
DISSERTATION

submitted to the

Combined Faculty for the Natural Sciences

and Mathematics

of

Heidelberg University, Germany

for the degree of
Doctor of Natural Sciences

put forward by

M.Sc. Mattia Desana

born in Genoa, Italy

Date of oral examination: 12.12.2017

Sum-Product Graphical Models:
A Graphical Model Perspective on

Sum-Product Networks

Advisor: Prof. Dr. Christoph Schnörr

Abstract

The trade off between expressiveness of representation and tractability of inference is
a key issue of probabilistic models. On the one hand, probabilistic Graphical Models
(GMs) provide a high level representation of distributions, but exact inference with cyclic
graphs is in general intractable. On the other hand, Sum-Product Networks (SPNs)
allow tractable exact inference with probability distributions that are more complex than
tractable GMs, but they employ a low level representation of the underlying distribution,
which is much harder to read and interpret than in GMs.

The objective of this thesis is to close this gap and to achieve simultaneously the high
level representation of GMs and the efficiency of SPNs. To this aim, new models and
procedures are introduced.
We first investigate SPNs that include GMs as a submodule, obtaining a derivation

of Expectation-Maximization for SPNs which is the first allowing to learn the GM part
alongside the SPN parameters.

Then, we introduce a new architecture called Sum-Product Graphical Model (SPGM).
This new architecture is the first to combine the semantics of graphical models with the
evaluation efficiency of SPNs: SPGMs always enable tractable inference using a class of
models that incorporate context specific independence (like SPNs), and they provide a
high-level model interpretation in terms of conditional independence assumptions and
corresponding factorizations (like GMs). An algorithm for learning both the structure
and the model parameters of SPGMs is also introduced.

Finally, several applications that illustrate and empirically motivate the introduction
of the new models are described. SPGMs are applied to real-world discrete density
estimation datasets, to augment a graphical model for segmenting scans of the human
retina and detecting local pathologies, and to model very large mixtures of Quadtrees for
image denoising. Strong empirical results and novel application areas denote promise for
future applications of SPGMs.

v

Zusammenfassung

Der Ausgleich zwischen der Aussagekraft einer Darstellung und der Möglichkeit zur In-
ferenzberechnung ist eine zentrale Problemstellung bei Graphischen Modellen. Einerseits
bieten Graphische Modelle (GMs) eine fortgeschrittene Darstellung von Verteilungen,
wobei exakte Inferenz auf zyklischen Graphen im Allgemeinen unmöglich ist. Ander-
erseits erlauben Summen-Produkt Netzwerke (SPNs) berechenbare, exakte Inferenz
mit Wahrscheinlichkeitsverteilungen, die komplexer sind als realisierbare GMs. Diese
wiederum verwenden eine primitive Darstellung der zugrunde liegenden Verteilung, die
im Vergleich zu GMs viel schwerer zu lesen und zu interpretieren ist.
Die Zielsetzung dieser Arbeit ist diese Lücke zu schließen und die fortschrittliche

Darstellung von GMs mit der Effektivität von SPNs zu verbinden. Um dieses Ziel zu
erreichen werden neue Modelle und Vorgehensweisen entwickelt.
Erst untersuchen wir SPNs, die GMs als Untermodul enthalten, wodurch man eine

Art Erwartungs-Maximierung für SPNs erhält, die es erlaubt den GM-Anteil zusammen
mit den SPN-Parametern zu lernen.

Danach führen wir eine neue Architektur namens Summen-Produkt Graphisches Modell
(SPGM) ein. Diese neue Architektur ist die Erste, die in der Lage ist die Semantik von
Graphischen Modellen mit der Auswertungseffektivität von SPNs zu kombinieren: Bei
SPGMs ist Inferenz immer realisierbar, wobei eine Klasse von Modellen benutzt wird,
die kontextabhängige Unabhängigkeit mit ins Spiel bringt (ähnlich zu SPNs) und die
eine fortgeschrittene Interpretierbarkeit des Modells im Sinne von Annahmen bedingter
Unabhängigkeit und entsprechender Faktorisierungen (ähnlich zu GMs) bietet. Ein
Algorithmus für das Lernen von sowohl der Struktur als auch der Modellparameter von
SPGMs wird ebenfalls vorgestellt.

Abschließend werden einige Anwendungen beschrieben, die die Einführung der neuen
Modelle illustrieren und empirisch motivieren. SPGMs werden zur diskreten Dicht-
eschätzung realer Daten verwendet, zur Erweiterung eines Graphischen Modells für
das Klassifizieren von Aufnahmen der menschlichen Netzhaut und das Erkennen von
lokalen Pathologien, und zur Kombination von zahlreichen Quaternärbäumen (Quadtrees)
für das Entrauschen von Bildern. Überzeugende empirische Resultate und neuartige
Anwendungsbereiche sind vielversprechend im Hinblick auf die zukünftige Verwendung
von SPGMs.

vii

Acknowledgments

There are many people to whom I owe a great debt of gratitude, and without whom I
would not have been able to start, let alone finish this PhD.

First, I express my many thanks to my supervisor Prof. Christoph Schnörr for his
constant insightful guidance, his encouraging support and his belief in my research despite
all adversities, which kept me going when times were most difficult. I also wish to thank
Prof. Fred Hamprech for the useful discussion, the interesting courses and the enthusiasm
for research.
Then, the group. I thank all my colleagues for sharing the good and the not so good

times: Andreas, Vera, Tabea, Jörg, Paul, Matthias, Andreea, Ecaterina, Evelyn, Fabian,
Florian, Bogdan, Johannes, Jan, and all the many others. Many thanks to Barbara for
the tea, for the croissants, for being such a good listener and such a good person.

A special thought goes to the three people with whom I shared the cabin in our PhD
boat. Robert, who was the first to leave, which I thank for showing me what a real
German is, for the football, for translating the abstract, and for the jokes. You’ll be a
wonderful father! Tobias, for the endless discussion that I will always remember as a fun
and interesting time, and for being so originally Tobias - this is invaluable. And finally
Francesco, who was with me until the very end of this trip: even when it felt like being
on the Titanic and going straight for the iceberg, we still played our music pretty well,
and at the end it turned out to be fine... I would say: island escape mission succeed!
Then many thanks to Kira, for the badminton, for the emails, for the interesting

exchanges of very different point of views, and for making my life in Heidelberg way
better than it would have otherwise been. Then thanks to Yue and Davide, a bit of Italy
and a bit of China-Italy in Heidelberg, which have been faithful friends through thick and
thin. Especially, Yue, for the care and support when I was sick and (briefly) homeless.
And thanks to Yifan, and to Marina with the contagious smile. Finally, I thank Grazia,
who was my bless and my thorn, my chef and my pupil, my friend and foe. Thank you
for everything - which is too much to put into words. You are really quite a girl.

And in the end, the most heartfelt thank you to my beloved parents, to whom I simply
owe all. And also to Salvatore, which I hope is fine. And to Pit. And to my uncle, who
is always with me in my soul.

ix

Contents

List of Figures xv

List of Tables xvii

Table of Notation xxi

1. Introduction 1
1.1. Graphical Models and Sum-Product Networks 3

1.1.1. Tradeoff Between High-Level Representation and Efficient Infer-
ence: An Example . 5

1.1.2. Introducing Contextual Independence 7
1.2. Closing the Gap . 8

1.2.1. SPNs with Structured Leaf Distributions 9
1.2.2. Sum-Product Graphical Models . 9

1.3. Structure Learning for SPGMs . 11
1.4. Related Work . 12
1.5. Contributions . 14

1.5.1. Sum-Product Networks with Graphical Models as Leaves 14
1.5.2. Sum-Product Graphical Models . 15

1.6. Organization . 15

2. Preliminaries 17
2.1. Probability Theory . 17

2.1.1. Inference . 19
2.1.2. Density Estimation . 20
2.1.3. Basic Probability Distributions . 22

2.2. Indicator Variables and Network Polynomials 24
2.3. Graphical Models . 25

2.3.1. Probabilistic Graphical Models . 26
2.3.2. Tree Graphical Models . 27
2.3.3. Junction Trees . 28
2.3.4. Learning Tree Graphical Models 29

2.4. Mixture Models . 31
2.4.1. Basic Definitions . 31
2.4.2. Interpretation as Latent Variable Models 32
2.4.3. Expectation Maximization . 32

xi

Contents

2.5. Context Specific Independence . 35

3. Sum-Product Networks 37
3.1. Model Description . 37

3.1.1. Interpretation as Mixture Model 40
3.1.2. Max-SPNs . 45
3.1.3. Normalized SPNs . 45
3.1.4. SPNs with Indicator Variable Leaves 46

3.2. SPNs and Related Architectures . 46
3.2.1. SPNs and OR trees . 46
3.2.2. SPNs, And/Or graphs and Arithmetic Circuits 48
3.2.3. Graphical Models and SPNs . 49

3.3. Parameter Learning . 50
3.3.1. Gradient Ascent Based Approaches 50
3.3.2. Expectation Maximization . 52
3.3.3. Weights Update . 53
3.3.4. Leaf Distribution Updates . 54
3.3.5. Convergence for General Leaf Distributions 56

3.4. Structure Learning . 57
3.4.1. Learning Arithmetic Circuits (Lowd and Domingos [2012]) 58
3.4.2. LearnSPN (Gens and Domingos [2013]) 60
3.4.3. SPNs with Direct and Indirect Variable Interactions (IDSPN,

Rooshenas and Lowd [2014]) . 61
3.4.4. Learning the Structure of SPNs by Finding Low Rank Submatrices

(SPD-SVN, Adel et al. [2015]) . 62
3.4.5. Learning Cutset Networks (CNets) and Ensembles of CNets (Rah-

man et al. [2014]) . 63
3.4.6. Learning Graph SPNs by Merging (Rahman and Gogate [2016b]) 66

3.5. Overview of Applications of SPNs . 67

4. Sum-Product Graphical Models 71
4.1. Sum-Product Graphical Models . 71

4.1.1. Definition . 71
4.1.2. Message Passing in SPGMs . 73
4.1.3. Interpretation of SPGMs as Graphical Models 74
4.1.4. Interpretation as SPN . 79

4.2. Learning SPGMs . 81
4.2.1. Preliminaries . 81
4.2.2. Parameter Learning in SPGMs . 84
4.2.3. Structure Learning in SPGMs . 84
4.2.4. Learning Mixtures of SPGMs . 87

xii

Contents

5. Applications 89
5.1. Learning SPNs with Tree Graphical Model Leaves - Benchmark Evaluation 90
5.2. Evaluating LearnSPGM on Benchmark Datasets for Density Estimation . 93
5.3. SPNs with GM leaves for Locally Adaptive Priors in Human Retina Images 95

5.3.1. Setup . 95
5.3.2. Baseline Probabilistic Graphical Model 95
5.3.3. Locally Adaptive Priors by SPNs 98
5.3.4. Results . 100

5.4. Very Large Mixture of Spanning Trees for Density Estimation in Layered
Distributions . 104

5.5. SPGMs for Quadtree Images Models . 107

6. Conclusions and Future Work 115
6.1. Conclusions . 115
6.2. Future Work . 115
6.3. Generalizing SPGMs . 115
6.4. Tree-Reweighted Message Passing with SPGMs 116

A. Appendix - Proof Details 119
A.1. Proof of Proposition 3.1.8 . 119
A.2. EM for SPNs . 120

A.2.1. Proof of Proposition 3.1.7 . 121
A.2.2. EM step on W . 121
A.2.3. EM step on θ . 121

A.3. Sum-Product Graphical Models . 122
A.3.1. Proof of Proposition 4.1.2. 122
A.3.2. Proof of Proposition 4.1.3. 123
A.3.3. Proof of Proposition 4.1.5. 123
A.3.4. Proof of Proposition 4.1.9 . 125

Bibliography 127

xiii

List of Figures

1.1.1.The trade off between Sum-Product Networks and Graphical Models. . . 3
1.1.2.Abstract representation of properties of Sum-Product Graphical Models. . 4
1.1.3.An simple distribution represented as Graphical Model and as Sum-Product

Network. 5
1.1.4.An example distribution represented as Graphical Model (GM), as mixture

of GMs, as Sum-Product Network (SPN) and as Sum-Product Graphical
Model (SPGM). 7

1.2.1.A SPN with tree Graphical Models as leaves. 8
1.2.2.A SPGM and the components in the corresponding mixture model. . . . 10
1.3.1.Sketch of the structure learning algorithm proposed in this thesis. 11
1.4.1.Comparison between Hierarchical Mixtures of Trees and SPGMs. 14

2.3.1.Graphical representation of directed and undirected probabilistic graphical
models. 27

3.1.1.Example graphical representation of a Sum-Product Network. 39
3.1.2.Graphical representation of Proposition 3.1.3. 42
3.1.3.SPN subnetworks. 44
3.2.1.Representation of an OR tree as a SPN. 48
3.2.2.Conversion of a tractable Graphical Model into a Sum-Product Network

via the Junction Tree algorithm. 50
3.4.1.Graphical representation of a recursive step of SPD-SVN. 64

4.1.1.Sum-Product Graphical Model Example. 73
4.1.2.Representation of message passing equations of SPGMs as SPNs. 80
4.2.1.Graphical representation of edge insertion in the LearnSPGM algorithm. 85

5.1.1.Convergence plot of the EM algorithm for SPNs. 91
5.3.1.Segmentation of a healthy retina scan. 95
5.3.2.Segmentation of pathological retina scans. 96
5.3.3.High level visualization of our retina scan segmentation approach. 97
5.3.4.Recursive structure of the SPN used in retina scan segmentation. 98
5.3.5.Estimates of the fluid regions due to the selected pathological modes. . . . 102
5.3.6.Results of our retina scan segmentation approach on difficult samples. . . 103

xv

LIST OF FIGURES

5.4.1.A mixture of spanning trees with shared subparts obtained from a layered
directed graphical model. 105

5.4.2.Section of an SPGM encoding a mixture of spanning trees in a layered
model. 106

5.5.1.Basic Quadtree structure, recursively square image regions into sub-areas
up to single pixels. 109

5.5.2.Recursive splits performed in the SPGM Quadtree model. 110
5.5.3.An example SPGM Quadtree in 1D. 110
5.5.4.One of the subtrees in the SPGM Quadtree model. 111
5.5.5.Denoising using SPGMs, Quadtrees, and a Markov Random Fields with

Potts potentials, performed on two images from the Sowerby dataset. . . . 113
5.5.6.Comparison of MAP tree obtained with Quadtrees, dynamic trees and

SPGMs on three 1D data samples. 114

xvi

List of Tables

1.4.1.Comparison of architectural properties discussed in Section 1.4 for SPGMs
and related architectures. 12

2.4.1.The EM algorithm iterates E and M steps until convergence. 34

3.1.1.Probabilistic model of a SPN S(X). 42
3.4.1.Test set Log Likelihood on 20 benchmark datasets for the structure learning

algorithms discussed in Section 3. 69

4.1.1.Probabilistic models related to a SPGM S(X,Z). 76

5.1.1.Dataset structure and training set Log Likelihood for Experiment 1 in
Section [sec:Learning-SPNs-with]. 92

5.1.2.Experimental results on Learning SPNs with Expectation-Maximization. 93
5.2.1.Test set Log Likelihood comparison for the experiment in Section [sec:Learning-

SPGMs-for]. 94
5.3.1.Unsigned error for all tested datasets in µm (1px = 3.87 µm). Surface

numbers (1-9) correspond to Fig. 5.3.6 (a). 100
5.4.1.Log Likelihood values for the experiment in Section [sec:Very-Large-

Mixture], for different models (rows) and for different number of trees in
the mixture (columns, only defined when the model is a mixture of trees). 107

5.5.1.Coding Cost of the test set in the test set of 43 images from the Sowerby
dataset described in Adams and Williams (2003). 112

xvii

List of Algorithms

3.1. Compute α, β (S, {x1, x2, ..., xN}) . 56
3.2. EMstep(S, {x1, x2, ..., xN}) . 57
3.3. LearnACMN(D) . 60
3.4. LearnSPN(T, V) . 62
3.5. SPN-SVD(D) . 63
3.6. LearnCNet(T, V) . 65
3.7. MERGE-SPN (S, V, ε) . 67

4.1. EM for Mixture Models(Pk, λk, D) . 83
4.2. LearnSPGM

(
D = {xi}, {wi}

)
. 88

4.3. EM for Mixtures of SPGMs(Sk, λk, D) . 88

xix

Table of Notation

General Notation

X = {X1, X2, . . . , XN} : A set of random variables, either continuous or discrete
depending on the context.

∆(Xs) : Domain (set of values) of variable Xs.
∆(X) : Domain of set of variables X: ∆(X) = {∆(X1)×∆(X2)×

· · · ×∆(XN)}.∑
x∈∆(X),

∫
x∈∆(X) : Sum and integral over the domain of X.
[Xs]xs : An indicator variable that has value 1 if the discrete variable

Xs takes value xs and 0 otherwise.
[X]x : An indicator variable that has value 1 if the set of discrete

variables X takes a joint value x and 0 otherwise.
G = V, E : A graph G with vertices V and edges G.

pa(s), ch(s) : Parents and children of node s ∈ V.
µt→s : Message sent from node t ∈ V to node s ∈ V.

ϕst(Xs, Xt) : Factor associated to edge (s, t) ∈ E .

Sum-Product Networks

S : A Sum-Product Network.
St : Sub Sum-Product Network rooted in node t of S.

L (S) : Set of Leaf Nodes in S.
σ : A subnetwork of S (definition 3.1.5).

|S| : Cardinality of S, which is the number of distinct subnetworks
obtainable from S.

Pσ : Probabilistic model corresponding to σ (Table 3.1.1)
λσ : Coefficient corresponding to σ (Table 3.1.1)
W : Set of all sum node weights in S.
θ : Set of all factor parameters in S.

Sum-Product Graphical Models

S : A Sum-Product Graphical Model.
St : Sub Sum-Product Graphical Model rooted in node t of S.
τ : A subtree of S (definition 3.1.5).
|S| : Cardinality of S, which is the number of distinct subtrees

obtainable from S.
Pτ : Probabilistic model corresponding to τ (Table 4.1.1)
λτ : Coefficient corresponding to τ (Table 4.1.1)

xxi

1. Introduction

The Quest for Tractable Inference The computational cost involved in obtaining
answers to probabilistic queries (called inference) is a crucial aspect in probabilistic
models: representing probability distribution with complex structure is of little practical
use if inference cannot be performed with a tractable cost both in memory and time.
Hence, research in probabilistic architectures devoted much effort in devising models in
which inference is tractable.

The problem of developing models with tractable inference has been approached in
mainly two ways. One way is to find approximate inference procedures, which allow
to evaluate approximately correct inference from models in which exact inference is
intractable. The idea behind this approach is to let the the end user free to design a
model according to the desired application, not considering the cost of inference, and to
let inference in the model be approximated and thus be made tractable at evaluation
time. A prominent example in this field is the family of cyclic graphical models, in which
several approximate inference procedures are available (see e.g. Pearl [2000]).
Another way of approaching this problem is to develop models in which inference

is tractable by construction (tractable models). Models in this family typically require
additional constraints with respects to their intractable counterparts, and are hence more
complicated to design for the end user. However, they provide the guarantee that any
inference query can be answered in tractable time, with no need for approximations. A
classical example belonging to this family are tree graphical models, in which inference
and learning can be performed tractably, but that require additional care from the end
user in ensuring that the underlying graph has a tree structure (Chow and Liu [1968]).

Until recently, research in probabilistic models was heavily focused into the first family
of architectures, which could model more complex probability distributions than models
in the second family - for instance, a particularly active field of research has been (and
still is) developing approximate inference methods for graphical models (Wainwright and
Jordan [2008]). However, in recent years the situation has slightly shifted, since new
tractable models capable of representing distributions with structural complexity close
to (or, at times, surpassing) graphical models have been introduced.

Tractable but Expressive Models The “tractable but expressive” models that are the
subject of this thesis (and will be described in detail in the following) have a historically
recent origin, which can be found in Arithmetic Circuits (Darwiche [2002]), a model
that was originally employed to represent inference in a particular subset of graphical
models. This model was later followed by the closely related And/Or graphs (Dechter

1

1. Introduction

and Mateescu [2007]), with a very similar formalism. Finally, with the introduction
of Sum-Product Networks (SPNs, Poon and Domingos [2011], again closely related to
Arithmetic Circuits) these models started to be designed as “standalone” models in their
own right, rather than as a mere tool compilation target for inference graphical models.
From this point on, hand crafted applications of this family of architectures flourished
in many fields, especially excelling in density estimation (see e.g. Rooshenas and Lowd
[2014], Cheng et al. [2014], Amer and Todorovic. [2015], Rahman and Gogate [2016b],
Rahman and Gogate [2016a]). In the rest of this thesis we will work with Sum-Product
Networks as reference model for this family of architectures.

We will see that all these models admit guaranteed tractable inference, but at the same
time allow to express some distribution which do not admit an efficient representation as
graphical models. Despite these appealing properties, this family of tractable yet powerful
architectures has a major disadvantage with respect to other probabilistic models in
that the representation they employ is a very low level one. In particular, SPNs lose the
factorization due to graphical models, and hence the distribution properties are both
difficult to read from the model and it is very hard to design SPNs with a specific task
in mind. This aspect will be made clear in the following.
Hence, a trade off arises between the two families of architectures: graphical models

provide a high level representation with a rich theoretical framework, but inference is
worst case intractable, while SPNs guarantee tractable inference in highly expressive
distributions but employ a low level representation which makes it hard to model and
understand the distribution’s properties.

An Unavoidable Compromise? For the sake of this introductory discussion, we can
summarize these crucial aspects - which form the backbone of our subsequent work -
with the diagrams in Fig. 1.1.1, leaving further details to the next sections. Essentially,
in Fig. 1.1.1, left, we can see that some distributions in which exact inference can be
computed efficiently by SPNs cannot be represented efficiently by GMs, and vice versa.
On the right, we can see that choosing a certain model over another always entails a
trade off of some positive aspect of the representation.

But is this compromise unavoidable? As the ideal model would cover the whole areas
in Fig. 1.1.1, it is clear that these representations could be improved. Indeed, several
attempts were made in the literature to close the gap between efficiency and high level
representation - we discuss related work in Section 1.4. However, until today the basic
trade off still stands.
The main objective of this thesis is to bridge the gap between Graphical models and

Sum-Product Networks, by obtaining models that have the high-level representation
of Graphical Models and the efficiency of Sum-Product Networks. Using the diagrams
above, our objective can be graphically represented as obtaining a representation whose
area is as large as possible, akin to Fig. 1.1.2. To reach this aim we develop several
contributions, which we introduce in the remainder of this chapter and that constitute
the main content of this thesis.

2

1.1. Graphical Models and Sum-Product Networks

Figure 1.1.1. - Left: Venn diagram representing the set of distributions in which inference is
tractable for the four considered models. We anticipate that the set of distributions where exact
inference can be represented by graphical models but not by SPNs (the area in blue) corresponds to
graphs where inference can be computed only with a maximum flow approach (Kolmogorov and Zabih
[2004]); the set of distributions where exact inference can be represented by SPNs but not by GMs (in
green) corresponds to distributions that are tractable due to contextual independence.
Right: Qualitative graphical representation of three positive characteristics of the considered model:
1) Expressiveness (how large a sets of distributions can be expressed by the model), 2) Tractability of
inference, 3) Usage of a high level representation.

1.1. Graphical Models and Sum-Product Networks

In order to proceed, it is now necessary to describe in more detail the trade off between
expressiveness and tractability introduced above and graphically represented in Fig.
1.1.1. We start by providing a preliminary description of the two families of models
that constitute the focus of the thesis: Probabilistic Graphical Models and Sum-Product
Networks.

• Probabilistic Graphical Models (GMs) are a well established family of models
that encode probability distributions through a graph representing conditional
independence relationships between variables (example in Fig. 1.1.3a). GMs
provide a high level representation of the encoded distribution, in which the relations
between variables can be easily read through graph theoretical properties, and
enjoy a well established analytical framework for inference and learning. Regarding
GMs, tractable inference is guaranteed for acyclic graphical models and GMs on
cyclic graphs with small treewidth, i.e. on graphs that after triangulation admit a
tree-decomposition which induces only maximal cliques of small size (Diestel [2006]).
However, except for a subset of discrete graphical models (see, e.g., Kolmogorov
and Zabih [2004]) where inference can be reformulated as a maximum flow problem,
inference with cyclic graphical models generally suffers from a complexity that

3

1. Introduction

Figure 1.1.2. - The aim of this thesis is to bridge the gap between SPNs and Graphical models.
Ideally, such models would have areas that completely overlap the ones in Fig. 1.1.1. The main model
introduced in this thesis, called Sum-Product Graphical Model (SPGM - in red) , has a shape closer
than SPNs to the ideal one by providing a high level representation of SPNs.

exponentially grows with the treewidth of the underlying graph, so that approximate
inference is the only viable choice.

• Sum-Product Networks (SPNs, Poon and Domingos [2011]), and closely related
architectures including Arithmetic Circuits and And-Or Graphs (Darwiche [2002],
Dechter and Mateescu [2007], Poon and Domingos [2011]), represent a distribution
through a Directed Acyclic Graph with sum and products as internal nodes and
probability distributions as leaves (example in Fig. 1.1.3b). Recently, SPNs have
received attention in the probabilistic machine learning community, mainly due to
two attractive properties:

– Efficiency. These architectures allow to cope with probability distributions
that are more complex than tractable graphical models as characterized
above. A major reason is that SPNs enable an efficient representation of
contextual independences: independences between variables that only holds in
connection with some assignment of a subset of variables in the model, called
“context”. Exploiting contextual independence allows to drastically reduce the
cost of inference, whenever the modelled distribution justifies this assumption.
By contrast, as discussed by Boutilier et al. [1996], GMs cannot represent
contextual independence compactly, since the connection between nodes in
a GM represent conditional independences rather than contextual ones. As
a result, a significant subset of distributions that would be represented by
graphical models with high treewidth (due to the inability to exploit contextual
independence) can be represented by SPNs in a tractable way. A detailed
example illustrating this key point is provided in Section 1.1.1.

– Tractability. SPNs ensure that the cost of inference is always linear in the model

4

1.1. Graphical Models and Sum-Product Networks

(a) (b)

Figure 1.1.3. - Representation properties of Graphical Models (GMs) and Sum-Product Networks
(SPNs). The same distribution specified by Eq. (1.1.1) is represented by a GM in panel (a) and by a
SPN in panel (b). This illustrates that GMs represent conditional independence more compactly than
SPNs.

size and, therefore, inference is always tractable. This aspect greatly simplifies
approaches to learning the structure of such models, the complexity of which
essentially depends on the complexity of inference as a subroutine. In recent
work, it has been shown empirically that structure learning approaches for
SPNs produce state of the art results in density estimation (see e.g. Gens and
Domingos [2013], Rooshenas and Lowd [2014], Rahman and Gogate [2016b],
Rahman and Gogate [2016a]), suggesting that performing exact inference with
tractable models might be a better approach than approximate inference using
more complex but intractable models.

On the other hand, the ability of SPNs to represent efficiently contextual independency
is due to a low-level representation of the underlying distribution. This representation
comprises a Directed Acyclic Graph with sums and products as internal nodes, and with
indicator variables associated to each state of each variable in the model, that become
active when a variable is in a certain state (Fig. 1.1.3(b)).
Thus, SPN graphs directly represent the flow of operations performed during the

inference procedure, which is much harder to read and interpret than a factorized graphical
model due to conditional independence. In particular, the factorization associated to the
graphical model is lost after translating the model into a SPN, and can only be retrieved
(when possible) through a complex hidden variable restoration procedure (Peharz et al.
[2016]). As a consequence of these incompatibilities, research on SPNs has largely evolved
without much overlap with work on GMs.

1.1.1. Tradeoff Between High-Level Representation and Efficient Inference:
An Example

Let us now delve into the relationship between Sum-Product Networks and Graphical
Models, by providing an example that showcases the trade off involved in the two

5

1. Introduction

representations. We consider a distribution of discrete random variables A,B,C,D in
the form:

P (A,B,C,D) = P (A)P (B|A)P (C|B)P (D|A), (1.1.1)

which corresponds to Fig. 1.1.3a. Uppercase letters A,B,C,D denote random variables
and corresponding lowercase letters a, b, c, d denote values in their domains ∆(A), ∆(B),
∆(C), ∆(D). We write

∑
a,b,c,d for the sum over the joint domain ∆(A)×∆(B)×∆(C)×

∆(D). Using this notation, the distribution P (A,B,C,D) can be written in the form of
a network polynomial (Darwiche [2003]) as:

P (A,B,C,D) =
∑
a,b,c,d

P (a, b, c, d)[A]a[B]b[C]c[D]d. (1.1.2)

Here P (a, b, c, d) denotes the value of P for assignment A = a,B = b, C = c,D =
d, and [A]a, [B]b, [C]c, [D]d ∈ {0, 1} denote indicator variables. This representation
transforms the original density into a polynomial in the indicator variables with coefficients
P (a, b, c, d). The distribution can be evaluated by assigning the indicator variables: for
instance, to compute the partition function all indicator variables of (1.1.2) are set to 1,
and to compute the marginal probability P (A = 1) one sets [A]1 = 1, [A]0 = 0 and all
the remaining indicators to 1.

The next step is to exploit the factorization of P on the right-hand side of (1.1.1) in
order to rearrange the sum of (1.1.2) more economically in terms of messages µ, which
results in the sum-product message passing formulation equivalent to (1.1.2),

P (A,B,C,D) =
∑

a∈∆(A)
P (a)[A]aµb,a(a)µd,a(a), µb,a(A) =

∑
b∈∆(B)

P (b|A)[B]bµc,b(b),

(1.1.3a)

µc,b(B) =
∑

c∈∆(C)
P (c|B)[C]c, µd,a(A) =

∑
d∈∆(D)

P (d|A)[D]d.

(1.1.3b)

As discussed above, the distribution can be represented in two forms: The first one
is a directed graphical model (GM) conforming to Eq. (1.1.1), shown in Fig. 1.1.3a.
The second one is a Sum-Product Network (SPN) shown by Fig. 1.1.3b, which directly
represents the computations expressed by Eqns. (1.1.3), with the coefficients P (·|·)
omitted in Fig. 1.1.3b for better visibility. It is evident that the SPN does not clearly
display the high level semantics due to conditional independence of the graphical model.
On the other hand, the SPN makes explicit the computational structure for efficient
inference and encodes more compactly than GMs a class of relevant situations described
next.

6

1.1. Graphical Models and Sum-Product Networks

(a) (b) (c) (d)

Figure 1.1.4. - The distribution in Eq. 1.1.4 represented (from left to right) as Graphical Model
(GM), as mixture of GMs, as Sum-Product Network (SPN) and as Sum-Product Graphical Model
(SPGM).

1.1.2. Introducing Contextual Independence

We consider a distribution in the form

P (A,B,C,D,E,Z) = P (Z)P (A)P (B,C,D|A,Z)P (E|D) (1.1.4a)

with

P (B,C,D|A,Z) =

P (Z = 0)P (B|A)P (C|A)P (D|A) if Z = 0,
P (Z = 1)P (B|A)P (C|B)P (D|C) if Z = 1.

(1.1.4b)

Notice that different independency relations hold depending on the value taken by Z:
if Z = 0, then B,C and D are conditionally independent given A, whereas if Z = 1,
then they form a chain. We therefore say that this distribution exhibits context specific
independence with context variable Z.

As in the example before, this distribution can be represented in different ways. Firstly,
choosing a graphical model (GM) (Fig. 1.1.4a) requires to model P (B,C,D|A,Z) as a
single factor over 5 variables, since GMs cannot directly represent the if condition of
(1.1.4b).1

Secondly, we may represent the distribution as a mixture of two tree-structured GMs

1A workaround involves factors with a complex structure, similar to SPNs, as done for instance in
[Mcallester et al., 2004]. Although this approach would be simple enough in the present example,
it generally leads to a representation with the disadvantages of SPNs. See Section 1.4 for further
discussion.

7

1. Introduction

(a) (b)

Figure 1.2.1. - A SPN with tree Graphical Models as leaves. 1.2.1a: the SPN. 1.2.1b: components
in the corresponding mixture model. Note that each component is a product of tree GMs.

(Fig. 1.1.4b),

P (B,C,D|A,Z) = P (Z = 0)P (A)P (B|A)P (C|A)P (D|A)P (E|D) (1.1.5a)
+P (Z = 1)P (A)P (B|A)P (C|B)P (D|C)P (E|D). (1.1.5b)

However, since some factors, here P (A) and P (E|B), appear in both mixture components,
this representation generally loses compactness, and computations for inference are
unneccessarily replicated.
Finally, we may also represent the distribution as SPN (Fig. 1.1.4c) following the

procedure outlined above. This represention allows to make explicit the if condition due
to contextual independence and to share common parts in the two models components.
On the other hand, as in the previous example, the probabilistic relations which are
easily readable in the other models, are hidden. Furthermore, the SPN representation is
considerably more convoluted than the alternatives, and every state of every variable is
explicitly represented.
Notice that due to these observations, the representation in Fig. 1.1.1 follows.

1.2. Closing the Gap

Section 1.1.1 showed that SPNs conveniently represent context specific independence and
algorithm structures for inference, whereas GMs directly display conditional independency
through factorization. The aim of this thesis is to close the gap between the two families.
We approach this problems in two subsequent steps, described below. For related
approaches in literature, see Section 1.4.

8

1.2. Closing the Gap

1.2.1. SPNs with Structured Leaf Distributions

A first step to join SPNs and GMs is to consider SPN models having as leaves Graphical
Models. Such models can be obtained by replacing the indicator variables at SPN leaves
(Fig. 1.1.3b) with GMs, as in the example shown in Fig. 1.2.1a. In general, it can be
shown that any form of distribution can be used as a SPN leaf as long as inference with
it is tractable at least approximately – this will be made formally clear in Section 3.
Indeed, SPNs with structured leaf distributions have been used in several applications of
SPNs, such as in Rahman et al. [2014] using tree graphical models as leaves and in Amer
and Todorovic. [2015] using Bag-of-Words models.
While this representation allows to employ jointly the GM and SPN representation,

thus representing contextual dependences with SPN nodes and conditional independences
with graphical models, it does not allow to express all conditional independences in the
model with the compact notation of GMs. This holds since the role of GMs is confined
to the leaf models, and the parts of internal SPN structure that represent conditional
independences still maintain an unnecessary low level representation We introduce the
model described in the next section to address this problem.
Furthermore, it is possible to show that this form of SPN corresponds to a mixture

model where mixture components are products of the leaf distributions, as shown in Fig.
1.2.1b - this will be formally discussed in Section 3.1.1. This aspect implies, for instance,
that the example distribution in Fig. 1.1.4 cannot be expressed compactly by SPNs
with leaf GMs, because the part of the model which is a GM but is not a leaf (A,B,C)
cannot be represented by a SPN in this form, except by moving it (and replicating it) to
the leaves. Once again, the model described in the next section allows to address this
problem.

1.2.2. Sum-Product Graphical Models

The second step to close the gap, and the mayor contribution of this thesis, is to introduce
a new representation, called Sum-Product Graphical Model (SPGM), that directly inherits
the favourable traits from both GMs and SPNs.

SPGMs can be seen as an extension of SPN that, along with product and sum nodes
as internal nodes, also comprise variable nodes which have the same role as usual nodes
in graphical models (Fig. 1.2.2a). Alternatively, SPGMs can be seen as an extension of
directed GMs by adding sum and product nodes as internal nodes.

• SPGMs exhibit both the expressiveness of SPNs and the high level semantics of
GMs. Following on the example in Section 1.1.2, The SPGM representing the
distribution (1.1.4) is shown by Fig. 1.1.4d. It clearly reveals both the mixture of
the two tree-structured subgraphs and the shared components, thus keeping the
advantages of both the mixture of tree and SPN representations.

• More generally, every SPGM implements a mixture of trees with shared subparts, as

9

1. Introduction

(a) (b)

Figure 1.2.2. - A SPGM (left) and the components in the corresponding mixture model (right).
Note that each component is a tree GM constructed by connecting subsections of the SPGM. Also
note that the mixture components are not factorized, in contrast to Fig. 1.2.1.

in the above example:2 Context variables attached to sum nodes implement context
specific independence (see Z in Fig. 1.1.4d) and select trees as model components
to be combined.

• Conditional independence between variables, on the other hand, can be read off from
the graph due to D-separation [Cowell et al., 2003]. SPGMs enable to represent in
this way very large mixtures, whose size grows exponentially with the model size
and are thus intractable if represented as a standard mixture model. On the other
hand, inference in SPGM has a worst case complexity that merely is quadratic in
the SPGM size and effectively is quasi-linear only in most practical cases.3

• In addition, SPGMs generally provide an equivalent but more compact and high
level representation of SPNs, with the additional property that the role of variables
with respect to both contextual and conditional independency remains explicit. A
compilation procedure through message passing allows to convert the SPGM (Fig.
1.1.4d) into the equivalent SPN (Fig. 1.1.4c) which directly supports computational
inference.

• SPGMs are also more expressive than SPNs with GMs as leaf distributions discussed
2An extension to mixtures of junction trees [Cowell et al., 2003] is straightforward but does not essentially
contribute to the present discussion and hence is omitted.

3More precisely, the complexity is O(NM), where N is the number of nodes and M is the maximal
number of parent nodes, of any node in the model.

10

1.3. Structure Learning for SPGMs

(a) (b) (c)

Figure 1.3.1. - Sketch of the structure learning algorithm proposed in this paper. (a) A weighted
subgraph on which we compute the maximal spanning trees. (b) Two maximal spanning trees of equal
weight to included as mixture components into the SPGM. They differ only in a single edge. (c) The
mixture of the two trees represented by sharing all common parts.

previously, since they allow to represent mixture components that are graphs rather
than products of the leaves. For instance, Fig. 1.2.2 showns a SPGM and the
corresponding mixture model: notice that here the mixture components are trees
built by composing parts of the models, rather than factorizations of the leaf
distributions as in Fig. 1.2.1.

Due to these properties, the representation in Fig. 1.1.2 follows.

1.3. Structure Learning for SPGMs

Learning the structure of probabilistic models obviously is easier for models with tractable
inference than for intractable ones, because any model parameter learning algorithm
requires inference as a subroutine. For this reason, tractable probabilistic models and
especially SPNs have been widely applied for density estimation [Gens and Domingos,
2013, Rooshenas and Lowd, 2014, Rahman and Gogate, 2016b,a]. It is therefore highly
relevant to provide and evaluate a structure learning algorithm for SPGMs, that enable
tractable inference as well.
We introduce an algorithm that starts with fitting a single tree in the classical way

[Chow and Liu, 1968] and iteratively insert sub-optimal trees that have large weights (in
terms of the mutual information of adjacent random variables) and share as many edges
as possible with existing tree components. Each insertion is guaranteed not to decrease
the global log-likelihood. As a result, all informative edges can be included into the
model without compromising computational efficiency, because all shared components are
evaluated only once. The former property is not true if a single tree is only fitted [Chow

11

1. Introduction

Table 1.4.1. - Comparison of architectural properties discussed in Section 1.4 for SPGMs and
related architectures. We consider the following properties: guaranteed tractable inference (TractInf);
same inference efficiency as SPNs (AsSPN); using exponential family factors with no limitation on
generality (ExpFam); high level representation of conditional independence (CondInd); representation
as a product of factors as in graphical models (FactProd).

Model TractInf AsSPN ExpFam CondInd FactProd
SPGM
Graphical Models
Mixtures of Trees [Meila and Jordan, 2000]
Hierarchical Mix. of Trees [Jordan, 1994]
Mix.Markov Model [Fridman, 2003]
Gates [Minka and Winn, 2009]
[Boutilier et al., 1996]
Case-Factor diagrams [Mcallester et al., 2004]
BayesNets local Struct [Chickering et al., 2013]
Learn.Efficient MarkovNets [Gogate et al., 2010]
[Poole and Zhang, 2011]
Value Elimination [Bacchus et al., 2012]
SPN as Bayesian Nets [Zhao et al., 2015]
And/Or Graphs [Dechter and Mateescu, 2007]
SPN [Poon and Domingos, 2011]
Arithmetic Circuits [Darwiche, 2002]
CNets [Rahman et al., 2014]

and Liu, 1968] whereas working directly with large tree mixtures [Meila and Jordan,
2000] may easily lead to a substantial fraction of redundant computations. The results of
a comprehensive experimental evaluation will be reported in Section 5.2.

1.4. Related Work

SPNs with Structured Leaf Distributions Our discussion of SPNs with structured leaf
distributions (Section 3.1) connects to papers which use SPNs in this form. In particular,
Rahman et al. [2014] use tree graphical models as leaves; Rooshenas and Lowd [2014]
use Arithmetic Circuits; Amer and Todorovic. [2015] use Bag-of-Words models. We will
derive Expectation-Maximization for such architectures, which is related to a similar
derivation by Peharz et al. [2016] on a more restricted case, limited to exponential familiy
univariate leaves. This derivation is based on a mixture models interpretation of SPNs
which was independently derived by us and Zhao et al. [2016b].

SPGMs The new architecture introduced in thesis, Sum-Product Graphical Models,
has several related models due to its connections to both GMs and SPNs. Table 1.4.1 lists
and classifies prior work with a similar scope: introducing representations of probability
distributions that fill to some extent the gap between GMs and SPNs. The caption of
table 1.4.1 lists the properties used to classify related work.

12

1.4. Related Work

A major aspect of a SPGM is that it encodes a SPN through message passing. This
will be made precise formally in Section 4.1.4. As a consequence, SPGMs connect to
SPNs and all architectures related to SPNs, which include Arithmetic Circuits [Darwiche,
2002], which differ from SPNs only in the way connection weights are represented, and
And/Or Graphs [Dechter and Mateescu, 2007], which are structurally equivalent to
Arithmetic Circuits and thus also to SPNs. We refer to [Dechter and Mateescu, 2007,
Section 7.6.1] for a discussion of details. As discussed in Section 1.2, SPGMs encode
the computational structure for efficient inference like SPNs and related representations,
but also preserve explicitly factorization properties of the underlying distribution due to
conditional independence.
SPGMs can represent very large mixtures of trees. In this sense, SPGMs generalize

Hierarchical Mixture of Trees [Jordan, 1994] by substituting the OR-tree structure used
to generate the trees in these models with a more general directed acyclic graph. This
allows to not only share part of the trees towards the root but also towards the leaves
(Fig. 1.4.1).

SPGMs closely relate to Gates [Minka and Winn, 2009] and Mixed Markov Models
[Fridman, 2003]. These models augment graphical models by a so-called gate unit that
implements context specific independence by switching edges on and off depending on
the state of some context variables. In this respect, SPGMs may be regarded as Gates -
see remark in Section 4.1.3 for corresponding technical aspects. However, unlike Gates
and Mixed Markov Models, SPGMs guarantee tractable exact inference by construction.

SPGMs related to several further methods that augment GMs by factors with complex
structure in order to represent context specific independence [Boutilier et al., 1996,
Mcallester et al., 2004, Chickering et al., 2013, Gogate et al., 2010, Bacchus et al.,
2012]. These approaches enable to represent product of factors like graphical models.
However, the additional model complexity due to contextual independence is simply
encapsulated inside the factors, based on models that are equivalent to SPNs and thus
exhibit corresponding limitations (Section 1.1.1). In particular, in connection with
distributions that combine both conditional and contextual independence, the approaches
have to resort to a low-level SPN-like representation. On the other hand, if simpler
factors (such as with distributions from the exponential family) were used instead, the
model would lose its expressiveness.

Structure Learning in SPNs The structure learning method for SPGMs described in
Section 1.3 can be considered as a novel method to learn the structure of a SPN, due to
the connection between SPGMs and SPNs. Previous methods for learning the structure
of SPNs mostly implement recursive partitioning of the variables into (approximately)
independent clusters, to be represented by sum and product nodes [Gens and Domingos,
2013]. Clearly, our greedy method for learning the model structure and parameters
based on [Meila and Jordan, 2000] is only locally optimal as well, and focuses on the
aforementioned statistical aspects that can be conveniently encoded by SPGMs. However,
it employs a completely different perspective based on the relation with mixtures of trees.

13

1. Introduction

Figure 1.4.1. - Comparison between Hierarchical Mixtures of Trees (HMTs, [Jordan, 1994]) and
SPGMs: HMTs are tree-structured (left), while SPGMs enable a directed acyclic structure (right).

1.5. Contributions

With the previous discussion, we are prepared to list the contribution of this thesis, that
aim to connect the high level representation of Graphical Models and the efficiency of
Sum-Product Networks.

1.5.1. Sum-Product Networks with Graphical Models as Leaves

Learning SPNs with Graphical Model Leaves While learning the internal parameters
of SPNs has been amply studied, learning complex leaf distribution is an open problem
with only few results available in special cases. The only available approach is discussed
in Peharz et al. [2016], and it is limited to exponential familiy univariate leaves. We
obtain a derivation of Expectation-Maximization that allows to learn SPNs with arbitrary
leaf distributions, under mild conditions (Section 3.3.2).
The EM updates have the form of simple weighted maximum likelihood problems,

allowing to use any distribution that can be learned with maximum likelihood, even
approximately. The algorithm has cost linear in the model size and converges even if
only partial optimizations are performed.

We demonstrate this approach with experiments on twenty real-life datasets for density
estimation, using tree graphical models as leaves (Section 5.1). Our model outperforms
state of the art methods for parameter learning despite consistently using smaller models.

Extending a Graphical Model for Retina Segmentation with SPNs In this contribu-
tion (Section 5.3) we describe the first example of using Graphical Models with complex
structure as leaf distributions in SPNs. We consider a graphical model for the segmenta-
tion of scans of healthy human retinas, presented in Rathke et al. [2014]. This graphical
model is tuned to model healthy scans. We enable an extension of this model to local
pathological structures in the retina by employing a SPN whose leaves are composed by
base models modified by adding pathology-specific shape modifications.

We use the framework of SPNs to find the best combination of modified and unmodified

14

1.6. Organization

local models that globally yield the best segmentation. The approach further allows to
localize and quantify the pathology. The flexibility and the robustness of our approach
is demonstrated by obtaining state of the art results for three different pathologies. In
addition, this approach can be easily transfered to new pathologies, as it is designed with
no particular pathology in mind and requires no pathological ground truth.

1.5.2. Sum-Product Graphical Models

A Graphical Model Interpretation of SPNs We introduce SPGMs (see 1.3) as an
architecture with full expressiveness of SPNs and high level representation of graphical
models due to factorization. Table 1.4.1 lists and classifies prior work with a similar scope,
showing that SPGMs are the first architecture that enables joinjtly relevant properties of
SPNs and GMs, thereby contributing to close the gap between the two fields. We show
that SPGMs encode a large mixture of tree GMs with shared subparts, and can be seen
as a high level representation of SPNs with richer probabilistic semantics.

Structure Learning We provide a Structure Learning algorithm for SPGMs (see 1.3)
based on the novel connection with graphical models. This algorithms starts fitting a
single tree in the classical way [Chow and Liu, 1968] and iteratively insert sub-optimal
trees that have large weights (in terms of the mutual information of adjacent random
variables) and share as many edges as possible with existing tree components. Thus,
we model a large mixture of quasi-optimal trees with many shared subparts, enabling
efficient inferenfe.

Applications We provide applications to justify and further motivate the introduction
of the new architecture. A comprehensive experimental evaluation reported in Section
5.2 shows that the structure learning algorithm for SPGMs obtains state of the art
performances in discrete density estimation, despite using an approach radically different
from estabilished literature. We also discuss how the architecture can be applied to a
flexible range of settings, such as modeling very large mixtures of spanning trees (5.4)
and mixtures of image Quadtrees (5.5).

1.6. Organization

This thesis is organized as follows:

• Chapter 2 introduces the notation and methods on which the rest of the thesis is
built. We start by providing a compact primer on basic basic probability theory
and defining the set of distributions used in the following. Then, we introduce
the problem of density estimation through minimization of the Kullback-Leibler
divergence. We follow by defining Probabilistic Graphical Models (with a particular
attention to tree models) and mixture models, including learning approaches used

15

1. Introduction

in the remainder of the thesis such as the Chow-Liu and Expectation-Maximization
algorithms. Finally, we discuss contextual independence and Or trees.

• Chapter 3 presents a comprehensive overview of Sum-Product Networks and intro-
duces our first contribution, Expectation-Maximization for SPNs with structured
leaf distributions. We discuss all the main aspects of SPNs, from inference to
structure learning, in order both to set the foundations for the following work and
to provide a coherent overview of the field, which is currently missing in literature.
We start by defining the model and the inference procedure, then we place SPNs
between several related architectures. We follow by discussing parameter learning
methods and introducing our derivation of Expectation Maximization for SPNs.
Finally, we present a detailed overview of influencial structure learning approaches.

• Chapter 4 introduces Sum-Product Graphical Models, the new probabilistic archi-
tecture that constitutes the main contribution of this thesis. We start by defining
the model and describing the evaluation procedure. Then, we discuss its properties
in relation to Graphical Models and Sum-Product Networks, showing that SPGMs
represent large mixtures of trees with shared part and that they can be seen as
a high level representation of SPNs. Finally, we discuss parameter learning and
structure learning for SPGMs, providing a structure learning algorithm that obtains
a very large mixture of quasi-optimal tree graphical models with shared parts.

• Chapter 5 contains several example applications of the models and procedures
discussed in previous sections, with the aim to further motivate and justify the
introduction of our new architecture. We provide five case studies in several
settings. First, we test our new Expectation-Maximization algorithm for SPNs
and the structure learning algorithm for SPGMs in 20 real life density estimation
datasets, reaching state of the art results with SPGMs. Then, we present an
application of SPNs using graphical models at leaves, extending a graphical model
for the segmentation of images of the human retina to include pathological cases,
obtaining excellent empirical results on three publicly available datasets. Finally,
we provide two preliminary case studies of SPGMs applied to modeling very large
mixtures of spanning trees and mixtures of image Quadtrees (Laferté et al. [2000]).

• Chapter 6 contains concluding remarks and an outlook on future work aimed at
extending and providing new applications for the discussed models. We present
several possible extensions for SPGMs and a promising application to approximate
intractable graphical models within the framework of Tree-Reweighted Message
Passing (Wainwright et al. [2002]).

16

2. Preliminaries

This chapter introduces the tools required for the discussion in the remainder of this
thesis. Section 2.1 contains a primer on essential aspects of probability theory and basic
probability distributions, followed by an introduction to density estimation. Section
2.3 contains an overview of key points of probabilistic graphical models. Section 2.2
introduces indicator variables and Network Polynomials. Section describes Mixture
Models and Expectation-Maximization. Finally, Section 2.5 describes Context Specific
Independence.

2.1. Probability Theory

Probability theory is the branch of mathematics that deals with uncertain quantities,
associating a real number (the probability) to a random event, which is interpreted
as a measure of how likely is the event to happen. Consider a set Ω denoted sample
space, which represents the set of all possible outcomes of a random experiment. The
sample space can be finite (e.g. if the experiment is a coin toss, then Ω = {heads , tails}),
countable infinite or uncountable infinite (e.g. for experiments with continuous value). A
set A ⊆ Ω is called an event. Let us call Σ the set of all possible events, and consider a
function P : Σ→ R defined for each A ∈ Σ. P (A) is called a probability if the following
conditions hold:

• P (A) ≥ 0 ∀A ⊆ Σ - the probability of each event is non negative.

• P (Ω) = 1 - the probability of the whole sample space is 1.

• P (A ∪B) = P (A) + P (B) if A ∩B = ∅ - the probability of disjoint events is the
sum of the probabilities of the individual events.

It can be shown that these properties imply that (Σ,Ω) denotes a σ-algebra with measure
P (see Ash and Doleans-Dade [2000]). However, we do not employ this interpretation
further in this thesis.

Example 1. Consider as event the outcome of a certain face in rolling a fair die.
Associating one number to each face, the sample set is Ω = {1, 2, 3, 4, 5, 6}. The set of all
possible subsets of Ω is Σ = {{1}, ..., {6}, {1, 2}, {1, 3}, ..., {1, 2, 3, 4, 5, 6}}. To each A ∈ Σ
it is associated a probability. Assuming P (1) = P (2) = ... = P (6) = 1

6 and following the
rules above, then P ({1, 2}) = P ({1}) + P ({2}) = 1

3 and P ({1, 2, 3, 4, 5, 6}) = 1.

17

2. Preliminaries

Random Variables A random variable is a variable whose possible values are numerical
outcomes of a random phenomenon. A random variable X takes its value from a set of
values ∆(X) called domain of X. The set ∆(X) can either be finite (discrete random
variable), countable infinite or uncountable infinite (continuous random variable). A
relevant case is that of binary variables, which take values in the set {0, 1}.
A set of random variables {X1, X2, ..., XK} can be interpreted as a single random

variable X taking values in the Cartesian product of the domains of individual variables:

∆ (X) ∈ {∆ (X1)×∆ (X2)× · · · ×∆ (XK)} . (2.1.1)

In the following, we use uppercase letters (X) to denote both random variables or sets
of random variables, leaving the distinction between the two cases to be read from the
context. We use corresponding lowercase letters to denote elements in the respective
domain (e.g. x ∈ ∆(X)).

Probability Density Function A probability density function of a random variable X
is a function f : ∆(X)→ R+ such that for every A ⊆ ∆(X) it holds P (A) =

∫
x∈A f(x)dx.

Thus, a density function specifies a probability distribution, and in the following we
will only specify probabilities through their density function. Note that the axioms of
probability imply that f(x) ≥ 0 and

∫
x∈Ω f(x)dx = 1.

In the discrete case, the integral is replaced with a sum and it holds that P (X) =∑
x∈X f(x). This implies that f(x) = P (x): the density at X is the probability of event

X. Hence, when the distributions considered in this thesis fall in the discrete case we use
P (x) in place of f(x).

Basic Rules of Probability We report here basic properties that can be derived from
the axioms of probability, referring to the discrete case (the continuous case is obtained
replacing sums with integrals).
Marginal Probability. The probability of event A can be computed from the joint

probability P (A,B) as follows:

P (A) =
∑

b∈∆(B)
P (A, b). (2.1.2)

Conditional probability. The conditional probability P (A|B) denotes the probability of
event A given that event B happened, and is evaluated as follows:

P (A|B) = P (A,B)
P (B) . (2.1.3)

Putting together Eq. 2.1.3 and 2.1.2 leads to Bayes’s theorem:

P (A|B) = P (B|A)P (A)
P (B) . (2.1.4)

18

2.1. Probability Theory

Independent Events. Two events are said independent if their joint probability distri-
bution satisfies:

P (A,B) = P (A)P (B). (2.1.5)

Conditional Independence. Two events A,B are said conditionally independent given
event C if:

P (A,B|C) = P (A|C)P (B|C). (2.1.6)

Or, equivalently:

P (A|B,C) = P (A|C). (2.1.7)

Mean. The mean of a function g(X) with respect to density f(x) is written Ef (g) and
is computed as:

Ef (g) =
∑

x∈∆(X)
g(x)f(x)dx. (2.1.8)

2.1.1. Inference

Probabilistic queries can be answered by evaluating a probability distribution in a process
called inference. We report here some standard probabilistic queries, that will be used in
the rest of the thesis.
Marginalization involves computing the marginal probability P (X) from a joint distri-

bution P (X,Y) by summing out Y :

P (X) =
∑

y∈∆(Y)
P (X, y).

Note that if Y is a set of variables, the cost of marginalization is in principle exponential
in the number of variables |Y |, since Y takes value in the Cartesian product of the
individual domains (Eq. 2.1.1). This property makes marginalization intractable in
general multivariate distributions. However, this summation can be computed tractably
exploiting the particular structure of some probability distributions, such as tree Graphical
Models and Sum-Product Networks (Sections 2.3 and 3.1).
Conditioning involves computing marginals after some variables have been observed,

i.e. set to a fixed value:

P (Y |X = x) = P (x, Y)
P (x) = P (x, Y)∑

y∈∆(Y) P (x, y) .

P (Y |X) is called conditional or a posteriori distribution. Since conditioning involves
marginalization, evaluating the conditional distribution has in principle an exponential

19

2. Preliminaries

cost.
Maximum A Posteriori (MAP) inference involves computing the maximum of the a pos-

teriori distribution P (Y |X = x) obtained after conditioning, that is: arg maxY P (Y |X).
Due to the same reasons as in marginalization, also MAP inference has in principle an
exponential cost in the number of variables in the model.

2.1.2. Density Estimation

The aim of density estimation is to find a distribution Q(X) that is “similar” (according
to some criterion) to another distribution P (X), which is typically available only in the
form of a set of independent identically distributed samples. In the following sections we
describe the tools used to find such an approximation of P (X) in the rest of the thesis.

Empirical Distribution Let {xi}Ni=1be a set of N independent identically distributed
(i.i.d) samples drawn from the distribution P (X). In this framework, we suppose that
the set of samples is the only knowledge we have about the original distribution P (X).

Let us associate an empirical distribution to the samples, by assigning to each sample
an equal probability 1

N . The empirical distribution has the following density:

Pemp(X) = Nx(X)
N

δ(x ∈ {xn}),

where Nx(X) counts the number of times element x appears in {xi}Ni=1 and δ is a
Kronecker delta. Computing the mean of a function g(X) w.r.t the empirical distribution
(Eq. 2.1.8) we obtain the empirical mean of g(X):

Eemp [g(x)] = 1
N

∑
i

g(xi).

It is easy to prove that the empirical mean is an unbiased estimator of the mean of g
w.r.t the original distribution P , namely:

EP [Eemp [g(x)]] = EP [g(x)] .

Similarly, one can obtain empirical variance and other higher order moments.

Kullback-Leibler Divergence Approximating a probability distribution P with dis-
tribution Q requires defining a measure of the similarity between P and Q. Several
measures have been proposed for this task. In this thesis we will employ the widely used
Kullback-Leibler (KL) divergence, defined for the discrete domain as:

DKL(P |Q) =
∑
x

P (x) ln P (x)
Q(x) . (2.1.9)

20

2.1. Probability Theory

In the continuous case the sums can be replaced with integrals, and the KL divergence
reads:

DKL(P |Q) =
∫
x
P (x) ln P (x)

Q(x)dx. (2.1.10)

We now introduce the Shannon entropy H(P) and the cross entropy H(P,Q), defined
as follows:

H(P) = −
∑
x

P (x) lnP (x), (2.1.11)

H(P,Q) = −
∑
x

P (x) lnQ(x). (2.1.12)

By employing these quantities the KL divergence can also be written as:

DKL(P |Q) = H(P,Q)−H(P).

It can be proven that the cross entropy has a maximum for P ≡ Q almost everywhere
(see Ash and Doleans-Dade [2000]). Therefore, the KL divergence has a minimum for
P ≡ Q almost everywhere which can be immediately evaluated as 0, which implies that
DKL ≥ 0.
The Kullback-Leibler divergence is a non symmetric measure, in the sense that

DKL(P |Q) 6= DKL(Q|P). It is interesting to node that if we aim to find Q as a good
approximation of P in the sense that DKL is close to 0, using DKL(P |Q) or DKL(Q|P)
creates radically different approximations: using DKL(P |Q) regions of the distribution
where Q(x) ≈ 0, P (x) > 0 are heavily penalized (by ln P (x)

Q(x)), and conversely in DKL(Q|P)
regions where P (x) ≈ 0, Q(x) > 0 are heavily penalized. So, in the first case a good
approximation Q will have the primary objective of covering all the regions where P
is nonzero, and in the second case of avoiding the regions where P has low probability
(resulting in a sparser distribution).

Maximum Likelihood Let us find an approximation of P (X) by minimizing the KL
divergence DKL(P |Q) = H(P,Q)−H(P) with respect to a distribution Q(X|θ) governed
by parameters θ:

arg min
θ
DKL(P (X) |Q (X|θ)) = arg min

θ
H (P (X) , Q (X|θ))−H (P)

= arg min
θ
H(P,Q (X|θ)) = arg max

θ

∑
x∈∆(X)

P (x) logQ (x|θ) dx. (2.1.13)

The quantity
∫
x P (x) logQ (x|θ) dx is called Log-Likelihood (LL) and Eq. 2.1.13 is

the Maximum Likelihood (ML) problem. As we have seen above, maximizing the Log-
Likelihood corresponds to minimizing the KL divergence.

21

2. Preliminaries

In the particular case of P specified by an empirical distribution with N samples the
ML problem becomes:

arg max
θ

1
N

N∑
i=1

Pemp(xi) lnQ(xi|θ), (2.1.14)

that can also be written as:

arg max
θ
LL(Q) = arg max

θ

1
N

N∑
i=1

lnQ(xi|θ) = arg max
θ

N∑
i=1

lnQ(xi|θ). (2.1.15)

Maximum Likelihood with Weighted Datasets It is often useful to give more im-
portance to some samples over others when computing the Log-Likelihood. In particular,
this case arises in the Expectation-Maximization algorithm, discussed in Section 2.4.3.
One way to attain this is to define a weighted variant of Log-Likelihood as follows:

arg max
θ

N∑
i=1

wi lnQ(xi, θ), (2.1.16)

s.t.wi ∈ R, wi ≥ 0.

In this case each data sample in the data set is paired with a nonnegative weight that
specifies its relevance in the computation of Log-Likelihood. Weight wi can be interpreted
as a soft-count of the number of times a certain sample xi appears in the dataset.

2.1.3. Basic Probability Distributions

This section contains a brief description of classical probability distributions that will be
used as base models for the architectures considered in Sections 3 and 4.

Bernoulli and Categorical Distributions

A Bernoulli distribution is defined over a binary random variable X, associating a
probability p ∈ R s.t. 0 ≤ p ≤ 1 to the state X = 0 and 1− p to the state X = 1. For
our following discussion it is convenient to write this distribution as:

P (X) = (1− p)[X]0 + p[X]1, (2.1.17)

where [X]j is an indicator variable, which assumes value 1 if X = j and 0 otherwise.
A categorical distribution is the generalization of Bernoulli distributions to the case of

22

2.1. Probability Theory

non-binary discrete variables. It can be written as:

P (X) =
∑

x∈∆(X)
λx[X]x, (2.1.18)

s.t.λx ≥ 0,
∑
x

λx = 1,

where [X]j = 1 if X = x and 0 otherwise. It follows immediately that λx = P (X = x).
The mean and MAP state of the Categorical Distribution can be computed by direct
evaluation. The Maximum Likelihood solution for parameters λ can be obtained from
Eq. 2.1.14 noting that max

∑
Pemp(X) lnP (X) is a cross entropy, which has a maximum

when Pemp(X) = P (X) (Section 2.1.2). Thus the ML solution (Section 2.1.2) is:

λ∗x = Nx

N
.

Similarly, the solution for weighted Maximum Likelihood (Section 2.1.2) is:

λ∗x =
∑N
i=1wiδ(xn = x)

N
.

Gaussian Distribution

The Gaussian or Normal density function is a widely used model for distributions with
continuous variables. Let X ∈ Rm be a vector of continuous random variables. A normal
distribution with parameters µ ∈ Rm,Σ ∈ Rm×m is defined as:

N (X|µ,θ) = 1√
(2π)kdet(Σ)

exp
(
−1

2 (X − µ)T Σ−1 (X − µ)
)
,

where Σ is a symmetric positive definite matrix and det(Σ) denotes the determinant of
Σ. It is possible to prove that µ is both the mean and the mode of N (X|µ,θ). Computing
the marginal distribution over a subset of variables is straightforward and efficient in
Gaussian distributions: one only needs to drop the rows and columns corresponding
to the variables that are marginalized out from the mean vector µ and the covariance
matrix Σ. Other operations such as conditioning and MAP computation can be obtained
efficiently in close form - we omit them here because they are not used in the thesis. The
ML solution parameters can be found as follows (see Murphy [2012, 11.4.2]):

µ∗ = 1
N

N∑
i=1

xi,

Σ∗ = 1
N

N∑
i=1

(xi − µ) (xi − µ)T .

23

2. Preliminaries

Similarly, the solution for weighted Maximum Likelihood (Section 2.1.2) is:

µ∗ =
∑N
i=1wixi∑N
i=1wi

,

Σ∗ =
∑N
i=1wi (xi − µ) (xi − µ)T∑N

i=1wi
.

Exponential Family

The exponential family is a class of distributions that encompasses and generalizes many
commonly used distributions, and includes the distributions seen above. A distribution
is said to belong to the exponential family if it can be written as:

P (X|η) = h(X)g(η) exp(ηTu(X)),

where η ∈ Rm are the natural parameters, g(η) : Rm → R is a normalization coefficient,
and u(X) : ∆(X)→ Rm is a given function.

A crucial property of exponential families is that the Maximum Likelihood problem is
convex and can be found as the solution of the following “moment matching” equation:

−∇ ln g(η) = Eemp[u(x)],

where ∇ denotes the gradient w.r.t. natural parameters η and Eemp is the empirical
mean (Section 2.1.2). Thus, provided that the gradient of the partition function can be
computed, once can always find the distribution’s ML solution by moment matching.

2.2. Indicator Variables and Network Polynomials

We formally define indicator variables, that were already used in Eq. 2.1.17 and 2.1.18.

Definition 2.2.1. Assignment of Indicator Variables. Let Y ⊆ X be a subset of variables
to which the values y ∈ ∆(Y) are assigned: Xv = yv, ∀Xv ∈ Y . Based on the assignment
y, we associated with every variable Xs ∈ X and every value i ∈ ∆(Xs) the indicator
variable [Xs]i ∈ {0, 1} defined by

[Xs]i =

1 if (Xs ∈ Y and ys = i) or (Xs 6∈ Y),
0 otherwise.

(2.2.1)

We can also define, for compactness of notation, indicator variables over sets, which
are simply the product of all indicator variables in the set.

24

2.3. Graphical Models

Definition 2.2.2. Indicator Variables over Sets. Let Y ⊆ X be a subset of variables
to which the values {ys} ∈ ∆(Y) are assigned. that Xs = ys, ∀Xs ∈ Y . The indicator
variable over set Y , written [Y]y, denotes the product of all indicator variables in the set:

[Y]y =
∏
Xs∈Y

[Xs]ys . (2.2.2)

Indicator variables can be used to represent distributions in the form of a Network
Polynomial, defined as follows.

Definition 2.2.3. Network Polynomial. Let P (X) be a distribution over a set of discrete
variables X. The network polynomial of P (X) is defined as:

∑
x∈∆(X)

P (x)[X]x, (2.2.3)

where [X]x is an indicator variable over set X as in Definition 2.2.2.

The network polynomial transforms the distribution into a polynomial in the indicator
variables [X]x, where terms P (x) act as coefficients. Inference in the distribution P (X)
can be performed by evaluating the network polynomial assigning the indicator variables
according to Definition 2.2.1.

Example 2. Consider a distribution of discrete random variables A,B,C,D in the form:

P (A,B,C,D) = P (A)P (B|A)P (C|B)P (D|A), (2.2.4)

which corresponds to Fig. 1.1.3a. Uppercase letters A,B,C,D denote random variables
and corresponding lowercase letters a, b, c, d denote values in their domains ∆(A), ∆(B),
∆(C), ∆(D). We write

∑
a,b,c,d for the sum over the joint domain ∆(A)×∆(B)×∆(C)×

∆(D). The network polynomial is as follows:∑
a,b,c,d

P (a, b, c, d)[A]a[B]b[C]c[D]d. (2.2.5)

Here P (a, b, c, d) denotes the value of P for assignment A = a,B = b, C = c,D = d,
and [A]a, [B]b, [C]c, [D]d ∈ {0, 1}. The distribution can be evaluated by assigning the
indicator variables: for instance, to compute the partition function all indicator variables
of (2.2.5) are set to 1, and to compute the marginal probability P (A = 1) one sets
[A]1 = 1, [A]0 = 0 and all the remaining indicators to 1.

2.3. Graphical Models

Probabilistic Graphical Models (GMs) are a family of models that encode probability
distributions through a graph defining dependences between the variables. This section

25

2. Preliminaries

provides an introduction to GMs limited to the key aspects needed in the remainder of
the thesis.

2.3.1. Probabilistic Graphical Models

Let G = (V, E) be a graph with vertex set V = {1, 2, . . . , N} and edge set E .1 We associate
to each vertex s ∈ V a discrete random variable Xs taking values in the finite domain
∆ (Xs), and X = {Xs}s∈V denotes the set of all variables of the model, taking values in
the Cartesian product ∆(X) := ∆ (X1)×∆ (X2)× · · · ×∆ (XN).

Undirected GMs An Undirected Graphical Model on an undirected graph G = (V, E)
comprises unary factors ϕs (Xs) for each vertex s ∈ V and pairwise factors ϕs,t (Xs, Xt)
Ps,t (Xt|Xs) for every undirected edge (s, t) ∈ E , and encodes the distribution

P (X) = 1
Z

∏
s∈V

ϕs (Xs)
∏

(s,t)∈E
ϕs,t (Xs, Xt) , (2.3.1)

Z =
∑

x∈∆(X)
P (X). (2.3.2)

Directed GMs A Directed Graphical Model (Directed GM) on a directed graph G
comprises conditional probabilities Ps,t (Xt|Xs) for every directed edge (s, t) ∈ E and
unary probabilities Pr (Xr) for each vertex r ∈ V with no parent. We denote by pa(s)
the parents of s in G: pa(s) = {r ∈ V : (r, s) ∈ E}. With this notation, a directed GM
encodes the distribution

P (X) =
∏

r∈V : pa(r)=∅
Pr (Xr)

∏
(s,t)∈E

Ps,t (Xt|Xs) . (2.3.3)

Example 3. Some example directed and undirected graphical models are shown in Fig.
2.3.1.

Remark 4. Notice that both directed and undirected GMs entail a representation as a
product of factors taken over unary variables or pairs of variables.

Conditional Independence via D-Separation Graphical models conveniently encode
conditional independence properties of a distribution. Conditional independence between
variables in GMs are induced from the graph by D-separation (see, e.g., Pearl [2000]). We
do not employ the general concept of D-separation except in the particular case of tree
GMs, discussed in Section 2.3.2. For tree graphical models, the D-separation criterion
becomes particularly simple: if the path between variables A and B contains C, then A
is conditionally independent from B given C.

1We use the same symbol for directed and undirected graphs not to clutter the notation. The distinction
in roles will be clear from the context

26

2.3. Graphical Models

(a) Undirected
GM.

(b) Directed GM. (c) Undirected
tree GM

(d) Directed tree
GM.

Figure 2.3.1. - Graphical representation of directed and undirected probabilistic graphical models.

Inference in General GMs Marginalization and Maximum a Posteriori (MAP) inference
in general directed GMs has a cost that is exponential in the treewidth of the triangulated
graph obtained by moralization of the original graph, and thus is intractable for graphs
with cycles of non trivial size [Cowell et al., 2003, Diestel, 2006]. This has a notable
exception in tree GMs, in which inference can be computed efficiently with message
passing (Section 2.3.2).

2.3.2. Tree Graphical Models

A Directed Tree Graphical Model is a GM where the underlying graph G = T is a directed
tree T with root r. Each vertex s has at most one parent pa(s) in the tree, hence the
distribution (2.3.3) reads

P (X) = Pr (Xr)
∏

s∈V : pa(s) 6=∅
Ppa(s),s

(
Xs|Xpa(s)

)
. (2.3.4)

An Undirected Tree Graphical Model, in which the underlying graph G = T is an
undirected tree, represents the following distribution:

P (X) =
∏
t∈V

Pt(Xt)
∏

(s,t)∈E

Pst(Xs, Xt)
Ps(Xs)Pt(Xt)

. (2.3.5)

It can be proven that in case of trees the directed or undirected parameterization
are equivalent and simply entail a re-parametrization, since the undirected form it is
obtained from 2.3.4 by multiplying and dividing by

∏
s∈V Ps(Xs) and employing the

equality Ps,t (Xt|Xs) = Pst (Xt, Xs) /Ps(Xs).
Note that this implies that in the undirected representations tree graphical models

allow the explicit use of marginal probabilities Ps and Pst rather than using factors as
in Eq. 2.3.3. In addition, the distribution is normalized, thus there is no need for a
normalization coefficient.

27

2. Preliminaries

Inference Marginalization and Maximum a Posteriori (MAP) inference in tree GMs can
be computed efficiently with message passing. Let Y ⊆ X be a set of observed variables
with assignment y ∈ ∆(Y). Let [Xs]j , s ∈ V, j ∈ ∆(Xs) denote indicator variables due
to Definition 2.2.1. Node t sends a message µt→s;j to its parent s for each state j ∈ ∆(Xs)
given by

µt→s;j =
∑

k∈∆(Xt)
Ps,t (k|j) [Xt]k

∏
(t,q)∈E

µq→t;k. (2.3.6)

Setting Z = X \ Y and x = (y, z), marginal probabilities P (Y = y) =
∑
z∈∆(z) P (y, z)

can be computed using the distribution (2.3.4) by first setting the indicator variables
according to the assignment y (Definition 2.2.1), then passing messages for every node
in reverse topological order (from leaves to the root), and finally returning the value of
the root message. MAP queries are computed in the very same way after substituting
sums with the max operation in Eq. (2.3.6). Since message passing in trees only requires
computing one message per each node, the procedure has complexity O(|V|∆2

max), where
∆max = max{|∆(Xs)| : s ∈ V} is the maximum domain size. As a consequence, tree GMs
enable tractable inference.

2.3.3. Junction Trees

Junction Trees are an extension of tree graphical models that allows to have multiple
variables at each node. Formally, a Junction Tree (JT) T = (V, E) is a directed rooted
tree which satisfies the following properties:

1. Each node s ∈ V is associated to a set of variables Xs ⊆ X.

2. A factor ϕst (Xs, Xt) is associated to each vertex (s, t) ∈ E .

3. Running intersection: for each pair of nodes v ∈ V, u ∈ V such that Xv ∩Xu = R,
it holds that R ⊆ Xk for all nodes k in the path between u and v.

Similarly to tree GMs, inference in a JT can be computed with message passing. Node t
sends a message µt→s;j to its parent s for each state xs ∈ ∆(Xs) given by

µt→s;xs =
∑

y∈∆(Xt\Xs)
ϕst (y, xs) [Xt \Xs]y

∏
(t,q)∈E

µq→t;y (2.3.7)

where [Xt \Xs]x denotes indicator variables for variable sets due to Definition 2.2.2.The
marginal probability P (Y = y) =

∑
z∈∆(z) P (y, z) is computed by assigning the indicator

variables according to an evidence set Y with assignment y ∈ ∆(Y) (as in Section 2.3.2)
and evaluating messages for all nodes from the leaves to the root allows to compute .
Similarly, MAP inference can be computed substituting sums with max.

From the sum over state
∑
y∈∆(Xt\Xs) in Eq. 2.3.7, and considering that one message

is passed for each node, it is immediate that message passing in Junction Trees has a cost

O(|V| exp(W)), (2.3.8)

28

2.3. Graphical Models

where |V| is the number of variables and W is the size of the largest set of variables in
the Junction Tree.

Inference in GMs through Junction Trees Junction Trees are mainly used as an
intermediate architecture to compute inference in graphical models. Inference in general
graphical models can be computed by converting the graph into a Junction Tree and
passing message in the resulting tree, with a complex procedure described e.g. in Aji and
McEliece [2000].

Crucially, the conversion procedure generates a JT in which the minimum variable set
size at any node (W in Eq. 2.3.8) is lower limited by the treewidth of the graph. Hence,
inference in the JT corresponding to a given GM has a cost exponential in the treewidth
of the graph, as discussed in Section 2.3.1.

2.3.4. Learning Tree Graphical Models

Finding the structure and parameters of a graphical model with minimal KL divergence
w.r.t. a given empirical distribution is, in general, NP-hard (Chickering [1996]). However,
in case of tree GMs the Chow-Liu Tree algorithm (Chow and Liu [1968]) allows to solve
this problem requiring only O(N |V|2 + |V|2 ln |V|) operations . We report its derivation
here, in preparation for our extension of the algorithm in Section 4.2.

First, we can write the Log-Likelihood (Eq. 2.1.15) using the undirected tree represen-
tation (Eq. 2.3.5) as

N∑
i=1

ln
∏
t∈V

Pt(xit)
∏

(s,t)∈E

Pst(xis, xit)
Ps(xis)Pt(xit)

=
∑
i

∑
t∈V

lnPt(xit) +
∑
i

∑
(s,t)∈E

ln Pst(xis)
Ps(xis)Pt(xit)

,

(2.3.9)
where xit is the value of Xt in sample xi. Since Pt(xit) assumes the same value all

samples i such that xit = k (and similarly Ps(xis)), we can pass from to a sum over states
rather than over samples, by introducing terms Ntk counting the number of times node t
is in state k in the dataset, and terms Nstjk counting the number of times node s is in
state j and node t is in state k.
Let us now consider a parameter vector θ such that θst ∈ θ, θs ∈ θ are parameters

governing respectively probabilities Ps and Ps,t. We compute ML by maximizing over
the optimal tree structure T and parameters θ, as follows:

arg max
T ,θ

∑
t∈V

∑
k∈∆(Xt)

Ntk lnPt(k) +
∑

(s,t)∈E

∑
k,j∈∆(Xs,Xt)

Nstjk ln Pst(k, j)
Ps(k)Pt(j)

.

Since the maximization acts over a disjoint set of parameters for each edge (s, t) ∈ E and
vertex t ∈ V , the max over θ can be divided in terms θst and brought inside the sums. We
can now express Ntk as empirical distribution by normalizing by P̄st(k, j) = Nst;jk/Ns;j ,

29

2. Preliminaries

as P̄ = Nt;k/N . Denoting with P̄ the empirical distribution, the expression becomes:

max
T

∑
t∈V

max
θt

∑
k∈∆(Xt)

NP̄t(k) lnPt(k) +
∑

(s,t)∈E
max
θs,t

∑
k,j∈∆(Xs,Xt)

NP̄st(k, j) ln Pst(k, j)
Ps(k)Pt(j)

 .
Now, we can divide by N since doing so does not change the arg max. Let us remind

that the cross entropy H(P,Q) =
∑
x P (x) lnQ(x) (Eq. 2.1.12) has a minimum for

P = Q, which in this case means matching the empirical distribution. By this rule we
can compute each maxθs,t obtaining:

max
T

∑
t∈V

∑
k∈∆(Xt)

P̄t(k) ln P̄t(k) +
∑

(s,t)∈E

∑
k,j∈∆(Xs,Xt)

P̄st(k, j) ln P̄st(k, j)
P̄s(k)P̄t(j)︸ ︷︷ ︸

I(Xs,Xt)

=
∑
t∈V

∑
k∈∆(Xt)

P̄t(k) ln P̄t(k) + max
T

∑
(s,t)∈E

I(Xs, Xt).

Here we noted that the first term is independent from the tree structure, thus we
moved maxT inside the sum. The term I(Xs, Xt) is called mutual information. Thus the
tree structure maximizing the Log-Likelihood is the maximum spanning tree where the
edge weights are given by the mutual information I. The MST can be computed wth
cost O(|V| ln |V|) using classical Prim’s or Kruskal’s alorithm.

Weighted Maximum Likelihood

It is possible to find the optimal tree maximizing a weighted ML problem as in Eq.
2.1.16 by modifying slightly the Chow-Liu algorithm. The only difference in the whole
procedure is that the data counts have to be computed including the weights, as follows:

Nw =
N∑
n=1

wn,

Ntk =
N∑
n=1

δ(xnt = k)wn
Nw

,

Nstjk =
N∑
n=1

δ(xns = j)δ(xnt = k)wn
Nw

.

30

2.4. Mixture Models

2.4. Mixture Models

2.4.1. Basic Definitions

A mixture model with K component is a distribution which can be written as a weighted
sum of distributions {Pk(X|θk)}Kk=1, as follows:

P (X|θ) =
K∑
k=1

λkPk(X|θk), (2.4.1)

s.t.λk ∈ R, λk ≥ 0 ∀k ∈ {1, 2, . . . ,K},
K∑
k=1

λk = 1.

Here, terms {λk}Kk=1 are denoted mixture coefficients and terms {Pk(X|θk)}Kk=1 are
denoted mixture components; each component Pk is governed by parameters θk ∈ θ. It is
easy to show that P (X) is normalized as long as each mixture component is normalized.
Inference in a mixture model has cost O(KC) where C is an upper bound to the cost
of evaluating mixture components, since it involves summing the results of inference
procedures in each component individually. For instance, the partition function is
evaluated as follows:

∑
x∈∆(X)

P (X) =
∑

x∈∆(X)

K∑
k=1

λkPk(X) =
K∑
k=1

λk

 ∑
x∈∆(X)

Pk(X)

 .
The presence of the sum

∑K
k=1 implies that mixture models cannot be written in

factorized form even when the single mixture components are factorized (this is the case
for example of GMs, see Remark 4). This entails that Maximum Likelihood approaches
become intractable even when ML is tractable for the single mixture components.

This problem can be seen by assuming that each mixture component is in the exponen-
tial family, and thus its ML solution can be found by moment matching (Section 2.1.3).
Evaluating the Maximum Likelihood we obtain:

max
θ

N∑
i=1

logP (xi|θ) =
N∑
i=1

log max
θ

K∑
k=1

λkPk(X).

The term
∑K
k=1 λkPk(X) is not in the exponential family, being a sum of exponential

families. Hence, ML cannot be computed by moment matching.
In general, it can be shown that finding ML solutions for mixture models is an NP

hard problem (Murphy [2012]). A local optimum of ML for mixture models can be found
using the Expectation Maximization algorithm, discussed in Section 2.4.3.

31

2. Preliminaries

2.4.2. Interpretation as Latent Variable Models

A mixture model can also be expressed through a hidden (or latent) variable Z where
∆(Z) = {1, 2, . . . ,K} by writing:

P (X,Z) =
K∏
k=1

(λkTk (X))δ(Z=k) . (2.4.2)

Applying the basic probability rules, it holds that P (X) =
∑
z∈∆(Z) P (X,Z), P (Z =

k) = λk and P (X|Z = k) = λkTk (X).

Remark 5. Considering a mixture of trees P (X|Z = k) = λkTk (X), different values of Z
entail different independences due to different tree structures. Hence, mixtures of trees
can represent context specific independence with context variable Z as defined in Section
2.5.

2.4.3. Expectation Maximization

Expectation Maximization (EM) is a widely used method for finding Maximum Likelihood
solutions for models with latent variables (see e.g. Murphy [2012, 11.4]). For the sake
of this thesis it is of interest to apply EM to learn mixture models through their latent
variable interpretation (Eq. 2.4.2).

Derivation of EM Let us consider a distribution with latent variable Z governed by
parameters θ, as follows:

P (X|θ) =
∑

z∈∆(Z)
P (X,Z|θ),

and let us write down the Maximum Likelihood (Eq. 2.1.15):

arg max
θ
LL(X|θ) = arg max

θ

N∑
i=1

lnP (xi|θ) = arg max
θ

N∑
n=1

ln
∑

zn∈∆(Z)
P (xn, zn|θ) .

(2.4.3)
The presence of the sum

∑
zn∈∆(Z) entails that the argument of ln does not factorize.

Hence, the formula cannot be further simplified due to factorization, and the maximization
is then intractable in the general case. To address this problem we introduce a distribution
Q(Z|θ) =

∏N
i=1Qi(Zi|θ); the shape of Q shall be determined later. With simple algebraic

manipulations we can rewrite the Log-Likelihood as follows:

32

2.4. Mixture Models

LL(X|θ) =
N∑
i=1

lnP (xi|θ) = L(Q(Z)|θ) +
N∑
i=1

DKL (Qi(Z)|P (Z|xi, θ)) , (2.4.4)

L(Q(Z)|θ) =
N∑
i=1

∑
z∈∆(Z)

Qi(z) ln P (xi, z|θ)
Q(z) . (2.4.5)

Note that since DKL ≥ 0 then LL(X|θ) ≥ L(Q(Z)|θ). But we can also write, further
rearranging the formula:

L(Q|θ) = −
N∑
i=1

DKL (Qi (Z) |P (Z|xi, θ)) + LL(X|θ). (2.4.6)

One can find a local maximum of Eq. 2.4.4 with a coordinate ascent method. We
propose to show later that this procedure is guaranteed to increase the LL at each step.
Suppose that an initial parameter configuration θold is given. The following steps are
performed:

1. E step. Find the maximum Q∗ = arg maxQ L(Q|θold) w.r.t. the functional Q only.
The solution can be found as Q∗i (Z) = P (Z|xi, θold) by direct inspection of Eq.
2.4.6.

2. M step. Find the maximum θnew = arg maxθ L(Q∗|θ) :

θnew = arg max
θ
L(Q∗|θ)

= arg max
θ

N∑
i=1

∑
zi∈∆(Zi)

P (zi|xi, θold) ln P (xn, zn|θ)
P (zn|xn, θold)

= arg max
θ
−

N∑
n=1

∑
zi∈∆(Zi)

P (z|xn, θold) lnP (xn, z|θ).

3. Repeat steps 1, 2 until Log-Likelihood convergence.

The EM algorithm is summarized in Table 2.4.1.

Convergence to a Local Maximum

By simple algebraic manipulations, and noting that L(Q∗|θold) = LL(θnew) since Q∗ =
P (Z|X, θold), it follows that:

LL(θnew) ≥ L(Q∗|θnew) ≥ L(Q∗|θold) = LL(θold).

33

2. Preliminaries

E-stepcompute P (z|xn, θold) . (2.4.7)
M-stepθnew = arg max

θ
Q (θ, θold) . (2.4.8)

whereQ (θ, θold) =
N∑
n=1

∑
z∈∆(Z)

P (z|xn, θold) lnP (xn, z|θ) . (2.4.9)

Table 2.4.1. - The EM algorithm iterates E and M steps until convergence.

where the last equality holds due to Eq. 2.4.6:

L(Q∗|θold) = −
N∑
i=1

DKL (Q∗i (Z) |P (Z|xi, θ))︸ ︷︷ ︸
0

+LL(θold) = LL(θold).

Hence, the Log-Likelihood is guaranteed to increase at each EM step, and the algorithm
converges to a local maximum. This convergence property acts as a powerful debugging
tool for proof checking the correctness of the algorithm in practical implementation.

Efficient Application of EM

Eq. 2.4.8 can be easily maximized whenever two conditions are satisfied:

1. P (X,Z|θ), including the latent variables, factorizes as P (X,Z|θ) =
∏N
n=1 P (xn|Zn, θ)

(one term per each sample).

2. The parameters θ are disjoint for each mixture component: P (X|Z = k, θ) =
P (X|Z = k, θk) s.t. {θk}

|∆(Z)|
k=1 form a partition of θ. In this case, the maximizations

can be performed independently for each term in the product.

When conditions 1 and 2 above are satisfied, Eq. 2.4.8 simplifies as

max
θ
Q(θ) = max

θ

N∑
n=1

∑
z∈∆(Z)

P (z|xn, θold) lnP (xn, z|θ)

=
N∑
n=1

max
θn

∑
z∈∆(Z)

P (z|xn, θold) lnP (xn, z|θn) .

Hence, separate maximizations are required for each sample. Noting that this problem
is, for fixed θold, an instance of weighted maximum likelihood (Section 2.1.2), we have seen
that in many practical cases this can be done tractably. This is the case, for instance, for
mixture models where mixture components are in the exponential families. In particular,

34

2.5. Context Specific Independence

as we have seen for mixtures of Gaussians (Sections 2.1.3) and mixtures of trees (Section
2.3.2) there are efficient close form ML solutions.

2.5. Context Specific Independence

We have seen that conditional independence relations forms the basis of graphical models.
However, not all forms of independence can be captured efficiently by conditional indepen-
dence. We consider here the case in which independences hold given a certain assignment
of a subset of variables, denoted as contextual (or context specific) independence.

Definition 2.5.1. Contextual Independence. Variables A and B are contextually inde-
pendent given Z and context c ∈ ∆(Z) if P (A|B,Z = c) = P (A|Z = c).

It can be shown that Graphical Models, being designed to model conditional indepen-
dences between variables according to the graph structure, cannot compactly represent
distributions with contextual independence. This aspect was analyzed in depth in
Boutilier et al. [1996]. For the sake of our discussion, it is sufficient to have an intuitive
grasp of the inability of graphical models to express contextual independence through
the example of Section 1.1.2. Since exploiting contextual independence allows to greatly
simplify inference in distributions where it is present, this preoperty mainly motivates
the class of distributions described in the following sections.

35

3. Sum-Product Networks

Sum-Product Networks (SPNs) are a family of probabilistic models with two crucial
properties: firstly, inference has a cost linear in the model size and is therefore always
tractable; secondly, they enable an efficient representation of distributions with context
specific independence, which cannot be modeled tractably by graphical models.

SPNs form the basis of our subsequent discussion, since the model proposed in Chapter
4.1 merges and integrates aspects of SPNs and graphical models. It is therefore necessary
to provide a detailed overview of these models.
However, since this research field is quite new and most publications appeared in

conference proceedings, an organized discussion of relevant aspect of SPNs is not available.
A partial organization of this material was done in Peharz [2015], which still does not
include several approaches more recent than 2015 and does not include structure learning.
There is therefore the need of a comprehensive description of the essential aspects of
SPNs in order to proceed with our discussion.

This chapter provides such comprehensive discussion, with the aim to form a solid base
for the following sections. In addition, it also introduces one of the main contributions of
this thesis: a novel derivation of Expectation Maximization for SPNs that easily extends
to leaf models with arbitrary structure and to weight sharing situations (Section 3.3.2).

Structure of the Chapter SPNs are introduced formally in section 3.1. Section 3.1.1
describes how inference in SPN is performed, and introduces properties of SPNs, such as
the probabilistic interpretation of SPNs and the inference procedure. Section 3.2 analyzes
the family of distributions represented by SPNs in connection to related models. Section
3.3 describes parameter learning algorithm for SPNs, and introduces our derivation of
Expectation-Maximization that enables learning of structured leaf distributions. Section
3.4 describes structure learning approaches for SPNs. Finally, Section 3.5 presents an
overview of applications of SPNs.

3.1. Model Description

Let us start by fixing some definitions and notation for the rest of the chapter. Uppercase
letters A,B,C,D denote random variables and corresponding lowercase letters a, b, c, d
denote values in their domains ∆(A),∆(B),∆(C),∆(D). X,Y denote sets of random
variables, with corresponding domains y, x ∈ ∆(X),∆(Y). As described in Eq. 2.1.1,
the domain of a set of variables is the Cartesian product of the domains of individual
variables.

37

3. Sum-Product Networks

Definition 3.1.1. A tractable probability distribution ϕ (X) is a distribution over X in
which evaluating any probabilistic query requires a polynomial number of operations.

Remark 6. Examples of tractable distributions are Gaussian distributions and tree
graphical models (Section 2.1 and 2.3.2).

Definition 3.1.2. Scope of a graph. Consider a rooted directed acyclic graph G = (V, E),
in which each node q ∈ V is associated to a (possibly empty) set of variables Xq. The
union of all the variables appearing in the graph (

⋃
q∈V Xq) is called scope of the graph.

Definition 3.1.3. Sum-Product Network. Let us consider the following quantities:

• G = (V, E) is a rooted Directed Acyclic Graph (DAG).

• X denotes a set of continuous of discrete variables; W denotes a set of non-negative
real weights.

• Φ = {ϕq (Xq|θq)}q∈V where Xq ⊆ X denotes a set of tractable probability distribu-
tions with parameters θ =

{⋃
q∈V θq

}
.

A Sum-Product Network S (X|G,Φ,W, θ) (simply S(X) for compactness) is a rooted
DAG where:

• An internal node q ∈ V can be either
– a Product Node ⊗
– a Sum Node ⊕ s.t. each outgoing edge (q, i) ∈ E is associated to a real weight
wq,i ∈W

• A leaf node q ∈ V is associated to a variable set Xq ⊆ X and to a tractable
probability distribution ϕq (Xq|θq) with parameters θq ⊆ θ

In addition, the following conditions are satisfied:

1. Decomposability. The subgraphs rooted in any two children of a Product Node
have disjoint scope.

2. Completeness. The subgraphs rooted in any two children of a Sum Node have
identical scope.

Remark 7. Decomposability can be relaxed when considering a special case of SPNs with
indicator variables as leaves. However, Decomposable SPNs as in the above definition
are as general as non decomposable ones (Peharz [2015]).
Remark 8. Graphical Representation. In the graphical representation of a SPN, Sum
Nodes are represented with the symbol ⊕, Product Nodes with the symbol ⊗, and
leaf nodes with the mathematical symbol of the associated distribution: for instance,
a Gaussian leaf node q will be represented as N (Xq|µq,Σq) (section 2.1), and a tree

38

3.1. Model Description

Figure 3.1.1. - A Sum-Product Network S (X|G,Φ,W, θ), where: X = {A,B,C,D,E},Φ =
{ϕ1, ϕ2, ϕ3, ϕ4, ϕ5},W = {w1, w2, w3, w4}. Note that the conditions of definition 3.1.3 are satisfied.

graphical model leaf can be represented as Tq(Xq) (section 2.3.2). Children nodes are
drawn below the parents, and directional arrow heads pointing downwards are not drawn.
An example SPN is provided in figure 3.1.1.

The relevance of SPNs is strictly related to their evaluation procedure, described next.

Definition 3.1.4. Evaluation of a Sum-Product Network. Let S (X) be a SPN, and let
Y ⊆ X be a set of observed variables with assignment y ∈ ∆(Y). Let Yc = X \ Y be the
complementary set to Y . The evaluation of S for assignment Y = y, written as S(y),
proceeds evaluating each node q ∈ V in inverse topological order (from the leaves to the
root of the DAG) with the following rules:

1. if q is a leaf node, let Yq = Y ∩Xq be the subset of observed variables appearing in
Xq. Evaluate the node by marginalizing over the non observed variables:

Sq (yq) =
∫
yc∈∆(Yc∩Xq)

ϕq(Yc ∩Xq = yc, Yq = yq)dyc. (3.1.1)

The integration is substituted by summation for discrete variables.

2. if q is a Product Node, compute the product of children values:

Sq(x) =
∏

(q,i)∈E
Si(xi). (3.1.2)

3. if q is a Sum Node, compute the weighted sum of children values:

Sq(x) =
∑

(q,i)∈E
wq,iSi(x). (3.1.3)

The value of S(x) is the value of the root of S.

We will show in the following that evaluating a SPN corresponds to computing marginals
in a probability distribution.

39

3. Sum-Product Networks

Proposition 9. Evaluating S(X) takes O(|E| + NlK) time and memory, where Nl

denotes the number of leaves and K denotes the worst case cost of evaluating leaves
(Definition 3.1.1).

Proof. Evaluating internal nodes has cost O(|E|) since each node is evaluated exactly
once, and the operations for each node are linear in the number of edges outgoing from
the node. Each leaf is evaluated exactly once, hence evaluation of the leaves has cost
O(NlK). Hence the result.
From the previous proposition it follows that evaluating a SPN is always tractable,

since the leaf models are tractable by Definition 3.1.3.
Notice that the evaluation of S(X) involves iteratively evaluating the SPNs rooted

at each internal node q. Hence, it is possible to compute the derivative of the value of
the root (S(x)) with respect to the values of internal nodes, as follows. This quantity is
crucial in parameter learning approaches.

Proposition 3.1.1. Let S(X) be a SPN, and let Sq(Xq) denote the SPN rooted at node
q ∈ V of S. The derivative of the value S(x) w.r.t the value Sq(x) , denoted as ∂S(x)

∂Sq
,

can be computed with the following recursive equations, noting that ∂S(x)
∂Sroot

= 1:

∂S (x)
∂Sq

=
∑

(k,q)∈E

∂S (x)
∂Sk

∂Sk (x)
∂Sq

, (3.1.4)

∂Sk (x)
∂Sq

=

∏

(i,q)∈E : i 6=k Si, q product node, (k, q) ∈ E
wk,q. q sum node, (k, q) ∈ E

(3.1.5)

Proof. First, the quantity Sq(x) appears in the computation of S(x) only through
its influence to terms Sk (x) for each parent k ∈ pa(q), hence applying the rule of total
derivatives Eq. 3.1.4 follows. Then, it is straightforward to see by direct derivation of
Eqs. 3.1.2 and 3.1.3 that Eq. 3.1.5 holds. (the sum can be replaced with integral for
continuous variables)
Remark 10. Note that this operation requires first evaluating the SPN with a recursive
“upward pass” from the leaves to the root, in order to compute the quantity Sq(x) for
each node q ∈ V , then to compute the derivatives with a recursive ”downward pass” from
the root to the leaves. Hence, the values and derivatives of all nodes in the networks are
computed in a single up-and-down pass, therefore by Proposition 9 the cost of computing
derivatives is O(|E|+NlK).

3.1.1. Interpretation as Mixture Model

This section contains the interpretation of SPNs as very large mixture model. This
interpretation allows to specify the family of distributions represented by SPNs, and to
deduce properties useful to compute quantities of interest in the following.

40

3.1. Model Description

While it was implied since the very first paper on SPNs that any SPN could be
transformed into an equivalent SPN corresponding to a very large mixture model (see
Poon and Domingos [2011]), this interpretation was first exploited in Dennis and Ventura
[2015] and then formalized independently by Zhao et al. [2016b] and in Desana and
Schnörr [2016]. We include here the essential steps of this discussion.

We start by introducing the concept of subnetwork its properties.

Definition 3.1.5. Let S(X) be a SPN. A subnetwork σ is a SPN defined on a subtree of
the DAG G underlying S (cf. Def. 3.1.3). It is recursively constructed by first including
the root of S in σ, then processing each node q included in σ as follows:

1. If q is a Sum Node, include in σ one child i ∈ ch (q) with relative weight wqi . Process
the included child.

2. If q is a Product Node, include in σ all the children ch (q). Process the included
children.

We denote by Σ(S) the set of all subtrees of S.

Example: Fig. 3.1.3, left. The term “subnetwork” was first introduced in Gens and
Domingos [2012] that informally mentions this concept.

Proposition 3.1.2. Any subnetwork σ ∈ Σ (S) is a tree SPN.

Proof. Only Product Nodes in σ ∈ Σ (S) can have multiple children, since Sum Nodes
have a single child in σ by Definition 3.1.5, and children of Product Nodes have disjoint
graphs by Definition 3.1.3., case 3. Therefore σ contains no cycles. A rooted graph
without cycles is a tree.

Proposition 3.1.3. The number |Σ (S) | of subtrees of S grows as O(exp(|E|)).

Proof. In Zhao et al. [2016b]. It can be shown by inspection considering a SPN constructed
as in Fig. 3.1.2: if there are M Sum Nodes and each Sum Node has C children, then
the number of edges is 2NC and the number of subnetworks is CN (combinations of C
choices at each node).

SPNs as Mixtures of Subnetworks

In this section, we show that SPNs can be interpreted as mixtures of factorizations of the
leaf distributions. Table 3.1.1 lists the notation and probabilistic (sub-)models relevant
in this context.
As a first step, we show that inference in a subtree σ due to Definition 3.1.5 is

equivalent to inference in the distribution Pσ (X) (Eq. 3.1.8), multiplied for a constant
factor determined by the product of all edge weights nodes in the subnetwork.

41

3. Sum-Product Networks

Figure 3.1.2. - Graphical representation of the proof of Proposition 3.1.3. A subnetwork of this
SPN is highlighted in green.

P (X) =
∑

σ∈Σ(S)
λσPσ(X), (3.1.6)

λσ =
∏

(q,j)∈E(σ)
wq,j , (3.1.7)

Pσ (X) =
∏

l∈L(σ)
ϕl (Xl|θl) . (3.1.8)

Table 3.1.1. - Probabilistic model of a SPN S(X). The symbol L (σ) denotes the set of leaves
in a subnetwork σ ∈ Σ(S). Evaluation of S (Definition 3.1.4) is equivalent to inference using the
distribution (3.1.6).

Proposition 3.1.4. Let S(X) be a given SPN, and let σ ∈ Σ(S) be a subnetwork
(Def. 3.1.5). Evaluating σ with assignment Y = y, Y ⊆ X (Definition 3.1.4) is equivalent
to marginal inference using the distribution

λσPσ (Y = y) , (3.1.9)

where terms λσ and Pσ are as in Eq. 3.1.7 and 3.1.8.

Proof. In Zhao et al. [2016b]. Immediate, considering that σ is a tree in which Sum
Nodes have only one child and hence contribute only with a multiplicative edge weight,
and that leaf nodes evaluate due to Definition 3.1.4.

Remark 11. Note that the mixture coefficients are products of all the sum weights in a
subnetwork σ, and mixture components are factorizations obtained as products of leaves
in σ (see Fig. 3.1.3, left).

The second step consists in noting that S can be written equivalently as the mixture of
all its subtrees.

42

3.1. Model Description

Proposition 3.1.5. Evaluating a SPN S(X) is equivalent to evaluating a SPN S′(X) =∑
σ∈Σ(S) σ(X).

Proof. In Zhao et al. [2016b].

Intuitively, this result follows from the fact that one can write a sequence of nested
sums as a single “top level” sum, as in

∑
a f(a)

∑
b f(b)

∑
c f(c) =

∑
a,b,c f(a)f(b)f(c).

Correspondingly, Sum Nodes that are effectively eliminated from subtrees (having a
single child) are substituted by a single root Sum Node with many children.
We are now prepared to state the main result of this section.

Proposition 3.1.6. Let Y ⊆ X denote evidence variables with assignment y ∈ ∆(Y),
and denote by x\y ∈ ∆(X \Y) assignments to the remaining variables. Evaluating a SPN
S(X) with assignment Y = y (Definition 3.1.4) is equivalent to performing marginal
inference with respect to the distribution (3.1.6) as follows:

P (Y = y) =
∑

x\y∈∆(X\Y)
P
(
(X \ Y) = x\y, Y = y

)
. (3.1.10)

Proof. The result follows by concatenating Propositions 3.1.4 and 3.1.5.

Remark 12. The propositions above entail the crucial result that the probabilistic model
of a SPN is a mixture model where the mixture size grows exponentially with the SPN
size (Proposition 3.1.3), but in which the inference cost grows only linearly (Proposition
9). Hence, very large mixtures models can then be modelled tractably. This property
is obtained by combining shared leaf models in different mixture components, and by
computing inference in shared parts only once (cf. the example in Fig. 1.2.2).

Remark 13. Proposition 9 and 3.1.6 also entail that the partition function can be always
computed with a linear cost in the number of edges in the SPN.

Evaluating Subsets of the Encoded Mixture The following proposition constitutes
one of the main contributions of this work, and it allows to derive several results in the
following.

Proposition 3.1.7. Consider a SPN S(X), a Sum Node q ∈ S and a node i ∈ ch(q).
The following relation holds:

∑
σ∈Σ(S):(q,i)∈E

λσPσ (X) = wqi
∂S (X)
∂Sq

Si (X) , (3.1.11)

where
∑
σ∈Σ(S):(q,i)∈E denotes the sum over all the subnetworks σ that include the edge

(q, i).

43

3. Sum-Product Networks

Figure 3.1.3. - (Left): A SPN S (A,B) in which a subnetwork σ is highlighted. This subnetwork
corresponds to a mixture coefficient λσ = w1

2w
4
9 and component Pσ (A,B) = ϕ7 (B)ϕ9 (A). (Right):

Visualization of Lemma 3.1.7. The colored part is the set of edges traversed by subnetworks crossing
(q, i). The blue part represents Si and the red part covers terms appearing in ∂S(X)

∂Sq
.

Proof: in Appendix A.2.1.
This Lemma relates the evaluation of subset of the mixture model corresponding to

subnetworks σ that include (q, i) and the value and derivative of the SPN nodes q and
i. Note that evaluating the left hand sum has a cost O (|Σ(S)|) (intractable) but the
right hand term has a cost O (E) (tractable). Since in the derivation of EM one needs to
evaluate such subsets of solution, this Lemma allows to compute the quantity of interest
in a single SPN evaluation.
Furthermore, a single evaluation and derivation of S, which enables to compute all

values Si (X) and ∂S(X)
∂Sq

jointly for all nodes, is required to compute this sum over each
subset of subnetworks.

Note also that
∑
σ∈Σ(S):(q,i)∈E λσPσ (X) corresponds to the evaluation of a non-normalized

SPN which is a subset of S - e.g. the colored part in Fig. 3.1.3, right.

Computing Unary Marginals Lemma 3.1.7 allows to derive the following proposition:

Proposition 3.1.8. The marginal distribution w.r.t. a variable A ∈ X, namely P (A) =∑
x\a∈∆(X\A) P (A, x\a), can be computed as follows:

P (A) =
∑

k⊆L(S):A∈k

∂S(X)
∂Sk

 ∑
xk∈∆(Xk\A)

ϕk(A, xk)

 , (3.1.12)

where
∑
k⊆L(S):A∈k denotes the sum over all leaf nodes k ∈ V which contain A.

Proof. In Appendix A.1. This result is important since it allows to compute the
marginals of all the variables jointly by evaluating and differentiating the SPN only
once, since the only quantity required from the internal SPN nodes is ∂S(X)

∂Sk
which is not

dependent on V . A very similar property holds for message passing in Junction Trees,

44

3.1. Model Description

where all marginals can be computed with two iterations of message passing over the
tree (Pearl [2000]).

3.1.2. Max-SPNs

It can be proved that all the properties derived above for Sum-Product Networks translate
immediately to Max-Product Networks: SPNs in which the sums in Eq. 3.1.3 and the
integration in Eq. 3.1.1 are substituted by the max operator.

Proposition 3.1.9. Let Y ⊆ X denote evidence variables with assignment y ∈ ∆(Y),
and denote by x\y ∈ ∆(X \ Y) assignments to the remaining variables. Evaluating a
Max-SPN S(X) with assignment Y = y (Definition 3.1.4) is equivalent to performing
MAP inference with respect to the distribution (3.1.6) as follows:

max
x\y∈∆(X\Y)

P
(
(X \ Y) = x\y, Y = y

)
. (3.1.13)

This follows since the only properties that were used in deriving the proofs were that
Sum-Product operations form a semiring, and hence any operations forming a semiring
(including the Max-Product one) can be used. This aspect has also a correspondence in
literature on message passing for graphical models, where sums can be substituted with
max to compute Maximum-A-Posteriori (MAP) inference (Pearl [2000]).

3.1.3. Normalized SPNs

Definition 3.1.6. Normalized SPN. A SPN is normalized if for each Sum Node wq the
nonnegative weights wq sum to 1, and each leaf distribution is normalized.

Proposition 3.1.10. A normalized SPN encodes a normalized distribution.

Proof. The proof proceeds by induction, noting that Sum Nodes compute a convex
combination of normalized distributions, which is a normalized distribution, and that
Product Nodes compute the product of normalized distribution over disjoint sets of
variables, which is a normalized distribution.

The fact that the partition function in a SPN is always tractable (due to Proposition
3.1.6) guarantees that any SPN can be normalized without loss of generality, adding the
normalization term as a multiplicative constant to the root node. This is formalized in
the following result, taken from Peharz [2015].

Proposition 3.1.11. For each SPN Ŝ
(
X,G, Ŵ , θ

)
, there exists a locally normalized

SPN S (X,G,W, θ), such that S(x) = Ŝ(x)
Z where Z is the partition function of Ŝ.

Proof. In Peharz [2015].

45

3. Sum-Product Networks

3.1.4. SPNs with Indicator Variable Leaves

SPNs with indicator variable leaves are an important special case both for an historical
reasons, since the first proposed SPN model fell in this case, and a practical one, since
several applications of SPNs use this subclass of models.

Proposition 3.1.12. A SPN with indicator variable leaves encodes a network polynomial.

Proof. Substituting the indicator variables as leaves in Eq. 3.1.6 we obtain:

P (X) =
∑

σ∈Σ(S)

∏
(q,j)∈E(σ)

wq,j︸ ︷︷ ︸
∏

l∈L(σ)
[Xl]xl ,

which is a Network Polynomial (Definition 2.2.3).

Since the sum
∑
σ∈Σ(S) is intractable if explicitly represented (see Proposition 3.1.3),

but the evaluation of the associated SPN is tractable (Proposition 9), it follows that
SPNs are a compact way to express Network Polynomials.

Example 14. For an example of how a Network Polynomial can be represented efficiently
as a SPN, see Section 1.1.1.

3.2. SPNs and Related Architectures

We saw in the previous section that any SPN represents a very large mixture model
in which inference is tractable. It needs to be discussed, then, how SPN compare and
connect to related families of architectures. This analysis goes through three steps. First,
we discuss the connection between SPNs and And/Or search graphs. Then, we further
discuss SPNs as a potentially very large, hierarchical mixture model, whose components
are combinations of the distributions at the leaves. Finally, we put SPNs in relation with
graphical models, discussing advantages and disadvantages of the two representations.

3.2.1. SPNs and OR trees

The connection with OR trees is based on the concept of Observed Product Node,
discussed next.

Definition 3.2.1. Observed Product Node. A Product Node s ∈ V is an observed
Product Node if it has at least one child which is an indicator variable [Xs]i and one child
which is not an indicator variable. Xs is called observed variable.

An Observed Product Node s has the effect of “activating” the sub-SPN rooted in s if
the observed variable has state i (it is multiplied by the associated indicator that has
value 1), and deactivating it otherwise (the associated indicator has value 0).

46

3.2. SPNs and Related Architectures

OR Trees OR trees represents the search space explored during probabilistic inference
(see e.g. Luger [2004]). An OR tree is a directed tree graph T = V, E where each
node v ∈ V is associated to a variable Xv ∈ X , and the i-th child of v corresponds to
the i-th state of Xv (Fig. 3.2.1, Left). Each path from the root to node v represents
conditioning on the set of states y = {Xa = xa, Xb = xb, . . . } represented by the set of
variables Y = {Xa, Xb, . . . } traversed by the path, and models at leaves corresponds to
probabilities P (X\Y |Y = y).

An OR tree is evaluated for a given evidence Y = y by performing the sum over values
of the children for which the state is compatible with evidence variables. Any discrete
distribution can be represented using a OR Tree by simply conditioning on each state of
each variable in turn, but this requires in the worst case O(DN) parameters where D is
the maximum domain size and N is the number of variables in the distribution. This is
clearly not an efficient representation. However, OR trees enable to represent contextual
independence compactly by potentially branching on different values of different variables
at each node.
The interesting property of OR trees is that each path from the root to the leaves

corresponds to a context, OR trees are particularly apt at representing contextual
dependences, and as such some distributions can be expressed efficiently by OR trees but
not by Graphical Models (see Section 1.1.2).

And/Or Trees

AND/OR trees are an extension of OR trees that include AND nodes, that multiply the
values of their children. Clearly, these nodes correspond to Product Nodes in SPNs and
thus SPNs can represent an AND/OR trees.

SPNs and OR trees It is immediate to see that both OR and AND nodes can be
represented as SPNs by using observed variables, as shown e.g. in Fig. 3.2.1, right.
However, SPNs are more general than both OR and AND/OR trees in that their

structure is not limited to a tree but can be a more general DAG. In this way, some
distributions can be expressed exponentially more compactly than by using a tree structure
(see Proposition 3.1.3).

Furthermore, SPNs generalize the concept of And/Or graph by allowing arbitrary leaf
distributions to be placed as leaves rather than only indicator variables. An example is
shown in figure 3.2.1, where it can be also seen that different conditional independences
between variables (represented by the tree leaves) are present depending on the context,
that is on the state of the indicator variables traversed in the path from the root to each
leaf.

47

3. Sum-Product Networks

Figure 3.2.1. - Left: An OR tree with tree graphical models as leaves (also called Cutset Network).
Right: representation of the OR tree as a SPN using observed variables (the unitary sum weights are
not shown).

3.2.2. SPNs, And/Or graphs and Arithmetic Circuits

There is significant amount of overlap between Sum-Product Networks and some related
architectures which are inspired by And/Or trees. This led to the repeated discovery of
the same algorithms, and to a situation of confusion between closely related literature
that bear different names. Let us briefly reviews these relationships:

Arithmetic Circuits Sum Product Networks with indicator leaves are closely connected
Arithmetic Circuits, introduced previously to SPNs in Darwiche [2002]. This correspon-
dence has been noted already in Poon and Domingos [2011], and descends immediately
from the definitions of the two architectures.

In fact, the only distinction between SPNs with indicator variable leaves and Arithmetic
Circuits is the way in which weights are represented: in SPNs they are associated to Sum
Node edges, while in Arithmetic Circuits they are associated to leaf nodes and removed
from the edges. However, it is possible to pass from one representation to another without
loss of generality with a straightforward algorithm.
In practice, another distinction between SPNs and Arithmetic Circuits is that the

former have been proposed and used as a standalone architecture, while the latter have
been used as a tool to perform inference in graphical models.

Also note that SPNs with tractable leaves as in Definition 3.1.3 (which is not the one
originally introduced in Poon and Domingos [2011]) are more general than SPNs with
indicator variable leaves, which can be obtained as a special case.

AND/OR graphs Sum Product Networks with indicator variable leaves are also AND/OR
graphs Dechter and Mateescu [2007], which generalize AND/OR trees to a graph struc-
ture (as opposed as a tree), and employs them to perform inference in graphical models.
This result descends from the equivalence between And/Or graphs and Arithmetic Cir-

48

3.2. SPNs and Related Architectures

cuits, which is discussed in Dechter and Mateescu [2007], and the equivalence between
Arithmetic Circuits and SPNs.

Cutset Networks Cutset Networks Rahman et al. [2014] are Or trees which have at
leaves Tree Graphical models, and can therefore be identified as SPNs as discussed above
(Fig. 3.2.1). Hence, Cutset Networks are SPNs where the DAG has no directed cycles.

3.2.3. Graphical Models and SPNs

Junction Trees and SPNs

Exact inference in Graphical Models can be computed efficiently with the Junction Tree
algorithm: a Junction Tree is obtained from the given graphical model, then inference in
the Junction Tree is computed as described in section 2.3.3. The procedure to obtain
a Junction Tree from a given graphical model is described e.g. in Murphy [2012]. It
can be shown that inference in the optimal Junction Tree has a cost lower bounded by
exp(T) where T is the treewidth of the graph. Hence, the Junction Tree algorithm can
be applied tractably only provided that the treewidth of the original graph is small. A
typical example of tractable graphs are tree graphs where the treewidth is 2.

The message passing procedure associated to a Junction Tree can be directly interpreted
as a SPN, since it can be shown that Eq. 2.3.7 encodes a valid SPN according to Definition
3.1.3. An example of the interpretation of message passing as SPN was shown in Section
1.1.1; we refer to Darwiche [2003] for further details. We also visualize the transformation
from GM to Junction Tree to SPN in Fig. 3.2.2.

Notice that the inference procedure has the same cost for both the Junction Tree and
the corresponding SPN.

Advantages and Disadvantages of SPNs over Graphical Models

The trade off between SPNs and graphical models was discussed in Section 1.1.1. From
the relation with Junction Trees it is once more evident that the SPN representation
loses the high level representation of the distribution in terms of factorization, which is
an appealing property of graphical models (see Fig. 3.2.2). In addition, SPNs in this
context are not able to express the distribution more efficiently than Junction Trees,
since the inference cost is the same.
The use of SPNs is motivated by modeling distributions that exhibit contextual

independence, and that therefore cannot be modeled efficiently as a graphical model
in the first place. When a distribution includes only contextual independences, it is
more convenient to use the graphical model representation. The need to represent
distributions with both contextual and conditional independence mainly motivates the
class of distributions described in Section 4.1.

49

3. Sum-Product Networks

Figure 3.2.2. - Conversion of a tractable Graphical Model into a Sum-Product Network via the
Junction Tree algorithm. The graphical model (left), corresponding Junction Tree (middle) and SPN
(right). This SPN represents the Network Polynomial in Eq. 1.1.1.

3.3. Parameter Learning

A SPN S (X|G,Φ,W, θ) (Definition 3.1.3) is governed by four set of parameters: graph
structure G; edge weights W ; choice of leaf distributions Φ and corresponding leaf
distribution parameters θ. Learning in SPNs involves finding Maximum Likelihood
solutions for these parameters, given a dataset of observations {xi}Ni=1 (Section 2.1.2). In
this section we consider the structure G and the choice of leaf distributions Φ fixed, and
we concentrate on learning the parameters W, θ. This problem is known in literature as
parameter learning.

3.3.1. Gradient Ascent Based Approaches

The earliest proposed training methods for SPNs were gradient ascent based approaches
(Poon and Domingos [2011], Gens and Domingos [2012]). We report here a compact
description of these methods for historical reasons and to prepare for Section 3.3.2.

Gradient Ascent Gradient ascent is an iterative procedure that finds the local maximum
of a given function f(θ) by iteratively performing “small” steps in the parameter space
towards the direction of maximum ascent, locally given by the gradient ∂f(θ)

∂θ (see e.g.
Murphy [2012]). A step of the gradient ascent procedure takes the form:

θnew = θ + η
∂f(θ)
∂θ

,

where η is a “small” positive coefficient which is a hyperparameter of the algorithm. In
our case, we are interested to find a maximum of the Log Likelihood of S(X) (LL(S|θ),
Eq. 2.1.15), hence an update assumes the form:

θnew = θ + η
∂

∂θ
(LL(S|θ)) ,

In the following, S(xn) denotes the evaluation of S(X) for sample xn (see Definition

50

3.3. Parameter Learning

3.1.4). Computing the gradient of the Log Likelihood w.r.t. a weight wq,i (corresponding
to the edge (q, i) emanating from a Sum Node q ∈ V) we obtain:

∂

∂wq,i

(
N∑
n=1

lnS(xn)
)

=
N∑
n=1

∂

∂wq,i
lnS(xn) =

N∑
i=1

1
S(xn)

(
∂S(xn)
∂wq,i

)
.

Hence the derivative ∂S(xn)
∂wq,i

is required. Similarly, for leaf distribution parametersθk ∈ θ
(appearing at leaf nodes) the derivative ∂S(xn)

∂θq
is required.

Computing ∂S(xn)
∂wq,i

and ∂S(xn)
∂θq

These derivatives can be computed efficiently. First,
assuming that parameters wqk and θq appear only in node q, then the derivatives are
computed as follows (see Proposition 3.1.1):

∂S (x)
∂wqk

= ∂S (x)
∂Sq

∂Sq (x)
∂wqk

= ∂S (x)
∂Sq

Sk(X),

∂S (x)
∂θq

= ∂S (x)
∂Sq

∂Sq (x)
∂θq

= ∂S (x)
∂Sq

∂ϕq(x)
∂θq

.

Furthermore, if the term wqk is associated to multiple edges (q, k) ∈ E due to weight
sharing constraints (or the term θq is associated to multiple nodes q ∈ V), we can collect
all edges that share the same parameter wqk in a set E (similarly, all leaf nodes sharing
θq can be collected in a set V), and applying the rule of total derivatives we obtain the
gradient as the sum of the gradients of element in R:

∂S (x)
∂wqk

=
∑

(i,k)∈E

∂S (x)
∂Si

Sk(X),

∂S (x)
∂θq

=
∑
q∈V

∂S (x)
∂Si

∂ϕi(x)
∂θq

.

Hence, evaluating this quantity requires evaluating and derivating the SPN only once.

Problems of Gradient Ascent and Workarounds Gradient ascent approaches suffer
from the well known problem of vanishing gradients in the “deep” regions of the SPN
(i.e., the nodes further away from the root). This happens since the magnitude of the
updates decreases exponentially at each step, up to a point where updates at deep nodes
are negligible. To see this, it is enough to consider the computation of the derivative
(Proposition 3.1.1) noting that the gradient gets multiplied by terms Pi ≤ 1 at each
Product Node (Eq. 3.1.5), and as such it gets exponentially smaller with increasing
node depth.

51

3. Sum-Product Networks

To tackle the problem of gradient diffusion and allow to train deep SPNs effectively,
Gens and Domingos [2012] suggested to compute a rough approximation of the gradient,
obtained by counting how many times a certain edge was traversed during the MAP
evaluation of the SPN (Section 3.1.2), and dividing by the number of samples in the
dataset.
This procedure allowed to train SPNs with good empirical performances in Gens

and Domingos [2012], however it involves an arbitrary approximation of the original
objective and no analysis of the approximation error is provided. We do not describe this
procedure in detail since it is only empirically justified and it has been recently replaced
by Expectation Maximization for SPNs, which allows to generate updates that do not
vanish at deeper nodes.

3.3.2. Expectation Maximization

Expectation Maximization is an elegant and widely used method for training mixture
models (see Section 2.4.3). Given the interpretation of a SPN as a very large mixture
model due to Eq. 3.1.6, it is tempting to try to apply EM to SPNs. However, doing so
involves finding ways of exploiting the structure of the SPN in order not to explicitly
compute EM on the mixture model, which can be intractably large.

Several independent attempts were made to derive Expectation Maximization on the
intractably large mixture model encoded by a SPN by efficiently exploiting the shared
structure of the mixture. The very first attempt contained (Poon and Domingos [2011])
contained an error in the derivation, pointed out by Peharz et al. [2016]; then, subsequent
methods obtained the correct EM update for SPN weights (Zhao et al. [2016b],Peharz
et al. [2016]) and for univariate leaves in the exponential family (Peharz et al. [2016]).
We describe here an independent derivation of EM for SPN, which:

1. Employs a simpler derivation than the alternate versions, directly translating the
standard EM algorithm to SPNs.

2. Is more general that existing methods, since it can be applied to learn SPNs with
arbitrary leaf distributions and extends to the case of shared parameters.

3. Provides guarantees of convergence under mild condition for a very large class of leaf
distributions. In particular, the M-step results in a simple weighted Log Likelihood
maximization for each leaf distribution, which can be solved also sub-optimally and
can be performed straightforwardly for a wide class of distributions.

Derivation We want to apply EM to the mixture encoded by a SPN, which is in
principle intractably large. First, let us use the relation between SPN and encoded
mixture model in Table 3.1.1, and identify the probabilities required in the classical EM
algorithm. First, let us denote as zσ the state of the sum node variables associated to
subnetwork σ. Then, we identify the following probabilities:

52

3.3. Parameter Learning

P (Z = zσ, xn|θ) = λσ (W)Pσ (xn|θ) ,
P (xn|Wold, θold) = S (xn|Wold, θold) .

and therefore:

P (Z = zσ|X = xn,Wold, θold) = P (Z = zσ, X = xn|Wold, θold)
P (X = xn|Wold, θold)

= λσ (W)Pσ (X = xn|θold)
S (X = xn|Wold, θold)

.

Applying these substitutions and dropping the dependency on Wold, θold for compactness,
the EM objective function Q (W, θ|Wold, θold) defined in section 2.4.3 becomes:

Q (W, θ) =
N∑
n=1

∑
σ∈Σ(S)

λσPσ (xn)
S (xn) lnλσ (W)Pσ (xn|θ) . (3.3.1)

In the following sections we will efficiently maximize Q (W, θ) for W and θ, trying in
particular to get rid of the intractable sum

∑
σ∈Σ(S).

3.3.3. Weights Update

We can simplify Q (W, θ) through the use of Proposition 3.1.7 (derivation in Appendix
A.2.2), ending up with the maximization of the following objective function:

W ∗ = arg max
W
QW (W) , (3.3.2)

QW (W) =
∑

q∈N (S)

∑
i∈ch(q)

βqi lnwqi , (3.3.3)

βqi = wqi,old

N∑
n=1

S (xn)−1 ∂S (xn)
∂Sq

Si (xn) . (3.3.4)

The evaluation of terms βqi , which depend only on Wold, θold and are therefore constants
in the optimization, is the E step of the EM algorithm. We now maximize QW (W)
subject to

∑
iw

q
i = 1∀q ∈ N (S) (M step).

Non shared weights. If weights at each node q are disjoint, then we can move the max
inside the sum, obtaining separated maximizations each in the form \sum_{c=1}^{C}

arg max
wq

∑
i∈ch(q)

βqi lnwqi .

where wq is the set of weights outgoing from q. Now, the same maximum is at-
tained multiplying by k = 1∑

i
βqi
. Then, defining β̄qi = kβqi , we can equivalently

find arg maxwq
∑
i∈ch(q) β̄

q
i lnwqi , where β̄

q
i is positive and sums to 1 and therefore can be

53

3. Sum-Product Networks

interpreted as a discrete distribution. This is then the maximum of the cross entropy
arg maxwq

(
−H

(
β̄qi , w

q
i

))
defined e.g. in Murphy [2012, 2.8.2], attained for wqi = β̄qi ,

which corresponds to the following update:

wq∗j = βqj /
∑
i

βqi . (3.3.5)

Remark: this update for non-shared weights only was already derived (with radically
different approaches) in Peharz et al. [2016], Zhao et al. [2016b].

Shared weights. In some SPN applications it is necessary to share weights between
different Sum Nodes, for instance when a convolutional architecture is used (see e.g.
Cheng et al. [2014]). To keep notation simple let us consider only two nodes q1, q2
constrained to share weights, that is wq1

i = wq2
i = ŵ for every child i, where ŵ is the

set of shared weights. We then rewrite QW (W) insulating the part depending on ŵ as
QW (W) =

∑
i∈ch(q) β

q1
i lnwq1

i +
∑
i∈ch(q) β

q2
i lnwq2

i + const (the constant includes terms
not depending on wq). Then, employing the weight sharing constraint, maximization of
QW for ŵ becomes arg maxŵ

∑
i∈ch(q) (βq1

i + βq2
i) ln ŵ. As in the non-shared case, we end

up maximizing the cross entropy −H (k (βq1
i + βq2

i) , ŵi). Generalizing for an arbitrary
set of nodes D such that any node q ∈ D has shared weights ŵ, the weight update for ŵ
is as follows:

ŵ∗j =
∑
q∈D β

q
j∑

i

∑
q∈D β

q
i

. (3.3.6)

Note that in both the shared and non shared cases, the EM weight update does not suffer
from vanishing updates even in deep nodes thanks to the normalization term. Finally,
we note that since all the quantities required in a weight update can be computed with a
single forward-downward pass on the SPN, an EM iteration for W has cost linear in the
number of edges.

3.3.4. Leaf Distribution Updates

We now consider learning leaf distributions. Simplifying Q (W, θ) through the use of
Proposition 3.1.7 (Appendix A.2.3), the objective function for θ becomes:

θ∗ = arg max
θ
Qθ (θ) , (3.3.7)

Qθ (θ) =
∑

l∈L(S)

N∑
n=1

αln lnϕl (xn|θl) , (3.3.8)

αln = S (xn)−1 ∂S (xn)
∂Sl

Sl (xn) .

where L (S) denotes the set of leaves of S. The evaluation of terms αln, which are
constant coefficients in the optimization since they depend only on Wold, θold, is the E

54

3.3. Parameter Learning

step and can be seen as computing the responsibility that leaf distribution ϕl assigns to
the n-th data point, just as in EM for classical mixture models. Importantly, we note
that the maximization problem Eq. 3.3.7 is concave as long as lnϕl (Xl|θ) is concave, in
which case there is an unique global optimum. Also note that normalizing αl in Eq. 3.3.8
dividing each αln by

∑
n αln we attain the same maximum and avoid numerical problems

due to the usage of very small values.

Non shared parameters. Introducing the hypothesis that parameters θl are disjoint
at each leaf l, we obtain separate maximizations in the form:

θ∗l = arg max
θl

N∑
n=1

αln lnϕl (xn|θl) . (3.3.9)

In this formulation one can recognize a weighted maximum likelihood problem, where
each data sample n is weighted by a soft-count coefficient αln.

Shared parameters. Let us consider two leaf nodes k, j associated to distributions
ϕk(Xk|θk), ϕj(Xj |θj) respectively, such that θk = θj = θ̂ are shared parameters. Eq.
3.3.7 for k, j becomes Qθ (θ) =

∑N
n=1 αkn lnϕk(xn|θ̂) +

∑N
n=1 αjn lnϕj(xn|θ̂) + const(θ̂).

Generalizing to an arbitrary set of leaves D such that each leaf l ∈ D has a distribution
ϕ
(
X̂l|θ

)
and dropping the constant term, we obtain:

θ̂∗ = arg max
θ̂

∑
l∈D

(
N∑
n=1

αln lnϕl(xn|θ̂)
)
. (3.3.10)

The objective function now contains a sum of logarithms, therefore it cannot be maximized
as separate problems over each leaf as in the non shared case. However, it is still concave
in θ as long as lnϕl (Xl|θ) is concave, in which case there is an unique global optimum
(this holds for exponential families, discussed next). Then, the optimal solution can be
found with iterative methods such as gradient ascent or second order methods.

Exponential Family Leaves. For distributions in the exponential family Eq. 3.3.7 is
concave and therefore a global optimum can be reached (see e.g. Murphy [2012, 11.3.2]).
Additionally, the solution is often available efficiently in closed form. Let us consider two
relevant examples. If ϕl (Xl) is a multivariate Gaussian N (µl,Σl), the solution of Eq.

3.3.9 is obtained e.g. in Murphy [2012, 11.4.2] as rl =
∑N
n=1 αln, µl =

∑N

n=1 αlnxn
rl

and

Σl =
∑N

n=1 αln(xn−µl)(xn−µl)T

rl
. In this case, EM for SPNs generalizes EM for Gaussian

mixture models. If ϕl (Xl) is a tree graphical model over discrete variables, the solution of
Eq. 3.3.9 can be found with the Chow-Liu algorithm (Chow and Liu [1968]) adapted for
weighted likelihood (see Meila and Jordan [2000]). The algorithm has a cost quadratic on
the cardinality of X and allows to learn jointly the optimal tree structure and potentials.

55

3. Sum-Product Networks

3.3.5. Convergence for General Leaf Distributions

The EM algorithm proceeds by iterating E-and-M steps (pseudocode in Algorithm 3.2)
until convergence. The training set Log Likelihood is guaranteed not to decrease at each
step as long as the M-step maximization can be done at least partially Neal and Hinton
[1998]: namely, calling θl,new and θl,old the current and previous parameters of leaf l, this
implies EM converges if the update at each leaf satisfies:

N∑
n=1

αln lnϕl (xn|θl,new) ≥
N∑
n=1

αln lnϕl (xn|θl,old) . (3.3.11)

This condition is very non-constraining, as it simply requires that weighted Log Likelihood
can be at least approximately optimized. Note that weighted Log Likelihood maximization
requires minor modifications from standard maximum-likelihood. If approximate methods
are used, a simple check on the bound Eq. (3.3.11) ensures that the approximate learning
procedure did not decrease the lower bound (Algorithm 3.2 row 8).
This allows a very broad family of distributions to be used as leaves: for instance,

approximate maximum likelihood methods are available for intractable graphical models
(Wainwright and Jordan [2008]), probabilistic Neural Networks (?), probabilistic Support
Vector Machines (?) and several non parametric models (see e.g. Geman and Hwang
[1982] and Cule et al. [2010]). EM leaf distribution updates can be straightforwardly
applied to each of these models. Note that depending on the tractability of the leaf
distribution, some operations might not be tractable (e.q. exact marginalization in
general graphical models) - whether to use certain distributions as leaves depends on the
kind of queries one needs to answer and it is an application specific decision.
Cost. All the quantities required in a EM updates can be computed with a single

forward-downward pass on the SPN, thus an EM iteration has cost linear in the number
of edges. The cost of the maximization for each leaf depends on the leaf type, and it is
an application specific problem. For instance, with Gaussian and tree graphical model
leaves it is linear in the number of samples.

Algorithm 3.1 Compute α, β (S, {x1, x2, ..., xN})
1: Input: SPN S(W, θ), samples {x1, x2, ..., xN}
2: set βqi = 0 for each (q, i) ∈ E (S)
3: compute Sk(xn),∂S(xn)

∂Sk
for each node k in S

4: for each Sum Node q ∈ V do
5: for each node i ∈ ch(q) do
6: βqi ← βqi + 1

Nw
q
iSi (xn) ∂S(xn)

∂Sq
S (xn)−1

7: for each leaf node l ∈ V do
8: αln ← S (xn)−1 ∂S(xn)

∂Sl
Sl (xn)

56

3.4. Structure Learning

Algorithm 3.2 EMstep(S, {x1, x2, ..., xN})
1: Input: SPN S(W, θ), samples {x1, x2, ..., xN}
2: [α, β]← Compute α, β (S, {x1, ..., xN})
3: for each Sum Node q in S and each node i ∈ ch(q) do
4: wqi ← βqi /

∑
i∈ch(q) β

q
i

5: for each leaf node l in S do
6: θl ← arg maxθl

∑N
n=1 αln lnϕl (xn|θl)

7: if Eq. 3.3.11 is not satisfied, discard the update

3.4. Structure Learning

Structure learning is a natural application for SPNs due to the tractability of the inference
procedure, since the complexity of structure learning essentially depends on the complexity
of inference as a subroutine. In addition, learning the structure of models where inference
is in general intractable (such as graphical models) has the additional constraint that
inference in the resulting model must be tractable (at least approximately).
In recent work, it has been shown empirically that structure learning approaches

for SPNs produce state of the art results in density estimation (see e.g. [Gens and
Domingos, 2013], [Rooshenas and Lowd, 2014], [Rahman and Gogate, 2016b], [Rahman
and Gogate, 2016a]), suggesting that performing exact inference with simpler but tractable
models might be a better approach than approximate inference using more complex but
intractable models.

In the following we will describe the most relevant methods for learning the structure
of SPNs, describing the approaches in chronological order. We will focus on the methods
that provided relevant improvements in the density estimation, according to the empirical
test-set Log Likelihood results in the benchmark datasets described in the following.
We organize the discussion underlining the similarities between the discussed papers

rather than the differences due to varying nomenclature and approaches in the paper
themselves. In particular, we will see that a split-and-recurse algorithmic structure is
a constant characteristic of most of the methods. We also highlight limitations in the
described approaches, mainly that the procedures involve a greedy optimization phase
where convergence is not guaranteed due to the many employed approximations.

Quantitative Comparison

The structure learning papers considered in this section compare results on 20 binary
datasets for density estimation, first introduced in the current form in Gens and Domingos
[2013]. The structure of the datasets is provided in Table 3.4.1. All the datasets involve
discrete binary variables, in number ranging from 16 to 1556. The number of data
samples in the training set ranges from 1670 to 291326. As such, these represent a
challenging task where the algorithm is required to be flexible to work both with low and

57

3. Sum-Product Networks

high dimensional datasets and to scale efficiently with a quite large number of samples.
The datasets are divided in a fixed training set, validation set and test set as described
in Table 3.4.1.
We report the test set Log Likelihood results for the density estimation models

evaluated on each Dataset. Alongside several SPN based approaches, we include in our
results a comparison with structure learning algorithms for graphical model of increasing
complexity: the ChowLiu algorithm for learning an optimal tree model, Mixtures of
Trees trained with Expectation Maximization (section 2.4.3), and cyclic graphical models
learned with Microsoft’s WinMine Toolkit1.

We do not report learning and evaluation time for SPNs, since the papers often do not
provide this information. However, SPNs are typically much faster to evaluate than other
intractable models, since approximate inference methods must be used. For instance,
in one measured case (LearnSPN, Gens and Domingos [2013]) the cost of probabilistic
queries in SPNs is about two order of magnitudes faster than in WinMine - namely,
queries in LearnSPN have an average time of 23ms and in WinMine 1629ms. It is worth
noting that even allowing Gibbs sampling to run for a very long time did not close the
gap in accuracy with SPNs.

It is remarkable that simple structure learning methods obtaining tractable-inference
graphical models, namely the Chow-Liu tree and a Mixtures of Trees, can often reach
better performances than the complex structure learning methods used in WinMine (see
table 3.4.1, columns ChowLiu and MT respectively). This indicates that keeping the
structure simple enough to permit exact inference and simpler learning can lead to better
results than having a complex structure but resorting to approximate inference.

Finally, we note that both tree graphs and mixture of trees can be interpreted as SPNs
(section 3.2.3). Therefore, the ChowLiu and the Mixture of Tree methods can be seen
also as elementary structure learning algorithms for SPNs.

3.4.1. Learning Arithmetic Circuits (Lowd and Domingos [2012])

We start our review of SPN structure learning algorithms by briefly describing a method
for learning Arithmetic Circuits, called ACMN (Arithmetic Circuits for learning Markov
Networks). We do this for two reasons: First, Arithmetic Circuits are a special case of
Sum-Product Networks with indicator variables as leaves (see section 3.2.1), and therefore
this can be considered a SPN structure learning algorithm. Second, this method has
historical and practical importance, being one of the first competitive structure learning
methods for SPN-related architectures and employing a radically different approach with
respect to the algorithms that we will describe in the following.
Algorithm Description. The pseudocode for ACMN is shown in algorithm 3.3. We

provide here an intuitive description of it based on binary variables for simplicity. Let
1Documentation can be found in http://research.microsoft.com/en-
us/um/people/dmax/WinMine/Tooldoc.htm. Details of the experiments with WinMine are
given in Gens and Domingos [2013]).

58

3.4. Structure Learning

F = {fi}Mi=1 be a set of SPNs (called “features” in the paper). The feature set induces a
SPN S(X) =

∏M
j=1 fj(Xj).

The algorithm is initialized with a set of features where each feature is a Bernoulli
distribution for each variable Xj ∈ X : fj = µj [Xj]0 + (1− µj)[Xj]1 .

At each iterative step of the algorithm, the structure is updated by taking an existing
feature fj(Xj) and combining it with a variable A s.t. A ∩Xj = ∅, creating two new
features fj(Xj)⊗ [A]1 and fj(Xj)⊗ [A]0. This operation is referred to as a “split”, since
it takes an existing feature f and splits it into three cases: fj(Xj), f ⊗ [A]1 and f ⊗ [A]0.
We denote a split as triplet s = {fj , A}. A split s can be inserted in S by creating a Sum
Node having has children SPNs fj(Xj)⊗ [A]1 and fj(Xj)⊗ [A]0 . The Sum Node weights
are optimized with line search - we leave the details to Lowd and Domingos [2012].
The selection of which split to create during a step of the algorithm is governed by a

greedy method, looking for the split with higher gain G(s) as defined as follows:

G(s) = ∆LL(s)− γ∆size(s). (3.4.1)

Here ∆LL(s) denotes the variation generated on the Log Likelihood of S(X) after
inserting s in S, and ∆size(s) is the variation produced on the number of edges of S. The
algorithm terminates once all possible splits are included, or a fixed maximum number of
edges has been reached.

Approximating ∆LL(s) and ∆size(s). Not only the algorithm is based on a greedy
method, but the quantity needed for this method cannot be computed exactly and thus
need approximations. Assuming that ∆LL and ∆size could be computed exactly, then the
algorithm would converge to the maximum likelihood solution. However, computing these
quantity exactly would require jointly optimizing all model parameters along with the
parameters for the two new features, which is unfeasible. Therefore, several simplifications
are made to compute ∆LL and ∆size.

First, ∆LL is taken as the Log Likelihood gain obtained by modifying only the weights
of the two new features, keeping all others fixed. This provides a lower bound on the
actual Log Likelihood gain. Second, ACMN employ the assumption that, as learning
progresses, the score of any given split decreases monotonically. The score of a split
can decrease for two reasons. While this assumption does not always hold, it allows to
evaluate only a small fraction of the available splits in each iteration.

Discussion. This algorithm obtained state of the art results on the benchmark datasets
at the time of publication (Table 3.4.1, column ACMN). However, it has a number of
drawbacks, since employs a number of empirically justified approximations in order to
keep the run time tractable, it depends on many hyper parameters, and it tends to
generate very large models in comparison to competing approaches. An interesting aspect
is that the splitting procedure generates nodes with observed variables at internal Sum
Nodes, in contrast to most of the methods described subsequently.

59

3. Sum-Product Networks

Algorithm 3.3 LearnACMN(D)
1: initialize SPN S as product of marginals computed over D
2: initialize priority queue Q by ranking initial splits with Eq. (3.4.1)
3: loop until Log Likelihood convergence
4: Update edge gain ∆e and likelihood gain ∆ll for each possible split in Q
5: s = Q.pop() // Select best split s
6: sn = InsertSplit(S, s) // Insert the best split in S creating Sum Node sn
7: OptimizeWeights(sn) // Optimize the weights of the new Sum Node
8: for each variable A ∈ V do
9: Add new features (f ⊗ [A]1) and (f ⊗ [A]0) to Q.

10: return (M,C)

3.4.2. LearnSPN (Gens and Domingos [2013])

The first structure learning method developed specifically for SPNs appeared in Gens
and Domingos [2013]. The simple split-and-recurse procedure employed by this algorithm
influenced many subsequent papers which employ small variations of this method, and it
is therefore worth describing here in detail. The pseudocode for this method is shown in
Algorithm 3.4. We report here an intuitive description of the algorithm.

Consider a set of variables V = {Xk}Mk=1, and a set of i.i.d. samples T = {xi}Ni=1. Let
the samples be organized in a matrix D ∈ RN×M with one sample per row, where the
element Dij corresponds to the j-th variable of the i-th sample. At each recursive step
LearnSPN(D) employs these rules:

1. If it is possible to partition the variables V in approximately independent subsets
{Dk}Kk=1, then create a product of the SPNs obtained calling LearnSPN on each
subset:

∏K
k=1 LearnSPN(Dk).

2. If it is possible to cluster the samples (rows of D) into groups of “similar” instances,
create a mixture model over the SPNs obtained calling LearnSPN on each subset:∑K
k=1wkLearnSPN(Dk), where weights wk are proportional to the number of

instances in subset Dk.

3. If a certain termination condition is met, then create a SPN representing the
product of empirical marginals distributions computed over variables in D.

The authors prove that in the extreme case when the variables are independent and
instances in the same group are identical, then LearnSPN attains the optimal Maximum
Likelihood estimator. However, these conditions are almost never satisfied in practice.
Hence, this approach becomes a greedy algorithm in which there is there is no proof of
convergence. Despite these limitations, LearnSPN managed to obtain very good empirical
results on density estimation. Test set Log Likelihood results corresponding to this
method on the benchmark datasets are presented in Table 3.4.1, column LearnSPN.

60

3.4. Structure Learning

LearnSPN as an Algorithm Schema. Rather than being a single algorithm, LearnSPN
is an algorithm schema which depends on the choices of the functions which test for
independence, similarity and termination. The choice of such functions is then a crucial
design step that allows for flexible applications of the algorithm: for instance, variations
of this base schema have been employed in the algorithms described in sections 3.4.3,3.4.4,
3.4.5 and 3.4.6.

Gens and Domingos [2013] used simple but very fast tests of independence, similarity
and termination:

• The termination condition is |V | = 1, that is, the data is recursively split until a
single variable is present.

• The search for partition over almost independent subsets of variables is performed
as follows. First, we create a matrix G ∈ RM×M in which element Gi,j is a measure
of the pairwise dependence between the i-th and j-th variables. The chosen measure
is the G-test of pairwise independence, defined as:

G(A,B) = 2
∑

a∈∆(A)

∑
b∈∆(B)

Nab (A = a,B = b) logNab (A = a,B = b) |T |
logNa (A = a)Nb (B = b) .

Here, Nab (A = a,B = b) counts the number of times the setting of variables A =
a,B = b appears in the dataset (similarly for Na (A = a)). Then, the elements of
I which are below a threshold k > 0 (which is a hyperparameter) are set to zero,
and the resulting matrix is interpreted as a connection matrix defining a weighted
graph. Finally, this graph is partitioned in sets of connected component, and each
set is taken to represent a subset of approximatively independent variables.

• To cluster instances the authors use incremental EM (Neal and Hinton [1998]) over
a naive Bayes mixture model with exponential prior P (S) ∝ e− λC|V | , where C
is the number of clusters and λ is the cluster penalty.

This procedure heavily depends on the choice of hyerparameters k and λ, tuned with
cross validation.

3.4.3. SPNs with Direct and Indirect Variable Interactions (IDSPN,
Rooshenas and Lowd [2014])

The structure learning method described in this section combines the approaches described
in Sections 3.4.2 (SPNLearn) and 3.4.1 (ACMN). As discussed in Section 3.4.2, LearnSPN
allows is an algorithm schema that allows to employ arbitrary leaf models when the
termination conditions are met (base case in algorithm 3.4). Intuitively, IDSPN employs
a variation of LearnSPN where the leaf modes are ACMNs as discussed in Section 3.4.1.
The rationale behind this idea is to combine the advantages of LearnSPN (learning a
large, hierarchical mixture model) and of ACMN (which employs observed latent variables

61

3. Sum-Product Networks

Algorithm 3.4 LearnSPN(T, V)
Input: set of instances T and set of variables V
Output: an SPN representing a distribution over V learned from T
1: if conditions for inducing the base case are satisfied then
2: // 1. Base Case
3: return LearnLeafModel(T, V)
4: else if V can be partitioned into approximatively independent subsets Vj then
5: // 2. Variable Splitting Step
6: return

∏
j LearnSPN(T, Vj)

7: else// 3. Clustering Step
8: Partition T into subsets of similar instances Ti
9: return

∑
i
|Ti|
|T |LearnSPN(Ti, V)

and thus learns different kind of relationships between variables). These concepts are
not well defined: as often happens in machine learning models, this approach is based
on intuitive ideas and extensive empirical evaluation rather than on a mathematically
motivated analysis.
Since this method combines the two procedures above, it also inherits all their hy-

perparameters, plus some additional ones that regulate when to perform the base step.
Furthermore, it tends to create much larger models than LearnSPN - for details see Zhao
et al. [2016b]. Its use has been justified by the fact that it improved performances on
the benchmark datasets, possibly due to the combination of the two different approaches
in an unique setting. We will avoid reporting the algorithm details because it is quite
convoluted, rich of hyperparameters, and we are not aware of subsequent papers that
improve on it. Test set Log Likelihood results are shown in Table 3.4.1, column IDSPN.

3.4.4. Learning the Structure of SPNs by Finding Low Rank Submatrices
(SPD-SVN, Adel et al. [2015])

The method described in Adel et al. [2015] (SPD-SVN) is an application of the LearnSPN
scheme described in Section 3.4.2, similarly to the methods described previously. In this
case, the tests for independence and clustering are based on finding the submatrix of
data matrix D ∈ RN×M of rank closest to 1. The authors postulated that finding a low
rank submatrix of D corresponds to finding a subset of both variables and samples in
which samples are strongly correlated: for instance, in the binary case if the rank is 1
all the samples are equal (being linearly dependent and binary variables). However, no
formal argument is provided for the general case. The search for rank 1 sub matrices
is performed with a greedy, convergent algorithm called Hilbert-Schmidt independence
criterion (Gretton et al. [2005]), which includes a penalty term for penalizing smaller
sub matrices (trivially, any 1× 1 matrix has at most rank 1) and has asymptotic cost
O(M logM) and thus quickly converges to a solution.

62

3.4. Structure Learning

Once a low rank submatrix has been found, then the variable split and sample clustering
is performed as graphically represented in Fig. 3.4.1 and described in Algorithm 3.5.
Notice that instead than looking for variables that are not correlated and hence should be
considered independent, this algorithm looks for variables that are maximally correlated.

Test set Log Likelihood results of this method are shown in Table 3.4.1, column SPD-
SVN. This approach is empirically very competitive, and the method itself is generally
faster than competing methods due to the cheapness of the rank-1 matrix search. However,
we have to remark that no implementation of the code was made available by the authors,
and that we failed to reproduce their results rewriting our version of their algorithm.
In addition, there is no follow up paper and thus we failed to find any independent
verification of the results of this paper.

Algorithm 3.5 SPN-SVD(D)
Input: Instance matrix D ∈ RM×N
Output: SPN S
1: //extract row (R) and column (C) indices of the submatrix of D with lowest rank
2: [R , C] = ExtractRank1(D, γ)
3: //1. Base Case
4: if D is a vector or no submatrix was found then
5: return product of empirical univariate marginals of D
6: Set Cc as the columns of D excluding C
7: Set Rc as the rows of D excluding R
8: Set B1 = D(R,C) , B2 = D(R,Cc) and B3 = A(Rc, :)
9: S1 = SPN-SVD(B1)

10: S2 = SPN-SVD(B2)
11: //2. Variable Splitting Step
12: Create Product Node Pn = Prd(S1 , S2)
13: S3 = SPN-SVD(B3)
14: //3. Clustering Step
15: Create Sum Node Sn = Sum(S3, Pn) with weights (N−|R|N , |R|N)
16: Create SPN S with root Sn
17: return S

3.4.5. Learning Cutset Networks (CNets) and Ensembles of CNets
(Rahman et al. [2014])

Cutset Networks (CNets, Rahman et al. [2014]) are an architecture that can be seen as a
special case of SPNs (see section 3.2.1), even though they were recently introduced as a
new architecture alongside a structure learning algorithm. Structure learning for CNets
proceeds using a recursive procedure following similar steps to the one described in section
3.4.2. We provide here an intuitive description of the algorithm, whose pseudocode is
shown in Algorithm 3.6.

63

3. Sum-Product Networks

(a) The data matrix
D and a minimum
rank subset of D (in
gray).

(b) The SPN structure resulting from one step of SPD-SVN over D. SPN-
SVD is then called recursively on the submatrices in blue, which form a
partition of D.

Figure 3.4.1. - Graphical representation of a recursive step of SPD-SVN.

As in previous approaches, let D ∈ RN×M be a binary data matrix where samples are
arranged into rows, and let V be the set of all variables in the model. The algorithm
includes two cases:

• If some termination condition on D is satisfied, a leaf model is created. The leaf
model is a tree graphical model obtained by running the Chow-Liu algorithm on D.

• If the terminating condition is not satisfied a variable split is performed: given
A ∈ V , D is partitioned in two matrices DA,1 and DA,0 that contain respectively
all the samples in which A has value 1 and 0, and do not contain the column
corresponding to A. Then, the model is called recursively in the two subsets DA,1
and DA,0 according to the following SPN structure: LearnCNET (DA,0)⊗ [A]0 ⊕
LearnCNET (DA,1)⊗ [A]1. Note that this method employs observed variables due
to the presence of indicator variables at the Product Nodes (section 3.2.1).

A crucial choice in this algorithm is finding a good heuristic for the variable split. The
authors propose to find the split that minimizes the sum of the empirical entropies of
the matrices DA,1 and DA,0 . However, as there is often not enough data to reliably
measure the joint entropy, the authors propose to approximate it with the average per
variable entropy Ĥ(D) = 1

|V |
∑
A∈V HD(A), where HD(V) denotes the empirical entropy

of variable V in the data matrix D. Then, the splitting heuristic results in choosing
the variable V that maximizes the following gain, representing the expected decrease in
entropy given a split over variable A:

64

3.4. Structure Learning

GainD(A) = Ĥ(D)−
∑

a∈∆(A)

|DA=a|
|D|

Ĥ(DA=a).

Taking inspiration from the literature on Or trees, an additional pruning step can be
optionally performed after the CNet has been constructed, by substituting branches of
the CNet with a single Chow-Liu tree if the validation Log Likelihood increases.

Ensembles of CNets

Mixtures of CNets can be learned using the Expectation-Maximization algorithm for
mixture models (section 2.4.3). At each iterative step of EM, the M -step is performed by
learning CNets with weighted data, where the weights are the responsibilities computed in
the E-step. The extension of LearnCNet to weighted data can be obtained by computing
the weighted entropy (section 2.1.2) and weighted Chow-Liu Tree (section 2.3.4) rather
than the corresponding unweighted versions. Test set Log Likelihood of mixtures of
CNets in the benchmark datasets far exceed results of the single CNets (Table 3.4.1,
column MCnet).

An algorithm that learns ensembles of CNets by boosting is described in Rahman and
Gogate [2016a]. This structure learning method can choose between both observed and
unobserved variable splits, and as a result it has several hyper parameters. It is mostly
justified by its excellent empirical performances, since has state of the art results in many
of the benchmark datasets (Table 3.4.1, column ECnet).

Algorithm 3.6 LearnCNet(T, V)
Input: set of instances T and set of variables V
Output: an SPN representing a distribution over V learned from T
1: if conditions for inducing the base case are satisfied then
2: //Base Case
3: return ChowLiuTree(T, V)
4: else
5: //Heuristically select the variable A which splits the data
6: //in submatrices of minimum entropy
7: A =BestSplit(T, V)
8: T0 = T i ∈ T : A = 0 in Ti
9: T1 = T i ∈ T : A = 1 in Ti

10: create weights w0 = |T0|
|T | , w1 = |T1|

|T |
11: S0 = LearnCNet(T0, V \A)
12: S1 = LearnCNet(T1, V \A)
13: //Variable Splitting and Clustering Steps
14: create SPN S as follows: S = w0[A]0S0 + w1[A]1S1
15: return S

65

3. Sum-Product Networks

3.4.6. Learning Graph SPNs by Merging (Rahman and Gogate [2016b])

The structure learning that we have discussed in this section produce SPNs with a tree
structure: this is due to the fact that these algorithms recursively split the dataset and
separate sub-SPNs for each split. However, using graph SPNs rather than tree SPNs is
an attractive idea for two reasons. First, some SPNs can be represented exponentially
more compactly as a graph than as a tree, by exploiting reuse of shared parts of the
DAG (see Section 3.1.1). Second, graph SPNs can potentially improve the generalization
performance by addressing a problem intrinsic to the previous algorithms: as the depth
of the node increases, the number of training examples used to learn the sub-SPN rooted
at the node decreases exponentially, and thus parameter estimates are more noisy.

One approach to solve this problem is to post-process SPNs obtained with LearnSPN
(Section 3.4.2) by merging sub-SPNs structures. Merging increases the number of examples
available to learn, and in turn reduces the variance of the parameter estimates while
having no effect on their bias (section 2.1) and can therefore improve generalization.
This intuition is formalized by the following proposition, proved in Rahman and Gogate
[2016b]:

Proposition 3.4.1. Let S1(X) , S2(X) and S1,2(X) be SPNs having the same graph
but whose parameters are estimated from training examples T1, T2 and T1,2 = T1 ∪ T2
respectively. Then assuming that the datasets are generated uniformly at random from a
distribution whose structure decomposes according to S1 (and thus also according to S2
and S1,2), the variance of samples generated from S1,2 is smaller than the variance of
samples from S1 and S2.

The main idea of the approach in Rahman and Gogate [2016b] is to relax the identity
condition employed in the proposition above and merge sub-SPNs that are similar. This
creates the necessity to deploy methods for detecting which SPNs to merge, and how
to merge them. For detecting which SPNs to merge, the authors define the following
approximation of the distance between two distributions P and Q over variables V , which
assumes approximate factorization of the distribution over each variable:

D (P |Q) ≈ 1
|V |

∑
Vi∈V

D (P (Vi)|Q(Vi)) .

where D is a distance function (e.g. the Kullback-Leibler divergence described in
section 2.1.2). Since single-variable marginals distributions in each SPN can be computed
in time and memory that is linear in the number of nodes of the SPN, measuring this
distance takes also linear time and memory.

The pseudocode for the proposed post-processing algorithm is in Algorithm 3.7. Taking
as input a SPN S, the algorithm begins by initializing a second SPN S′ identical to S and
repeats the following steps until convergence: First, take the set of sub-SPNs {Si} of S
that are defined over exactly i variables, and partition this set into subsets {ρj} such that
all the SPNs in ρj have the same scope. Then, merge all sub-SPNs S1, S2 which have the

66

3.5. Overview of Applications of SPNs

same scope and such that the distance D (S1|S2) is less than some constant value ε (using
the subroutine Merge(S1, S2) described later). Another option is to merge two sub-SPNs
if the accuracy on the validation set improves (in experiments, both approaches were
used).
The subroutine Merge(S1, S2) consists in re-learning a single SPN from the union of

the data that was used to learn the SPNs S1, S2. The authors propose to re-learn the
structure only if both SPNs are a Chow-Liu tree leaf, and otherwise to keep the structure
of one of the merged SPNs and re-learn the weights only.

The results of this algorithm in test set Log Likelihood show improved generalization
over the tree SPN counterparts. Results on the benchmark datasets are shown in Table
3.4.1 under the column MergeSPN.

Algorithm 3.7 MERGE-SPN (S, V, ε)
Input: SPN S
Output: Merged SPN S
1: S′ = S
2: repeat
3: for i = 1 to |V | do
4: Si = sub-SPNs in S having exactly i variables in their scope
5: ρ = Partition Si into cells having identical scopes
6: for each ρj ∈ ρ do
7: Merge all sub-SPNs in ρj such that the
8: distance between them is bounded by ε and S is a DAG
9: Merge(S1, S2)

10: until S does not change
11: return S

3.5. Overview of Applications of SPNs

The application oriented papers exploiting Sum-Product Networks are still limited, since
this field has developed just in the last six years. However, relevant results in several fields,
where SPNs outperformed all other probabilistic and deterministic methods, aroused
interest in the theoretical and practical properties of these models.
Density Estimation has been the most relevant application field for SPNs. Papers that

use SPNs for density estimation typically propose a new structural learning procedure to
learn the SPN from the given dataset and test it on the benchmark datasets described in
Section 3.4. The main contributions in this field, which were already discussed in detail
in section 3.4, are Lowd and Domingos [2012], Gens and Domingos [2013], Rahman et al.
[2014], Adel et al. [2015], Rahman and Gogate [2016b,a].
SPN were first applied to Image Processing in the original SPN paper (Poon and

Domingos [2011]), and subsequently in Gens and Domingos [2012], Wang et al. [2014]

67

3. Sum-Product Networks

and Adel et al. [2015]. A particularly successful image processing application of SPNs
was on recognizing activities from images, described in Amer and Todorovic [2016]. SPNs
are suited to this task because they can compactly encode mixtures of a subset of base
parts. Furthermore, their possibility of obtaining samples from the model allows to have
generative image models.
SPNs were also used with some success in the field of Language Processing (Cheng

et al. [2014]Peharz et al. [2014]) and Sequence Modeling Melibari et al. [2015], where
however still achieve performances far from the state of the art methods.

68

3.5. Overview of Applications of SPNs

T
ab

le
3.

4.
1.

-
Te

st
se
tL

og
Li
ke
lih
oo

d
on

20
be
nc
hm

ar
k
da
ta
se
ts

fo
rt

he
st
ru
ct
ur
e
lea

rn
in
g
al
go
rit
hm

s
di
sc
us
se
d
in

Se
ct
io
n
3:

AC
M
N

(L
ow

d
an
d
D
om

in
go

s[
20

12
]),

Le
ar
nS

PN
(G

en
sa

nd
D
om

in
go

s[
20

13
]),

ID
SP

N
(R

oo
sh
en
as

an
d
Lo

wd
[2
01

4]
),
M
er
ge
SP

N
(R

ah
m
an

an
d
Go

ga
te

[2
01

6b
]),

CN
et

an
d
M
Cn

et
(R

ah
m
an

et
al
.[
20
14
]),

EC
ne
t(

Ra
hm

an
an
d
Go

ga
te

[2
01
6a
]),

M
ix
tu
re

of
Tr
ee
s
(M

eil
a
an
d
Jo
rd
an

[2
00
0]
),

Ch
ow

Li
u
(C

ho
w

an
d
Li
u
[1
96
8]
),
W
in
M
in
e
Co

rp
or
at
io
n,
LT

M
(C

ho
ie

t
al
.[
20
11
]).

D
at
as
et

#
va
rs

#
tr
ai
n

#
va
lid

#
te
st

A
C
M
N

Le
ar
nS

PN
ID

-S
PN

M
er
ge
SP

N
C
N
et

M
C
N
et

EC
N
et

M
ix
.T
re
es

C
ho

w
Li
u

W
in
M
in
e

LT
M

N
LT

C
S

16
16

18
1

21
57

32
36

-6
.0
0

-6
.1
1

-6
.0
2

-6
.0
0

-6
.1
0

-6
.0
0

-6
.0
0

-6
.0
1

-6
.7
6

-6
.0
25

-6
.4
9

M
SN

B
C

17
29

13
26

38
84

3
58

26
5

-6
.0
4

-6
.1
1

-6
.0
4

-6
.1
0

-6
.0
6

-6
.0
4

-6
.0
5

-6
.0
7

-6
.5
4

-6
.0
41

-6
.5
2

K
D
D
C
up

2K
64

18
00

92
19

90
7

34
95

5
-2
.1
7

-2
.1
8

-2
.1
3

-2
.1
2

-2
.2
1

-2
.1
2

-2
.1
3

-2
.1
3

-2
.3
2

-2
.1
89

-2
.1
8

Pl
an

ts
69

17
41

2
23

21
34

82
-1
2.
80

-1
2.
98

-1
2.
54

-1
2.
03

-1
3.
37

-1
2.
74

-1
2.
19

-1
2.
95

-1
6.
51

-1
2.
65

-1
6.
39

A
ud

io
10

0
15

00
0

20
00

30
00

-4
0.
32

-4
0.
50

-3
9.
79

-3
9.
49

-4
6.
84

-3
9.
73

-3
9.
67

-4
0.
08

-4
4.
35

-4
0.
50

-4
1.
90

Je
st
er

10
0

90
00

10
00

41
16

-5
3.
31

-5
3.
48

-5
2.
86

-5
2.
47

-6
4.
50

-5
2.
57

-5
2.
44

-5
3.
08

-5
8.
21

-5
1.
07

-5
5.
17

N
et
fli
x

10
0

15
00

0
20

00
30

00
-5
7.
22

-5
7.
33

-5
6.
36

-5
5.
84

-6
9.
74

-5
6.
32

-5
6.
13

-5
6.
74

-6
0.
25

-5
7.
06

-5
8.
53

A
cc
id
en
ts

11
1

12
75

8
17

00
25

51
-2
7.
11

-3
0.
04

-2
6.
98

-2
9.
32

-3
1.
59

-2
9.
96

-2
9.
25

-2
9.
63

-3
3.
17

-2
6.
32

-3
3.
05

R
et
ai
l

13
5

22
04

1
29

38
44

08
-1
0.
88

-1
1.
04

-1
0.
85

-1
0.
82

-1
1.
12

-1
0.
82

-1
0.
78

-1
0.
83

-1
1.
02

-1
0.
87

-1
0.
92

Pu
m
sb
-s
ta
r

16
3

12
26

2
16

35
24

52
-2
3.
55

-2
4.
78

-2
2.
40

-2
3.
67

-2
5.
06

-2
4.
18

-2
3.
34

-2
3.
71

-3
0.
80

-2
1.
72

-3
1.
32

D
N
A

18
0

16
00

40
0

11
86

-8
0.
03

-8
2.
52

-8
1.
21

-8
0.
89

-1
09

.7
9

-8
5.
82

-8
0.
66

-8
5.
14

-8
7.
70

-8
0.
65

-8
7.
60

K
os
ar
ek

19
0

33
37

5
44

50
66

75
-1
0.
84

-1
0.
99

-1
0.
60

-1
0.
55

-1
1.
53

-1
0.
58

-1
0.
54

-1
0.
62

-1
1.
52

-1
0.
83

-1
0.
87

M
SW

eb
29

4
29

44
1

32
75

0
50

00
-9
.7
7

-1
0.
25

-9
.7
3

-9
.7
6

-1
0.
20

-9
.7
9

-9
.7
0

-9
.8
5

-1
0.
35

-9
.6
7

-1
0.
21

B
oo

k
50

0
87

00
11

59
17

39
-3
6.
56

-3
5.
89

-3
4.
14

-3
4.
25

-4
0.
19

-3
3.
96

-3
3.
78

-3
4.
63

-3
7.
84

-3
6.
41

-3
4.
22

Ea
ch
M
ov
ie

50
0

45
24

10
02

59
1

-5
5.
80

-5
2.
49

-5
1.
51

-5
0.
72

-6
0.
22

-5
1.
39

-5
1.
14

-5
4.
60

-6
4.
79

-5
4.
37

†
W
eb

K
B

83
9

28
03

55
8

83
8

-1
59

.1
3

-1
58

.2
0

-1
51

.8
4

-1
50

.0
4

-1
71

.9
5

-1
53

.2
2

-1
50

.1
0

-1
56

.8
6

-1
64

.8
9

-1
57

.4
3

-1
56

.8
4

R
eu

te
rs
-5
2

88
9

65
32

10
28

15
40

-9
0.
23

-8
5.
07

-8
3.
35

-8
0.
66

-9
1.
35

-8
6.
11

-8
2.
19

-8
5.
90

-9
6.
85

-8
7.
56

-9
1.
23

20
N
ew

sg
rp
.

91
0

11
29

3
37

64
37

64
-1
61

.1
3

-1
55

.9
3

-1
51

.4
7

-1
50

.8
0

-1
76

.5
6

-1
51

.2
9

-1
51

.7
5

-1
54

.2
4

-1
64

.9
9

-1
58

.9
5

-1
56

.7
7

B
B
C

10
58

16
70

22
5

33
0

-2
57

.1
0

-2
50

.6
9

-2
48

.9
3

-2
33

.2
6

-3
00

.3
3

-2
50

.5
8

-2
36

.8
2

-2
61

.8
4

-2
61

.4
1

-2
57

.8
6

-2
55

.7
6

A
d

15
56

24
61

37
2

49
1

-1
6.
53

-1
9.
73

-1
9.
00

-1
4.
34

-1
6.
31

-1
6.
68

-1
4.
36

-1
6.
02

-1
6.
67

-1
8.
35

†

69

4. Sum-Product Graphical Models

This chapter describes Sum-Product Graphical Models, the architecture that constitutes
the main contribution of this thesis. In Section 4.1 we provide a formal intrpduction
of the model and a discussion of its properties. In Section 4.2 we discuss learning the
parameters and structure of SPGMs.

4.1. Sum-Product Graphical Models

This section formally introduces Sum-Product Graphical Models (SPGMs) and discusses
their properties. We provide an interpretation of the model as a mixture of tree GMs in
Section 4.1.3, and as a high-level representation of SPNs in Section 4.1.4.

4.1.1. Definition

The first step in describing SPGMs is to define the type of nodes that appear in the
underlying graph.

Definition 4.1.1. [Sum, Product and Variable Nodes] Let X and Z be disjoint sets of
discrete variables, and let G = (V, E) be a DAG.

• The basic nodes s ∈ V of a SPGM are called SPGM Variable Node (Vnode) and
associated with a variable Xs ∈ X, They are graphically represented as a circle
having Xs as label (Fig. 4.1.1, left).

• s ∈ V is called Sum Node, if it represents the corresponding operation indicated by
the symbol ⊕. A Sum Node can be Observed, in which case it is associated to a
variable Zs ∈ Z and represented by the symbol ⊕Zs.

• s ∈ V is called Product Node, if it represents the corresponding operation indicated
by the symbol ⊗.

In what follows, variables Z take the role of context variables according to Definition
2.5.1.

Definition 4.1.2. [Scope of a node] Let G = (V, E) be a rooted DAG with nodes as in
Definition 4.1.1, and let s ∈ V.

• The scope of s is the set of all variables associated to nodes in the sub-DAG rooted
in s.

71

4. Sum-Product Graphical Models

• The X-scope of s is the set of all variable associated to Vnodes in the sub-DAG
rooted in s.

• The Z-scope of s is the set of variables associated to Observed Sum Nodes in the
sub-DAG rooted in s.

Example 15. The scope of the Sum Node associated to Z2 in Fig. 4.1.1a is {D,E, F, Z2},
its Z-scope is {Z2}, and its X-scope is {D,E, F}.

Finally, we define the set of “V-parents” of a Vnode s, which intuitively are the closest
Vnode ancestors of s.

Definition 4.1.3. [Vparent] The Vparent set vpa (s) of a Vnode s is the set of all r ∈ V
such that r is a Vnode, and there is a directed path from r to s that does not include
any other Vnode.

With the definitions above we can now define SPGMs.

Definition 4.1.4. [SPGM] A Sum-Product Graphical Model S (X,Z|G, {Pst}, {Ws}, {Qs})
or more shortly, S (X,Z) or even S, is a rooted DAG G = (V, E) where nodes can be
Sum, Product or Vnodes as in Definition 4.1.1. The SPGM is governed by the following
parameters:

1. Pairwise conditional probabilities Pst (Xt|Xs) associated to each Vnode t ∈ V and
each Vparent s ∈ vpa (t).

2. Unary probabilities Ps (Xs) associated to each Vnode s ∈ V : vpa(s) = ∅.

3. Unary probabilitiesWs(k) for k = {1, 2, ..., |ch(s)|} associated to each non-Observed
Sum Node s, with value Ws(i) associated to the edge between s and its i-th child
(assuming any order has been fixed).

4. Unary probability Qs(Zs) s.t. ∆(Zs) = {1, 2, ..., |ch(s)|} and associated to each
Observed Sum Node s, with value Qs(i) being associated to the edge between s
and its i-th child.

In addition, each node s ∈ V must satisfy the following conditions:

1. If s is a Vnode (associated to variable Xs), then s has at most one child c, and Xs

does not appear in the scope of c.

2. If s is a Sum Node, then s has at least one child, and the scopes of all children are
the same set. If the Sum Node is Observed (hence associated to variable Zs), then
Zs is not in the scope of any child.

3. If s is a Product Node, then s has at least one child, and the scopes of all children
are disjoint sets.

72

4.1. Sum-Product Graphical Models

(a) (b) (c)

Figure 4.1.1. - Sum-Product Graphical Model Example. (a) A SPGM S (X,Z) with X =
{A,B,C,D,E, F} , Z = {Z1, Z2}. (b) A subtree of S (in green). (c) All subtrees of S are represented
as graphical models and corresponding context variables.

An example SPGM is shown in Fig. 4.1.1, left. Note that the closeness with both
SPNs and GMs, to be further discussed later, can be already seen from the definition:
the last three conditions in definition are closely related to SPN conditions (Definition
3.1.3), whereas the usage of pairwise and unary probabilities in 1.-4. above connects
SPGMs to graphical models.

4.1.2. Message Passing in SPGMs

We now define a message passing protocol used to evaluate SPGMs, which conforms to
the way how SPGMs represent conditional and contextual independence efficiently. The
following definition refers to Definitions 4.1.3 and 4.1.4.

Definition 4.1.5. [Message passing in SPGMs] Let s ∈ V, t ∈ V and let ch(s)k denote
the k-th child of s in a given order. Node t sends a message µt→s;j to each Vparent
s ∈ vpa (t) and for each parent state j ∈ ∆(Xs) according to the following rules:

µt→s;j =
∑|ch(t)|
k=1 [Zt]kQt(k)µch(t)k→s;j t Sum Node, Observed (4.1.1a)

µt→s;j =
∑|ch(t)|
k=1 Wt(k)µch(t)k→s;j t Sum Node, not-Observed(4.1.1b)

µt→s;j =
∏
q∈ch(t) µq→s;j t Product Node (4.1.1c)

µt→s;j =
∑
k∈∆(Xt) Ps,t (k|j) [Xt]kµch(t)→t;k t Vnode (4.1.1d)

73

4. Sum-Product Graphical Models

If vpa (s) is empty, top level messages are computed as:

µt→root =
∑|ch(t)|
k=1 [Zt]kQt(k)µch(t)k→root t Sum Node, Observed (4.1.1e)

µt→root =
∑|ch(t)|
k=1 Wt(k)µch(t)k→root;j t Sum Node, not-Observed (4.1.1f)

µt→root =
∏
q∈ch(t) µq→root;j t Product Node (4.1.1g)

µt→root =
∑
k∈∆(Xt) Ps (k) [Xt]kµch(t)→t;k t Vnode (4.1.1h)

Vnodes at the leaves send messages as in Eqns. (4.1.1d) and (4.1.1h) after substituting
the incoming messages by the constant 1.

Note that that messages are only sent to Vnodes (or to a fictitious “root” for top level
nodes), and no message is sent to Sum and Product Nodes. Notice further that Vnode
messages resemble message passing in tree GMs (Eq. (2.3.6)), which is the base for our
subsequent interpretation of SPGMs as graphical model.

Definition 4.1.6. [Evaluation of S (X,Z)] Let Y ⊆ X ∪ Z denote evidence variables
with assignment y ∈ ∆ (Y). The evaluation of a SPGM S with assignment y, written as
S (y), is obtained by setting the indicator variables accordingly (Definition 2.2.2), followed
by evaluating messages for each node from the leaves to the root due to Definition 4.1.5,
and then taking the value of the message produced by the root of S.

Proposition 4.1.1. The evaluation of a SPGM S has complexity O(|V|M |∆max|2), where
M is the maximum number of Vparents for any node in S, and |∆max| = max{∆(Xs) : s ∈
V} is the maximum domain size for any variable in X.

Proof. Every message is evaluated exactly once. Each of the |V| nodes sends at most M
messages (one for each Vparent), and each message has size |∆max|2 (one value per every
state of sending and receiving node).

4.1.3. Interpretation of SPGMs as Graphical Models

In this section, we consider and discuss SPGMs as probabilistic models. We show that
SPGMs encode large mixtures of trees with shared subparts and provide a high-level
representation of both conditional and contextual independence through D-separation.

Subtrees

We start by introducing subtrees of SPGMs and their properties.

Definition 4.1.7. [Subtrees of SPGMs]
Let S be a SPGM. A subtree τ(X,Z) (or more shortly τ) is a SPGM defined on a

subtree of the DAG G underlying S (cf. Def. 4.1.4), that is recursively constructed based
on the root of S and the following steps:

74

4.1. Sum-Product Graphical Models

• If s is a Vnode or a Product Node, then include in τ all children of s and edges
formed by s and its children. Continues this process for all included nodes.

• If s is a Sum Node, then include in τ only the ks-th child and the corresponding
connecting edge, where the choice of ks is arbitrary. Continue this process for all
included nodes.

We denote by T (S) the set of all subtrees of S.

Example 16. One of the subtrees of the SPGM depicted in Fig. 4.1.1a is shown by
Fig. 4.1.1b.

Definition 4.1.8. [Subtrees τ and indicator variable sets zτ]
Let τ ∈ T (S) be a subtree of S. The symbol zτ denotes the set of all indicator

variables associated to Observed Sum Nodes and their corresponding state in the subtree.
Specifically, if the ks-th child of an Observed Sum Node s is included in the tree, then
[Zs]ks ∈ zτ .

Example 17. The set zτ for the subtree in Fig. 4.1.1b is {[Z1]1, [Z2]0}.

Definition 4.1.9. [Context-compatible subtrees] Let Y ⊆ Z be a subset of context
variables with assignment y ∈ ∆(Y), and let [y] denote the set of indicator variables
corresponding to Y = y. The set of subtrees compatible with context Y = y, written as
T (S|y), is the set of all subtrees τ ∈ T (S) such that [y] ⊆ zτ .

Example 18. The set of subtrees T (S|Z1 = 0, Z2 = 0) for the SPGM in in Fig. 4.1.1 is
composed by subtree τ , shown in Fig. 4.1.1b, and the subtree obtained by modifying τ
through choosing the alternate child of the lowest sum node.

We now state properties of subtrees that are essential for the subsequent discussion.

Proposition 4.1.2. Any subtree τ ∈ T (S) is a tree SPGM.

Proof. Only Product Nodes in τ ∈ T (S) can have multiple children, since Vnodes have
a single child by Definition 4.1.4, case 1, and Sum Nodes have a single child in τ by
Definition 4.1.7. Children of Product Nodes have disjoint graphs by Definition 4.1.4, case
3. Therefore τ contains no cycles. A rooted graph with no cycles is a tree.

Proposition 4.1.3. The number |T (S)| of subtrees of S grows as O(exp(|E|)).

Proof. See Appendix A.3.2.

Proposition 4.1.4. The scope of any subtree τ(X,Z) ∈ T (S(X,Z)) is {X,Z}.

Proof. A subtree is obtained with Definition 4.1.7 by iteratively choosing only one child of
each sum node. However, each child of a sum node has the same scope, due to Definition
4.1.4, condition 6. Hence, taking only one child one obtains the same scope as taking all
the children.

75

4. Sum-Product Graphical Models

P (X,Z) =
∑

τ∈T (S|Z)
λτPτ (X) (4.1.2)

P (X) =
∑

τ∈T (S)
λτPτ (X) (4.1.3)

Pτ (X) =
∏

r∈Vτ : vpa(r)=∅
Pr(Xr)

∏
s∈Vτ ,t:∈Vτ : s∈vpa(t)

Ps,t(Xt|Xs) (4.1.4)

λτ =
∏
s∈Oτ

Qs(ks,τ)
∏
s∈Uτ

Ws(ks,τ) (4.1.5)

Table 4.1.1. - Probabilistic models related to a SPGM S(X,Z). Symbols Vτ , Oτ and Uτ denote
respectively the set of Vnodes, Observed Sum Nodes and Unobserved Sum Nodes in a subtree
τ ∈ T (S). ks,τ denotes the index of the child of s that is included in τ (see Definition 4.1.7).
Evaluation of S (Definition 4.1.6) is equivalent to inference using the distribution (4.1.2), which is a
mixture distribution (4.1.3) of tree graphical models (4.1.4), whose structure depends on the context
as specified by the context variables Z of (4.1.2).

SPGMs as Mixtures of Subtrees

In this section, we show that SPGMs can be interpreted as mixtures of trees. Table 4.1.1
lists the notation and probabilistic (sub-)models relevant in this context.

As a first step, we show that inference in a subtree τ due to Definition 4.1.7 is equivalent
to inference in a tree graphical model of the form (2.3.4), multiplied for a constant factor
determined by the sum nodes in the subtree.

Proposition 4.1.5. Let S = S(X,Z) be a given SPGM, and let τ ∈ T (S) be a subtree
(Def. 4.1.7) with indicator variables zτ (Def. 4.1.8). Then message passing in τ is
equivalent to inference using the distribution

λτPτ (X)
∏

[Zs]j∈zτ

[Zs]j , (4.1.6)

where Pτ (X) is a tree graphical model of the form (4.1.4), λτ > 0 is a scalar term obtained
by multiplying the weights of all sum nodes in τ given by (4.1.5), and

∏
[Zs]j∈zτ [Zs]j is

the product of all indicator variables in zτ .

Proof. See Appendix A.3.1.

The second step consists in noting that S can be written equivalently as the mixture of
all its subtrees.

Proposition 4.1.6. Evaluating a SPGM S(X,Z) is equivalent to evaluating a SPGM
S′(X,Z) =

∑
τ∈T (S) τ(X,Z).

Proof. In Appendix A.3.3.

76

4.1. Sum-Product Graphical Models

We are now prepared to state the main result of this section.

Proposition 4.1.7. Let Yx ⊆ X,Yz ⊆ Z denote evidence variables with assignment
yx ∈ ∆(Yx), yz ∈ ∆(Yz), respectively, and denote by x\y ∈ ∆(X \ Yx), z\y ∈ ∆(Z \ Yz)
assignments to the remaining variables. Evaluating a SPGM S = S(X,Z) with assignment
(yx, yz) (Definitions 4.1.5 and 4.1.6) is equivalent to performing marginal inference with
respect to the distribution (4.1.2) as follows:

P (Yx = yx, Yz = yz) =
∑

x\y∈∆(X\Yx)
z\y∈∆(Y \Yz)

P
(
(X \ Yx) = x\y, (Y \ Yz) = z\y, Yx = yx, Yz = yz

)
.

(4.1.7)

Proof. Due to Propositions 4.1.5 and 4.1.6, the evaluation of S corresponds to performing
message passing (Eq. 2.3.6) with the mixture distribution

∑
τ∈T (S)

(∏
[Zs]j∈zτ

[Zs]j
)
λτPτ (X) .

We now note that the term
(∏

[Zs]j∈zτ [Zs]j
)
attains the value 1 only for the subset of

trees compatible with the assignment Yz = yz and 0 otherwise (since some indicator in the
product is 0), that is for subtrees in the set T (S|Yz = yz) (Definition 4.1.9). Therefore,
the sum can be rewritten as

∑
τ∈T (S|Z), and the indicator variables (with value 1) can be

removed, which results in (4.1.2). The proof is concluded noting that computing message
passing in a mixture of trees with assignment yx, yz corresponds to computing marginals
P (Yx = yx, Yz = yz) in the corresponding distribution (Section 2.3.2), hence Eq. (4.1.7)
follows.

Example 19. All subtrees of the SPGM S(X,Z) shown by Fig. 4.1.1a are shown as tree
graphical models by Fig. 4.1.1c. The probabilistic model encoded by the SPGM is a
mixture of these subtrees whose structure depends on the context variables Z.

The propositions above entail the crucial result that the probabilistic model of a SPGM
is a mixture of trees where the mixture size grows exponentially with the SPGM size
(Definition 4.1.7), but in which the inference cost grows only polynomially (Proposition
4.1.1). Hence, very large mixtures models can then be modelled tractably. This property
is obtained by modelling trees τ ∈ T (S|Z) by combining sets of shared subtrees, selected
through context variables Z, and by computing inference in shared parts only once
(cf. the example in Fig. 4.1.1).

Conditional and Contextual Independence

In this section we discuss conditional and contextual independence semantics in SPGMs,
based on their interpretation as mixture model.

77

4. Sum-Product Graphical Models

Definition 4.1.10. [Context-dependent paths] Consider variables A ∈ X,B ∈ X and a
context z ∈ ∆(Z) with Z ⊆ Z.

• The set π(A,B) is the set of all directed paths in S going from a Vnode with label
A to a Vnode with label B.

• The set π(A,B|Z = z) ⊆ π(A,B) is the subset of paths in π(A,B) in which all the
indicator variables over Z (Definition 4.1.8) are in state z.

Proposition 4.1.8. [D-separation in SPGMs] Consider a SPGM S(X,Z), variables
A,B,C ∈ X and a context z ∈ ∆(Z) with Z ⊆ Z. The following properties hold for the
probabilistic model S corresponding to Eq. (4.1.2):

1. A and B are independent iff π(A,B) = ∅ and π(B,A) = ∅ (there is no directed
path from A to B).

2. A and B are conditionally independent given C if all directed paths π(A,B) and
π(B,A) contain C.

3. A and B are contextually independent given context Z = z iff π(A,B|Z = z) = ∅
and π(B,A|Z = z) = ∅.

4. A and B are contextually and conditionally independent given C and context Z = z

iff all paths π(A,B|Z = z) and π(B,A|Z = z) contain C.

Example 20. In Fig. 4.1.1, A and D are conditionally independent given C; A and C
are conditionally independent given B and context Z1 = 1.

Proof. In a mixture of trees, conditional independence of A,B given C holds iff for every
tree in the mixture the path between A and B contains C (D-separation, see [Cowell
et al., 2003]). If D-separation holds for all paths in π(B,A|z) then it holds for all the
subtrees compatible with Z = z. But P (X,Z) is the mixture of all subtrees compatible
with assignment z (Eq. (4.1.2)). Hence the result follows.

The proposition above provides SPGMs with a high level representation of both
contextual and conditional independence. This is obtained by using different variables
sets X and Z for the two different roles. The set X appears in Vnodes and entails
conditional independences due to D-separation, with close similarity to tree graphical
models (Proposition 4.1.8). The set Z enable contextual independence through the
selection of tree branches via sum nodes.
Note also that using the set of paths π allows to infer conditional and contextual

independences without need to check all the individual subtrees, whose number can be
exponentially larger than the cardinality of π.

78

4.1. Sum-Product Graphical Models

Related Models

SPGMs are closely related to hierarchical mixtures of trees (HMT) [Jordan, 1994] and
generalize them. Like SPGMs, HMTs allow a compact representation of mixtures of trees
by using a hierarchy of "choice nodes" where different trees are selected at each branch
(as sum nodes do in SPGMs). While in HMTs the choice nodes separate the graph into
disjoint branches and thus an overall tree structure is induced, however, SPGMs enable to
use a DAG structure where parts of the graph towards the leaves can appear in children
of multiple sum nodes.
The probabilistic model encoded by SPGMs also has a close connection to Gates

[Minka and Winn, 2009] and the similarly structured Mixed Markov Models (MMM)
[Fridman, 2003]. Gates enable contextual independence in graphical models by including
the possibility of activating/deactivating factors based on the state of some context
variables. Regarding SPGMs, the inclusion/exclusion of factors in subtrees T (S|Z)
depending on values of Z can be seen as a gating unit that enables a full set of tree
factors to be active, which suggests to identify a SPGM as a Gates model. On the other
hand, SPGMs restrict inference to a family of models in which inference is tractable by
construction, while inference in Gates generally is intractable. In addition, SPGMs allow
an interpretation as mixture models, which is not the case for Gates and MMMs.
Finally, we remark that SPGM subtrees closely parallel the concept of SPN subnet-

works, first described in Gens and Domingos [2012] and then formalized in Zhao et al.
[2016b]. However, while subnetworks in SPNs represent simple factorizations of the leaf
distributions (which can be represented as graphical models without edges), subtrees in
SPGMs represent tree graphical models (which include edges).

4.1.4. Interpretation as SPN

In this section we discuss SPGMs as a high level, fully general representation of SPNs as
defined by Definition 3.1.3.

SPGMs encode SPNs

Proposition 4.1.9. The message passing procedure in S (X,Z) encodes a SPN S(X,Z).

Proof. In Appendix A.3.4.

Note that in the encoded SPN, each SPGM message is represented by a set of sum
nodes, which can be seen immediately from Fig. 4.1.2. Each sum node in the set represents
the value of the message corresponding to a certain state of the output variable (namely,
µt→s;j for each j). This entails an increase in representation size (but not in inference
cost) by a |∆max|2 factor. Note also that the role of nodes for implementing conditional
and contextual independence is lost during the conversion to SPN, since both SPGM
Vnode and SPGM sum node messages translate into a set of SPN sum nodes.

79

4. Sum-Product Graphical Models

(a) Observed sum node (Eq. (4.1.1a)). (b) Unobserved sum node (Eq.
(4.1.1b)).

(c) Product node (Eq. (4.1.1c)). (d) Vnode (Eq. (4.1.1d)).

Figure 4.1.2. - Representation of message passing equations as SPNs. For better visibility, sum
and product nodes are assumed to have only two children p, q and with binary variables.

Proposition 4.1.10. SPGMs are as expressive as SPNs, in the sense that if a distribution
P (X,Z) can be represented as a SPN with inference cost C, then it can also be represented
as a SPGM with inference cost C and vice versa.

Proof Sketch. Firstly, due to Proposition 4.1.9, SPNs are at least as expressive as SPGMs
since they encode a SPN via message passing. Secondly, any SPN S can be transformed
into an equivalent SPGM S by simply replacing the indicator variable [A]a in SPN leaves
with Vnodes s associated to variable A and unary probability Ps(A) = [A]a (notice that
pairwise probabilities do not appear). It is immediate to see that by doing so all the
conditions of Definition 4.1.4 are satisfied, and evaluating S with message passing yields
S. As a consequence, SPGMs are at least as expressive as SPNs.

Discussion

Propositions 4.1.9 and 4.1.10, together with the connections to graphical models worked
out above, enable an interpretation of a SPGM S as a high-level representation of the
encoded SPN S. These generalizes what the introductory example demonstrated by
comparing Fig. 1.1.4c with Fig. 1.1.4d.
The SPGM representation is more compact than SPNs because employing variable

nodes as in graphical models enables to represent conditional independences through
message passing. Passing from an SPGM to the SPN representation entails an increase in
the model size due to the expansion of messages by a Npa|∆max|2 factor (see Definition

80

4.2. Learning SPGMs

4.1.5 and Fig. 4.1.2).1
The SPGM representation allows a high level representation of conditional indepen-

dences through Vnodes and D-separation, and of contextual independences through the
composition of subtrees due to context variables Z. In contrast, the roles of contex-
tual and conditional independence in SPNs is hard to decipher (Fig. 1.1.4c) because
there is no distinction between nodes created by messages sent from SPGM sum nodes
(implementing contextual independence) and messages generated from SPGM Vnodes
(implementing conditional independence), both of which are represented as a set of SPN
sum and product nodes (see Fig. 4.1.2). In addition, there is no distinction between
contextual variables Z and Vnode variables X.
Note that SPGMs are not more compact than SPNs in situations in which there are

no conditional independences that can be expressed by Vnodes. However, we postulate
that the co-occurrence of conditional and contextual independences creates relevant
application scenarios (as shown in Section 3.4) and enables connections between SPNs
and graphical models that can be exploited in future work.

Finally, the interpretation of SPGMs as SPN also allows to translate all methods and
procedures available for SPNs to SPGMs. These include jointly computing the marginals
of all variables by derivation [Darwiche, 2003], with time and memory linear cost in
the number of edges in the SPN. In addition, Maximum a Posteriori queries can be
computed simply by substituting the sums in Eqs. (4.1.1) by max operations. We leave
the exploration of these aspects to future work, since they are not central for our present
discussion.

4.2. Learning SPGMs

In this section, we exploit the relations between graphical models and SPNs embodied
by SPGMs and present an algorithm for learning the structure of SPGMs.

4.2.1. Preliminaries

Structure learning denotes the problem of learning both the parameters of a probability
distribution P (X|G) and the structure of the underlying graph G. As both the GM and
the SPN represented by a given SPGM due to Sections 4.1.3 and 4.1.4 involve the same
graph, the problem is well defined from both viewpoints.
Let X = {Xj}Mj=1 be a set of M discrete variables. Consider a training set of N i.i.d

samples D =
{
xi
}N
i=1 ⊂ ∆(X), used for learning. Formally, we aim to find the graph G∗

governing the distribution P (X) which maximizes the Log Likelihood

G∗(X) = arg max
G

LL(G) = arg max
G

N∑
i=1

lnP (xi|G) (4.2.1)

1Note, however, that inference cost remains identical in S and S.

81

4. Sum-Product Graphical Models

or the weighted Log Likelihood

G∗(X) = arg max
G

WLL(G,w) = arg max
G

N∑
i=1

wi lnP (xi|G), wi ≥ 0, i = 1, 2, . . . , N.

(4.2.2)

Learning Tree GMs. Learning the structure of GMs generally is NP-hard. For discrete
tree GMs however the maximum likelihood solution T ∗ can be found with cost O(M2N)
using the Chow-Liu algorithm (Chow and Liu [1968]).
Let Xs, Xt ∈ X be discrete random variables ranging of assignments in the sets

∆(Xs),∆(Xt). Let Ns;j and Nst;jk respectively count the number of times Xs appears
in state j and Xs, Xt appear jointly in state j, k in the training set D. Finally, define
empirical probabilities P s(j) = Ns;j/N and P st(k|j) = Nst;jk/Ns;j . The Chow-Liu
algorithm comprises the following steps:

1. Compute the mutual information Ist between all variable pairs Xs, Xt,

Ist =
∑

j∈∆(Xs)

∑
k∈∆(Xt)

P s,t(j, k) ln P s,t(j, k)
P s(j)P t(k)

. (4.2.3)

2. Create an undirected graph G = (V, E) with adjacency matrix I = {Ist}s,t∈V and
compute the corresponding Maximum Spanning Tree T .

3. Obtain the directed tree T ∗ by choosing an arbitrary node of T as root and using
empirical probabilities P s(Xs) and P st (Xt|Xs) in place of corresponding terms in
Eq. (2.3.3).

If the weighted Log Likelihood (4.2.2) is used as objective function, the algorithm
remains the same. The only difference concerns the use of weighted relative frequencies
for defining the empirical probabilities of (4.2.3): N̂s,j = 1

N̂w

∑N
i=1 δ(xis = j)wi and

N̂st,jk = 1
N̂w

∑N
i=1 δ(xis = j, xit = k)wi, where N̂w =

∑N
i=1wi and xis denotes the state of

variable Xs in sample xi.

Learning Mixtures of Trees. We consider mixture models of the form

P (X) =
K∑
k=1

λkPk(X|θk),

with tree GMs Pk (X| θk), k = 1, . . . ,K, corresponding parameters {θk}Kk=1 and non-
negative mixture coefficients {λk}Kk=1 satisfying

∑K
k=1 λk = 1. While inference with

mixture models is tractable as long as it is tractable with its individual mixture compo-
nents, maximum likelihood generally is NP hard. A local optimum can be found with

82

4.2. Learning SPGMs

Expectation-Maximization (EM) [Dempster et al., 1977], whose pseudocode we report
in Algorithm 4.1 for convenience. The M-step (line 8) involves the weighted maximum
likelihood problem and determines θk using the Chow-Liu algorithm described above.

It is well known that each EM iteration does not decrease the Log Likelihood, hence it
approaches a local optimum.

Algorithm 4.1 EM for Mixture Models(Pk, λk, D)
Input: Initial model P (X|θ) =

∑
k λkPk(X), training set D

Output: Pk(X), λk locally maximizing
∑N
i=1 lnP (xi|θ)

1: repeat
2: for all k ∈ 1...K, i ∈ 1...N do // E-step
3: γk(i)← λkPk(xi)∑

k′ λk′Pk′ (xi)

4: Γk ←
∑N
i=1 γk(i)

5: wki ← γk(i)/Γk
6: for all k ∈ 1...K do // M-step
7: λk ← Γk/N
8: θk ← arg maxθk

∑N
i=1w

k
i lnPk(xi|θk)

9: until convergence

Learning SPNs. Let S(X) denote a SPN, G = (V, E) and graph with edge weights.
Both structure learning (optimizing G and W) and parameter learning (optimizing W
only) are NP-hard in SPNs [Darwiche, 2002]. Hence, only algorithms that seek a local
optimum can be devised.

Parameter learning can be performed by directly applying the EM iteration for
mixture models, while efficiently exploiting the interpretation of SPNs as a large mixture
model with shared parts [Desana and Schnörr, 2016].

To describe EM for SPNs, which will be used in a later section, we need some additional
notation. Consider a node q ∈ V, and let Sq denote the sub-SPN having node q as root.
If q is a Sum Node, then by Definition 3.1.3 a weight wqj is associated to each edge
(q, j) ∈ E . Note that evaluating S(X = x) entails computing Sq(X = x) for each node
q ∈ V due to the recursive structure of SPNs. Hence S(x) is function of Sq(x). The
derivative ∂S (x)/∂Sq(x) can be computed with a root-to-leaves pass requiring O(|E|)
operations [Poon and Domingos, 2011].

With this notation, the EM algorithm for SPNs iterates the following steps:
E step. Compute for each Sum Node q ∈ V and each j ∈ ch(q)

βqj = wqj

N∑
n=1

S (xn)−1 ∂S (xn)
∂Sq

Sj (xn) . (4.2.4)

83

4. Sum-Product Graphical Models

M step. Update weights for each Sum Node q ∈ V and each j ∈ ch(q) by wqj ←
βqj /

∑
(q,i)∈E β

q
i , where ← denotes assignment of a variable.

Since all the required quantities can be computed in O(|E|) operations, EM has a cost
O(|E|) per iteration (the same as an SPN evaluation).
In some SPN applications, weights are shared among different edges (see e.g. Gens

and Domingos [2012], Cheng et al. [2014] and Amer and Todorovic [2016]). Then the
procedure still maximizes the likelihood locally. Let V ⊆ V be a subset of Sum Nodes
with shared weights, in the sense that the set of weights {wqj}j∈ch(q) associated to incident
edges (q, j) ∈ E is the same for each node q ∈ V . The EM update of a shared weight wqj
reads (cf. Desana and Schnörr [2016])

wqj ←
∑
q∈V β

q
j∑

i

∑
q∈V β

q
i

, (q, j) ∈ E . (4.2.5)

Structure learning can be more conveniently done with SPNs than with graphical
models, because tractability of inference is always guaranteed and hence not a limiting
factor for learning the model’s structure. Several greedy algorithms for structure learning
were devised (see Section 5.2), which established SPNs as state of the art models for the
estimation of probability distributions. We point out that most approaches employ a
recursive procedure in which children of sum and Product Nodes are generated on disjoint
subsets of the dataset, thus obtaining a tree SPN, while SPNs can be more generally
defined on DAGs. Recently, [Rahman and Gogate, 2016b] discussed the limitations of
using tree structured SPNs as opposed to DAGs, and addressed the problem of post-
processing SPNs obtained with previous methods, by merging similar branches so as to
obtain a DAG.
Our method proposed in Section 4.2.3 is the first one that directly estimates a DAG-

structured SPN.

4.2.2. Parameter Learning in SPGMs

Parameters learning in a SPGM S can be done by interpreting S as a SPN encoded by
message passing (Proposition 4.1.10) and directly using any available SPN parameter
learning method (these include EM seen in Section 4.2.1 and others [Gens and Domingos,
2012]). Hence, we do not discuss this aspect further.

Note however that Sum Node messages (Definition 4.1.5) require weight sharing between
the SPN Sum Nodes. EM for SPNs with weight tying is addressed in Section 4.2.1.

4.2.3. Structure Learning in SPGMs

Structure learning is an important aspect of tractable inference models, thus it is crucial
to provide a structure learning for SPGMs. Furthermore, it is useful to provide a first

84

4.2. Learning SPGMs

(a) (b) (c)

Figure 4.2.1. - Graphical representation of edge insertion. For simplicity, we start with a SPGM
representing a single MST. Fig. 4.2.1a: Inserting (D,E) creates a cycle (blue). Fig. 4.2.1b: Removing
the minimum edge in the cycle (except (D,E)) gives the MST containing (D,E). Fig. 4.2.1c: The
red MST is inserted into S sharing the common parts.

example of how the new connections between GMs and SPNs can be exploited in practice.
We propose a structure learning algorithm based on the Chow-Liu algorithm for trees

(Section 2.3.4). We start observing that edges with large Mutual Information can be
excluded from the Chow-Liu tree, thus losing relevant correlations between variables (Fig.
1.3.1b, left). An approach to address this problem, inspired by [Meila and Jordan, 2000],
is to use a mixture of spanning trees such that the k-best edges are included in at least
one tree. We anticipate that the trees obtained in this way share a large part of their
structure (Fig. 1.3.1c), hence the mixture can be implemented efficiently as a SPGM.

Algorithm Description. We describe next LearnSPGM, a procedure to learn structure
and parameters of a SPGMs which locally maximizes the weighted Log Likelihood (4.2.2).
We use the notation of Section 4.2.1.

The algorithm learns a SPGM S in three main steps (pseudocode in Algorithm 4.2).
First, S is initialized to encode the Chow-Liu tree T ∗ (Fig. 4.2.1a) – that is, T (S)
includes a single subtree (Definition 4.1.7) τ∗ corresponding to T ∗. Then, we order
each edge (s, t) ∈ E which was not included in T ∗ by decreasing mutual information Ist,
collecting them in the ordered set Q. Finally, we insert each edge (s, t) ∈ Q in S with
the sub-procedure InsertEdge described below, until Log Likelihood convergence or a
given maximum size of S is reached.
InsertEdge(S, T ∗, (s, t)) comprises three steps:

1. Compute the maximum spanning tree over G which includes (s, t), denoted as Tst.
Finding Tst can be done efficiently by first inserting edge (s, t) in T ∗, which creates
a cycle C (Fig. 4.2.1a), then removing the minimum edge in C except (s, t) (Fig.
4.2.1b). The potentials in Tst are set as empirical probabilities P st according to

85

4. Sum-Product Graphical Models

the Chow-Liu algorithm. Notice that trees T ∗ and Tst have identical structure up
to C and can then be written as T ∗ = T 1 ∪ C′ ∪ T 2 and Tst = T 1 ∪ C′′ ∪ T 2, where
C′ = T ∗ ∩ C, C′′ = Tst ∩ C.

2. Add Tst to the set T (S) by sharing the structure in common with T ∗ (T 1 and T 2

above). To do this, first identify the edge (s, t) s.t. s ∈ T 1 and t ∈ C′ (e.g. (B,C)
in Fig. 4.2.1b). Then, create a non-Observed Sum Node q, placing it between s
and t, unless such node is already present due to previous iterations (see q in Fig.
4.2.1c).

At this point, one of the child branches of q contains C′ ∪ T 2. We now add a new
child branch containing C′′ (Fig. 4.2.1c). Finally, we connect nodes in C′′ to their
descendants in the shared section T 2. The insertion maintains S valid since the X
and Z-scope of any node in S does not change. Furthermore, inserting C′′ in this
way we add a subtree representing Tst in T (S), selected by choosing the child of s
corresponding to C′′ .

3. Update the weights of incoming edges of the Sum Node q by using Eq. 4.2.5 on the
set of SPN nodes generated by q with Eq.(4.1.1a) during the conversion to SPN
(see Proposition 4.1.9).

Convergence It is possible to prove that the Log Likelihood does not decrease at
each insertion, and thus the initial Chow-Liu tree provides a lower bound for the Log
Likelihood.

Proposition 4.2.1. Each application of InsertEdge does not decrease the Log Likelihood
of the SPGM (Eq. (4.2.2)).

Proof. InsertEdge adds the branch C′ ∪T 2 to Sum Node q, hence it adds a new incident
edge and a corresponding weight to q. We now note that computing weight values using
Eq. (4.2.5) (step 3 in InsertEdge above) allows to find the optimal weights of edges
incoming to q considering the other edges fixed, as shown e.g. in Desana and Schnörr
[2016].2 Since the new locally optimal solution includes the weight configuration of the
previous iteration, which is simply obtained by setting the new edge weight to 0 and
keeping the remaining weights, the Log Likelihood does not increase at each iteration.

Proposition 4.2.2. The Chow Liu tree Log Likelihood is a lower bound for the Log
Likelihood of a SPGM obtained with LearnSPGM.

Proof. Follows immediately from Proposition 4.2.1, noting that the SPGM is initialized
as the Chow Liu tree T ∗.

2However, this is not the globally optimal solution when the other parameters are free.

86

4.2. Learning SPGMs

Complexity. Steps 1 and 2 of InsertEdge are inexpensive, only requiring a number of
operations linear in the number of edges of the Chow Liu tree T ∗. The per iteration
complexity of InsertEdge is dominated by step 3, in which the computation of weights
through Eq. 4.2.5 requires evaluating the SPGM for the whole dataset. Although
evaluation of a SPGM is efficient (see Proposition 4.1.1), this can still be too costly for
large datasets. We found empirically that assigning weights proportionally to the mutual
information of the inserted edge provides a reliable empirical alternative, which we use
in experiments.

4.2.4. Learning Mixtures of SPGMs

LearnSPGM is apt at representing data belonging to a single cluster, since (similarly
to Chow-Liu trees) the edge weights are computed from a single mutual information
matrix estimated on the whole dataset. To model densities with natural clusters one can
use mixtures of SPGMs trained with EM. We write a mixture of SPGMs in the form∑K
k=1 λkPk(X|θk), where each term Pk(X|θk) is the probability distribution encoded by a

SPGM Sk (Eq. 4.1.3) governed by parameters θk = {Gk, {P kst}, {W k
s }, {Qks}} (Definition

4.1.4).
EM can be adopted for any mixture model as long as the weighted maximum Log

Likelihood in the M-step can be solved (alg. 4.1 line 8). In addition, Neal and Hinton
[1998] show that EM converges as long as the M-step can be at least partially performed,
namely if it possible to find parameters θk such that (see Eq. 4.2.2)

WLL(Pk(X|θk), wk) ≥WLL(Pk(X|θk), wk). (4.2.6)

These observation suggest to use LearnSPGM to approximately solve the weighted
maximum likelihood problem. However, while LearnSPGM ensures that the Chow-Liu
tree lower bound always increases, the actual weighted Log Likelihood can decrease. To
satisfy Eq. (4.2.6), we employ the simple shortcut of rejecting updates of component Sk
when Eq. (4.2.6) is not satisfied for θknew (Algorithm 4.3 line 9). Doing this, the following
holds:

Proposition 4.2.3. The Log Likelihood of the training set does not decrease at each
iteration of EM for Mixtures of SPGMs (Alg. 4.3).

87

4. Sum-Product Graphical Models

Algorithm 4.2 LearnSPGM
(
D = {xi}, {wi}

)
Input: samples D, optional sample weights w
Output: SPGM S approx. maximizing

∑N
i=1wi lnP (xi|θ)

1: I← Mutual Information of D with weights w
2: T ∗ ← Chow-Liu tree with connection matrix I
3: S←SPGM representing T ∗
4: Q← queue of edges (s, t) /∈ E ordered by decreasing Ist
5: repeat
6: InsertEdge (S, T ∗, Q.pop())
7: AssignWeights to the modified Sum Node
8: until convergence or max size reached

Algorithm 4.3 EM for Mixtures of SPGMs(Sk, λk, D)
Input: Initial model P (X) =

∑
k λkSk(X), samples D

Output: Updated Sk(X), λk locally maximizing
∑N
i=1wi lnP (xi|θ)

1: repeat
2: for all k ∈ 1...K, i ∈ 1...N do // E-step
3: γk(i)← λkSk(xi)∑

k′ λk′Sk′ (xi)

4: Γk ←
∑N
i=1 γk(i)

5: wki ← γk(i)/Γk
6: for all k ∈ 1...K do // M-step
7: λk ← Γk/N
8: Sk ← LearnSPGM (D,wk)
9: if WLL(Sk, wk) ≥WLL(Sk, wk) then

10: Sk ← Sk
11: until convergence

88

5. Applications

The introduction of a new architecture and of new procedures, as was done in the previous
chapters, creates the need to provide example applications and to empirically justify the
need for the new representation.

This chapter presents several practical case studies that illustrate the techniques and
architectures discussed in the previous sections of the thesis, with particular focus on
SPGMs. The aim of these examples is to show various settings in which it is convenient
to use jointly SPNs and graphical models, and to provide guidelines for applying these
models in practical situations. We discuss the following applications:

• In Section 5.1, we apply Expectation-Maximization for SPNs with structured
leaves (derived in Section 3.3.2) to a density estimation experiment. We perform a
comparison between state-of-the-art parameter learning algorithms (which learn
only the weights of internal SPN edges) and our EM derivation which allows to
learn jointly edge parameters and the structure of the leaf models, using 20 real
world datasets for density estimation. The results show competitive performances
of our approach, despite using smaller models - suggesting that much of the SPN
complexity can be condensed in learning structured leaf models.

• In Section 5.2, we apply the novel structure learning algorithm derived in Section
4.2 to a density estimation setting. We comparing our method with 7 other state-of-
the-art density estimation models on 20 real world datasets. Results show that our
approach better than all other models in 6 cases over 20 and has close performances
otherwise. In addition, since these results are obtained using a novel approach
and despite comparing against methods based on years of stratified research, this
application is a promising direction of future research.

• In Section 5.3, we describe a joint application of GMs and SPNs. We build a
SPN whose leaves are made by a graphical model for the segmentation of healthy
human retina images presented in Rathke et al. [2014]. We can extend Rathke
et al. [2014] to the to the case of pathological retina images, by using a SPN where
leaves corresponds to graphical models with different priors, adapted to fit well
local pathological deformations of the image. A globally optimal MAP inference
procedure allows to select the best combination of leaves to produce the final
segmentation, under mild assumptions. Empirical results show that this approach
reaches state-of-the-art performances on real world datasets for retina segmentation.

89

5. Applications

• In Section 5.4, we present a preliminary experiment regarding the use of SPGMs
for approximating an intractable graphical model G. To this aim, we follow an
intuitive idea and quantitatively evaluate if it works in practice. We do so by
creating a SPGM S modeling a very large mixture of spanning trees taken from
G, with up to 810 trees, and learning the parameters of S on data sampled from
G. Empirical results indicate that the learned SPGM generalizes better than other
state-of-the-art models, denoting potential for this approach in future work.

• In Section 5.5 we employ SPGMs to model a very rge mixture of Quadtrees whose
structure can be selected dynamically with MAP inference(Crouse et al. [1998]).
Starting from the observation that Quadtrees are tree graphical models, and that
SPGMs are good at modeling large mixtures of trees, we discuss how a particular
form of factors allows SPGMs to represent a very large mixture of Quadtrees with
dynamic structure, alleviating the well known blocky effect that constitutes the
major limitation of Quadtrees. We demonstrate our findings with a preliminary
experiment on denoising pixel level labels. Quantitative results show potential of
this approach in future developments.

5.1. Learning SPNs with Tree Graphical Model Leaves -
Benchmark Evaluation

Parameter learning algorithms for SPNs typically focus on learning edge weights, but
do not allow to learn the parameters governing the distribution at the leaves (see e.g.
Poon and Domingos [2011], Zhao et al. [2016b] and Zhao et al. [2016a]). To address this
problem, we provided in Section 3.3.2 a derivation of Expectation-Maximization (EM)
for SPNs that allows to learn the parameters governing leaf distributions with complex
structure. The aim of this section is to evaluate the possible gains of training jointly the
edge weights and the structure of SPN leaf distributions with EM, as opposed to just
training edge weights and using SPNs with simple indicator variables.

In order to provide a quantitative evaluation, we perform the following two experiments,
using a set of 20 binary datasets that have been widely used as a density estimation
benchmark for SPNs and related architectures, and whose structure is described in Table
5.1.1 (see Gens and Domingos [2013]).

Setup To showcase the connection with graphical models, the models we use for SPN
leaf distributions are Tree Graphical Models, in which weighted maximum likelihood can
be solved exactly (Section 3.3.4).

First, we need to define the structure of the SPN on which we want to test the parameter
learning performances. In order to keep the focus on parameter learning rather than
structure learning we chose to use the simplest structure learning algorithm (LearnSPN,
Section 3.4.2), and augment it to use tree GM leaves by simply adding a fixed number of

90

5.1. Learning SPNs with Tree Graphical Model Leaves - Benchmark Evaluation

5 10 15 20 25 30 35

-62

-60

-58

-56

-54

W

θ

 W,θ

Figure 5.1.1. - Plot of training set Log Likelihood over iterations during EM training on the Jester
dataset. Notice that the LL converges monotonically.

tree leaves to each generated sum node q. The tree leaves are initialized as a mixture
of k trees learned over the data that was used to learn the subnetwork rooted in q (see
Section 3.4.2 for details). To keep the models small and the structure simple, we limit
the depth to a maximum integer value d. The number of trees k and the maximum
depth d are hyperparameters of the algorithm. The algorithms in this section have been
implemented in MATLAB.

Experiment 1: Single Vs. Joint Parameters Training In this experiment we compare
learning using EM updates on edge weights W only and using updates on both weights
and leaf nodes parameters θ (determining the structure and potentials of the tree leaves,
see Section 3.3.2). The SPN structure is first learned from data with the modified
LearnSPN algorithm described in the Setup section above. Then, parameters W and θ
are randomly reinitialized, and EM on the training data is run until convergence of the
training Log Likelihood.

In Table 5.1.1 we report training Log Likelihood when either EM updates on weights
W only, on parameters θ only, or jointly on W and θ are used. Note: when training
only W we also update the weights that define the tree potentials in each leaf, since they
would be SPN weights if the tree leaves were expressed as SPNs. An example convergence
plot of the three EM variants is shown in Fig. 5.1.1. The empirical results show that
indeed EM updates for leaf distributions give better results than updates over the weight
update only. While this is not surprising, since learning only the weights and not the
tree structure leads to a strictly worse increase in Log Likelihood at each leaf update,
the results indicate that learning the leaf structure during parameter training is a better
way of investing computational resources than having a large number of edges and just
tune the edge weights.

Experiment 2: Comparison with State of the Art Parameter Learning Methods In
this experiment we test the generalization capabilities of learning tree leaves with EM

91

5. Applications

Table 5.1.1. - Dataset structure and training set Log Likelihood for Experiment 1 in Section 5.1.
Columns W , θ and (W, θ) denote using EM on the respective parameters. Higher results (in bold)
denote better density estimation performances.

Dataset Nvars |train| |valid| W θ W, θ

NLTCS 16 16181 2157 −6.16 −6.18 −6.14
MSNBC 17 291326 38843 −6.44 −6.41 −6.41
KDDCup2K 64 180092 19907 −2.41 −2.40 −2.35
Plants 69 17412 2321 −17.62 −14.01 −13.78
Audio 100 15000 2000 −42.34 −41.43 −41.21
Jester 100 9000 1000 −55.33 −54.77 −54.38
Netflix 100 15000 2000 −60.04 −58.47 −58.33
Accidents 111 12758 1700 −42.87 −32.37 −31.87
Retail 135 22041 2938 −10.76 −10.67 −10.69
Pumsb-star 163 12262 1635 −41.05 −26.69 −26.45
DNA 180 1600 400 −81.38 −80.68 −79.95
Kosarek 190 33375 4450 −11.12 −10.75 −10.66
MSWeb 294 29441 32750 −10.29 −9.70 −9.69
Book 500 8700 1159 −34.76 −34.68 −33.67
EachMovie 500 4524 1002 −59.05 −55.33 −53.43
WebKB 839 2803 558 −155.89 −148.97 −147.90
Reuters-52 889 6532 1028 −106.17 −92.93 −92.61
20Newsgrp. 910 11293 3764 −145.03 −143.89 −143.22
BBC 1058 1670 225 −261.69 −245.48 −244.95
Ad 1556 2461 327 −52.78 −12.89 −16.29

by comparing the test set Log Likelihood on the benchmark datasets against two state-
of-the-art parameter learning methods. The SPN structure is learned used the simple
structure learning algorithm described in the Setup section above. We perform a grid
search for selecting the hyperparameters of the algorithm: the independence threshold
used in Gens and Domingos [2013], with values λ ∈ {0.1, 0.01, 0.001} (Section 3.4.2);
the number of tree leaves attached to sum nodes, with values k ∈ {5, 20, 30}, and depth
d = {2, 4, 6, } (see Setup). Then, we fine tuned the initial SPN by training W, θ with EM,
stopping as soon as validation Log Likelihood started to decrease.

Results. We compare against two state-of-the-art parameter learning methods:
Concave-Convex Procedure (CCCP, Zhao et al. [2016b]) and Collapsed Variational Infer-
ence (CVI, Zhao et al. [2016a]) which employ LearnSPN for structure learning (like us,
but without depth limit) then re-learn the edge parameters of the resulting SPN. The
results of this experiment are shown in Table 5.1.2. To perform a fair comparison, we
also plot the network size as the number of edges in the network (Table 5.1.2), and for
each tree leaf node we also add to this count the number of edges which would be needed
to represent the tree as a SPN. Our algorithm (column TreeSPN) outperforms CCCP and
CVI in the majority of cases, despite the network size being much smaller (total number
of edges is 5.41M vs. 27.1M). These results indicates that it can be convenient to use
computational resources for modelling SPNs with complex structured leaves, learned
with EM, rather than in just increasing the number of SPN edges. This new aspect
should be explored in future work.

92

5.2. Evaluating LearnSPGM on Benchmark Datasets for Density Estimation

Table 5.1.2. - Experimental results on Learning SPNs with EM. In the bottom row, we report the
number of times one algorithm outperforms the others. Note that TreeSPN performs better (11 wins)
than both CCCP (9 wins) and CVI (1 win) while using much smaller SPNs (5.4M vs. 27M total
edges).

Test LL #edges
Dataset TreeSPN CCCP CVI TreeSPN CCCP
NLTCS −6.01 −6.03 −6.08 2K 14K
MSNBC −6.04 −6.05 −6.29 13K 55K
KDDCup2K −2.14 −2.13 −2.14 50K 48K
Plants −12.30 −12.87 −12.86 60K 133K
Audio −39.76 −40.02 −40.6 93K 740K
Jester −52.59 −52.88 −53.84 93K 314K
Netflix −56.12 −56.78 −57.96 94K 162K
Accidents −29.86 −27.70 −29.55 100K 205K
Retail −10.95 −10.92 −10.91 116K 57K
Pumsb-star −23.71 −24.23 −25.93 105K 140K
DNA −79.90 −84.92 −86.73 167K 108K
Kosarek −10.75 −10.88 −10.70 149K 203K
MSWeb −10.03 −9.97 −9.89 186K 69K
Book −34.68 −35.01 −34.44 434K 191K
EachMovie −55.42 −52.56 −52.63 339K 523K
WebKB −167.8 −157.5 −161.5 713K 1.44M
Reuters-52 −91.69 −84.63 −85.45 604K 2.21M
20Newsgrp. −156.8 −153.2 −155.6 848K 14.6M
BBC −266.3 −248.6 −251.2 881K 1.88M
Ad −16.88 −27.20 −19.00 364K 4.13M
#Wins/TotSize 11 8 1 5.41M 27.1M

5.2. Evaluating LearnSPGM on Benchmark Datasets for
Density Estimation

This section aims at evaluating the performances of our structure learning algorithm for
SPGMs (LearnSPGM, cf. Section 4.2 for details) on real world datasets.

We evaluate LearnSPGM on 20 real world datasets for density estimation described in
Poon and Domingos [2011]. The number of variables ranges from 16 to 1556 and the
number of training examples from 1.6K to 291K (Table 5.1.1). All variables are binary.
We compare against several well cited state-of-the-art methods for density estimation,
referred to with the following abbreviations: MCNets (Mixtures of CutsetNets, Rahman
et al. [2014]); ECNet (Ensembles of CutsetNets, Rahman and Gogate [2016a]); MergeSPN
Rahman and Gogate [2016b]; ID-SPN Rooshenas and Lowd [2014]; SPN Gens and
Domingos [2013]; ACMN Lowd and Domingos [2012], MT (Mixtures of Trees Meila and
Jordan [2000]); LTM (Latent Tree Models, Choi et al. [2011]). These methods report the
current best results on the considered datasets.
Methodology. We found empirically that the best results were obtained using a two

phase procedure: first we run EM updates with LearnSPGM on both structure and param-
eters until validation log-likelihood convergence, then we fine-tune using EM for SPNs on
parameters only until convergence. We fix the following hyperparameters by grid search

93

5. Applications

Table 5.2.1. - Test set Log Likelihood comparison for the experiment in Section 5.2. In the bottom
row, we report the number of times one algorithm performs better or on par with the others.

Dataset SPGM ECNet MergeSPN MCNet ID-SPN ACMN SPN MT LTM
NLTCS -5.99 -6.00 -6.00 -6.00 -6.02 -6.00 -6.11 -6.01 -6.49
MSNBC -6.03 -6.05 -6.10 -6.04 -6.04 -6.04 -6.11 -6.07 -6.52
KDDCup2K -2.13 -2.13 -2.12 -2.12 -2.13 -2.17 -2.18 -2.13 -2.18
Plants -12.71 -12.19 -12.03 -12.74 -12.54 -12.80 -12.98 -12.95 -16.39
Audio -39.90 -39.67 -39.49 -39.73 -39.79 -40.32 -40.50 -40.08 -41.90
Jester -52.83 -52.44 -52.47 -52.57 -52.86 -53.31 -53.48 -53.08 -55.17
Netflix -56.42 -56.13 -55.84 -56.32 -56.36 -57.22 -57.33 -56.74 -58.53
Accidents -26.89 -29.25 -29.32 -29.96 -26.98 -27.11 -30.04 -29.63 -33.05
Retail -10.83 -10.78 -10.82 -10.82 -10.85 -10.88 -11.04 -10.83 -10.92
Pumsb-star -22.15 -23.34 -23.67 -24.18 -22.40 -23.55 -24.78 -23.71 -31.32
DNA -79.88 -80.66 -80.89 -85.82 -81.21 -80.03 -82.52 -85.14 -87.60
Kosarek -10.57 -10.54 -10.55 -10.58 -10.60 -10.84 -10.99 -10.62 -10.87
MSWeb -9.81 -9.70 -9.76 -9.79 -9.73 -9.77 -10.25 -9.85 -10.21
Book -34.18 -33.78 -34.25 -33.96 -34.14 -36.56 -35.89 -34.63 -34.22
EachMovie -54.08 -51.14 -50.72 -51.39 -51.51 -55.80 -52.49 -54.60 †
WebKB -154.55 -150.10 -150.04 -153.22 -151.84 -159.13 -158.20 -156.86 -156.84
Reuters-52 -85.24 -82.19 -80.66 -86.11 -83.35 -90.23 -85.07 -85.90 -91.23
20Newsgrp. -153.69 -151.75 -150.80 -151.29 -151.47 -161.13 -155.93 -154.24 -156.77
BBC -255.22 -236.82 -233.26 -250.58 -248.93 -257.10 -250.69 -261.84 -255.76
Ad -14.30 -14.36 -14.34 -16.68 -19.00 -16.53 -19.73 -16.02 †
#Wins 6 5 9 1 0 0 0 0 0

on validation set: maximum number of edge insertions {10, 20, 60, 120, 400, 1000, 5000},
mixture size {5, 8, 10, 20, 100, 200, 400}, uniform prior {10−1, 10−2, 10−3, 10−9} (used for
mutual information and sum weights). LearnSPGM was implemented in C++ and is avail-
able at the following URL: https://github.com/ocarinamat/SumProductGraphMod.
The average learning time per dataset is 42 minutes on an Intel Core i5-4570 CPU with
16 GB RAM. Inference takes up to one minute on the largest dataset.

Results. Test set log-Likelihood results are shown in Table 5.2.1. Our methods
performs best between all compared models in 6 datasets over 20 (for comparison,
ECNets are best in 5 cases, MergeSPN in 9, MCnets in 1). Notice that in doing so we
obtain the current best available results on these 6 datasets.

Interestingly, LearnSPGM compares well against a well established literature despite
being a radically novel approach, since ECNet, MergeSPN, MCNet, ID-SPN, ACMN,
SPN all create a search tree by finding independences in data recursively (see Gens and
Domingos [2013]). LearnSPGM is simpler than methods with similar performances: for
instance ECnets use boosting and bagging procedures for ensemble learning, evolving
over CNets that use EM, and MergeSPN post-processes the SPN in Gens and Domingos
[2013]. Our model can be improved by including these techniques, such as using ensemble
learning as in ECNets rather than EM as in MCnets. Finally, notice that SPGMs - that
are large mixtures of trees - always outperform standard mixture of trees. This confirms
that sharing tree structure helps preventing overfitting, which is critical in these models.

94

https://github.com/ocarinamat/SumProductGraphMod

5.3. SPNs with GM leaves for Locally Adaptive Priors in Human Retina Images

Figure 5.3.1. - Segmentation of a non pathological human retina in horizontal layers, obtained
with the baseline graphical model discussed in Rathke et al. [2014].

5.3. SPNs with GM leaves for Locally Adaptive Priors in
Human Retina Images

In this section we describe a joint application of SPNs and Graphical Models, which
illustrates the potential of using the two families of models together. We create a SPN that
employs Graphical Models for the segmentation of medical images of the human retina
(Rathke et al. [2014]) as leaf distribution. By using this SPN, we can model a large set of
graphical models adopted to fit local regions, whose selection depending on the context
can be optimally performed through a MAP inference procedure. Empirical results show
that taking the MAP estimates obtained with this approach reaches state-of-the-art
performances on real world datasets for retina segmentation.

5.3.1. Setup

In the field of medical imaging, segmenting retinal tissue deformed by pathologies is
a crucial but challenging task. Segmentation approaches are often constructed with a
certain pathology in mind and may require a large set of labeled pathological scans, and
therefore are tailored to that particular pathology.
We present an approach that can be easily transfered to new pathologies, as it is

designed with no particular pathology in mind and requires no pathological ground truth.
The approach is based on a graphical model presented in Rathke et al. [2014] trained for
healthy scans, which is modified locally by adding pathology-specific shape modifications.
We use the framework of SPNs to enable local modification of the model and to find
the best combination of modified and unmodified local models that globally yield the
best segmentation. The approach further allows to localize and quantify the pathology.
We demonstrate the flexibility and the robustness of our approach, by presenting results
for three different pathologies: diabetic macular edema (DME), age-related macular
degeneration (AMD) and non-proliferative diabetic retinopathy.

5.3.2. Baseline Probabilistic Graphical Model

The model that we develop upon is a probabilistic model of segmentation of images
of the human retina, discussed in Rathke et al. [2014] and summarized here. They
model an OCT scan y ∈ RM×N (M rows and N A-Scans) and its segmentations b and

95

5. Applications

(a) Mild Diabetic RP (b) Intermediate AMD (c) Advanced DME

Figure 5.3.2. - Three different pathologies of different difficulty segmented by our SPN model.
This is solely done by adding new shape information to a graphical model for healthy scans.

c respectively. Here c ∈ NK·N (K boundaries) denotes the discretized version of the
continuous boundary vector b ∈ RK·N , which is the connection between the discrete pixel
domain of y and the continuous boundary domain of b. The graphical model is given by

p(y, c, b) = p(y|c)p(c|b)p(b). (5.3.1)

We will briefly discuss each component, and refer to Rathke et al. [2014] for more
details. Appearance p(y|c). Appearance of boundaries and layers is modeled via
local class-specific Gaussian densities: The probability of pixel yi,j belonging to a class
xi,j ∈ {l1, . . . , ln, t1, . . . , tn−1} (see Fig. 5.3.6 (a)) is modeled as Gaussian,

p(y|c) =
M∏
i=1

N∏
j=1

p(yi,j |c), p(yi,j |c) = N (ỹi,j |µxi,j ,Σxi,j), (5.3.2)

where the class-label xi,j is determined by the boundary configuration c and ỹi,j is a
patch of size around pixel yi,j .

Shape p(b). The global shape prior captures typical variations of cell layer boundaries.
The shape vector b is determined by a linear Gaussian model

b = Ws+ µ+ ε, s ∼ N (0, I), ε ∼ N (0, σ2). (5.3.3)

The matrix W ∈ RK·N×m maps the low-dimensional vector s ∈ Rm onto b. Each column
of W denotes a certain shape variation that gets added to the mean shape µ. Given
n training segmentations X ∈ Rn×N ·K , W is obtained by the first m eigenvectors of
cov(X) weighted by the corresponding eigenvectors, and µ simply is X. The marginal
distribution of b can then be shown to be

p(b) = N (b;µ,Σ = WW T + σ2I). (5.3.4)

MRF Regularization p(c|b). Shape and appearance are combined via a Markov
random field over the discrete variable c. It is composed of column-wise chain models

96

5.3. SPNs with GM leaves for Locally Adaptive Priors in Human Retina Images

Global Shape PriorAppearance

Column-wise MRFs

(a) Graphical Model p(y, b, c)

(b) (c) (d) (e)

Figure 5.3.3. - (a) The baseline graphical model used at the leaves of the SPN, combining shape
and texture components by using a Markov Random Field (b,c,d,e) Our workflow: Given a new OCT
scan (b), we segment many local candidate models (c) (Sec. 5.3.2) being either modified (red = ill)
or unmodified (green = healthy), where each candidate model corresponds to one leaf of the SPN.
We then find the globally optimal combination by running MAP inference in the SPN (d). Finally we
merge the local models into a global one to obtain a smooth segmentation (e).

that allow for parallel inference (with more details to be found in Rathke et al. [2014])

p(c|b) =
N∏
j=1

p(cj |b), p(cj |b) = p(c1,j |b)
K∏
k=2

p(ck,j |ck−1,j , b). (5.3.5)

Inference. Rathke et al. [2014] propose a variational scheme: Design a tractable
graphical model q(c, b) by adding conditional independences to p(c, b|y), and then infer
the full distribution q(b, c) by minimizing the Kullback-Leibler (KL) divergence to p(c, b|y).
They decouple the discrete and continuous model components, q(c, b) = qc(c)qb(b) while
keeping the remaining structure intact: That is qc(c) are column-wise MRFs as in (5.3.5)
and q(b) = N (b; µ̄, Σ̄). Infering q(c, b) then corresponds to minimizing the following
non-convex optimization problem

min
qc,µ̄,Σ̄

KL(q(c, b)‖p(c, b|y)) =
∫
b

∑
c

q(c, b) log q(c, b)
p(c, b|y) . (5.3.6)

Plugging in the definitions of q(c, b) and p(c, b|y) one can find explicit update equations
for the parameters of qc and qb. Of interest for this work is the update step for µ̄, which

97

5. Applications

Figure 5.3.4. - A recursive step of Eq. 5.3.10 represented as a SPN in its MAP form (Section
3.1.2). Notice that lower level operations are reused by several upper level nodes.

is of the form

A(µ̄− µ) = Eqc [c]− µ =⇒ Aµ̄ = (A− I)µ+ Eqc [c], (5.3.7)

which links the mean of qc (Eqc [c]) to the mean of qb (µ̄) via the linear mapping A
determined from Σ. We will revert to this equation at the end of the next Section, see
Eq. (5.3.13).

Optimization. qc(c) is initialized by setting terms p(bk,1|b\j) = 1 and solving the MRF
in (5.3.5) taking into account appearance (5.3.2). After that one solves for µ̄ and Σ̄ while
keeping qc fixed and vise versa until convergence.

5.3.3. Locally Adaptive Priors by SPNs

The model described above, when trained on healthy data, is not sufficiently flexible
to adapt to unseen pathologies with large deformations. We address this problem by
finding a global optimal combination of locally modified submodels using the principle of
maximum-likelihood and dynamic programming.
We assume that models of pathological structure are translation invariant, local and

approximately independent. Independence and locality allow to factorize the full distri-
bution p(y, b, c) into local distributions, an assumption necessary for SPNs. Translation
invariance implies that the pathology can appear at any horizontal position in the image.

Recall that W in (5.3.3) contains typical shape variations of healthy retina layers. We
adapt the graphical model towards an illness, by adding translation-invariant pathology-
specific modes to W :

θill
a,b :=

(
Wa,b W ill

a,b

)
, θhealthy

a,b := Wa,b (5.3.8)

Here subscript a, b denotes the pruning of W to entries lying inside columns a and b. Let

98

5.3. SPNs with GM leaves for Locally Adaptive Priors in Human Retina Images

La,b(θka,b) be the Log Likelihood of the segmentation for region a, b:

La,b(θla,b) := log q
(
ca,b, ba,b|ya,b, θla,b

)
, l ∈ {healthy, ill}. (5.3.9)

Not let X = {x1, x2, ..., xK , N} denote the division into K + 1 regions and θ ={
θl11,x1 , θ

l2
x1,x2 , ..., θ

lK
xK ,N

}
denote a corresponding set of shape modifications. We want to

find the combination of submodels with maximal total Log Likelihood

max
K

max
X

max
θ

L1,N (θ) = L1,x1(θl1x1,x2) + . . .+ LxK ,N (θlKxK ,N) (5.3.10)

The global optimal of this combinatorial problem can be found with dynamic programming.
LetMa,b be the optimal selection ofX and θ in region [a, b]. It can be computed recursively
as:

Ma,b = max
(

max
x∈(a,b)

(Ma,x +Mx,b) , max
li∈{ill,healthy}

La,b(θlia,b)
)
, (5.3.11)

which is the maximum between the single best model over area [a, b] and the optimal
factorization in two adjacent areas. To compute Ma,b for regions of width w, we need
quantities Ma,x,Mx,b for all regions of width < w. Given Ma,x and Mx,b, the complexity
is dominated by the evaluations of La,b(θlia,b).
Assuming a minimal width wmin, this suggests an iterative algorithm: first, compute

Ma,b for regions width wmin. Then, recursively compute Eq. (5.3.11) for regions of
increasingly higher width. We can reduce complexity even further, by increasing and
shifting windows by some fixed step size s > 1. Due to the nature of dynamic programming,
many terms Ma,b get reused during the optimization. To favor more compact subregions,
we add a regularization to (5.3.10) to punish models of small size. This algorithm
implements globally optimal MAP-inference in a SPN, whose structure is defined by Eq.
5.3.10 and is shown in Fig. 5.3.4.

Combining Local Models. In this section we describe a post processing approach used
to smooth the MAP estimates produces by inference in the SPN.

Since there are no interdependencies between submodels found in (5.3.10), due to the
product factorization between the leaves, there may occur jumps in the segmentation. To
obtain a smooth solution for the full B-Scan, we combine them into a modified version of
the full graphical model p(y, b, c).
First note that to decouple any two regions R1 = [1, b] and R2 = [b + 1, N] in the

graphical model, we have to set all entries Σi,j with i ∈ R1 and j ∈ R2 and vice versa to
zero. These two regions now become inferred completely independent. Now, to adapt
the MAP estimate(5.3.10) accordingly, we set

Σ̃Rk = θlRk(θlRk)T + σ2IRk , k = 1, . . .K, (5.3.12)

and set all other entries to zero. Running the full graphical model with Σ̃ would yield

99

5. Applications

Table 5.3.1. - Unsigned error for all tested datasets in µm (1px = 3.87 µm). Surface numbers
(1-9) correspond to Fig. 5.3.6 (a).

Dataset Method Avg. 1 2 3 4 5 6 8 9

RP Tian et al. Tian et al. [2016] 4.48 3.70 4.49 3.84 – 5.75 – – 4.63
Our method 4.08 4.39 4.15 3.84 – 4.65 – – 3.37

AMD Our method 4.90 2.87 – – – – – 6.06 5.77

DME
1-5

Chiu et al. Chiu et al. [2015] 7.82 6.59 8.38 9.04 11.02 11.01 4.84 5.74 5.91
Karri et al. Karri et al. [2016] 9.54 4.47 11.77 11.12 17.54 16.74 4.99 5.35 4.30
Our method 7.71 4.66 6.78 8.87 11.02 13.60 4.61 7.06 5.11

DME
6-10

Chiu et al. Chiu et al. [2015] 5.81 5.01 6.37 7.46 7.34 7.74 3.88 4.34 4.32
Karri et al. Karri et al. [2016] 5.14 3.64 5.95 6.48 6.64 8.00 3.09 4.12 3.17
Our method 5.11 3.62 4.87 5.92 7.50 7.69 3.29 4.83 3.16

exactly the MAP estimate from above.
To smooth this segmentation, while staying as closely as possible to the original estimate,

we modify the inference of µ̄: We replace (5.3.7) by the constrained least-squares problem:

min
x
‖Ãµ̄− (A− I)µ− Eqc [c]‖2, subject to Bµ̄ ≤ δ1 (5.3.13)

Each row in the constraint matrix B selects two neighboring entries in µ̄ belonging to
different regionsRk and restricts their distance to be less than δ. Solving the full graphical
model with Σ̃ then yields a smooth segmentation, as the SPN output in Fig. 5.3.6 (b)
and and the smoothed segmentation in (c) demonstrate.

5.3.4. Results

We demonstrate the flexibility of our approach by segmenting three different pathologies,
ranging from minor deformations to severe distortions of the retina structure. We will
use the same graphical model for all pathologies, only adapting the pathological shape
modes we add.

• Diabetic Retinopathy. The dataset of Tian et al. (Tian et al. [2016]) contains
10 subjects with mild non-proliferative diabetic retinopathy (RP). Only small
deformations occurred, so we simply used the healthy graphical model without the
SPN framework. Unfortunately the information about the positions of the B-Scans
inside the volume was missing. Since we trained individual 2-D shape priors, we
require that information. So we tested all shape-priors for each scan and did two
evaluations, giving an upper and lower bound on the true error: a) Use the largest
likelihood of our model to pick a region and b) choose the region with the smallest
error. We averaged both estimates to obtain the results in Table 5.3.1.

• Age-related Macular Degeneration. The AMD dataset is an in-house dataset

100

5.3. SPNs with GM leaves for Locally Adaptive Priors in Human Retina Images

with 8 Spectralis volumes and labels for surfaces 1, 8 and 9 for all 19 B-Scans.
The examples consisted of early and intermediate AMD. We added one mode with
cosines for surfaces 6− 9, simulating the effect of those layers being pushed up by a
(roughly) circular-shaped fluid deposit underneath. We included Bruch’s membrane
(surface 9) for performance reasons, even though it is supposed to lie below the
fluid region. To obtain a correct segmentation for this surface, we evaluated the
conditional mean µa|b of Eq. 5.3.4, where subscript b denotes the part of the
segmentation that was identified as healthy. This worked well in most cases, but
can fail if there are too many pathological parts. Future work will address this
issue.

• Diabetic Maculuar Edema. The dataset of Chiu et al. (Chiu et al. [2015])
consists of 10 Spectralis volumes with 11 labeled B-Scans per volume. While
volumes 6− 10 are mild and intermediate cases, volumes 1− 5 constitute advanced
DME cases, with disappearing layers (Fig. 5.3.2 (c)) and advanced texture artifacts
due to highly reflective regions characteristic for DME (Fig. 5.3.6 (c)). As these
artifacts do not occur in healthy scans, our texture models failed in these regions.
We dealt with this problem by additionally using smaller patches of size 7 × 7
and 3 × 3 (besides the standard 15 × 15 patches), which reduced sensitivity to
these artifacts. To deal with the disruptive layers, we drop the segmentation in
very low intensity regions when the total width exceeds a certain threshold. Karri
et al. (Karri et al. [2016]) also tested their approach on this dataset, but only
published results for volumes 6− 10, using the first 5 volumes for training. Using
their published code (https://github.com/ultrai/Chap_1), we reversed training
and test set to obtain results for volumes 1 − 5. We also could reproduce their
results.

Results are displayed in the 2 lower blocks of Table 5.3.1 and in Fig. 5.3.6 (d)-(f). In
general, volumes 6− 10 yield lower errors for all approaches as expected. Furthermore,
Karri’s and our approach outperform Chiu et al. The picture changes for volumes 1− 5.
Now Chiu’s and our approach perform on par, beating the one of Karri et al. This is
caused by the lack of shape regularization in their approach, inferring surfaces without
taking others into account.
Pathology hinting. Finally, Fig. 5.3.5 demonstrates another benefit of using a shape

prior. The red marked surfaces showcase the added pathological modes W ill
a,b, indicating

where the healthy shape prior had to be modified to fit the pathological scan.

101

https://github.com/ultrai/Chap_1

5. Applications

Figure 5.3.5. - Estimates of the fluid regions due to the selected pathological modes.

102

5.3. SPNs with GM leaves for Locally Adaptive Priors in Human Retina Images

ONL + IS

OPL

INL

NFL

GCL + IPL

CC

OS

RPE

Choroid

Vitreous Body

(a) Segmented retina layers. (b) SPN output

(c) Smoothed estimate (d) Large fluid deposit

(e) Several small deposits (f) Hyperreflecive loci

Figure 5.3.6. - (a) The names of the segmented retina layers. Surfaces 1-9 lie in between layers
l1, . . . , l10. Used with permission from Rathke et al. [2014]. (b) and (c) Combining and smoothing a
SPN estimate. Note that Bruch’s membrane (surface 9) gets fitted in a post-processing step, described
in the results section. (d)-(f) Example segmentations from the DME dataset.

103

5. Applications

5.4. Very Large Mixture of Spanning Trees for Density
Estimation in Layered Distributions

In this section we present a preliminary experiment regarding the use of SPGMs for
approximating an intractable graphical model G. To perform a preliminary investigation
on this property, we limit our discussion here to quantitatively evaluate if such an
approach works in practice in a small academical setting, leaving a full fladged discussion
to future work.

We start with the observation that mixtures of spanning trees have been used extensively
to approximate intractable graphs (see e.g. Meila and Jordan [2000], Bach and Jordan
[2001], Pletscher et al. [2009]). In these models, the approximation quality typically
increases with the number of components in the mixture, hence the ability of SPGMs to
model very large mixture of trees suggests that SPGMs might be apt for this approach
(as already seen in Section 5.2).

Hence, the procedure that we employ is twofold. First, we find a mixture of spanning
trees over G such that many parts between the trees are shared, in such a way as to
implement this mixture efficiently with a SPGM S. Secondly, we learn the parameters
governing S by maximizing the Log Likelihood of a set of samples taken from G. This
can be done in case G is a directed graphical model, for which samples can be obtained
efficiently with Ancestor Sampling even if inference is infeasible (Pearl [2000]).

However, finding a set of spanning trees with shared parts, which can then be efficiently
represented as SPGM, is not a simple problem. We leave a full fledge discussion of this
approach for future work, and in this preliminary application we consider a class of
models for which such mixture can be easily found.

Layered Distributions. A large mixture of spanning trees can be obtained with a
simple heuristic in the case of layered distributions. We define a layered distribution
as a directed GM composed by successive layers of variables, where variables in one
layer connect only to variables in the next one. Variable X l

k denotes the k-th variable
at layer l (Fig. 5.4.1a). This class of distributions is relevant in applications, since it
includes Factorial Hidden Markov Models, Multiscale Quadtrees (Wainwright and Jordan
[2008]) and deep belief networks (Hinton and Osindero [2006]). Inference cost in Layered
Distributions is worst case exponential in the layer size and it is therefore intractable.
However, samples can be obtained efficiently with ancestral sampling.

A spanning tree can be taken from a layered distribution by allowing a single “active
variable” to have children at each layer (Fig. 5.4.1b). It is easy to see that if two trees
T1 and T2 taken in this way differ only by the choice of one active variable, then their
structure is largely shared - this is due to the fact that parts of the trees corresponding
to the same active variables are identical.
The mixture of many spanning trees with this structure can be modeled compactly

with the SPGM shown in Fig. 5.4.2: notice that any subtree in this model corresponds

104

5.4. Very Large Mixture of Spanning Trees for Density Estimation in Layered Distributions

to a tree in the form of Fig. 5.4.1, right, hence the SPGM encodes the mixture of all
such trees (Proposition 4.1.7).
In addition, we can also allow more than one variable to be active at the same time,

i.e. allow more than one variable in the same layer to have children (Fig. 5.4.1c). This
can be done by creating a clique by merging the state of all active variables in a single
node: e.g., if two variables A and B are active at a certain layer, then we create a node
associated to a variable {A,B} with values in ∆(A)×∆(B), which merges the individual
variables (Fig. 5.4.1d).

The resulting SPGM efficiently encodes a very large mixture of trees with shared parts.
Let the model contain L layers, and let there be C choices of active variables at each
layer. Then it is immediate to see that the number of subtrees, each of which corresponds
to a spanning tree, grows as CL due to the combinatorial number of choices of active
variables at each layer. However, due to Proposition 4.1.1 inference in the SPGM has
just O(LC2) cost in memory and time. This exponential reduction in inference cost is
made possible by exploiting the fact that many parts of the trees are shared.

(a) A subsection of a layered directed
GM.

(b) A subsection of a spanning tree of
(a).

(c) Allowing two active variables per
layer.

(d) The model in (c) represented as a
tree.

Figure 5.4.1. - A mixture of spanning trees with shared subparts obtained from a layered directed
graphical model, as discussed in Section 5.4.

105

5. Applications

Figure 5.4.2. - First two layers of an SPGM encoding a mixture of spanning trees in a layered
model with K variables per layer. X l

k denotes the k-th variable at layer l.

Empirical Evaluation. We tested the SPGM on a layered mixture model with 10 layers,
each containing 6 binary variables. As described above, we created a SPGM encoding
a mixture of spanning trees over this model, whose parameters are learned by taking a
set samples from the layered distribution, dividing them into training and test set and
maximizing the training Log Likelihood via EM (Section 3.3.2).

We report Log Likelihood results obtained by SPGMs and several well established
methods for density estimation in Table 5.4.1. We test SPGM models using a different
number of choices of active variables per layer (i.e. the number of sum node children),
which result in an increasingly large number of subtrees in the resulting mixture model.
Choosing from 1 to 8 possible active variables per layer, the mixture size ranges from 1 to
810. We also rest different numbers of active variables at each layer (1,2 and 4). We first
compared against methods based on trees, namely the optimal spanning trees (Chow and
Liu [1968], see Section 2.3.4) and mixture of trees trained with EM (Meila and Jordan
[2000], see Section 2.4). We report separate results depending on the number of trees in
the mixture. Then, we compared against two state-of-the-art density estimation methods
for SPNs: ACMNs (Section 3.4.1) and ID-SPN (Section 3.4.2).

From the quantitative results it is evident that SPGMs widely outperform all competing
methods in terms of test set LL. In particular, they do not seem to suffer from the
overfitting problem that plagues mixtures of tree even for moderately large mixture sizes.
In addition, very large mixtures with up to 810 tree components can be modeled tractably:
learning time was about 5 minutes in a non-optimized MATLAB implementation. We
hypothesize that this is due to the strong regularization imposed by sharing the structure,
and hence the parameters, between the trees in the mixture. The results of this preliminary
experiment show that using SPGMs as approximation of an intractable graph with known
structure is a very interesting research direction, to be explored in future work.

106

5.5. SPGMs for Quadtree Images Models

Table 5.4.1. - Log Likelihood values for the experiment in Section 5.4, for different models (rows)
and for different number of trees in the mixture (columns, only defined when the model is a mixture of
trees). Unavailable result are due either to excessive run time (for mixture of trees with more than 210

components) or because the algorithm is not applicable for the given number of trees (for SPGMs).
Notice that SPGMs obtain by far the best test set LL scores.

model/#trees 1 10 20 40 210 410 610 810

Chow-Liu tree, Train −27.7
Chow-Liu tree, Test −30.2
Mix. Tree, Train −20.6 −17.5 −14.2
Mix. Tree, Test −23.4 −23.7 −24.2

SPGM, 1 act. var. per layer, Train −34.1 −24.7 −18.4 −16.3
SPGM, 1 act. var. per layer, Test −34.5 −25.7 −20.0 −17.8
SPGM, 4 act. vars. per layer, Train −31.5 −21.2 −16.5 −15.4 −14.8
SPGM, 4 act. vars. per layer, Test −32.1 −22.6 −18.1 −17.1 −16.5
SPGM, 6 act. vars. per layer, Train −20.7 −14.9 −13.6 −13.3 −13.8
SPGM, 6 act. vars. per layer, Test −22.1 −16.9 −15.6 −15.1 −15.9

ACMN, Train −21.7
ACMN, Test −23.9
IDSPN, Train −19.7
IDSPN, Test −21.6

5.5. SPGMs for Quadtree Images Models

In this section we show an example application of SPGMs to model a large mixture
of Quadtrees for image denoising (Laferté et al. [2000]). Starting from the observation
that Quadtrees are tree graphical models, and that SPGMs are good at modeling large
mixtures of trees, we discuss how a particular form of factors allows SPGMs to represent
a very large mixture of Quadtrees. Empirical results in a preliminary experiment denote
potential for future real world applications.

Quadtrees Quadtree models (see Laferté et al. [2000]) provide a hierarchical represen-
tation of 2D images as a tree T = (V, E) where each node s ∈ V is associated to a square
area of the image denoted Rs, as follows: leaf nodes corresponds to pixels, and nodes at
higher levels are iteratively composed by connecting four adjacent nodes at lower levels
(Fig. 5.5.1). A directed tree graphical model is defined on a Quadtree by associating each
node s ∈ V to a variable Xs with domain ∆(Xs), and assigning probability Pr(Xr) to
the root node r ∈ V and pairwise conditional probabilities Pst(Xt|Xs) to each (s, t) ∈ E .
Quadtrees have found several applications in image processing, due to the flexibility

in choosing the potentials of the graphical model: for instance, they have been used
to model relations between wavelet coefficients at multiple scales (Crouse et al. [1998])
and to perform segmentation (Feng et al. [2002]) and denoising (Beaulieu and Goldberg
[1989]). We consider here Quadtrees for denoising of image labels. In this case, each
variable Xs takes values in the discrete domain and each value represents a label in the
scene (see e.g. images in Fig. 5.5.5). The pairwise potentials Pst(Xt|Xs) in the quadtree

107

5. Applications

can assume several forms, but they are generally attractive with respect to the parent
variable, i.e. they assign a higher probability when variable is in the same state as the
child variable. One possible form is the Potts model, which assign a probability p > 0
when parent and child nodes are in the same state, and q < p if they are in different
state. Denoising is performed by taking the Maximum a Posteriori (MAP) state after
performing inference on the Quadtree given the current observed pixels.

Quadtrees have been used for image modeling since their hierarchical structure naturally
leads to a coarse to fine representations of the image at successive levels. Furthermore,
they provide a natural mechanism for all regions in the image to have some influence
over each other and thus exert global consistency, and they have potential for using the
segmentations given at higher levels in image coding applications.
However, Quadtrees have a crucial limitation in the fact that the generated image

models assume a “blocky” aspect, due to the fixed subdivision in square regions induced
by the tree structure. To solve the problem two main approaches have been proposed:

• Grid structured Markov Random Fields (Pearl [2000]) represent images through a
grid structured undirected graphical model where each node in the grid represents a
pixel, thus do not suffer of blockiness. However, in contrast to Quadtrees inference
in these models is generally is intractable and the representation is not hierarchical.
The issue of dealing with a hierarchical representation for MRFs is considered e.g.
in He et al. [2004].

• Dynamic Tree Models (Adams and Williams [2003]) aim to make the Quadtree
structure more flexible by allowing each node to select an arbitrary parent between
nodes in the previous level of the tree (in contrast, in Quadtrees each node has a
fixed parent). The selection is based on a distribution on the set of all possible
choice of parents. Inference in the joint distribution (involving the selection of tree
edges) is intractable, but once the MAP tree has been found (with approximate
inference) it becomes tractable.

We propose here an alternative approach: we use a SPGM to model a large mixture of
Quadtrees, and choose the one whose structure best fits the image given the observed
data. In this way the blockiness problem is, hopefully, alleviated by the flexible selection
of edges.

The SPGM model for a mixture of Quadtrees A Quadtree SPGM is a SPGM that
encodes a mixtures of Quadtrees with flexible subdivision of images in subregions. We
provide here an description of how the SPGM Quadtree model is obtained.

Let us assume that the image covers a squared area, for simplicity. First, we create the
root node r as a Vnode associated to the full image area. Below the root node we create
a Sum Node, whose children are Product Nodes representing the splits of the parent’s
area as in Fig. 5.5.2a. The sum node encodes the “choice” of the split type, and the
product nodes encode the actual split (notice that only one child of the Sum Node is

108

5.5. SPGMs for Quadtree Images Models

Figure 5.5.1. - Basic Quadtree structure, recursively square image regions into sub-areas up to
single pixels.

included in a subtree, by Definition 4.1.7). Then, the procedure is repeated recursively
for each Vnode corresponding to child areas: squared areas are subdivided with the rule
of Fig. 5.5.2a, and rectangular areas with the rule of Fig. 5.5.2b, right. This procedure
is repeated until the pixel level is reached.
Most importantly, we remark that this subdivision does not lead to an exponential

explosion of the number of children, since many of the internal Vnodes can be shared
between several higher level subdivisions. In fact, it is only necessary to create Vnodes
corresponding to areas of size w×w, w×2w and 2w×w, for w = {1, 2, 4, 8, . . . ,W}where
W is the size of the top level region. With this structure it is then possible to model
tractably a very large mixture of Quadtrees (exponential in the Quadtree depth), due to
the fact that nodes in lower layers are shared between multiple trees.
The ability of SPGMs to reuse internal nodes in several Quadtrees is be seen by

considering the example Quadtree SPGM shown in Fig. for the 1D case of a 4× 1 pixel
image: notice that several nodes have multiple parents and thus are shared by multiple
subtrees (see Section 4.1.3).

Intuitively, each subtree in the SPGM can be seen as an extension of the single Quadtree
model, where each node rather than being split in four fixed parts can be split in four
different ways depicted in Fig. 5.5.2a. A full tree is obtained by recursively performing
this split at lower regions, until regions covering a single pixel are reached. One of such
subtrees is shown in Fig. 5.5.4.

Encoding mixtures of Quadtrees in a SPGM in this way has two main advantages:

• It allows to model tractably very large mixtures of trees (exponential in the depth
of the SPGM, but still with polynomial inference cost due to Proposition 4.1.1).

• It alleviates the problem of blocky representations, since MAP inference can be
performed exactly and thus the location of the borders can be chosen in order not
to split continuous parts of the images. Notice that the rougher splits at higher
level nodes corresponds to lower image resolutions, which agrees with the Laplacian
Pyramid-like interpretation of Quadtrees in image models.

109

5. Applications

(a) (b)

Figure 5.5.2. - (a) A node covering a square region of the image (top) has as children the mixture
of 4 possible splits of the region (below). Note that the sum node act as a mixture, and that this can
be seen as the mixture of 4 trees, one for each child of the sum node. The standard Quadtree model
is obtained when only the leftmost split is selected. (b) Subdivision for a rectangular region.

Figure 5.5.3. - An example SPGM S encoding a mixture of Quadtrees in 1D. Left: Quadtree
SPGM over a 6× 1 rectangle, recursively divided according to Fig. 5.5.2a, but in 1D . Labels a : b
denote variables associated to the area from a to b inclusive. In green, a subtree of S. Right: the
subtree in green represented as a directed GM. Each subtree in the model assumes this form, and S
encodes the mixture of all such subtrees.

110

5.5. SPGMs for Quadtree Images Models

8
7

6
5

4
3

2
11

2

3

4

5

6

7

8

3

4

3.5

4.5

5

5.5

6

6.5

7

2.5

2

Figure 5.5.4. - 3D representation of one of the subtrees of the SPGM encoding a mixture of
Quadtrees over an 8× 8 pixel image. Notice that the selection of region borders can change locally. A
Quadtree SPGM represents the mixture of all possible subtrees of this kind.

A Simple Denoising Experiment In this preliminary experiment we test the perfor-
mances of SPGM Quadtrees against standard Quadtrees and against grid Markov Random
Fields (MRFs). To this aim, we used the labeled images in the Sowerby dataset described
in Adams and Williams [2003], which contains 105 labeled images of size 96x64 and 7
labels. This dataset contains a set of road scenes and has been widely used in literature
on semantic segmentation.

In our simple experiment we add random noise to the dataset labels and try to recover
the original labels by performing MAP inference on standard Quadtrees, SPGM Quadtrees
and on MRFs (in which inference is computed by Tree Reweighted Message Passing
by using the OpenGM toolkit (Andres et al. [2012])). We created the structure of a
SPGM S with the algorithm described above, and used simple Potts-like potentials with
probability of maintaining the same state 0.7.

Accuracy of the reconstruction if 88.4% for standard Quadtrees, 90.2% for SPGM
quadtrees and 90.6% for Potts models. Notice that the results improve over standard
quadtrees, although they are worse than MRF models, which are not restricted to
rectangular sub-areas of the image and are therefore mode apt for this application. In
addition, SPGM Quadtrees allow to use a hierarchical structure, a characteristic which
differentiates them from planar MRFs and is exploited in the next experiment. Graphical
results of the denoising procedure are shown in Fig. 5.5.5.

111

5. Applications

Comparison with Dynamic Trees for Image Compression

Similarly to SPGMs, Dynamic Trees (Adams and Williams [2003]) alleviate the problem
of fixed region borders by selecting the optimal tree (via approximate inference) and
then performing denoising on the selected tree (see the discussion above). In contrast to
SPGMs, inference in Dynamic Trees cannot be computed exactly. However, they allow
more flexibility than SPGMs in selecting the tree structure, since a node at level l can be
connected to any parent in level l − 1.
First, in order to highlight the ability of SPGMs to select dynamically the best tree,

we show the map tree obtained over 1d binary signals in figure 5.5.6 in comparison to
Quadtrees and Dynamic Trees. Notice that SPGMs and Dynamic Trees can both adapt
their structure to the input signal, in contrast to standard Quadtrees.

Then, we compare the two models in practice by reproducing the experiments performed
in Adams and Williams [2003]. The Dynamic Tree, Quadtrees and also SPGMs are
generative, probabilistic models of label images. We can evaluate the quality of the
learned models by calculating the Log Likelihood on the test set of 43 images used by
Adams and Williams [2003], which can then be used to obtain the average coding cost in
bits per pixel (bpp) of an image X with N pixels, given by:

Coding Cost = − log2 P (X)
N

,

where P is the probability function of the model. Lower coding cost denotes better
performances. The results shown in Table 5.5.1 show that our model is in this sense
better than Dynamic Trees. Hence, this preliminary application indicates that SPGMs
for mixture of Quadtree represent, once again, an interesting direction of research.

Model Coding Cost (bits per pixel)
Mean Field Fixed Tree 0.8588

Dyn. Tree - CPT only 0.4089
Full Dyn. Tree 0.3805

Exact EM Fixed Tree 0.3421
JPEG-LS 0.3810
SPGM 0.3103

Table 5.5.1. - Coding Cost of the test set in the test set of 43 images from the Sowerby dataset
described in Adams and Williams [2003]. Lower value indicates better performance.

112

5.5. SPGMs for Quadtree Images Models

image

20 40 60 80

10

20

30

40

50

60

ground truth labeling

20 40 60 80

10

20

30

40

50

60

with noise

20 40 60 80

10

20

30

40

50

60

SPGM MAP

20 40 60 80

10

20

30

40

50

60

Quadtree MAP

20 40 60 80

10

20

30

40

50

60

Potts MAP

20 40 60 80

10

20

30

40

50

60

(a)

image

20 40 60 80

10

20

30

40

50

60

ground truth labeling

20 40 60 80

10

20

30

40

50

60

with noise

20 40 60 80

10

20

30

40

50

60

SPGM MAP

20 40 60 80

10

20

30

40

50

60

Quadtree MAP

20 40 60 80

10

20

30

40

50

60

Potts MAP

20 40 60 80

10

20

30

40

50

60

(b)

Figure 5.5.5. - Denoising using SPGMs, Quadtrees, and a Markov Random Fields with Potts
potentials, performed on two images from the Sowerby dataset (Adams and Williams [2003]). Note
that the images denoised with SPGMs suffer less from blockiness than Quadtrees (but more than
the Markov Random Fields, which does not assume rectangular image regions). In addition, SPGMs
preserve more details than both competing models - see e.g. the car in (a).

113

5. Applications

5 10 15 20 25 30

5

10

15

20

25

(a)

5 10 15 20 25 30

5

10

15

20

25

(b)

5 10 15 20 25 30

5

10

15

20

25

(c)

(d) (e) (f)

5 10 15 20 25 30

5

10

15

20

25

(g)

5 10 15 20 25 30

5

10

15

20

25

(h)

5 10 15 20 25 30

5

10

15

20

25

(i)

Figure 5.5.6. - Comparison of MAP tree obtained with Quadtrees (row 1), dynamic trees (row
2) and SPGMs (row 3) on three data samples (left to right). Note that the trees obtained in row 1
(Quadtrees) have fixed structure, while the ones in 2 and 3 have flexible structure that can adapt to
the data. Figures in row 2 are taken from corresponding examples in Adams and Williams [2003].

114

6. Conclusions and Future Work

6.1. Conclusions

In this thesis we investigated and developed connections between the field of probabilistic
Graphical Models (GMs) and Sum-Product Networks (SPNs).

First, we investigated SPNs that employ GMs as leaf models, obtaining a derivation of
EM that allows to learn jointly the SPN parameters and the GM leaves ones.
We introduced Sum-Product Graphical Model (SPGM), a new architecture bridging

Sum-Product Networks (SPNs) and Graphical Models (GMs) by inheriting the expressivity
of SPNs and the high level probabilistic semantics of GMs. The new connections between
the two fields were exploited in a structure learning algorithm extending the Chow-Liu
tree approach.
Finally, we presented several applications of the new tools and architectures, with a

particular focus on SPGMs. We found that the structure learning algorithm LearnSPGM
is competitive with the state of the art methods in density estimation despite using a
novel approach and being the first algorithm to directly obtain DAG structured SPNs.
Furthermore, we showed some application settings of SPGMs that denote promise of
such architecture in real world scenarios that are typically out of the domain of SPNs.

6.2. Future Work

As a concluding note to this thesis, we present several extensions to the framework of
Sum-Product Graphical Models that should be subject of future work.

6.3. Generalizing SPGMs

The definition of SPGMs can be generalized in several ways to adapt it to different
application settings:

• An undirected representation of SPGMs can be obtained straightforwardly by re-
placing conditionals probabilities in Definition 4.1.4 with non-normalized potentials.
Namely, terms Ps (Xs) and Pst (Xt|Xs) in the SPGM definition can be replaced by
factors ϕs (Xs) and ϕst (Xs, Xt), whose elements are constrained to be non negative
but they are not constrained to be normalized. Since message passing in directed
and undirected tree graphical models assumes the same shape, all the subsequent
propositions on SPGMs (that are based on message passing for trees) still maintain

115

6. Conclusions and Future Work

validity.
In contrast to the directed GM case, however, there is need to normalize the
distribution by dividing for the partition function. The partition function can be
efficiently computed with an evaluation of the SPGM with no observed variables,
due to Proposition 4.1.7.

• Continuous variables can be used at leaf nodes, but not at the internal nodes. This
can be done because summation can be substituted with integration at the leaf
messages while at the same time maintaining a discrete number of states in the
leaf messages (cf. Definition 4.1.5) . Thus, leaf messages can be passed to internal
nodes exactly sas in discrete SPGMs. This allows to apply SPGMs to situations
where the leaf variables should be continuous, which arise often e.g. in the field of
image processing.

• The expressive power of SPGMs can be extended by modeling mixtures of Junction
Trees rather than modeling mixtures of trees. In this way, each Junction Tree
corresponds to inference in a graphical model with cycles, but with tractable
treewidth (Section 2.3.3).
This can be done by performing three changes: firstly, each Vnode t ∈ V should be
associated to a set of variables Xt, like nodes in Junction Trees, as opposed to a
single variable like in SPGMs. Secondly, the running intersection property must
be enforced between s and each s ∈ vpa(t) (cf. 2.3.3). Finally, the Vnode message
must be modified to match the message sent between nodes in Junction Trees (Eq.
2.3.7).
With these changes, it is possible to show that SPGMs encode a mixture of Junction
Trees exactly in the same way as usual SPGMs encode a mixture of trees.

6.4. Tree-Reweighted Message Passing with SPGMs

An interesting aspect of tractable probabilistic models is to approximate inference in
intractable models, and a particularly relevant application of this concept lies in the
approximation of intractable graphical models by a convex combination of trees. This line
of research was first introduced for the maximization of the energy of intractable GMs in
Wainwright et al. [2002] (Tree-Reweighted Message Passing). Then, Wainwright et al.
[2003] extended the approach to the approximation of the log partition function, which
allows to compute approximate marginals. Later, Kolmogorov [2006] showed a convergent
procedure called Sequential that is guaranteed to increase a lower bound of the MAP
energy iteratively. Finally, Meltzer et al. [2009] unified these approaches by showing that
the convergent sequential procedure described in Kolmogorov [2006] also allows to find
an approximation of the log partition function by simply substituting summations with
max. This algorithm provides an efficient, sequential convergent approximation for the
partition function.

116

6.4. Tree-Reweighted Message Passing with SPGMs

At a high level, Tree-Reweighted Message Passing aims to approximate a certain
probability distribution P (X) governed by a graph G = (V, E) with a mixture model∏K
k=1 ρkTk(X), where {ρk ≥ 0} and {Tk}Kk=1are tree graphical models. It requires taking

each edges (s, t) ∈ G in a given order and re-estimating its associated pairwise probability
Pst with the following rules:

1. Reparametrization Step: compute the marginal probability Tk(Xs, Xt) for each
tree {Tk}Kk=1 in the mixture model (which requires passing messages in the tree).

2. Averaging Step: Substitute Pst with the weighted average P st =
∑K
k=1 ρkTk(Xs, Xt).

By iterating the procedure above and choosing a particular order of edges, Kolmogorov
[2006] showed that the algorithm converges to a local minimum of the Kullback-Leibler
divergence with respect to the original distribution.
A crucial step to make this procedure tractable is to use a mixture in which several

sections of the trees are shared, in such a way that messages can be computed only once
and parameters can be updated simultaneously for a large number of trees in the mixture.
Kolmogorov [2006] obtains this by using a mixture model in which each element is a chain
graph (i.e. each node is connected to at most two nodes), and in which nodes in all chains
are consistent with a given ordering: since messages are in common between several
chains, inference in the mixture can be greatly simplified. Furthermore, the marginals
can be computed with only local operations due to the message structure. The authors
note that using longer chains and a large number of mixture components empirically
helps to obtain better maxima and faster convergence.
The last observations make using SPGMs for Tree-Reweighted Message Passing an

appealing direction of future research, due to their ability to compactly model very large
mixtures of trees by naturally sharing subsections of the trees and reusing the related
messages. In particular, a preliminary analysis of this application showed that steps 1 and
2 above can be performed with local operations in SPGMs, similarly to what happens in
mixture of chain graphs in Kolmogorov [2006]. Thus, Tree-Reweighted Message Passing
can potentially be applied to the very large, hierarchical mixture of trees encoded by
SPGMs. This opens an interesting research area in learning SPGM to approximate an
intractable graphical model, which should be subject of future work.

117

A. Appendix - Proof Details

A.1. Proof of Proposition 3.1.8

Proof. Consider the mixture implementation of a SPN (Eq. 3.1.6), and let us compute
the marginal w.r.t. a variable V ∈ X by summing out the remaining variables X\V :∑

x∈∆(X\V)
S(X) =

∑
σ∈Σ(S)

λσ
∑

x∈∆(X\V)
Pσ(X).

Now, let us note that each element Pσ is by Eq. 3.1.8 the product of some subset
of the leaf distributions Lc ⊆ L(S), in the form Pσ =

∏
i∈Lσ ϕi(Xi). Since the scopes

are disjoint (see Eq. 3.1.8 again), one and only one of these leaves includes V in
its scope. Calling this leaf ϕvσ , we can separate the product Pσ =

∏
i∈Lσ ϕi(Xi) as

Pσ = ϕvσ(Xvσ)
∏
i∈Lσ\vσ ϕi(Xi). Then, moving the sum

∑
x∈∆(X\V) inside the product

we obtain:

∑
x∈∆(X\V)

S(X) =
∑

σ∈Σ(S)
λσ

∑
x∈∆(X\V)

ϕvσ(Xvσ)
∏

i∈Lσ\vσ

ϕi(Xi)

=
∑

σ∈Σ(S)
λσ

 ∑
xvσ∈∆(Xvσ\V)

ϕvσ(Xvσ)

 ∏
i∈Lσ\vσ

∑
xi∈∆(Xi)

ϕi(xi)︸ ︷︷ ︸
1

=
∑

σ∈Σ(S)
λσ

 ∑
xvσ∈∆(Xvσ\V)

ϕvσ(Xvσ)

︸ ︷︷ ︸
 .

Now, the inner sum assumes the same value for any two subtrees σ′, σ′′ whenever
ϕvσ′ = ϕvσ′′ - that is, when the leaf node is in common. Hence we can rearrange the sum
as ranging over leaves rather than over all subnetworks, as follows:

∑
x∈∆(X\V)

S(X) =
∑

k⊆L(S):V ∈k

 ∑
σ∈Σ(S):k∈σ

λσ

 ∑
xk∈∆(Xk\V)

ϕk(V, xk)

 .

119

A. Appendix - Proof Details

Here
∑
k⊆L(S):V ∈k denotes the sum over all leaves that contain V and

∑
σ∈Σ(S):ϕk(x)∈σ

denotes the sum over all subnetworks that include leaf k. Finally, using Lemma 3.1.7 the
left part can be identified as the partial derivative of S(x) w.r.t. Sk(x) = ϕk(x), which
concludes the proof.

A.2. EM for SPNs

Preliminars. Let S(X) be a SPN, and consider a subnetwork σc ∈ Σ(S) which includes
the edge (q, i) (fig. 3.1.3, right). We use an index c = {1, 2, ..., C} to enumerate elements
of Σ(S) for convenience, since we will later enumerate over subnetworks.

Remembering that σc is a tree, we divide σc in three disjoint subgraphs: the edge (q, i),
the tree σd(i)

h(c) corresponding to “descendants” of i, and the remaining tree σa(q)
g(c) . Notice

that g (c) could be the same for two different subnetworks σ1, σ2 ∈ Σ(S), meaning that
the subtree σa(q)

g(c) is in common (similarly for σd(i)
h(c)).

We now observe that the coefficient λc and component Pc corresponding to σc (Table
3.1.1) factorize in terms corresponding to σa(q)

g(c) and to σd(i)
h(c) as follows: λc = wqi λ

d(i)
h(c)λ

a(q)
g(c)

and Pc = P
d(i)
h(c)P

a(q)
g(c) , where λd(i)

h(c) =
∏

(m,n)∈L
(
σ
d(i)
h(c)

)wmn , P d(i)
h(c) =

∏
l∈L
(
σ
d(i)
h(c)

) ϕl and
similarly for a (q). With this notation, for each subnetwork σc including (q, i) we write:

λcPc = wqi

(
λ
a(q)
g(c)P

a(q)
g(c)

) (
λ
d(i)
h(c)P

d(i)
h(c)

)
. (A.2.1)

Let us now consider the sum over all the subnetworks σc of S that include (q, i). The
sum can be rewritten as two nested sums, the external one over all terms σa(q)

g (red
part, fig. 3.1.3) and the internal one over all subnets σd(i)

h (blue part, fig. 3.1.3). This
is intuitively easy to grasp: we can think of the sum over all trees σc as first keeping
the subtree σa(q)

g fixed and varying all possible subtrees σd(i)
h below i (inner sum), then

iterating this for choice of σa(q)
g (outer sum). Exploiting the factorization A.2.1 we obtain

the following formulation:

∑
c:(q,i)∈E(σc)

λcPc = wqi

Ca(q)∑
g=1

λa(q)
g P a(q)

g

Cd(i)∑
h=1

λ
d(i)
h P

d(i)
h . (A.2.2)

where Cd(i) and Ca(q) denote the total number of different trees σd(i)
h and σa(q)

g in S.

Lemma A.2.1. ∂S(X)
∂Sq

=
∑Ca(q)
g=1 λ

a(q)
g P

a(q)
g .

Proof. First let us separate the sum in Eq. 3.1.6 in two sums, one over subnetworks
including q and one over subnetworks not including q: S (X) =

∑
k:q∈σk λkPk+

∑
l:q /∈σl λlPl.

The second sum does not involve Sq so for ∂S(X)
∂Sq

it is a constant k̂. Then, S =∑
k:q∈σk λkPk + k̂. As in Eq. A.2.2, we divide the sum

∑
k:q∈σk (·) in two nested sums

120

A.2. EM for SPNs

acting over disjoint terms: S =
(∑Ca(q)

g=1 λ
a(q)
g P

a(q)
g

) (∑Cd(q)
h=1 λ

d(q)
h P

d(q)
h

)
+k̂. We now notice

that
∑Cd(q)
k=1 λ

d(q)
k P

d(q)
k = Sq by Eq. 3.1.6, since λd(q)

k P
d(q)
k refer to the subtree of σc rooted

in i and the sum is taken over all such subtrees. Therefore: S =
(∑Ca(q)

g=1 λ
a(q)
g P

a(q)
g

)
Sq+k̂.

Taking the partial derivative leads to the result.

A.2.1. Proof of Proposition 3.1.7

We start by writing the sum on the left-hand side of Eq. 3.1.11 as in Eq. A.2.2. Now,
first we notice that

∑Cd(i)
k=1 λ

d(i)
k P

d(i)
k equals Si (X) by Eq. 3.1.6, since λd(i)

k P
d(i)
k refer

to the subtree of σc rooted in i and the sum is taken over all such subtrees. Second,∑Ca(q)
g=1 λ

a(q)
g P

a(q)
g = ∂S(X)

∂Sq
for Lemma A.2.1. Substituting in A.2.2 we get the result.

A.2.2. EM step on W

Starting from eq. 3.3.1 and collecting terms not depending on W in a constant, we
obtain:

Q (W) =
N∑
n=1

C∑
c=1

λcPc (xn)
S (xn) lnλc (W) + const =

N∑
n=1

C∑
c=1

λcPc (xn)
S (xn)

∑
(q,i)∈E(σc)

lnwqi + const.

We now drop the constant and move out
∑

(q,i)∈E(σc) by introducing a delta δ(q,i),c which
equals 1 if (q, i) ∈ E (σc) and 0 otherwise and summing over all edges E (S):

Q (W) =
N∑
n=1

C∑
c=1

λcPc (xn)
S (xn)

∑
(q,i)∈E(S)

lnwqi δ(q,i),c =
∑

(q,i)∈E(S)

N∑
n=1

∑C
c=1 λcPc (xn) δ(q,i),c

S (xn) lnwqi

=
∑

(q,i)∈E(S)

N∑
n=1

∑
c:(q,i)∈E(σc) λcPc (xn)

S (xn) lnwqi .

Applying Lemma 3.1.7 we get: Q (W) =
∑

(q,i)∈E(S)

(∑N
n=1

wq
i,old

∂S(xn)
∂Sq

Si(xn)
S(xn)

)
lnwqi , and

defining βqi = wqi,old
∑N
n=1 S

−1 (xn) ∂S(xn)
∂Sq

Si (xn) we writeQ (W) =
∑
q∈N (S)

∑
i∈ch(q) β

q
i lnwqi .

A.2.3. EM step on θ

Starting from Eq. 3.3.1, as in A.2.2 we expand lnPc as a sum of logarithms and obtain:
Q (θ) =

∑N
n=1

∑C
c=1

λcPc(xn)
S(xn)

∑
l∈L(σc) lnϕl (xn|θl) + const. Introducing δl,c which equals

1 if l ∈ L (σc) and 0 otherwise, dropping the constant and performing the sum
∑
l∈L(S)

121

A. Appendix - Proof Details

over all leaves in S we get:

Q (θ) =
N∑
n=1

C∑
c=1

λcPc (xn)
S (xn)

∑
l∈L(S)

lnϕl (xn|θl) δl,c =
∑

l∈L(S)

N∑
n=1

∑C
c=1 λcPc (xn)
S (xn) lnϕl (xn|θl) δl,c

=
∑

l∈L(S)

N∑
n=1

∑
c:l∈L(σc) λcPc (xn)

S (xn) lnϕl (xn|θl) =
∑

l∈L(S)

N∑
n=1

αln lnϕl (xn|θl) .

Where αln = S (xn)−1∑
c:l∈L(σc) λcPc (xn). To compute αln we notice that the term

Pc in this sum always contains a factor ϕl (corresponding to a weight in Eq. 3.1.7),
and ϕl = Sl by def. 3.1.3. Then, writing Pc\l =

(∏
k∈L(σc)\l ϕk

)
we obtain: αln =

S (xn)−1 Sl
(∑

c:l∈L(σc) λcPc\l (xn)
)
. Finally, since S =

∑
c:l∈L(σc) λcPc+

∑
k:l /∈L(σk) λkPk =

Sl
∑
c:l∈L(σc) λcPc\l + k̂ (where k̂ does not depend on Sl), taking the derivative we get

∂S
∂Sl

=
∑
c:l∈L(σc) λcPc\l. Substituting we get: αln = S (xn)−1 ∂S(X)

∂Sl
Sl (xn).

A.3. Sum-Product Graphical Models

A.3.1. Proof of Proposition 4.1.2.

Consider a subtree τ ∈ T (S) as in Definition 4.1.7.

1. Let us first consider messages generated by sum nodes s. Considering that s has
only one child ch(s) in τ (for Definition 4.1.7), corresponding to indicator variable
[Zs]ks , and applying Eqs. 4.1.1, the messages for observed and unobserved sum
nodes are as follows:

µst;j = [Zs]ksQs(ks)µch(s),t;j , Observed Sum Node, (A.3.1)
µst;j = Ws(ks)µch(s)k,t;j , Unobserved Sum Node. (A.3.2)

Hence sum messages contribute only by introducing a multiplicative term [Zs]ksQs(ks)
or Ws(ks). Now, all variables in the set Z appear in τ (Proposition 4.1.4). Hence,
the sum nodes together contribute with the following multiplicative term:∏

s∈O(τ)
Qs(ks,τ)

∏
s∈U(τ)

Ws(ks,τ)
∏

[Zs]ks∈zτ

[Zs]ks = λτ
∏

[Zs]ks∈zτ

[Zs]ks . (A.3.3)

From this it follows that message passing in τ is equivalent to message passing in a
SPGM τ obtained by discarding all the sum nodes from τ , followed by multiplying
the resulting messages for Eq. A.3.3.

2. Consecutive Product Nodes in τ can be merged by adding the respective children
to the parent Product Node. In addition, between each sequence Vnode-Vnode
in τ we can insert a product node with a single child. Thus, we can take τ as

122

A.3. Sum-Product Graphical Models

containing only Vnodes and Product Nodes, such that the children of Product
Nodes are Vnodes. Putting together Eqs. 4.1.1c and 4.1.1d, the message passed by
each Vnode t to s ∈ vpa(t) is:

µt→s;j =
∑

k∈∆(Xt)
Ps,t (k|j) [Xt]k

∏
q∈ch(ch(c))

µq→t;j . (A.3.4)

Notice that the input messages are generated from the grandchildren of t, that is
the children of the Product Node child of t. This corresponds to the message passed
by variables in a tree graphical model obtained by removing the Product Nodes
from τ and attaching the children of Product Nodes (here, elements q ∈ ch (ch(c)))
as children of their parent Vnode (here, t), which can be seen by noticing the
equivalence to Eq. (2.3.6). This tree GM can be immediately identified as Pτ (X).
Note also that if the root of τ is a Product Node, then Pτ (X) represents a forest of
trees, one for each child of the root Product Node.

3. The proof is concluded reintroducing the multiplicative factor in Eq. A.3.3 discarded
when passing from τ to τ .

A.3.2. Proof of Proposition 4.1.3.

The proposition can be proven by inspection, considering a SPGM S built by stacking
units as follows: Sum Node s1 (the root of S) is associated to observed variable Z1 and
has as children the set of Vnodes V1 = {v1,1, v1,2, . . . , v1,M}. Each node in V1 has as child
the same Sum Node s2. In turn, s2 has the same structure of s1, having Vnode children
V1 = {v2,1, v2,2, . . . , v2,M}, and so forth for Sum Nodes s3, s4, . . . , sK . The number of
edges in S is 2MK. On the other hand, a different subnetwork can be obtained for each
choice of active children at each sum node. There is a combinatorial number of such
choices, and the number of different subnetworks is KM .

A.3.3. Proof of Proposition 4.1.5.

First, consider a SPGM S(X,Z) defined over G = V, E . Let us take a node t ∈ V and let
St(Xt, Zt) denote the sub-SPGM rooted in t. Suppose that St satisfies the proposition
and hence it can be written as:

St =
∑

τt∈T (St)
τt. (A.3.5)

Let us consider messages sent from node t to a Vparent s ∈ vpa(t) (Definition 4.1.3), and
note that if form (A.3.5) is satisfied then messages take the form

µt→s;j =
∑

τt∈T (St)
µroot(τt)→s;j , (A.3.6)

123

A. Appendix - Proof Details

where root(τt)) denotes the message sent from the root of subtree τt to s. Vice versa, if
form (A.3.6) is satisfied then St can be written as Eq. (A.3.5). This extends also to the
case vpa(t) = ∅, in which messages are sent to a fictitious root node (Definition 4.1.5).
The proposition can now be proved by induction. First, the base case: sub-SPGMs

rooted at Vnodes leaves trivially assume form (A.3.5), and hence also the form (A.3.6).
Then, the inductive step: Lemma (A.3.1) can be applied recursively for all nodes from the
leaves to the root. Hence, S assumes the form of Eq. (A.3.6) and thus also of (A.3.5).

Lemma A.3.1. Consider a node t ∈ V. Suppose that the messages sent from the children
of node t ∈ V are in the form (A.3.6). Then, each message sent from s also assumes the
form A.3.6.

Let us suppose, for simplicity, t has only two children p and q - the extension to the
general case is straightforward. We distinguish the three cases of t being a Sum Node, a
Product Node or a Vnode.

• Suppose t is an Observed Sum Node with weights [Qt(0), Qt(1)] and indicator
variables [Zt]0 and [Zt]1 associated to each child. By Eq. (A.3.2), the children send
messages to their Vparent s, and since input message are in the form (A.3.6), t
sends the following message:

µt→s;j = Qt(0)[Zt]0
∑

τp∈T (Sp)
µroot(τp)→s;j +Qt(1)[Zt]1

∑
τq∈T (Sq)

µroot(τq)→s;j .

This is again in the form A.3.6. This can be seen because each term in the sum is
in the form Qt(0)[Zt]0T (Sp) which corresponds to message passed from the subtree
τt ∈ T (St) obtained choosing child p (in this case). It is easy to see that terms
corresponding to each subtrees of t are present.

• If t is an Unobserved Sum Node the discussion is identical to the point above.

• If t is a Product Node, then the children send messages to their Vparent s, and
since input message are in the form (A.3.6), t sends the following message:

µt→s;j =
(∑
τp∈T (Sp)

µroot(τp)→s;j

)(∑
τq∈T (Sq)

µroot(τq)→s;j

)
=

∑
(τp,τq)∈T (Sp)×T (Sq)

µroot(τp)→s;jµroot(τq)→s;j .

Now, µroot(τp)→s;jµroot(τq)→s;j can be seen as the message generated by a particular
subtrees of t, and thus node µt→s;j is in the form (A.3.6).

• If t is a Vnode, then it has a single child p by definition 4.1.4, sending messages to t.

124

A.3. Sum-Product Graphical Models

Thus, the input message is in the form (A.3.6), and t sends the following message:

µt→s;j =
∑

k∈∆(Xt)
Ps,t (k|j) [Xt]k

∑
τp∈T (Sp)

µroot(τp)→t;k

=
∑

τp∈T (Sp)

∑
k∈∆(Xt)

Ps,t (k|j) [Xt]kµroot(τp)→t;k.

Let us analyze a term of the sum for each fixed τp. Such term corresponds to the
root message of a SPGM S obtained taking τp and adding the Vnode t as parent of
p (due to Eq. (4.1.1d)). But S obtained in this form is a subtree of t by Definition
4.1.7. Therefore, taking the sum

∑
τp∈T (Sp) corresponds to summing over messages

sent by all subnetworks of t, in the form (A.3.6).

A.3.4. Proof of Proposition 4.1.9

The proposition can be proven by induction showing that if input messages represent
valid SPNs, then also the output SPGM messages are SPNs (see Fig. 4.1.2). Formally,
it is sufficient to notice that the hypothesis of Lemma A.3.2 below is trivially true for
leaf messages (inductive hypothesis), hence the lemma can be inductively applied for all
nodes up to the root.

Lemma A.3.2. Consider nodes t ∈ V and s ∈ vpa(t), and let Xt and Zt respectively
denote the X scope and Z scope of node t ∈ V. If the message µt→s;j encodes a SPN
St;j(Xt, Zt), then the message µs→r;i sent from node s to any node r ∈ vpa(s) also
implements a SPN Sr;i(Xs, Zs). This also holds when vpa(s) = ∅, where r is simply
replaced by the fictitious root node (Definition 4.1.5.

Proof. Consider the message passing Eqs. 4.1.1, referring to Fig. 4.1.2 for visualization.
We distinguish the case of node t being a Sum, Product and Vnode.

• Sum Nodes (Observed and non-Observed). First, we note that every child of a Sum
Node has the same scope Xs, Zs (for Definition 4.1.4 condition 2). Employing the
hypothesis, the generated message is:

µt→s;j =
∑|ch(t)|
k=1 [Zt]kQt(k)St;j

(
Xt, Zt

)
, t is a Sum Node, Observed, (A.3.7)

µt→s;j =
∑|ch(t)|
k=1 Wt(k)St;j

(
Xt, Zt

)
, t is a Sum Node, not-Observed.(A.3.8)

It is straightforward to see that both equations represent valid SPNs: the sum∑|ch(t)|
k=1 becomes the root SPN Sum Node with non-negative weights Qt(k) and

Wt(k) respectively, and its children are SPNs having the same scope (in the form
[Zt]k ⊗ Sj

(
Xt, Zt

)
for Eq. A.3.7 and in the form Sj

(
Xt, Zt

)
for Eq. A.3.8). Note

that Zt ∩Zt = ∅ for Definition 4.1.4 condition 2, therefore condition 2 in Definition
3.1.3 is satisfied.

125

A. Appendix - Proof Details

• Product Nodes. Applying the hypothesis to input messages, Eq. 4.1.1c becomes:

µt→s;j =
∏

q∈ch(t)
Sq;j (Xq, Zq) .

This represents a valid SPN with a Product Node as root since the children node’s
scopes are disjoint (for Definition 4.1.4 condition 3), and thus condition 1 in
Definition 3.1.3 is satisfied.

• Vnodes. Applying the hypothesis to input messages, Eq. 4.1.1d becomes:

µt→s;j =
∑

k∈∆(Xt)
Ps,t (k|j) [Xt]kSch(t);k

(
Xch(t), Zch(t)

)
.

This represents a valid SPN with a Sum Node
∑
k∈∆(Xt) as root. To see this, first

note that terms Ps,t (k|j) can be interpreted as weights. The Sum Node is connected
to children SPNs in the form [Xt]k ⊗ Sch(t);k

(
Xch(t), Zch(t)

)
, which are valid SPNs

since Xi ∩Xs = ∅ and thus condition 1 in Definition 3.1.3 is satisfied. In addition
all child SPNs have the same scope for Definition 4.1.4 condition 2, hence condition
2 in Definition 3.1.3 is satisfied for the Sum Node.

126

Bibliography

Nicholas J. Adams and Christopher K.I. Williams. Dynamic trees for image modelling.
Image and Vision Computing, 21(10):865 – 877, 2003. ISSN 0262-8856. doi: http:
//dx.doi.org/10.1016/S0262-8856(03)00073-8. URL http://www.sciencedirect.com/
science/article/pii/S0262885603000738. 5.5, 5.5, 5.5, 5.5.1, 5.5.5, 5.5.6

Tameem Adel, David Balduzzi, and Ali Ghodsi. Learning the Structure of Sum-Product
Networks via an SVD-based Algorithm. In Proceedings of the Thirty-First Conference
on Uncertainty in Artificial Intelligence, UAI 2015, July 12-16, 2015, Amsterdam, The
Netherlands, pages 32–41, 2015. (document), 3.4.4, 3.5

S.M. Aji and R.J. McEliece. The generalized distributive law. IEEE Trans. Information
Theory, 46(2):325–343, 2000. 2.3.3

Mohamed Amer and Sinisa Todorovic. Sum Product Networks for Activity Recognition.
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI 2015), 2015.
1, 1.2.1, 1.4

Mohamed R. Amer and Sinisa Todorovic. Sum Product Networks for Activity Recognition.
IEEE Trans. Pattern Anal. Mach. Intell., 38(4):800–813, 2016. doi: 10.1109/TPAMI.
2015.2465955. URL http://dx.doi.org/10.1109/TPAMI.2015.2465955. 3.5, 4.2.1

B. Andres, Beier T., and J. H. Kappes. OpenGM: A C++ Library for Discrete Graphical
Models. ArXiv e-prints, 2012. 5.5

Robert Ash and Catherine Doleans-Dade. Probability and Measure Theory. Academic
Press, 2000. 2.1, 2.1.2

Fahiem Bacchus, Shannon Dalmao, and Toniann Pitassi. Value Elimination: Bayesian
Inference via Backtracking Search. CoRR, abs/1212.2452, 2012. 1.4.1, 1.4

Francis R. Bach and Michael I. Jordan. Thin Junction Trees. In Advances in Neural
Information Processing Systems 14, pages 569–576. MIT Press, 2001. 5.4

J. M. Beaulieu and M. Goldberg. Hierarchy in picture segmentation: a stepwise opti-
mization approach. IEEE Transactions on Pattern Analysis and Machine Intelligence,
11(2):150–163, Feb 1989. ISSN 0162-8828. doi: 10.1109/34.16711. 5.5

Craig Boutilier, Nir Friedman, Moises Goldszmidt, and Daphne Koller. Context-Specific
Independence in Bayesian Networks. pages 115–123, 1996. 1.1, 1.4.1, 1.4, 2.5

127

http://www.sciencedirect.com/science/article/pii/S0262885603000738
http://www.sciencedirect.com/science/article/pii/S0262885603000738
http://dx.doi.org/10.1109/TPAMI.2015.2465955

BIBLIOGRAPHY

Wei-Chen Cheng, Stanley Kok, Hoai Vu Pham, Hai Leong Chieu, and Kian Ming
Chai. Language Modeling with Sum-Product Networks. Annual Conference of the
International Speech Communication Association 15 (INTERSPEECH 2014), 2014. 1,
3.3.3, 3.5, 4.2.1

David Maxwell Chickering. Learning Bayesian Networks is NP-Complete, pages 121–130.
Springer-Verlag, January 1996. URL https://www.microsoft.com/en-us/research/
publication/learning-bayesian-networks-is-np-complete/. 2.3.4

David Maxwell Chickering, David Heckerman, and Christopher Meek. A Bayesian
Approach to Learning Bayesian Networks with Local Structure. CoRR, abs/1302.1528,
2013. 1.4.1, 1.4

Stephanie J Chiu, Michael J Allingham, Priyatham S Mettu, Scott W Cousins, Joseph A
Izatt, and Sina Farsiu. Kernel regression based segmentation of optical coherence
tomography images with diabetic macular edema. Biomed. Opt. Express, 6(4):1172–
1194, 2015. 5.3.1, 5.3.4

Myung Jin Choi, Vincent Y. F. Tan, Animashree Anandkumar, and Alan S. Willsky. Learn-
ing Latent Tree Graphical Models. J. Mach. Learn. Res., 12:1771–1812, July 2011. ISSN
1532-4435. URL http://dl.acm.org/citation.cfm?id=1953048.2021056. 3.4.1, 5.2

C. I. Chow and C. N. Liu. Approximating discrete probability distributions with
dependence trees. IEEE Transactions on Information Theory, 14:462–467, 1968. 1,
1.3, 1.5.2, 2.3.4, 3.3.4, 3.4.1, 4.2.1, 5.4

Microsoft Corporation. Winmine toolkit. URL https://www.microsoft.com/en-us/
download/details.aspx?id=52333. 3.4.1

R.G. Cowell, A.P. Dawid, S.L. Lauritzen, and D.J. Spiegelhalter. Probabilistic Networks
and Expert Systems. Springer, 2003. 1.2.2, 2, 2.3.1, 4.1.3

Matthew Crouse, Robert Nowak, and Richard Baraniuk. Wavelet-Based Statistical Signal
Processing Using Hidden Markov Models, 1998. 5, 5.5

Madeleine Cule, Richard Samworth, and Michael Stewart. Maximum likelihood esti-
mation of a multi-dimensional log-concave density. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 72(5):545–607, 2010. ISSN 1467-9868. doi:
10.1111/j.1467-9868.2010.00753.x. URL http://dx.doi.org/10.1111/j.1467-9868.
2010.00753.x. 3.3.5

A. Darwiche. A Differential Approach to Inference in Bayesian Networks. J. ACM, 50
(3):280–305, 2003. 1.1.1, 3.2.3, 4.1.4

Adnan Darwiche. A Logical Approach to Factoring Belief Networks. In Dieter Fensel,
Fausto Giunchiglia, Deborah L. McGuinness, and Mary-Anne Williams, editors, KR,

128

https://www.microsoft.com/en-us/research/publication/learning-bayesian-networks-is-np-complete/
https://www.microsoft.com/en-us/research/publication/learning-bayesian-networks-is-np-complete/
http://dl.acm.org/citation.cfm?id=1953048.2021056
https://www.microsoft.com/en-us/download/details.aspx?id=52333
https://www.microsoft.com/en-us/download/details.aspx?id=52333
http://dx.doi.org/10.1111/j.1467-9868.2010.00753.x
http://dx.doi.org/10.1111/j.1467-9868.2010.00753.x

BIBLIOGRAPHY

pages 409–420. Morgan Kaufmann, 2002. ISBN 1-55860-554-1. 1, 1.1, 1.4.1, 1.4, 3.2.2,
4.2.1

Rina Dechter and Robert Mateescu. AND/OR search spaces for graphical models.
Artificial Intelligence, 171(2 - 3):73 – 106, 2007. ISSN 0004-3702. 1, 1.1, 1.4.1, 1.4,
3.2.2

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum Likelihood from Incom-
plete Data via the EM Algorithm. Journal of the Royal Statistical Society. Series B
(Methodological), 39(1):1–38, 1977. ISSN 00359246. doi: 10.2307/2984875. 4.2.1

Aaron Dennis and Dan Ventura. Greedy Structure Search for Sum-product Networks. In
Proceedings of the 24th International Conference on Artificial Intelligence, IJCAI’15,
pages 932–938. AAAI Press, 2015. ISBN 978-1-57735-738-4. 3.1.1

Mattia Desana and Christoph Schnörr. Expectation Maximization for Sum-Product
Networks as Exponential Family Mixture Models. CoRR, abs/1604.07243, 2016. URL
http://arxiv.org/abs/1604.07243. 3.1.1, 4.2.1, 4.2.1, 4.2.3

R. Diestel. Graph Theory. Springer, 3rd edition, 2006. 1.1, 2.3.1

Xiaojuan Feng, C. K. I. Williams, and S. N. Felderhof. Combining belief networks and
neural networks for scene segmentation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 24(4):467–483, Apr 2002. ISSN 0162-8828. doi: 10.1109/34.993555.
5.5

Arthur Fridman. Mixed Markov models. PNAS, page 100, 2003. ISSN 8092-8096. 1.4.1,
1.4, 4.1.3

Stuart Geman and Chii-Ruey Hwang. Nonparametric maximum likelihood estimation by
the method of sieves. The Annals of Statistics, 10:401–414, 1982. 3.3.5

Robert Gens and Pedro Domingos. Discriminative Learning of Sum-Product Networks.
In NIPS, pages 3248–3256, 2012. 3.1.1, 3.3.1, 3.3.1, 3.5, 4.1.3, 4.2.1, 4.2.2

Robert Gens and Pedro Domingos. Learning the Structure of Sum-Product Networks. In
ICML (3), pages 873–880, 2013. (document), 1.1, 1.3, 1.4, 3.4, 3.4, 1, 3.4.2, 3.4.2, 3.5,
3.4.1, 5.1, 5.1, 5.2

Vibhav Gogate, WilliamWebb, and Pedro Domingos. Learning Efficient Markov Networks.
In J.D. Lafferty, C.K.I. Williams, J. Shawe-Taylor, R.S. Zemel, and A. Culotta,
editors, Advances in Neural Information Processing Systems 23, pages 748–756. Curran
Associates, Inc., 2010. 1.4.1, 1.4

Arthur Gretton, Olivier Bousquet, Alex Smola, and Bernhard Schölkopf. Measuring
Statistical Dependence with Hilbert-Schmidt Norms, pages 63–77. Springer Berlin

129

http://arxiv.org/abs/1604.07243

BIBLIOGRAPHY

Heidelberg, Berlin, Heidelberg, 2005. ISBN 978-3-540-31696-1. doi: 10.1007/11564089_
7. URL http://dx.doi.org/10.1007/11564089_7. 3.4.4

Xuming He, Richard S. Zemel, and Miguel Á. Carreira-Perpiñán. Multiscale Conditional
Random Fields for Image Labeling. In Proceedings of the 2004 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, CVPR’04, pages 695–703,
Washington, DC, USA, 2004. IEEE Computer Society. URL http://dl.acm.org/
citation.cfm?id=1896300.1896400. 5.5

Geoffrey E. Hinton and Simon Osindero. A fast learning algorithm for deep belief nets.
Neural Computation, 18:2006, 2006. 5.4

Michael I. Jordan. Hierarchical mixtures of experts and the EM algorithm. Neural
Computation, 6:181–214, 1994. 1.4.1, 1.4, 1.4.1, 4.1.3

SPK Karri, Debjani Chakraborthi, and Jyotirmoy Chatterjee. Learning layer-specific
edges for segmenting retinal layers with large deformations. Biomed. Opt. Express, 7
(7):2888–2901, 2016. 5.3.1, 5.3.4

V. Kolmogorov and R. Zabih. What Energy Functions Can Be Minimized via Graph
Cuts? IEEE Trans. Patt. Anal. Mach. Intell., 26(2):147–159, 2004. 1.1.1, 1.1

Vladimir Kolmogorov. Convergent Tree-Reweighted Message Passing for Energy Mini-
mization. IEEE Trans. Pattern Anal. Mach. Intell., 28(10):1568–1583, October 2006.
ISSN 0162-8828. doi: 10.1109/TPAMI.2006.200. URL http://dx.doi.org/10.1109/
TPAMI.2006.200. 6.4, 6.4

Jean-Marc Laferté, Patrick Pérez, and Fabrice Heitz. Discrete markov image modeling
and inference on the quadtree. IEEE Trans. Image Processing, 9(3):390–404, 2000. doi:
10.1109/83.826777. URL http://dx.doi.org/10.1109/83.826777. 1.6, 5.5, 5.5

Daniel Lowd and Pedro Domingos. Learning Arithmetic Circuits. CoRR, abs/1206.3271,
2012. (document), 3.4.1, 3.5, 3.4.1, 5.2

George Luger. Artificial Intelligence: Structures and Strategies for Complex Problem
Solving (5th Edition). Pearson Addison Wesley, 2004. ISBN 0321263189. 3.2.1

David Mcallester, Michael Collins, and Fernando Pereira. Case-factor diagrams for
structured probabilistic modeling. In Proceedings of the Twentieth Conference on
Uncertainty in Artificial Intelligence (UAI 04), pages 382–391, 2004. 1, 1.4.1, 1.4

Marina Meila and Michael I. Jordan. Learning with mixtures of trees. Journal of Machine
Learning Research, 1:1–48, 2000. 1.4.1, 1.3, 1.4, 3.3.4, 3.4.1, 4.2.3, 5.2, 5.4, 5.4

Mazen Melibari, Pascal Poupart, and Prashant Doshi. Dynamic Sum Product Networks
for Tractable Inference on Sequence Data. CoRR, abs/1511.04412, 2015. URL
http://arxiv.org/abs/1511.04412. 3.5

130

http://dx.doi.org/10.1007/11564089_7
http://dl.acm.org/citation.cfm?id=1896300.1896400
http://dl.acm.org/citation.cfm?id=1896300.1896400
http://dx.doi.org/10.1109/TPAMI.2006.200
http://dx.doi.org/10.1109/TPAMI.2006.200
http://dx.doi.org/10.1109/83.826777
http://arxiv.org/abs/1511.04412

BIBLIOGRAPHY

Talya Meltzer, Amir Globerson, and Yair Weiss. Convergent Message Passing Algorithms:
A Unifying View. In Proceedings of the Twenty-Fifth Conference on Uncertainty in
Artificial Intelligence, UAI ’09, pages 393–401, Arlington, Virginia, United States, 2009.
AUAI Press. ISBN 978-0-9749039-5-8. URL http://dl.acm.org/citation.cfm?id=
1795114.1795160. 6.4

Tom Minka and John Winn. Gates. In Advances in Neural Information Processing
Systems 21, 2009. 1.4.1, 1.4, 4.1.3

Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.
ISBN 0262018020, 9780262018029. 2.1.3, 2.4.1, 2.4.3, 3.2.3, 3.3.1, 3.3.3, 3.3.4

Radford Neal and Geoffrey E. Hinton. A View Of The Em Algorithm That Justifies
Incremental, Sparse, And Other Variants. In Learning in Graphical Models, pages
355–368. Kluwer Academic Publishers, 1998. 3.3.5, 3.4.2, 4.2.4

Judea Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press,
New York, NY, USA, 2000. ISBN 0-521-77362-8. 1, 2.3.1, 3.1.1, 3.1.2, 5.4, 5.5

Robert Peharz. Foundations of Sum-Product Networks for Probabilistic Modeling. (PhD
thesis). Researchgate:273000973, 2015. 3, 7, 3.1.3, 3.1.3

Robert Peharz, Georg Kapeller, Pejman Mowlaee, and Franz Pernkopf. Modeling Speech
with Sum-Product Networks: Application to Bandwidth Extension. In ICASSP, pages
3699 – 3703, 2014. 3.5

Robert Peharz, Robert Gens, Franz Pernkopf, and Pedro M. Domingos. On the Latent
Variable Interpretation in Sum-Product Networks. CoRR, abs/1601.06180, 2016. URL
http://arxiv.org/abs/1601.06180. 1.1, 1.4, 1.5.1, 3.3.2, 3.3.3

Patrick Pletscher, Cheng Soon Ong, and Joachim M. Buhmann. Spanning Tree Approx-
imations for Conditional Random Fields. In David A. Van Dyk and Max Welling,
editors, AISTATS, volume 5 of JMLR Proceedings, pages 408–415. JMLR.org, 2009.
5.4

David L. Poole and Nevin Lianwen Zhang. Exploiting Contextual Independence In
Probabilistic Inference. CoRR, abs/1106.4864, 2011. 1.4.1

Hoifung Poon and Pedro Domingos. Sum-Product Networks: A New Deep Architecture.
In UAI 2011, Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial
Intelligence, Barcelona, Spain, July 14-17, 2011, pages 337–346, 2011. 1, 1.1, 1.4.1,
3.1.1, 3.2.2, 3.3.1, 3.3.2, 3.5, 4.2.1, 5.1, 5.2

Tahrima Rahman and Vibhav Gogate. Learning Ensembles of Cutset Networks. In
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, February
12-17, 2016, Phoenix, Arizona, USA., pages 3301–3307, 2016a. URL http://www.

131

http://dl.acm.org/citation.cfm?id=1795114.1795160
http://dl.acm.org/citation.cfm?id=1795114.1795160
http://arxiv.org/abs/1601.06180
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12503
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12503

BIBLIOGRAPHY

aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12503. 1, 1.1, 1.3, 3.4, 3.4.5,
3.5, 3.4.1, 5.2

Tahrima Rahman and Vibhav Gogate. Merging Strategies for Sum-Product Networks:
From Trees to Graphs. In Proceedings of the Thirty-Second Conference on Uncertainty
in Artificial Intelligence, UAI 2016, June 25-29, 2016, New York City, NY, USA,
2016b. URL http://auai.org/uai2016/proceedings/papers/71.pdf. (document),
1, 1.1, 1.3, 3.4, 3.4.6, 3.4.6, 3.5, 3.4.1, 4.2.1, 5.2

Tahrima Rahman, Prasanna Kothalkar, and Vibhav Gogate. Cutset Networks: A Simple,
Tractable, and Scalable Approach for Improving the Accuracy of Chow-Liu Trees.
In Machine Learning and Knowledge Discovery in Databases - European Conference,
ECML PKDD 2014, Nancy, France, September 15-19, 2014. Proceedings, Part II,
pages 630–645, 2014. doi: 10.1007/978-3-662-44851-9_40. URL http://dx.doi.org/
10.1007/978-3-662-44851-9_40. (document), 1.2.1, 1.4.1, 1.4, 3.2.2, 3.4.5, 3.5, 3.4.1,
5.2

Fabian Rathke, Stefan Schmidt, and Christoph Schnörr. Probabilistic intra-retinal layer
segmentation in 3-D OCT images using global shape regularization. Med. Image Anal.,
18(5):781–794, 2014. 1.5.1, 5, 5.3.1, 5.3, 5.3.1, 5.3.2, 5.3.2, 5.3.2, 5.3.2, 5.3.6

Amirmohammad Rooshenas and Daniel Lowd. Learning Sum-Product Networks with
Direct and Indirect Variable Interactions. In Tony Jebara and Eric P. Xing, editors,
Proceedings of the 31st International Conference on Machine Learning (ICML-14),
pages 710–718. JMLR Workshop and Conference Proceedings, 2014. (document), 1,
1.1, 1.3, 1.4, 3.4, 3.4.3, 3.4.1, 5.2

Jing Tian, Boglarka Varga, Erika Tatrai, Palya Fanni, Gabor Mark Somfai, William E.
Smiddy, and Delia Cabrera Debuc. Performance evaluation of automated segmentation
software on optical coherence tomography volume data. J. Biophotonics, 9(5):478–489,
2016. ISSN 1864-0648. doi: 10.1002/jbio.201500239. URL http://dx.doi.org/10.
1002/jbio.201500239. 5.3.1, 5.3.4

M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky. Tree-based reparameterization
framework for analysis of sum-product and related algorithms. IEEE Transactions on
Information Theory, 49(5):1120–1146, May 2003. ISSN 0018-9448. doi: 10.1109/TIT.
2003.810642. 6.4

Martin Wainwright, Tommi Jaakkola, and Alan Willsky. MAP estimation via agree-
ment on (hyper)trees: Message-passing and linear programming approaches. IEEE
Transactions on Information Theory, 51:3697–3717, 2002. 1.6, 6.4

Martin J. Wainwright and Michael I. Jordan. Graphical Models, Exponential Families,
and Variational Inference. Found. Trends Mach. Learn., 1(1-2):1–305, January 2008.
ISSN 1935-8237. doi: 10.1561/2200000001. 1, 3.3.5, 5.4

132

http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12503
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12503
http://auai.org/uai2016/proceedings/papers/71.pdf
http://dx.doi.org/10.1007/978-3-662-44851-9_40
http://dx.doi.org/10.1007/978-3-662-44851-9_40
http://dx.doi.org/10.1002/jbio.201500239
http://dx.doi.org/10.1002/jbio.201500239

BIBLIOGRAPHY

Jiang Wang, Yang Song, Thomas Leung, Chuck Rosenberg, Jingbin Wang, James
Philbin, Bo Chen, and Ying Wu. Learning Fine-Grained Image Similarity with Deep
Ranking. In Proceedings of the 2014 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR ’14, pages 1386–1393, Washington, DC, USA, 2014. IEEE
Computer Society. ISBN 978-1-4799-5118-5. doi: 10.1109/CVPR.2014.180. URL
http://dx.doi.org/10.1109/CVPR.2014.180. 3.5

Han Zhao, Mazen Melibari, and Pascal Poupart. On the Relationship between Sum-
Product Networks and Bayesian Networks. CoRR, abs/1501.01239, 2015. 1.4.1

Han Zhao, Tameem Adel, Geoff Gordon, and Brandon Amos. Collapsed Variational Infer-
ence for Sum-Product Networks. In Proceedings of the 33nd International Conference
on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, pages
1310–1318, 2016a. URL http://jmlr.org/proceedings/papers/v48/zhaoa16.html.
5.1, 5.1

Han Zhao, Pascal Poupart, and G. Gordon. A Unified Approach for Learning the
Parameters of Sum-Product Networks. Proceedings of the 29th Advances in Neural
Information Processing Systems (NIPS 2016), 2016b. 1.4, 3.1.1, 3.1.1, 3.1.1, 3.1.1,
3.3.2, 3.3.3, 3.4.3, 4.1.3, 5.1, 5.1

133

http://dx.doi.org/10.1109/CVPR.2014.180
http://jmlr.org/proceedings/papers/v48/zhaoa16.html

