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Zusammenfassung
Die vorliegende Dissertation behandelt die Dynamik und insbesondere das Spektrum ener-
getisch niedriger Zustände von ein- bzw. zweidimensionalen Bose-Einstein Kondensaten im
Hinblick auf Vielteilcheneffekte. Um numerisch exakte Resultate für die Dynamik zu erhal-
ten, wird die multikonfigurationale zeitabhängige Hartreemethode für Bosonen (MCTDHB)
verwendet. Angeregte Zustände werden mit der darauf basierenden linearen Antworttheorie
(LR-MCTDHB) berechnet, dessen zentrale Gleichung ein im Allgemeinen nicht hermitesches
Eigenwertproblem darstellt. Die neuartige Implementierung der Theorie wird detailliert
beschrieben und anhand eines Vergleichs mit einem analytisch lösbaren Modell geprüft. Ver-
schiedene Anwendungen werden beschrieben, bei denen Vielteilcheneffekte von Kondensaten
in Potenzialfallen zu beobachten sind. Unter anderem wird gezeigt, dass die Nichtgleichgewichts-
dynamik eingeschlossener Vortices Vielteilchencharakter hat. In Bezug auf Anregungsspek-
tren wird demonstriert, dass selbst bei nahezu vollständig kondensierten Systemen erhebliche
Unterschiede zwischen der Beschreibung auf Vielteilchenebene und einer häufig verwendeten
Molekularfeldnäherung bestehen. Allgemein wird deutlich, dass drehimpulsbehaftete Boso-
nen sensitiver für Vielteilcheneffekte sind, sowohl im Hinblick auf deren Dynamik als auch auf
deren Anregungsspektrum.

Abstract
This thesis explores the dynamics and especially the low-energy spectra of Bose-Einstein
condensates (BECs) in one- and two-dimensional potential traps. Of particular interest are
many-body effects. To obtain numerically exact results for the dynamics, the well-established
multiconfigurational time-dependent Hartree for bosons (MCTDHB) method is applied. Ex-
cited states are calculated utilizing the recently introduced linear-response theory atop it (LR-
MCTDHB). The core of the latter theory is an in general non-hermitian eigenvalue problem.
The newly developed implementation of this theory is described in detail and benchmarked
towards the exactly-solvable harmonic-interaction model. Several applications are discussed.
With respect to dynamics, it is shown that both the out-of-equilibrium tunneling dynamics
and the dynamics of trapped vortices are of many-body nature. Furthermore, many-body
effects in the excitation spectra are presented for BECs in different trap geometries. It is
demonstrated that even for essentially-condensed systems, the spectrum of the lowest-in-
energy excitations computed at the many-body level differs substantially from a standard
mean-field description. In general, it is shown that bosons carrying angular momentum are
more sensitive to many-body effects, both in the dynamics and the excitation spectrum.
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1 Introduction

In 1924, Albert Einstein discovered that the spectral energy distribution in certain sys-
tems of massive particles is different from the Maxwell-Boltzmann statistics. He was
inspired by a work of Satayendra N. Bose who derived the thermal energy distribution
of black-body radiation solely based on assumptions from quantum theory [1], which
is slightly different to the previous semi-classical approach of Max Planck. Einstein
realized the far-reaching consequences of this, namely that a composite system of mas-
sive particles at sufficiently low temperatures could behave as a matter wave due to
all particles sharing the same single-particle state. Thus, he applied Bose’s idea to a
single-component ideal gas [2, 3]. This paved the way towards what is known as Bose-
Einstein condensation. Consequently, all particles that obey the statistical distribution
found by Bose and Einstein are termed bosons.
It took approximately 70 years until the first gaseous Bose-Einstein condensate (BEC)
was realized in an experiment. The group of Eric A. Cornell and Carl E. Wieman
produced a repulsive BEC of rubidium atoms [4], shortly followed by the group of
Wolfgang Ketterle using repulsive sodium atoms in a magneto-optical trap [5]. The
latter three scientists obtained the Nobel prize in physics for this achievement in 2001.
The first attractive BEC was realized by the group of Randall G. Hulet using lithium
atoms [6]. In more recent experiments, condensation was observed in a large variety
of systems, e.g., for exciton-polariton systems [7,8], magnons at room temperature [9],
or, rather astonishingly because of the lack of a rest mass and a vanishing chemical
potential, even for photons in a cavity [10].
Over the past two decades, the experimental control of BECs has grown remarkably.
This includes both the interaction of the constituent particles by employing Feshbach
resonances [11–13] as well as the trap geometry and dimensionality [14]. This qualifies
BECs for testing the fundamental principles of quantum mechanics, or very recently
even to simulate certain processes in astrophysics [15–17].
Of particular interest is the understanding of the dynamics as well as the spectrum of
excited states of trapped BECs. Theoretical descriptions for this were carried out many
years before they were finally realized experimentally. The most prominent approach
to obtain the ground state as well as the dynamical motion of condensates is the Gross-
Pitaevskii (GP) equation [18–21]. Within this mean-field theory, it is assumed that ac-
tually all bosons in the system occupy the same single-particle state. The GP equation
has been successfully applied in many cases [22]. Similarly, the linear-response (LR)
theory atop the GP equation, resulting in the famous Bogoliubov-de Gennes (BdG)
equations [23,24], represents the commonly utilized approach to describe excitations of
trapped ultracold bosons, e.g., for dark-bright soliton pairs [25], in rotating BECs with
dipole-dipole interaction [26], or in a 2D hexagonal lattice with superimposed harmonic
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confinement [27], to name only a few recent applications. Furthermore, the BdG equa-
tions were extensively used for the description of Cooper pairs in superconductors [28]
or for the understanding of the BCS-BEC crossover connecting superconductivity and
superfluidity in correlated fermionic systems [29].
A crucial limitation of the GP mean-field theory is the fact that it ignores correlations
between the bosons, and thus does not account for condensate depletion, i.e., the frac-
tion of particles outside the condensed mode due to correlations and interactions, even
at zero temperature. In a highly-cited review article from 1999, the condensate deple-
tion is found to be “very small (less than 1%) in the presently available experimental
conditions” [30], and thus the usage of mean-field methods like the BdG approach is jus-
tified. However, the many-body methods developed in the following years were capable
to demonstrate the remarkable impact of depletion and even fragmentation of a BEC
onto its dynamics and its excitation spectrum. One of these many-body approaches
is the multiconfigurational time-dependent Hartree method for bosons [MCTDHB, or
MCTDHB(M) with M being the number of utilized single-particle basis functions],
which has been introduced [31,32], benchmarked [33], and applied successfully to vari-
ous systems in recent years. Being derived from a variational principle, its results can
be improved systematically by increasing the number of orbitals M . Additionally, its
LR theory, termed LR-MCTDHB(M), has been introduced recently [34,35]. The latter
represents a full many-body description of excitations in trapped BECs.
This thesis has two main objectives. At first, the newly developed numerical implemen-
tation of LR-MCTDHB, capable of treating large systems in D > 1 spatial dimensions
which has not been realized before, is introduced and benchmarked against an exactly-
solvable model. Secondly, various applications of both MCTDHB and LR-MCTDHB to
trapped BECs are discussed in which the depletion has a strong impact on the dynamics
and the spectrum of excited states. With regard to dynamics, it is shown that fragmen-
tation can develop over time although a system is initially almost entirely condensed.
With regard to excitation spectra, it is demonstrated that substantial many-body effects
appear even if the ground-state depletion is of the order of the above mentioned 1% or
lower. Especially for the case of marginal depletion where one might expect mean-field
theory to accurately describe the physics, it is instructive to compare the obtained re-
sults from the many-body approaches described above to the ones obtained from the
GP and BdG theories. It is important to note that for only a single orbital, M = 1,
MCTDHB reduces to the GP equation. Correspondingly, LR-MCTDHB(1) yields the
BdG equations. Hence, the commonly used mean-field approaches are included in the
utilized many-body theories as the simplest limiting cases.
To address these goals, the thesis is structured as follows. First, in Chapter 2, the main
theoretical concepts of many-boson physics are presented. This includes the many-body
Schrödinger equation, the framework of second quantization which is particularly useful
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for the many-body theory described in this work, the introduction of the Dirac-Frenkel
variational principle from which the central equations of motion can be derived, as
well as the definition of Bose-Einstein condensation. Second, in Chapter 3, a detailed
derivation of MCTDHB is given. The essential ingredients like the ansatz for the many-
boson wave function are discussed. Then, its LR theory is derived, which represents
the central theory utilized in this work to calculate low-energy excitations of trapped
bosonic systems on the many-body level. Third, in Chapter 4, the newly developed
numerical implementation of LR-MCTDHB is described in detail. Therefore, general
technical problems and their solutions are explained. Furthermore, a detailed descrip-
tion of the numerical algorithms utilized is presented. Subsequently, in Chapter 5, the
used implementations of MCTDHB and LR-MCTDHB are benchmarked against the
exactly-solvable harmonic-interaction model, whose analytic solutions of the energies
of the ground and excited states are presented beforehand. Applications of both imple-
mentations are then shown in Chapter 6. Concerning the dynamics, the focus is twofold.
First, applications dealing with the phenomenon of tunneling of BECs inside potential
traps in one and two spatial dimensions are discussed, demonstrating the many-body
nature of quantum tunneling of ultracold BECs. Second, several cases of dynamical
fragmentation of initially coherent bosonic systems are presented. For instance, the
tunneling of a BEC to open space is analyzed. Furthermore, the connection between
angular momentum, especially of quantized vortices, and the development of fragmen-
tation is investigated. Concerning applications of LR-MCTDHB, the many-body effects
in the low-energy spectra of BECs in one-dimensional multi-well traps and lattices are
shown. Moreover, as a 2D application, the impact of angular momentum on the lowest-
in-energy excitations of a rotating BEC is examined. Essential physical results and
implications are provided. Finally, in Chapter 7, a summary and an outlook of possible
constituent future research as well as of further enrichment of the implementation of
LR-MCTDHB with, e.g., more diagonalization algorithms, is provided.
Additionally, the thesis contains four appendices. In Appendix A, the commonly-used
mean-field theories utilized, the GP theory and the constituent LR theory leading to the
BdG equations, are described. A further mean-field approach for both the statics and
dynamics of trapped BECs that has been developed prior to the many-body theories
of Chapter 3 is presented, called the time-dependent multi-orbital mean field (TDMF)
and the linear-response best mean field (LR-BMF). The latter can be seen as interme-
diate theories between single-orbital mean-field approaches and a full many-body treat-
ment. Appendix B demonstrates that LR-MCTDHB can be written in block-diagonal
form, which, in some cases, might be beneficial. Advantages and possible problems
are discussed. In Appendix C, additional results of the LR-MCTDHB benchmark are
provided. Finally, in Appendix D, the many-body variance, a quantity that turns out
to be very sensitive to many-body effects, is introduced and derived for the example of
the center-of-mass position of a BEC.
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2 General concepts of many-boson physics

In this chapter, the general concepts of describing trapped ultracold bosons are intro-
duced. This includes the representation of the many-body Hamiltonian, the bosonic
field as well as properties of the wave function for a system of identical bosons. More-
over, the definition of Bose-Einstein condensation and depletion which is used in the
subsequent chapters is presented.

2.1 Many-body Hamiltonian and Schrödinger equation

The time-dependent Schrödinger equation for a generic system of N identical spinless
bosons in D ≤ 3 dimensions is given by

ĤΨ(r1, r2, ..., rN ; t) = i~
∂

∂t
Ψ(r1, r2, ..., rN ; t) (2.1)

with the full many-body wave function Ψ(r1, r2, ..., rN ; t) depending on the spatial co-
ordinates {ri} of all N bosons and the time t.
The Hamiltonian Ĥ reads

Ĥ =
N∑
i=1

ĥ(ri) + λ0

N∑
j>i

Ŵ (ri, rj) (2.2)

with the single-particle term

ĥ(ri) = T̂ (ri) + V (ri) (2.3)

T̂ (ri) = −1

2
∆i = −1

2

∂2

∂r 2
i

(2.4)

comprising the contributions of the kinetic energy T̂ and the external potential V which
is assumed to be real. For simplicity, the terms are given in dimensionless units with
~ = m = 1. The two-body operator Ŵ (ri, rj) represents the interaction potential of
strength λ0. In this work, interaction potentials which solely depend on the distance
rij = |ri − rj| between two bosons are considered. In general, both V and Ŵ can be
time-dependent.

2.2 Second quantization

In this section, the formalism of second quantization is briefly explained, including the
Fock state representation of an N -boson state, the symmetry properties of the wave
function, and the Hamiltonian in second quantization.
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2.2.1 Fock states and commutation relations

As a consequence of the spin-statistics theorem [36,37], the wave function Ψ(r1, ..., rN)
of N identical bosons is a fully symmetrized N -particle state, i.e., it is symmetric under
the permutation of two bosons with coordinates ri and rj, i.e.,

Ψ(..., ri, ..., rj, ...) = +Ψ(..., rj, ..., ri, ...). (2.5)

In second quantization, this is achieved by using a Fock state (or number state) basis
of the N -particle Hilbert space H(N) for the wave function Ψ. This basis incorporates
the previously mentioned symmetrization requirements as well as the commutation
relations of identical bosons shown below.
For a complete set of orthonormalized single-particle states, also referred to as orbitals,
{φi : i = 1, ...,∞}, a general Fock state reads

|n1, n2, ...〉 =
∏
i

[
1√
ni!

(
b̂†i

)ni

]
|vac〉 (2.6)

where the integers {ni} denote the occupation numbers of the individual orbitals and
|vac〉 the particle vacuum. In Eq. (2.6), the creation and annihilation operators b̂†i and

b̂i, which create or annihilate a particle in the state φi, were introduced. The action of
these operators on a Fock state is given by

b̂i |n1, n2, ..., ni, ...〉 =
√
ni |n1, n2, ..., ni − 1, ...〉

b̂†i |n1, n2, ..., ni, ...〉 =
√
ni + 1 |n1, n2, ..., ni + 1, ...〉

and thus the number operator for any single-particle state φi reads

n̂i = b̂†i b̂i. (2.7)

For a system with a fixed amount of bosons N , the occupation numbers of the orbitals
sum up to the total number of particles N , i.e.,

N =
∑
i

ni. (2.8)

The creation and annihilation operators fulfill the conventional bosonic commutation
relations [

b̂i, b̂k

]
= 0,

[
b̂†i , b̂

†
k

]
= 0,

[
b̂i, b̂

†
k

]
= δik (2.9)

which ensure the exchange symmetry of the Fock state basis in Eq. (2.6) and thus of
the total wave function Ψ as required in Eq. (2.5).
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2.2.2 Bosonic field operator

Utilizing the creation and annihilation operators of bosons for single-particle states
from the previous section, one can define operators that create or annihilate a boson at
position r at time t. These operators are the so-called field operators,

Ψ̂†(r, t) =
∑
i

b̂†i (t)φ
∗
i (r, t) (2.10)

Ψ̂(r, t) =
∑
i

b̂i(t)φi(r, t), (2.11)

where it is taken into account that the orbitals as well as the creation and annihilation
operators can in general be time-dependent. Thus, b̂†(t) and b̂(t) can be expressed in
terms of the field operators,

b̂†i (t) =

∫
φi(r, t)Ψ̂

†(r, t)dr, b̂i(t) =

∫
φ∗i (r, t)Ψ̂(r, t)dr (2.12)

where it is assumed that the set {φi(r, t)} consists of orthonormalized functions. In the
following, the time argument in the above quantities is suppressed. The field operators
in Eqs. (2.10) and (2.11) fulfill the bosonic commutation relations[

Ψ̂(r), Ψ̂(r ′)
]

= 0,
[
Ψ̂†(r), Ψ̂†(r ′)

]
= 0,

[
Ψ̂(r), Ψ̂†(r ′)

]
= δ (r− r ′) . (2.13)

The density operator is defined as

ρ̂(r) = Ψ̂†(r)Ψ̂(r) (2.14)

such that the operator of the total number of bosons in the system is given by

N̂ =

∫
dr ρ̂(r). (2.15)

2.2.3 One- and two-body operators

In second quantization, a general one-body operator Â(1), i.e., an operator acting on a
single particle, reduces to the form

Â(1) =
∑
i,j

a
(1)
ij b̂

†
i b̂j (2.16)

where the matrix elements a
(1)
ij are given by

a
(1)
ij =

∫
φ∗i (r)Â(1) φj(r) dr (2.17)
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or, equivalently in bra-ket notation, a
(1)
ij = 〈i|Â(1)|j〉. Similarly, the general form of a

two-body operator, i.e., an operator acting on two particles, is given by

Â(2) =
1

2

∑
i,j,k,l

a
(2)
ijkl b̂

†
i b̂
†
j b̂kb̂l (2.18)

with

a
(2)
ijkl =

∫∫
φ∗i (r)φ∗j(r

′)Â(2) φk(r
′)φl(r) drdr ′, (2.19)

or a
(2)
ijkl = 〈i, j|Â(2)|k, l〉 in short. The factor 1/2 in Eq. (2.18) accounts for double

counting of the individual terms.

2.2.4 Hamiltonian in second quantization

The Hamiltonian in Eq. (2.2) can now be expressed within the framework of second
quantization. Using the bosonic field operators in Eqs. (2.10) and (2.11) as well as
the general expressions for one- and two-body operators, Eqs. (2.16) and (2.18), one
obtains

Ĥ =
N∑
i=1

ĥ(ri) + λ0

N∑
j>i

Ŵ (ri, rj)

=

∫
dr

(
Ψ̂†(r)ĥ(r)Ψ̂(r) +

λ0

2

∫
dr ′Ψ̂†(r ′)Ψ̂†(r)Ŵ (r, r ′)Ψ̂(r)Ψ̂(r ′)

)
=
∑
i,j

hij b̂
†
i b̂j +

λ0

2

∑
i,j,k,l

Wijkl b̂
†
i b̂
†
j b̂kb̂l (2.20)

with the matrix elements

hij =

∫
φ∗i (r) ĥ(r)φj(r) dr (2.21)

Wijkl =

∫∫
φ∗i (r)φ∗j(r

′)Ŵ (r, r ′)φk(r
′)φl(r) dr dr ′. (2.22)

To keep the notation simple, the time argument of the quantities in Eqs. (2.20)-(2.22)
is suppressed. The above representation of Ĥ from Eq. (2.20) will be used in the
many-body formalism presented in Chapter 3.

2.3 Dirac-Frenkel variational principle

The working equations of all utilized many-body methods in this work can be derived
from the Dirac-Frenkel variational principle (DFVP) [38–40]. Like for any other varia-
tional method, it yields a condition for the dynamical evolution for any parametrized
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ansatz of the wave function Ψ. Within the DFVP, the equation that determines the
dynamics is given by 〈

δΨ(t)

∣∣∣∣Ĥ − i~ ∂∂ t
∣∣∣∣Ψ(t)

〉
!

= 0 (2.23)

which basically means that any allowed variation |δΨ(t)〉 is orthogonal to the residual

wave function
(
Ĥ − i~ ∂

∂ t

)
|Ψ(t)〉. Eq. (2.23), in combination with normalization con-

straints, is used to derive the equations of motion for MCTDHB. The full derivation
of the latter theory is carried out in detail in Section 3.1. Furthermore, the DFVP
can also be employed to derive the standard mean-field equation for the ground state
and dynamics of a trapped BEC, i.e., the GP equation. Its derivation is presented in
Appendix A.1.1.
It is important to note that under certain conditions, the DFVP is fully equivalent
to two other commonly used time-dependent variational principles, which are the least
action principle and the variational principle due to MacLachlan [41]. See in this context
Ref. [42].

2.4 Definition of Bose-Einstein condensation

In 1956, Penrose and Onsager developed a theoretical criterion which is utilized in
the definition of Bose-Einstein condensation and is based on standard quantities from
statistical quantum mechanics [43]. It makes use of the one-body reduced density
matrix (RDM) of an N -boson system which can be defined via the first order correlation
function

ρ(1)(r|r ′) =
〈

Ψ
∣∣∣Ψ̂†(r ′)Ψ̂(r)

∣∣∣Ψ〉
=
∑
i,j

ρij φ
∗
i (r
′)φj(r) (2.24)

with
ρij = 〈Ψ|ρ̂ij|Ψ〉, ρ̂ij = b̂†i b̂j (2.25)

where the time argument is suppressed in all quantities. More details on RDMs are given
in Appendix D. For r = r ′, Eq. (2.24) denotes the one-particle density. Diagonalizing
the one-body RDM yields

ρ(1)(r|r ′) =
∑
i

n
(1)
i α∗i (r

′)αi(r) (2.26)

where the eigenvalues
{
n

(1)
i |n

(1)
1 ≥ n

(1)
2 ≥ ...

}
and the eigenfunctions {αi(r)} are the

natural occupation numbers and the natural orbitals, respectively. Whenever possible,
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the superscript ’(1)’ of the natural occupation numbers will be omitted throughout this
work. According to Ref. [43], any N -boson system where only the largest eigenvalue
is macroscopic, i.e., n1 = O(N), is said to be condensed. However, if more than one
eigenvalue of the one-body RDM are macroscopic, the system is said to be depleted or
even fragmented [44,45].
The degree of depletion (or fragmentation) can be further quantified by

f =
1

N

∑
i>1

ni (2.27)

which is the aggregated occupation of all but the first natural orbital. To be more
specific in this work, the following classification, introduced in Ref. [46], is used. For
f = 0, the BEC is said to be fully-condensed or coherent. For f ≤ 5%, the BEC is said
to be depleted, whereas the BEC is fragmented for f > 5%.
In Chapter 6, the dynamics and excited states of BECs in different trap geometries in
one and two spatial dimensions are studied. There, the degree of depletion or frag-
mentation will be an essential quantity to distinguish the many-body results obtained
from the methods described in the subsequent Chapter 3 from the mean-field results
obtained by using the theories described in the Appendices A.1.1 and A.1.2.
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3 Many-body theory

In this chapter, the many-body approach utilized in this work to compute the ground
state and the dynamics of trapped BECs as well as their low-energy excitation spectra
is presented. First, an introduction to MCTDHB is made in Section 3.1, followed by
the application of LR theory atop it, termed LR-MCTDHB, in Section 3.2.2.

3.1 Multiconfigurational time-dependent Hartree method for
bosons (MCTDHB)

In this section, a detailed derivation of the MCTDHB [or MCTDHB(M)] theory which
has been originally introduced in Refs. [31, 32], is presented. It originates from the
closely related MCTDH method [47–49] which is a widely used technique to compute the
dynamics and excited states of nuclei in molecules. Further extensions of MCTDHB to
the case of type conversion of particles, to mixtures of bosons and fermions, to Hubbard-
type Hamiltonians of BECs on lattices, as well as to BECs with internal degrees of
freedom can be found in Refs. [50–53]. Other many-body theories for the ground state
and excitations of BECs were utilized as well. One example is the density matrix
renormalization group (DMRG) theory [54]. It is particularly designed for applications
in the field of one-dimensional condensed matter physics, but was extended beyond this
to quantum chemistry and quantum information. An early review can be found in [55].
Furthermore, DMRG has been extended and applied to two-dimensional systems as
well [56]. However, this thesis deals with MCTDHB and its LR theory, which, especially
in view of its connection to the GP and BdG theories, is easier to interpret and also
more widely used than DMRG.
The ansatz for the many-body wave function to solve the many-boson Schrödinger
equation, Eq. (2.1), is given by

|Ψ(t)〉 =
∑
n

Cn(t) |n; t〉, (3.1)

which is a superposition of permanents {|n; t〉} comprised of M single-particle orbitals
{φj(r, t) : 1 ≤ j ≤M} and expansion coefficients {Cn(t)} where n = (n1, . . . , nM)t is a
vector carrying the individual occupation numbers of the orbitals for a given permanent.
The summation in Eq. (3.1) includes all Nconf =

(
N+M−1

N

)
possibilities to distribute N

bosons onto M single-particle orbitals. It is important to note that both the permanents
and the coefficients are time-dependent, which is the main difference compared to the
frequently used many-body approach of the full configuration interaction (FCI) method.
In the latter theory, the amount of configurations for a given number M of single-
particle basis functions is the same as for MCTDHB. However, these basis states are



3 Many-body theory 12

fixed in shape, i.e., they remain unchanged and only the coefficients are time-dependent.
For MCTDHB, the single-particle orbitals are time-adaptive and, as shown below, the
corresponding set of equations of motion (EOMs) is coupled to the set of EOMs of the
coefficients. In terms of numerical convergence, utilizing a time-adaptive instead of a
shape-fixed basis dramatically improves the convergence towards exact results for both
the ground state and the dynamics of trapped BECs, as discussed in Chapter 5.
The working equations of MCTDHB are determined by the time-dependent DFVP of
Eq. (2.23). Therefore, the expression

L(t) =

〈
Ψ(t)

∣∣∣∣Ĥ − i ∂∂t
∣∣∣∣Ψ(t)

〉
−
∑
i,j

µij(t)[〈φi|φj〉 − δij] (3.2)

with ~ = 1 is considered. The time-dependent Langrange multipliers {µij(t)} ac-
count for the orthonormalization of the orbitals in time. Whenever possible, the time-
argument of all quantities is suppressed in the following. Plugging in the ansatz for the
wave function, Eq. (3.1), and the expression for the Hamiltonian, Eq. (2.20), into Eq.
(3.2) results in

L(t) =
M∑
k,q

ρkq

[
hkq −

(
i
∂

∂t

)
kq

]
+

1

2

M∑
k,s,q,l

ρksqlWksql

− i
∑
n

C∗n
∂Cn

∂t
−
∑
k,q

µkq[〈φk|φq〉 − δkq] (3.3)

where the elements of the one- and two-body RDMs in this case read

ρkq =
∑
n,n ′

C∗n(t)Cn

〈
n ′; t

∣∣∣b̂†kb̂q∣∣∣n; t
〉

(3.4)

ρksql =
∑
n,n ′

C∗nCn

〈
n ′; t

∣∣∣b̂†kb̂†sb̂q b̂l∣∣∣n; t
〉
. (3.5)

The variation of L(t) with respect to φ∗k(r, t) yields

δ

δφ∗k(r, t)
L(t) =

M∑
q=1

[
ρkq

(
ĥ− i ∂

∂t

)
− µkq +

M∑
s,l=1

ρksqlŴsl

]
|φq〉 (3.6)

with

Ŵsl(r, t) =

∫
φ∗s(r

′, t) Ŵ (|r− r ′|)φl(r ′, t) dr ′. (3.7)
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According to the DFVP, this variation should vanish, which determines the EOMs of
the orbitals given by

M∑
q=1

[
ρkqĥ− µkq +

M∑
s,l=1

ρksqlŴsl

]
|φq〉 = i

M∑
q=1

ρkq
∂

∂t
|φq〉. (3.8)

Taking the scalar product with 〈φi| in Eq. (3.8) results in the expression for the
Lagrange multipliers,

µki(t) =
M∑
q=1

(
ρkq

[
hiq −

(
i
∂

∂t

)
iq

]
+

M∑
s,l=1

ρksqlWisql

)
. (3.9)

By reinserting them into Eq. (3.8), multiplying by the inverse of the one-body RDM
{ρ−1}ik from the left-hand side (LHS), and summing over k, one arrives at

iP̂
∂

∂t
|φi〉 = P̂

[
ĥ|φi〉+

M∑
k,s,l,q=1

{ρ−1}ik ρksqlŴsl|φq〉

]
(3.10)

with

P̂ = 1−
M∑
j′=1

|φj′〉〈φj′| (3.11)

being a projection operator on the tangential space of span (φ1, ..., φM). Due to in-
variance properties of the ansatz for the wave function in Eq. (3.1), the orbitals are
orthogonal to their corresponding time-derivatives [47,48], i.e.,

〈φi|φ̇j〉 = 0 ∀i, j = 1...M. (3.12)

The time evolution of the orbitals is therefore fully orthogonal and ensures the or-
thonormality of the orbitals in time. Hence, one can further simplify Eq. (3.10) to
read

i
∂

∂t
|φi〉 = P̂

[
ĥ|φi〉+

M∑
k,s,l,q=1

{ρ−1}ik ρksqlŴsl|φq〉

]
, (3.13)

and Eq. (3.13) is referred to as the orbitals’ EOM in the following.
Setting the variation of Eq. (3.2) with respect to the coefficients to zero, i.e.,

δ

δC∗n(t)
L(t)

!
= 0, (3.14)
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leads to ∑
n ′

〈
n; t

∣∣∣∣Ĥ − i ∂∂t
∣∣∣∣n ′; t〉Cn ′(t) = i

∂

∂t
Cn(t). (3.15)

Thus, the EOM of the coefficients is given by

H(t)C(t) = i
∂

∂t
C(t) ⇐⇒ CH(t)(t) = i

∂

∂t
C(t) (3.16)

with the matrix elements

Hnn ′ =

〈
n; t

∣∣∣∣Ĥ − i ∂∂t
∣∣∣∣n ′; t〉 (3.17)

and C(t) being a vector whose entries are the Nconf coefficients {Cn(t)}. It is worth
noting that H(t) is hermitian. Eq. (3.16) is referred to as the coefficients’ EOM in the
following.
One observes that the sets of working equations for the orbitals and coefficients are
coupled to each other. With regard to the orbitals’ EOM, the coefficients appear in
the expressions for the two-body RDM as well as in the inverse of the one-body RDM,
see Eqs. (3.4), (3.5) and (3.13), respectively. With regard to the coefficients’ EOM,
the implicit dependence on the orbitals is incorporated in the matrix elements of Eq.
(3.17) since the permanents appearing therein are assembled by the orbitals.
By employing imaginary time-propagation, i.e., by setting it → τ in the working
equations (3.13) and (3.16), the MCTDHB theory reduces to the multiconfigurational
Hartree for bosons (MCHB) method which has been introduced in Ref. [57]. In that
way, the ground state of a given system can be computed very efficiently, as will be
shown in Section 5.2.
It can be inferred from Eq. (3.16) that the evolution of C(t) is unitary and therefore its
normalization is conserved in time. However, in comparison to the orbitals’ EOMs in Eq.
(3.13), the coefficient vector C(t) does not automatically propagate in an orthogonal
manner. The latter can be achieved by introducing a time-dependent phase of the form

C(t)→ C(t)e−i
∫ t dt′C†(t′)H(t′)C(t′) (3.18)

which, by inserting it into Eq. (3.16), yields

i
∂

∂t
C(t) = PcH(t)C(t) (3.19)

with the projector that maps onto the orthogonal space of the coefficients is given by

Pc = 1−C(t)C†(t). (3.20)
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Including the projector Pc is however redundant in the sense that the evolution of the
coefficient vector is unitary already without it, see Eq. (3.16). On the contrary, this
is not the case for the orbitals, where the projector P̂ that stems from the Lagrange
multipliers in Eq. (3.2) ensures that the orbitals stay normalized in time. Henceforth,
only the latter projector is considered in the subsequent derivation of LR-MCTDHB
(Section 3.2.2), whereas the coefficients’ projector Pc is set to unity in the following
without any loss of generality.
It is important to note that for a single orbital, i.e., M = 1, the MCTDHB theory
reduces to the GP mean-field equation [18–21], meaning that GP≡MCTDHB(1). The
derivation of the latter theory is described in Appendix A.1.1.

3.2 Many-body linear response

3.2.1 The connection between linear response and excitation spectra

Before carrying out the derivation of the many-body LR theory atop MCTDHB, a
rather general perspective of applying LR to the time-dependent Schrödinger equation,
Eq. (2.1), in order to calculate the excitation spectrum of a trapped BEC is discussed.
The goal is to demonstrate that in general, a LR analysis atop an exact eigenstate of
the unperturbed Hamiltonian Ĥ0, typically the ground state, yields the exact excitation
spectrum of the many-particle system. The following derivation is closely related to
the one in Ref. [35].
One considers the time-dependent Hamiltonian

Ĥ(t) = Ĥ0 + Ĥext(t), (3.21)

Ĥext(t) = f+(r)e−iωt + f−(r)eiωt (3.22)

where a weak time-dependent external field with amplitudes f+ and f− and oscillation
frequency ω is added to the stationary hermitian Hamiltonian Ĥ0. The latter has
eigenenergies Ek, k ∈ N, and the ground-state energy is denoted by ε0. The projected
time-dependent Schrödinger equation with ~ = 1,

P̂ΨĤ(t)Ψ(t) = iΨ̇(t), P̂Ψ = 1− |Ψ(t)〉〈Ψ(t)|, (3.23)

which can be obtained by introducing the phase

Ψ(t)→ Ψ(t)e−i
∫ t dt′〈Ψ(t′)|Ĥ(t′)〉Ψ(t′) (3.24)

to the system’s wave function Ψ(t) and inserting it into Eq. (2.1), ensures that the time
evolution is orthogonal in the sense that

〈Ψ(t)|Ψ̇(t)〉 = 0 (3.25)
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at any time t. To solve Eq. (3.23), the ansatz

Ψ(r, t) = e−ε
0t
(
Ψ0(r) + u(r) e−iωt + v(r)∗ eiωt

)
(3.26)

is employed, which is assumed to be valid after a certain adaption time of the system
to the perturbation. The ground state Ψ0 of Ĥ0 as well as the correction amplitudes u
and v are assumed to be stationary. The attached time-dependent oscillations have the
same frequency ω as the external perturbing field. Utilizing the orthogonality condition,
Eq. (3.25), one obtains

〈Ψ0|u〉 = 0 and 〈Ψ0|v∗〉 = 0, (3.27)

meaning that the correction amplitudes are orthogonal to the ground-state wave func-
tion and thus

P̂Ψ0 |u〉 = |u〉 and P̂Ψ0|v∗〉 = |v∗〉 (3.28)

for the operator projecting onto the tangential space of Ψ0, i.e., P̂Ψ0 = 1 − |Ψ0〉〈Ψ0|.
Inserting the ansatz (3.26) into Eq. (3.23), one arrives at

P̂Ψ0Ĥ
0(u e−iωt + v∗ eiωt) + P̂Ψ0(f

+e−iωt + f−eiωt)Ψ0

= (ω + ε0)(u e−iωt − v∗ eiωt) (3.29)

where only terms linear to u and v are kept. This can be written in matrix form by
ordering terms proportional to e−iωt and eiωt, respectively. The result reads[(

P̂Ψ0(Ĥ
0 − ε0) 0

0 −P̂∗Ψ0
(Ĥ0,∗ − ε0)

)
− ω

](
u
v

)
=

(
−P̂Ψ0f

+ Ψ0

P̂∗Ψ0
f−,∗Ψ0

)
(3.30)

where complex conjugation to the lower equation has been applied. Defining the LR
matrix L as

L =

(
P̂Ψ0(Ĥ

0 − ε0)P̂Ψ0 0

0 −P̂∗Ψ0
(Ĥ0,∗ − ε0)P̂∗Ψ0

)
(3.31)

where redundantly the projectors P̂Ψ0 and P̂∗Ψ0
have been inserted from the right-hand

side (RHS) to the upper and lower blocks, the homogeneous version of Eq. (3.30) is
given by

L
(
u
v

)
= ω

(
u
v

)
. (3.32)

For the upper block, one can immediately deduce that the spectrum of corresponding
eigenvalues is given by ωk = Ek − ε0, meaning that one obtains the eigenvalues of the
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unperturbed Hamiltonian Ĥ0. Moreover, one obtains ωk = −(Ek − ε0) for the lower
block.
This is an important result because it means that the LR due to an external per-
turbation, as described in Eq. (3.22), yields, if applied to an exact eigenstate of Ĥ0

(not necessarily the ground state), the full spectrum of exact excitation energies. It is
worth stressing the generality of the above derivation because no physical properties
of the system were specified, i.e., whether Ĥ0 describes a single- or multi-particle sys-
tem, bosons or fermions (or even mixtures), or identical or distinguishable particles.
Thus, LR represents a generic method for obtaining the spectrum of excited states of
a quantum system. Section 3.2.2, explicitly deals with the many-body linear response
of systems consisting of identical bosons.
This section is closed by referring to systems where no exact eigenstate of Ĥ0, e.g., the
ground state, is known. This is naturally the most common case since the number of
systems where analytic solutions are available is very small. Hence, in order to obtain
accurate results for the excitation energies from a LR analysis, one is in need of a very
accurate approximation of the system’s ground state. In other words, increasing the
quality of the underlying ground-state approximation will increase the accuracy of the
spectrum of excited states. From a numerical point of view, Chapter 5 shows that
MCTDHB turns out to be a very powerful approach to calculate the ground state of
a trapped BEC to very high accuracy, and that it is clearly superior to other widely
used methods like the GP mean-field equation or the FCI method. As a result, LR-
MCTDHB leads to highly accurate excitation spectra, for which numerical evidence is
presented in Section 5.3.

3.2.2 Linear-response MCTDHB (LR-MCTDHB)

In this section, LR-MCTDHB [or LR-MCTDHB(M)] is derived. To this end, a trapped
N -boson system is considered and its ground-state orbitals and coefficients, {φ0

k : 1 ≤
k ≤M} and C0, are calculated by using imaginary time-propagation of the MCTDHB
working equations [57], Eqs. (3.13) and (3.16). Afterwards, the same time-dependent
external perturbation as given in Eq. (3.22) is added to the Hamiltonian, such that the
latter is finally given by Eqs. (3.21). The EOMs are linearized according to this. The
subsequent derivation of the LR equations follows Refs. [34,35].
The ansätze for the response orbitals and coefficients due to the external perturbation
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are

φk(r, t) ≈ φ0
k(r) + δφk(r, t) (3.33)

δφk(r, t) = uk(r)e−iωt + v∗k(r)eiωt (3.34)

C(t) ≈ e−iε
0t[C0 + δC(t)] (3.35)

δC(t) = Cue
−iωt + C∗ve

iωt (3.36)

with 1 ≤ k ≤ M . The k-th response orbital is thus given by the zeroth-order orbital,
typically the time-independent ground-state orbital φ0

k(r), plus a weak, time-dependent
perturbation δφk(r, t) with oscillation frequency ω and stationary response amplitudes
uk(r) and vk(r). The response coefficients consist of similar parts and are addition-
ally multiplied with a time-dependent phase eiε

0t to which it is referred below. The
time-dependence is therefore essentially incorporated in the perturbation part. In the
following, the linearization of the orbitals’ and coefficients’ EOMs are discussed sepa-
rately.

For linearizing the orbitals’ EOMs, and it is instructive to utilize the version in Eq.
(3.8) given by

i
M∑
q=1

ρkq|φ̇q(t)〉 =
M∑
q=1

[Ẑkq − µkq(t)]|φq(t)〉, (3.37)

with the replacement

Ẑkq = ρkq[ĥ+ Ĥext(t)] +
M∑
s,l=1

ρksqlŴsl. (3.38)

Inserting Eq. (3.33) into Eq. (3.37), one can group the resulting expression in terms of
perturbation orders. In zeroth order, one obtains

0 =
∑
q

[Ẑ0
kq − µ0

kq]|φ0
q〉 ∀k = 1...M, (3.39)

with

Ẑ0
kq = ρ0

kqĥ+
M∑
s,l=1

ρ0
ksqlŴ

0
sl. (3.40)

Here and in the following, quantities with the superscript ’0’ denote that they only
contain zeroth-order orbitals and coefficients. Eq. (3.39) represents the orbital part of
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the MCHB working equations, see Ref. [57] in this context. For the first order, the LHS
of Eq. (3.37) yields

i
∑
q

(δρkq |φ̇0
q〉︸︷︷︸

=0

+ρ0
kq| ˙δφq(t)〉) = i

∑
q

ρ0
kq| ˙δφq(t)〉. (3.41)

The RHS is given by∑
q

[Ẑ0
kq − µ0

kq] |δφq(t)〉+
∑
q

[δẐkq − δµkq(t)] |φ0
q〉 (3.42)

with

δẐkq = δ

(
ρkqĥ+

∑
s,l

ρksqlŴsl

)
+ ρ0

kqĤext(t)

= δρkqĥ+
∑
s,l

ρ0
ksqlδŴsl +

∑
s,l

δρksqlŴ
0
sl + ρ0

kqĤext(t). (3.43)

To compute the RHS further, the variation of the chemical potential δµkq(t), given by

δµkq(t) =

〈
δφq

∣∣∣∣∣∑
j

[
Ẑ0
kj − iρkj

∂

∂t

] ∣∣∣∣∣φ0
j

〉
+

〈
φ0
q

∣∣∣∣∣∑
j

δ

[
Ẑ0
kj − iρkj

∂

∂t

∣∣∣∣φj
〉]

Eq.(3.39)
=

∑
j

µ0
kj

〈
δφq|φ0

j

〉
+

〈
φ0
q

∣∣∣∣∣∑
j

ρ0
kjĤext(t)

∣∣∣∣∣φ0
j

〉

+

〈
φ0
q

∣∣∣∣∣
(∑

j

δρkjĥ+
∑
j,s,l

(ρ0
ksjlδŴsl + δρksjlŴ

0
sl)

)∣∣∣∣∣φ0
j

〉

+

〈
φ0
q

∣∣∣∣∣∑
j

(
Ẑ0
kj − iρ0

kj

∂

∂t

)∣∣∣∣∣ δφj
〉
, (3.44)
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is employed. Thus, Eq. (3.42) can be written as

∑
q

[Ẑ0
kq − µ0

kq] |δφq〉+
∑
q

{
δρkqĥ+ ρ0

kqĤext(t) +
∑
s,l

(ρksql δŴsl + δρksql Ŵ
0
sl)

}
|φ0
q〉

−
∑
q

{∑
j

(−µ0
kj)
〈
φ0
q|δφj

〉
+

〈
φ0
q

∣∣∣∣∣∑
j

ρ0
kjĤext(t)

∣∣∣∣∣φ0
j

〉

+

〈
φ0
q

∣∣∣∣∣
(∑

j

δρkjĥ+
∑
j,s,l

(ρ0
ksjlδŴsl + δρksjlŴ

0
sl)

)∣∣∣∣∣φ0
j

〉

+

〈
φ0
q

∣∣∣∣∣∑
j

(
Ẑ0
kj − iρ0

kj

∂

∂t

)∣∣∣∣∣ δφj
〉 }

|φ0
q〉 (3.45)

which, combined with the LHS, Eq. (3.41), leads to∑
q

P̂
{(
Ẑ0
kq − µ0

kq

)
|δφq〉+

(
δρkqĥ+ ρ0

kqĤext(t)

+
∑
s,l

δρksql Ŵ
0
sl +

∑
s,l

ρ0
ksql δŴsl

)
|φ0
q〉
}

= iP̂
∑
q

ρ0
kq|δφ̇q〉 (3.46)

where the projection operator P̂ = 1 −
∑

j′ |φ0
j′〉〈φ0

j′| projects on the tangential space
of the stationary orbitals. From the invariance condition, Eq. (3.12), one can deduce

0 = δ〈φk|φ̇q〉 = 〈δφk |φ̇0
q〉︸︷︷︸

=0

+〈φ0
k|δφ̇q〉

= −iω〈φ0
k|uq〉e−iωt + iω〈φ0

k|v∗q〉eiωt

⇒ 〈φ0
k|uq〉 = 〈φ0

k|v∗q〉 = 0 ∀ 1 ≤ k, q ≤M (3.47)

such that

P̂|δφ̇q〉 =

(
1−

M∑
j′=1

|φ0
j′〉〈φ0

j′ |

)
|δφ̇q〉 = |δφ̇q〉 (3.48)

which makes the projection operator on the RHS of Eq. (3.46) redundant. One further
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utilizes

δŴsl [ul, u
∗
s, v
∗
l , vs] =

∫
dr ′
{
δφ∗s(r

′, t) Ŵ (|r− r ′|)φ0
l (r
′)

+ φ0,∗
s (r ′) Ŵ (|r− r ′|) δφl(r ′, t)

}
(3.49)

δρkq [Cu,Cv,C
∗
u,C

∗
v] = 〈δC(t)|b̂†kb̂q|C

0〉+ 〈C0|b̂†kb̂q|δC(t)〉 (3.50)

δρksql [Cu,Cv,C
∗
u,C

∗
v] = 〈δC(t)|b̂†kb̂

†
sb̂q b̂l|C0〉+ 〈C0|b̂†kb̂

†
sb̂q b̂l|δC(t)〉 (3.51)

and inserts the above equations, together with Eqs. (3.22), (3.34), and (3.36), into Eq.
(3.46). Collecting all terms proportional to e−iωt results in∑

q

P̂
{(
Ẑ0
kq − µ0

kq

)
|uq〉+

(
δρkq [Cu,Cv] ĥ+ ρ0

kq f
+

+
∑
s,l

δρksql [Cu,Cv] Ŵ
0
sl +

∑
s,l

ρ0
ksql δŴsl[ul, vs]

)
|φ0
q〉
}

= ω
∑
q

ρ0
kq|uq〉. (3.52)

Similarly, collecting all terms proportional to eiωt yields∑
q

P̂
{(
Ẑ0
kq − µ0

kq

)
|v∗q〉+

(
δρkq [C∗u,C

∗
v] ĥ+ ρ0

kq f
−

+
∑
s,l

δρksql [C
∗
u,C

∗
v] Ŵ

0
sl +

∑
s,l

ρ0
ksql δŴsl[u

∗
s, v
∗
l ]
)
|φ0
q〉
}

= −ω
∑
q

ρ0
kq|v∗q〉

C.C.⇐⇒
∑
q

P̂∗
{(
Ẑ0
qk − µ

0,∗
kq

)
|vq〉+

(
δρqk [Cu,Cv] ĥ+ ρ0

qk f
−

+
∑
s,l

δρqlks [Cu,Cv] Ŵ
0
ls +

∑
s,l

ρ0
qlks δŴls[us, vl]

)
|φ0,∗
q 〉
}

= −ω
∑
q

ρ0
qk|vq〉 (3.53)

where ’C.C.’ denotes complex conjugation of the entire equation.
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For linearizing the coefficients’ EOMs, one obtains in zeroth order the stationary equa-
tion

H0C0 = ε0 C0 (3.54)

with the matrix elements {H0
nn ′} = 〈n|Ĥ0|n ′〉 and the energy of the stationary ground

state ε0. Eq. (3.54) is the working equation for the coefficients within the MCHB
theory. In first order, one arrives at

i
∂

∂t
δC(t) = δHC0 +

(
H0 − ε0

)
δC(t) (3.55)

with

δH =
∑
k,q

δhkq b̂
†
kb̂q +

1

2

∑
k,s,q,l

δWksql b̂
†
kb̂
†
sb̂q b̂l (3.56)

and

δhkq =

∫
dr δφ∗k(r, t)ĥφ

0
q(r) +

∫
drφ0,∗

k (r)ĥδφq(r, t)

+

∫
drφ0,∗

k (r)Ĥext(r, t)φ
0
q(r)︸ ︷︷ ︸

≡(Hext)kq

(3.57)

δWksql =

∫∫
drdr ′ δφ∗k(r, t)φ

0,∗
s (r ′)Ŵ (|r− r ′|)φ0

q(r
′)φ0

l (r)

+

∫∫
drdr ′ φ0,∗

k (r)δφ∗s(r
′, t)Ŵ (|r− r ′|)φ0

q(r
′)φ0

l (r)

+

∫∫
drdr ′ φ0,∗

k (r)φ0,∗
s (r ′)Ŵ (|r− r ′|)δφq(r ′, t)φ0

l (r)

+

∫∫
drdr ′ φ0,∗

k (r)φ0,∗
s (r ′)Ŵ (|r− r ′|)φq(r ′)δφl(r, t). (3.58)

Collecting all terms proportional to e−iωt yields

ωCu = (H0 − ε0)Cu +

[∑
k,q

δhk,q[vk, uq, f
+]b̂†kb̂q

+
1

2

∑
k,s,q,l

δWksql[vk, vs, uq, ul]b̂
†
kb̂
†
sb̂q b̂l

]
C0, (3.59)
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whereas collecting all terms proportional to e+iωt results in

−ωC∗v = (H0 − ε0)C∗v +

[∑
k,q

δhk,q[u
∗
k, v
∗
q , f

−]b̂†kb̂q

+
1

2

∑
k,s,q,l

δWksql[u
∗
k, u

∗
s, v
∗
q , v
∗
l ]b̂
†
kb̂
†
sb̂q b̂l

]
C0

C.C.⇐⇒ −ωCv = (H0,∗ − ε0)Cv +

[∑
k,q

δhq,k[uk, vq, f
−]
(
b̂†kb̂q

)∗
+

1

2

∑
q,l,k,s

δWqlks[uk, us, vq, vl]
(
b̂†kb̂
†
sb̂q b̂l

)∗]
C0,∗. (3.60)

After the linearization of both the orbitals’ and coefficients’ EOMs, one can combine
the sets of LR equations by casting Eqs. (3.52), (3.53), (3.59) and (3.60) into matrix
form, leading to

(PL −Mω)


u
v

Cu

Cv

 =MPR[f+, f−] (3.61)

with u = (u1, ..., uM)t, v = (v1, ..., vM)t and the LR matrix

L =

(
Loo Loc
Lco Lcc

)
(3.62)

where the submatrices refer to the couplings between the orbitals and the coefficients.
In Eq. (3.61), P is a projection matrix, M is a metric which contains the one-body
RDM, and the RHS R contains the amplitudes of the external perturbation, f+ and
f−. In the following, the submatrices in Eq. (3.62) are explicitly derived.
The (2M)-dimensional square orbital matrix Loo consists of four blocks and reads

Loo =

(
Luoo Lvoo

− (Lvoo)
∗ − (Luoo)

∗

)
. (3.63)

The upper part can be obtained from Eq. (3.52) by collecting all terms proportional to
u, yielding

Luoo = ρ0ĥ− µ0 + Ω0 + κ1 (3.64)
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with ρ0 = {ρ0
kq}, µ0 = {µ0

kq}, Ω0 = {Ω0
kq} =

∑
s,l ρ

0
ksqlŴ

0
sl and κ1 = {κ1

kq} =∑
s,l ρ

0
ksqlK̂

0
sl. Therein, the exchange interaction operator is defined as

K̂sl =

∫
dr ′φ∗s(r

′)Ŵ (|r− r ′|)P̂rr ′φl(r
′) (3.65)

where P̂rr ′ permutes the coordinates r and r ′, i.e.,

P̂rr ′f(r) = f(r ′) (3.66)

for any function f(r). The action of K̂sl on an arbitrary function f(r) therefore reads

K̂sl f(r) = Ŵsf φl(r). (3.67)

Furthermore, one obtains for all terms proportional to v

Lvoo = κ2, κ2 = {κ2
kq} =

∑
s,l

ρ0
kqslK̂l∗s (3.68)

for the upper right block of Loo. The lower two submatrices can be obtained from Eq.
(3.53) and turn out to be the negative complex conjugate of the upper submatrices.
The upper right block of L, i.e., the 2(M × Nconf)-matrix Loc, has a similar structure
than Loo, meaning it consists of four separate blocks given by

Loc =

(
Luoc Lvoc

− (Lvoc)
∗ − (Luoc)

∗

)
. (3.69)

The upper two submatrices can again be extracted from Eq. (3.52) and yield, collecting
all terms proportional to Cu,

Luoc =
∑
q

{
ĥ
(
ρ̂qkC

0
)†

+
∑
s,l

Ŵ 0
sl

(
ρ̂qlksC

0
)†}

φ0
q , (3.70)

whereas collecting all terms proportional to Cv results in

Lvoc =
∑
q

{
ĥ
(
ρ̂kqC

0
)t

+
∑
s,l

Ŵ 0
sl

(
ρ̂ksqlC

0
)t}

φ0
q . (3.71)

The lower two submatrices can be extracted from Eq. (3.53).
With respect to the 2(Nconf ×M)-matrix Lco, one finds

Lco =

(
Luco Lvco

− (Lvco)
∗ − (Luco)

∗

)
(3.72)
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with

Luco =
∑
k

φ0,∗
k

{(
ρ̂kqC

0
)
ĥ+

∑
sl

(
ρ̂klqsC

0
)
Ŵ 0
sl

}
(3.73)

from collecting all terms proportional to uq in Eq. (3.59) and

Lvco =
∑
k

φ0
k

{(
ρ̂qkC

0
)
ĥ∗ +

∑
sl

(
ρ̂qsklC

0
)
Ŵ 0
ls

}
(3.74)

from collecting all terms proportional to vq in Eq. (3.60). It can thus be seen that

(Luoc)
† = Luco, (Lvoc)

t = Lvco. (3.75)

Furthermore, one can extract the (2Nconf)-dimensional square matrix Lcc from Eqs.
(3.59) and (3.60), which gives

Lcc =

(
H0 − ε0 0cc

0cc − (H0,∗ − ε0)

)
(3.76)

where 0cc is the (Nconf)-dimensional zero matrix.
The projection operator P is given by

P =

(
Poo 0oc

0co 1cc

)
(3.77)

with

Poo =

(
P̂ 0

0 P̂∗

)
(3.78)

and 1cc being the (2Nconf)-dimensional unit matrix. The matrices 0oc and 0co denote
the 2(M ×Nconf)- and 2(Nconf ×M)-dimensional zero matrices, respectively.
The metric M reads

M =

(
ρoo 0oc

0co 1cc

)
(3.79)

where ρoo is given by

ρoo =

(
ρ0 0o

0o ρ0,∗

)
(3.80)

and 0o being the (M ×M)-dimensional zero matrix.
In the following, the response amplitudes and coefficients are written in bra-ket notation
for reasons that become clear below. In order to render Eq. (3.61) an eigenvalue
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equation, it is helpful to notice that only the term proportional to the external frequency
ω has no projector, which implies

PM


|u〉
|v〉
|Cu〉
|Cv〉

 =M


|u〉
|v〉
|Cu〉
|Cv〉

 (3.81)

and thus one may add a redundant projector PL ⇒ PLP to the left term of the LHS
of Eq. (3.61). Multiplying now with M−1/2 from the left yields

(
M−1/2PLPM−1/2 − ω

)
M+1/2


|u〉
|v〉
|Cu〉
|Cv〉

 =M+1/2PR[f+, f−] (3.82)

or, in a more compact notation,

(
L̄ − ω

)
|u〉
|v〉
|Cu〉
|Cv〉

 = R[f+, f−] (3.83)

where

L̄ =M−1/2PLPM−1/2

=

(
ρoo

−1/2 Poo LooPoo ρoo
−1/2 ρoo

−1/2 Poo Loc
LocPoo ρoo

−1/2 Lcc

)
, (3.84)

as well as
(
u,v,Cu,Cv

)t
=M+1/2 (u,v,Cu,Cv)

t andR =M+1/2PR were introduced.
To keep the notation simple, the bar over the individual quantities in Eq. (3.83) will
be omitted in the following. For the homogeneous case, i.e., with R = 0, one arrives at
the central equation of this work, given by

(L − ω)


|u〉
|v〉
|Cu〉
|Cv〉

 = 0 (3.85)

which is a standard eigenvalue problem of the LR matrix L. Its solutions, i.e., the set
of eigenvalues {ωk = Ek−ε0} and eigenvectors {(|uk〉, |vk〉, |Cu

k〉, |Cv
k〉)t} where k ∈ N
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labels the excitations, can be used to solve the inhomogeneous problem of Eq. (3.83)
by employing the ansätze 

|u〉
|v〉
|Cu〉
|Cv〉

 =
∑
k

ck


|uk〉
|vk〉
|Cu

k〉
|Cv

k〉

 (3.86)

and

R = −
∑
k

γk


|uk〉
|vk〉
|Cu

k〉
|Cv

k〉

 (3.87)

where the minus sign is chosen arbitrarily. One finally obtains

∑
k

ck(ωk − ω)


|uk〉
|vk〉
|Cu

k〉
|Cv

k〉

 = −
∑
k

γk


|uk〉
|vk〉
|Cu

k〉
|Cv

k〉

 (3.88)

which means that the expansion coefficients ck in Eq. (3.86) are given by

ck =
γk

ω − ωk
. (3.89)

It is stressed that the response weights {γk} are the only quantities that depend on
the perturbing fields f+ and f− and thus on the actual shape of the perturbation.
All other quantities like the LR matrix L, the eigenenergies {ωk} and the eigenvectors
{(|uk〉, |vk〉, |Cu

k〉, |Cv
k〉)t} are obtained from the homogeneous eigenvalue problem of

Eq. (3.85) where the amplitudes f+ and f− of the perturbing field do not appear.
Multiplying Eq. (3.87) by

(
〈uk|,−〈vk|, 〈Cu

k|,−〈Cv
k|
)

from the left, taking into account
the orthonormality conditions for the perturbed amplitudes and coefficients given by

〈uk|uk′〉 − 〈vk|vk′〉+ 〈Cu
k|Cu

k′〉 − 〈Cv
k|Cv

k′〉 = δkk′ (3.90)

〈vk|uk′,∗〉 − 〈uk|vk′,∗〉+ 〈Cv
k|Cu

k′,∗〉 − 〈Cu
k|Cv

k′,∗〉 = 0, (3.91)
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leads to the response weights

γk = −
(
〈uk|,−〈vk|, 〈Cu

k|,−〈Cv
k|
)
R

= −
(
〈uk|,−〈vk|, 〈Cu

k|,−〈Cv
k|
)


−(ρ0)1/2 P̂f+|φ0〉
(ρ0,∗)1/2 P̂∗f−|φ0,∗〉

−
∑

i,j(Hext)ij[f
+] b̂†i b̂j |C0〉∑

i,j(Hext)ji[f
−]
(
b̂†i b̂j

)∗
|C0,∗〉


= 〈uk|f+(ρ0)1/2|φ0〉+ 〈vk|f−(ρ0,∗)1/2|φ0,∗〉

+
∑
i,j

(∫
drφ0,∗

i f+φj

)
〈Cu

k|b̂†i b̂j |C0〉

+
∑
i,j

(∫
drφ0,∗

j f−φi

)〈
Cv

k
∣∣∣(b̂†i b̂j)∗∣∣∣C0,∗

〉
(3.92)

where the vector |φ0〉 = (|φ0
1〉, ..., |φ0

M〉)
t

collects the stationary ground-state orbitals.
Each response weight γk quantifies how strong the k-th excited state contributes to the
overall response of the system to an external perturbation with the amplitudes f+ and
f−. For instance, it may happen that for a chosen shape of the perturbing external
fields, some excited states do not respond at all and thus appear to be transparent for
f+ and f−.
The response density of the k-th excited state due to the perturbation can in general
be expressed as

∆ρk(r) = ∆ρko(r) + ∆ρkc (r) (3.93)

where ∆ρko(r) and ∆ρkc (r) denote the orbitals’ and coefficients’ contribution, respec-
tively. Those are given by

∆ρko = 〈φ0|(ρ0)1/2
(
|uk〉+ |vk,∗〉

)
+
(
|uk〉+ |vk,∗〉

)†
(ρ0,∗)−1/2ρ0 |φ0〉 (3.94)

and

∆ρkc =
M∑
i,j=1

φ0,∗
i φ0

j

(
〈C0|â†i âj|Cu

k〉+ 〈Cv
k,∗|â†i âj|C0〉

)
. (3.95)

To summarize, the many-body LR theory based on the MCTDHB working equations,
termed LR-MCTDHB, was introduced and derived. For a given N -bosons system in a
potential trap V and a two-body interaction Ŵ , the central equation in order to obtain
the excitation spectrum is Eq. (3.85). Although this equation appears to be rather
straightforward to solve, it in general represents a demanding task because firstly, L
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is not necessarily hermitian and secondly, it can become extremely large in size when
the number of bosons N and/or the number of orbitals M grows. In Appendix B, it is
shown that the LR matrix can be brought to block-diagonal form by using a complex
transformation, which halves the dimensionality of the eigenvalue problem. However, it
involves matrix-matrix products of the individual blocks of L, which can be numerically
very expensive. It hence remains a problem-dependent question whether it is beneficial
to perform this transformation or not.
In the next chapter, Chapter 4, details on the numerical implementation of LR-MCTDHB
are presented. First, general rather technical problems of the eigenvalue problem in Eq.
(3.85) are discussed before explaining the code structure and the numerical methods
utilized. Finally, it is once again stressed that for M = 1, LR-MCTDHB reduces to
the (particle-conserving) BdG equations, i.e., BdG≡LR-GP≡LR-MCTDHB(1). The
derivation of the BdG theory is described in Appendix A.1.2. Since the BdG is com-
monly used to calculate excitations of trapped BECs, its results for certain applications
(see Chapter 6) are compared to the many-body results for M > 1.





4 Numerical implementation of LR-MCTDHB 31

4 Numerical implementation of LR-MCTDHB

In this chapter, information about the LR-MCTDHB implementation are presented.
Before dealing with the technical and numerical details in Sections 4.2 and 4.3, a brief
overview about the general structure of the code is given in Section 4.1, together with
a description of technical problems that were to be solved.

4.1 Code structure and problems

As a starting point, the structure of the numerical implementation, consisting of several
thousand lines of code, is explained. The entire task of calculating the energies of excited
states and the corresponding correction amplitudes of a trapped interacting BEC, i.e.,
solving the eigenvalue problem of Eq. (3.85), is separated into two major parts. Those
are (i) the construction of the LR matrix L̄ (simply denoted by L in the following)
as described in Eq. (3.84) and (ii) finding a desired amount of eigenpairs of the low-
energy spectrum. To this end, two running modes were implemented. Mode 1 is the
construction mode. As an input, it requires a stationary state of a system of N bosons
in a trap V with interaction Ŵ , where the bosons can occupy M single-particle orbitals.
Typically, this stationary state is the ground state of the system, and it can therefore
be obtained from a previous MCTDHB calculation using imaginary time propagation.
The output of mode 1 is the LR matrix L. Afterwards, the code can be restarted in
mode 2, the diagonalization mode, which takes L as an input and calculates a desired
amount of eigenpairs in the low-energy part of the excitation spectrum. Furthermore,
the response weights and response densities, described in Section 3.2.2, are calculated.
The main problem of both the construction and the eigenvalue calculation is the memory
consumption of L, and, especially in mode 1, the size of intermediate matrices that ap-
pear during the construction, like the projector P or the individual blocks Loo, Loc, Lco
and Lcc. Although the memory consumption might be a minor issue for systems in 1D
with small values of N and M , it can become a massive problem for larger systems.
To give an example, one can consider a system with N = 100 particles and M = 4
orbitals. In such a case, already the coefficient matrix Lcc has a dimensionality of
353702, which means it would need approximately 4 terabytes of memory to store all
matrix elements, assuming those are in general complex numbers of 32 bytes. However,
the available working memory (RAM) of compute nodes on modern high performance
computation clusters is typically much smaller, being of the order of 128 or 256 giga-
bytes. One possible solution of this problem is to store all (large) matrices that appear
during the construction of L, as well as L itself, in a sparse matrix storage format.
There are multiple possibilities to do that, e.g., the compressed-sparse-row (CSR) or
compressed-sparse-column (CSC) format (see, e.g., Ref. [58] for additional formats).
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To obtain eigenpairs of L by running the code in mode 2, one is in need of a numerical
method that is capable of dealing with sparse and large non-hermitian matrices. The
method of choice is the implicitly restarted Arnoldi method (IRAM), implemented in the
ARPACK numerical library [59]. In the current implementation, the parallel version,
termed PARPACK, is utilized [60]. The IRAM is presented in detail in Section 4.3.
The PARPACK routines have a significant advantage over eigenvalue routines from
other libraries like ScaLAPACK [61] because they do not require the matrix that one
wishes to diagonalize as an input, not even in any sparse format. It is only required to
hand over the result of matrix-vector multiplications (matvecs) as input, and the actual
calculation of these matvecs takes place outside of any PARPACK routine, meaning
that the implementation of the matvecs is completely independent. It can be carried
out separately, utilizing routines from other numerical libraries, e.g., the Intel Math
Kernel Library (MKL) [62], that calculate matvecs of large and sparse matrices in a
very efficient manner. Moreover, calculating matvecs it is a process that can be easily
parallelized which further improves the code performance.
Due to the large amount of operations in both running modes, especially for large N
and M in two- or three-dimensional space, sequential runs of the code would require
very long runtimes. Therefore, a fully MPI-parallelized implementation of the code was
carried out for both running modes. Whereas this was a comparatively straightforward
task for mode 2 – since only the matvecs needed to be parallelized – it turned out to
be a demanding challenge with respect to mode 1. A parallelization scheme that is a
compromise between taking care of the least possible memory consumption on the one
hand, and distributing the workload among all participating PEs as equal as possible
on the other hand, is employed. In Section 4.2, the overall construction process is
explained in more detail.

4.2 Construction of the LR matrix

In this section, details on the implementation of the LR matrix construction are pre-
sented. Figure 4.1 shows the structure of the code and its main steps. As input, the
code requires the stationary state to which the LR analysis should be applied, usually
the ground state of a trapped BEC. In particular, one needs to hand over the set of
orbitals {φ0

i : 1 ≤ i ≤M} as well as the corresponding coefficients C0. Afterwards, in-
termediate matrices are calculated which are essential to built up the individual blocks
of L as described in Eq. (3.62). This includes the kinetic energy operator T̂kin, the
direct and exchange interaction operators Ŵsl and K̂sl, as well as the projection oper-
ator P . All of these calculations are done in parallel, and the final result is stored in a
sparse storage format on the master process PE 0.
Then, the matrices Loo and Loc are calculated. Whereas Loo is a 2(M · Ngrid) square
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matrix with Ngrid denoting the number of grid points, Loc is a 2(M · Ngrid × Nconf)
matrix. It is stressed that constructing these two matrices is usually the most time-
consuming part of the entire calculation of L due to the large amount of operations
involved. On the one hand, for problems where the grid is large (e.g., in 2D and 3D)
and M ≥ 7, the construction of Loo represents the essential part of the calculations.
On the other hand, if the number of particles is large such that Nconf = O(105) or
higher, the construction of Loc becomes the most demanding problem. Additionally,
both matrices need to be multiplied by ρoo

−1/2Poo from the left, which further increases
the amount of operations significantly. Because of this, both the construction of Loo
and Loc are MPI-parallelized, as well as the subsequent multiplication with the metric
and projector matrices. As for the preliminary calculation described above, the final
results of (ρoo

−1/2PooLoo) and (ρoo
−1/2PooLoc) are stored on PE 0 in a sparse storage

format.
Next, the generation of L starts. Therefore, the problem is separated into the construc-
tion of the upper and lower part. With respect to the upper blocks, this means that
only the upper left block needs to be multiplied by Poo ρoo

−1/2 from the right, whereas
the upper right block is already fully calculated and can be written to the output
file directly. To efficiently calculate the upper-left block, a row-by-row parallelization
scheme is employed where each PE calculates a different row at a time. Therefore, PE
0 distributes all necessary matrix elements of (ρoo

−1/2PooLoo) and P to the other PEs.
Finally, all PEs send back their calculated rows (i.e., the non-zero elements and their
coordinates) to PE 0, which writes the results to the output file.
Concerning the construction of the lower part, again a row-by-row parallelization scheme
is utilized. For the lower-left block, each PE generates a different row at a time. How-
ever, in the case of Lcc, all PEs work on the same row at a time. Upon finalization, the
results are collected by PE 0 and written to the output file, again in a sparse storage
format.
This section is ended by briefly discussing the issue of small but non-zero matrix ele-
ments. As already stated, the matrices produced are typically sparse, i.e., most elements
are zero. Moreover, many other elements can be very small but nonzero. Their impact
on the subsequent eigenvalue calculation, which is described in the next sections, is very
often negligible. However, for a problem where the dimensionality of L is very large,
those elements can become a problem in terms of memory consumption. Thus, it is
important to define a tolerance value τ that is used to minimize the amount of non-zero
elements which need to be stored. In the current implementation, a matrix element
is treated as zero and is therefore not stored if its magnitude is smaller than τ . For
very large matrices, the value of τ has to be defined such that on the one hand not too
many matrix elements are set to zero in order to obtain numerically accurate results
for the eigenvalues and eigenvectors, but, on the other hand, it has to be large enough
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Input: {φ0
i }, C0

Preliminary calculations:

T̂kin Ŵsl K̂sl P

• MPI-parallelized

• On exit stored on PE 0

Calculate

Loo Loc

to do matrix multiplications

ρoo
−1/2PooLoo

ρoo
−1/2PooLoc

• MPI-parallelized

• On exit stored on PE 0

Row-by-row generation
of upper blocks of L

• Each PE generates different
row

• Written to file by PE 0

Row-by-row genera-
tion of lower blocks of L
• For lower left block: Each

PE generates different row

• For Lcc: All PEs share work
of each row

• Written to file by PE 0

Output: L

Figure 4.1: Schematic diagram of the
MPI-parallelized implementation for the
construction of L. The parallelization
scheme shares the amount of calculations
equally between all PEs. Before L is gen-
erated, preliminary calculations of im-
portant intermediate matrices are per-
formed. To minimize the memory con-
sumption, those are only stored on PE
0 in a sparse storage format. For the
row-by-row construction of the upper and
lower blocks of L, PE 0 distributes all
necessary information to the other PEs,
collects the results afterwards and writes
them to file. See text for details.
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because too many very small elements can significantly decrease the performance of the
numerical method for calculating eigenpairs of L. The latter numerical procedure will
be explained in the next section.

4.3 Calculation of eigenvalues

In order to calculate the lowest eigenvalues of a given LR matrix, the IRAM is employed.
In the following, the main ideas of this approach are presented by first discussing
the basic ingredients (the Arnoldi method, the QR-iteration, and polynomial filtering)
before dealing with the IRAM explicitly. In short, it generates a Krylov subspace
of a given matrix whose basis vectors are used to build a much smaller matrix. The
eigenvalues of this matrix are also approximate eigenvalues of the original matrix. After
each iteration of the IRAM, the convergence of a set of wanted eigenvalues is checked,
and if it is still not converged, the entire process is restarted with an initial vector where
the directions of unwanted eigenvalues are projected out. Thus, the convergence with
respect to the wanted eigenvalues is gradually enhanced. Below, the individual steps of
the IRAM are explained in more detail.

4.3.1 The Arnoldi algorithm

The first step is to calculate an orthogonal projection of a sparse, complex, in gen-
eral non-hermitian matrix A ∈ Cn×n. Therefore, the Arnoldi algorithm is used which
generates an orthonormal basis (ONB) of the k-dimensional subspace given by

Kk(A, v) = span(v, Av, ..., Ak−1v) (4.1)

where v ∈ Cn is an initial vector and k ≤ n, typically even k � n. Kk is called the k-
dimensional Krylov subspace of A. The entire Arnoldi algorithm is given by Algorithm
4.1. The ONB is obtained by performing a Gram-Schmidt-orthonormalization at each
Arnoldi step, i.e., making the vector vj in the j-th step orthogonal to all previous basis
vectors vi, i ≤ j, and normalizing it afterwards. The elements of the ONB are called
the Arnoldi vectors. If the resulting Arnoldi vector vj+1 of the j-th step is non-zero, its
norm is stored in the matrix element hj+1,j of the matrix H̃k+1 ∈ C(k+1)×k. If j ≤ k,
the next Arnoldi step is initialized. After the step for j = k, the iteration stops and
returns the k-dimensional ONB of Kk, plus an additional orthonormal vector vk+1 ∈ Cn,
together with the full matrix H̃k+1. It is possible that for a certain step j < k, the norm
of the Arnoldi vector vj+1 is zero, meaning that one has found an ONB of an invariant
Krylov subspace of A with dimensionality j. In this case, the Arnoldi algorithm finishes
immediately.
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Algorithm 4.1 The Arnoldi algorithm

1: v1 ← v, ||v||2 = 1
2: for j = 1, j ≤ k do
3: z ← Avj
4: for i = 1, i ≤ j do
5: hij ← 〈vi, z〉
6: z ← z − hijvi
7: end for
8: hj+1,j ← ||z||2
9: if hj+1,j = 0 then

10: quit
11: else
12: vj+1 ← z/hj+1,j

13: end if
14: end for

As an essential result, one obtains the Arnoldi decomposition of A given by

AVk = VkHk + hk+1,k vk+1 e
t
k (4.2)

where Vk ∈ Cn×k contains the Arnoldi basis as columns and Hk ∈ Ck×k is an upper
Hessenberg matrix, i.e., {(Hk)ij} = 0 if i > j + 1, built by the first k rows of H̃k+1.
The second term in Eq. (4.2), which contains the matrix element hk+1,k, the additional
Arnoldi vector vk+1 and the transpose of the k-th unit vector, i.e., ek = (0, 0, ..., 0, 1)t ∈
Ck, takes care of the fact that the orthonormal projection of A,

A ≈ VkHkV
†
k , (4.3)

is in general not exact. However, for the case of having found an invariant Krylov
subspace of A of lower dimensionality j ≤ k, it becomes exact. It is straightforward
to realize that the eigenvalues of Hk are approximate, or, in the case of an invariant
subspace, exact eigenvalues of A. This is due to the cyclic permutation symmetry of
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the determinant that defines the characteristic polynomial of A, i.e.,

0 = det(A− λIn)
Eq. (4.3)
≈ det(VkHkV

†
k − λIn)

= det(Vk[Hk − λIk]V †k )

= det(V †k Vk︸ ︷︷ ︸
=Ik

[Hk − λIk])

= det(Ik)︸ ︷︷ ︸
=1

det(Hk − λIk)

= det(Hk − λIk) (4.4)

with λ ∈ C and In denoting the (n× n) identity matrix.
If ui ∈ Ck is an eigenvector of Hk and θi ∈ C the corresponding eigenvalue, the pair
(θi, Vk ui) is called a Ritz pair of A with Ritz value θi and the associated Ritz vector
Vk ui ∈ Cn. In order to estimate how accurate this Ritz pair approximates an exact
eigenpair of A, one can calculate the residual norm r defined as

r ≡ ||A(Vkui)− θi(Vkui)||2
Eq. (4.2)

= ||(VkHk + hk+1,k vk+1 e
t
k)ui − θi(Vkui)||2

= ||θi(Vkui) + hk+1,k vk+1 e
t
k ui − θi(Vkui)||2

= |hk+1,k| · |vk+1|︸ ︷︷ ︸
=1

·|etkui|

= |hk+1,k| · |etkui|, (4.5)

i.e., r is the product of the magnitudes of the matrix element hk+1,k of H̃k+1 and the
k-th element of ui. The smaller it is, the better does the Ritz pair (θi, Vkui) approximate
the exact i-th eigenpair of A.
To summarize, the eigenvalue problem of a typically large matrix A can be mapped
onto an eigenvalue problem of a much smaller matrix Hk whose eigenvalues are believed
to be good approximations of the eigenvalues of A. Due to the Hessenberg form of
Hk, its eigenvalues can efficiently be calculated by utilizing the QR-iteration, which is
explained in the next section. Additional details on the Arnoldi algorithm can be found
in Ref. [63].

4.3.2 The QR-iteration

The QR-iteration is a technique to calculate the eigenvalues and eigenvectors of a given
matrix A ∈ Cn×n. It is based on the so-called QR-decomposition which reads

A = QR, Q,R ∈ Cn×n (4.6)
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where Q is a unitary matrix, i.e., QQ† = In, and R is upper triangular. This decompo-
sition exists for any matrix [63]. Plugging the ansatz of Eq. (4.6) into the characteristic
polynomial gives

0 = det(A− λIn)

= det(QR− λIn)

= det(QQ†(QR)QQ† −QλInQ†)
= det(Q(RQ− λIn)Q†)

= det(RQ− λIn) (4.7)

which means that the eigenvalues of A are the same as the eigenvalues of the matrix
RQ. Furthermore,

A = QR ⇐⇒ Q†AQ = RQ, (4.8)

i.e., RQ is just a unitary transformation of A.
The QR-iteration is described in Algorithm 4.2. At each step k, the QR-decomposition
of the current matrix Ak is used to define the matrix of the next step as Ak+1 =
RkQk = Q†kAkQk. It can be shown that this sequence converges to a triangular matrix,
i.e., limk→∞Ak = Ã with {Ãij} = 0 if i > j, and the eigenvalues of a triangular matrix
are simply given by its diagonal elements. One can show that the eigenvalues of Ak are
the same as the ones of A by considering again the characteristic polynomial

0 = det(Ak − λIn)

= det(Q†k−1Ak−1Qk−1 − λIn)

= det(Q†k−1Q
†
k−2Ak−2Qk−2Qk−1 − λIn)

= ... = det(Q†k−1Q
†
k−2...Q

†
0 A0︸︷︷︸

=A

Q0...Qk−2Qk−1 − λIn)

= det(A− λIn) (4.9)

where the cyclic permutation symmetry of the determinant is used in the last step.
Although the QR-iteration possibly requires a large amount of operations per step for
a general matrix A, it turns out to be of very low computational cost with respect to
upper Hessenberg matrices like the matrix Hk obtained from a k-step Arnoldi process
described in Algorithm 4.1. In such a case, one can apply (k−1) Givens rotations Gi, i ∈
{1, ..., k− 1}, which are all unitary operations such that the overall QR-decomposition
of Hk at each QR-step j is given by

(Hk)j = QjRj = (Gk−1)j...(G1)jRj. (4.10)
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Algorithm 4.2 The QR-iteration
1: A0 ← A
2: Calculate the QR-decompositionA0 = Q0R0

3: for k = 1 until convergence do
4: Ak ← Rk−1Qk−1

5: if Ak ”triangular enough” then
6: quit
7: else
8: Calculate the QR-decompositionAk = QkRk

9: end if
10: end for

Further details on Gives rotations can be found in Ref. [64]. With respect to the IRAM,
the QR-iteration turns out to be important not only because it is used to calculate the
eigenvalues of Hk, but also in terms of restarting the Arnoldi iteration with an initial
vector that incorporates shifts that filter out the direction of unwanted eigenvectors of
Hk. Those shifts are obtained by utilizing QR-steps, which are explained in detail in
Section 4.3.4. In Ref. [63], further details on the QR-iteration are presented.

4.3.3 Polynomial filtering

Before dealing with the IRAM in particular, a brief discussion on polynomial filtering
techniques of the initial vector v of a Krylov subspace iteration, like the Arnoldi algo-
rithm of Section 4.3.1, is realized. In general, the target of applying a filter to a vector
v is to make the contribution of unwanted directions very small, or even zero.
To understand how polynomial filtering works in general, a square matrix A ∈ Cn×n

whose eigenpairs are given by the set {(λi, vi)|1 ≤ i ≤ n} with λi ∈ C and vi ∈ Cn is
considered. Suppose the eigenvectors form a basis. Each arbitrary vector v ∈ Cn can
then be written as v =

∑n
j=1 cjvj with complex expansion coefficients {cj}. Assuming

that one wants to filter out the contribution of the k-th eigenvector vk, one can define

p(t) ≡ t− λk (4.11)
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and apply this very simple polynomial onto v:

p(A)v =
n∑
j=1

cjp(A)vj =
n∑
j=1

cj(A− λk)vj

=
n∑
j=1

cj(λj − λk)vj

=
n∑
j 6=k

cj(λj − λk)vj. (4.12)

If A is hermitian, the overlap with vk vanishes, i.e.,

〈vk|p(A)v〉 =
n∑
j 6=k

cj(λj − λk) 〈vk|vj〉︸ ︷︷ ︸
=δkj

= 0, (4.13)

because in that case the eigenvectors of A would be orthogonal. Thus, the vector p(A)v
is fully orthogonal to vk, and any additional power iteration of this vector with respect
to A preserves this property, meaning that

〈vk|Anp(A)v〉 =
n∑
j 6=k

cjλ
n
j (λj − λk) 〈vk|vj〉︸ ︷︷ ︸

=δkj

= 0. (4.14)

Therefore, the Arnoldi iteration, applied to an initial vector p(A)v, yields a Krylov basis
which is orthogonal to vk, and also the orthogonal projection Hk would not contain λk
in its spectrum of eigenvalues. If A is non-hermitian, the overlap of p(A)v and vk is not
strictly zero since the eigenvectors {vi} can be linearly dependent. However, within the
IRAM, the overall contribution of vk gradually decreases upon increasing the number
of restarts with properly shifted initial vectors. Nevertheless, this shows that the LR-
matrix L, which is in general non-hermitian, leads to additional numerical effort which
would be absent in the case of a hermitian matrix.
It is also possible to do multiple shifts at once by using a filter given by

p(t) =
N∏
i=1

(
t− λπ(i)

)
(4.15)

where N ≤ n is the number of shifts and π(i) ∈ {1, ..., n} ∀ i. In this case, the directions
of N different eigenvectors of A are filtered out. The above choices of p(t) do only reflect
the simplest possibilities of filter polynomials, but also more sophisticated ones like the
Chebyshev polynomials can be chosen [64].
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Algorithm 4.3 The implicitly restarted Arnoldi method (IRAM)

1: Take an initial vector v1 ← v, ||v||2 = 1
2: Perform a k-step Arnoldi iteration to get

AVk = VkHk + fk e
t
k with fk := hk+1,k vk+1

3: Calculate the eigenvalues θ1, ..., θk of Hk by using the QR-iteration
4: while m wanted eigenvalues of Hk not converged do
5: Select p = k −m unwanted eigenvalues θ1, ..., θp
6: Perform p QR-steps with unwanted eigenvalues as shifts:

[H
(p)
k , Q] := QR[Hk, θ1, ..., θp], V

(p)
k := VkQ

7: Set fm := hk+1,kQkp vk+1 + h
(p)
m+1,m v

(p)
m+1

8: Define Hm := H
(p)
k (1 : m, 1 : m), Vm := V

(p)
k (1 : n, 1 : m)

9: Perform p additional Arnoldi steps onto Vm, Hm and fm to obtain
a k-step Arnoldi decomposition

10: Calculate the eigenvalues of the new Hk by using the QR-iteration
11: end while

4.3.4 The implicitly restarted Arnoldi method (IRAM)

After the introduction of the three essential ingredients of the IRAM, namely the
Arnoldi algorithm, the QR-iteration, and polynomial filtering, one can finally discuss
the the IRAM itself in detail. The full algorithm is given in Algorithm 4.3. At first,
a k-step Arnoldi iteration is performed, yielding an Arnoldi decomposition of A as
described in Eq. (4.2). Then, the eigenvalues (θ1, ..., θk) are calculated utilizing the
QR-iteration. From this set, p unwanted eigenvalues (θ1, ..., θp) are selected. If one for
example seeks the eigenvalues of A that have the smallest magnitude, an appropriate
selection would be the p eigenvalues of Hk that have the largest magnitude. Afterwards,
a sequence of p QR-shifts with the unwanted eigenvalues is performed. For the first
shift, the Arnoldi decomposition reads

(A− θ1In)Vk = Vk(Hk − θ1In) + hk+1,k vk+1 e
t
k (4.16)

⇐⇒ (A− θ1In)Vk = VkQ1R1 + hk+1,k vk+1 e
t
k (4.17)

⇐⇒ AVkQ1 = VkQ1(R1Q1 + θ1In) + hk+1,k vk+1 e
t
kQ1 (4.18)

where the QR-decomposition Hk − θ1In = Q1R1 is used in Eq.(4.17). Setting

H
(1)
k := R1Q1 + θ1In, V

(1)
k := VkQ1,

(
e

(1)
k

)t
:= etkQ1 (4.19)



4 Numerical implementation of LR-MCTDHB 42

the next QR-shift can be applied:

(A− θ2In)V
(1)
k = V

(1)
k (H

(1)
k − θ2In) + hk+1,k vk+1

(
e

(1)
k

)t
(4.20)

H
(1)
k −θ2In=Q2R2⇐⇒ AV

(1)
k Q2 = V

(1)
k Q2(R2Q2 + θ2In) + hk+1,k vk+1

(
e

(1)
k

)t
Q2 (4.21)

where one can define, similar to Eqs. (4.19),

H
(2)
k := R2Q2 + θ2In, V

(2)
k := V

(1)
k Q2,

(
e

(2)
k

)t
:=
(
e

(1)
k

)t
Q2. (4.22)

This procedure is continued until all p QR-shifts are applied.
Multiplying Eq. (4.17) by e1 yields

(A− θ1In)Vke1 = VkQ1R1e1 + hk+1,k vk+1 e
t
ke1

⇐⇒ (A− θ1In)v1 = VkQ1r11e1

⇐⇒ (A− θ1In)v1 = v
(1)
1 r11 (4.23)

where r11 is the upper left element of R1 and v
(1)
1 is the first column of VkQ1. This in

turn means that the first vector of the new basis, i.e., v
(1)
1 , is proportional to (A−θ1In)v1.

As discussed in the previous section, this polynomial filter reduces the contribution of
the unwanted eigenvector corresponding to θ1 in v

(1)
1 , or, in the optimal case, makes its

contribution even vanish completely. This holds for all successive vectors in V
(1)
k . After

having applied the second QR-shift, one can show that v
(2)
1 ∼ (A− θ2In)(A− θ1In)v1.

Continuing in the same manner until the p-th QR-shift is applied yields v
(p)
1 ∼

∏p
i=1(A−

θiIn)v1. Then, by taking the first m = k − p columns of V
(p)
k as the new Arnoldi basis

Vm, as well as taking the leading principal (m×m)-matrix of H
(p)
k as the new orthogonal

projection Hm of A, one obtains a m-step Arnoldi decomposition AVm = VmHm+fm e
t
m

with an error term given by

fm = hk+1,kQkp vk+1 + h
(p)
m+1,m v

(p)
m+1 (4.24)

where it is used that the unitary matrix Q is of Hessenberg form. Based on this, one
performs p additional Arnoldi steps yielding again a k-step Arnoldi decomposition. The
essential difference to the previous k-step Arnoldi decomposition is that now all basis
vectors in Vk are approximately or even fully orthogonal to the eigenvectors of the
associated unwanted eigenvalues. The accuracy of the eigenvalues and eigenvectors of
the newly computed matrix Hk can be estimated with the residual norm r introduced
in Section 4.3.1, Eq. (4.5). If it is below a predefined tolerance for a desired amount
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of wanted eigenpairs, the algorithm finishes. Otherwise, the set of eigenvalues of Hk

is again separated into wanted and unwanted eigenvalues, and the procedure of QR-
shifting and refining the given Arnoldi basis restarts.
By employing the above described shift strategy without restarting the Arnoldi itera-
tion from the very beginning, one obtains the same result as if an explicit restart of the
entire k-step Arnoldi process with the initial vector v

(p)
1 had been performed. Because

of this similarity, the overall algorithm is said to be implicitly restarted. The compu-
tational effort in terms of matvecs with A is given by (k + p) operations in both cases,
i.e., for explicit and implicit restarting. However, implicit restarting turned out to be
numerically more stable, and has additional advantages which are beyond the scope of
this work.
Figure 4.2 shows the general structure of the code for the matrix diagonalization uti-
lizing the implementation of IRAM in the PARPACK library [60]. Essential for the
performance is the efficient parallel implementation of the matvecs which are done out-
side of the PARPACK routine pznaupd. The latter carries out the IRAM iterations in
parallel [60]. It is important to note that the IRAM, although it is particularly efficient
for sparse matrices, would also work for dense matrices. Further details are presented
in Refs. [59,63,64].
To summarize, the newly developed implementation of LR-MCTDHB was presented
in this chapter. Both run modes were explained in detail. Furthermore, the IRAM, a
very powerful algorithm for computing eigenpairs of very large and sparse matrices, was
described. In the next chapter, the code is benchmarked against an exactly-solvable
model.
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Input: L

Distribution of L
• Each PE gets the same

amount of rows from the
upper and lower blocks

Define initial vector v0

Arnoldi iteration

• Call pznaupd
(PARPACK routine that
performs IRAM iterations)

Eigenvalues
converged?

Matvec
z := Avi

Calculate eigenvec-
tors, response weights
and response densities

Output

no

yes

Figure 4.2: Schematic diagram of the
MPI-parallelized implementation for the
diagonalization of L. Different chunks of
non-zero elements of L are distributed
among the PEs. The Arnoldi iteration
is carried out by the routine pznaupd
of Parallel ARPACK (PARPACK) [60],
which either finishes upon convergence of
a desired amount of eigenvalues or ex-
pects the user to perform a matvec and
return the result to it. Finally, the eigen-
values, eigenvectors, as well as response
weights and response densities are calcu-
lated and written to output files. See text
for details.
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5 Comparison with an exactly-solvable model

After the presentation of both the code structure and the numerical methods utilized,
the newly developed implementation of LR-MCTDHB is benchmarked in the follow-
ing. Furthermore, since it builds the basis for the utilized LR theory, results from a
benchmark of the MCTDHB implementation used in this work [65], which makes use
of a sophisticated mapping of bosonic operators in Fock space [66], is presented as well.
This implementation is now also available with a recently developed graphical user in-
terface [67]. Other codes became available during the last years. Examples are the
recursive version of MCTDHB [68] and its implementation in the MCTDH-X software
package [69] or the multi-layer (ML-)MCTDHB approach [70,71] which is particularly
suited for the description of Bose-Bose or Bose-Fermi mixtures.
As a reference system, the exactly-solvable harmonic-interaction model (HIM) is used.
In the latter model, both the single-particle and interaction potentials are of harmonic
type. In the first part of this chapter, an introduction to the HIM and the analytic
results of its energy spectrum are given (Section 5.1). Afterwards, an overview of the
MCTDHB benchmark against the HIM, which has been carried out in great detail
in Ref. [33], is presented (Section 5.2). This includes both the ground state and the
out-of-equilibrium quantum dynamics of a bosonic many-particle system. Finally, a
comparison of the numerical results of the low-energy spectrum obtained from LR-
MCTDHB and the analytic values, both for the 1D and 2D cases, is made (Section
5.3).

5.1 The harmonic-interaction model (HIM)

The HIM Hamiltonian contains the harmonic trap potential

V (r) =
1

2

(
Ω2
xx

2 + Ω2
yy

2 + Ω2
zz

2
)
, r = (x, y, z)t (5.1)

where the boson mass m is set to unity. In D > 1 dimensions, one distinguishes
between the isotropic and anisotropic HIM, where the former refers to the case where
all frequencies {Ωi} are equal, whereas the latter refers to the case where at least one
frequency differs from the others.
The interaction between the i-th and j-th boson is described as

Ŵ (|ri − rj|) = λ0|ri − rj|2 (5.2)

where a positive (negative) interaction strength λ0 denotes attraction (repulsion) be-
tween the bosons.
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As described in Ref. [72], the following coordinate transformation yields the separation
of the relative and center-of-mass (c.m.) coordinates,

Qk =
1√

k(k + 1)

k∑
i=1

(rk+1 − ri), 1 ≤ k ≤ N − 1 (5.3)

and

QN =
1√
N

k∑
i=1

ri, (5.4)

where N is the number of bosons in the system. This leads to the Hamiltonian in the
c.m. frame given by

Ĥ = Ĥrel + Ĥc.m. (5.5)

Ĥrel =
1

2

∑
j=x,y,z

N−1∑
k=1

(p2
j,k + δ2

jQ
2
j,k) (5.6)

Ĥc.m. =
1

2

∑
j=x,y,z

(p2
j,N + Ω2

jQ
2
j,N) (5.7)

with momenta pj,N = (1/i)∂Qj,N
of the c.m. coordinates, pj,k = (1/i)∂Qj,k

of the relative
coordinates, and the parameters δ2

j = Ω2
j ± 2N |λ0| where again the plus (minus) sign

denotes attraction (repulsion) between the bosons. For simplicity, ~ = 1 is set. It
is instructive to interpret the Hamiltonian as a composite model system of (N − 1)
identical non-interacting particles in a harmonic confinement with trap frequencies δ =
(δx, δy, δz)

t and the c.m. particle which moves in the harmonic confinement with the
original trap frequencies {Ωi}.
The ground-state wave function in the c.m. frame takes the form

Ψ0(Q1, ...,QN) =
∏

j=x,y,z

(
δj
π

)N−1
4
(

Ωj

π

) 1
4

exp

(
− 1

2δj

N−1∑
k=1

Q2
j,k −

Ωj

2
Q2
j,N

)
, (5.8)

i.e., it is basically a product of N harmonic oscillator (HO) ground-state wave functions
in each spatial direction [72]. However, in the laboratory frame, the representation of
the ground state is much more involved. Already for N = 2 bosons in 1D, it is an
infinite sum of Hartree products of HO eigenfunctions instead of a single product of
two HO ground states in the c.m. frame [33]. Numerical convergence towards this state
is therefore a very demanding problem in the laboratory frame.
The exact solution for the energy levels reads

E ({nj}, {mj}) =
∑

j=x,y,z

{(
nj +

N − 1

2

)
δj +

(
mj +

1

2

)
Ωj

}
(5.9)
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where the {nj} denote the quantum numbers of excitations of the relative coordinates
and the {mj} denote the quantum numbers of c.m. excitations in the x-, y- and z-
directions. In particular, this means that the ground-state energy is given by

E0 ≡ ε0 =
∑

j=x,y,z

{
(N − 1)

2
δj +

1

2
Ωj

}
(5.10)

whereas the energy distance between any excited state and the ground state reads

ω({nj}, {mj}) =
∑

j=x,y,z

{njδj + Ωjmj} . (5.11)

Eqs. (5.10) and (5.11) will be used for the comparison to the numerical results obtained
from (LR-)MCTDHB. The degeneracies of excited states is discussed in [73]. It is
worth noting that for any number of bosons N , there is no solution for an excitation
corresponding to

∑
j=x,y,z nj = 1, i.e., a first order excitation with respect to the relative

coordinates. This is due to the even permutation symmetry for identical bosons, Eq.
(2.5), and it can be shown by mathematical induction as follows. For the sake of
simplicity, the proof is restricted to the 1D case, i.e., Qi = Qi, which does not limit the
generality since in higher dimensions, the Hamiltonian decouples into the x-, y- and
z-components, see Eqs. (5.6) and (5.7). The wave function corresponding to a first
order excitation of the relative coordinates, denoted in the following by Ψ′, obeys

Ψ′(Q1, ..., QN) ∼ ∂

∂Qk

Ψ0(Q1, ..., QN), 1 ≤ k ≤ N − 1. (5.12)

For N = 2, this yields

Ψ′(Q1, Q2) ∼ Q1Ψ0 ∼ (x2 − x1)Ψ0, (5.13)

see Eq. (5.8). Because the wave function needs to be fully symmetric under the
exchange x1 ↔ x2, one finds

Ψ′ ∼ {(x2 − x1) + (x1 − x2)}Ψ0 = 0, (5.14)

meaning that there is no first order relative excited state for two bosons. Assuming
that this is also true for N bosons, i.e.,

Ψ′(Q1, ..., QN) ∼ ∂

∂Qk

Ψ0(Q1, ..., QN) = 0 ∀ 1 ≤ k ≤ N − 1, (5.15)
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one obtains for (N + 1) bosons and K ≤ N

Ψ′(Q1, ..., QN+1) ∼ ∂

∂QK

Ψ0(Q1, ..., QN+1)

∼
K∑
i=1

(xK+1 − xi)Ψ0

=

(
KxK+1 −

K∑
i=1

xi

)
Ψ0

=

(
KxK+1 − xK −

K−1∑
i=1

xi

)
Ψ0

=

KxK+1 − xK − (K − 1)xK + (K − 1)xK −
K−1∑
i=1

xi︸ ︷︷ ︸
∼QK−1

Ψ0

∼ K (xK+1 − xK) Ψ0 +QK−1Ψ0 (5.16)

where the argument of Ψ0 is suppressed from the second line onward. For the second
term in Eq. (5.16), one can make use of the assumption from Eq. (5.15) that the contri-
bution of QK−1Ψ0 to Ψ′ vanishes after symmetrization of the wave function. Moreover,
the first term is proportional to the relative coordinate of only two bosons, for which
it was already shown that its contribution to Ψ′ vanishes as well after symmetrization.
Thus, one infers that also for (N + 1) bosons

Ψ′(Q1, ..., QN+1) = 0 (5.17)

which ends the proof.

5.2 Ground state and dynamics

At first, numerical results obtained from MCTDHB for the ground state of the 1D HIM
for different particle numbers and the exact values from Eq. (5.10) are compared. The
index ’x’ is suppressed in the following for simplicity. The trap frequency is set to
Ω = 1 and the two-particle interaction strength λ0 is adjusted such that the mean-field
interaction parameter Λ = λ0(N − 1) is kept fixed at Λ = 0.5. Results are shown
in Table 5.1, which originally appeared in Ref. [33] where it has been demonstrated
that the MCTDHB method is much more efficient and accurate for the description
of the ground state and dynamics of a many-boson system than the widely used FCI
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method. One observes that MCTDHB gives highly accurate results for the ground-state
energy for all considered particle numbers. Furthermore, one needs less self-consistent
orbitals M in order to converge to the exact ground-state energy when N increases.
This is anticipated, since in the Hartree limit where N → ∞ for fixed Λ, the energy
per particle converges to the GP value. What is however surprising is the degree of
accuracy. As an example, for N = 1000 the relative error (ε0

M=3− ε0
exact)/ε

0
exact is lower

than 10−10 %. The fact that MCTDHB can very accurately assemble the ground state of
a large many-boson system with only very few orbitals has far-reaching consequences for
the accuracy of excitation energies obtained by LR-MCTDHB. As discussed in Section
3.2.1, the latter will be closer to the exact values if the ground state to which LR is
applied is very accurately described. Further examples for the ground-state energies in
the 1D and 2D HIM will be given in Section 5.3 and in Appendix C, where in particular
the convergence of excitation energies is discussed.
With regard to the dynamics, comparisons of numerical and exact results were carried
out in Ref. [33] for (i) the out-of-equilibrium quench dynamics and (ii) the dynamics
due to time-dependent driving of the trapping frequency and the interaction strength.
Concerning (i), Fig. 5.1 compares the exact, FCI and MCTDHB results for the os-
cillations of the density ρ of N = 2 bosons after a sudden quench of the interaction
parameter from Λ = 0 to Λ = 0.5. The initial state Ψ0 is therefore the ground state of
the non-interacting system. In principle, the time-evolution is given by

|Ψ(t)〉 =
∞∑
n=0

cj e
−iEjt|αj〉, (5.18)

cj = 〈αj|Ψ(0)〉 (5.19)

where the {|αj〉} are an arbitrary basis of the two-particle Hilbert space and the {Ej}
the corresponding eigenenergies. One possible choice of this basis are the solutions
of the time-independent problem. It remains to compute the overlap integrals in Eq.
(5.19). In practice, the infinite sum in Eq. (5.18) has to be truncated, and for the case
described in Fig. 5.1, numerical convergence at each time step of the expansion in Eq.
(5.18) is ensured by including the 60 lowest energy eigenstates of the time-independent
problem. However, utilizing only M = 4 time-adaptive orbitals, the MCTDHB calcu-
lations lead to a density oscillation that can no longer be distinguished from the exact
result. Already for M = 3 the results are highly accurate. If a fixed set of orbitals is
used (FCI), even 8 orbitals do not lead to the same accuracy than MCTDHB(4). This
remarkably shows the numerical benefit of using a time-adaptive, self-consistent basis
set.
Fig. 5.2 shows the time-evolution of the c.m. energy ε2(t) when both the trapping
frequency and the two-body interaction strength are time-dependent and given by
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M N = 10 N = 100 N = 1000

1 7.071067811865483 70.71067811865483 707.1067811865483
2 7.038769026303168 70.68016951747168 707.0764334257315
3 7.038350652406389 70.68012541218675 707.0764289871865
4 7.038348424909910 70.68012539174549
5 7.038348415349058 70.68012539173762
6 7.038348415311494
7 7.038348415311018
ε0
exact 7.038348415311011 70.68012539173752 707.0764289869851

Table 5.1: Ground-state energies of N = 10, 100, and 1000 bosons in the 1D HIM with interaction
parameter Λ = 0.5 and trap frequency Ω = 1.0. Numerical results are shown for different numbers of
orbitals M . Exact results are obtained from Eq. (5.10). The table is adapted from Ref. [33].

Figure 5.1: Out-of-equilibrium dynamics of the one-particle density ρ(x = 0) for N = 2 bosons after
an interaction quench from Λ = 0 to Λ = 0.5. Results are shown for different numbers of orbitals
M . The trap frequency is Ω = 1.0. For the time scale shown, the MCTDHB(4) dynamics cannot
be distinguished from the exact dynamics. The FCI method is less accurate even for 8 orbitals. All
quantities are dimensionless. See text for details. The figure is taken from Ref. [33].
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Figure 5.2: Dynamics in the HIM due to a time-dependent driving f2(t) of the trapping frequency

Ω(t) = Ω0

√
1 + f2(t) and the interaction strength λ(t) = λ0

[
1− Ω2

0

2Nλ0
f2(t)

]
. The upper panel shows

the complicated time-dependent profile of the driving frequency f2(t). The lower panel shows the
evolution of the c.m. energy ε2(t) for different levels of MCTDHB(M). For N = 10 bosons, the curve
of MCTDHB(7) can hardly be distinguished from the exact result for the shown time interval. The
same holds true for M = 6 and N = 50 bosons. Even for less orbitals, MCTDHB yields an accurate
description of the evolution of ε2(t) up to t ≈ 35 for N = 10, M = 6 and t ≈ 25 for N = 50, M = 5.
On the contrary, the GP results do only follow the exact curves for very short times and clearly fail
to describe the long-time behavior, even qualitatively. All quantities are dimensionless. See text for
details. The figure is taken from Ref. [33].

Ω(t) = Ω0

√
1 + f2(t) with a constant Ω0 and λ(t) = λ0

[
1− Ω2

0

2Nλ0
f2(t)

]
. The function

f2(t) denotes a time-dependent driving frequency. In that way, the trapping frequency
of the (N − 1) relative coordinates remains time-independent, i.e.,

δ =

√
Ω2

0[1− f2(t)] + 2Nλ0

[
1 +

Ω2
0

2Nλ0

f2(t)

]
=
√

Ω2
0 + 2Nλ0. (5.20)

Thus, although in the laboratory frame the bosons move in a time-dependent trap and
interact via a time-dependent potential, the same system in the c.m. frame appears to
be much less complicated because only the trapping potential of the c.m. particle is
time-dependent due to f2(t). Because the c.m. and relative motions separate, the time-
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dependent energy of the system is given by E = N−1
2
δ+ ε2(t) where ε2(t) is determined

by the energy expectation value

ε2(t) = 〈ΨN(t)|Ĥc.m.(t)|ΨN(t)〉 (5.21)

of the c.m. particle. The state |ΨN(t)〉 is obtained from the effective single-particle
Schrödinger equation i∂t|ΨN(t)〉 = Ĥc.m.(t)|ΨN(t)〉. From Fig. 5.2, one can deduce that
MCTDHB is capable to account for the dynamical evolution of ε2(t) very accurately,
even for longer times. Furthermore, one observes that for a higher number of particles
N a smaller number of time-adaptive orbitals M is required to obtain the same level
of numerical accuracy. In contrast to that, the GP evolution of ε2(t) only follows the
exact curves of N = 10 and 50 bosons for a very short time up to t ≈ 1, and becomes
remarkably inaccurate afterwards. For the long-time behavior, it cannot even reproduce
qualitatively the profile of ε2(t).
To sum up, the previous examples clearly indicate that the MCTDHB theory quali-
fies for describing the ground state, the dynamics due to a sudden quench of system
parameters as well as the dynamics due to time-dependent trapping and interaction
potentials, and that it is clearly superior to the FCI many-body and GP mean-field
methods. The full benchmark, together with additional valuable details, can be found
in Ref. [33].

5.3 Excited states

In this section, the applicability of LR-MCTDHB to obtain highly accurate results
for the energies of excited states of trapped multi-boson systems is discussed. As for
the benchmark concerning the ground state and dynamics, the analytic results of the
HIM from Eq. (5.11) are used to benchmark the numerical results. In the following,
LR-MCTDHB is first benchmarked against the 1D HIM for repulsive bosons, i.e., with
λ0 < 0. Then, for the 2D case, the isotropic HIM with Ωx = Ωy is considered. In
Appendix C, further benchmarks against the 1D HIM with attractive bosons, against
the anisotropic case in 2D, as well as against the isotropic HIM in the rotating frame
of reference are presented.
For the benchmark against the 1D repulsive HIM, the system parameters are set to
Ω = 1 for the trap frequency and λ0 = −0.01 for the interaction strength, which yields
a slight depletion of f ≈ 0.03% for N = 10 bosons and M = 4 orbitals. Calculations
were carried out on a grid from [−9, 9) with 128 grid points. Results for the excitation
energies relative to the ground-state energy, ωi = Ei−ε0, are shown in Table 5.2. There
are several comments to be made. At first, it can be observed that the mean-field
BdG calculation (M = 1) misses several excited states in the low-energy spectrum.
This is due to the fact that the BdG theory by construction does not account for
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M = 1 M = 3 M = 4 (mx, nx) Exact

ε0 4.527693 4.524922 4.524922 (0, 0) 4.524922
ω1 1.000000 1.000000 1.000000 (1, 0) 1.000000
ω2 1.811077 1.788855 1.788854 (0, 2) 1.788854
ω3 n/a 2.000005 2.000000 (2, 0) 2.000000
ω4 2.716616 2.683282 2.683282 (0, 3) 2.683282
ω5 n/a 2.788858 2.788854 (1, 2) 2.788854
ω6 n/a 3.000009 3.000000 (3, 0) 3.000000
ω7 3.622154 3.577961 3.573164 (0, 4) 3.577709
ω8 n/a 3.580111 3.577712 (0, 4) 3.577709
ω9 n/a 3.685038 3.681347 (1, 3) 3.683282
ω10 n/a 3.790078 3.788483 (2, 2) 3.788854
ω11 n/a 4.002097 3.999997 (4, 0) 4.000000

Table 5.2: Benchmark of the LR-MCTDHB implementation for N = 10 bosons in the repulsive 1D
HIM. Shown are the ground-state energy ε0 and the energies ωi of the first few excitations for different
values of M . The trapping frequency is Ω = 1.0 and the interaction strength is λ0 = −0.01, yielding
a marginal ground-state depletion of f ≈ 0.03% for M = 4. Whereas the BdG (M = 1) spectrum
misses many states, the many-body spectra for M = 3 and 4 contain all low-lying excitations. Even
the two-fold degenerate state (0, 4), as proposed in Ref. [73], is obtained. The overall accuracy of
excitation energies increases with M . Underlined digits denote deviations from the exact values from
Eqs. (5.10) and (5.11). All quantities are dimensionless. See text for more details.

excitations were several particles at a time are excited from the ground-state manifold,
so-called multi-particle excitations. For further details see Appendix A.1.1. The second
observation is that the numerical accuracy is enhanced if more self-consistent orbitals
are included into the ground-state description. Also the two-fold degenerate excitation
(0, 4), as proposed in Ref. [73], is obtained. The accuracy of the BdG spectrum, apart
from the c.m. excitation (1, 0), is clearly lower than for the many-body results of M = 3
and 4 orbitals. In addition, the convergence towards the exact ground-state energy is
observed.
Table 5.3 shows excitation energies obtained for the isotropic 2D HIM with trap fre-
quencies Ωx = Ωy = 1 and N = 100 repulsive bosons with interaction parameter
λ0 = −0.001. All computations were carried out on a [−9, 9)× [−9, 9) grid with 64×64
grid points. At first, one sees that the BdG approach yields the energy of the low-
est c.m. excited state, which is two-fold degenerate, to perfect accuracy. All other
states obtained are pure relative excitations. Higher c.m. excited states, as well as
combinations of those with relative excitations, are missing in the BdG spectrum.
In contrast to the BdG approach, LR-MCTDHB(2) gives access to more excited states.
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ωi(γ) M = 1 M = 2 M = 3 (mx,my, nx+ny) Exact

ε0(1) 89.554453 89.551373 89.548293 (0, 0, 0) 89.548292

ω1(2) 1.000000 1.000000 1.000000 (1, 0, 0) 1.000000
1.000000 0.999792 1.000000 (0, 1, 0) 1.000000

ω2(3) 1.791089 1.788859 1.788859 (0, 0, 2) 1.788854
1.791089 1.791089 1.788861 (0, 0, 2) 1.788854
1.791089 1.791143 1.788859 (0, 0, 2) 1.788854

ω3(3) n/a 2.000438 2.000439 (2, 0, 0) 2.000000
n/a n/a 2.000657 (1, 1, 0) 2.000000
n/a n/a 2.000439 (0, 2, 0) 2.000000

ω4(4) 2.686634 2.683292 2.683226 (0, 0, 3) 2.683282
2.686634 2.684452 2.683226 (0, 0, 3) 2.683282
2.686634 2.685519 2.683312 (0, 0, 3) 2.683282
2.686634 2.686634 2.683312 (0, 0, 3) 2.683282

ω5(6) n/a 2.789191 2.787088 (1, 0, 2) 2.788854
n/a 2.791314 2.787088 (1, 0, 2) 2.788854
n/a 2.793711 2.789270 (1, 0, 2) 2.788854
n/a n/a 2.789270 (0, 1, 2) 2.788854
n/a n/a 2.791536 (0, 1, 2) 2.788854
n/a n/a 2.791535 (0, 1, 2) 2.788854

Table 5.3: Spectrum of excited states of the repulsive isotropic HIM in 2D, obtained from LR-
MCTDHB. Results are presented for N = 100 bosons and different numbers of orbitals M . The
trapping frequencies are Ωx = Ωy = 1.0, and the interaction strength is λ0 = −0.001. The depletion is
marginal with f ≈ 0.003% for M = 2 and f ≈ 0.006% for M = 3. Shown are the energies of the ground
state ε0 and the first 5 excited states, ωi = Ei − ε0, together with their multiplicities γ. In the BdG
case, M = 1, only the first pure c.m. excitation is found, together with all pure excitations of relative
coordinates. For LR-MCTDHB(2), one obtains more c.m. excited states in the x-direction, together
with combinations of excitations in the relative coordinates. For LR-MCTDHB(3), one obtains the
missing c.m. excited states in the y-direction and their combinations with excitations of the relative
coordinates. The overall accuracy increases with M , with few exceptions in the spectrum for M = 2
which are discussed in the text. Underlined digits denote deviations from the exact values from Eqs.
(5.10) and (5.11). All quantities are dimensionless. See text for more details.

Before discussing those, it is worth examining the two underlying ground-state orbitals.
The first one is a Gaussian in the trap center, whereas the second one resembles a px-
orbital. The degree of depletion is marginal with f ≈ 0.003%. In addition to the states
obtained for M = 1, the spectrum contains the second-order c.m. excitation in the x-
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direction, as well as three out of six states corresponding to ω5, which are excited states
combining a first-order c.m. excitation in the x-direction and relative excitations. The
accuracy of levels that were already accessible within the BdG approach has increased,
e.g., for the first state of ω2 or the states of ω4. Nevertheless, some states have lost in
accuracy. The most remarkable example is the second first-order c.m. excitation of ω1,
which is a c.m. excitation in the y-direction. Naturally the question arises why this
is the case. The reason for this is that the second ground-state orbital, as discussed
above, resembles a px-orbital. This means that the ground-state description for M = 2
orbitals shows a preferred direction, which in this case is the direction along the x-axis.
Apparently, the consequence of this is that excitations in the y-direction either lose
in accuracy or remain inaccessible. A possible reason for the loss in accuracy is that,
compared to the BdG case, a small amount of probability weight of the first orbital has
been transferred to the second orbital that effectively only covers the x-direction. It is
stressed that rotating the second orbital by an arbitrary angle, e.g., π/4 or π/2, leads
to exactly the same spectrum, which means that it does not matter for the numerical
results which direction is preferred.
Including M = 3 orbitals significantly enhances the obtained spectrum. One observes
that both problems of the spectrum for M = 2, i.e., the loss in accuracy for certain
states as well as the absence of excitations in the low-energy spectrum, are solved.
The third ground-state orbital resembles a py-orbital, i.e., it is perpendicular to the
preferred direction of the M = 2 ground state. One can deduce from this observations
a fundamental difference between the computation of the ground state of a given N -
boson system and its excited states. Whereas increasing the number of orbitals always
leads to a lower ground state energy, it can happen that the spectrum for (M + 1)
orbitals contains states that are less accurate than for only M orbitals. This is in
particular likely to happen in 2D and 3D because preferred directions may occur. As
a result, in order to obtain accurate excitation spectra, one has to pay much more
attention to the symmetry of the problem in higher spatial dimensions.
To summarize, it was demonstrated for the HIM that both the MCTDHB and LR-
MCTDHB implementations utilized in this work are well-suited to obtain accurate
results for the spectrum and dynamics of trapped interacting bosons. Furthermore,
the many-body approaches clearly improve the GP and BdG mean-field methods. As
mentioned above, further benchmarks are given in Appendix C.
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6 Applications of (LR-)MCTDHB

Since the advent of MCTDHB in 2007, the amount of scientific publications where it is
utilized grew substantially. As one of the first applications, the splitting of 1D repulsive,
fully-coherent BECs by a potential barrier has been investigated [74,75], showing that
it can lead to fragmented condensates. Similar observations were made by splitting
a radially-symmetric BEC in 2D with a ring-shaped barrier [76]. Also the reverse is
possible, meaning that two initially independent and thus fragmented BECs with no
overlap in space can collide, interfere and build-up coherence [77]. Also for attractive
BECs, the splitting due to a Gaussian-shaped barrier results in the formation of a
superposition of two distinct bosonic clouds, a so-called caton, which is not describable
at the GP level [78]. Moreover, it has been shown that coherent attractive BECs in 1D
can split and fragment even without a potential barrier, namely when the energy exceeds
a threshold value [79]. The formed object is termed a fragmenton, which in contrast to a
soliton is a fragmented object. When an attractive BEC propagates towards a potential
barrier and scatters from it, the system also evolves to be highly fragmented although
it was initially condensed [80]. The degree of fragmentation depends on the degree
of transmission through the barrier. Even bright-soliton trains, i.e., stable multi-hump
matter waves of attractive bosons, whose dynamics were believed to be fully describable
at the mean-field level, are shown to lose their initial coherence [81].
The splitting of BECs has been further investigated with respect to the generation of
number- or phase-squeezed states applying optimal control theory [82–86]. Optimal
control has also been utilized in 1D bosonic Josephson junctions, on the one hand
to steer the system parameters such that an enhancement of the Shapiro effect was
observed [87], and on the other hand to drive a BEC from an initial state to a target
state at the quantum speed limit [88]. Moreover, it has been demonstrated that Mach-
Zehnder interferometry with ultracold bosons is relatively robust against the nonlinear
interaction between the particles [89].
A remarkable correspondence between the onset of wave chaos at the GP level and the
onset of fragmentation at the many-body level has been found for BECs that scatter
from either shallow periodic or disordered potential landscapes [90, 91], but the result
holds also for other potentials. Thus, the development of wave chaos, i.e., the exponen-
tial separation of initially close states, can be seen as an indication that a many-body
treatment is necessary to capture the many-body effects in the dynamics. The distance
between states is measured utilizing the L2 norm between two Hilbert space vectors.
Of potentially high relevance is the demonstration how the positions of individual
particles can be constructed from the many-body wave function by simulating single
shots [92]. The latter are connected to experiments on trapped BECs where typically
an image of the density represents a histogram of a single shot.
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Over the last years, multi-layer MCTDHB has been applied to a growing number of
systems, e.g., to study the breathing dynamics in 1D harmonic traps due to a quantum
quench [93] or the many-body effects in solitonic excitations of ultracold BECs [94,95].
Other examples are the correlated dynamics of a single atom coupled to a trapped BEC
by collisions [96] or the examination of the structure of mesoscopic molecular ions [97],
which contributes to the currently very active research in this field.
Recently, MCTDHB has also been applied to dipolar BECs in a double well [98] and
in 1D lattices [99, 100]. In addition, the coupling of one- and two-component BECs in
a cavity to a radiation field has been of interest [101–103]. One of the main results of
the latter research was the finding of a fragmented superradiant phase when the pump
power of the laser exceeds a critical threshold. This fragmented superradiance cannot
be explained by the commonly applied Dicke model which assumes the BEC to be a
simple two-level system.
In the remaining part of this chapter, the focus is laid on several applications where the
tunneling dynamics in traps (Section 6.1) and the dynamical fragmentation of initially
coherent BECs (Section 6.2) is investigated, both in 1D and 2D systems. Afterwards,
all applications of LR-MCTDHB that exist up to now are presented in detail (Section
6.3). Special emphasis for the 2D systems under consideration is placed on the impact
of angular momentum on the appearance of many-body effects in the dynamics and
excitation spectra.

6.1 Tunneling dynamics in traps

Subsequently, the tunneling dynamics of BECs held in double-well traps in both one
and two spatial dimensions are discussed in this section. As already said, the 1D system
is often referred to as bosonic Josephson junction (BJJ). The main purpose is to apply
the MCTDHB method to solve the many-boson Schrödinger equation and to discover
novel phenomena that are not captured by other methods.

6.1.1 Exact tunneling dynamics in a bosonic Josephson junction

The quantum dynamics of a tunneling BEC in a 1D BJJ have constituted a large re-
search field in the past decades. Before the first experimental realizations [104, 105],
theoretical predictions concerning Josephson oscillations and self-trapping, i.e., the sup-
pression of tunneling between the wells, were obtained by a (multi-mode) GP descrip-
tion [106–111], a path-integral formulation [112], a two-mode BH approach [113] or
a Fock-space WKB method [114]. A review of various theoretical and experimental
results is given in [115]. A more recent study dealt with the tunneling dynamics in a
controlled BJJ, where the spin state of an ionic impurity controls the tunneling between
the wells [116]. The latter extends the findings on the dynamics of trapped ultracold
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BECs due to the presence of an ion [117,118]. Furthermore, the orbital Josephson effect
due to a time-dependent driving potential was investigated numerically by employing
MCTDHB, not only in a double-well system [119].
The main objective in this section is however to study the out-of-equilibrium tunneling
dynamics of a single-component BEC in a BJJ from a many-body perspective, and the
method of choice is MCTDHB. As described below, the latter approach allows for the
observation of fundamentally new physics dealing with, e.g., reduced self-trapping and
dynamical fragmentation of initially fully-coherent bosonic clouds. A comparison to
other popular theoretical tools like the GP and the Bose-Hubbard (BH) model is made.
The findings presented below were recently published in Refs. [120–123], where further
details can be found. Recently, results of a comparable study where both the BH model
and MCTDHB were used to analyze the tunneling of few-boson systems in asymmetric
double-wells, investigating the interaction blockade that isolates the motion of a single
particle in the vicinity of others, became available [124].
The trapping confinement considered here reflects two harmonic wells of the form

V±(x) =
1

2
(x± 2)2 (6.1)

which are connected by a cubic spline in the interval |x| ≤ 0.5 that generates a potential
barrier between the wells. The plus sign refers to the right well, whereas the minus sign
refers to the left well. The repulsion between the bosons is modeled by the contact
interaction potential, λ0Ŵ (x − x′) = λ0δ(x − x′). The repulsion strength is given by
the mean-field parameter Λ = λ0(N − 1). An important quantity with respect to the
tunneling dynamics is the occupation probability of the left and right wells, where the
former is given by

PL(t) =
1

N

∫ 0

−∞
ρ(x, t)dx (6.2)

where ρ(x, t) describes the time-dependent one-body density, see Eq. (2.24), and N
refers to the number of particles in the trap.
Since the MCTDHB results are compared to the BH model below, it is instructive to
define the left- and right-well orbitals, φL and φR, with the ground and the first excited
state of the trap, denoted by φg and φu due to their gerade and ungerade symmetry.
These two states are energetically well below the barrier. The orbitals φL and φR are
defined via

φL,R(x) =
φg(x)± φu(x)√

2
. (6.3)

The BH parameters for on-site interaction U and hopping J are derived from φL and
φR by

U = λ0

∫
|φL(x)|4 dx, J = −

∫
φ∗L(x)ĥ(x)φR(x) dx (6.4)
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and utilized to define the BH interaction parameter ΛBH = UN/(2J). The two-site BH
Hamiltonian then reads

ĤBH = −J(b̂†Lb̂R + b̂†Rb̂L) +
U

2
(b̂†Lb̂

†
Lb̂Lb̂L + b̂†Rb̂

†
Rb̂Rb̂R) (6.5)

where the operators b̂
(†)
L,R annihilate (create) a boson in the left and right well, respec-

tively. Within the two-mode BH approach, the eigenvalues and eigenfunctions of the
one-body RDM

ρ(1) =

(
ρLL ρLR
ρRL ρRR

)
(6.6)

with ρLL = 〈N, 0|e+iĤBHt b̂†Lb̂L e
−iĤBHt|N, 0〉 (with ~ = 1) and the other elements defined

analogously, represent the natural occupations and natural orbitals of the BH method.
Therefore, the population of the second natural orbital can be used as a measure for
fragmentation.
In the following, the tunneling dynamics when the BEC is initially trapped in the left
well, i.e., PL(0) = 1, will be explored for different repulsion strengths. Most importantly,
for a two-mode GP description of the system, self-trapping of the bosons is predicted
for ΛBH > Λc = 2 when the magnitude of the initial imbalance between the occupations
of the two wells, denoted by z = NL−NR

N
, is unity [106–108].

Fig. 6.1 shows a comparison between the short-time dynamics of PL(t) for BECs with
N = 20 (100) bosons obtained from MCTDHB (solid blue), BH (dashed magenta) and
GP (dotted black) for two different interaction strengths where one is below and one
is above the critical value Λc. One observes that for the case of 20 bosons with weak
interaction parameter ΛBH < Λc [panel (a)], the GP prediction is totally different than
the BH and exact MCTDHB predictions. According to GP, Rabi oscillations of the
entire cloud between the wells occur, whereas the BH model and MCTDHB predict
a density collapse after approximately three Rabi cycles, resulting in having roughly
50% of the bosons in each well. The time for one Rabi cycle is close to the theoretical
prediction of tRabi = π/J . Although the BH curve is clearly superior to the GP curve, it
also deviates from the exact result after half of a Rabi cycle. In the case of 100 bosons
[panel (b)], similar observations can be made. However, the density collapse occurs
after a longer time.
As mentioned above, for stronger repulsion with ΛBH > Λc, tunneling should be entirely
suppressed due to self-trapping according to a two-mode GP description. It can be
deduced from the exact dynamics of 20 bosons [panel (c)] that indeed less bosons
tunnel between the wells, meaning that the oscillation amplitude is clearly smaller than
for the weaker repulsion. As predicted by MCTDHB, at most 50 bosons tunnel into
the right well after half a Rabi cycle, and even less in the BH dynamics. Nevertheless,
tunneling is not completely suppressed. This means that the effect of self-trapping, as
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Figure 6.1: Short-time dynamics of the occupation probability of the left well, PL(t), for (a) N = 20,
Λ = 0.152, (b) N = 100, Λ = 0.152 (ΛBH < Λc) (c) N = 20, Λ = 0.245, and (d) N = 100, Λ = 0.245
(ΛBH > Λc). The GP [dotted black], BH [dashed magenta] and exact results from MCTDHB(M)
[solid blue] are compared. For the weak interaction in panels (a) and (b), the GP theory predicts
Rabi oscillations of the full density. At the many-body level, a collapse of these oscillations occurs
after approximately three cycles. For stronger interaction in panels (c) and (d), GP still predicts that
all bosons tunnel between the wells, whereas at the many-body level tunneling is clearly suppressed.
However, MCTDHB and the BH model yield different dynamics in all cases. The deviations become
more pronounced for stronger repulsion. The inset shows the numerical convergence with respect
to M for 2, 4, 6 and 8 orbitals [(a) and (c)] and 2 and 4 orbitals [(b) and (d)]. All quantities are
dimensionless. See text for details. The figure is taken from Ref. [120].

predicted by the two-mode GP theory, is obviously reduced at the accurate many-body
level. The deviations between the MCTDHB and BH results are more pronounced for
stronger than for weaker repulsion. The dynamics of N = 100 bosons yields similar
observations [panel (d)]. In contrast to that, the GP theory predicts tunneling of the
whole cloud.
The reason why GP fails to describe the dynamics correctly is the development of
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Figure 6.2: Upper panel: Dynamics of PL(t) for very strong repulsion. The interaction parameter
ΛBH = 47.8 (43.4) for N = 10 [solid blue] (N = 100, solid green) is clearly above the critical value
of Λc = 2. While the BH predicts full self-trapping of the bosons [dashed magenta], the exact results

show tunneling between the wells. Lower panel: Evolution of the natural occupations n
(1)
i (t). At

the BH level, the system remains condensed throughout the propagation time, while it fragments at
the exact many-body level where essentially M = 4 orbitals become macroscopically occupied. All
quantities are dimensionless. See text for details. The figure is adapted from Ref. [120].

fragmentation, already on the short time scales shown. For the case of weak repulsion
in the upper panels of Fig. 6.1, the initially condensed BEC with f = 10−4 (10−5)
for N = 20 (100) evolves to be fragmented by 33% (26%) after three Rabi cycles.
Interestingly, for stronger repulsion, the degree of fragmentation of the again initially
fully-coherent BEC is less after three Rabi cycles than for the case of weaker repulsion,
yielding approximately 28% and 18% for 20 and 100 bosons, respectively. The predicted
GP dynamics differ both quantitatively and qualitatively from the exact results. Most
important, for all system parameters used in Fig. 6.1, GP predicts that essentially all
bosons tunnel back and forth between the wells. This is clearly not the case at the
many-body level, neither for BH nor for MCTDHB. It is stressed that although the
chosen system parameters are within the expected regime of validity for both the GP
and BH approaches, both theories fail to describe the short-time dynamics of the BECs.
To further illustrate the effect of reduced self-trapping as well as the degree of frag-
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Figure 6.3: BH versus exact dynamics for both attractive and repulsive BECs with system parameters

N = 20, |U |J = 0.226 and |λ0| = 0.0129. Left panel: Occupation probability PL(t) of the left well. While
the BH predicts the same evolution for attraction and repulsion, differences can be observed at the
exact many-body level. Inset: Time-evolution of the ratio of PL(t) for attraction and repulsion. Right

panel: The same for the first few natural occupation numbers n
(1)
i (t). Again, the BH model predicts

equivalent dynamics for attraction and repulsion, whereas the exact results show clear differences. All
quantities are dimensionless. See text for details. The figures are taken from Ref. [121].

mentation, Fig. 6.2 shows the evolution of PL(t) and of the occupation of the first

few natural orbitals n
(1)
i (t), both for MCTDHB and the BH model. The utilized re-

pulsion parameter exceeds the critical value significantly with ΛBH = 47.8 (43.4) for
N = 10 (100). From the top panel, it can be inferred that the BH model predicts
complete self-trapping for both values of N , meaning that all bosons remain in the
left well throughout the time-evolution. On the contrary, the predictions of MCTDHB
show that indeed bosons tunnel from left to right, and one can anticipate that PL(t)
approaches the long-time average of 0.5. With respect to the natural occupations, one
observes that the BEC remains fully-condensed in time at the BH level, while fragmen-
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tation sets in already during the first Rabi cycle for MCTDHB. Moreover, essentially
M = 4 orbitals are necessary to accurately account for the dynamics. The different
results are associated with a quick loss of coherence between the bosons that is only
described by MCTDHB and not at the BH level. In this context, see Ref. [120] for
more details.
Another interesting aspect is the symmetry of the two-mode BH Hamiltonian in Eq.
(6.5) under the unitary transformation R̂ = {b̂L → b̂L, b̂R → −b̂R}, leading to
R̂ĤBH(U)R̂ = −ĤBH(−U). A consequence of this is the equivalence of the occupation
of the left well for attractive and repulsive interactions, i.e.,

PL(t;U) = PL(t;−U). (6.7)

Moreover, it can be shown that the eigenvalues of the BH one-body RDM in Eq. (6.6)

do not depend on the sign of the interaction. Thus, PL(t) and the occupations n
(1)
i (t)

will be the same for attraction and repulsion of the same magnitude. Naturally, the full
many-body Hamiltonian of the system does not possess such a symmetry, and one can
therefore expect different dynamics for attraction and repulsion between the bosons.
The left panel of Fig. 6.3 shows the short-time dynamics of pL(t) for a BEC with
N = 20 bosons with interaction parameter |U |/J = 0.226, corresponding to |λ0| =
0.0129. As anticipated, the evolution at the BH level is identical for attraction and
repulsion. However, the results obtained by MCTDHB show differences between the
cases of positive and negative λ0. On the time scale shown, the BH model mainly
underestimates tunneling for the repulsive case, whereas it overestimates tunneling for
the attractive case. The right panel of Fig. 6.3 shows the evolution of the first few
natural occupation numbers for the same system as in the left panel, both at the BH
and full many-body level. As expected, the BH model predicts the same evolution for
n

(1)
1 (t) and n

(1)
2 (t), irrespective of the sign of the interaction parameter. In contrast

to that, the results obtained from MCTDHB show that the evolution of the different
occupations are distinct for the attractive and repulsive cases. Compared to the exact
results, the BH model mainly overestimates the fragmentation of the attractive BEC,
whereas it mainly underestimates it for the repulsive BEC.
The analysis of the dynamics in a 1D BJJ is closed by discussing the compelling feature
of universal fragmentation. The latter means that all BECs with identical parameter
Λ fragment to the same value after the density has collapsed. Fig. 6.4 shows exactly
this behavior for Λ = 0.152 for BECs with N = 100, 1000, and 10000 particles where
initially all bosons are kept in the left well, i.e., PL(0) = 1. From the upper panel,
one sees that the density oscillations between the wells collapse after a few Rabi cycles,
leading to the equal distribution of having 50% of the bosons in each well. In general,
the less bosons are contained in the BEC, the faster the density collapses. Coming
along with the damping of the oscillations, the BEC starts to fragment, reaching its
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Figure 6.4: Universality of the degree of fragmentation. Upper panel: Evolution of PL(t) for different
numbers of bosons (N = 100 in blue, N = 1000 in red and N = 10000 in orange) where the interaction
parameter Λ = λ0(N − 1) = 0.152 is kept fixed. Intermediate particle numbers (N = 200, 500, 2000
and 5000) are shown in gray. The less particles are contained in the BEC, the faster the density

collapses. Lower panel: Evolution of the first few natural occupations n
(1)
i (t). Two natural orbitals

become significantly occupied. Irrespective of the number of bosons, the degree of fragmentation upon
the density collapse is the same. All quantities are dimensionless. See text for details. The figure is
taken from [123].

maximal value after the collapse. Again, the less bosons are in the system, the faster the
system fragments. Most importantly, irrespective ofN , the final degree of fragmentation
is the same. The fact that the degree of fragmentation appears to be universal is
unexpected, since usually fragmentation strongly depends on the number of particles in
the BEC. Moreover, the degree of fragmentation upon the density collapse, denoted by
fcol, depends highly on the initial imbalance z of bosons in the left and right wells. The
larger z, the stronger does the system fragment in time. This holds true even in the
limit of very weak interactions, Λ� 1, meaning that there is no weak-interaction regime
where the GP yields the correct dynamics. It is important to note that the universality
is not an artifact of any approximation, since the result is obtained by solving the full
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many-boson Schrödinger equation numerically exact. Interestingly, the two-mode BH
approach can be used to derive an analytic prediction of fcol yielding results close to
the exact ones obtained by MCTDHB. Additional details on the analytic expression
can be found in Ref. [123].
To summarize, it was demonstrated that the out-of-equilibrium tunneling dynamics of
BECs in a 1D BJJ show significant many-body features that are not accounted for
at the GP mean-field level. This includes the appearance of a density collapse in the
oscillations between the wells as well as dynamical fragmentation that the GP theory
cannot capture by construction. The degree of fragmentation is universal for fixed
Λ = λ0(N−1) for a wide range of initial states. Applying the commonly used BH model,
it was shown that it is superior in comparison to the GP mean-field approach. However,
it does also not predict the exact tunneling dynamics as obtained by MCTDHB, e.g., on
the short-time dynamics where the interaction parameter is in the vicinity of its critical
value or for very strong repulsion where it predicts complete self-trapping of the bosonic
cloud. However, the BH model can be utilized to derive an analytic expression for the
universal degree of fragmentation that is in good agreement with the exact results.

6.1.2 Many-body tunneling dynamics in a two-dimensional radial double
well

After having shown the many-body nature of the tunneling dynamics of BECs in a 1D
BJJ, the question of how a repulsive BEC behaves in a radially symmetric 2D system
with a double-well structure is addressed. In particular, as for the previous section,
the out-of-equilibrium tunneling dynamics are of interest, and it is studied whether
many-body effects can be observed. The results presented in this section were recently
published in Ref. [125], and additional details can be found therein.
To study tunneling phenomena in 2D geometries has been of high interest in recent
years, especially for trapped vortices, i.e., macroscopic quantum states with definite
angular momentum, characterized by a density node at its core and phase discontinuities
around it. Research concerning tunneling of vortices has been carried out for example in
2D superfluids [126]. Others dealt with vortices tunneling through a Gaussian-shaped
barrier [127], in pinning potentials [128–130], or between two Gaussian wells [131], to
mention only a few. However, there has been no investigation of the tunneling dynamics
of vortices in a radially-symmetric double well, in particular not at the many-body level.
The latter geometry is very interesting to study many-body dynamics since the trap
symmetry preserves the angular momentum of the bosonic cloud. It has been utilized
recently to study many-body vortices which are separated in space due to the central
barrier [132]. The impact of angular momentum on the many-body tunneling dynamics
has not been investigated in the past, and the motivation for the authors of Ref. [125],
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Figure 6.5: (a) Schematic plot of the radial
double well. The IN region denotes the trap
center, the OUT region denotes the outer an-
nulus. Both are separated by the central ring-
shaped barrier. (b) Ground-state energy per
particle of a BEC with N = 100 bosons and
total angular momentum L = 0 for different
positions RB of the radial barrier. The re-
sults are calculated at the mean-field GP level
(M = 1). The quantities EIN

0 (short-dashed
red) and EOUT

0 (solid green) denote the en-
ergies for the IN and OUT regions for inter-
action strength Λ = 0, whereas EIN

2 (dash-
double-dotted blue) and EOUT

2 (dash-dotted
magenta) denote the energies for Λ = 2. The
crossing points, i.e., the radii at which the
energies for IN and OUT are alike, are lo-
cated at R1 = 3.271 (Λ = 0) and R2 = 3.412
(Λ = 2), see the vertical black lines. Larger
repulsion between the bosons shifts the cross-
ing point to larger radii. (c) Same analysis
as in (b) but for total angular momentum
L = N , meaning that each particle carries on
average one unit of angular momentum. The
location of the crossing points are R3 = 4.089
(Λ = 0) and R4 = 4.093 (Λ = 0.2). The an-
gular momentum has a significant effect on
the position of the crossing points. Increasing
L shifts them to larger radii, which is quali-
tatively similar as for increasing Λ. However,
one would need to highly increase the inter-
action strength in order to shift the crossing
points as much as adding one unit of angular
momentum per particle does. All quantities
are dimensionless. See text for details. Figs.
(b) and (c) are adapted from Ref. [125].
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whose main content is presented below, was to fill this gap.
Accurate many-body dynamics are obtained by solving the full many-body Schrödinger
equation utilizing MCTDHB(M) and compared to the corresponding mean-field dy-
namics from the GP theory (M = 1).
For the dynamics, the radial double well in which a BEC at zero temperature with
N = 100 spinless bosons is confined reads

V (r) =

{
B e−2(r−RB)4 + C e−0.5 (r−RC)4 if r = (x2 + y2)1/2 ≤ RC

C if r > RC

(6.8)

where B is the height of the central ring-shaped barrier located at a radius RB, and C
is the height of the crater wall at radius RC . A schematic illustration of V is shown
in Fig. 6.5(a). The region enclosed by the barrier is denoted by IN, the external rim,
i.e., the region between the barrier and the crater wall, is denoted by OUT. For the
numerical calculations, C = 200.0 and B = 1.0 are set which ensures on the one hand
that the energy per particle is sufficiently small such that the BEC stays trapped in the
crater, and on the other hand allows for tunneling between IN and OUT, as described
below. The radius of the crater is set to RC = 9.0.
The short-range repulsion between the particles is modeled by a Gaussian that has been
employed recently [76,133],

λ0Ŵ (|ri − rj|) =
λ0

2πσ2
e−|ri−rj |

2/2σ2

, (6.9)

which circumvents the regularization problems of the contact interaction [134]. The
same interaction will be used in Secs. 6.2.2 and 6.3.3 where the nucleation of phantom
vortices and the excitation spectra of rotating BECs are discussed. The repulsion
strength will again be expressed in terms of the mean-field parameter Λ = λ0(N −1) in
the following. The effect of the range of the interaction on the degree of fragmentation
has been investigated in detail for repulsive BECs in 1D and 2D single wells [135],
essentially showing that it becomes increasingly dependent on the density the more
long-ranged it is.
The analysis starts with the ground-state energy of two distinct cases, namely for
(i) having all particles in the IN region with closed external rim and (ii) having all
particles in the OUT region with closed trap center. The notation EIN

Λ and EOUT
Λ ,

where the superscript denotes whether the BEC is held in the IN or OUT region and
the subscript denotes the repulsion strength Λ, is utilized. The ground-state energies
for different radial positions of the barrier RB are calculated using the GP equation.
The corresponding results are shown in Fig. 6.5(b) for total angular momentum L = 0
and Fig. 6.5(c) for L = N , i.e., where each boson on average carries one unit of
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angular momentum. One observes that for all shown parameters (Λ = 0, 2.0 for L = 0
and Λ = 0, 0.2 for L = N) the curves for EIN

Λ and EOUT
Λ intersect at certain radii

which are referred to as the crossing points or simply the crossings in the following.
These are defined as the positions where the ground-state energies of the BEC in the
IN and OUT regions are identical. Putting the barrier onto the crossing point is the
2D the analogue of the symmetric double well in 1D. However, IN and OUT are only
energetically equivalent, whereas their geometries are totally different. It is found that
both the interaction strength Λ and the angular momentum L push the crossing point
to larger radii once they are increased. Though, the effect of L is significantly stronger
since already for Λ = 0, the transition from L = 0 to L/N = 1 leads to a crossing
point going from RB = 3.271 to RB = 4.089. In order to obtain a similar shift just by
increasing Λ, the repulsion needs to be largely increased, and thus one would certainly
leave the weakly-interacting regime. Moreover, it is stressed that the crossing points
at the mean-field and many-body levels are exactly the same for Λ = 0 (fully-coherent
BEC) and can further not be distinguished from each other for the non-zero interaction
strengths considered. The depletion of the ground states with M = 4 orbitals are
f ≈ 10−3 for L = 0 and Λ = 2.0 and f ≈ 10−9 for L = N and Λ = 0.2, respectively.
This means that in both cases, the systems’ ground states are essentially condensed.
To study the out-of-equilibrium dynamics for different values of Λ and L, the focus is
laid on the situation where the barrier is located on the corresponding crossing points.
First, the case of zero angular momentum, i.e., L = 0, is analyzed. As an initial state,
the ground state of trapping the BEC in the OUT region with closed central part is
chosen. To trigger the dynamics, the system is quenched by suddenly opening the trap
center, such that the entire potential is given by Eq. (6.8). It was found numerically
that there is no difference in starting from either the IN or OUT region when the
barrier is located at the crossing point. Fig. 6.6(a) shows the dynamical evolution of
the occupation probability of the external rim,

POUT(t) = 1− PIN(t) =
1

N

∫
RB<r≤RC

ρ(r; t)dr, (6.10)

where ρ(r, t) denotes the single-particle density. For the first two Rabi cycles of τ1 =
110.23, nearly the whole cloud tunnels between IN and OUT. Then, the occupation of
the second natural orbitals starts to grow, accompanied by a damping of the tunneling
oscillations. After approximately 12 cycles, the density oscillations have collapsed and
the particles are almost equally distributed between IN and OUT. The BEC is now
highly (two-fold) fragmented, with occupations of 56.7% and 41.1% of the first two
natural orbitals α1 and α2, respectively. In contrast to that, the GP dynamics do
not show any damping of the oscillations, not even for the long-time behavior (not
shown). Fig. 6.6(c) shows the real and imaginary parts as well as the density of the GP
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(a) (b)

(c) (d)

Figure 6.6: (a) Time evolution of the occupation probability of the external rim, POUT(t), for N = 100
bosons with L = 0 and Λ = 2.0. For M = 4, initially almost all bosons tunnel. The oscillation
amplitude is damped over time and effectively collapses after 12 Rabi cycles with approximately half
of the bosons in each part (solid red). The system evolves from being almost fully condensed to two-
fold fragmented (see solid green and dark blue curves for n1 and n2). The occupations of the third and
fourth orbital are identical and negligible (solid light blue). On the contrary, the GP theory predicts
undamped oscillations (dotted gray). (b) Same as in (a) but for L = N and Λ = 0.2. Again, the
system evolves from being fully coherent to two-fold fragmented, and the particles finally occupy both
the IN and OUT parts by roughly 50%. Mind the different time scales (τ1 > τ2). Inset: Detailed
view between 150τ2 ≤ t ≤ 155τ2. The GP dynamics again do not show the density collapse. (c) Real,
imaginary, and absolute value of the first two natural orbitals α1 and α2 at t = 18.4 τ1. where the
density is already collapsed. The GP case is shown in the top panels. For α1 and α2, the density
occupies both the IN and OUT regions. At the same time, the GP orbital only covers the external
part. (d) Same as in (c) but for the dynamics described in (b). At the many-body level, the nodal
structure of the vortex state is clearly visible in the trap center. All quantities are dimensionless. See
text for details. All figures are adapted from Ref. [125].
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orbital (top panels) and of the first two natural orbitals in the many-body case (middle
and lower panels) at an instant in time at which the density oscillations have already
collapsed for M = 4. Whereas there are no bosons in the trap center for the GP case,
there is significant population of the IN region for the many-body case.
Similar observations can be made for L = N and Λ = 0.2, presented in Fig. 6.6(b). The
many-body dynamics show that the density collapses and that approximately 50 bosons
are occupying the IN and OUT regions finally. The BEC is two-fold fragmented, the
occupation of higher natural orbitals is negligible. The GP dynamics (see inset) do not
account for the damped oscillations. With regard to the density of the GP and natural
orbitals in Fig. 6.6(d), it can be seen that α1 and α2 clearly show the characteristic
nodal vortex structure in the center, whereas at the GP level there are no bosons in
the IN region at the chosen instant of time t = 183.3 τ2 with τ2 = 66.79.
It was further found that many-body effects like the density collapse or the onset of frag-
mentation are more likely to occur when the particles carry angular momentum. This is
because for L = N and Λ = 2.0, the system quickly becomes four-fold fragmented, i.e.,
at least four orbitals are necessary to accurately account for the many-body dynamics.
For L = 0, the dynamics are essentially governed by only M = 2 orbitals, as can be seen
from Fig. 6.6(c). Thus, the weakly-interacting regime is apparently smaller for the case
of L > 0, meaning that vortices are more sensitive to many-body effects. In Section
6.3.3, this will be discussed again when excitations in rotating BECs are investigated.
To summarize, the many-body nature of the tunneling dynamics of BECs in a 2D radial
double well was demonstrated . The GP mean-field theory does not account for the
collapse of the density oscillations between IN and OUT, and therefore fails to give
an accurate description of the dynamics. Furthermore, the initially condensed BECs
fragment. It was found that bosons that carry angular momentum are more sensitive
to many-body effects than non-rotating ones because fragmentation sets in already for
weaker interaction strengths. In agreement with these findings, a very recent work
demonstrates analytically that a many-body approach is necessary for describing the
conservation of angular momentum in a 2D radially-symmetric system [136].

6.2 Dynamical fragmentation

6.2.1 Tunneling to open space

The recently obtained findings on the many-body tunneling process of initially trapped
bosons to open space in 1D are summarized in this section. The tunneling process of a
single particle was understood already at the beginning of the 20th century [137–140]
and is still of current interest, e.g., with respect to the exit time and momentum of
an electron in the ionization process [141, 142]. Tunneling of a many-boson system,
which has also been studied recently [143–146], is naturally more complicated due
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to the interactions and correlations between the constituent particles. The following
results, recently published in Refs. [147–151] (see the latter references for additional
information), explain the tunneling mechanism to open space from a many-body point-
of-view utilizing MCTDHB. The main points that are addressed deal with the questions
whether the particles tunnel one by one or if several particles tunnel simultaneously,
and whether the entire process is indeed of many-body nature.
To study the dynamics of the tunneling to open space, a system of N bosons confined
in a harmonic trap of the form V (x, t = 0) = 1

2
x2 is considered. For t > 0, the trap is

quenched such that it becomes open to one side. The region where the bosons where
trapped initially and the open space are separated by a potential barrier. The full
potential reads

V (x, t > 0) = θ(xc1 − x)
1

2
x2 + θ(x− xc1)θ(xc2 − x)P (x) + θ(x− xc2)T (6.11)

where θ(x) denotes the Heaviside step function, P (x) denotes a third order polynomial
that ensures a smooth connection between the harmonic trap, the potential barrier
and the threshold potential T whose role will be discussed below. The coordinates xc1
and xc2 refer to connection points where the former connects the harmonic trap and
the barrier and the latter connects the barrier and the threshold. The bosons repel
each other via the contact interaction potential, and its strength is measured via the
mean-field parameter Λ = λ0(N − 1).
Fig. 6.7 shows a schematic plot of the trapping potential for t > 0 (solid black).
The maximum height of the barrier separates the IN and OUT regions, denoted by the
vertical red line. Moreover, the colored horizontal lines mark the total energies of states
with different numbers of bosons N in the trap. Depending on the threshold value T ,
certain states can become bound, meaning that no more particles can escape from the
trap via tunneling through the barrier. How the threshold can be utilized to control
the tunneling-to-open-space dynamics will be discussed below.
Important quantities for the analysis are the density ρ(x, t) [see Eq. (2.24)], as well as
the density in momentum space ρ(k, t), or simply the momentum distribution, which
is obtained by performing a Fourier transformation (FT) of the real-space density.
Furthermore, the degree of fragmentation f , defined in Eq. (2.27), and especially its
evolution in time, is of major interest. The above quantities are computed at the
many-body level employing MCTDHB.
The analysis starts by looking onto the shape of the momentum distribution ρ(k, t) in
general. Fig. 6.8 shows it for a system of N = 101 bosons with interaction parameter
Λ = 0.3 at four different instants in time t1 < t2 < t3 < t4. It consists of two parts,
a Gaussian background and a peak structure. The former refers to the particles that
did not escape from the trap yet, since the initial real-space density is also a Gaussian.
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Figure 6.7: Schematic plot of the potential V for t > 0 (solid black). The initial Gaussian-shaped
density ρ(x, t = 0) is shown in solid blue. The IN and OUT regions are separated at the position of
the maximum of the potential barrier (see solid red lines and labels). Colored horizontal lines denote
the energies of states with different numbers of bosons N in the trap. The energy differences between
those states are denoted by the chemical potentials µi. The value T denotes the height of the threshold
potential in the OUT region. All quantities are dimensionless. See text for details. The figure is taken
from Ref. [150].

On the contrary, the peaks refer to the momenta of the already escaped particles. The
heights and positions of the peaks are time-dependent. For instance, the height of the
dominant peak grows in time. The position of the peaks can be understood from a
static model introduced below.
The minimal total energy ETOT of the system is comprised of the energy of the bosons
that remain in the IN region, denoted by EHO(λ0, NIN) indicating its dependence on
the two-body repulsion strength λ0 and the number of particles in the trap NIN, as well
as on the minimal energy of the NOUT bosons that tunneled through the barrier into
open space. Their minimal energy is the height of the threshold T . One thus obtains

ETOT = EHO(λ0, NIN) +NOUT T. (6.12)

The minimal energy above misses the kinetic energy of the emitted bosons. Assuming
that the interaction among the emitted bosons is negligible, it is given by

Ekin(T, µi) = µi − T (6.13)
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Figure 6.8: The momentum distribution ρ(k, t) for N = 101 bosons with repulsion strength Λ = 0.3 at
four instants in time with t1 < t2 < t3 < t4. The Gaussian background refers to the bosons remaining
in the trap, whereas the peaks refer to the momenta of the emitted bosons. The heights and the
peak positions are time-dependent, e.g., the dominant peak clearly grows in time. All quantities are
dimensionless. See text for details. The figure is adapted from Ref. [149].

where the {µi} are chemical potentials that refer to the energy to bring an additional
boson into the IN region with already N − i bosons. The corresponding momenta read

kTi =
√

2(µi − T ) (6.14)

where m = ~ = 1 is assumed. It is stressed that this model describes the tunneling of
a single boson.
These model assumptions are tested against a system with N = 2 bosons and two-body
repulsion strength λ0 = 1. The left panel of Fig. 6.9 shows the dependence of ETOT

on the threshold value T for the three possible final states |NIN, NOUT〉, given by |2, 0〉,
|1, 1〉 and |0, 2〉. The utilized notation |NIN, NOUT〉 should not be confused with a Fock
state and is just used to count the particles in the two regions IN and OUT. For T . 0.5,
the lowest-in-energy state is |0, 2〉, i.e., the final state where both bosons have tunneled
into open space. For 0.5 . T . 0.8, the state |1, 1〉 is the lowest, meaning that only one
boson is expected to tunnel in the long-time dynamics. For even higher T , tunneling is
suppressed completely because the state |2, 0〉 corresponds to the lowest energy. This
is in full agreement with the results shown in the right panel of Fig. 6.9. There, the
peaks in the momentum distribution ρ(k, t = 600), corresponding to the momenta kT1
and kT2 of the emitted particles, are presented for different values of the threshold T .
The kT2 -peaks are plotted upside-down for better visibility. The first observation is that
increasing T shifts the peaks to smaller momenta, which is due to the higher energy
that is necessary to overcome the threshold. Secondly, two peaks appear up to T = 0.4,
whereas for T = 0.5 and 0.6 only one peak appears. This can be understood in terms
of the static considerations from the left panel, where it was observed that for T . 0.5
both particles are expected to tunnel through the barrier, whereas only one boson is
expected to tunnel for 0.5 . T . 0.8. Thus, the threshold can be utilized to control
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Figure 6.9: The tunneling to open space of N = 2 bosons. Left panel: Static consideration of the
energy dependence of the possible final states |NIN, NOUT〉 on the threshold T . For T . 0.5, both
particles are expected to tunnel, whereas for 0.5 . T . 0.8, only one boson is expected to tunnel. For
even larger T , the bosons should remain trapped. Right panel: The obtained peaks in the momentum
distribution ρ(k, t = 600, T ) for different T . For T ≤ 0.4, two peaks appear at kT1,2, for T = 0.5 and
0.6, only one peak appears. This is in agreement with the expected number of ejected bosons from
the trap. For larger T , the peaks are shifted to smaller momenta since the bosons have to overcome a
larger threshold. All quantities are dimensionless. See text for details. The figures are adapted from
Ref. [150].

the number of tunneling bosons. The arrows in the bottom of the right panel mark
the calculated positions of the peaks with respect to the model of Eq. (6.14). The
agreement with the positions of the peaks of the momentum distribution is very good,
meaning that the tunneling of single particles can be well described by the above model.
It remains the question whether the bosons do only tunnel one by one, or whether it
is also possible that several bosons tunnel at once. To answer this question, one has to
consider that the peaks for T . 0.5 in Fig. 6.9 (right panel) appear sequentially, i.e.,
first the dominant peak develops, and then the second, smaller peak appears. The fact
that the position as well as the height of the peaks are time-dependent suggests that
the two processes, namely the separate ejection of the first and second boson, are not
independent. If however a multi-boson ejection happened, peaks at higher momenta
than the ones observed would appear. For instance, in the limit of large N , the chemical
potential corresponding to a two-boson ejection would be µ2b ≈ 2µ1, which, for the case
of T = 0, yields k2b,0 ≈

√
2k0

1. This is simply not observed in the Fourier spectrum of
ρ(k, t). Thus, it can be deduced that the bosons tunnel to open space one at a time.
Nevertheless, as mentioned above, the individual processes of the ejection of single
bosons are not independent, meaning that they quantum-mechanically interfere.
Finally, it is discussed whether the overall process of tunneling to open space is indeed a
many-body process or whether it can be described at the mean-field level as well. To this



6 Applications of (LR-)MCTDHB 76

Figure 6.10: Evolution of the natural occupations of the first few natural orbitals. Left panel: The
case of zero threshold, T = 0, utilizing M = 4 orbitals. The interaction strength is λ0 = 0.3. For
all particle numbers shown, the system evolves from being condensed to being multi-fold fragmented.
Right panel: The occupation of the first two natural orbitals for N = 2 particles and λ0 = 1, but for
different heights of the threshold T . In general, the higher the threshold the later the development of
fragmentation sets in. Moreover, the system with larger T fragment less than the ones with smaller
T . All quantities are dimensionless. See text for details. The figures are taken from Refs. [149,150].

end, the time-evolution of the occupations of the first few natural orbitals for systems
with different numbers of bosons and different heights of the threshold is studied in Fig
6.10. In the weakly-interacting regime considered here, all initial states of the bosonic
clouds are essentially condensed. For the case of zero threshold (left panel), one observes
that for all numbers of bosons considered the system becomes multi-fold fragmented.
Especially for N = 4 bosons, 4 orbitals become macroscopically occupied. With respect
to the case of N = 2 particles and non-zero thresholds, the behavior is similar, meaning
that the initially coherent BEC becomes highly fragmented. In general, the onset of
fragmentation happens at later times when T is larger. Furthermore, the degree of
fragmentation is largest in the absence of any threshold.
To summarize, it has been found that the tunneling-to-open-space dynamics of repul-
sive bosons from a harmonic trap are of many-body nature. With time, the system
evolves from being coherent to being highly fragmented, and thus a mean-field descrip-
tion is inapplicable even in the weakly-interacting regime. The bosons tunnel one by
one, no multi-boson tunneling where more than a single boson is emitted from the
trap occurs. However, the individual tunneling processes are not independent, they
quantum-mechanically interfere. The threshold in the open space can be utilized to
control the number of emitted particles. In particular, it can be used to suppress tun-
neling completely. A detailed analysis on the coherence of the system, showing that
the emitted bosons lose coherence with the bosons in the trap and among themselves,
can be found in Refs. [147–151], as well as additional details.
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6.2.2 Phantom vortices

A recently found vortex type in a rotating and repulsive 2D single-component BEC,
termed phantom vortex, is presented in this section. Different to the common under-
standing of a quantum vortex that, among other features, has a density node (or core)
and a phase discontinuity surrounding it, a phantom vortex cannot be detected in the
condensate density. Although they were not found in single-component condensates
so far, coreless vortices have been predicted earlier for multi-component condensates,
e.g., spinor condensates where the core of one species, i.e., bosons with a certain spin,
is filled by another species [152, 153]. Since the experimental realization of gaseous
BECs [4–6,154,155], the nucleation of vortices in rotating BECs was of interest and it
was found that there is a critical rotation frequency below which no quantized vortices
appear [156–161]. In contrast to that, phantom vortices appear also below this critical
rotation frequency. Instead of a node in the density, they rather manifest themselves
in nodes of the densities of underlying natural orbitals. Thus, phantom vortices are a
many-body object that cannot be described at the mean-field level. Moreover, their
occurrence is accompanied by the onset of fragmentation. The following results were
recently published in Ref. [162]. Earlier results on phantom vortices in a stirred BEC
where, e.g., the fragmentation entropy is analyzed, can be found in Ref. [163].
The system under consideration is a BEC of N = 100 spinless bosons. They interact
via the same Gaussian repulsion as in Eq. (6.9) but with interaction parameter Λ =
λ0(N − 1) = 17.1. They are confined in a time-dependent trap that is varied stepwise.
It reads

V (r, t) =
1

2

(
x(t)2 + y(t)2

)
+

1

2
η(t)

(
x(t)2 − y(t)2

)
(6.15)

where η is the anisotropy parameter of the anisotropy given by the second term in Eq.
(6.15). The x− and y−coordinates are varied in time according to(

x(t)
y(t)

)
=

(
cos(ωt) sin(ωt)
− sin(ωt) cos(ωt)

)
(6.16)

where the frequency ω is set to 0.78. Initially, the trapping potential is isotropic and
harmonic, meaning that η(t = 0) = 0, and the corresponding ground state is computed
both at the mean-field level using the GP equation as well as at the many-body level
using imaginary time-propagation of MCTDHB(4). Afterwards, a slight anisotropy is
added by increasing η from zero to its maximal value of 0.1 until t = 80. The resulting
elliptic trap is kept between 80 < t ≤ 300, before η is ramped down to zero again
between 300 < t ≤ 380. For the last interval until t = 500, the isotropic harmonic
trap is kept constant. The entire procedure is shown in the upper panel of Fig. 6.11,
together with representative densities of the BEC for the individual intervals. These
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Figure 6.11: Top panel: Time-evolution of the anisotropy parameter η(t) (red line) for the 4 distinct
intervals discussed in the text, together with representative densities (blue). The dynamic protocol
is divided into a period of ’ramp up’, ’maximal anisotropy’, ’ramp down’ and ’isotropic’. Second

panel: Time-evolution of the first 4 natural occupation numbers ρ
(NO)
i (t). Fragmentation sets in at

the end of the ramp up of the anisotropy. Third panel: Time-evolution of the orbital angular momenta
(Lz)ii(t) and the total angular momentum per particle, Lz(t)/N . Fluctuations are maximal when
fragmentation sets in. Bottom panel: Comparison between the time-evolution of the total energy
E relative to the initial energy E0 and Lz(t)/N . The GP theory underestimates both quantities,
especially the angular momentum is approximately three times less than at the many-body level. All
quantities are dimensionless. See text for details. The figure is taken from Ref. [162].

densities already suggest that at no point in time there is a vortex contained in it, as
discussed in more detail below.
Of particular interest for the analysis will be, apart from the density ρ(r), the natural

occupation numbers, denoted here by ρ
(NO)
i but with the same meaning as the ni in

Eq. (2.26), and the densities |φi|2 of the natural orbitals (mind the different notation as
compared to Chapter 3 where the φi denote the working orbitals of MCTDHB). Further-
more, the time-evolution of the orbital angular momenta, given by (Lz)ii = 〈φi|L̂z|φi〉,
and of the total angular momentum per particle, Lz/N = 1

N

∑M
i,j=1 ρij (Lz)ij, are an-

alyzed. The time-argument is suppressed in the above mentioned quantities. Com-
putations are carried out for orbital numbers M = 4 and M = 1 (GP). Additionally,
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Figure 6.12: Top panels: Total density ρ(r) (a) and densities of the natural orbitals (b)-(e) at t = 450,
i.e., when the trap is already isotropic again. Although no vortex is observed in the total density,
phantom vortices in the orbitals φ1, φ3 and φ4 appear. Bottom panels: Phases of the first-order
correlation function (f) and of the natural orbitals (g)-(j). Phase discontinuities are observed for all
phantom vortices. All quantities are dimensionless. See text for details. The figure is taken from
Ref. [162].

signatures of phantom vortices can also be seen in the phase of the first-order correlation
function g(1)(r|r′; t) [see Eq. (D.6) in Appendix D] defined by

Sg(r|r′; t) = arg[g(1)(r|r′; t)] (6.17)

as well as in the phases of the natural orbitals given by

Si(r, t) = arg[φi(r; t)]. (6.18)

The discussion of the results is split into two parts. At first, the appearance of phantom
vortices is analyzed at an instant in time when the trap is already isotropic again.
Afterwards, the degree of fragmentation in the system is discussed.
With respect to the first part, the total density and the densities of the natural orbitals
at t = 450, i.e., when the anisotropy is ramped down to zero again, are examined in Fig.
6.12. One observes that the total density [panel (a)] does not exhibit any vortices. On
the contrary, several phantom vortices appear in the densities of the natural orbitals.
The densities of the first and fourth natural orbital contain a charge-1 and a charge-
3 phantom vortex, respectively [panels (b) and (e)]. The density of the third orbital
contains a pair of charge-1 phantom vortices [panel (d)]. The mechanism responsible for
the nucleation of the phantom vortices in φ1 and φ4 is different to the one responsible for
the pair in φ3. The former mechanism is called node mutation, and is explained for the
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Figure 6.13: Time-evolution of the fragmentation for different numbers of particles N . The same
dynamical protocol of the trapping potential as in Fig. 6.11 is used. For all considered boson numbers,

the occupation ρ
(NO)
1 decreases clearly. In general, fragmentation sets in later for higher particle

numbers. Results are computed using M = 2 orbitals. The interaction parameter is kept fixed
at Λ = 17.1. All quantities are dimensionless. See text for details. The figure is taken from the
supplementary material of Ref. [162].

charge-1 phantom vortex in φ1. This phantom vortex originates from the node of the
initial second orbital φ2, which resembles a 2px orbital that has an angular node. When
angular momentum is added to the system due to the anisotropy, the lobes of the 2px
orbital spread out and tend to close this angular node, leaving an elliptic density node
in the center. After the trap is isotropic again, a phantom vortex is left at the center,
which now appears in the density of φ1 since the first and second orbital have switched
labels at t ≈ 220 because of their occupation numbers [see second panel from the top
in Fig. 6.11]. Thus, the remaining phantom vortex was nucleated from a node in the
initial orbital that mutated to a vortex during the time-evolution. A similar process
happens for the charge-3 vortex in the density of φ4. It originates from φ3(t = 0)
which resembles a 2py orbital. There, the angular node mutated first to three single
phantom vortices that finally merged into a larger charge-3 vortex. The fact that it
finally appears in the fourth natural orbital is due to the label switching of φ3 and φ4

during the ramp-up of the anisotropy.
The mechanism responsible for the phantom-vortex pair in φ3 [panel (d)] is called slow
orbital-orbital vorticity transfer because of the following observation. At t ≈ 220,
the pair of co-rotating phantom vortices appeared in the density of φ2. When time
progressed, the two phantom vortices started to move towards the density edge and
disappeared finally at t ≈ 275. At the same time, two vortices were build at the density
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edge of φ3, which afterwards continued to move towards the center. At t ≈ 340, the
separation between this pair is the same as before in the density of φ2. Thus, vorticity
has been transferred between the two natural orbitals over a period much longer than
the rotation period of τ = 2π/ω ≈ 8. This process between the second and third orbital
can also be seen from the correlated orbital angular momenta (Lz)22 and (Lz)33 in Fig.
6.11 for t ≥ 250. The position of the phase discontinuities shown in Figs. 6.12(g), (i) and
(j) coincide with the corresponding positions of the phantom vortex cores. Especially
in panel (j) one can see from the merging three discontinuity branches in the center
that the corresponding phantom vortex in panel (e) is of charge 3. Comparing the
density in panel (a) and the phase Sg(r|0; 450) in panel (f), one observes the occurrence
of several so-called ghost vortices at the density edge. The latter are distinct from
phantom vortices because they do not enter the bulk density of the condensate and do
also not contribute much to the total angular momentum.
The dynamical fragmentation that occurs during the time-evolution, as well as its
consequences for the angular momenta and the energy of the system [see again Fig.

6.11] is now analyzed. The initial state is essentially condensed (ρ
(NO)
1 ≈ 99.7%), and

it stays condensed for almost the entire period in which the anisotropy is ramped up
to its maximal value. In this time frame, the total angular momentum and energy
computed at the many-body and mean-field levels coincide as long as the BEC remains
coherent. Once fragmentation sets in, the latter quantities start to deviate from each
other. During the first part of the time interval in which the trap is kept maximally
anisotropic (80 < t ≤ 150), ρ

(NO)
1 decreases significantly to roughly 40%, and the second,

third and fourth natural orbital become macroscopically occupied. At the same time,
the orbital angular momenta vary the most and several of them reach their maximum
values. Then, the occupations and angular momenta of φ1 and φ4 remain more or less
constant until the end of the simulation. For the orbitals φ2 and φ3, both quantities
change slightly in a correlated manner, i.e., when ρ

(NO)
2 increases ρ

(NO)
3 decreases by the

same amount. This again reflects the slow orbital-orbital vorticity transfer between φ2

and φ3 discussed above. With regard to the total angular momentum and energy, both
quantities vary strongly during the period of maximal anisotropy and ramp down, and
saturate only afterwards. The corresponding GP values are substantially different since
they underestimate the system’s gain of energy and angular momentum. In particular
for the latter quantity, it stays below 0.5, well below the threshold for the occurrence of
vortices at the mean-field level at unit angular momentum per particle. Interestingly,
Lz/N for M = 4 is greater than this threshold, but still no vortices are observed in the
density ρ(r). This can be rationalized because one can show analytically that a vortex
in the density of a fragmented BEC, i.e., a fragmented vortex, requires more than
unit angular momentum per particle [see the supplementary information of Ref. [162]].
The reason is that a fragmented vortex originates from coincident phantom vortices,
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meaning that all natural orbitals must have a phantom vortex at the same position,
and all of these phantom vortices need to have different charges such that the natural
orbitals are orthogonal. As seen from panels (b)-(d) in Fig. 6.12, there are no coincident
phantom vortices, and thus the fragmented system does not show any vortices in the
density.
The onset of fragmentation was also observed for different numbers of bosons. Fig.
6.13 shows the evolution of ρ

(NO)
1 for different N between 10 and 104, utilizing M =

2 time-adaptive orbitals. The interaction parameter Λ = 17.1 is kept fixed. One
generally observes that fragmentation sets in for all considered particle numbers, and
that furthermore the onset of fragmentation occurs at later times for higher values of
N .
In conclusion, the nucleation of phantom vortices has been investigated for a rotating
BEC that acquires angular momentum via a time-dependent modification of the trap.
Two different mechanisms for the creation of phantom vortices were found, namely
node mutation as well as slow orbital-orbital vorticity transfer. Phantom vortices, by
definition many-body objects, cannot be described by the GP theory. The initially
coherent system highly fragments, also for different numbers of particles in the conden-
sate. Further information can be found in Ref. [162], in particular in the supplementary
material containing videos that show, e.g., the evolution of all quantities shown in Fig.
6.12.

6.3 Excitation spectra

In this section, details on current applications of LR-MCTDHB are presented. The
amount of scientific publications where it is utilized is still rather small because the
theory itself has been developed only a few years ago [34, 35]. In addition to that,
the efficient MPI-parallelized numerical implementation of LR-MCTDHB is a very de-
manding task, and all the technical problems going along with it, extensively described
in Chapter 4, were solved only very recently. It is stressed again that without such
an implementation, a vast majority of problems cannot be treated at all, especially in
D > 1 spatial dimensions. Before developing the sophisticated and complex parallel
implementation, there was a first implementation available that could treat small 1D
systems. The results of Refs. [34] and [164] were obtained with this code [see below and
Section 6.3.1]. In more recent applications, discussed in Secs. 6.3.2 and 6.3.3, already
the new implementation was utilized since it was impossible to obtain the same results
with the former code.
The main purpose of Ref. [34] is to introduce LR-MCTDHB by giving a derivation of
its main equations, presented in Section 3.2.2 in this work. In particular, the equations
for the submatrices as described in Eq. (3.62) are developed for the case of contact in-
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(a) (b)

Figure 6.14: (a) Numerical convergence of the first three center-of-mass excited states (labeled by 1,
2′ and 3′) with respect to the number of orbitals M for N = 10 bosons in a harmonic trap with trap
frequency ωho =

√
2. The strength of the contact repulsion is λ0N = 1. ForM = 5 orbitals, the energies

obtained from LR-MCTDHB coincide with the analytic predictions. The numerical implementation
used is the precursor of the implementation described and benchmarked in Chapters 4 and 5. (b)
Comparison between the excitation spectra obtained from BdG (bottom) and LR-MCTDHB(2) (top)
for N = 10 bosons in a shallow double well. The interaction strength is the same as in panel (a).
Excitations labeled with primes refer to states solely obtained at the many-body level. The intensity
of the response to a linear perturbation (f+ = f− = x) is denoted by red triangles, whereas the
intensity of the response to a quadratic perturbation (f+ = f− = x2) is denoted by green squares.
The insets show the trap potential and the ground-state densities. One observes that the many-body
low-energy spectrum contains a lot more states than the mean-field spectrum. All quantities are
dimensionless. See the main text and Ref. [34], from which both figures are taken, for further details,
especially for the discussion of the excitation type shown at the top of panel (b).

teraction between the bosons. As an application, excitations for BECs in harmonic and
shallow double-well traps are analyzed. Fig. 6.14(a) shows the numerical convergence
for the first three c.m. excited states (labeled by 1, 2′ and 3′) of N = 10 bosons in a
harmonic trap with trap frequency ωho =

√
2 in terms of the number of orbitals M uti-

lized. The strength of the repulsion is given by λ0N = 1. One can observe that the c.m.
excitations are accurately obtained for M ≥ 5 orbitals. The BdG theory only yields the
first c.m. excitation. In Fig. 6.14(b), the low-energy spectrum as well as the response
intensities for linear and quadratic perturbations (f+ = f− = x, x2) are presented for
N = 10 bosons in a shallow double well of the form V (x) = b/2 cos (πx/3) + ω2

hox
2/2

with barrier height b = 5. The most important observation by comparing the number
of obtained states for BdG and LR-MCTDHB(2) is that the many-body spectrum con-
tains a lot more states. This in turn means that although the degree of depletion is only
about 0.2%, a many-body description for the lowest-in-energy excitation spectrum is
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unavoidable in order to obtain accurate results. In the subsequent Section 6.3.1, the ex-
citation spectrum for the case of BECs trapped in harmonic and double-well potentials
is elaborated in more detail, especially with respect to the question how many-body
excitations can be triggered in the out-of-equilibrium dynamics of the condensates.
Before discussing further applications of LR-MCTDHB in the following, a remark on
how mean-field and many-body excitations are defined in this work is made in order
to avoid misconceptions of these important terms. Excitations calculated from Eq.
(3.85), i.e., from LR-MCTDHB (M > 1), are termed many-body excitations since
they stem from a many-body theory. On the contrary, all excitations calculated with
the BdG equations in Eq. (A.15) of Appendix A.1.2 are referred to as mean-field
excitations since they stem from a mean-field theory. Moreover, excitations where only
a single boson is excited from the condensed mode are called single-particle excitation,
whereas excitations where more than a single boson is excited are called multi-particle
excitations. These definitions are utilized consistently in the applications below.

6.3.1 One-dimensional harmonic and double-well systems

As a first application of LR-MCTDHB, the many-body nature of excitations in a 1D
harmonic trap as well as in shallow and deep symmetric double wells is analyzed. The
low-energy spectra obtained from the BdG equation at the mean-field level and from
LR-MCTDHB at the many-body level are compared. Furthermore, it is investigated
which excitations are involved in the dynamics due to certain quench scenarios. The
following results where recently published in Ref. [164].
Excited states are studied in a harmonic trapping potential with a Gaussian barrier,
given by

V (x) = ax2 + b exp
(
−cx2

)
(6.19)

where a denotes the harmonic trap frequency and B denotes the height of the Gaussian
barrier. For simplicity, ~ = m = 1 are chosen. Furthermore, the trapping parameters
are set to a = 1/2 and c = 1. The bosons interact via the zero-ranged contact interaction
potential. The interaction strength is again measured by the mean-field parameter
Λ = λ0(N − 1) where λ0 is chosen to be positive to account for repulsion. Fig. 6.15
shows V (x) for different barrier heights, together with the corresponding ground-state
densities. For the purely harmonic trap (b = 0), the BEC is essentially condensed with
n1 = 99.9%. On the contrary, for the shallow (b = 5) and deep (b = 10) double wells,
the ground state is already fragmented by approximately 5% and 40%, respectively.
One can further observe that for the deep well, the overlap between the densities in the
left and right wells is marginal, whereas there is still a clear overlap observable in the
shallow case.
Since the trap is reflection invariant, the excitations can be categorized in gerade (g)
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and ungerade (u) symmetry. Fig. 6.16 shows the low-energy spectrum of N = 10
bosons for different barrier heights 0 ≤ b ≤ 10 and Λ = 1.0. Excitation energies are
given relative to the ground-state energy, i.e., ∆E = E −E0. One readily observes the
formation of bands, which is even more pronounced for lower interaction strengths [see
Fig. 2 in Ref. [164]]. The bands are labeled by integer numbers, where the zeroth band
denotes the one that is lowest in energy. Comparing the mean-field and many-body
approaches, one can see that the BdG spectrum only contains 5 different excitations,
whereas the spectrum computed with LR-MCTDHB shows a much richer structure
where a lot more excited states appear. As already mentioned, the BdG approach
only accounts for single-particle excitations, which in turn means that all states that
solely appear in the many-body description are multi-particle excitations. In terms of
numerical convergence, M = 2 orbitals are sufficient to describe the spectrum up to
∆E ∼ 2 for not too low barrier heights, i.e., b ≥ 4. For states higher in energy, at least
M = 4 orbitals are necessary.
In the following, different shift and quench protocols are applied to trigger excitations
from the low-energy spectrum. For gerade excitations, a quench of the harmonic con-
finement from a = 0.4→ 0.5 is performed, whereas ungerade excitations are addressed
by a shift of the trap position, meaning that x→ x+xshift with xshift = 0.1. The gerade
excitations are referred to as breathing modes, and the ungerade excitations are referred
to as dipole modes. The dynamics of the bosonic clouds for the two cases are shown in
Fig. 6.17 on a short time scale. In the left panel, dipole oscillations for a BEC in the
deep double are depicted, which means that in each well, the bosons oscillate around
the equilibrium position given by the minima of the wells. On the RHS, the breathing
dynamics for N = 10 bosons in the purely harmonic trap is shown. One can observe
that the density spreads to the left and right in a symmetric manner, and returns to the
minimum of the well. The Fourier spectra of the time-evolution of certain quantities is
used to extract the spectrum of involved excitations in the dynamics. This comprises
the density ρ(x = 1), the expectation value 〈x〉 and the variance per particle 1

N
∆2
X̂

.
The many-body variance is discussed in detail in Appendix D. In Ref. [164], the FT
spectra for b = 0 , 5 and 10 are investigated. Here, the discussion is restricted to the
latter. To remind the reader, the system is highly fragmented by approximately 40%
in this case.
Table 6.1 shows excitation and de-excitation energies where the obtained values from
the BdG and LR-MCTDHB(2) theories (columns 2 and 3) are compared to the obtained
excitation energies of the FT spectra from the shift and quench scenarios (columns 4-
7). Moreover, several de-excitations, i.e., transitions between a higher and a lower
excited state, are presented (last 4 rows). Those refer to higher-order effects and are
in principle not obtained directly by LR. However, since LR yields the exact excitation
spectrum once it is applied to an exact eigenstate of the full many-body Hamiltonian,
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Figure 6.15: Trap potentials (solid red) and ground-state densities (gray) for different barrier heights
b. The ground states are computed with MCTDHB(2). The BEC consists of N = 10 bosons and
the repulsion strength is Λ = 1.0. The occupation number n1 of the first natural orbital shows that
increasing the barrier height leads to fragmentation. Vertical lines refer to the lowest-in-energy excited
states computed with LR-MCTDHB(2). The green potentials and the blue eigenvalues refer to the
harmonic approximation of the right well. All quantities are dimensionless. See text for details. The
figure is taken from Ref. [164].

the de-excitations can be extracted differences between the excitation energies of the
LR spectrum. The excitation labels are shown in the first column. Multi-particle
excitations, i.e., excitation that only appear in the many-body spectrum, are denoted
by primed labels.
Up to ∆E ∼ 4, the many-body approach yields ten excited states, whereas on the
contrary the BdG spectrum only consists of five excitations. The energies of states that
appear in both spectra differ slightly from each other for 1g, 1u, 2g and 2u (relative error
up to 1.4%), but significantly for the lowest excitation 0u (relative error of 44.4%). That
demonstrates that strong deviations between the mean-field and many-body excitation
energies can already occur for the lowest excited states. Also the intensities of several
states differ clearly from each other, especially for the lowest states 0u, 1g and 1u. The
intensities from the LR calculations are identical to the response weights described in
Eq. (3.92), with f+ = f− = x for the ungerade and f+ = f− = x2 for the gerade
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Figure 6.16: Low-energy excitation spectrum of N = 10 bosons with interaction parameter Λ = 1.0 for
different barrier heights b. Many-body results computed with LR-MCTDHB(2) are denoted by solid
lines (gerade excitations in green, ungerade excitations in red). Results for M = 4 orbitals are given
by dotted lines and the corresponding BdG energies are given by open black circles. All states up to
∆E ∼ 2 are converged with two orbitals. The BdG approach misses many states in the shown energy
range. All quantities are dimensionless. See text for details. The figure is taken from Ref. [164].

states.
Columns 4 and 5 show the obtained peaks in the FT analysis of 〈x〉 and ρ(x = 1) for the
shift scenario, both for the GP and many-body cases. The Fourier spectra are shown
in the left panels of Fig. 6.18. Surprisingly, the shift also triggered a gerade excitation
(2g) at the mean-field level, whereas at the many-body level only ungerade states are
observed. Moreover, no peak is observed for 0u in the many-body dynamics, presumably
because its intensity is too weak to be distinguished from the background noise. The
obtained peak positions coincide with the predictions from BdG and LR-MCTDHB(2).
With regard to de-excitations, the mean-field and many-body approaches yield a very
small peak for the 2u↔ 1u transition in the density spectrum.
The FT analysis of the quench dynamics of 1

N
∆2
X̂

and ρ(x = 1) are shown in column
6 (GP) and column 7 [MCTDHB(2)]. Only peaks corresponding to gerade excitations
are observed. Both approaches yield peaks for 1g and 2g. At the many-body level, two
additional peaks referring to 0g′ and 1g′ are obtained. The peak positions again accu-



6 Applications of (LR-)MCTDHB 88

Figure 6.17: Many-body dynamics of the density of N = 10 bosons with interaction parameter Λ = 1.0
for a shift of the trap position in the deep double well (left panel) and a quench of the harmonic
confinement (right panel). In the former scenario, one observes dipole oscillations of the bosonic clouds
in the two wells, whereas one observes breathing oscillations for the dynamics due to the quench of the
confinement. All quantities are dimensionless. See text for details. The figure is taken from Ref. [164].

rately match the predictions from the static analysis. Most importantly, the intensities
of these excitations in the variance spectrum are comparatively large, and therefore 0g′

and 1g′ are the most promising many-body excited states to be detected in an exper-
iment. Furthermore, no de-excitation peaks are found in the GP spectra, while the
variance spectrum shows small peaks for the 2g ↔ 1g and 1g ↔ 0g′ transitions at the
many-body level, coinciding with the values from LR-MCTDHB(2).
In general, the sensitivity of the utilized operators to the detection of excited states can
be seen as follows. The spectrum of the local operator ρ(x = 1) is in particular useful to
detect ungerade excitations in the shift scenario. The intensities of the peaks of many-
body excitations are however weak. To detect gerade excitation, nonlocal quantities,
especially the variance, turn out to be more sensitive than the density. In addition, the
variance spectrum yields intense peaks also for many-body excitations.
To summarize, it has been demonstrated that from a methodological point of view,
utilizing LR-MCTDHB in order to obtain the many-body excitation spectra of repul-
sive BECs in 1D harmonic and double-well trap geometries is a promising and highly
accurate technique. Its predictions coincide with the FT spectra of the time-evolution
of different quantities like the local density or the position variance. From a physical
point of view, some of the obtained excited states corresponding to many-body states
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M = 1 M = 2 Shift GP Shift MB Quench GP Quench MB

0u 0.035 (0.46) 0.063 (0.19) 0.034 (0.02a)
0g′ 0.064 0.066 (0.36b)
1g 2.085 (0.91) 2.092 (0.81) 2.085

(1.0b,0.93c)
2.092
(0.33b,0.89c)

1u 2.102 (0.46) 2.095 (0.57) 2.102
(0.94a,0.66c)

2.095
(0.93a,0.7c)

1u′ 2.158 (0.08) 2.163
(0.02a,0.02c)

1g′ 2.161 (0.09) 2.161 (0.12b)
2g 3.912 (0.04) 3.934 (0.03) 3.914 (0.04c) 3.914 (0.07c) 3.934

(0.07b,0.1c)
2u 3.997 (0.07) 3.943 (0.07) 3.997

(0.04a,0.23c)
3.943
(0.03a,0.15c)

2u′ 4.029 (0.05) 4.032
(0.02a,0.07c)

2g′ 4.039
1g′ ↔ 1g 0.069
2g ↔ 1g 1.827 1.841 1.893 (0.01b)
2u↔ 1u 1.894 1.848 1.895 (0.01c) 1.849 (0.02c)
1g ↔ 0g′ 2.028 2.032 (0.02b)

Obtained from the Fourier spectrum of a 〈x〉, b 1
N

∆2
X̂

, and c ρ(x = 1).

Table 6.1: Table of excitation and de-excitation energies for N = 10 bosons with Λ = 1.0 in the deep
double well. Listed are results from BdG and LR-MCTDHB(2), as well as from the FT spectra of the
density, mean position and variance per particle, both for the shift and quench scenarios. GP denotes
the mean-field and MB the many-body case. The intensities are given in brackets. All quantities are
dimensionless. See text for more details. The table is adapted from Ref. [164].

not included in standard mean-field approaches yield intense responses especially in the
variance spectra and are therefore likely to be measured in experiments. More details
on the presented results can be obtained from Ref. [164].
In the subsequent sections, it is shown that LR-MCTDHB can be further utilized for
BECs in 1D lattice potentials (Section 6.3.2) as well as in 2D geometries, also in the
rotating frame of reference (Section 6.3.3).

6.3.2 Triple wells and larger lattices

In this section, many-body effects in the excitation spectra of weakly-interacting BECs
in 1D lattices are investigated. The main objective is to demonstrate with numerically
converged results that a marginal depletion of the order of 1% is sufficient in order
to observe clear differences between the lowest-in energy excitations computed at the
mean-field and many-body levels. The results presented below were recently published
in Ref. [165].
Studying dynamics and excitations of ultracold bosons in 1D optical lattices was of
high interest in the past, and the literature is extensive in this research field. Examples
are the dynamics in the superfluid phase [166], nonlinear dynamics in periodic poten-
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Figure 6.18: Fourier spectra of 〈x〉, 1
N∆2

X̂
, and ρ(x = 1) from the shift and quench dynamics in

the deep double well. The GP spectra are denoted by solid black and the MCTDHB(2) spectra by
dashed red lines. The intensities are normalized by the sum of the intensities of all constituent peaks,
and excitations with less than 1% intensity are omitted. Especially the spectrum of the many-body
variance consists of many peaks not observed in the corresponding GP spectrum. All quantities are
dimensionless. See text for details. The figure is adapted from Ref. [164].

tials [167] or in fluctuation-driven binary condensates [168]. A review of earlier works
can be found in Ref. [169]. Of particular relevance for the findings discussed in this sec-
tion are studies were the BdG theory does not agree with numerical and experimental
observations. It has been found that the oscillation frequency of a superfluid BEC in
a large optical lattice with a superimposed harmonic confinement deviates clearly from
the BdG prediction [170, 171]. In addition, the strong depletion of a gaseous BEC in
optical lattices cannot be fully explained by the BdG theory, not only in 1D [172].
Optical lattices, in particular triple-well systems, have also been analyzed recently uti-
lizing MCTDHB. This includes the out-of-equilibrium dynamics of rather small BECs
consisting of a few particles only, induced by quenching the interaction and the lattice
depth [173–175] and periodic driving of the system [176, 177]. Of particular interest
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was the analysis of cradle modes, dipole oscillations corresponding to the transport of
bosons over the barrier between adjacent wells. Furthermore, the many-body dynamics
of BECs initially prepared in Mott-insulating states have been of interest [178]. The dif-
ferent phases of the BEC, i.e., the superfluid, the Mott-insulating, and the fermionized
gas phase, can be detected from the many-body entropy and the Glauber correlation
functions [179]. It was even shown for a BEC in a tilted triple well with hard-wall
boundary conditions how the correlations between wells can be controlled by the well
depth, the interaction strength and the tilt [180]. Many-body effects in the ground state
of a bosonic mixture in a more complex 2D lattice where studied using the multi-layer
version of MCTDHB [181].
Many-body excitations in optical lattices were addressed as well, either by making a
Fourier analysis of certain quantities [173] or by doing an exact diagonalization. There,
the system’s wave function was expressed using a many-body ansatz based on a number
state expansion including localized Wannier functions [174–177]. The latter approach
of exact diagonalization is possible for small systems with a few bosons only.
Below, the lowest-in-energy excitations for BECs in 1D lattice potentials with periodic
boundary conditions are investigated using LR-MCTDHB. This opens the possibility
to study also larger systems with more wells and particles. The utilized trap potential
reads

V (x) = V0 cos2
(π
l
x
)

(6.20)

where V0 denotes the lattice depth and l denotes the distance between two neighboring
lattice sites. The depth of the lattice is commonly expressed in terms of the recoil

energy ER =
~2k20
2m

with the lattice momentum k0 = π
l
. For simplicity, ~ = m = l = 1

are set.
The bosons repel each other via the contact interaction potential and its strength is
again expressed in terms of the mean-field parameter Λ = λ0(N − 1).
As a start, N = 10 bosons confined in a triple-well potential with periodic bound-
ary conditions are considered. The low-energy excitation spectra for both a shallow
(V0 = 5.0 ≈ 1.01ER) and a deep well (V0 = 50.0 ≈ 10.13ER) are discussed. Results are
presented in Figs. 6.19(a) and (b). In both wells, the spectra for the non-interacting
BEC are structured in sequences of levels with different degeneracies. The states and
levels can be associated with appropriate quantum numbers, envisioning that for Λ = 0
eigenstates of a single particle in a periodic lattice are exact quasimomentum eigen-
states. Depending on the depth V0, these eigenstates appear in a band structure. Thus,
for the shallow lattice in panel (a), the first level consisting of two degenerate states
denotes the excitations of putting one boson in either a state with quasimomentum
(+1) or with quasimomentum (−1). Similarly, the states of level 5 denote the exci-
tations where one boson is put to either (+1) or (−1) from the second single-particle
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Figure 6.19: Low-energy spectra of N = 10 bosons in a triple well computed with LR-MCTDHB(7).
(a) Shallow case with lattice depth V0 = 1.01ER. For Λ = 0, the excitations form levels of degenerate
states. Degeneracies are lifted for Λ > 0. The BdG results only contain the two doublets denoted
by BdG(1) and BdG(2). (b) Same as in (a) but in the deep lattice with V0 = 10.13ER. The BEC
for Λ = 2.0 is fragmented by 8.4%. (c) Comparison between BdG(1) and its multiples (open circles)
and the many-body results (colored closed symbols) for the system in (a) with Λ = 4.0 where only
the states (+1) and (−1) of the first single-particle band are occupied by N (1) bosons. The difference
grows with N (1). Inset: Evolution of the relative error as defined in the main text. (d) Same as in
(c), but for the system in (b) with Λ = 2.0. All quantities are dimensionless. See text for details. The
figures are adapted from Ref. [165].

band. The notation
(
n

(1)
+1, n

(1)
−1;n

(2)
+1, n

(2)
−1

)
is introduced, where the first two entries in

brackets denote the occupation of (+1) and (−1) from the first single-particle band and
the last two entries denote the same for the second single-particle band. As another
example, level 2 contains the states (2, 0; 0, 0), (0, 2; 0, 0) and (1, 1; 0, 0). It is stressed
that the BdG spectrum only contains the excitations of levels 1 and 5, and misses all
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Figure 6.20: (a) Same as in Fig. 6.19a but in a lattice with 10 sites. The depletion grows faster with
Λ than in the triple well, meaning that the system is even more sensitive for many-body effects. (b)
Same as in Fig. 6.19c but for 10 sites and Λ = 1.0. The relative error (inset) reaches similar values as
for systems in the shallow triple well with comparable depletion. All quantities are dimensionless. See
text for details. The figures are adapted from [165].

multi-particle excitations in the low-energy part. However, for Λ = 0, the missing levels
can be anticipated by taking sums and multiples of the energies of the first and fifth
levels. As soon as there are correlations between the bosons, i.e., for Λ > 0, this is
no longer possible, as discussed below. In panel (b), only the first single-particle band
appears in the shown energy range because, as shown in Fig. 6.21, the first and second
band are strongly separated from each other.
For non-zero repulsion in the shallow well in panel (a), the BECs are slightly depleted
(f = 1.1% for Λ = 4.0), whereas for the deep well in panel (b) the BEC for Λ =
2.0 is already fragmented by 8.4%. One can observe that all excited states grow in
energy once the bosons interact, and that splittings of several states from the same
level occur although they were degenerate for Λ = 0. Thus, the clear level structure
of the non-interacting case vanishes as Λ increases, which makes it continuously more
difficult to identify the individual states with regard to the categorization in terms of
quasimomentum states. The corresponding mean-field results contain only two doublets
for the shallow and one doublet for the deep well, denoted by BdG(1) and BdG(2). All
other states, representing multi-particle excitations where more than one boson at a
time is excited from the ground state, are absent.
Figs. 6.19(c) and (d) demonstrate in how far the BdG energies can be utilized to antic-
ipate the positions of the missing multi-particle states. As mentioned above, this yields
the exact energies for the missing states in the non-interacting system. In particular,
multi-particle excitations of putting in total N (1) bosons into the states (+1) and (−1)
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Figure 6.21: Proof of numerical convergence for the systems discussed in Figs. 6.19 and 6.20. LR-
MCTDHB(7) clearly suffices in all cases. For the BEC in the deep triple well [middle panel], all 65
single- and multi-particle excitations below the bottom of the second band [denoted by BdG(2)] are
obtained. Already for M = 3, the results are highly accurate which is due to the large separation of
the first two single-particle bands. All quantities are dimensionless. See text for details. The figures
are adapted from Ref. [165].
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of the first single-particle band are employed. With regard to the BEC with Λ = 4.0
in the shallow triple well [panel (c)], one observes that BdG overestimates the excita-
tion energies for the states of 1 ≤ N (1) ≤ 5, i.e., the accurate many-body values are
lower. The discrepancy between mean-field and many-body results grows with N (1).

Especially the relative error, defined as Erel =

∣∣∣∣ωBdG(N(1))−ωMB(N(1))
ωMB(N(1))

∣∣∣∣ where ωMB

(
N (1)

)
denotes the many-body energy with the largest distance to ωBdG

(
N (1)

)
= N (1) ·BdG(1),

grows quickly to more than 10%. It is emphasized again that the BEC is only slightly
depleted by approximately 1%. For the fragmented BEC with Λ = 2.0 in the deep triple
well [panel (d)], the differences become even more substantial because already for the
single-particle excitation (N (1) = 1) the relative error is about 5%. This means that in
this case the BdG does not only miss all multi-particle excited states in the low-energy
spectrum, but it is also very inaccurate for the single-particle excitations.
Fig. 6.20 shows a similar analysis for N = 10 bosons in a larger shallow lattice with
10 sites. In principle, the described many-body effects observed in the triple well also
appear in the extended lattice. However, with respect to the degree of fragmentation,
which is f = 0.84% for Λ = 1.0, one can deduce that these many-body effects set
in even earlier than in the triple well because a comparable depletion is achieved al-
ready for weaker repulsion. Hence, an accurate many-body description is of even larger
importance if the the lattice size is increased.
The results shown in Fig. 6.21 demonstrate numerical convergence with respect to the
number of self-consistent orbitals M utilized. In all cases, M = 7 orbitals clearly suffice
for the low-energy excitations. In particular, for the middle panel describing a BEC in
the deep triple well, one can see that firstly, M = 3 orbitals already give very accurate
values for the excitation energies, and, secondly, all multi-particle states build up by
the states (+1) and (−1) from the first single-particle band are obtained (65 in total).
To remind the reader, it is stressed again that the BEC is fragmented in this case, and
nevertheless LR-MCTDHB is capable to give converged results.
So far, it was shown that the BdG energies for a BEC in a 1D lattice can be largely
inaccurate, even for weakly-depleted condensates with f ≈ 1%. Though it has been
shown analytically that for a BEC with sufficiently weak and long-ranged repulsion in
the Hartree limit, i.e., where N →∞ with fixed Λ, the BdG equation yields the exact
energies of all single-particle excitations, and the energies of the multi-particle states
are given by multiples and sums of the BdG energies [182] (extending the findings of
a previous work on homogeneous systems [183]). Whether this result is applicable also
for BECs with contact interaction remains unclear. However, naturally the question
arises how fast, if at all, the excitation spectrum of a BEC with arbitrary shape of the
repulsion approaches the BdG energies upon increasing the number of bosons. This
question is discussed further in the subsequent section, Section 6.3.3, where excited
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Figure 6.22: (a) Energies of the zero-quasimomentum modes (ZQMs) for the system in Fig. 6.19(a)
with Λ = 4.0, up to the top of the second single-particle band [denoted by BdG(3)]. All shown
states are not obtained by the BdG mean-field approach. The ZQMs are categorized by the symmetry
of their density responses, which is either gerade or ungerade. Mind the different index nz, which
enumerates only the ZQMs compared to the index n in the figures of the main text which enumerates
all excitations. (b) and (c): Real part of the density responses of the states (3, 0; 0, 0) and (0, 3; 0, 0)
[panel (c)] as well as (4, 1; 0, 0) and (1, 4; 0, 0) [panel (d)]. The vertical lines separate the lattice sites
from each other. Notice the different scales. All quantities are dimensionless. See text for more details.
The figures are taken from Ref. [165].

states in rotating BECs are analyzed.
Finally, the zero-quasimomentum modes (ZQMs) are briefly discussed. The latter are
defined in this work as the excitations where MOD(P,L) = 0, with P denoting the
total quasimomentum up to the second single-particle band given by

P = n
(1)
+1 + n

(2)
+1 − n

(1)
−1 − n

(2)
−1, (6.21)

and L denoting the number of lattice sites. The spectrum of the ZQMs up to BdG(3),
which marks the top of the second band, is shown in Fig. 6.22(a). The system pa-
rameters are the same as in Fig. 6.19(a) with Λ = 4.0. It is worth noting that all of
the shown ZQMs are multi-particle excitations, meaning that BdG does not account
for a single ZQM in the low-energy spectrum although there exist more than 20. By
analyzing the response densities of the ZQMs, it was found that they can be catego-
rized by their symmetry with respect to the individual wells, which is either gerade or
ungerade. Specific examples are given in Figs. 6.22(b) and (c). The ZQMs are most
likely the easiest states to excite in an experiment where the BEC is subject to either
a quench of the potential or the interaction strength. For example, a simple quench
scenario to excite the gerade ZQMs would be a sudden change of the lattice depth. To
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Figure 6.23: Low-energy Fourier spectrum of the time evolution of the position variance per particle
in x-direction, 1

N∆2
X̂

, due to a quantum quench of the lattice depth from V0 = 4.9 to V0 = 5.0. The

system parameters are the same as in Fig. 6.19(a) with Λ = 4.0. The many-body spectrum (dashed
red), obtained from the evolution with M = 5 orbitals, shows two sharp peaks referring to two-particle
excitations and one less intense peak referring to a three-particle excitation. The first intense peak
refers to the two-particle excitation (1, 1; 0, 0), whereas the second intense peak refers to (1, 0; 0, 1) [or
(0, 1; 1, 0)]. The less intense peak refers to (3, 0; 0, 0) [or (0, 3; 0, 0)]. All obtained peaks are ZQMs with
gerade symmetry. The GP spectrum (solid black) in the shown energy range is completely flat. The
depletion of the BEC is f ∼ 1.1% during the entire propagation time. All quantities are dimensionless.
See text for more details.

this end, the ground state of a BEC with N = 10 bosons in the triple well with inter-
action parameter Λ = 4.0 and lattice depth V0 = 4.9 is calculated. Then, the depth is
suddenly quenched to V0 = 5.0, and the subsequent time-evolution is investigated. Fig.
6.23 shows the Fourier spectrum of the dynamical evolution of the position variance per
particle, 1

N
∆2
X̂

, obtained from both MCTDHB(5) and GP. Shown is the energy range
5.0 ≤ ω ≤ 15.5. At the many-body level, 3 distinct peaks are observed, whose positions
correspond to the first, second, and fourth gerade excitations of the spectrum in Fig.
6.22(a). They can thus be labeled according to the occupation of (+1) and (-1) from
the first and second single-particle band. The peaks corresponding to the two-particle
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excitations at ω ∼ 6.35 and ω ∼ 13.48 are more intense than the peak corresponding
to the three-particle excitation at ω ∼ 9.02. Excitations where higher particle numbers
are involved are not intense enough to be distinguished from the background noise. At
the GP level, the spectrum is flat, which means that none of the ZQMs obtained at the
many-body level is included in the mean-field dynamics, which was anticipated due to
the multi-particle nature of the ZQMs.
To summarize, it was demonstrated that the excitation spectrum of a weakly-depleted
BEC in a 1D optical lattice shows clear many-body effects which are not accounted
for at the mean-field level. A degree of f ∼ 1% is sufficient to observe these effects.
In larger lattices, the sensitivity to many-body features even increases. It was further
shown that a special type of many-body excited states (ZQMs) are easily accessible by
performing a simple quantum quench to the system. A promising quantity to detect
these states is the position variance, as already seen in the previous section.

6.3.3 Rotating Bose-Einstein condensates in an anharmonic trap

After the discussion of many-body excited states in 1D trapped BECs, an example in
2D, namely the case of rotating BECs in an anharmonic, radially-symmetric potential
crater, is examined. Of particular interest is the weakly-interacting regime in which the
ground-state depletion is marginal and one would naively expect mean-field approaches
like the BdG theory to be valid and accurate. The results below were recently published
in Ref. [184] and it is referred to this work for additional details.
Rotating BECs were of high interest in the past. Research dealt with the occurrence
of quantized vortices [158–161, 185] or with the similarity to the fractional quantum
Hall effect for charged particles in the vicinity of a magnetic field [186–189]. More-
over, low-lying excitations in such systems were addressed, for example in vortex lat-
tices [26,190–192]. Furthermore, investigations were made on the decay of the counter-
rotating quadrupole mode [193], on Tkachenko modes [194, 195], on the twiston spec-
trum [196], or on excitations in anharmonic traps [197, 198]. In the latter works, the
mean-field excitations were calculated by utilizing the BdG theory. Computations em-
ploying a many-body description rather rare, e.g. the analysis of the yrast spectra in a
harmonic confinement obtained by exact diagonalization using the lowest Landau level
approximation [199–202].
As mentioned above, accurate many-body results for the low-energy spectrum of ro-
tating BECs in an anharmonic, radially-symmetric trapping potential are presented.
Especially, the effect of the angular momentum in the BECs’ ground states on the ex-
citation energies is discussed. As for the examples in the earlier sections, the BdG and
many-body results are compared to each other.
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Figure 6.24: (a)-(e) Ground-state densities of rotating BECs with N = 10 bosons and interaction
parameter Λ = 0.5 for different vorticities l. Results are shown for MCTDHB(7), the corresponding
GP densities look alike (not shown). For non-zero vorticity, the ground state is a single vortex whose
core size grows with its charge l. (f) Low-energy excitation spectra atop the ground states from the
upper panels. Many-body results obtained by LR-MCTDHB(7) are denoted by red and blue squares,
the BdG results are denoted by black and blue lines. Once the ground state has non-zero vorticity,
deviations between the mean-field and many-body excitation energies are observed, and they grow
with l. Moreover, the density of many-body excitations grows strongly. All ground states are only
slightly depleted, with a maximum of f ≈ 0.38% for l = 4. Symbols colored in blue refer to the (+1)
excitation energies described in the main text. All quantities are dimensionless. See text for details.
The figure is adapted from Ref. [184].

The crater in which the BEC is confined reads

V (r) =

{
C e−0.5 (r−RC)4 if r ≤ RC

C if r > RC

(6.22)

which is essentially the same as in Eq. (6.8) but without the central ring-shaped barrier.
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Here, the radius of the crater is set to RC = 3.0 and the height of the wall is kept at
C = 200.0. Furthermore, the same Gaussian repulsion as in Eq. (6.9) is employed.
Excitations in this system are analyzed in the rotating frame of reference, where the
Hamiltonian Ĥ in Eq. (2.2) contains an additional contribution accounting for the
rotation around the z-axis. The whole Hamiltonian thus reads

Ĥrot = Ĥ − ΩrotL̂z (6.23)

where Ωrot denotes the angular velocity around the z-axis and L̂z denotes the operator
of the angular momentum in the z-direction.
A LR analysis is applied atop the ground states of N = 10 bosons with weak repulsion
strength Λ = 0.5 for different values of Ωrot, and thus of the angular momentum per
particle l, which is referred to as the vorticity or the charge below. The degree of
condensation, 1 − f , ranges from 9.999 (l = 0) to 9.962 (l = 4) out of 10 particles,
meaning that the BEC is highly condensed for all considered parameter values. The
upper panels in Fig. 6.24 show the ground-state densities calculated with MCTDHB(7)
for vorticities 0 ≤ l ≤ 4. Whereas for l = 0, the density resembles a Gaussian in the
center of the crater, the shape of the densities for l > 0 indicated that the ground state
is a vortex with a density node at its core. One can further see that this core is growing
with l. The corresponding GP densities look alike (not shown).
The lower panel in Fig. 6.24 compares the low-energy excitation spectrum calculated
atop these ground states, both for the mean-field BdG case (black and blue lines) and
for LR-MCTDHB(7) (red and blue squares). The excitations denoted by blue symbols
are explained below. At first, the spectrum for l = 0 is examined. Counting the number
of excited states, one obtains 2 states from the BdG approach and 3 states from the
many-body approach. Moreover, the energies of the two mean-field excitations coincide
with the corresponding many-body results. Since the BdG theory only accounts for
single-particle excitations, the third excited stated obtained from LR-MCTDHB is an
excitation where more than one particle is excited from the ground state. In particular,
it represents the state where two bosons are put into the orbital corresponding to
the first excitation. The latter single-particle excitation is referred to as (+1) since
it describes the case of putting a boson from the ground-state mode with angular
momentum lz = 0 to an orbital with lz = 1. Examining the spectra for l > 0, one
observes two major changes. At first, the density of excitations in the low-energy
spectrum clearly grows with l, which can be deduced from the large number of many-
body excited states entering. The number of mean-field excitations also grows (from
2 states for l = 0 to 4 states for l = 4), but very slightly compared to the number of
many-body states. Therefore, the amount of excited states that BdG misses is strongly
growing with the vorticity of the BEC’s ground state. The second observation is that
the values of the single-particle energies from BdG and LR-MCTDHB do not coincide
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any longer, as it was the case for l = 0. In fact, the entire BdG spectrum for vorticity
l = 4 appears to be completely unrelated to the corresponding many-body spectrum.
The increasing gap between the (+1) results of the two approaches is clearly visible.
Fig. 6.25 addresses the evolution of the energy of (+1), denoted by ω(+1), with respect
to the angular velocity Ωrot. Shown are the results obtained from the BdG theory, as
well as many-body results for different numbers of bosons (N = 10, 100 and 1000).
In the l = 0 sector, all energies coincide, indicating that for this case the BdG theory
is sufficient. Henceforth, this obviously changes. With growing vortex charge of the
ground state, the mean-field and many-body lines for (+1) separate further from each
other. Most importantly, increasing the number of bosons in the condensate only
marginally changes this, meaning that the many-body and mean-field results for large
N approach each other very slowly (see inset). As mentioned in the previous section,
it was proven analytically that for a trapped BEC with sufficiently weak and long-
ranged repulsion, the excitation energies in the Hartree limit converge towards the
BdG energies [182]. The same is believed to happen for a rotating BEC under certain
conditions [203].
In Fig. 6.26, the dependence of the difference ∆N between the mean-field and many-
body energies of (+1) on the number of bosons in the BEC is analyzed in more detail.
The results are given relative to the energy for N = 10 bosons, denoted by ∆10. For all
shown vorticities, the gap becomes smaller with increasing N . However, it is obvious
that even for BECs with an experimentally relevant number of bosons (N = 1000)
one is still far away from the predictions of the BdG theory. For l = 1, one obtains
that the gap size ∆1000 is still about 97% of ∆10, and correspondingly higher for l > 1.
Additionally, the shape of the exponential fit curves to the numerical data does not
show any sign of a steep descend when N is increased further. It can firstly be deduced
that the excitation energies approach the BdG predictions for l > 0 very slowly, and,
secondly, one apparently needs a very high number of particles in order to enter the
regime where BdG yields approximately the correct results. However, it is important to
note that the convergence towards the BdG excitation energies in the Hartree limit is
not proven for the system under consideration, since Ref. [203] only deals with the case
of a rotating BEC with broken radial symmetry. The latter situation appears, e.g., for
a BEC in a harmonic confinement when the rotation is fast enough to generate multiple
quantized vortices in the ground state (see, e.g., Ref. [204]). Although the numerical
results cannot give a definite answer for the Hartree limit, they at least suggest that
the regime in which one is clearly in need of an accurate many-body theory for the
excitation energies covers the experimentally relevant regime of rotating BECs, with N
being of the order of 103 − 106 bosons. A further discussion on the applicability of the
GP and BdG theories in the Hartree limit can be found in Appendix A.
It is finally suggested, similar to the 1D systems discussed in Section 6.3.1, how a
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Figure 6.25: Excitation energies ω(+1) for different angular velocities Ωrot. Compared are the BdG
energies and the many-body results for different numbers of bosons N , obtained by LR-MCTDHB.
The interaction strength is Λ = 0.5. The transition from ground-state vorticity l to l + 1 between
two adjacent analyzed values of Ωrot are denoted by dotted vertical lines (mean-field in black and
many-body in red). The higher the ground-state vorticity l, the larger is the separation between the
BdG and many-body energies. Inset: Magnified view for Ωrot = 3.8. All quantities are dimensionless.
See text for details. The figure is adapted from Ref. [184].

quench can be utilized in order to excite breathing modes. To this end, the ground
state of a BEC with N = 10 bosons and angular velocity Ωrot = 3.2 in the same trap
as described in Eq. (6.22), but with a slightly larger radius of RC = 3.01, is calculated.
The obtained ground state has the same symmetry and vorticity l = 3 as the one for
RC = 3.0 and Ωrot = 3.2. Then, the crater is suddenly shrinked back to RC = 3.0
and the dynamical evolution is computed with MCTDHB(7), which is sufficient in
order to obtain converged dynamics for the position variance. As could be seen in
the previous sections, the latter quantity is very sensitive for many-body effects, and
therefore, a spectral analysis of its dynamics by computing the FT of 1

N
∆2
X̂

(t) is carried
out. Due to the radial symmetry, one could as well analyze the position variance in
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Figure 6.26: Evolution of the energetic difference ∆N between the mean-field and many-body results
for ω(+1) for different particle numbers N . The differences are shown relative to ∆10, i.e., the gap for
N = 10 bosons. Solid lines denote exponential fits. The gap becomes larger as l grows. Even for l = 1
and N = 1000, it is approximately 97% of ∆10, and the slopes of the fit curves do not indicate a sharp
decent towards zero if N is increased further. All quantities are dimensionless. See text for details.
The figure is taken from Ref. [184].

the y-direction. The result are shown in Fig. 6.27. The many-body spectrum shows
two distinct peaks, where the first corresponds to the (1+1, 1−1) two-particle excitation,
where one boson is excited to an orbital with l = 4 and one is excited to an orbital
with l = 2, such that the total angular momentum is unchanged. The energy that
LR-MCTDHB(7) predicts for this state is ω = 0.605 which coincides with the peak
position of the Fourier analysis. The second peak at ω ≈ 1.12 has a different origin,
which can already be seen from its asymmetric line-shape. It denotes a de-excitation
between two states that are much higher in energy (ω ≈ 10.6→ 9.47, see right inset in
Fig. 6.27). The occurrence of de-excitations is an indication that the quench described
above already leads to second-order effects, meaning that one has left the LR regime.
With regard to the mean-field spectrum from the GP dynamics, one observes that in the
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body spectrum (red), obtained from the evolution with M = 7 orbitals, shows two sharp peaks in
the considered energy range, whereas the GP spectrum (black) is flat. The first peak refers to the
two-particle excitation (1+1, 1−1) , whereas the second peak with asymmetric line-shape indicates a
de-excitation between two higher-lying states (see right inset). The left inset shows the evolution of
1
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X̂
from 0 ≤ t ≤ 30. The depletion of the BEC stays below 0.4% during the entire propagation.

All quantities are dimensionless. See text for details.

shown energy range, the Fourier spectrum is completely flat. The absence of the first
peak is anticipated because the GP theory does not account for two-particle excitations
by construction. The absence of the second peak can be understood from the the right
inset where the Fourier spectrum in the interval 9 ≤ ω ≤ 11 is shown. One sees that
in the GP case, there is only one peak at ω ≈ 10.6, but no second one at ω ≈ 9.47
as in the many-body spectrum. Thus, very different spectra from the dynamics of the
variance at the mean-field and many-body levels are obtained, and it was shown that
the suggested quench leads to an excitation of a many-body breathing mode. It is
stressed that the depletion stays below 0.4% for the entire propagation, which means
that the BEC is essentially condensed.
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To summarize, the low-energy spectrum of a rotating BEC in an anharmonic, radially-
symmetric crater shows significant many-body effects, even for weakly-interacting,
highly-condensed systems. These effects can be observed already for the lowest-in-
energy, single-particle excited states, and remain even for mesoscopic and large BECs.
Furthermore, a simple quench triggers a many-body breathing mode, which can be
observed, e.g., by analyzing the Fourier spectrum of the position variance.
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7 Conclusion

7.1 Summary

In this work, recently developed many-body approaches describing the ground state
and dynamics as well as the low-energy spectrum of trapped ultracold bosons were
presented. The first goal was to introduce the newly developed LR-MCTDHB im-
plementation. The latter posed a major challenge due to both the complexity of the
underlying theory and the accompanying technical difficulties like the vast memory
consumption and the necessity of parallelization. The code structure was explained in
detail in Chapter 4, both with respect to the construction of the LR matrix and the
subsequent partial diagonalization. A comprehensive description of the IRAM, which is
used to calculate the lowest eigenvalues, was provided. The corresponding benchmarks
of the code in Chapter 5 and Appendix C demonstrate the correct functioning of the
code. Moreover, the formulation of LR-MCTDHB in block-diagonal form, which is po-
tentially advantageous in terms of calculating the low-energy spectrum, was discussed.
The second goal was the application of (LR-)MCTDHB to several systems of trapped
BECs and the detection of many-body effects that are not describable by applying
mean-field theory. Particularly emphasized were the tunneling dynamics in double-
well systems and the development of fragmentation in initially coherent BECs. The
applications shown in Chapter 6 have demonstrated that a full many-body treatment
of the dynamics of trapped interacting BECs is inevitable. For instance, it was exhibited
that the out-of-equilibrium tunneling dynamics of initially coherent BECs in 1D and
2D double wells are of many-body nature. After a few Rabi cycles, tunneling between
the wells becomes suppressed at the many-body level, whereas unperturbed oscillations
are predicted at the mean-field level. Surprisingly, the degree of fragmentation in 1D
is universal for constant values of the interaction parameter Λ. Especially in 2D, the
sensitivity of the tunneling dynamics to many-body effects is even enhanced as soon
as the bosons carry angular momentum. This was deduced from the larger amount of
orbitals necessary in the limit of weak repulsion as compared to the case of bosons with
zero angular momentum. Further applications dealt with the nucleation of phantom
vortices, pure many-body objects not observable in the condensate density, as well as
with the tunneling of bosons to open space. In both cases, the initially coherent systems
became fragmented and are therefore in need of an accurate many-body description.
With respect to excitations, it was observed that the ground-state depletion has a
strong impact on the low-energy spectrum. Even for marginal depletion where one
might expect mean-field approaches to give accurate results, substantial many-body
effects like the shift of excitation energies occur. Applications in 1D explored the
many-body effects in double- and triple-well systems as well as in larger lattices. In
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2D, it was found that once the bosons carry angular momentum and the ground state
becomes a vortex, the deviations between the mean-field and many-body excitation
spectra grow strongly. Moreover, this discrepancy tends to persist when the number of
particles in the condensate increases up to an experimentally relevant size. This has
a potentially large impact on experiments on ultracold bosons since the dynamics are
mostly determined by the lowest-in-energy excitations. Hopefully, these findings and
new insights in the physics of ultracold bosons will stimulate future experiments.

7.2 Outlook

Further developments of both the LR theory as well as of its numerical implementation
are worth of further investigation. With regard to theoretical developments, an exten-
sion of LR-MCTDHB to BEC mixtures, i.e., compound systems of different types of
bosons, is desirable. To this end, LR should be applied to multi-layer MCTDHB, in-
troduced and described in Ref. [70]. Moreover, mixtures of bosons and fermions might
become even more relevant, meaning that also the EOMs of the fermionic counter-
part of MCTDHB, called MCTDHF (see, e.g., Ref. [205] and the recently developed
implementation described in Ref. [206]), should be linearized.
Another possible extension lies in the application of LR to the time-dependent restricted-
active-space self-consistent-field (TD-RASSCF) method, introduced in Ref. [207]. The
latter theory is similar to MCTDHB, but it is capable of reducing the amount of neces-
sary coefficients significantly. This is achieved by restricting the possible excitations in
the active space of the single-particle orbitals due to certain conditions or symmetries
of the physical problem at hand. Thus, the dimensionalities of the LR submatrices
containing contributions of the coefficients, namely Loc, Lco, and Lcc, could also be
greatly reduced. This would substantially simplify the computation of exited states.
Furthermore, treatments of even larger systems, i.e., with more particles and higher
numbers of orbitals, would become possible.
With regard to the technical development of the current implementation, applying
additional techniques for diagonalizing the LR matrix should be realized. A potentially
very powerful method may be the FEAST algorithm [208], which is a contour integration
and density matrix-based method. It is available in a free software package [209] and also
allows for high-level parallelization with MPI. In particular, it enables the specification
of a desired interval in which eigenvalues should be found. Hence, it might be easier to
explore not just the very lowest but also intermediate eigenvalues.
The above mentioned avenues for future research demonstrate the large variety of per-
spectives, which this work hopefully will stimulate.
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A Mean-field theory

In this Appendix, several mean-field approaches to describe the ground state and dy-
namics as well as the excitation spectra of trapped BECs are presented. At first, the
GP single-orbital mean-field theory (Section A.1.1) and the LR theory atop it, yielding
the famous BdG equations (Section A.1.2), are described. Those approaches are the
most common ones in the literature, and are expected to accurately describe the physics
of coherent BECs. They are also used in this work to compare mean-field and many-
body results. Afterwards, a time-dependent multi-orbital mean-field approach, called
TDMF (Section A.2.1), and its corresponding LR theory LR-BMF (Section. A.2.2), are
discussed. The latter two theories are suitable for describing fragmented BECs at the
mean-field level. They can be understood as bridging theories between the GP and BdG
theories and the full many-body descriptions given by MCTDHB and LR-MCTDHB,
respectively.

A.1 Single-orbital approaches

A.1.1 The GP equation

The GP equation is commonly used to obtain the ground state and the time evolution
of a coherent BEC, i.e., where all N bosons occupy the same single-particle state φ(r, t).
The many-boson wave function Ψ is thus given by a single Hartree product,

Ψ(r1, ..., rN ; t) = φ(r1, t) ... φ(rN , t) ≡ |N ; t〉. (A.1)

Originally, the GP equation is derived assuming contact interaction between the bosons.
However, to be more general, the two-body interaction potential is not specified in the
following.
The GP equation can be derived from the DFVP defined in Eq. (2.23). For the
expectation value that needs to be varied, one obtains〈

N ; t

∣∣∣∣Ĥ − i ∂∂ t
∣∣∣∣N ; t

〉
= NhGP +

λ0N(N − 1)

2
WGP − iN

(
∂

∂t

)
GP

(A.2)

where the quantities hGP and WGP are defined in Eqs. (2.21) and (2.22) utilizing φ(r, t).
The time derivative is given by

(
∂
∂t

)
GP

=
∫
φ∗(r, t) ∂

∂t
φ(r, t) dr. Setting the variation of

Eq. (A.2) with respect to φ∗(r, t) to zero results in

0 =
δ

δφ∗(r, t)

[
NhGP +

λ0N(N − 1)

2
WGP − iN

(
∂

∂t

)
GP

]
= N

[
ĥ+ λ0(N − 1)

∫
Ŵ (r, r ′)|φGP(r ′, t)|2dr ′ − i ∂

∂t

]
φ(r, t).



A Mean-field theory 112

The time-dependent GP equation as used in this work is thus given by[
ĥ+ Λ

∫
Ŵ (r, r ′) |φ(r ′, t)|2 dr ′

]
φ(r, t) = i

∂

∂t
φ(r, t) (A.3)

with the mean-field interaction parameter Λ = λ0(N − 1). As mentioned above, for the
contact interaction potential it takes the original form as derived in [18, 19] which can
also be found in standard textbooks [20,21]. The time-independent GP equation reads[

ĥ+ Λ

∫
Ŵ (r, r ′) |φ(r ′, t)|2 dr ′

]
φ(r, t) = µφ(r, t) (A.4)

where µ is the chemical potential. Whereas Eq. (A.3) describes the time-evolution of
a fully-condensed BEC, Eq. (A.4) is used to determine the GP ground-state orbital
φ0(r).
This section is closed with a brief discussion of the applicability of the GP theory in
the Hartree limit of repulsive trapped BECs, meaning for N → ∞ with fixed interac-
tion parameter Λ. It has been proven analytically that in this limit, the GP theory
provides the exact energy and density per particle of the system’s ground state [210].
This, however, does not necessarily mean that the corresponding GP wave function,
Eq. (A.1), coincides with the exact wave function in this limit. To this end, it has
been demonstrated recently that the overlap of the exact and GP wave function in the
Hartree limit can be clearly less than unity or even vanish [211]. Moreover, a subse-
quent study has demonstrated the many-body character of the exact wave function in
the Hartree limit by applying many-body perturbation theory to the mean-field Hamil-
tonian [212], which demonstrates that the mean-field and exact wave functions can be
very different from each other. Moreover, as a further interesting result, it was found
that the condensate depletion in the Hartree limit becomes a constant. These findings
potentially have severe consequences for the excitation spectrum of a BEC in or close
to the Hartree limit, which is discussed at the end of Section A.1.2.

A.1.2 The BdG equations

The LR theory atop the time-dependent GP equation, Eq. (A.3), is derived below.
Therefore, a weak time-dependent perturbation is added to the Hamiltonian, i.e.,
Ĥ(r)→ Ĥ(r) + Ĥext(r, t). The perturbation Ĥext(r, t) explicitly reads

Ĥext(r, t) = f+(r)e−iωt + f−(r)eiωt (A.5)

with the real amplitudes f+(r) and f−(r) and the frequency ω. The response of the
system is calculated around the stationary GP ground-state orbital φ0(r) obtained from
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Eq. (A.4). For the perturbed orbital φ(r, t), the ansatz

√
Nφ(r, t) = e−iµt

(√
Nφ0(r) + u(r)e−iωt + v∗(r)eiωt

)
(A.6)

is utilized. In Eq. (A.6), the quantities u(r) and v(r) denote small and time-independent
response amplitudes. Plugging in Eqs. (A.5) and (A.6) into the time-dependent GP
equation, Eq. (A.3), yields in zeroth order the time-independent GP equation, Eq.
(A.4). In first order, collecting all terms proportional to e−iωt leads to

(ω + µ)u(r) =
√
Nf+(r)φ0(r) + ĤGPu(r) + Λ

∫
Ŵ (r, r ′)φ0(r ′)v(r ′)φ0(r)dr ′

+ Λ

∫
Ŵ (r, r ′)φ0,∗(r ′)u(r ′)φ0(r)dr ′ (A.7)

where the GP Hamiltonian ĤGP is defined as

ĤGP = ĥ+ Λ

∫
Ŵ (r, r ′) |φ0(r ′, t)|2 dr ′. (A.8)

Collecting all terms proportional to eiωt results in

(µ− ω)v∗(r) =
√
Nf−(r)φ0(r) + ĤGPv

∗(r) + Λ

∫
Ŵ (r, r ′)φ0(r ′)u∗(r ′)φ0(r) dr ′

+ Λ

∫
Ŵ (r, r ′)φ0,∗(r ′)v∗(r ′)φ0(r) dr ′. (A.9)

Complex conjugation and multiplication by (−1) of Eq. (A.9) opens the possibility to
cast Eqs. (A.7) and (A.9) in matrix form. The result reads

(LBdG − ω)

(
u(r)
v(r)

)
=

(
−
√
Nf+(r)φ0(r)√

Nf−(r)φ0,∗(r)

)
(A.10)

with the BdG matrix

LBdG =

(
A B
−B∗ −A∗

)
(A.11)

where the quantities A and B are given by

A = ĤGP − µ+ Λ

∫
dr ′Ŵ (r, r ′)φ0,∗(r ′)φ0(r)P̂rr ′ (A.12)

and

B = Λ

∫
dr ′Ŵ (r, r ′)φ0(r ′)φ0(r)P̂rr ′ . (A.13)
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In the literature, Eq. (A.10) with contact interaction Ŵ (r, r ′) = δ(r − r ′) and zero
RHS, i.e.,

(LBdG − ω)

(
u(r)
v(r)

)
= 0, (A.14)

is referred to as the BdG equations [23, 24]. In this work, however, the interaction
potential is in general different from the contact interaction potential. Moreover, the
particle-conserving BdG equations [213–216], given by

PLBdGP
(
u(r)
v(r)

)
= ω

(
u(r)
v(r)

)
(A.15)

where the projector P = 1 − |φ0〉〈φ0| removes any contribution of the ground-state
orbital φ0(r) from the response amplitudes u(r) and v(r), are used to calculate the
low-energy excitation spectra at the mean-field level.
From the above derivation one can readily see the close connection of the GP orbital
and the BdG equations. As discussed in the previous section on the GP theory, the
wave function of the system in the Hartree limit can be very different from the GP wave
function, although the latter gives the exact energy and density per particle. Thus, it
can be questioned whether the LR theory atop the GP wave function, resulting in the
BdG equations, is in general reliable in the Hartree limit. Scientific works that prove
the exactness of the BdG spectrum in this limit under certain conditions were discussed
in Section 6.3.3. Nevertheless, the example of a rotating BEC in an anharmonic trap,
which does not fulfill the assumptions made in Ref. [203], serves as an example where
at least in the experimentally relevant regime of N ≈ 103 bosons in the condensate the
lowest-in-energy excitations substantially deviate from the BdG predictions.

A.2 Multi-orbital approaches

A.2.1 Time-dependent multi-orbital mean field (TDMF)

The TDMF theory, introduced in Ref. [217], is briefly described in this subsection. It
can be seen as an intermediate step between the GP theory and MCTDHB because
it allows for more than one single-particle orbital that the bosons can occupy, and is
thus applicable to fragmented condensates. However, as a major difference to the full
many-body description in Chapter 3, the occupation of these single-particle orbitals is
fixed. The ansatz for the N -boson wave function is given by

Ψ(r1, ..., rN ; t) = Ŝφ1(r1, t)φ2(r2, t) ... φN(rN , t) (A.16)

where the operator Ŝ accounts for the symmetrization of the wave function. In general,
not all single-particle orbitals φi need to be different. The only constraint is that the
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number of particles is fixed such that N =
∑M

i=1 ni where M is the number of different
orbitals in Eq. (A.16) and the ni are their fixed occupation numbers. Applying the
least action principle, which is equivalent to the DFVP described in Section 2.3, to the
action functional

S =

∫
dt

(
〈Ψ|Ĥ − i ∂

∂t
|Ψ〉 −

M∑
i,j=1

µij(t)[〈φi|φj〉 − δij]

)
(A.17)

with the time-dependent Lagrange multipliers µij(t) yields

0 =
δS

δφ∗k(r, t)
= nk

(
ĥ− i ∂

∂t
+ λ0(nk − 1)Ĵk +

M∑
l 6=k

λ0nl(Ĵl + K̂l)

)
|φk〉

=
M∑
j=1

µkj(t)|φj(t)〉 ∀ k = 1...M (A.18)

where

Ĵl(r, t) =

∫
dr ′φ∗l (r

′, t)Ŵ (r, r ′)φl(r
′, t) (A.19)

and

K̂l(r, t) =

∫
dr ′φ∗l (r

′, t)Ŵ (r, r ′)P̂rr ′φl(r
′, t) (A.20)

are the direct and exchange interaction potentials, respectively. Multiplying Eq. (A.18)
by 〈φl| gives

µkl(t) = nk

(
hlk −

(
∂

∂t

)
lk

+ λ0(nk − 1)ĴkWlkkk +
M∑
j 6=k

λ0nj(Wljjk +Wljkj)

)
(A.21)

for the Lagrange multipliers. Plugging this into Eq. (A.18) results in

iP̂
∂

∂t
|φk〉 = P̂

(
ĥ+ λ0(nk − 1)Ĵk +

M∑
l 6=k

λ0nl(Ĵl + K̂l)

)
|φk〉 ∀ k = 1...M (A.22)

where the projector P̂ = 1 −
∑M

j=1 |φj〉〈φj| projects onto the tangential space of
span(φ1, ..., φM). To simplify the above EOMs for the orbitals, the condition

〈φi|φ̇j〉 = 0 ∀ i, j = 1...M (A.23)
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can be invoked. This leads to the conservation of energy, and the projector on the LHS
of Eq. (A.22) can be omitted, i.e.,

i
∂

∂t
|φk〉 = P̂

(
ĥ+ λ0(nk − 1)Ĵk +

M∑
l 6=k

λ0nl(Ĵl + K̂l)

)
|φk〉 ∀ k = 1...M. (A.24)

It is important to note that the condition in Eq. (A.23) is a manually-invoked restriction
to the orbitals within the TDMF theory, whereas the same condition in MCTDHB
appears naturally. Furthermore, one observes that for M = 1, i.e., when only a single
orbital is available, Eq. (A.24) reduces to the (projected) time-dependent GP equation,
Eq. (A.3). The TDMF theory has been extended to describe spinor condensates and
Bose-Bose or Bose-Fermi mixtures as well, see in this context Ref. [218]. By imaginary-
time propagation of the TDMF EOMs, one obtains the corresponding theory for the
stationary equations, called the best mean field for condensates [219]. Applications can
be found in, e.g., Refs. [220–223].

A.2.2 Linear-response best mean field (LR-BMF)

A possible LR approach based on a multi-orbital mean-field description is the LR-
BMF theory which has been introduced in Ref. [224]. To derive it, the EOMs of the
previously described TDMF theory, Eq. (A.18), are linearized for the case of adding
a weak time-dependent external field to the Hamiltonian, i.e., Ĥ → Ĥ + Ĥext(t). The
perturbation Ĥext(t) is assumed to be of the same form as in Eq. (A.5). Plugging this
into Eq. (A.18) yields(

Ẑi − i
∂

∂t

)
|φi〉 −

M∑
j=1

µij(t)

ni
|φj〉 = −Ĥext(t)|φi〉 (A.25)

with the replacement

Ẑi = ĥ+ λ0(ni − 1)Ĵi +
M∑
l 6=i

λ0nl(Ĵl + K̂l). (A.26)

The Lagrange multipliers, after redefining them as µij(t)/ni → µij(t), can be expressed
by

µij(t) = 〈φj|Ẑi + Ĥext(t)|φi〉 (A.27)

where the condition of Eq. (A.23) was used. The ansatz for the perturbed orbitals is
given by

φi(r, t) ≈ φ0
i (r) + δφi(r, t) (A.28)
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Plugging Eq. (A.28) into Eq. (A.25) leads to

−Ĥext(t)|φ0
i 〉 =

(
Ẑ0
i − i

∂

∂t

)
|δφi〉 −

M∑
j=1

µ0
ij(t)|δφj〉

+ λ0(ni − 1)δĴi|φ0
i 〉+

M∑
j 6=i

λ0nj(δĴj + δK̂j)|φ0
i 〉 (A.29)

−
M∑
j=1

δµij(t)|φ0
j〉

with

δĴi(r, t) =

∫
dr ′δφ∗i (r

′, t)Ŵ (r, r ′)φ0
i (r
′) +

∫
dr ′φ0,∗

i (r ′)Ŵ (r, r ′)δφ0
i (r
′, t) (A.30)

and

δK̂i(r, t) =

∫
dr ′δφ∗i (r

′, t)Ŵ (r, r ′)P̂rr ′φ
0
i (r
′) +

∫
dr ′φ0,∗

i (r ′)Ŵ (r, r ′)P̂rr ′δφ
0
i (r
′, t).

(A.31)

The variation of the Lagrange multipliers can be expressed as

δµij(t) = −
M∑
l=1

µ0
il〈φ0

j |δφl〉+ 〈φ0
j |δ(Ẑi|φi〉) + 〈φ0

j |Ĥext(t)|φ0
i 〉 (A.32)

where the identity Ẑ0
i |φ0

i 〉 =
∑M

l=1 µ
0
il|φ0

l 〉 and integration by parts was used in the first
term. One finally obtains

P̂

[
Ẑ0
i |δφi〉 −

M∑
j=1

µ0
ij|δφj〉+

(
λ0(ni − 1)δĴi +

M∑
j 6=i

λ0nj(δĴj + δK̂j)

)
|φ0
i 〉

]

= −P̂Ĥext(t)|φ0
i 〉+ i

∂

∂t
|δφi〉 (A.33)

with the projector P̂ = 1−
∑

k |φ0
k〉〈φ0

k|. By first making the ansatz

δφi(r, t) =
1
√
ni

(
ui(r)e−iωt + v∗i (r)eiωt

)
(A.34)

with stationary response amplitudes ui(r) and vi(r) and plugging this into Eq. (A.33)
afterwards, it is again possible, similar to derivation of the BdG equations in Section
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A.1.2, to group the terms of the resulting equations with respect to their linearity to
either e−iωt or eiωt. As a result, one arrives at an eigenvalue equation of the form

(PL − ω)

(
|u〉
|v〉

)
= P

(
−f+(r)|φ0

n〉
f−(r)|φ0,∗

n 〉

)
(A.35)

with the vector |φ0
n〉 = |√n1φ

0
1, ...,

√
nMφ

0
M〉, the 2(M ×M) square matrix

L =

(
Z0 − µ0 + A B
−B∗ −(Z0 − µ0 + A)∗

)
, (A.36)

and the projection matrix

P = {Pij} =


P̂ i = j ≤M

P̂∗ i = j > M

0 i 6= j

(A.37)

of the same size. The matrix Z0 = diag(Ẑ0
1 , ..., Ẑ

0
M) is a diagonal matrix, whereas

µ0 = {µ0
ij} contains the Lagrange multipliers. The matrices A and B, for the case of

the contact interaction potential, read

A = {Aij} =

{
λ0(ni − 1)|φ0

i |2 i = j

2λ0
√
ninjφ

0
iφ

0,∗
j i 6= j

(A.38)

and

B = {Bij} =

{
λ0(ni − 1)(φ0

i )
2 i = j

2λ0
√
ninjφ

0
iφ

0
j i 6= j.

(A.39)

Since the term proportional to ω is the only one without a projector in Eq. (A.35), a
redundant projector can be added to the RHS of PL, i.e., PL → PLP . The resulting
homogeneous eigenvalue equation

PLP
(
|u〉
|v〉

)
= ω

(
|u〉
|v〉

)
(A.40)

is the central equation in the LR-BMF theory. A comparison to the BdG matrix
LBdG in Eqs. (A.11)-(A.13) shows that for M = 1, LR-BMF reduces to the BdG
theory, i.e., LR-BMF(M = 1)≡BdG. If one however compares the LR matrix of Eq.
(A.36) to the one of LR-MCTDHB in Chapter 3.2.2, it can be seen that the latter is
clearly more complicated because it also includes the couplings between orbitals and
coefficients. Again, in both mean-field approaches presented in this Appendix, there
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is only one possible configuration, i.e., the configuration |N ; t〉 for the BdG case and
the configuration |n1, ..., nM ; t〉 for the multi-orbital mean-field case. The occupations
of the underlying single-particle orbitals are fixed. In fact, the LR-BMF matrix PLP
can be seen as the upper-left block Loo of the LR matrix in Eq. (3.62). Further details
on the LR-BMF theory, together with an application to a BEC in a double well can be
found in Ref. [224].
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B LR-MCTDHB in block-diagonal form

In this Appendix, a complex transformation that essentially halves the dimensionality
of the homogeneous eigenvalue problem of Eq. (3.85) is introduced. However, as shown
below, it involves matrix-matrix multiplications of individual blocks of the LR matrix
L. The latter products might be numerically expensive. It is therefore not in general
beneficial to perform the transformation described below, which was first discussed in
Ref. [225].
One considers the transformation matrix

Q =
1√
2

(
1 1θ
1 −1θ

)
, Q−1 =

1√
2

(
1 1
1θ −1θ

)
, QQ−1 = Q−1Q = 1 (B.1)

where the operation θ is defined via its action on any operator Ô given by θÔ = Ô∗. A
matrix of the form

M =

(
A B
−B∗ −A∗

)
(B.2)

behaves under the transformation in Eq. (B.1) as

QMQ−1 =
1

2

(
1 1
1θ −1θ

)(
A B
−B∗ −A∗

)(
1 1θ
1 −1θ

)
=

(
0 A−Bθ

A+Bθ 0

)
. (B.3)

Multiplying the result of Eq. (B.3) with itself yields the block-diagonal matrix

(
QMQ−1

) (
QMQ−1

)
=

(
(A−Bθ)(A+Bθ) 0

0 (A+Bθ)(A−Bθ)

)
. (B.4)

This transforms the eigenvalue problem Mx = λx into

λ2(Qx) =
(
QMQ−1

) (
QMQ−1

)
(Qx)

⇔ λ2 1√
2

(
u+ v∗

u− v∗
)

=

(
(A−Bθ)(A+Bθ) 0

0 (A+Bθ)(A−Bθ)

)
1√
2

(
u+ v∗

u− v∗
)
(B.5)

with x = 1√
2

(
u
v

)
. Thus, the original eigenvalue problem of M can be split up into two

smaller eigenvalue problems of L(1) ≡ (A−Bθ)(A+Bθ) and L(2) ≡ (A+Bθ)(A−Bθ)
with dim(L(1)) = dim(L(2)) = dim(M)/2. Moreover, both L(1) and L(2) have the same
eigenvalues, which are the squared eigenvalues of M .
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Interchanging the second and third row as well as the second and third column of the
LR matrix in Eq. (3.84) which explicitly reads

L =


ρ−

1
2 P̂LuooP̂ρ−

1
2 ρ−

1
2 P̂LvooP̂∗(ρ∗)−

1
2 ρ−

1
2 P̂Luoc ρ−

1
2 P̂Lvoc

−(ρ∗)−
1
2 P̂∗Lv,∗oo P̂ρ−

1
2 −(ρ∗)−

1
2 P̂∗Lu,∗oo P̂∗(ρ∗)−

1
2 −(ρ∗)−

1
2 P̂∗Lv,∗oc −(ρ∗)−

1
2 P̂∗Lu,∗oc

LucoP̂ρ−
1
2 LvcoP̂∗(ρ∗)−

1
2 H− ε0 0

−Lv,∗co P̂ρ−
1
2 −Lu,∗co P̂∗(ρ∗)−

1
2 0 −(H− ε0)∗


(B.6)

yields a matrix of the form given in Eq. B.2. Its submatrices are

A =

(
ρ−

1
2 P̂LuooP̂ρ−

1
2 ρ−

1
2 P̂Luoc

LucoP̂ρ−
1
2 H− ε0

)
(B.7)

and

B =

(
ρ−

1
2 P̂LvooP̂∗(ρ∗)−

1
2 ρ−

1
2 P̂Lvoc

LvcoP̂∗(ρ∗)−
1
2 0

)
. (B.8)

Mind the suppressed superscript ’0’ for the density matrices as compared to, e.g., Eq.
(3.80). It is hence possible to diagonalize either L(1) or L(2) with A and B defined in
Eqs. (B.7) and (B.8) to obtain the squared eigenvalues of the original LR matrix L.
The advantage is, as mentioned above, that the dimensionality of L(1) and L(2) is only
half of the dimensionality of L. Moreover, for two distinct eigenvalues ω1 and ω2 of
L with ω2 ≥ ω1 > 0.5 and separation ∆ ≡ ω2 − ω1 ≥ 0, the separation ∆(2) in the
spectrum of the squared eigenvalues is given by

∆(2) ≡ ω2
2 − ω2

1 = (ω1 + ∆)2 − ω2
1

= 2ω1∆ + ∆2 = ∆(2ω1 + ∆)

≥ 2ω1∆

> ∆. (B.9)

Thus, the separation grows in the spectra of L(1) and L(2). Since in general, the IRAM
converges in less iterations when the eigenvalues are more separated from each other,
eigenvalues of larger magnitude than 0.5 might be obtained with less iterations by
diagonalizing either L(1) or L(2) instead of L. On the contrary, for eigenvalues with
0 ≤ ω1 ≤ ω2 ≤ 0.5, one finds that

∆(2) = ∆(2ω1 + ∆)

= ∆ (ω2 + ω1)︸ ︷︷ ︸
≤1

≤ ∆, (B.10)
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which means that the separation of these eigenvalues is decreased in the spectra of
L(1) and L(2). Therefore, although each iteration of the IRAM is less expensive for the
smaller matrices, more iterations might be necessary to obtain converged eigenvalues
with smaller magnitude than 0.5. A possible solution to this problem is to shift L →
L + 0.5 · 1, where 1 is the 2(M + Nconf)-dimensional unit matrix, before applying the
transformation in Eq. (B.1).
It therefore remains a problem-dependent question whether it is beneficial to use the
full LR matrix L or one of the smaller matrices L(1) and L(2) to obtain the low-energy
spectrum. One needs to take into account the computational cost of building the latter
two matrices. Moreover, it is not in general true that, assuming the blocks A and B are
sparse matrices, their product is also sparse. If one is in the unfortunate situation that
the matrices L(1) and L(2) are much denser than the original matrix L, it is potentially
also much more demanding to converge to their lowest eigenvalues, although they are
much smaller. It is therefore a priori not possible to decide which approach is more
efficient, and in principle, one would always need to first calculate the (shifted) matrices
L(1) and L(2) and analyze how dense they are before making an appropriate decision. All
applications of LR-MCTDHB discussed in this work, however, avoided this preliminary
analysis, and used the full LR matrix L to obtain the low-energy spectra. For additional
details, it is referred to Ref. [225].
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C Further benchmarks of LR-MCTDHB

Further results on the benchmark of the newly developed implementation of LR-MCTDHB
against the HIM are presented in this Appendix. In particular, comparisons of the ex-
act and numerical results for attractive bosons in 1D as well as for repulsive bosons in
the anisotropic HIM in 2D are made. In addition, the numerical convergence in the
rotating frame of reference, which is important for the validity of the results presented
in Section 6.3.3, is demonstrated.
For the case of attractive bosons in the 1D HIM, the system parameters are chosen
as Ω = 1.0 for the trapping frequency and λ0 = 0.13 for the two-body interaction
strength. The number of bosons is N = 10. The calculations were carried out on a
grid from [−9, 9) with 128 grid points. Results for the excitation energies relative to
the ground-state energy, ωi = Ei − ε0, are shown in Table C.1. With respect to ε0,
one observes that M = 4 and M = 6 lead to highly accurate results. With respect to
the excited states, it can be observed that the BdG approach, i.e., for M = 1, misses
several excitations in the low-energy spectrum. In contrast to that, the many-body
calculations yield all states. The numerical accuracy clearly improves upon increasing
the number of self-consistent orbitals. For M = 6, even the higher c.m. excited states
ω5, ω7, and ω10 are obtained to very high accuracy. Together with the benchmark from

M = 1 M = 4 M = 6 (mx, nx) Exact

ε0 9.137833 9.038151 9.038150 (0, 0) 9.038150
ω1 1.000000 1.000000 1.000000 (1, 0) 1.000000
ω2 n/a 2.000222 2.000000 (2, 0) 2.000000
ω3 n/a 3.000432 3.000000 (3, 0) 3.000000
ω4 3.655133 3.794752 3.794733 (0.2) 3.794733
ω5 n/a 4.011839 4.000012 (4, 0) 4.000000
ω6 n/a 4.794870 4.794733 (1, 2) 4.794733
ω7 n/a 5.022646 5.000028 (5, 0) 5.000000
ω8 5.482700 5.692143 5.692100 (0, 3) 5.692100
ω9 n/a 5.797912 5.794737 (2, 2) 5.794733
ω10 n/a 6.142955 6.000676 (6, 0) 6.000000

Table C.1: Benchmark of the LR-MCTDHB implementation for N = 10 bosons in the attractive 1D
HIM. Shown are the ground-state energy ε0 and the energies ωi of the first ten excitations for different
values of M . The trapping frequency is Ω = 1.0 and the interaction strength is λ0 = 0.13, yielding a
ground-state depletion of f = 0.94%. This is comparable to the average depletion of the 1D lattice
systems discussed in Section 6.3.2. Underlined digits denote deviations from the exact values from
Eqs. (5.10) and (5.11). All quantities are dimensionless. See text for more details.
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M = 1 M = 2 M = 3 (mx,my nx, ny) Exact

ε0 110.007587 110.004507 110.003452 (0, 0, 0, 0) 110.003452
ω1 1.000000 0.999999 1.000000 (1, 0, 0, 0) 1.000000
ω2 1.378405 1.378280 1.378405 (0, 1, 0, 0) 1.378405
ω3 1.791089 1.788859 1.788860 (0, 0, 2, 0) 1.788854
ω4 n/a 2.000438 2.000477 (2, 0, 0, 0) 2.000000
ω5 2.200152 2.200520 2.198271 (0, 0, 1, 1) 2.198268
ω6 n/a 1.940430 2.378704 (1, 1, 0, 0) 2.378405
ω7 2.609215 2.609214 2.607684 (0, 0, 0, 2) 2.607681
ω8 2.686634 2.683292 2.683294 (0, 0, 3, 0) 2.683282
ω9 n/a n/a 2.757078 (0, 2, 0, 0) 2.756810
ω10 n/a 2.789191 2.789227 (1, 0, 2, 0) 2.788854
ω11 n/a 3.000758 3.000816 (3, 0, 0, 0) 3.000000

Table C.2: Same as in Table 5.3 but for the anisotropic case where the trapping frequencies are
Ωx = 1.0 and Ωy =

√
1.9 in x- and y-directions. All previously obtained degeneracies in the isotropic

case are lifted. The accuracy of the energies increases with M , with a few exceptions for M = 2 which
are discussed in the text. Underlined digits denote deviations from the exact values from Eqs. (5.10)
and (5.11). All quantities are dimensionless. See text for more details.

Table 5.2, it can be deduced that the implementation of LR-MCTDHB is capable of
accurately describing the low-energy spectrum of both repulsive and attractive bosons.
Table C.2 shows the numerical results obtained for the anisotropic HIM in 2D with
trap frequencies Ωx = 1.0 and Ωy =

√
1.9. The remaining system parameters are the

same as in the isotropic case from Table 5.3. One first observes that the anisotropy lifts
all previous degeneracies of the isotropic case. Apart from that, the numerical results
are qualitatively similar. In the BdG case, only the first c.m. excitation is obtained
numerically exact, all other c.m. excited states are inaccessible. The pure relative
excitations are also found to good accuracy. For M = 2, one gets access to higher c.m.
excited states in the x-direction, together with combined excitations of that type with
excitations of relative coordinates. As in the isotropic case, all excited states obtained
in the y-coordinate deteriorate in accuracy compared to the BdG case, see, e.g., ω2 and
ω5. The reason is the same as for the isotropic case, namely that the additional orbital
resembles a px-orbital and leads to preferred direction in the description. Including a
third orbital that resembles a py-orbital solves this problem. It additionally improves
the overall accuracy of the low-energy excitations, and moreover ensures that all low-
lying excited states are obtained.
Finally, excitations in the rotating frame of reference are discussed. The energies of the
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ground and excited states, given by Eqs. (5.10) and (5.11), become shifted by the term

Erot = −Ωrot lz (C.1)

where Ωrot denotes the angular velocity around the z-axis and lz denotes the angular
momentum of the exited state in the z-direction. In Table 5.3, all obtained excitations
are labeled by corresponding quantum numbers for relative and c.m. excitations, n and
m, as well as by lz. The increased numerical accuracy of LR-MCTDHB(3) in comparison
to the BdG results becomes clearly obvious. Moreover, all states are obtained for
M = 3, whereas the BdG spectrum misses several states. As a conclusion, the utilized
implementation of LR-MCTDHB is also capable of accurately describing the low-energy
excitation spectra in the rotating frame.

M = 1 M = 3 (n,m, lz) Exact

ε0 89.554453 89.548293 (0,0,0) 89.548292
ω1 0.900000 0.900000 (0,1,1) 0.900000
ω2 1.100000 1.100000 (0,1,-1) 1.100000
ω3 1.591089 1.588859 (2,0,2) 1.588854
ω4 1.791089 1.788862 (2,0,0) 1.788854
ω5 n/a 1.800439 (0,2,2) 1.800000
ω6 1.991089 1.988859 (2,0,-2) 1.988854
ω7 n/a 2.000657 (0,2,0) 2.000000
ω8 n/a 2.200438 (0,2,-2) 2.200000
ω9 2.386633 2.383226 (3,0,3) 2.383282
ω10 n/a 2.487088 (2,1,3) 2.488854
ω11 2.586634 2.583318 (3,0,1) 2.583282
ω12 n/a 2.689270 (2,1,1) 2.688854
ω13 n/a 2.691535 (2,1,1) 2.688854
ω14 n/a 2.700528 (0,3,3) 2.700000
ω15 2.786634 2.783318 (3,0,-1) 2.783282

Table C.3: Spectrum of excited states of the isotropic HIM in 2D in the rotating frame. The angular
velocity around the z-axis is Ωrot = 0.1. Results are presented for N = 100 bosons and different
numbers of orbitals M . The trapping frequencies are Ωx = Ωy = 1.0, whereas the strength of the
repulsive interaction is λ0 = −0.001. Shown are the energies of the ground state, ε0, and of the first
15 excited states, ωi = Ei − ε0. Underlined digits denote deviations from the exact values from Eqs.
(5.10), (5.11) and (C.1). All quantities are dimensionless. See text for more details.
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D Many-body variance

In this Appendix, a brief introduction of the many-body variance, which is employed
in the main text to study many-body excitations involved in the dynamics of trapped
BECs, is given. The many-body variance has been of interest in recent studies on
correlations between bosons in the ground state [226] and for out-of-equilibrium BECs
[227, 228], in particular in a 1D bosonic Josephson junction [229] or in anisotropic
trapping potentials [230,231]. It has been found that the variance is a crucial measure
for the numerical convergence of MCTDHB [232]. The focus is laid on the position
variance in the x-direction in the following.
The position operator of N bosons is given by

X̂ =
N∑
i=1

x̂i (D.1)

where the operator x̂i denotes the position operator of the i-th particle. To compute
its variance per particle in the state Ψ(r1, ..., rN), which reads

1

N
∆2
X̂

=
1

N

(
〈Ψ|X̂2|Ψ〉 − 〈Ψ|X̂|Ψ〉2

)
, (D.2)

one also needs to evaluate the expectation value of the square of the position operator.
The latter is given by

X̂2 =
N∑
i=1

x̂i +
∑
i<k

2 x̂ix̂k, (D.3)

i.e., it consists of a one-body and a two-body term. For the expectation value of X̂ one
obtains

1

N
〈Ψ|X̂|Ψ〉 =

1

N

N∑
i=1

∫
dr1...drN Ψ∗(r1, ..., rN)xi Ψ(r1, ..., rN)

=
1

N

N∑
i=1

∫
dri

ρ(1)(ri|ri)
N

xi

=

∫
dr
ρ(r)

N
x. (D.4)

In the second step, the definition of the density ρ(r) ≡ ρ(1)(r|r), employing the diagonal
of the one-body RDM, was used. In general, the time-dependent p-th order RDM of a
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given N -boson system in the state Ψ(r1, ..., rN ; t) is defined as

ρ(p)(r′1, ..., r
′
p|r1, ..., rp; t) =

N !

(N − p)!

∫
drp+1...drN Ψ∗(r′1, ..., r

′
p, rp+1, ..., rN ; t)

×Ψ(r1, ..., rp, rp+1, ..., rN ; t). (D.5)

From Eq. (D.5), one can define the p-th order correlation function g(p) as

g(p)(r|r′; t) =
ρ(p)(r′1, ..., r

′
p|r1, ..., rp; t)√

Πp
i=1 ρ

(1)(ri|ri; t) ρ(1)(r′i|r′i; t)
. (D.6)

Whereas the wave function Ψ is assumed to be normalized to unity, i.e., 〈Ψ(t)|Ψ(t)〉 = 1,
the p-th order RDM is not.
One further obtains

1

N
〈Ψ|X̂2|Ψ〉 =

∫
dr
ρ(r)

N
x2

+
2

N

∑
i<k

∫
dridrk Ψ∗(r1, ..., rN)xixk Ψ(r1, ..., rN) (D.7)

where the second term can be simplified due to∑
i<k

∫
dridrk Ψ∗(r1, ..., rN)xixk Ψ(r1, ..., rN)

=
∑
i<k

∫
dridrk

ρ(2)(ri, rk, ri, rk)

N(N − 1)
xixk

=
N(N − 1)

2

∫
dr1dr2

ρ(2)(r1, r2, r1, r2)

N(N − 1)
x1x2 (D.8)

where the definition of the two-body RDM ρ(2) was utilized. The choice of the coordi-
nates of the first and second particle in the last step is arbitrary. This yields

1

N
〈Ψ|X̂2|Ψ〉 =

∫
dr
ρ(r)

N
x2

+

∫
dr1dr2

ρ(2)(r1, r2, r1, r2)

N
x1x2 (D.9)

such that one obtains

1

N
∆2
X̂

=

∫
dr
ρ(r)

N
x2 − 1

N

[∫
dr ρ(r)x

]2

+

∫
dr1dr2

ρ(2)(r1, r2, r1, r2)

N
x1x2 (D.10)
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for the variance of the position operator X̂.
In the Hartree limit, the above expression can be separated into a GP mean-field and
a many-body (MB) term, which are defined as

∆2
X̂,GP

=

∫
dr |φ0(r)|2 x2 −

[∫
dr |φ0(r)|2 x

]2

(D.11)

∆2
X̂,MB

= lim
N→∞

∫
dr1dr2

ρ(2)(r1, r2, r1, r2)

N
x1x2. (D.12)

The upper definition in Eq. (D.11) is based on the fact that in the Hartree limit, the
GP orbital φ0, obtained from Eq. (A.4), exactly describes the ground-state density per
particle, i.e., limN→∞ ρ(r)/N = |φ0(r)|2. This means that many-body effects can only
occur due to the presence of the second term described in Eq. (D.12). The two-body
RDM can be expressed in terms of the natural orbitals {αi : 1 ≤ i ≤M}, which yields

ρ(2)(r1, r2, r1, r2) =
∑
i,j,k,l

ρijklα
∗
i (r1)α∗j (r2)αk(r1)αl(r2). (D.13)

One arrives at

∆2
X̂,MB

= lim
N→∞

∑
i,j,k,l

∫
dr1dr2

ρijkl
N

α∗i (r1)α∗j (r2)x1x2 αk(r1)αl(r2). (D.14)

To remind the reader, only one natural orbital exists in the GP case, and one finds that
limN→∞ ρ1111/N(N − 1) = 1. However, the term proportional to ρ1111 in Eq. (D.14)
vanishes due to symmetry, and hence the entire quantity ∆2

X̂,MB
vanishes in the GP

case. One finally arrives at

∆2
X̂,MB

= lim
N→∞

∑
i,j,k,l 6=1111

∫
dr1dr2

ρijkl
N

α∗i (r1)α∗j (r2)x1x2 αk(r1)αl(r2) (D.15)

from which it can be readily seen that many-body effects in the position variance can
occur, even in the infinite particle limit. For further details, also including the variance
of other quantities like the momentum operator, please refer to Ref. [226].
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