [169], Gurobi [170], or SCIP [171]. As an example, the main steps of the ap-

proach [167] are shown in Fig. 2.25. For the satellite image in Fig. 2.25a, segments

with high probability to be part of the final result are identified using an appear-
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ance model. These segments, shown as green lines in Fig. 2.25b, are connected

with each other at nodes, displayed as red dots in Fig. 2.25b. The segments and

nodes form an over-connected graph, on which further constraints are imposed to

eliminate unnecessary segments. These constraints are formulated and optimized

using integer programming to obtain the final result in Fig. 2.25c.

(a) (b) (c)

Figure 2.25: Segmentation result of [167]. (a) Input image. (b) Over-connected
graph. (c) Final result (from [167]).

One disadvantage is that integer programming is used discrimitatively, i.e. it

is only used to decide which segments should be removed from the over-connected

graph, but the graph itself is still constructed using standard methods. Since

the segments cannot be altered once the graph is generated, these approaches are

generally prone to errors in the construction of the over-connected graph. For

example, in [166], thresholding followed by skeletonization is used, and in [167]

a classical minimal path method is employed. In both cases, the result could

be improved by more accurate methods. Furthermore, further features such as

geometric properties inside individual segments were not exploited.

2.5 Hybrid Methods

There also exist approaches which combine different methods to segment line struc-

tures. Such approaches have mainly been used for the segmentation of blood ves-

sels. By combining two methods with complementary properties, the topology

and geometry of the line structures can be better determined than using a single

method. These approaches can be roughly divided into two classes, which are

reviewed below.
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2.5.1 Geometry Refinement

In these approaches, both of the combined methods operate in the same image

region. The first method creates a coarse segmentation, while the second method

refines the geometry (e.g., [93, 172]).

For example, in [172], a minimal path method is combined with graph cuts.

For the vessel segmentation in a 2D retinal image with given start and end points

in Fig. 2.26a, the minimal path method is first used to obtain a path inside the

vessel (not necessarily the centerline) (Fig. 2.26b). Without lifting the domain

(described in Sect. 2.4.2), this method is computationally efficient but the geome-

try of the vessel is not determined. In contrast, with graph cuts the geometry can

be obtained, but graph cuts alone are not suited for the segmentation of long and

thin structures like retinal vessels due to the shrinking bias problem, as described

above in Sect. 2.3. By using the result of the minimal path method as a hard

constraint for graph cuts, the shrinking bias can be alleviated, yielding the final

result in Fig. 2.26c.

(a) (b) (c)

Figure 2.26: Segmentation of a vessel in a 2D retinal image [172]. (a) Retinal
vessel to be segmented. The start and end points are shown as red crosses. (b) In
the first step, a path inside the vessel is determined using a minimal path method.
(c) In the second step, the geometry of the vessel is obtained using graph cuts
(from [172]).

Similarly, the hybrid approach in [93] also employs another method to alleviate

the shrinking bias of graph cuts. First, a parametric cylindrical model is used to

obtain a coarse segmentation of the liver vessels in 3D CT images. After that, the

coarse segmentation is used as hard constraint for graph cuts to get a more exact

geometry, as shown in Fig. 2.27.
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Figure 2.27: Segmentation of liver vessels in a 3D CT image [93]. The result
of fitting a parametric cylindrical model (purple cylinders) are used as a hard
constraint for a more exact segmentation based on graph cuts (blue shape) (from
[93]).

2.5.2 Structure Completion

In these approaches, the combined methods operate in different image regions.

The first method creates a segmentation of most parts of the structure, while the

second method completes the missing parts which was not segmented by the first

method (e.g., [58, 114,173]).

In medical images, often thin structures are difficult to segment, while thick

structures can be segmented with a much higher accuracy. Consequently, a com-

mon segmentation strategy for these images is to first segment the thick structures,

and then use them to segment thin structures. For example, for the segmentation

of vessel networks in 2D retinal images, the approach in [58] uses pixel classi-

fication to segment the thick structures (see the white segments in Fig. 2.28).

However, thin structures cannot be segmented well using pixel classification, and

consequently there are gaps between thick structures. These gaps are completed

in a further step using a minimal path method (see the red segments in Fig. 2.28).

However, even though hybrid methods often achieve better results in terms of

geometry refinement and structure completion, each step in these hybrid segmen-

tation approaches still suffers from the disadvantages of the respective method

reviewed earlier. For example, by combining graph cuts with other methods, the

shrinking bias can be reduced but not methodologically avoided.
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Figure 2.28: Segmentation of vessel networks in two 2D retinal images [58]. The
white vessel parts are results using pixel classification, while the red vessel parts
are results of a minimal path approach (from [58]).
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Chapter 3

Background of Minimal Path

Methods

As described in Chapters 1 and 2, the analysis of line structures plays a crucial

role in many computer vision applications, and minimal path methods are often

used. The aim of this thesis is the development of minimal path methods for

analyzing line structures. In this chapter, the theoretical background of minimal

path methods is reviewed.

3.1 Introduction to Minimal Path Methods

Minimal path methods formulate the segmentation of line structures as the deter-

mination of minimal paths, also referred to as shortest paths or geodesics. Using

a given pair of start point xs and end point xe, the line structure is segmented

in the form of a path between xs and xe, such that a certain energy function is

minimized. Depending on the application, xs and xe can be specified manually or

automatically.

3.1.1 Interpretation as Wave Propagation

Usually, minimal path methods can be intuitively interpreted as the composition

of two consecutive steps: Wave propagation and backtracing. These steps are

illustrated for the case of 2D images in Fig. 3.1. In the first step (i.e., wave prop-

agation), a wavefront is initialized at the start point xs, and starts to propagate

outwards (Fig. 3.1a). The speed F(x) of the wavefront at each pixel x is com-

puted using image features, which are application specific. Let Uxs(x) denote the

arrival time of the wavefront at a pixel x. Each pixel x can have one out of three
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(a) Initialization.
(b) Select pixel with the
minimum arrival time.

(c) Compute the arrival time for
the neighboring pixels.

(d) Advance the wavefront to the
neighboring pixels.

backtracing
    minimal path

Legend

: start point

: end point

: wavefront

unknown
outside     :

inside     :
known

(e) Extract the minimal path
using backtracing.

(f) Legend.

Figure 3.1: Steps of minimal path methods. The wavefront is initialized around
the start point xs (a), and starts to propagate. After several steps, the wavefront
has the shape as shown in (b), and the pixel on the wavefront with the minimum
arrival time (i.e., x2) is selected as xmin. In (c), the arrival times of pixels xA and
xB, which are neighbors of x2, are computed. Then the wavefront advances to xA
and xB (d). This is one step of wave propagation. The propagation is performed
repeatedly until the end point xe is reached. The actual minimal path is extracted
using backtracing, starting from xe (e).

labels: Alive (lA), Trial (lT), and Far (lF). Then the image plane is partitioned

by the wavefront into three regions, corresponding to the labels of the pixels: The

region inside the wavefront is referred to as RA, and pixels inside this region are

labeled with lA. For every pixel in RA, Uxs is finally determined, and it will not
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change any more. The region on the wavefront is referred to as RT, and pixels

inside this region are labeled with lT. For every pixel in RT, Uxs is temporarily

determined, and subject to changes due to the wave propagation in future. The

region outside the wavefront is referred to as RF, and the label of pixels inside this

region is lF. For every pixel in this region, Uxs is not yet determined, the values in

this region are initialized to infinity. In Fig. 3.1, RA, RT, and RF are illustrated

as green, orange, and blue regions, respectively. At each time point, the pixel on

the wavefront (i.e., in the Trial region RT) with the minimum arrival time xmin

is selected, and the wavefront should advance at xmin (Fig. 3.1b). To determine

the direction of advancement, first the arrival time at the neighbors of xmin in the

Far region RF are computed (see xA and xB in Fig. 3.1c). After that, the label of

xmin is changed from lT to lA, and the labels of xA and xB are changed from lF to

lT. In other words, the wavefront advances to include xA and xB in the new Trial

region RT, and xmin in the extended Alive region RA (Fig. 3.1d). Once Uxs(xe) is

computed for the end point xe, i.e., the wavefront reaches xe, the minimal path

γ∗xs,xe
can be extracted by starting from xe and iteratively determining the prede-

cessor of the current position to trace back to xs (Fig. 3.1e). The computation of

the predecessor depends on the specific minimal path methods, i.e. fast marching

method or Dijkstra’s algorithm.

Definition 3.1 (Predecessor Operator). For each image point x, its predecessor

pre(x) is defined to be another image point x1 in the neighborhood of x such that

when starting from x to trace back to xs, then x1 is the first image point after x.

The predecessor of x can be computed using the operator xpre = pre(x). For the

fast marching method, pre(x) = x − τ∇Uxs(x), where τ is the step length, and

∇ is the gradient operator. For Dijkstra’s algorithm, the predecessor of each x is

stored explicitly.

3.1.2 Advantages of Minimal Path Approaches

Compared to many segmentation approaches, for example, level sets or graph cuts,

which were reviewed in Chapter 2, minimal path approaches have many desirable

features, which make these approaches especially suitable for the segmentation

and analysis of line structures.

From a theoretical point of view, the minimal paths are usually formulated

as an energy minimization problem, for which the global optimum can be found

efficiently. Unlike the level set method, in which often a pixel needs to be visited

more than once during the deformation of the level set function, in minimal path
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approaches each pixel is visited at most once, i.e. once the pixel x is changed from

the Trial region RT to the Alive region RA, thereby changing its label from lT

to lA, the arrival time Uxs(x) is finally determined and the label and Uxs(x) will

not be changed any more. Intuitively, the wavefront in minimal path approaches

propagates only outwards and never shrinks.

From a practical point of view, the result of the minimal path approaches

is always a line which connects the start point xs to the end point xe, and the

coordinates of each point on the path is known explicitly. Consequently, other

properties of the result, such as the curvature or torsion, can be computed easily.

In contrast, in level sets and graph cuts, it is possible that the binary segmentation

consists of more than one connected components, so that the start point xs is not

connected to the end point xe, since in these approaches the topology of the result

is usually subject to change. Moreover, in binary segmentation approaches such as

level sets or graph cuts, the result needs to be further analyzed using, for example,

thinning, to determine the coordinates of lines.

3.1.3 Algorithmic Taxonomy for Minimal Path Methods

The implementation of minimal path methods can be grouped into two major

classes: Discrete methods are based on the Dijkstra’s algorithm [174–176], which

is a graph theoretical algorithm, while continuous methods are based on the fast

marching method [41, 147, 177], which computes the numerical solution of partial

differential equations (PDE). These two classes are very closely related, and they

consist of similar steps. Both classes are widely used, and usually the global

optimum of the energy function can be found in both cases.

In this thesis, the introduced methods are applicable to both the Dijkstra’s

algorithm and the fast marching method. The focus in our work is on the fast

marching method, because it has several advantages compared to the Dijkstra’s

algorithm. First, due to the continuous formulation there is no metrication error,

which is inherent for discrete algorithms using graphs. Consequently, the line

structures can be segmented with subpixel accuracy. Second, since the predecessor

is computed using the gradient operator as defined in Definition 3.1 above, there is

no need to store the predecessor explicitly, resulting in less memory consumption

than the Dijkstra’s algorithm. Although the Dijkstra’s algorithm can be adapted

more easily to an anisotropic speed function, the algorithms developed in this

thesis require only isotropic speed functions. Below, the theoretical background

and the solution method of the fast marching method are reviewed.
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3.2 Fast Marching Method

Given an n-dimensional image g(x) : Ω→ Rn as well as the start and end points

xs,xe ∈ Ω, the goal of the fast marching method is to find the path γ∗xs,xe
such that

the energy E is minimized:

Energy function of continuous minimal path approaches

γ∗xs,xe
:= arg min

γ
E(γ) = arg min

γ

∫
γ

(
P(γ(s)) + w

)
ds, (3.1)

where γ is a path, P is the potential derived from g, w is a regularization constant,

and s is the arc length parameter. Let Ax1,x2 denote the set of all paths γ con-

necting two given points x1 and x2. The energy of the minimal path between xs

and an arbitrary point x in Ω is captured by Uxs :

Uxs(x) := min
γ∈Axs,x

E(γ). (3.2)

Uxs(x) can be interpreted as the arrival time of a wavefrontW emanating from xs

and propagating outwards with the speed

F(x) =
1

P(x)
. (3.3)

To compute Uxs , the numerically efficient upwind scheme [178] is employed in the

fast marching method. Once Uxs(xe) is computed, the minimal path γ∗xs,xe
can be

extracted by starting from xe and iteratively determining the predecessor of the

current position to trace back to xs. Alternatively, Uxs can also be viewed as the

solution of the Eikonal equation [41,177] , which is a non-linear partial differential

equation:

‖∇Uxs(x)‖ = P(x) + w. (3.4)

The fast marching method is usually implemented in two steps. In the first

step, the wavefront propagates outwards to compute the arrival map Uxs . In the

second step, the line structure is computed based on Uxs . These two steps are

described in detail below.
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3.2.1 Propagation of the Wavefront

The fast marching method using isotropic speed is given in Algorithm 3.1, in which

a wavefront is propagated from the start point xs to the end point xe. For a point

x, L(x) denotes the label at x, and N (x) denotes the set of direct neighbors of x

on a regular image grid.

Algorithm 3.1: Fast marching method

Input: Start point xs, end point xe, speed function F
Output: Action map Uxs

1 for each pixel coordinate x do // Initialization

2 if x = xs then
3 Uxs(x)← 0; L(x)← lT;

4 else
5 Uxs(x)←∞; L(x)← lF;

6 repeat // Main loop: Wave propagation

7 xmin ← arg minx∈RT
Uxs(x);

8 L(xmin)← lA;
9 for xn ∈ N (xmin) ∩ (RF ∪RT) do

10 Uxs(xn)← UpwindScheme(xn,F);
11 if L(xn) = lF then
12 L(xn)← lT;

13 until L(xe) = lA; // End point reached ⇒ stop propagation

14 return Uxs ;

First, the algorithm is initialized: The arrival time Uxs(x) is set to infinity and

the label L(x) set to lF for all image points x, except for the start point xs, where

Uxs(xs) = 0 and L(xs) = lT. Second, the wavefront propagates from xs towards

xe by advancing one image point in each step. From the region RT, in which the

arrival time for each image point is temporarily determined, the image point with

minimum arrival time xmin selected as a candidate to be added to the RA and its

label is changed to lA (lines 7 and 8). After that, Uxs(x) is updated for all neighbors

xn of xmin which are in RF or RT (line 10 to line 12): For the neighbor xn of the

image point xmin, which has the currently minimum arrival time among all image

points in the region RT, the function UpwindScheme determines the arrival time

Uxs(xn) using the upwind scheme (line 10). This is a finite difference numerical

scheme used widely for the fast marching method [102]. Finally, since the arrival

time of xn has been updated at least once, its label is changed to lT (line 12).

A crucial data structure is a priority queue which keeps track of all image

points in the region RT. It guarantees that xmin can be found in O(logNq) time
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(line 7), where Nq is the number of image points in RT.

3.2.2 Extracting the Line Structure

By the determination of Uxs(x) for all image points x, the actual path is extracted

using gradient descent, which starts from the end point xe, iteratively finds the

predecessor of the current point, and terminates when the start point xs is reached.

According to Definition 3.1, the predecessor is computed using the gradient oper-

ator, which can be implemented in a discrete or continuous manner. The discrete

and faster implementation is given in Algorithm 3.2 below, and the continuous

and more accurate implementation is given in Algorithm 3.3.

Algorithm 3.2: Backtracing of the fast marching method using discrete
neighborhood.

Input: Minimal action map Uxs , end point xe

Output: Path γ
1 γ ← CreateEmptyPath();
2 AppendPointToPath(xe, γ);
3 x← xe;
4 while x 6= xs do // Backtracing using discrete neighborhood

5 tmin ←∞; // Temporary minimum arrival time in N (x)
6 for x1 ∈ N (x) do
7 if Uxs(x1) < tmin then
8 xmin ← x1;
9 tmin ← Uxs(x1);

10 x← xmin;
11 AppendPointToPath(x, γ);

12 return γ;

The Algorithm 3.2 starts with an empty path γ (line 1) and adds the end

point xe to γ (line 2). Then, a neighbor of xe is selected as xmin such that the

arrival time Uxs(xmin) is minimal among all neighbors of xe. xmin is appended to

γ, and in turn its neighbor with the minimum arrival time is to be found. This

procedure is repeated until the start point xs is reached. Since the points of the

path are limited to image points on the regular grid, the path γ computed using

this backtracing method has pixel accuracy.

To obtain subpixel accuracy at the cost of a higher computational effort, Algo-

rithm 3.3 can be used. In general, the path γ is extracted by solving the ordinary

differential equation:
dγ(t)

dt
= −∇Uxs(γ(t)). (3.5)
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Algorithm 3.3: Backtracing of the fast marching method using Runge-
Kutta method.

Input: Minimal action map Uxs , end point xe

Output: Path γ
1 γ ← CreateEmptyPath();
2 AppendPointToPath(xe, γ);
3 x← xe;
4 while ‖x− xs‖ > ε do // Backtracing using Runge-Kutta method

5 ∆x1 ← τ · ∇Uxs(x);
6 ∆x2 ← τ · ∇Uxs(x− 0.5 ·∆x1);
7 ∆x3 ← τ · ∇Uxs(x− 0.5 ·∆x2);
8 ∆x4 ← τ · ∇Uxs(x−∆x3);
9 ∆x = 1

6
· (∆x1 + 2 ·∆x2 + 2 ·∆x3 + ∆x4);

10 x← x + ∆x;

11 AppendPointToPath(xs, γ);
12 return γ;

Equation (3.5) is usually solved numerically using variants of the Runge-Kutta

method, or its simplified versions, for example, the Heun’s method. In Algorithm

3.3 the classical Runge-Kutta method using 4 points is implemented. Starting with

an empty path γ, first the end point xe is appended to γ. Then repeatedly the

next point of the path is found by adding an offset to the current point, computed

as the weighted sum of four intermediate offsets (line 5 to line 9), until the distance

between the current point x and the start point xs is less than a small positive

constant ε. ∆x1,∆x2,∆x3 and ∆x4 denote the four components used to compute

the increment ∆x. In contrast to Algorithm 3.2, the points on the path are not

limited to points on the regular image grid, i.e., the result γ has subpixel accuracy.

3.3 Problems of Classical Minimal Path Approaches

The Dijkstra’s algorithm and the fast marching method are often referred to as

classical minimal path approaches. These approaches have difficulties when deal-

ing with complex structures. In the following, we demonstrate this problem ex-

emplarily using the fast marching method.

Fig. 3.2 shows the several stages of the wave propagation using an image con-

taining two line structures which cross each other twice. One of the structures is a

vertical line, and the second one is a U-shaped curve open to the right. The start

and end points are set both inside the U-shaped structure, which should be seg-

mented. Both structures have the same radius and intensity values, so the speed in
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(a) Start of the propagation (b) After passing the first crossing

(c) Approaching the second crossing (d) Reaching the end point xe

(e) Extracted path

Figure 3.2: Problem of classical minimal path approaches. The Alive region RA

is shown using green dots, the Trial region RT, i.e., the wavefront W , is shown
using orange diamonds, and the Far region RF is shown using blue crosses. The
yellow circle with red boundary indicates the pixel xmin in RT with the minimum
arrival time. (a) The wavefront starts at xs. (b) The wavefront passed the first
crossing. (c) The wavefront approaches the second crossing. (d) The wavefront
reaches the end point xe, the propagation terminates. (e) The minimal path (red
line) is extracted using backtracing.
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both line structures is roughly the same at each point along their centerlines. The

Alive, Trial, and Far regions are shown as green dots, orange diamonds, and blue

crosses, respectively. The pixel xmin in RT with the minimum arrival time is indi-

cated as a yellow circle with red boundary. The wavefront W starts to propagate

at the start point xs (Fig. 3.2a). After passing the first crossing, the wavefront W
follows two different branches, propagates further at the same speed along both

branches (Fig. 3.2b), and approaches the second crossing (Fig. 3.2c). Finally, after

passing the second crossing, W reaches the end point xe via the branch which is

shorter than the other one, and the propagation terminates (Fig. 3.2d). Using

backtracing starting from xe, the minimal path can be extracted (Fig. 3.2e).

Obviously, the path in (Fig. 3.2e) is a short cut, i.e., it does not correspond

to the correct structure to segment, which contains the start point xs and end

point xe. This is because in classical minimal path approaches, the speed is de-

rived for each image point individually, and no context information is used. In

the approaches presented in this thesis, we use different ways to employ context

information so that short cut problems can be avoided, and the robustness of the

minimal path approaches can be increased.
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Chapter 4

Direction-Preserving Minimal

Path Methods

In this chapter, we present a novel hybrid approach for automatic 3D segmenta-

tion and quantification of high-resolution 7 Tesla magnetic resonance angiography

(MRA) images of the human cerebral vasculature. Our approach consists of two

main steps. First, a 3D model-based approach is used to segment and quantify

thick vessels and most parts of thin vessels. Second, remaining vessel gaps of the

first step in low-contrast and noisy regions are completed using a 3D minimal path

approach, which exploits directional information. We present two novel minimal

path approaches: The first is an explicit approach based on energy minimization

using probabilistic sampling, and the second is an implicit approach based on fast

marching with anisotropic directional prior. We conducted an extensive evaluation

with over 2300 3D synthetic images and 40 real 3D 7 Tesla MRA images. Quanti-

tative and qualitative evaluation shows that our approach achieves superior results

compared to a previous minimal path approach. Furthermore, our approach was

successfully used in two clinical studies on stroke and vascular dementia. The work

in this chapter was published in [37–40].

This chapter is organized as follows. In Sect. 4.1 we give an overview of our

hybrid 3D vessel segmentation approach. Then, we describe the model-based

approach (Sect. 4.2) and the two minimal path approaches (Sect. 4.3 and 4.4).

A related iterative method for 2D vessel segmentation is presented in Sect. 4.5.

Experimental results are presented in Chapter 5.
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Chapter 4. Direction-Preserving Minimal Path Methods

Figure 4.1: MIP of a region of a 3D 7T MRA image of the brain. For one thick
vessel (red) and four thin vessels (green), the segmentation results of the model-
based approach (first step, solid contours) and a minimal path approach (second
step, dashed contours) are shown.

4.1 Overview of the Hybrid 3D Vessel Segmen-

tation Approach

Our hybrid approach for 3D segmentation and quantification of vessels from 7T

MRA images consists of two main steps. In the first step, thick vessels and most

thin vessels are segmented using a 3D model-based approach: A parametric inten-

sity model is fitted to the 3D image and vessel features such as the radius and

the direction of vessel segments are determined (see Sect. 4.2 below). However,

in low-contrast and highly noisy regions and at vessel branches, the parametric

intensity model cannot always be fitted well, leading to gaps in these regions.

Therefore, in the second step, the gaps are automatically completed using two

novel 3D minimal path approaches. One minimal path approach is based on prob-

abilistic sampling (described in Sect. 4.3 below) and the other is based on fast

marching with anisotropic directional prior (Sect. 4.4). Both approaches incorpo-

rate direction information determined by the model-based approach.

Our hybrid approach is illustrated using a real 7T MRA image as shown in

Fig. 4.1. Vessel 1 (red) is a thick vessel, with vessels 2-5 (green) as its branches.

While vessels 1 and 2 are segmented correctly, vessels 3, 4, and 5 are not correctly

connected to vessel 1 because of low image contrast. In our approach, we deter-

mine the centerlines for the gaps and assume that the radius of the vessels in the

completed gaps is constant and equal to the radius of the last segment quantified

by the model-based approach. Our goal is to find a gap completing path (dashed

contours), while avoiding wrong connections. For example, in Fig. 4.1 one end

of vessel 4 (marked with a white arrow) is not connected to any vessel, which is
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correct since there is no thick vessel close to it.

4.2 3D Model-Based Segmentation and Quan-

tification Approach

4.2.1 3D Parametric Intensity Model

For segmentation of cerebral vessels using a model-based approach, we use a 3D

parametric intensity model that represents the shape as well as the image inten-

sities of vessels within a 3D region of interest (ROI), and which consists of an

approximation gCyl of an ideal sharp 3D cylinder that is convolved with a 3D

Gaussian [46]. The tubular model includes parameters for the width R of the

tubular structure and the image blur σ, and is well-suited to model tubular struc-

tures of different radii. The complete 3D model gM also incorporates intensity

levels a0 (surrounding tissue) and a1 (vessel) as well as a 3D rigid transform R
with rotation α = (α, β, γ)T and translation x0 = (x0, y0, z0)

T , which yields

Parametric intensity model

gM(x,p) = a0 + (a1 − a0) gCyl(R(x,α,x0), R, σ) (4.1)

with parameters p = (R, a0, a1, σ, α, β, γ, x0, y0, z0)
T .

To segment a certain vessel segment, we use a model fitting approach based on

least-squares fitting of the 3D cylindrical model gM to the image intensities g(x)

within a spherical 3D ROI:

Segmentation of a vessel segment

∑
x∈ROI

(gM (x,p)− g (x))2 → min. (4.2)

To segment a complete vessel, we apply an incremental estimation process based

on a Kalman filter that starts at an initial position on the vessel and incrementally

proceeds along a vessel (see [46] for details). The size and shape of the 3D ROI

used for model fitting are automatically adapted to the shape of the vessel [179].

Using this approach, the vessels are segmented and quantified simultaneously, i.e.,

after segmentation no additional step for quantification is required, as opposed
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to approaches which result in a binary segmentation (e.g., [33, 35]), and therefore

require extra steps for quantification.

4.2.2 Automatic Initialization

Compared to previous work where the model was initialized manually for each

vessel (e.g., [46]), we employ an automatic scheme. In this scheme, potential

vessel structures are identified based on a vesselness map, which is obtained by

applying a vesselness filter to the image data (e.g., [51], see Sect. 4.4.2 below).

Initial vessel positions are chosen based on large vesselness values in this map,

and the initial orientations are estimated based on the eigenvectors of the Hessian

matrix at the chosen positions. After a vessel is segmented, it is masked out in the

vesselness map to avoid a repeated segmentation. Since the image data comprises

vessels of different radii, we apply this scheme twice for different values of the

standard deviation of the vesselness filter, i.e., first using a large value σ1 for the

segmentation of thick vessels, and then using a small value σ2 for the segmentation

of thin vessels. We used values of σ1 = 3 and σ2 = 1 in all experiments.

4.2.3 Partly Missing Connections

Using the model-based approach described above, thick vessels and most of the

thin vessels are usually segmented successfully. However, it is often very difficult to

segment the connecting parts between thick vessels and their branches, since these

parts typically lie within regions with a low image contrast and a high noise level,

and consequently the parametric intensity model cannot be fitted well. Thus, gaps

exist after model-based segmentation, which must be completed (see Fig. 4.1). In

our approach, gaps are detected automatically by identifying vessel endpoints that

are close to another vessel but not yet connected to it.

In Fig. 4.2, the problem of using previous minimal path approaches for gap

completion is illustrated. Usually, these approaches yield short cuts, and the re-

sulting vessel has an abrupt change of direction in the gap. The reason is that

these approaches do not incorporate initial directional information, such as the

direction of the last segmented part of the vessel branch before the gap (which

can be well determined using a model-based approach). In contrast, we introduce

minimal path approaches which can effectively incorporate the initial direction ds

and yield a smooth transition from the thin vessel (e.g., the solid green vessel in

Fig. 4.2), which is segmented by the model-based approach, to the thick vessel

(e.g., see the desired dashed green vessel in Fig. 4.2). Two different approaches
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unde
sired

desired

Figure 4.2: Comparison of our approach with previous minimal path approaches.
Previous minimal path approaches usually yield a short cut in image regions with
high noise level and low image contrast, while with our approach the initial di-
rection ds from the model-based approach can be incorporated and therefore the
transition is smooth.

are proposed, which allow preserving the smooth transition either explicitly or im-

plicitly. The explicit approach (Sect. 4.3 below) is based on probabilistic sampling,

and the implicit approach (Sect. 4.4) is based on fast marching with anisotropic

directional prior.

4.3 Explicit Initial Direction Preservation: 3D

Probabilistic Minimal Path

In the 3D probabilistic minimal path approach, we denote the vessel in a gap as

γ. An energy function is used to measure γ by explicitly imposing the smoothness

of the vessel as a soft constraint.

4.3.1 Energy Function

For each γ, we denote Vf as the sequence of voxels on γ. xs and xe are the start

and end voxels in Vf , respectively. Nxi
denotes the set of neighboring centerline

voxels of xi. Furthermore,M is the set of voxels which are segmented as vessel by

the model-based approach and Me ⊂ M is the set of the vessel end points from

that step. Then, the energy function can be defined as:
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Energy function of probabilistic minimal path

E(γ) =
∑
xi∈Vf

D(xi) + λ ·
∑
xi∈Vf

S(xi), (4.3)

such that xs ∈Me, (4.4)

and xe ∈M. (4.5)

D(xi) is the data term which describes the probability that a voxel xi is located

within a vessel. The more the intensity of a voxel deviates from the maximum

intensity in its neighborhood, the lower is the probability that this voxel is located

within a vessel and thus the higher is the corresponding energy. Accordingly,

D(xi) is defined as:

D(xi) = |g(xi)− max
xj∈Nxi

g(xj)|. (4.6)

S(xi) encodes the smoothness of the vessel at xi, which is independent of the

image data and weighted by the scalar λ. Higher curvatures of the centerline are

assigned a higher energy. Let θ(d1,d2) denote the angle between two directions

d1 and d2:

θ(d1,d2) = arccos

(
dT1 · d2

‖d1‖ · ‖d2‖

)
. (4.7)

Then S(xi) is defined as:

S(xi) = θ(dxi
,dxi+1

), (4.8)

where

dxi
= xi − xi−1, (4.9)

dxi+1
= xi+1 − xi. (4.10)

The curvature at xi is measured by the angle between the two consecutive vessel

segments at xi.
∑
D and

∑
S in (4.3) can be interpreted as the energy functions

for the likelihood and the prior in Bayes’ theorem, respectively. The sum of
∑
D

and
∑
S corresponds to the energy of the posterior. The hard constraints (4.4)

and (4.5) state that the start and end points xs and xe are voxels that have been

segmented as vessel in the previous model-based segmentation step.
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Figure 4.3: 2D sketch of 3D sampling within a cone (gray triangle). N cone
xi

=
{x2,x3,x4}. x1,x5 /∈ N cone

xi
since these points are outside of the cone.

4.3.2 Sampling Scheme

The start point xi = xs and tangent di = ds are given by the end point and tangent

of the last vessel segment from model-based segmentation. Then, a cone which

opens in the direction of di with an angle of 2δ and the apex at xi is constructed,

indicated as the gray triangle in Fig. 4.3. The set of all neighboring voxels within

the 3 × 3 × 3 neighborhood of xi inside this cone is denoted by N cone
xi

. Let g(x)

denote the intensity value of voxel x, then the next voxel xi+1 of the candidate

vessel is selected randomly from N cone
xi

, with a probability given by:

P (x) =
g(x)∑

xj∈N cone
xi

g(xj)
. (4.11)

The closer g(x) is to the maximum intensity within N cone
xi

, the higher is the prob-

ability that x is selected as the next voxel of the candidate vessel. Once the next

voxel has been found, the tangent can be updated and used to find further voxels.

This process is repeated until a voxel is reached which is inM, or until a maximum

length is reached.

The vessel centerline candidate is a sample which is then evaluated by (4.3).

Note that the hard constraints (4.4) and (4.5) are satisfied automatically, because

for each successfully completed gap, the sampling always starts at the last point

of the vessel segmented by model-based approach, and ends at a voxel in a vessel.

The sample with the lowest energy value is selected as the final result of the

probabilistic optimization. If the optimal sample does not end inM, we conclude

that this vessel end should not be connected to a thick vessel (cf. one end of vessel

4 in Fig. 4.1 indicated by a white arrow, which does not have a thick vessel close

to it).
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4.4 Implicit Initial Direction Preservation: 3D

Fast Marching with Anisotropic Directional

Prior

In contrast to the explicit approach described in the previous section, the infor-

mation of the initial direction can also be incorporated implicitly using the fast

marching framework. First, we briefly describe the standard fast marching ap-

proach (Sect. 4.4.1). Then, we present an approach to incorporate an anisotropic

directional prior into the fast marching approach (Sect. 4.4.2).

4.4.1 Standard Fast Marching Approach

Given a start point xs and an end point xe, fast marching aims at finding the path

γ minimizing the energy function

E(γ) =

∫
γ

(P(s) + w) ds, (4.12)

where P is a potential function derived from an image, w is a constant regular-

ization term which controls the smoothness of the path, and s is the arc length

parameter. P can be interpreted as the inverse of the propagation speed F of a

wavefront, which emanates from the start point xs:

P(s) =
1

F(s)
. (4.13)

This wavefront keeps propagating outwards, until an end point xe is reached. Let

Ax1,x2 denote the set of all paths γ connecting two given points x1 and x2, then the

arrival time of the wavefront at each voxel x can be represented by the minimal

action map Uxs :

Uxs(x) := min
γ∈Axs,x

E(γ). (4.14)

Usually, (4.14) is computed by solving the Eikonal equation

‖∇Uxs(x)‖ = P(s) + w (4.15)

using efficient numerical schemes such as the upwind scheme (e.g., [178]). Note

that this equation employs the Euclidean norm of the gradient ‖∇Uxs(x)‖, which is

the same for all directions, i.e., the speed function F must be isotropic. Once Uxs is
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ds

xs

xe

ds

xs

xe

xi

(a) (b)

Figure 4.4: 2D sketch of 3D anisotropic effect. (a) Anisotropic speed: The two
large arrows at xs indicate higher speed in two specific directions. (b) Isotropic
speed: The four large arrows at the voxel xi indicate higher speed in the specific
area.

computed, the minimal path can be extracted: Starting from xe, the predecessor of

the current position is determined using gradient descent. This process is repeated

until xs is reached. The final result of fast marching approaches has subvoxel

accuracy, i.e., metrication errors caused by the discrete grid structure, which are an

inherent problem of discrete approaches such as Dijkstra’s algorithm, are avoided.

There are several differences between this standard fast marching approach and

the probabilistic minimal path approach described in Sect. 4.3. First, the actual

path is only computed after the wavefront reaches xe. During the propagation of

the wavefront, there is no explicit representation of a path. Instead, the necessary

information to compute the path is embedded implicitly in Uxs . Second, in the

probabilistic approach, the smoothness of the path is regularized by assigning a

high energy to paths with high curvature, while here the smoothness regularization

is achieved indirectly via length regularization. This is because the energy function

can be decomposed as:

E(γ) =

∫
γ

(P(s) + w) ds =

∫
γ

P(s)ds+ w

∫
γ

1ds, (4.16)

where
∫
γ

1ds is the Euclidean length of γ. Therefore, the energy function (4.16)

prefers shorter paths, and smoothness is thus a consequence of this preference,

since usually it is assumed that shorter paths are also smoother. However, shorter

paths are not always the better results (cf. Fig. 4.2). To address this problem,

below we introduce a fast marching approach with an anisotropic directional prior.
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4.4.2 Anisotropic Directional Prior

As mentioned above in Sect. 4.2.3, the model-based approach provides an estimate

of the direction ds of a vessel at each start point xs, which can be used to segment

vessels in low-contrast and noisy regions. Obviously, ds involves anisotropic infor-

mation, which may suggest using an anisotropic fast marching approach. How-

ever, current anisotropic fast marching approaches (e.g., [43, 44]) can only cope

with speed functions defined by symmetric positive definite metric tensors, which

means that the speed function at each pixel or voxel x has an elliptical profile

centered at x. Furthermore, for high anisotropy, the numeric solution is either not

accurate or very time-consuming [44]. In comparison, our approach does not have

these limitations. First, the direction ds of a vessel is incorporated in a principled

manner. Second, we use isotropic speed functions to create an anisotropic behav-

ior which is not limited to be elliptic but can be more general (irregular). Third,

since we always use the numeric solution for isotropic fast marching, our approach

is accurate and computationally efficient, even for high anisotropy.

The main idea is to modify the potential function P , or equivalently the prop-

agation speed F , so that it is possible to incorporate the prior directional informa-

tion ds into the isotropic Eikonal equation. This is illustrated in Fig. 4.4. There,

each dot or square represents a voxel, and the start point xs and end point xe are

highlighted as red dots and white squares, respectively. The initial direction ds

is indicated as a red arrow. The black arrows show the speed at voxels in differ-

ent directions. Suppose that we prefer paths such that the initial tangents of the

paths point in directions similar to ds. Using an anisotropic speed (Fig. 4.4, left),

this would be achieved by increasing the speeds in specific directions at xs (large

black arrows). However, such an anisotropic speed cannot be handled using the

isotropic Eikonal equation. Moreover, since this speed function does not fit into

an ellipse centered at xs, it cannot be handled by anisotropic fast marching either

(e.g., [43, 44]). The idea in our approach is that a similar anisotropic effect can

be achieved using an isotropic speed. Instead of increasing the speed in preferred

directions, we increase the isotropic speed at preferred image positions. For exam-

ple, in Fig. 4.4 (right), all speeds in the different directions at the green voxel are

increased to the same large value. On the scale of the whole image, an anisotropy

is achieved, i.e., the paths passing through the green voxel are preferred, but on the

scale of individual voxels, this speed function is still isotropic, and consequently

the isotropic Eikonal equation can be applied. To incorporate the anisotropy, we

propose the following energy function as an extension of (4.12):
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Energy function with anisotropic directional prior

E(γ,xs,ds) =

∫
γ

(
Pcomp(s,xs,ds) + w

)
ds. (4.17)

Similar to (4.13), the composite potential function can be interpreted as the inverse

of the composite speed:

Pcomp(s,xs,ds) =
1

Fcomp(s,xs,ds)
, (4.18)

where Fcomp is defined as:

Fcomp(s,xs,ds)

= Fv(s) + w · Fdir

(
x(s)− xs,ds

)
+ F0. (4.19)

Fcomp includes a speed function Fv based on a multiscale vesselness filter, a speed

function Fdir based on an anisotropic (irregular) directional prior, as well as a

constant speed F0 (w is a scalar weight). Note that our approach can cope with

more general anisotropic behavior compared to previous anisotropic fast marching

approaches with elliptical speed functions (e.g., [43,44]). Our speed functions are

detailed below:

4.4.2.1 Vesselness-based Speed Function Fv

The speed function Fv is defined as:

Fv(s) = max
σmin≤σ≤σmax

Vs(x). (4.20)

In our approach, the filter from [51] is used, i.e.:

Vs(x) = (4.21)
|λ3|

(
λ2
λ3

)γ23 (
1 + λ1

|λ2|

)γ12
, if λ1 ≤ 0, λ2, λ3 < 0

|λ3|
(
λ2
λ3

)γ23 (
1− α λ1

|λ2|

)γ12
, if |λ2|

α
> λ1 > 0 > λ2, λ3

0, otherwise.

where λ1, λ2, λ3 are the eigenvalues of the Hessian matrix at x, while γ12, γ23 control

the sensitivity of the filter.
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4.4.2.2 Anisotropic Directional Prior Speed Function Fdir

We introduce a new function Fdir which depends only on the spatial relationship

between voxel coordinates x(s), xs and direction ds, but not on the intensities of

an image, i.e., Fdir represents our spatial a priori knowledge. Let d := x(s)− xs,

then Fdir can be written as:

Fdir(d,ds) = fdir(d,ds) · fatt(d), (4.22)

where fdir is the speed depending on the deviation of d from ds, and fatt is an

attenuation function. For fdir, we propose the following Gaussian speed function:

fdir(d,ds) =
1√
2πσ

exp

(
−θ(d,ds)

2

2σ2

)
, (4.23)

where θ(d,ds) is the angle between d and ds, as defined in (4.7). With increasing

distance from xs, the influence of the prior is reduced to avoid unduly straight

results. This is modeled using the following attenuation function fatt:

fatt(d) = exp

(
−‖d‖

α

)
. (4.24)

4.4.2.3 Constant Speed Function F0

At some voxels, the sum Fv +Fdir may be zero. However, the speed Fcomp cannot

be zero because this would cause a division by zero in (4.18). Therefore, an

additional small positive constant speed F0 is added to each voxel so that the

wavefront always propagates outwards and never stops before reaching xe.

Since Fv, Fdir, and F0 are all isotropic, Fcomp and Pcomp are also isotropic.

Thus, to find the minimum of (4.17), we can use the same numerical scheme as

for the isotropic Eikonal equation (4.15), i.e., the upwind scheme [178], to solve

the following extended Eikonal equation:

Extended Eikonal equation

‖∇Uxs(x)‖ = Pcomp(s,xs,ds) + w. (4.25)

For each endpoint xs of a segmented vessel we check whether there exists

another segmented vessel within a distance of 8 voxels. If there is no such vessel,

then we conclude that xs should not be connected to another vessel (cf. one end

of vessel 4 in Fig. 4.1 indicated by a white arrow).
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4.4.3 Interpretation of Anisotropic Directional Prior

The effects of the anisotropic directional prior can be illustrated by an example

shown in Fig. 4.5. The thin vessel (green) should be connected to the thick vessel

(red). For simplicity and clarity, we assume that Fv = 0 for each voxel outside

these two vessels. In other words, only the constant speed F0 and the anisotropic

directional prior Fdir influence the propagation of the wavefront, which starts at

the voxel xs and ends when the thick vessel is reached at the blue point. The

different values of Uxs are displayed using different grayscales: Darker regions are

reached by the wavefront before brighter regions. The boundaries (dashed lines)

between regions with different Uxs values are called iso-arrival lines.

Fig. 4.5a shows the case without the anisotropic directional prior, i.e., Fdir = 0.

In this case, the speed is the same for all voxels, so the wavefront propagates

isotropically with the constant speed F0, and therefore the iso-arrival lines are

circular. Consequently, these two vessels are connected with each other via a

straight line. In this case, there is a sharp turn at xs, which does not correspond

to the general assumption that vessels should be smooth.

In Fig. 4.5b, the anisotropic directional prior is incorporated. The initial direc-

tion ds is considered reliable since it is computed using the model-based approach

in image regions with higher contrast. This directional information can be used to

improve the result by adding Fdir to each voxel according to (4.23). Therefore, the

speed is higher at the voxels in preferred regions, and there the wavefront propa-

gation is faster. Consequently, the iso-arrival lines are not circular any more. The

vessels are connected with a curve such that the transition between this curve and

the green vessel is smooth.

4.5 Implicit Initial Direction Preservation: Iter-

ative 2D Fast Marching

Based on the implicit approach described above in Sect. 4.4, we introduce a new

approach to segment the vessel centerline and determine the radius in an itera-

tive manner. The implicit approach is based on the fast marching method and

uses a directional prior. This prior promotes anisotropic propagation of the wave-

front and is combined with speed functions based on a vesselness measure and the

vessel radius. In contrast to previous approaches based on fast marching (e.g.,

[41, 154, 162]), our approach can deal with short cuts and crossings in long ves-

sels. An important difference to [45] is that we use the prior as a soft constraint.
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(a) Fv = Fdir = 0 (b) Fv = 0,Fdir 6= 0

Figure 4.5: Effect of the directional prior. (a) Fv = Fdir = 0. The wavefront
propagates with the same constant speed F0 overall, resulting in circular iso-arrival
lines and a sharp turn at xi. (b) Fv = 0,Fdir 6= 0. The wavefront propagation
speed F0 + Fdir is faster in preferred regions, resulting in non-circular iso-arrival
lines and a smooth transition at xi, and gradual change of direction.

Figure 4.6: Two retinal images of the DRIVE dataset [24].

Moreover, all speed functions are constructed in such a way that isotropic fast

marching can be used for the optimization instead of the computationally more

expensive anisotropic fast marching. Furthermore, our approach is more efficient

than previous approaches (e.g., [155]), since it uses only a 3D parameter space and

restricts the computation to a relatively small image region.

4.5.1 Iterative Framework

Our approach mimics the way a human observer segments a vessel. Usually, an

observer does not segment the complete vessel at once but starts from some part

of the vessel and follows it. Fig. 4.7 (right) illustrates this procedure. For a point

xk within the vessel and a direction dk, we try to find a small part of the vessel

within a circular ROI centered around xk. To do so, we compute the composite

speed function with three components (see Sect. 4.5.2) for the ROI and find the
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Figure 4.7: Sketch of the iterative vessel segmentation approach.

pixel xmin with the minimum arrival time on the ROI boundary. The optimal path

is found by back-tracing from xmin to xk using the gradient descent method. After

that, a new direction dk+1 is predicted as dk+1 = (xmin−xk). We set xk+1 := xmin

and the next ROI centered around xk+1 is analyzed. The initial position x0 and

direction d0 are provided by the user. This procedure is repeated until certain

termination criteria (see Sect. 4.5.3) are satisfied. Upon termination, the sequence

of paths from individual ROIs are concatenated to form the final result.

4.5.2 Speed Functions

Our speed function is defined as:

Speed function of iterative fast marching

Fcomp(x, r) = Fv(x, r) + wrFradius(x, r) + wdFdir(x, r) (4.26)

where Fv, Fradius, and Fdir are speed functions derived from a vesselness measure,

the vessel radius, and the vessel direction, respectively. These speed functions

are weighted by the factors wr and wd. x is the pixel position, and r is the

estimate of the radius. Fv and Fdir are independent of r, i.e., Fv(x, r) = Fv(x)

and Fdir(x, r) = Fdir(x) for r = rmin, . . . , rmax. The definitions of these speed

functions are described in the following.

4.5.2.1 Speed Function Based on Vesselness

We use a multiscale vesselness filter [50] to enhance tubular structures, i.e.:

Fv(x) = max
smin≤s≤smax

Vsx, with (4.27)

Vsx =

0, if λ2 > 0

exp
(
− 1
β2 · λ

2
1

λ22

) (
1− exp

(
− 1

2c2
· (λ21 + λ22)

))
, otherwise

(4.28)
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where the scale s ranges from smin to smax. λ1 and λ2 are the eigenvalues of the

Hessian matrix at x . β and c control the sensitivity of the filter.

4.5.2.2 Speed Function Based on Radius

To segment not only the vessel path but also to quantify its radius, we apply the

speed function:

Fradius(x, r) =
1

Pradius(x, r)
, with (4.29)

Pradius(x, r) = wµ

(
µint(s(x, r))

r
− µint(s(xk, r))

r

)2

+ wσ

(
σ2
int(s(x, r))

r
− σ2

int(s(xk, r))

r

)2

, (4.30)

where s(x, r) is a sphere of radius r centered at x, µint and σ2
int denote the mean

and variance of the pixel intensities within this sphere, respectively, and wµ as

well as wσ are two factors [154]. Note that in contrast to Fv(x), Fradius(x, r) has

an additional parameter r for the radius information, thus Fradius(x, r) has a 3D

parameter space where r ranges from rmin to rmax.

4.5.2.3 Speed Function Based on Directional Prior

The predicted direction dk from the last ROI is important a priori information

because it can help to reduce the ambiguities caused by low image contrast, noise,

or crossings, and can prevent the algorithm from returning to already segmented

vessel parts. To incorporate dk into our framework, we suggest a directional prior

which emphasizes directions close to dk as increased speed in these directions.

Note that in single-pass fast marching algorithms, such directional information is

not available. We propose the following Gaussian speed function:

Fdir(x) =
1√
2πσ

exp

(
− θ2

2σ2

)
, with θ = arccos

(
dTk · (x− xk)

|dk| · |x− xk|

)
. (4.31)

Although a higher speed is allowed if the direction (x−xk) is closer to the predicted

direction dk, other directions are not excluded, i.e., this is a soft constraint, in

contrast to the hard constraint in [45]. Note that although this prior achieves an

anisotropic effect at the scale of the ROIs, it is isotropic at the scale of pixels, thus

it can be optimized using the isotropic fast marching method.
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4.5.3 Termination Criteria

We employ two termination criteria which are examined in each iteration. The

algorithm terminates if one of these criteria is satisfied. First, we test whether

the end point xxend is within the current ROI. If this is the case, then we start

back-tracing from the end point instead of back-tracing from a pixel at the ROI

boundary, and after that the iteration is terminated. Otherwise, we proceed as

described in Sect. 4.5.1 above. Second, upon finding a vessel in an ROI, we com-

pute the percentage of vessel pixels with reasonably high vesselness values. More

precisely, we check whether the following inequality is satisfied:

1

|V |
∑
x∈V

χ
(
Fv(x), Tv

)
> Tχ, with χ (Fv(x), Tv) =

1, if Fv(x) > Tv

0, otherwise
(4.32)

where |V | denotes the number pixels belonging to vessel V in the current ROI,

Fv(x) is the vesselness at the pixel x. Tv is the vesselness threshold, and Tχ

is a threshold in percentage. If Tχ is not reached, then we conclude that the

current vessel candidate does not have the appearance of a vessel and thus the

segmentation is terminated.
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Chapter 5

Experimental Results of

Direction-Preserving Minimal

Path Methods

In this chapter, experimental results for the direction-preserving minimal path

methods introduced in Chapter 4 are presented. Results for 3D synthetic images

are provided in Sect. 5.1, and results for real 3D 7T MRA images are shown in

Sect. 5.2. Finally, results for the iterative 2D fast marching method are given in

Sect. 5.3

5.1 Synthetic 3D Images

We have generated 2370 3D synthetic images using different 3D analytic intensity

models to quantitatively analyze the performance of our approach. In this sec-

tion, we present experiments using two types of 3D synthetic images containing

structures (branching vessels and parallel vessels) which resemble typical configu-

rations of vascular structures in real 3D 7T MRA images. Two examples of such

configurations are shown in Figures 5.10a and 5.11a. Sketches of corresponding

synthetic images are shown in Figures 5.1 and 5.6, respectively.

5.1.1 Branching Vessels

In this experiment, 3D synthetic images of branching vessels are considered. For

an example of a branching vessel in a 3D 7T MRA image, see Fig. 5.10a. A sketch

of this configuration is provided in Fig. 5.1: Each image contains a horizontal

thick vessel VA and an inclined thin vessel VB. Both VA and VB are modeled
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(a) Structure (b) Image

Figure 5.1: Synthetic 3D branching vessel. (a) Sketch of a branching vessel used
for quantitative evaluation. Between the horizontal vessel VA with radius RA and
the inclined vessel VB with radius RB and angle α to VA, there is a low-contrast
part of length l. This small part is an arc of a circle with radius Rl and centered
at O. The starting and end points are xs and xe, respectively. Gaussian noise is
added. (b) 2D section of an example of a 3D synthetic image based on (a).

as smoothed straight cylinders, with radius RA and RB, respectively. The angle

between VA and VB is denoted by α. Furthermore, there is a curved part of length

l between VB and VA, for which the voxel intensities are significantly lower than

the intensities in VA or VB. The model-based approach generally leads to a gap

in such parts, therefore we denote this part as gap. This gap starts at xs, and

terminates at a point xe on the surface of VA. The shape of this vessel part is an

arc of a circle with a radius Rl. The center of the circle is O and lies on the surface

of VA. Furthermore, Gaussian image noise with standard deviation σn is added.

All images have the same size of 128× 128× 32 voxels. The parameters RB, RA,

as well as the intensities in VB and VA are all determined based on observed values

for vessels in the region around the lenticulostriate arteries (LSA) in real 3D 7T

MRA images. The values of these parameters remain fixed throughout all our

experiments. Specifically, we used the following parameter values: The radii of VA

and VB are RA = 4 voxels and RB = 1 voxel, respectively. The mean intensities

of VA, VB, and the low-contrast region are gA = 450, gB = 200, and ggap = 100,

respectively. Furthermore, the mean background intensity is gbg = 50. We study

the performance of our approaches for varying values of the parameters α, l, and

σn.

The performance of the model-based approach was previously evaluated in

[46], therefore we concentrate on the evaluation of the minimal path approaches

described in Sect. 4.3 and Sect. 4.4. In our experiments we used a termination

point at xs for the model-based approach, so that the minimal path approaches

always start at the same position xs. To measure the performance, we use the
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mean error and standard deviation between the segmented centerline γ and the

corresponding ground truth (in voxels)

Mean error

eγ =
1

|γ|
∑
xi∈γ

|xi − xgt(i)|, (5.1)

where xi are sample points on γ, and xgt(i) is the closest point of the ground truth

to xi. |γ| denotes the number of points on γ. In Fig. 5.2, the error measure is

illustrated using a path with five sample points x1, . . . ,x5, i.e., |γ| = 5. Note that

the closest points xgt(1), . . . ,xgt(5) are arbitrarily located on the curve of ground

truth. In other words, they are not necessarily control points of the ground truth.

segmented vessel

ground truth

Figure 5.2: The mean error is determined based on the mean distance between
the sample points xi of a segmented vessel and the closest point xgt(i) on the
corresponding ground truth.

In the following, we study the performance of our approaches for varying angle

α (Sect. 5.1.1.1), varying gap length l (Sect. 5.1.1.2), and varying image noise level

σn (Sect. 5.1.1.3). In each case, the results of our explicit approach (PROB, de-

scribed in Sect. 4.3) and of our implicit approach (FM-ADP, described in Sect. 4.4)

are compared with a previous (classical) fast marching approach (FM-V) [41]. The

difference between FM-ADP and FM-V is that for FM-ADP the speed function

is based both on the directional prior and the vesselness measure, while for FM-V

the speed is based only on the vesselness measure.

5.1.1.1 Varying Angle

To analyze the performance of our approaches with respect to the angle α be-

tween vessels VA and VB, we used a large range of 20 different values of angles:

α = 0.1π, 0.12π, 0.14π, . . . , 0.48π. The gap length and image noise level are held
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Figure 5.3: Mean error and standard deviation of the centerline positions for
different angles for branching vessels in 3D synthetic image data: the angle α
between vessels VA and VB varies from 0.1π to 0.48π, with an increment of 0.02π.
The other parameters are constant: l = 6 and σn = 10. The lines indicate the
mean errors, and the error bars show the standard deviation of 30 repetitions for
each image.

constant at l = 6 and σn = 10. To account for the randomness of noise, the ad-

dition of image noise was repeated 30 times, yielding 20× 30 = 600 3D images in

total. For each value of α, the mean error and standard deviation of the centerline

positions are computed, see Fig. 5.3. It turns out that FM-ADP achieves consis-

tently the lowest mean error, which is well within the subvoxel range, compared

to the other two approaches. For small or medium angles (α < 0.36π), PROB

outperforms FM-V, while for larger angles FM-V is better than PROB. More-

over, FM-V and FM-ADP both yield low standard deviations, while the standard

deviation of PROB increases with increasing angle.

5.1.1.2 Varying Gap Length

In this experiment, we varied the gap length l from 2.5 voxels to 16 voxels with

an increment of 0.5 voxels (28 different values). Based on our experience, the

typical length of a gap is at most 8 voxels for vessels in LSA regions in real 3D

7T MRA images. For the other two parameters we used α = π
6

and σn = 10. As

in the experiment above, addition of image noise was repeated 30 times, yielding

28 × 30 = 840 3D images in total. The mean errors and standard deviations are

shown in Fig. 5.4. For typical gap lengths (l < 8) voxels, FM-ADP and PROB

perform better than FM-V. The mean error of PROB is larger than that of FM-V

for l ≥ 11 voxels. Furthermore, PROB performs somewhat better than FM-ADP

for l ≤ 5 voxels. However, for larger gaps FM-ADP achieves significantly better

results. Overall, FM-ADP achieves the best result and a small mean error, even

for gaps as long as 16 voxels. For gaps longer than 5 voxels, the results of PROB
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Figure 5.4: Same as Fig. 5.3, but using different gap lengths l = 2.5, 3.0, 3.5, . . . ,
16, and fixed values α = π

6
and σn = 10.

0.0 5.0 10.0 15.0 20.0

σn  (standard deviation of Gaussian noise)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

m
e
a
n
 e

rr
o
r 

(v
o
x
e
ls

) FM-V

PROB

FM-ADP

Figure 5.5: Same as Fig. 5.3, but using different noise levels σn = 0, 1, 2, . . . , 20,
and fixed values α = π

6
and l = 6.

and FM-V typically exhibit a higher standard deviation. In contrast, for all gap

lengths, FM-ADP yields consistently a low standard deviation.

5.1.1.3 Varying Noise

In this experiment, the robustness of our approaches against image noise is inves-

tigated. In real 3D 7T MRA images of the LSA region, the noise can be described

by a Gaussian distribution with a standard deviation of σn = 10. We used a large

range for the noise level which is twice as large as the observed standard devia-

tion. Specifically, we chose σn = 0, 1, 2, . . . , 20 (21 different values). The other two

parameters are held constant at α = π
6

and l = 6. The addition of image noise

was repeated 30 times, yielding 21× 30 = 630 3D images in total. Fig. 5.5 shows

the results.

For higher noise levels (σn ≥ 5), both PROB and FM-ADP outperform FM-V

in terms of mean error. The lowest mean error is obtained by FM-ADP which

remains consistently lower than 0.5 voxels. Generally, the standard deviation

increases with higher noise levels. For noise levels around the typical value in the
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(a) Structure (b) Image

Figure 5.6: Synthetic 3D parallel vessels. (a) Sketch of parallel vessels with a
gap used for quantitative evaluation. The upper vessel consists of two segments
VD1 and VD2, each at the same distance d to the lower vessel VC. There is a gap
of length l between them, which starts at xs and ends at xe. Each vessel has the
same radius: RC = RD1 = RD2. The image contains Gaussian noise with standard
deviation of σn. (b) 2D section of an example of a 3D synthetic image based on
(a).

real 3D 7T MRA images (σn = 10), both PROB and FM-ADP achieve significantly

lower mean error and standard deviations than FM-V. Furthermore, FM-ADP

yields consistently the smallest mean error and standard deviation among the

three approaches.

5.1.2 Parallel Vessels

In this experiment, 3D synthetic images are used which contain two parallel vessels,

one of which has a gap due to low contrast. For an example of parallel vessels in

3D 7T MRA images, see Fig. 5.11a. A sketch of this configuration is provided in

Fig. 5.6. All images have the same size of 128 × 128 × 32 voxels, and all vessels

have the same small radius RC = RD1 = RD2 = 1 voxel as well as the same mean

intensity gC = gD1 = gD2 = 200. The vessel parts VD1 and VD2 are both parallel

to VC with a distance d = 5 voxels. The intensity in the gap is gbg = 50, which is

the same as the background intensity. The gap length l varies between 1 and 10

voxels (10 different values), and Gaussian noise with σn = 10 is added 30 times,

yielding 10×30 = 300 3D images in total. The mean error and standard deviation

for each experiment are shown in Fig. 5.7.

For smaller gaps with l ≤ 6, all three approaches have very similar performance.

However, for larger gaps, FM-ADP performs significantly better than the other

two approaches. The mean error and standard deviation of both PROB and FM-V

increase quickly with growing l, while FM-ADP consistently achieves a low mean

error and small standard deviation.
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Figure 5.7: Mean error and standard deviation for different gap lengths for parallel
vessels: The gap of length l between vessel parts VD1 and VD2 varies from 1 to 10,
with an increment of 1.

5.2 Real 3D 7T MRA Images

We have also conducted extensive experiments using 40 high-resolution 3D 7T

MRA images of the region around the human LSAs. All images have been as-

sessed qualitatively and the results were used for clinical studies. For 10 of the

40 images, we carried out a quantitative evaluation by comparing the results with

ground truth. Furthermore, the results of our explicit approach (PROB) and of

our implicit approach (FM-ADP) are compared with a previous fast marching

approach (FM-V) in [41].

5.2.1 Materials

The 3D 7T MRA images of the LSA regions were acquired without contrast agent

using a 3D gradient echo time-of-flight sequence with a repetition time of 15 ms,

echo times of 4.84 ms or 4.85 ms, a field of view of 135 mm × 180 mm, and flip

angles of 25 or 30 degrees. We applied isotropic interpolation, yielding 128-162

slices for each 3D image. The size of the slices varies from 128× 270 to 162× 417

voxels. The 3D images have an isotropic resolution of 0.23 mm. The images are

acquired from healthy subjects and patients with stroke or vascular dementia.

5.2.2 Segmentation Results

We have successfully applied our hybrid approach to all 40 3D 7T MRA images.

For example, Fig. 5.8 shows the result for one 3D image of the LSA region. It can

be seen that thick and thin vessels have been well segmented. In addition, local

vascular parameters such as the vessel radius are automatically determined. In

Fig. 5.8, the vessel radius is visualized by a color map, with radii ranging between
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Figure 5.8: Segmentation and quantification result of vessels in the LSA region
from a real 3D 7T MRA image using the proposed hybrid approach with FM-ADP.
The radius is color-coded and ranges from 0.5 to 6.5 voxels. Red color corresponds
to a larger radius, blue color corresponds to a smaller radius. (a) and (b) show
the LSAs in the same region of two patients.

0.5 (blue) and 6.5 (red) voxels.

To demonstrate the benefit of 7T MRA in comparison to lower field MRA, we

segmented the LSAs from 3T and 7T images, both acquired from the same subject.

The original images are shown in Fig. 1.4 and the results are displayed in Fig. 5.9.

A qualitative and quantitative comparison shows that using 7T images signifi-

cantly more vessels can be segmented than using 3T images. For example, using

the 7T image (Fig. 5.9b) at least twice as many vessels are segmented compared to

the 3T image (Fig. 5.9a) for each interval of considered vessel lengths in Fig. 5.9c

(0 to 10 mm, 10 mm to 20 mm, etc.). In total, 24 vessels are segmented using the

7T image, compared to 7 vessels using the 3T image. In particular, with 7T much

more short vessels were successfully segmented. For example, in the 7T image, 11

vessels between 10 and 20 mm were segmented, but in the 3T image there were only
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(a) Result for 3T MRA image (b) Result for 7T MRA image
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(c) Quantitative comparison of the results in (a) and (b)

Figure 5.9: Comparison of the segmented LSAs using (a) 3T MRA and (b) 7T
MRA images of the same subject, as well as (c) the number of vessels and their
lengths for (a) and (b), shown as a histogram with a bin size of 10 mm.

3. Furthermore, in the 3T image no vessels shorter than 10 mm were segmented.

In Figures 5.10 and 5.11 we provide more detailed examples of segmentation re-

sults and gap completion. Fig. 5.10a shows the original image (volume rendering)

of a branching vessel. This configuration corresponds to the synthetic images used

for evaluation in Sect. 5.1.1 above. Using the model-based approach, the branch

(red) and the horizontal thick vessel (yellow) can be well segmented (Fig. 5.10b).

The remaining gap between them is completed using minimal path approaches

(magenta). FM-V does not take into account the initial direction, and therefore

Table 5.1: Quantitative results for 508 gaps (errors in mm).

Approach Total
Centerline error eγ Avg. run time

eγ < 0.3 eγ < 0.4 eγ < 0.5 eγ < 0.6 Mean eγ per 3D image

FM-V 99.61% 34.45% 61.22% 83.46% 92.72% 0.406 0.92 s

PROB 96.65% 56.69% 76.18% 86.61% 90.35% 0.313 51.68 s

FM-ADP 99.61% 61.22% 86.42% 94.29% 97.64% 0.288 1.63 s
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it yields a short cut so that the completed gap lies almost completely outside the

true vessel, and the transition between both parts is not smooth (Fig. 5.10c). In

contrast, both PROB and FM-ADP incorporate the initial direction determined

by the model-based approach, and consequently the results follow the true vessel,

and the transition is smooth (Fig. 5.10d, e). Fig. 5.11 in addition shows that our

approaches deal better with parallel vessels than FM-V. This configuration corre-

sponds to the synthetic images used for evaluation in Sect. 5.1.2 above. Without

employing the directional prior, FM-V connects the red part incorrectly to a par-

allel vessel since this short cut is much shorter than the correct result. In contrast,

both PROB and FM-ADP connect the red part to the correct thick vessel, while

keeping the transition between both parts smooth. Note that in both cases shown

in Fig. 5.10 and Fig. 5.11, the centerline in the gap is not simply a straight line.

Instead, the centerline follows the desired vessel, which is typically curved.

(a) Original image (b) Model-based

(c) FM-V (d) PROB (e) FM-ADP

Figure 5.10: Segmentation results for a branching vessel in a real 3D 7T MRA
image. Red parts are results of the model-based approach, magenta parts are
results of gap completion. (a) Volume rendering of original image. (b) Results of
model-based approach. (c) Result of previous FM-V. (d) Result of PROB. (e)
Result of FM-ADP.
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(a) Original image (b) Model-based

(c) FM-V (d) PROB (e) FM-ADP

Figure 5.11: Same as Fig. 5.10 but for two parallel thin vessels and completion
of two gaps (magenta and cyan).

5.2.3 Quantitative Evaluation

We have also quantitatively evaluated the segmentation results using manually

created ground truth for 508 gaps in 10 3D 7T MRA images. The results of our

minimal path based approaches for gap completion, i.e., PROB and FM-ADP,

are compared with a previous fast marching approach (FM-V) [41] using the er-

ror measure defined in (5.1). Table 5.1 shows a summary of this comparison as

percentages of the total numbers of completed gaps, percentages of the numbers

of completed gaps with an error smaller than 4 thresholds, i.e., eγ < 0.3, 0.4, 0.5,

and 0.6 mm, the mean error of all completed gaps, and the average run time per

3D image. It turned out that using fast marching-based approaches, i.e., FM-V

and FM-ADP, 99.61% of the gaps are completed, which is slightly more than the

results using PROB (i.e., 96.65%). For all considered error thresholds, FM-ADP

leads to a higher number of completed gap centerlines closer to the ground truth

(e.g., for eγ < 0.3 mm we have 61.22%, compared to 34.45% for FM-V and 56.69%

for PROB), while the result of PROB is better than that of FM-V for the cases

eγ < 0.3, eγ < 0.4, and eγ < 0.5. Furthermore, for FM-ADP a lower mean error

of 0.288 mm compared to 0.406 mm (FM-V) and 0.313 mm (PROB) is achieved.

In addition, a paired t-test was performed. It turned out that both differences of

FM-ADP with respect to FM-V and PROB are significant, as the corresponding
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Table 5.2: Overview of the six subjects in the stroke study.

Subject type Number Infarct Recovered

A 2 Yes Yes
B 2 Yes No
C 2 No –

p-values are lower than 0.00001 in both cases. Another advantage of FM-ADP is

that it is much more efficient than PROB, and only slightly slower than FM-V.

The average run time for completing all gaps in one 3D image is 1.63 seconds

(single-thread, 2.67 GHz CPU), while PROB needs 51.68 seconds.

5.2.4 Clinical Studies

Furthermore, two clinical studies have been carried out using quantitative param-

eters determined by our approach. In these studies, the morphological properties

of the LSAs were investigated, and the relationship between these properties and

serious diseases, specifically stroke and vascular dementia, was examined. In the

following, we briefly describe these studies.

5.2.5 Stroke

In this study, vessels related to an infarct area were investigated. Six subjects

were examined, which belong to three classes: Subjects of class A had an infarct

but are fully recovered, while subjects of class B also had an infarct but are not

fully recovered. Subjects of class C had no diseases in cerebral vessels at all (see

Table 5.2).

The quantitative parameters used in this study include mean radius, length,

distance between the start and end point of the vessels, and 3D tortuosity. The

study revealed that class B subjects exhibit overall degradation or loss of thin

vessels, compared to subjects of class A or C. It also turned out that the number of

the LSAs alone is not sufficient to characterize the relationship between the infarct

and vessel properties. For example, class A subjects have a similar number of LSAs

as class C subjects. However, by comparing other quantitative morphological

properties (e.g., length, radius), it was found that the infarct-related LSAs of class

A subjects are not only different from the LSAs of class C subjects, who never

had an infarct, but are also different from their own LSAs which were not affected
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by the infarct. The study demonstrates the importance of the analysis of the

morphological properties of LSAs (see [180] for more details).

5.2.6 Vascular Dementia

In this study, the status of LSAs of patients with subcortical vascular dementia was

investigated for the first time. In total, 24 subjects were examined. 12 subjects

had this disease, while the other 12 subjects were age- and sex-matched normal

controls. The number of vessels as well as morphological properties (e.g., length,

tortuosity, and radius of individual vessels) were used to assess the abnormalities

of the LSAs. The study showed that the LSAs of the patients with subcortical

vascular dementia have larger radii and higher tortuosity than normal controls,

while the number of LSAs is smaller. Also, this study demonstrates that segmen-

tation and quantification of vessels are crucial for distinguishing between normal

and pathological cases (see [181] for more details).

5.2.7 Aging Effect

In this study, we analyzed 112 images in order to study the morphological change

of LSAs due to aging.

5.3 Synthetic 2D Images

We carried out experiments using synthetic images and real retinal images from

the DRIVE dataset [24]. We compared our approach with the traditional fast

marching approach (traditional FM) [41], which uses gradient information, and

the recent method of Li and Yezzi [154] (Li-Yezzi). For our approach, the user

provides two start points to specify the start position and initial direction. For the

other approaches, the user provides one start point. In all cases, an end point is

also provided by the user. In Fig. 5.12 and Fig. 5.13, the segmentation results of

the three approaches are highlighted by blue stripes and the centerlines are shown

by yellow lines. The red and green circles represent the radii at the start and end

points, respectively. User-specified points are marked with a yellow cross.

We have used different synthetic images. For example, Fig. 5.12 (top) shows

an image of an ideal dark curve with significant salt and pepper noise as well as

Gaussian noise. In this case, both the traditional FM and Li-Yezzi yield a short

cut, while our approach is able to segment the entire structure. A second example

is shown in Fig. 5.12 (bottom), which represents a loop. Here, the traditional FM
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and Li-Yezzi turn directly to the end point at the crossing, while our approach

correctly follows the natural path and passes the crossing twice. A very important

difference to previous minimal path approaches is the correct segmentation of the

crossing. In these approaches, each pixel in the image is visited at most once by

the wavefront. Consequently, a vessel crossing itself cannot be segmented correctly

since the it would require the pixels at the crossing to be visited twice by the

wavefront. In contrast, we use a ROI in each iteration, therefore in each iteration

the pixels in the ROI can be visited at most once, but in different iterations the

same pixels can be visited repeatedly. As a result, the crossing can be segmented

correctly, as shown in Fig. 5.12, second row.

Traditional FM Li-Yezzi Our approach

Figure 5.12: Comparison of different fast marching methods for a synthetic curve
with noise (top), and a loop (bottom).

5.4 Real 2D Retinal Images

To demonstrate that our approach copes well with long vessels, for which one-pass

fast marching approaches have difficulties (short cuts, problems with crossings),

we have successfully applied our approach to 91 long vessels from 10 images of

the DRIVE dataset. For example, Fig. 5.13 shows one of the segmented vessels.

The approaches were applied to the full size images (565 × 584 pixels), and the

results have been cropped for better visibility. It can be seen that our approach

correctly deals with the three crossings (one in the red box 1, two in the red box
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5.4. Real 2D Retinal Images

2), while both the traditional FM and the Li-Yezzi follow a wrong path at some

of the crossings.

Original image Traditional FM

Li-Yezzi Our approach

Figure 5.13: Comparison of different fast marching methods for an image from the
DRIVE dataset.

We also conducted a quantitative evaluation. The segmentation accuracy has

been measured by counting the number of overlapping pixels of the segmentation

result with ground truth provided by the DRIVE dataset. In the ground truth,

vessel pixels are labeled as foreground and all other pixels as background. Note

that the ground truth does not contain information about the centerlines, therefore

the traditional FM, which only segments centerlines, could not be evaluated. In

addition to the accuracy in terms of true positive rate (TP) and false positive

rate (FP), the computational efficiency has been measured by the ratio of the

run time of our approach and that of Li-Yezzi (run time percentage). The results

for accuracy are shown in Fig. 5.14a, b. In Fig. 5.14c, a comparison of run

time of our approach and Li-Yezzi is shown. It turns out that our approach

successfully segmented most vessels with a higher accuracy than Li-Yezzi. In

terms of mean true positives (TP ) and mean false positives (FP ), our approach

achieved TP = 0.82 and FP = 0.21, in contrast to TP = 0.51 and FP = 0.75

achieved by Li-Yezzi. In addition to the higher TP and lower FP , in both cases
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Figure 5.14: Quantitative evaluation using retinal images from the DRIVE dataset.

we achieved a smaller standard deviation. In our approach, the low true positive

and high false positive rates for some vessels (e.g., vessels 14 and 45) are caused
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5.4. Real 2D Retinal Images

TP FP Avg. run time

Li-Yezzi 0.51±0.31 0.75±0.48 6.33±1.78

Our approach 0.82±0.13 0.21±0.25 0.59±0.32

Table 5.3: Evaluation of the iterative fast marching approach and comparison
with Li-Yezzi: The mean values and standard deviations of TP , FP , and run
time.

by the very low image contrast and high noise. For segmenting all vessels, our

approach requires in the worst case less than 25%, and on average 9.32% of the

computation time of Li-Yezzi. To better illustrate this, the curve representing 25%

run time of Li-Yezzi is displayed as a blue curve in Fig. 5.14c. A summary of the

quantitative results is provided in Table 5.3.

In Fig. 5.15, our approach is compared with Li-Yezzi exemplarily using four

relatively long vessels, which demonstrate the challenges of retinal vessel segmen-

tation. The true positives, false positives and false negatives are displayed using

green, red, and blue colors, respectively. It turns out that for images with high

contrast and low noise, and for vessels with a relatively simple structure, i.e., with-

out bifurcations, both Li-Yezzi and our approach achieve similar results (Fig. 5.15,

first row). For vessels with bifurcations, it is crucial to select the correct path.

For the image in Fig. 5.15, second row, our approach is able to follow the path

with less curvature, which is the correct one. In contrast, Li-Yezzi follows a wrong

path. Also for vessels with a cluttered background in an image with low contrast,

our approach using a directional prior proves to be effective. For example, in

Fig. 5.15, third row, the contrast is low, and the background contains many blurry

line structures which have similar intensities and shapes as the vessels. In spite

of the difficulties, our approach yields the correct vessel, while Li-Yezzi results in

a wrong path. This is partly due to the fact that Li-Yezzi relies on the assump-

tion that vessels have homogeneous intensity, and the intensity distribution inside

the vessels is very different from that outside the vessels. With a cluttered back-

ground, this assumption is not valid, and consequently the vessels cannot be well

distinguished from the background. A further example shows that even without

the background clutter, the homogeneity assumption of Li-Yezzi does not always

hold. In Fig. 5.15, fourth row, there is little clutter in the background, but inside

the vessel to be segmented, the intensities vary strongly. For example, at one end

(close to the upper right corner of the image), the intensity is high, while at the

other end (close the lower left corner of the image), the intensity is low. Conse-

quently, Li-Yezzi follows a path similar to the end with high intensity, which is
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Chapter 5. Experimental Results of Direction-Preserving Minimal Path Methods

not correct. In contrast, our approach finds the correct vessel.

(a) Original images (b) Our approach (c) Li-Yezzi

Figure 5.15: Example results for our approach and Li-Yezzi using retinal images
from the DRIVE dataset. True positives, false positives and false negatives are
displayed using green, red, and blue colors, respectively. (a) Original images. (b)
Second row: Results of our approach. (c) Results using the approach Li-Yezzi [154].
First column: For high image contrast and low noise, and a relatively simple vessel
structure, both methods achieve similar results. Second column: At a bifurcation,
Li-Yezzi follows a wrong path. Third column: For low image contrast and strongly
cluttered background, Li-Yezzi fails to segment the true vessel. Fourth column:
If the intensity distribution is not homogeneous along a vessel, Li-Yezzi cannot
segment the vessel correctly.
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Chapter 6

Progressive Minimal Path

Method

In this chapter, we propose a novel minimal path method for the segmentation of

2D and 3D line structures. Minimal path methods perform propagation of a wave-

front emanating from a start point at a speed derived from image features, followed

by path extraction using backtracing. Usually, the computation of the speed and

the propagation of the wave are two separate steps, and point features are used

to compute a static speed. We introduce a new continuous minimal path method

which steers the wave propagation progressively using dynamic speed based on

path features . We present three instances of our method, using an appearance

feature of the path, a geometric feature based on the curvature of the path, and

a joint appearance and geometric feature based on the tangent of the wavefront.

These features have not been used in previous continuous minimal path methods.

We compute the features dynamically during the wave propagation, and also ef-

ficiently using a fast numerical scheme and a low-dimensional parameter space.

Our method does not suffer from discretization or metrication errors. The work

in this chapter was published in [47–49].

This chapter is organized as follows. We introduce our new progressive minimal

path method in Sect. 6.1. Three instances of our framework are presented in

Sect. 6.2. Experimental results are described in Chapter 7.

6.1 Minimal Path Method with Dynamic Speed

In this section, we introduce a new progressive minimal path framework using

dynamic speed.

89



Chapter 6. Progressive Minimal Path Method

6.1.1 Dynamic Speed

In most previous minimal path approaches, the computation of the speed and the

wave propagation are two consecutive steps. First, a static speed Fstat is com-

puted, and then it is used for wave propagation without update. Note that Fstat

does not allow incorporating information about regions which were already visited

by the wavefront. Such information is only available during wave propagation

and changes as soon as the wavefront changes. To exploit such information, we

introduce a dynamic speed function Fdyn. Our new energy function is formulated

as:

Energy function of the progressive minimal path method

E(γ) :=

∫
γ

(
Pstat(γ(s)) + Pdyn(γ(s)) + w

)
ds, (6.1)

Pdyn(x) =

0, if γ(x) satisfies constraint T

C0(x), otherwise,
(6.2)

C0(x) = Cmax − Pstat(x), (6.3)

where Pstat is the static potential computed before the propagation starts, and Pdyn

is the dynamic potential computed during the propagation. T is an application-

specific constraint for paths, and Cmax is a large positive constant (e.g., Cmax = 107).

Our goal is to compute the minimal action map of the composite speed Fcomp,

which consists of the static speed Fstat and the dynamic speed Fdyn:

Uxs(x) := min
γ∈Axs,x

∫
γ

(
1

Fcomp(γ(s))
+ w

)
ds, (6.4)

Fcomp(x) = Fstat(x) + Fdyn(x), (6.5)

Fdyn(x) =

0, if Pdyn(x) = 0,

−Fstat(x) + 1
Cmax

, if Pdyn(x) = C0(x).
(6.6)

Note that the formulation of the energy using the potential in (6.1) is equivalent

to the one using the speed in (6.4), i.e., for Pstat = 1
Fstat

and Pdyn = 1
Fdyn

we have

Pstat + Pdyn =
1

Fstat + Fdyn

. (6.7)
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This can be seen as follows. Since Pdyn is either 0 or C0, we only have to consider

two cases. In the first case, Pdyn = 0. According to (6.6), Fdyn is also 0, so

Pstat + Pdyn = Pstat = 1
Fstat

= 1
Fstat+Fdyn

. In the second case, Pdyn = C0. Using

(6.3), we have Pstat +Pdyn = Cmax. Furthermore, (6.6) implies Fstat +Fdyn = 1
Cmax

,

so also in this case, Pstat + Pdyn = 1
Fstat+Fdyn

.

6.1.2 Progressive Minimal Path Framework

The main idea of our progressive minimal path method is to steer the wave

propagation using dynamically computed features. In classical fast marching ap-

proaches, the point xmin on the wavefront W with minimum arrival time Uxs(x)

is the position where the wave propagates in the current step, i.e., W advances

to the neighbors of xmin outside W . In our method, we decide during each step

of the propagation whether to advance W or not. At xmin, we compute a feature

f(xmin,RA) within the region RA (Alive) and check if it satisfies a certain con-

straint. The features and their constraints depend on the instance of our framework

(see Sect. 6.2 below). We use features that are determined from a local path γlocal,

which is extracted using gradient descent of Uxs inside W . If γlocal violates the

constraint, then the composite speed Fcomp(xmin) is reduced, which corresponds

to the second case in (6.6) above, and the propagation through xmin is slowed

down. If γlocal satisfies the constraint, then the composite speed Fcomp remains

unchanged (Fdyn = 0), and W advances as in classical fast marching approaches,

which corresponds to the first case in (6.6). The update during the propagation

of W is the dynamic aspect of our speed Fcomp.

One step of the wave propagation incorporating dynamic speed is illustrated

in Fig. 6.1. The wavefront W , i.e., the region RT, is shown as an orange stripe.

Inside W (green region RA), Uxs is known since W has already visited all image

points there, but outside W (blue region RF), Uxs is unknown. Let x1,x2,x3 be

points onW (Fig. 6.1a). The point xmin with minimum Uxs , i.e. x2, is considered.

The substeps illustrated in Fig. 6.1b and 6.1c are the main difference to classi-

cal fast marching approaches. Starting at x2, a local path γlocal(x2) with a fixed

length Γ is extracted (Fig. 6.1b). This is possible since Uxs is known inside W .

After that, it is examined whether γlocal satisfies the constraint (Fig. 6.1b). If the

constraint is violated, then Fcomp(x2) should be reduced, and Uxs(x2) re-computed,

while W does not change (Fig. 6.1c). Obviously, Uxs(x2) increases, so the propa-

gation through x2 (with γlocal(x2) violating the constraint) is slowed down. If the

constraint is satisfied, then we proceed as in classical fast marching approaches:
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(a) (b)

(c) (d)

Legend

: start point

: end point

: wavefront

unknown
outside     :

inside     :
known

(e)

Figure 6.1: One step of the wave propagation with dynamic speed. (a) Select the
point xmin on W with minimum arrival time. (b) For γ(s) = x2, extract γlocal(x2)
with length Γ, test if γlocal satisfies the constraint. (c) γlocal does not satisfy the
constraint: Fcomp(x2) is reduced and therefore Uxs(x2) increases. Select another
point on W . (d) γlocal satisfies the constraint: Compute arrival time for neighbors
(same as in previous minimal path approaches). (e) W advances. Green, blue,
and orange regions represent RA (Alive), RF (Far), and RT (Trial), respectively.

The neighbors of x2 outside W , i.e., xA and xB, are found (Fig. 6.1d) and W
advances to xA and xB, while x2 is moved into the inside of W (Fig. 6.1e). In

either case, the point on W with minimum Uxs value, i.e., xmin, will be considered

in the next iteration.

6.1.2.1 Generic Functions of the Progressive Minimal Path Method

We introduce four generic functions for our progressive minimal path method,

which can be tailored to a specific task: NeedDynamicSpeed, ComputeFeature,
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IsSatisfied, and ComputeDynamicSpeed. The first three of these functions

are application specific, and instances of them for three applications will be de-

scribed below in Sections 6.2.1, 6.2.2, and 6.2.3, respectively. Generally speak-

ing, NeedDynamicSpeed checks if the speed at a point x needs to be updated,

ComputeFeature computes a feature f of the region RA when the wavefront

reaches x, and IsSatisfied checks if f satisfies a constraint. Depending on the

constraint, ComputeDynamicSpeed uses (6.2) and (6.6) to compute the dynamic

speed Fdyn (see Sect. 6.1.2.2 below). Note that there exists a significant difference

to previous minimal path approaches based on a static speed: Fstat cannot incor-

porate f since it is computed before the wave propagation starts, and at this time

RA is still unknown. The only way to compute f is to derive it dynamically when

RA is known, i.e., during the wavefront propagation.

6.1.2.2 Computing the Dynamic Speed

Our framework can be applied using a continuous formulation based on the fast

marching method, and using a discrete formulation based on Dijkstra’s algorithm.

A unified algorithm for both continuous and discrete formulations is given in Algo-

rithm 6.1. LetN (x) denote the set of direct neighbors of x on a regular image grid.

The difference between the fast marching method and Dijkstra’s algorithm is the

function ComputeAction in lines 15 and 20 of Algorithm 6.1, which updates the

temporary action map Uxs at the neighbors of xmin (point with current minimum

action). The fast marching method employs the upwind scheme [178] to compute

a continuous action, while in Dijkstra’s algorithm, the action is computed in a

discrete manner using the neighbor with minimum action. For each point x ∈ Ω,

the dynamic speed Fdyn should be computed at most once. This is ensured by the

set Mdyn initialized in line 7.

As the wavefront propagates, the arrival time for each x is computed. When

the end point xe is finally reached, we obtain the path using backtracing from

xe with the predecessor operator. Under the assumption that the points involved

in the backtracing do not depend on points with dynamic speed Fdyn, one can

straighforwardly show (based on the proof of the original Dijkstra’s algorithm)

that the result γ∗xs,xe
is globally optimal.
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Algorithm 6.1: Progressive minimal path framework

Input: Start point xs, end point xe, speed function Fstat

Output: Action map Uxs

1 for each pixel coordinate x do // Initialization

2 if x = xs then
3 Uxs(x)← 0; L(x)← lT;

4 else
5 Uxs(x)←∞; L(x)← lF;

6 Fdyn ← Fstat;
7 Mdyn ← ∅;
8 repeat // Main loop: progressive propagation

9 xmin ← arg minx∈RT
Uxs(x);

10 if NeedDynamicSpeed(xmin)
11 and xmin /∈Mdyn

12 and xmin 6= xs then // Update Fdyn

13 f ← ComputeFeature(xmin,RA);
14 Fdyn(xmin)← ComputeDynamicSpeed(f);
15 Uxs(xmin)← ComputeAction(xmin,Fdyn);
16 Mdyn ←Mdyn ∪ xmin;

17 else // Same as standard minimal path

18 L(xmin)← lA;
19 for xn ∈ N (xmin) ∩ (RF ∪RT) do
20 Uxs(xn)← ComputeAction(xn,Fcomp);
21 if L(xn) = lF then
22 L(xn)← lT;

23 until L(xe) = lA;

Theorem 6.1.2.1 (Run time of Algorithm 6.1). If the run time of the classical fast

marching approach is O(fFM(N)), then the worst case run time of our approach

is O(fFM(N) +m ·N), where N is the number of pixels/voxels and m is the time

needed for the extraction and evaluation of one local path.

Proof. Since the local paths have the same length, the time m needed to extract

and evaluate one path is constant. In the worst case, the local path is computed

for each image point, therefore the overall additional computational overhead is

m ·N .

In the next section, we present three novel path features for our progressive

minimal path method which cannot be incorporated into previous minimal path

approaches based on static speed. With these features, segmentation results can

be enhanced significantly. To segment line structures with our approach, we use
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the fast marching method since it achieves subpixel accuracy, and consequently

discretization and metrication errors are avoided.

6.2 Instances of the Progressive Minimal Path

Method

We present three instances of our progressive minimal path method. For each

instance, we describe the motivation and objective, followed by the used path

features and constraints, and the corresponding functions ComputeDynamicSpeed,

ComputeFeature, and IsSatisfied.

6.2.1 Appearance Feature

First, we introduce an appearance feature of local paths to cope with paths involv-

ing gaps due to artifacts.

6.2.1.1 Motivation and Objective

For line structures like the one in Fig. 1.8a, the start and end points are close to

each other, and the structures contain gaps due to artifacts. For these cases, most

previous minimal path approaches yield short cuts, which are much shorter than

the true path. In contrast, we use an appearance path feature to avoid short cuts.

6.2.1.2 Feature and Constraint

Our static speed is based on a multiscale vesselness measure V(x) [50], which

enhances line structures in images. For 2D images, we have:

Point feature: Vesselness of a pixel

Fstat(x) = V(x) + ε = max
smin≤s≤smax

Vs(x) + ε, (6.8)

Vs(x) =

0, if λ2 > 0

exp (A) (1− exp (B)) , otherwise,
(6.9)

A = − 1

β2
· λ

2
1

λ22
, B = − 1

2c2
·
(
λ21 + λ22

)
, (6.10)
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where ε is a small constant to avoid zero speed so that the potential is always well

defined. The scale s ranges from smin to smax. λ1 and λ2 are the eigenvalues of the

Hessian matrix at x. β and c control the sensitivity of the filter. The value of Vs
is normalized to the interval [0, 1].

The functions introduced in Sect. 6.1.2.1 above and used in Algorithm 6.1 are

defined as follows. NeedDynamicSpeed(x) returns true if V(x) < Tv, where Tv is a

threshold for the vesselness, and false otherwise. ComputeFeature computes the

appearance feature, i.e., mean vesselness V(γ) for a path γ, which is defined as

Path feature: Mean vesselness of a path

V(γ) =
1

|γ|

∫
γ

V(γ(s))ds, (6.11)

where |γ| denotes the length of γ. Our feature is derived from a local path γlocal(x)

of fixed length Γ (Fig. 6.1b), which is the last part of the path from xmin to xs.

γlocal is computed by backtracing from x until |γlocal(x)| = Γ. We use V(γlocal(x))

in IsSatisfied, and γlocal satisfies the constraint if and only if V(γlocal(x)) >

Tv:

IsSatisfied for appearance feature

IsSatisfied(x) =

true, if V(γlocal(x)) > Tv

false, otherwise,
(6.12)

For example, suppose γlocal(x) lies in a large gap between two really separated

points, like xs and xe in Fig. 1.8a. There, V is low, so γlocal violates the constraint

at x, and the speed Fcomp is low according to the second case in (6.6). Therefore,

the wavefront hardly propagates at x, and short cuts can be avoided. In contrast,

if γlocal covers a part of the line structure with small gaps due to artifacts, V is

only slightly lower compared to the case when γlocal lies completely inside the line

structure, so the constraint is still satisfied, which corresponds to the first case in

(6.6), where Fdyn = 0, and Fcomp is not changed. In our experiments, we used

local paths of about 10 pixel length to determine the feature in (6.11). Note that,

for example, in the discrete minimal path approach based on line graphs and static

speed [56], only paths of length 3 can be handled.
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Box: 

Figure 6.2: Left: Retinal vessels crossing each other (image from DRIVE dataset
[24]). Right: Segmentation results. Yellow and red colors indicate the results of
an approach with length regularization [41] and our curvature-based approach,
respectively.

6.2.2 Geometric Feature

Second, we introduce a geometric feature, i.e., the curvature of local paths, to

avoid paths with high curvature.

6.2.2.1 Motivation and Objective

The energy function of the classical fast marching approach in (4.12) can also be

written as:

E(γ) =

∫
γ

P(γ(s))ds+ w ·
∫
γ

1ds, (6.13)

Since
∫
γ

1ds is the length of the path γ [41], the regularization term in (6.13) assigns

a lower energy to shorter paths. Usually, shorter paths are assumed to have a lower

curvature, so previous approaches employ length regularization to indirectly limit

the curvature of the path. However, this assumption is not always fulfilled. For

example, retinal vessels in 2D images often cross each other, and the shortest path

found using length regularization may belong to different vessels. This problem

is illustrated in Fig. 6.2: Although the red path is correct, an approach with

length regularization [41] yields the yellow path, since it is shorter. In 3D medical

images, similar problems exist in regions with high noise level and low contrast.

With a curvature feature, the curvature (smoothness) of vessels can be exploited

independently of the length regularization, so shorter paths with wrong sharp

turns can be avoided. We incorporate the curvature information by extracting

local paths during the wave propagation.

6.2.2.2 Feature and Constraint

Compared to the energy function of the classical fast marching approach (6.13),

in our approach the dynamic potential Pdyn in (6.2) represents the curvature fea-

ture, independently of the length regularization. The static speed Fstat and the
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local path γlocal are computed in the same way as in Sect. 6.2.1.2 above, but

NeedDynamicSpeed(x) returns true for all points x. ComputeFeature computes

the curvature κ of γlocal. This is possible since the geometry of γlocal is determined

explicitly. Suppose xf , xm, and xl are the first, middle, and last point of γlocal,

respectively. Then, similar to [55], we used a measure for the curvature based on

the angle between the vectors d1 := xm − xl and d2 := xf − xm:

κ(d1,d2) = arccos

(
dT1 · d2

‖d1‖ · ‖d2‖

)
. (6.14)

IsSatisfied returns true if κ(γlocal(x)) < Tκ, where Tκ is a threshold for the

curvature:

IsSatisfied for geometric feature

IsSatisfied(x) =

true, if κ(γlocal(x)) < Tκ

false, otherwise,
(6.15)

Using our approach, paths containing parts with high curvature can be avoided,

even if such paths may be shorter than the correct path. For example, in Fig. 6.2,

our approach avoids the yellow path, because it contains a part γpart with high

curvature (dashed box). On the other hand, the red path does not contain highly

curved parts. Consequently, our approach correctly finds the red path.

To better illustrate the difference between our approach and classical minimal

path methods, a further example is provided in Fig. 6.3. In Fig. 6.3a, the same

structure as the one in Fig. 3.2 is shown. The wavefront starts to propagate at

the start point xs. When passing the first crossing, a local path γlocal with high

curvature is detected (Fig. 6.3b). Consequently, the speed at the corresponding

pixel on the wavefront is reduced dynamically, so that the wavefront propagates

along the correct path, while the propagation along the short cut is slowed down

significantly. The pixels with dynamic speed are highlighted with magenta boxes

(Fig. 6.3c). Due to the dynamic speed, the wavefront does not proceed into the

short cut (Fig. 6.3d). When the wavefront reaches the end point xe, the prop-

agation terminates (Fig. 6.3e). The minimal path (red line) is extracted using

backtracing (Fig. 6.3f). In contrast to the classical minimal path approach in

Fig. 3.2, our method finds the correct path.

Since with our approach, the actual geometry of the path is available, we
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(a) Start of the propagation (b) High curvature detected

(c) Sharp turn avoided (d) Further propagation

(e) Reaching the end point xe (f) Extracted path

Figure 6.3: Wave propagation of our progressive minimal path approach. The
Alive region RA is shown using green dots, the Trial region RT, i.e., the wavefront
W , is shown using orange diamonds, and the Far region RF is shown using blue
crosses. The yellow circle with red boundary indicates the pixel xmin in RT with
the minimum arrival time. (a) The wavefront starts at xs. (b) At the first crossing,
high curvature is detected. (c) The wavefront propagates along the correct path,
while the propagation along the short cut is slowed down. The pixels with dynamic
speed are highlighted with magenta boxes. (d) The wavefront does not proceed
into the short cut. (e) The wavefront reaches the end point xe, the propagation
terminates. (f) The minimal path (red line) is extracted using backtracing.
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can not only compute the curvature but also features of higher order (in prin-

ciple of arbitrary order). This is a fundamental difference compared to recent

approaches [55,56], where the computation of the curvature (involving 3 points) is

quite expensive, and computation of the torsion (involving 4 points) is even more

expensive, since the computation time increases exponentially with the number of

involved points. Features beyond torsion (involving 5 points or more) were not

used. But in our approach we can use features based on a much higher number

of points (e.g., 10), since the computation time only increases linearly with the

number of involved points. Also, using our continuous formulation, we do not have

discretization (due to discretization of orientations) or metrication errors (due to

the grid structure).

6.2.3 Joint Appearance and Geometric Feature

Third, we introduce a joint appearance and geometric feature to segment rivers

and detect bridges in satellite images.

6.2.3.1 Motivation and Objective

Previous minimal path approaches are concerned with the segmentation of the

paths. We show that it is also possible to detect other structures which are related

to the paths. In particular, we introduce a novel path feature to simultaneously

segment rivers and detect bridges in satellite images. To the best of our knowledge,

this is the first attempt to combine segmentation based on minimal paths with

object detection in a principled way.

6.2.3.2 Feature and Constraint

Our goal is to segment rivers as minimal paths, and detect bridges as structures

related to rivers. When using gradient descent for backtracing, the extracted

path at an image point x is always perpendicular to the wavefront at x, because

the gradient shows in the direction of the steepest descent, which is the negative

normal direction of the wavefront. Since in satellite images, bridges are typically

perpendicular to the river, they correspond to tangents of the wavefront at x.

Consequently, bridges can be detected by examining the appearance of the tangent

of the wavefront. Since rivers and bridges are both line structures but with different

radii, we use two vesselness maps VR and VB, which are computed using different

ranges of scale parameters (e.g., s = 4 and 6 for VR, and s = 1 and 2 for VB).
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Furthermore, rivers typically have a homogeneous intensity distribution, thus

the variance of the intensity structure is usually low. Therefore, we exploit the

homogeneity H of the image intensities, defined as:

Homogeneity of image intensities

H = T (Gs ∗MV ) , MV (x) = e−2·Vn(RH(x)). (6.16)

where RH(x) denotes a local image region centered at x, and Vn is the intensity

variance normalized to the interval [0, 1]. The exponential function enhances the

resulting values, which are then smoothed with a Gaussian Gs and thresholded by

T . For the static speed we use Fstat = VR · H. NeedDynamicSpeed(x) returns true

for all pixels x. ComputeFeature computes two features, i.e., the mean vesselness

VR(γlocal(x)) over the local path, and the mean vesselness VB(tlocal(x)) over the

tangent tlocal(x) of the wavefront at x, where VR and VB are defined as in (6.11). In

our approach, we determine γlocal and tlocal (geometric features) and then compute

their appearance VR and VB. If VR(γlocal(x)) < f0 · TR and VB(tlocal(x)) <

f0 · TB, where f0 = 0.05, and TR and TB are thresholds, then x violates the

constraint. Otherwise, the constraint is satisfied. In addition, if VR(γlocal) > TR

and VB(tlocal(x)) > TB, then x is labeled lobj in an object map Mobj, while other

pixels corresponding to the background are labeled lbg. The detection of bridges

is summarized in the following Algorithm 6.2, where the Boolean variable sat(x)

is true if and only if the constraint is satisfied:

Algorithm 6.2: IsSatisfied for joint appearance and geometric feature

Input: x, VR(γlocal(x)), VB(tlocal(x)), object map Mobj, thresholds for river
TR and for bridge TB

Output: sat(x), updated object map Mobj

1 sat(x)← true;
2 Mobj(x)← lbg;
3 f0 ← 0.05;

4 if VR(γlocal) > TR and VB(tlocal) > TB then
5 Mobj(x)← lobj; // Bridge detected

6 else if VR(γlocal) < f0 · TR and VB(tlocal) < f0 · TB then
7 sat(x)← false; // x does not correspond to a river

8 return sat(x), Mobj

In Algorithm 6.2, the tangent tlocal(x) is used both for object detection and

determination of the dynamic speed. IsSatisfied returns true if γlocal(x) corre-

sponds to a river and tlocal(x) corresponds to a bridge, i.e., if VR(x) and VB(x)
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river

bridge

(a) Original image (b) Wavefront at three positions

Figure 6.4: Principle of tangent-based bridge detection. (a) Original satellite
image with a river and a bridge. The bridge is roughly perpendicular to the
river. (b) Sketch of wavefront (orange) at three positions x0, x1, and x2 (red
circles), along with the local paths γlocal(x0), γlocal(x1), and γlocal(x2) (yellow lines),
the normals nlocal(x0), nlocal(x1), and nlocal(x2) (red arrows), and the tangents
tlocal(x0), tlocal(x1), and tlocal(x2) (green lines) at each position. At x0, a bridge is
detected. At x1, no bridge is detected, and the wave propagation is slowed down.
At x2, no bridge is detected, but the wave propagation is not slowed down.

are both high. The points x on the optimal path with Mobj(x) = lobj are clus-

tered using nearest neighbors, and each cluster center corresponds to one bridge.

Note that with the fast marching method, tangents of arbitrary orientations can

be computed in constant time, while with Dijkstra’s algorithm, the number of

possible tangent orientations depends on the number of edges connected to each

node, which is typically 4 or 8, and at most 32 in previous approaches [56], and

the run time increases with the number of edges per node.

The main idea of our approach is illustrated in Fig. 6.4. In the original satellite

image, there is a bridge which is roughly perpendicular to a river (Fig. 6.4a). For

three positions x0, x1, and x2, the corresponding local paths γlocal(x0), γlocal(x1),

and γlocal(x2), normals nlocal(x0), nlocal(x1), and nlocal(x2) and tangents tlocal(x0),

tlocal(x1), and tlocal(x2) are sketched (Fig. 6.4b). At position x0, the mean vessel-

ness of the river and the bridge VR(γlocal(x0)) and VB(tlocal(x0)), respectively, are

both relatively high, since γlocal(x0) lies inside the river region, where VR is high,

and tlocal(x0) lies inside the bridge region, where VB is high. Thus, a bridge is

detected at x0. In contrast, at position x1, VR(γlocal(x1)) is low, since γlocal(x1)

lies outside the river region, where VR is low, and tlocal(x1) lies outside the bridge
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region, where VB is low. Consequently, no bridge is detected at x1, and the wave

propagation through x1 is slowed down, since the wavefront at x1 has left the river

region. At position x2, VR(γlocal(x2)) is high, since γlocal(x2) lies inside the river

region, where VR is high, but VB(tlocal(x2)) is low, since tlocal(x2) lies outside the

bridge region, where VB is low. Therefore, no bridge is detected at x2, but in

contrast to the case of x1, the wave propagation through x2 is not slowed down,

since the wavefront at x2 still remains in the river region.
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Chapter 7

Experimental Results of

Progressive Minimal Paths

In this chapter, experimental results for our progressive minimal path method

introduced in Chapter 6 are presented. We conducted quantitative and qualitative

evaluations using 2D and 3D images from different application areas, including

synthetic images, retinal images, satellite images of streets, rivers, and bridges,

and 3D 7T MRA images of human brain vessels. We also compared our method

with previous approaches.

7.1 Appearance Feature

We have evaluated our method in conjunction with the appearance feature de-

scribed in Sect. 6.2.1 above using 2D synthetic and real images, including images

of retinal vessels and satellite images of rivers and streets. We compared the re-

sults of our method with two previous fast marching approaches: A minimal path

approach based on the classical fast marching method and a vesselness measure

(FM-V) [41], and a domain-lifting approach using an additional dimension for the

radius (LY) [154].

7.1.1 2D Synthetic Images

Fig. 7.1 shows experimental results for a curved line structure with many gaps due

to artifacts (left column) and for a spiral with a high noise level (right column).

For the curved line structure, the total length of all gaps due to artifacts is 80

pixel, while the length of the short cut between the start point xs and the end

point xe is only 17 pixel. For the image of the spiral, Gaussian noise with standard
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deviation σn = 40 was added. For both types of images, FM-V and LY yield short

cuts, while our method yields the correct path. To quantitatively evaluate the

performance, we generated images of size 72 × 140 pixels with four types of 2D

line structures, ranging from a structure with high curvature (Fig. 7.4a, type A) to

a straight line (Fig. 7.4d, type D), each with three different radii: r = 1.5, 2.5, and

3.5 pixel. Furthermore, we added Gaussian noise with 21 levels between σn = 0

and σn = 100. The noise was added independently 30 times. In total, 7560

synthetic images (4× 3× 21× 30) were used.

We compared the results of our method and those of FM-V and LY with the

ground truth. The ground truth is a binary segmentation of all pixels correspond-

ing to the line structures, while the results from fast marching approaches are

centerlines with subpixel accuracy. For a comparison, we determined the set S0 of

pixels which lie on the path of the segmented centerline, and the set S1 ⊂ S0, which

consists of pixels of S0 inside the binary segmentation of the line structures. To

measure the accuracy of the segmented centerlines, the ratio between the numbers

of pixels of S1 and S0 is used.

Accuracy measure: Qinside

Qinside =
|S1|
|S0|

(7.1)

We studied the sensitivity of the results with respect to the crucial parameters Γ

(length of the local path γlocal), and Tv (threshold of the mean vesselness V(γlocal)).

It turns out that using higher values of Γ, higher mean values and lower variances

of Qinside are obtained (see Fig. 7.2). We consider Γ = 6 a reasonable choice, since

longer paths require more computation time but yield only limited improvement.

Concerning Tv, the results in Fig. 7.3 suggest that it should be high enough to avoid

short cuts, for example, Tv = 0.6. But if Tv is too high, for example, Tv = 0.9,

then correct paths are often not found. In our experiments, we use an intermediate

value Tv = 0.8. We also computed the corresponding standard deviation of the

results over the 30 runs of adding noise.

Using Γ = 6 and Tv = 0.8, we conducted experiments to study the robustness

of our method. For strongly curved lines (type A with r = 1.5), the mean

values and the standard deviations of Qinside for 30 runs with different noise levels

are shown exemplarily in Fig. 7.5, first row. FM-V yields increasingly short cuts

with increasing standard deviation of the noise σn > 10, resulting in a significant

decrease of Qinside, and LY also yields short cuts, leading to relatively low values of
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1

2

3

4

5

Figure 7.1: Segmentation of a curved line structure with many gaps due to
artifacts (left column), and a spiral with a high noise level (right column). xs

and xe are indicated as yellow circles, and the centerlines are shown as red lines.
Row 1: Original image. Row 2: Vesselness map, high values are represented by
bright intensities. For the spiral, two regions marked by boxes have been enlarged.
Green: high vesselness in the area between two spiral lines, yellow: low vesselness
along the spiral line and high vesselness nearby). Row 3: Result of FM-V. Row 4:
Result of LY. Row 5: Result of our progressive minimal path method.
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Figure 7.2: Dependency of Qinside on the length Γ of the local paths γlocal. First
row: Type A, r = 1.5. Second row: Type B, r = 1.5.
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Figure 7.3: Dependency of Qinside on the threshold Tv of the mean vesselness of
the local paths γlocal. First row: Type A, r = 1.5. Second row: Type B, r = 1.5.

Qinside. In comparison, our approach finds the correct path, even in the case of a

high level of image noise of σn = 60 (see Fig. 7.4a), where still Qinside = 92.77% can

be achieved. The images of type B (r = 1.5) contain a less strongly curved line.

Also here, LY often yields short cuts, while FM-V achieves better results than for

type A. Our approach yields a similarly good result as for type A (see Fig. 7.5,

second row). The results for images of type C (r = 2.5) are shown in the third

row of Fig. 7.5. For σn < 20, all three approaches have a similar performance.
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Type A Type B

(a) r = 1.5, σn = 60 (b) r = 1.5, σn = 70

Type C Type D

(c) r = 2.5, σn = 40 (d) r = 3.5, σn = 55

Figure 7.4: Examples of synthetic images with four different types of 2D line
structures. Each image contains a line structure with radius r and is distorted by
Gaussian noise with standard deviation σn.

With increasing noise level, the performance of LY decreases strongly, while that

of FM-V and our approach remains relatively high. Finally, for the straight line

structure of type D (r = 3.5), the results are similar as for type C, but the decrease

of the performance of LY starts at a higher noise level of σn = 30 (Fig. 7.5 fourth

row). For a high noise level of σn = 80, FM-V and our approach still achieve a

value of Qinside over 95%.

7.1.2 2D Real Images

We also successfully applied our progressive minimal path to 10 medical images

of retinal vessels from the STARE dataset [182], as well as 10 satellite images of

rivers and 10 satellite images of streets from Google Maps (maps.google.com).

For example, in Fig. 7.6, first column, the correct path of the retinal vessel is

very long, the image intensities within the vessels vary strongly, and the middle

part is much darker than the two ends. Consequently, LY does not yield a good

result because it assumes a relatively homogeneous intensity distribution within

the vessel. FM-V follows another vessel and yields a short cut, while our approach

finds the correct vessel. In Fig. 7.6, second column, the river has a high curvature

and similar intensities as the riverbank, which causes LY to yield some wrong
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Figure 7.5: Dependency of Qinside on the noise level for four different types of 2D
line structures. First row: Type A, r = 1.5. Second row: Type B, r = 1.5. Third
row: Type C, r = 2.5. Fourth row: Type D, r = 3.5.
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Original images Results

Figure 7.6: Segmentation of real images. Row 1: Retinal image. Row 2: Satellite
image of a river. Row 3: Satellite image of a street. Results of FM-V (yellow),
LY (green), and our progressive minimal path method (red).

turns. Additionally, the region enclosed by the river is very cluttered, so FM-V

yields a short cut. Again, our approach finds the correct path. In Fig. 7.6, third

column, several houses have similar intensities as the street. Furthermore, the

markings on the street also pose difficulties. Both LY and FM-V find a short

cut, while our approach is able to find the correct path. For the other images, we

obtained similar results.
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Original images Results

Figure 7.7: Synthetic images of a loop (left) and an open curve which is crossed
by a straight line (right). Results of FM-V (yellow), LY (green), USK (blue), and
our progressive minimal path method (red).

7.2 Geometric Feature

We also evaluated our progressive minimal path method using the geometric fea-

ture (curvature) described in Sect. 6.2.2 above based on 2D synthetic data and real

retinal images, and compared the results with FM-V [41], LY [154], and USK [56].

Furthermore, we considered vessel segmentation in 3D synthetic data and 3D 7T

high-resolution MRA images, and compared the results of our method with three

previous approaches.

7.2.1 2D Synthetic Images

We tested our method using different 2D synthetic images. For example, Fig. 7.7,

first row, shows a loop, and Fig. 7.7, second row, displays an open curve which is

crossed by a straight line. In both cases, our method yields the paths with low

curvature (red lines), even though these paths are much longer than the short cuts.

In contrast, FM-V (yellow), LY (green), and USK (blue) result in short cuts.
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1

2

3

4
Original images Results

Figure 7.8: Four different examples of retinal vessels from the DRIVE dataset.
Results of FM-V (yellow), LY (green), USK (blue), and our progressive minimal
path method (red).

7.2.2 2D Retinal Images

For evaluating our method based on real data we have used all 40 retinal images

of the DRIVE dataset [24]. The images have a size of 565× 584 pixels. For each

image, one to three vessels which cross other vessels were selected, resulting in 81

vessels in total. Such vessels are very common in retinal images and difficult to
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Table 7.1: Comparison of quantitative results for retinal images.

Vessel
FM-V LY USK Progressive

Qinside Time Qinside Time Qinside Time Qinside Time

1 54.90% 0.10 s 94.04% 0.16 s 60.85% 6.52 s 94.55% 0.26 s

2 100.00% 0.42 s 11.49% 2.36 s 100.00% 39.70 s 100.00% 0.83 s

3 26.42% 0.21 s 67.49% 0.71 s 29.89% 18.16 s 99.61% 0.60 s

4 31.96% 0.34 s 42.78% 1.27 s 15.84% 29.51 s 99.42% 0.98 s

Mean

of 81
45.27% 0.25 s 48.18% 0.74 s 47.47% 20.26 s 99.13% 0.64 s

cope with. Example results for four vessels are shown in Fig. 7.8. In the first row,

a vessel crosses another vessel which has a similar radius. There, FM-V and USK

result in short cuts, while our approach finds the correct path. LY also finds the

correct path, because the intensity of the vessel is quite different from the other

vessel. However, for the example in the second row, the intensity is not always a

good feature, since the intensities inside the vessel vary significantly. As a result,

LY leaks into a neighboring vessel, while FM-V, USK, and our approach yield the

correct path. For the vessel in the third row, FM-V, LY, and USK do not yield

the correct path. In contrast, our approach yields the correct path, as well as for

the example in the fourth row, which shows an even more difficult case, where the

correct vessel is relatively long, with several crossings with other vessels.

For a quantitative evaluation, we compared our results with ground truth and

computed the ratio Qinside defined in Sect. 7.1.1 above. The results and run time

for the four vessels in Fig. 7.8 as well as the mean values over all 81 vessels are

summarized in Table 7.1. It can be seen that our approach yields significantly

higher values for Qinside compared to FM-V, LY, and USK (99.13% on average,

compared to 45.27%, 48.18%, and 47.47% for the previous approaches). Addition-

ally, our approach requires a lower mean run time of 0.64 s compared to 0.74 s of

LY and 20.26 s of USK, using a single-threaded implementation on a PC with a

2.67 GHz CPU and 48 GB memory.

7.2.3 3D Synthetic Images of Vessels

For segmentation of 3D synthetic images of vessels we integrated our progressive

minimal path method with a model-based approach. The segmentation consists

of two steps. In the first step, vessels in regions with low noise and high image

contrast are segmented by fitting a parametric intensity model gM to the image

intensities g(x) within a spherical 3D ROI [46]
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(gap)

(a) Structure (b) Image

Figure 7.9: (a) Sketch of parallel vessels with a gap. The upper vessel consists of
two segments VD1 and VD2, each at the same distance d to the lower vessel VC.
There is a gap of length l between them, which starts at xs and ends at xe. Each
vessel has the same radius: RC = RD1 = RD2. The image contains Gaussian noise
with standard deviation of σn. (b) 2D section of an example of a 3D synthetic
image based on (a).

Parametric intensity model

gM(x,p) = a0 + (a1 − a0) gCyl(R(x,α,x0), R, σ) (7.2)∑
x∈ROI

(gM (x,p)− g (x))2 → min. (7.3)

with parameters p = (R, a0, a1, σ, α, β, γ, x0, y0, z0)
T . R is the radius of a vessel,

a0 and a1 are the intensity levels of the vessel and the surrounding tissue, σ is

the image blur, (α, β, γ)T and (x0, y0, z0)
T describe a rotation and a translation,

respectively. gCyl is a 3D cylindrical model obtained by convolving an ideal sharp

3D cylinder with a 3D Gaussian [46]. In regions with high noise or low image

contrast, some vessel parts are difficult to segment, leading to gaps between vessels.

In the second step, these gaps are completed using our progressive minimal path

method. Fig. 7.9 shows a sketch and a synthetic image for a typical situation,

i.e. two parallel vessels, where one of them contains a gap. The parameters for

generating the 3D synthetic images (e.g., vessel radius, intensities, noise level)

have been chosen in accordance with real 3D 7T MRA images.

The images have a size of 128 × 128 × 32 voxels. We applied our progressive

method in conjunction with the curvature feature. To evaluate the performance

of gap completion against ground truth we used the following error measure
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(g
ap
)

(a) Structure (b) Image

Figure 7.10: (a) Sketch of branching vessel. Between the horizontal vessel VA
with radius RA and the inclined vessel VB with radius RB and angle α to VA, there
is a low-contrast part of length l. This small part is an arc of a circle with radius
Rl and centered at O. The starting and end points are xs and xe, respectively.
Gaussian noise is added. (b) 2D section of an example of a 3D synthetic image
based on (a).
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Figure 7.11: Mean error and standard deviation of the centerline positions for
different gap lengths for parallel vessels in 3D synthetic images using different
minimal path methods: The gap of length l between vessel parts VD1 and VD2 (see
Fig. 7.9) varies from 1 to 10 voxels, with an increment of 1 voxel. The standard
deviation of noise is σn = 10.

Error measure

eγ =
1

|γ|
∑
xi∈γ

|xi − xgt(i)|, (7.4)

where xi are sample points on the path γ and xgt(i) is the closest point of the

ground truth to xi. |γ| denotes the number of points of γ. We compared our

progressive minimal path method with three previous approaches, i.e. the classical
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Figure 7.12: Mean error and standard deviation of the centerline positions for
different gap lengths for branching vessels in 3D synthetic images using different
minimal path methods: The gap length l between vessels VA and VB (see Fig. 7.10)
varies from 2.5 to 16, with an increment of 0.5. The other parameters are constant
for all experiments: α = π

6
and σn = 10.

Table 7.2: Mean errors and standard deviations (in voxels) of the centerline posi-
tions for all experiments with 3D synthetic images.

Image type FM-V PROB FM-ADP Progressive

Parallel vessels 1.09±1.03 1.53±1.41 0.58±0.11 0.50±0.23

Branching vessels 1.65±1.39 1.35±0.86 0.46±0.43 0.66±0.36

fast marching approach (FM-V) [41], a probabilistic approach (PROB) [40], and

a fast marching approach with directional prior (FM-ADP) [40]. For the parallel

vessels illustrated in Fig. 7.9, we varied the gap length l from 1 to 10 voxels, with

an increment of 1 voxel. For the parallel vessels illustrated in Fig. 7.10, we varied

the gap length l from 2.5 to 16 voxels, with an increment of 0.5 voxel. The images

were distorted by additive Gaussian noise with standard deviation σn = 10. The

noise was added independently 30 times, yielding 10 × 30 = 300 3D images. In

Fig. 7.11 it can be seen that for parallel vessels, our method achieves the lowest

mean error for most values of l. By comparison of the mean values and standard

deviations for all 3D images (Table 7.2, first row), it turns out that our approach

outperforms the three previous approaches. Fig. 7.12 shows that for branching

vessels, the mean error of our method is significantly lower than that of FM-V

and PROB, and is similar to the result of FM-ADP. Furthermore, our approach

achieves a lower standard deviation than previous approaches (Table 7.2, second

row).
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Table 7.3: Quantitative results for 508 gaps in 3D 7T MRA images (errors in mm).

Approach Total
Centerline error eγ Mean run time

eγ < 0.3 eγ < 0.4 eγ < 0.5 eγ < 0.6 Mean eγ per 3D image

FM-V 99.61% 34.45% 61.22% 83.46% 92.72% 0.406 0.92 s

PROB 96.65% 56.69% 76.18% 86.61% 90.35% 0.313 51.68 s

FM-ADP 99.61% 61.22% 86.42% 94.29% 97.64% 0.288 1.63 s

Progressive 99.61% 86.61% 92.32% 95.47% 97.64% 0.222 19.36 s

7.2.4 3D 7T MRA Images of Brain Vessels

We also applied our progressive minimal path method to 3D 7T MRA images of

human brain vessels. Compared to 1.5T or 3T MRA, 7T MRA images display

significantly more thin vessels. In our evaluation we considered lenticulostriate

arteries (LSAs), which are microvessels in the brain and are susceptible to diseases

like stroke. The 3D 7T MRA images were acquired without contrast agent using

a 3D gradient echo time-of-flight sequence with a repetition time of 15 ms, echo

times of 4.84 ms or 4.85 ms, a field of view of 135 mm × 180 mm, and flip angles

of 25 or 30 degrees. We applied isotropic interpolation, yielding 128-162 slices for

the 3D images and an isotropic resolution of 0.23 mm. The size of the slices varies

from 128× 270 to 162× 417 voxels. We analyzed the performance of our method

for gap completion using the error measure in (7.4) with manually determined

ground truth, and performed a comparison with the previous approaches FM-

V [41], PROB [40], and FM-ADP [40]. We considered 508 gaps in the 3D 7T

MRA images. Table 7.3 provides the percentage of the total number of completed

gaps, the percentage of the total number of completed gaps within error ranges

of eγ < 0.3, 0.4, 0.5, and 0.6 mm, the mean error over all completed gaps, and the

mean run time per 3D image (using a single-threaded implementation on a PC

with a 2.67 GHz CPU and 48 GB memory) for all four approaches.

Results for the 10 3D MRA images and the average over all 10 3D 7T MRA

images are provided in Fig. 7.13 and Fig. 7.14, respectively. It can be seen that

our method yields the lowest mean error and a much higher percentage of com-

pleted gaps within small error ranges (eγ < 0.3 mm and eγ < 0.4 mm). We also

applied our progressive minimal path method in conjunction with the model-based

approach described in Sect. 7.2.3 above to segment vessels within the whole brain

in three 3D 7T MRA images. Fig. 7.15 shows the result for one 3D image. It can

be seen that a large number of thin vessels have been successfully segmented.
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Figure 7.13: Percentage of the total number of completed gaps for ten 3D 7T
MRA images of the LSA region of the human brain using different minimal path
methods.
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Figure 7.14: Percentage of the total number of completed gaps for 3D 7T MRA
images: Average over all 10 3D 7T MRA images.

radius
(voxel)
7

0

Figure 7.15: Segmentation of vessels of the whole brain from a 3D 7T MRA image
using our progressive method in conjunction with the model-based approach. The
color-coded radius ranges from 0 to 7 voxels.

7.3 Joint Appearance and Geometric Feature

We also applied our progressive minimal path method using the joint appearance

and geometric feature (Sect. 6.2.3 above) to segment rivers and detect bridges

in satellite images from Google Earth. We used 10 images that contain different

types of bridges, rivers, and environment. The size of the images varies from

363 × 129 to 1617 × 1029 pixels. For example, Fig. 7.16a shows a narrow river

with four bridges, while Fig. 7.16b shows a much wider river, along with two long

bridges. In Fig. 7.16c, the river in the urban area is surrounded by buildings,
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(a) Narrow river (b) Wide river

(c) Occlusion by shadow

Figure 7.16: Bridge detection in satellite images with different types of bridges,
rivers, and environments. Extracted rivers are indicated by the red lines and
detected bridges by green circles. The white arrow indicates a false positive.

which cast shadows onto the river. Our approach was able to detect all bridges in

all images. In the case that the river is partially occluded by shadows (Fig. 7.16c),

the detection is more difficult, and a false positive is caused by shadows of the

buildings (see the white arrow).

Fig. 7.17 shows the result of applying our approach to a satellite image with 37

bridges. This image is challenging since this river is very long and its width varies

strongly. Furthermore, there are many objects on the river and streets near the

river, which have similar widths as the bridges. We compared our method (red

line) with the method in Sect. 6.2.1, which uses a local path γlocal but no tangent

tlocal (yellow line), and with the classical fast marching method, which uses neither

tlocal nor γlocal (blue line). It turns out that by exploiting both tlocal and γlocal in

our method, the result is improved compared to the other two methods. First,

bridges are detected, which is not possible with the other two methods. Second,

rivers are detected more accurately. The results for four regions (cyan boxes) have

been enlarged. In region 3, a branch of the river (top left) was not found due

to the general limitation of minimal path methods, and consequently the three

bridges in that branch cannot be detected. All remaining 34 bridges have been

correctly detected. There is one false positive in the regions 1 and 3 (indicated by

the white arrow), caused by objects on the river.

Note that for bridge detection, it is crucial to accurately compute the orien-

tation of the bridges to determine VB(tlocal(x)) defined in Sect. 6.2.3 above. For

example, the river in Fig. 7.17 resembles roughly a semi-circle, and the 37 bridges

generally have different orientations. Our approach can not only cope with 37 ori-

entations, but also with an arbitrary number of different orientations at constant
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 1

 2

 3

 4

 1

 2

 3

 4

Figure 7.17: Bridge detection in a satellite image. Whole image and enlarged
regions marked by the cyan boxes 1, 2, 3, and 4. Extracted rivers are indicated
by red (our approach), yellow (appearance feature only), and blue (classical fast
marching) lines. Detected bridges are indicated by green circles. White arrows
indicate false positives.
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cost due to the continuous nature of our approach. This is a difference to discrete

minimal path approaches, where the number of orientations is limited (e.g., 16

orientations can be handled using 32 edges for each node in [56]).
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Chapter 8

Summary and Conclusion

In this thesis, we introduced two different methods for the segmentation of 2D

and 3D line structures. The first method includes two direction-preserving minimal

path methods for segmentation of cerebral vessels from high-resolution 3D 7T MRA

images of the human brain as well as for segmentation of vessels in 2D retinal

images. The second method is a novel progressive minimal path method for efficient

segmentation of line structures from 2D and 3D images.

From a theoretical point of view, these methods present algorithmic extensions

to minimal path methods, which are commonly used for the segmentation of line

structures. From a practical point of view, these methods cope with the limita-

tions of previous minimal path methods, and the segmentation of 2D and 3D line

structures are enhanced in different application areas.

8.1 Direction-Preserving Minimal Path Methods

We introduced two minimal path methods which incorporate prior directional

information for vessel segmentation (Chapter 4). These methods were used within

a novel automatic hybrid 3D segmentation and quantification approach to extract

lenticulostriate arteries (LSAs) from high-resolution 3D 7T MRA images of human

brains. We also introduced an approach to segment retinal vessels in 2D images

using an iterative direction-preserving minimal path method.

Our hybrid 3D approach for vessel segmentation combines our direction-preserving

3D minimal path methods with a robust 3D model-based approach. After an au-

tomatic initialization, thick vessels and most parts of thin vessels are segmented

using the model-based approach. Furthermore, at the ends of segmented vessels,

the directions of the vessels in gaps are determined. Then gaps between vessels
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are completed using our minimal path approaches, which take into account direc-

tional information. We have proposed two different minimal path approaches: An

explicit approach based on probabilistic sampling, and an implicit approach based

on fast marching with anisotropic directional prior.

Our 2D approach for vessel segmentation extends the fast marching approach

with anisotropic directional prior to extract 2D retinal vessels iteratively. In each

iteration, a directional prior derived from the last iteration is combined with ves-

selness and radius information to segment a vessel centerline and to quantify the

vessel radius within the current ROI, as well as to find the center of the next ROI.

The results from each iteration are concatenated to form the final segmentation.

We conducted an extensive evaluation for our 3D and 2D vessel segmentation

approaches, including qualitative and quantitative experiments using synthetic

and real images (Chapter 5). For our 3D approach, we used over 2300 3D syn-

thetic images which resemble typical vessels in real 3D 7T MRA images, and

40 3D 7T MRA images of the LSA region. The 3D synthetic images in the ex-

periments were generated using typical image parameters (angle between vessels,

gap length, noise level) of real 3D 7T MRA images. It turned out that our two

direction-preserving minimal path approaches yield more accurate results than a

previous fast marching approach, which uses the same speed function as one of our

methods, but does not use direction information. Furthermore, our fast marching

approach with anisotropic directional prior achieves relatively low mean errors and

standard deviations for a much larger range of image parameters. For the experi-

ments with real 3D 7T MRA images, a quantitative evaluation with ground truth

showed that our approaches achieve lower errors than the previous fast marching

approach. Qualitatively, the vessels segmented by our approaches have a more re-

alistic shape, i.e., the transitions between the vessel branches and the main vessels

are smooth, and the curvature is well represented. These two properties cannot

be satisfied by the previous fast marching approach. Furthermore, our approaches

were successfully applied in two clinical studies concerning stroke and vascular

dementia. In both studies, accurate segmentation and quantification of cerebral

vessels turned out to be crucial for distinguishing between normal and patholog-

ical cases. While the fast marching approach with anisotropic directional prior is

more efficient and achieves a lower error than the approach based on probabilistic

sampling in most cases, there are few cases where the latter approach performs

better. Also, the approach based on probabilistic sampling is easier to implement.

For our 2D approach, the results show that our approach can deal well with two

common difficulties of fast marching approaches, i.e., short cuts and vessel cross-
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ings. Quantitative evaluation using 91 vessels from the DRIVE dataset shows that

compared with a previous approach (Li-Yezzi), our approach achieves consistently

a higher true positive rate and a lower false positive rate, each with a lower stan-

dard deviation. Furthermore, our approach is significantly more efficient than the

previous approach.

Future work includes the segmentation and quantification of more 3D data of

cerebral vessels, as well as application to further MRA imaging sequences, such

as susceptibility weighted imaging. Also, the 2D iterative approach based on fast

marching with anisotropic directional prior could be extended to segment vessels

in 3D images.

8.2 Progressive Minimal Path Method

We also introduced a novel progressive minimal path method based on dynamic

speed and path features (Chapter 6). We presented three instances of our pro-

gressive minimal path framework, including an appearance feature, a geometric

feature, and a joint appearance and geometric feature. Previous minimal path

approaches used point features. To avoid short cuts, different improvements based

on anisotropic speed, domain lifting, line graph, directional information, and addi-

tional key points have been proposed. But these approaches are computationally

demanding, introduce discretization and metrication errors, have limitations in

the numerical scheme, or use limited features. In comparison, our method enables

coping with these limitations by introducing path features for local paths. These

features are created by aggregating point features, which can be computed effi-

ciently for arbitrary dimensions. The path features can only be determined during

the wave propagation, so they cannot be incorporated in previous minimal path

approaches using static speed. With our progressive minimal path method, we

can significantly improve the segmentation result of line structures in 2D and 3D

images while avoiding short cuts. In addition, we combined segmentation based

on minimal paths with object detection to detect bridges in satellite images. Our

approach does not suffer from discretization or metrication errors.

We conducted an extensive evaluation of our method using 7560 2D synthetic

images, 50 2D retinal images from the STARE and DRIVE datasets, 30 satellite

images from Google Maps and Google Earth, 300 3D synthetic images, 40 real

high-resolution 3D 7T MRA images of the human brain around the lenticulostriate

region, and three high-resolution 3D 7T MRA images of the whole human brain

(Chapter 7). Our quantitative comparisons with previous approaches showed that
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our method achieves more accurate results.

Currently, our method only extracts the centerlines of line structures. An

extension would be to determine also the radius of the line structures. In addition,

more application-specific speed functions could be exploited instead of the general

vesselness measure.
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P. de Rivaz, J. Crall, G. Sanders, K. Rasul, C. Liu, G. French, and

J. Degrave, “Lasagne: First release.” Aug. 2015. [Online]. Available:

http://dx.doi.org/10.5281/zenodo.27878

137

https://github.com/keras-team/keras
https://github.com/keras-team/keras
http://dx.doi.org/10.5281/zenodo.27878


Bibliography

[84] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once:

Unified, Real-Time Object Detection,” in IEEE Computer Society Confer-

ence on Computer Vision and Pattern Recognition (CVPR’16). Las Vegas,

NV/USA: IEEE Computer Society, June 2016, pp. 779–788.

[85] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time

Object Detection with Region Proposal Networks,” IEEE Transactions on

Pattern Analysis and Machine Intellegence, vol. 6, no. 39, pp. 1137 – 1149,

2016.

[86] Y. Li, H. Qi, J. Dai, X. Ji, and Y. Wei, “Fully Convolutional Instance-

aware Semantic Segmentation,” in IEEE Computer Society Conference on

Computer Vision and Pattern Recognition (CVPR’17). Honolulu, HI/USA:

IEEE Computer Society, July 2017, pp. 4438–4446.

[87] E. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus, “Exploiting

Linear Structure Within Convolutional Networks for Efficient Evaluation,”

in Proc. Advances in Neural Information Processing Systems (NIPS’14).

Montreal, Canada: Curran Associates, Inc., Dec. 2014, pp. 1269–1277.

[88] P. Liskowski and K. Krawiec, “Segmenting Retinal Blood Vessels with Deep

Neural Networks,” IEEE Transactions on Medical Imaging, vol. 35, no. 11,

pp. 2369 – 2380, 2016.

[89] E. Nasr-Esfahani, S. Samavi, N. Karimi, S. Soroushmehr, K. Ward, and

M. Jafari, “Vessel Extraction in X-Ray Angiograms Using Deep Learn-

ing,” in Proc. International Conference of the IEEE Engineering in Medicine

and Biology Society (EMBC’16). Orlando, FL/USA: IEEE Engineering in

Medicine and Biology Society, Aug. 2016, pp. 643–646.

[90] Y. Zheng, M. Loziczonek, B. Georgescu, S. K. Zhou, F. Vega-Higuera, and

D. Comaniciu, “Machine Learning Based Vesselness Measurement for Coro-

nary Artery Segmentation in Cardiac CT Volumes,” in SPIE Medical Imag-

ing, vol. 7962, no. 1, 2011.

[91] A. Sironi, B. Tekin, R. Rigamonti, V. Lepetit, and P. Fua, “Learning Sepa-

rable Filters,” IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, vol. 37, no. 1, pp. 94–106, 2015.

[92] A. Gooya, H. Liao, K. Matsumiya, K. Masamune, Y. Masutani, and T. Dohi,

“A Variational Method for Geometric Regularization of Vascular Segmenta-

138



Bibliography

tion in Medical Images,” IEEE Transactions on Image Processing, vol. 17,

no. 8, pp. 1295–1312, 2008.

[93] S. Esneault, C. Lafon, and J. Dillenseger, “Liver Vessels Segmentation using

a Hybrid Geometrical Moments/Graph Cuts Method,” IEEE Transactions

on Biomedical Engineering, vol. 57, no. 2, pp. 276–283, 2010.

[94] O. Friman, M. Hindennach, C. Kühnel, and H.-O. Peitgen, “Multiple Hy-

pothesis Template Tracking of Small 3D Vessel Structures,” Medical Image

Analysis, vol. 14, no. 2, pp. 160–171, 2010.

[95] A. El-Baz, A. Elnakib, F. Khalifa, M. A. El-Ghar, P. McClure, A. Soliman,

and G. Gimel’farb, “Precise Segmentation of 3-D Magnetic Resonance An-

giography,” IEEE Transactions on Biomedical Engineering, vol. 59, no. 7,

pp. 2019–2029, 2012.

[96] S. Osher and J. Sethian, “Fronts Propagating with Curvature-Dependent

Speed: Algorithms based on Hamilton-Jacobi Formulations,” Journal of

Computational Physics, vol. 79, no. 1, pp. 12–49, 1988.

[97] Wikipedia. An illustration of the level set method. Accessed: 2016

Feb. 8. [Online]. Available: https://en.wikipedia.org/wiki/Level set

method#/media/File:Level set method.jpg

[98] V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic Active Contours,” Inter-

natinal Journal of Computer Vision, vol. 22, no. 1, pp. 61–79, 1997.

[99] T. F. Chan and J. Shen, Image Processing and Analysis: Variational, PDE,

Wavelet, and Stochastic Methods. SIAM, 2005.

[100] G. Aubert and P. Kornprobst, Mathematical Problems in Image Process-

ing: Partial Differential Equations and the Calculus of Variations. Springer-

Verlag, 2006.

[101] G. Sapiro, Geometric Partial Differential Equations and Image Analysis.

Cambridge University Press, 2001.

[102] J. Sethian, Level Set Methods and Fast Marching Methods. Cambridge Uni-

versity Press, 1999.

[103] R. Kimmel, Numerical Geometry of Images. Springer-Verlag, 2004.

139

https://en.wikipedia.org/wiki/Level_set_method#/media/File:Level_set_method.jpg
https://en.wikipedia.org/wiki/Level_set_method#/media/File:Level_set_method.jpg


Bibliography

[104] T. F. Chan and L. A. Vese, “Active Contours without Edges,” IEEE Trans-

actions on Image Processing, vol. 10, no. 2, pp. 266–277, 2001.

[105] S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces.

Springer-Verlag, 2002.

[106] D. Peng, B. Merriman, S. Osher, H. Zhao, and M. Kang, “A PDE-based fast

local level set method,” Journal of Computational Physics, vol. 155, no. 2,

pp. 410–438, 1999.

[107] J. Gomes and O. Faugeras, “Reconciling distance functions and level sets,”

Journal of Visual Communication and Image Representation, vol. 11, no. 2,

pp. 209–223, 2000.

[108] C. Li, C. Xu, C. Gui, and M. D. Fox, “Distance Regularized Level Set

Evolution and Its Application to Image Segmentation,” IEEE Transactions

on Image Processing, vol. 19, no. 12, pp. 3243–3254, 2010.

[109] F. Catte, F. Dibos, and G. Koepfler, “A Morphological Scheme for Mean

Curvature Motion and Applications to Anisotropic Diffusion and Motion of

Level Sets,” SIAM Journal of Numerical Analysis, vol. 32, no. 6, pp. 1895–

1909, 1995.

[110] F. Guichard and J.-M. Morel, “Geometric Partial Differential Equations

and Iterative Filtering,” in Mathematical Morphology and Its Applications

to Image and Signal Processing (GSMM’98), Amsterdam, The Netherlands,

1998, pp. 127–138.

[111] P. Marquez-Neila, L. Baumela, and L. Alvarez, “A Morphological Approach

to Curvature-Based Evolution of Curves and Surfaces,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 36, no. 1, pp. 2–17, 2014.

[112] M. Niethammer and C. Zach, “Segmentation with Area Constraints,” Med-

ical Image Analysis, vol. 17, pp. 101–112, 2013.

[113] L. Cohen and I. Cohen, “Finite Element Methods for Active Contour Mod-

els and Balloons for 2D and 3D Images,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 15, no. 11, pp. 1131–1147, 1993.

[114] Y. Shang, R. Deklerck, E. Nyssen, A. Markova, J. de Mey, X. Yang, and

K. Sun, “Vascular Active Contour for Vessel Tree Segmentation,” IEEE

Transactions on Biomedical Engineering, vol. 58, no. 4, pp. 1023–1032, 2011.

140



Bibliography

[115] S. Geman and D. Geman, “Stochastic Relaxation, Gibbs Distributions, and

the Bayesian Restoration of Images,” IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence, vol. 6, pp. 721–741, 1984.

[116] G. Sapiro, Geometric Partial Differential Equations and Image Analysis.

Cambridge University Press, 2001.

[117] S. Z. Li, Markov Random Field Modeling in Image Analysis. Springer-Verlag,

2009.

[118] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated

annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.

[119] J. Besag, “On the statistical analysis of dirty pictures,” Journal of the Royal

Statistical Society, Series B, vol. 48, no. 3, pp. 48–259, 1986.

[120] A. Blake and A. Zisserman, Visual Reconstruction. Cambridge, MA, USA:

MIT Press, 1987.

[121] J. Sun, N.-N. Zheng, and H.-Y. Shum, “Stereo Matching Using Belief Prop-

agation,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 25, no. 7, pp. 787–800, 2003.

[122] V. Kolmogorov, “Convergent Tree-Reweighted and Message and Passing for

Energy and Minimization,” IEEE Transactions on Pattern Analysis and

Machine Intellegence, vol. 28, no. 10, pp. 1568–1583, 2006.

[123] P. Hammer, P. Hansen, and B. Simeone, “Roof duality, complementation

and persistency in quadratic 0-1 optimization,” Mathematical Programming,

vol. 28, pp. 121–155, 1984.

[124] V. Kolmogorov and C. Rother, “Minimizing Non-Submodular Functions

with Graph Cuts – a Review,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 29, no. 7, pp. 1274–1279, 2007.

[125] Y. Boykov, O. Veksler, and R. Zabih, “Fast Approximate Energy Minimiza-

tion via Graph Cuts,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 23, no. 11, pp. 1222–1239, 2001.

[126] Y. Boykov and V. Kolmogorov, “Computing Geodesics and Minimal Surfaces

via Graph Cuts,” in Proc. IEEE International Conference on Computer Vi-

sion (ICCV’03). Nice, France: IEEE Computer Society Press, Oct. 2003,

pp. 26–33.

141



Bibliography

[127] L. Ladicky, C. Russel, P. Kohli, and P. H. S. Torr, “Graph Cut Based In-

ference with Co-Occurrence Statistics,” in Proc. European Conference on

Computer Vision (ECCV’10), ser. Lecture Notes in Computer Science, vol.

6315. Heraklion, Crete, Greece: Springer Berlin Heidelberg, Sept. 2010, pp.

239–253.

[128] P. Kohli, L. Ladicky, and P. H. Torr, “Robust Higher Order Potentials for

Enforcing Label Consistency,” International Journal of Computer Vision,

vol. 82, no. 3, pp. 302–324, 2009.

[129] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles and

Techniques. MIT Press, 2009.

[130] A. Blake, P. Kohli, and C. Rother, Markov Random Fields For Vision And

Image Processing. Cambridge, MA/USA: MIT Press, 2011.

[131] C. Bishop, Pattern Recognition and Machine Learning. Springer-Verlag,

2006.

[132] Y. Boykov and V. Kolmogorov, “An Experimental Comparison of Min-

Cut/Max-Flow Algorithms for Energy Minimization in Vision,” IEEE

Transactions on Pattern Analysis and Machine Intellegence, vol. 26, no. 9,

pp. 1124–1137, 2004.

[133] V. Kolmogorov and R. Zabih, “What Energy Functions Can Be Minimized

via Graph Cuts?” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 26, no. 2, pp. 147–159, 2004.

[134] L. Grady, “Random Walks and for Image and Segmentation,” IEEE Trans-

actions on Pattern Analysis and Machine Intellegence, vol. 28, no. 11, pp.

1768–1783, 2006.

[135] C. Couprie, L. Grady, L. Najman, and H. Talbot, “Power Watershed: A

Unifying Graph-Based Optimization Framework,” IEEE Transactions on

Pattern Analysis and Machine Intellegence, vol. 33, no. 7, pp. 1384–1399,

2011.

[136] A. Vedaldi and S. Soatto, “Quick Shift and Kernel Methods for Mode Seek-

ing,” in Proc. European Conference on Computer Vision (ECCV’08), ser.

Lecture Notes in Computer Science, vol. 5305. Marseille, France: Springer

Berlin Heidelberg, Oct. 2008, pp. 705–718.

142



Bibliography

[137] Y. Zhao, Y. Liu, X. Wu, S. P. Harding, and Y. Zheng, “Retinal Vessel

Segmentation: An Efficient Graph Cut Approach with Retinex and Local

Phase,” PLOS ONE, vol. 10, no. 4, pp. 1–22, 2015.

[138] J. Zheng, P.-R. Lu, D. Xiang, Y.-K. Dai, Z.-B. Liu, D.-J. Kuai, H. Xue, and

Y.-T. Yang, “Retinal Image Graph-Cut Segmentation Algorithm Using Mul-

tiscale Hessian-Enhancement-Based Nonlocal Mean Filter,” Computational

and Mathematical Methods in Medicine, vol. 2013, pp. 1–7, 2013.

[139] B. Chen, Y. Sun, and S. H. Ong, “Liver Vessel Segmentation Using

Graph Cuts with Quick Shift Initialization,” in International Conference

on Biomedical Engineering (ICBE’13), vol. 43, 2013, pp. 188–191.

[140] P. R. Wankhede and K. B. Khanchandani, “Retinal Blood Vessel Segmenta-

tion using Graph Cut Analysis,” in International Conference on Industrial

Instrumentation and Control (ICIC’15), Pune, India, May 2015, pp. 1429–

1432.

[141] A. Sinop and L. Grady, “Accurate Banded Graph Cut Segmentation of Thin

Structures using Laplacian Pyramids,” in Proc. International Conference

on Medical Image Computing and Computer-Assisted Intervention (MIC-

CAI’06), ser. Lecture Notes in Computer Science, vol. 4191. Copenhagen,

Denmark: Springer Berlin Heidelberg, Oct. 2006, pp. 896–903.

[142] T. Nuzhnaya, E. Cheng, H. Ling, D. Kontos, P. R. Bakic, and V. Mega-

looikonomou, “Segmentation of Anatomical Branching Structures Based on

Texture Features and Graph Cut,” in Proc. IEEE International Symposium

on Biomedical Imaging: From Nano to Macro (ISBI’11). Chicago, IL/USA:

IEEE Computer Society, March–April 2011, pp. 673–676.

[143] S. Vicente, V. Kolmogorov, and C. Rother, “Graph Cut Based Image Seg-

mentation with Connectivity Priors,” in IEEE Computer Society Confer-

ence on Computer Vision and Pattern Recognition (CVPR’08). Anchorage,

AK/USA: IEEE Computer Society, June 2008, pp. 1–8.

[144] S. Jegelka and J. Bilmes, “Submodularity Beyond Submodular Energies:

Coupling Edges in Graph Cuts,” in IEEE Computer Society Conference on

Computer Vision and Pattern Recognition (CVPR’11). Colorado Springs,

CO/USA: IEEE Computer Society, June 2011, pp. 1897–1904.

143



Bibliography

[145] N. Zhu and A. C. Chung, “Graph-Based Optimization with Tubularity

Markov Tree for 3D Vessel Segmentation,” in IEEE Computer Society Con-

ference on Computer Vision and Pattern Recognition (CVPR’13). Portland,

OR/USA: IEEE Computer Society, June 2013, pp. 2219–2226.

[146] E. Dijkstra, “A Note on Two Problems in Connection with Graphs,” Nu-

merische Mathematik, vol. 1, pp. 269–271, 1959.

[147] J. Tsitsiklis, “Efficient Algorithms for Globally Optimal Trajectories,” IEEE

Transactions on Automatic Control, vol. 40, pp. 1528–1538, 1995.

[148] V. Kolmogorov and Y. Boykov, “What Metrics Can Be Approximated by

Geo-Cuts, or Global Optimization of Length/Area and Flux,” in Proc. IEEE

International Conference on Computer Vision (ICCV’05). Beijing, China:

IEEE Computer Society Press, Oct. 2005, pp. 564–571.

[149] J. A. Sethian and A. Vladimirsky, “Fast Methods for the Eikonal and Related

Hamilton-Jacobi Equations on Unstructured Meshes,” Proc. the National

Academy of Sciences, vol. 97, no. 11, pp. 5699–5703, 2000.

[150] J.-M. Mirebeau, “Anisotropic Fast-Marching on Cartesian Grids Using Lat-

tice Basis Reduction,” SIAM Journal on Numerical Analysis, vol. 52, no. 4,

pp. 1573–1599, 2014.

[151] J.-M. Mirebeau, “Efficient Fast Marching with Finsler Metrics,” Numerische

Mathematik, vol. 126, no. 3, pp. 515–557, 2014.

[152] D. Chen, J.-M. Mirebeau, and L. D. Cohen, “Global Minimum for a Finsler

Elastica Minimal Path Approach,” International Journal of Computer Vi-

sion, vol. 122, no. 3, pp. 458–483, 2017.

[153] L. Yatziv, A. Bartesaghi, and G. Sapiro, “O(N) Implementation of the Fast

Marching Algorithm,” J Comp Phys, vol. 212, pp. 393–399, 2006.

[154] H. Li and A. Yezzi, “Vessels as 4-D Curves: Global Minimal 4-D Paths

to Extract 3-D Tubular Surfaces and Centerlines,” IEEE Transactions on

Medical Imaging, vol. 26, no. 9, pp. 1213–1223, 2007.

[155] M. Pechaud, R. Keriven, and G. Peyre, “Extraction of Tubular Struc-

tures Over an Orientation Domain,” in IEEE Computer Society Conference

on Computer Vision and Pattern Recognition (CVPR’09), vol. 1. Miami,

FL/USA: IEEE Computer Society, June 2009, pp. 336–342.

144



Bibliography

[156] D. Chen, J.-M. Mirebeau, and L. D. Cohen, “Global Minimum for Curvature

Penalized Minimal Path Method,” in Proceedings of the British Machine

Vision Conference (BMVC’15). BMVA Press, September 2015, pp. 86.1–

86.12.

[157] P. Strandmark. C++ shortest path with curvature and torsion taken

into account. Accessed: 2015 Dec. 2. [Online]. Available: https:

//github.com/PetterS/curve extraction

[158] T. Deschamps, “Curve and Shape Extraction with Minimal Path and Level-

Sets techniques. Applications to 3D Medical Imaging,” Ph.D. dissertation,

University of Paris-Dauphine, Paris, France, 2001.

[159] T. Deschamps and L. Cohen, “Fast Extraction of Tubular and Tree 3D

Surfaces with Front Propagation Methods,” in Proc. the International Con-

ference on Pattern Recognition (ICPR’02), Quebec, Canada, Aug. 2002, pp.

731–734.

[160] P. Lo, J. Sporring, J. J. H. Pedersen, and M. de Bruijne, “Airway Tree

Extraction with Locally Optimal Paths,” in Proc. International Conference

on Medical Image Computing and Computer-Assisted Intervention (MIC-

CAI’09), ser. Lecture Notes in Computer Science, vol. 5762. London, UK:

Springer Berlin Heidelberg, Sept. 2009, pp. 51–58.

[161] M. Poon, G. Hamarneh, and R. Abugharbieh, “Live-Vessel: Extending

Livewire for Simultaneous Extraction of Optimal Medial and Boundary

Paths in Vascular Images,” in Proc. International Conference on Medical

Image Computing and Computer-Assisted Intervention (MICCAI’07), ser.

Lecture Notes in Computer Science, vol. 4792. Brisbane, Australia: Springer

Berlin Heidelberg, Nov. 2007, pp. 444–451.

[162] F. Benmansour and L. Cohen, “Fast Object Segmentation by Growing Mini-

mal Paths from a Single Point on 2D or 3D Images,” Journal of Mathematical

Imaging and Vision, vol. 33, no. 2, pp. 209–221, 2009.

[163] V. Kaul, A. Yezzi, and Y. Tsai, “Detecting Curves with Unknown Endpoints

and Arbitrary Topology using Minimal Paths,” IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, vol. 24, no. 10, pp. 1952–1965, 2012.

[164] D. Chen, L. Cohen, and J.-M. Mirebeau, “Vessel Extraction Using

Anisotropic Minimal Paths and Path Score,” in Proc. IEEE International

145

https://github.com/PetterS/curve_extraction
https://github.com/PetterS/curve_extraction


Bibliography

Conference on Image Processing (ICIP’14). IEEE Computer Society, Oct.

2014, pp. 1570–1574.
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