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Abstract

To gain a better understanding of cellular and molecular processes it is important to

quantitatively analyze the motion of subcellular particles in live cell microscopy image

sequences. For accurate quantification of the subcellular particle motion, compensa-

tion of the motion and deformation of the cell nucleus is required. This thesis deals

with non-rigid registration of cell nuclei in 2D and 3D live cell fluorescence microscopy

images. We developed two multi-frame non-rigid registration approaches which simul-

taneously exploit information from multiple consecutive frames of an image sequence to

improve the registration accuracy. The multi-frame registration approaches are based

on local optic flow estimation, use information from multiple consecutive images, and

take into account computed transformations from previous time steps. The first ap-

proach comprises three intensity-based variants and two different temporal weighting

schemes. The second approach determines diffeomorphic transformations in the log-

domain which allows efficient computation of the inverse transformations. We use a

temporally weighted mean image which is constructed based on inverse transformations

and multiple consecutive frames. In addition, we employ a flow boundary preserving

method for regularization of computed deformation vector fields. Both multi-frame reg-

istration approaches have been successfully applied to 2D and 3D synthetic as well as

real live cell microscopy image sequences. We have performed an extensive quantitative

evaluation of our approaches and compared their performance with previous non-rigid

pairwise, multi-frame, and temporal groupwise registration approaches.
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Zusammenfassung

Die quantitative Analyse der Bewegung von subzellulären Partikeln in Mikroskopie-

Bildsequenzen lebender Zellen ist wichtig, um zelluläre und molekulare Prozesse besser

zu verstehen. Die genaue Quantifizierung der Partikelbewegung im Inneren einer Zelle er-

fordert die Kompensierung der Bewegung und der Deformation des Zellkerns. Diese Dis-

sertation beschäftigt sich mit der nicht-starren Registrierung von Zellkernen in 2D- und

3D-Fluoreszenzmikroskopie-Bildern von lebenden Zellen. Wir haben zwei nicht-starre

multi-frame Registrierungsverfahren entwickelt, die Informationen von mehreren auf-

einanderfolgenden Bildern einer Bildsequenz gleichzeitig nutzen, um die Registrierungs-

genauigkeit zu erhöhen. Die multi-frame Registrierungsverfahren basieren auf lokalem

optischen Fluss, verwenden Informationen von mehreren aufeinanderfolgenden Bildern

und berücksichtigen die berechneten Transformationen von früheren Zeitpunkten. Das

erste Verfahren besteht aus drei intensitätsbasierten Varianten und zwei unterschiedli-

chen zeitlichen Gewichtungsschemata. Das zweite Verfahren berechnet diffeomorphische

Transformationen in der logarithmischen Domäne, die eine effiziente Berechnung der

inversen Transformationen ermöglicht. Wir verwenden ein zeitlich gewichtetes Mittel-

bild, dessen Berechnung auf inversen Transformationen und mehreren aufeinanderfol-

genden Bildern basiert. Zusätzlich verwenden wir eine flussgrenzerhaltende Methode

für die Regularisierung der berechneten Deformationsvektorfelder. Beide multi-frame

Registrierungsverfahren wurden erfolgreich auf 2D und 3D synthetische sowie reale Mi-

kroskopiebildsequenzen lebender Zellen angewendet. Ferner haben wir eine quantitative

iii



Evaluierung unserer Verfahren durchgeführt und ihre Leistung mit existierenden nicht-

starren paarweisen, multi-frame und zeitlichen gruppenbasierten Registrierungsverfah-

ren verglichen.
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Chapter 1

Introduction

1.1 Motivation

The time-resolved behaviour of cellular and subcellular structures observed in temporal

microscopy image sequences plays an important role in molecular biology. Biomolecular

systems are dynamic, and one of the major challenges of biomedical research is to unravel

the spatial and temporal relationships of these complex systems and to gain insight

into the underlying biological processes. The study of the movement of subcellular

structures, in particular, particles within the cell nucleus is important for understanding

cell function, since the nuclear structure and dynamics play a critical role in many cellular

processes [1, 2]. Various nuclear bodies have been shown to modify proteins and process

RNAs, and are thus involved in the regulation of gene expression and its implications

for human disease [3]. The study of the localization, dynamics, and interaction of these

subcellular particles are essential for the understanding of cell function. For example,

the study of the movement of promyelocytic leukemia nuclear bodies is important for

understanding the potential contributions of cellular functions to certain human diseases,

since these particles play a role in tumor suppression, viral defense, or DNA repair [4].

Fluorescence microscopy allows imaging subcellular particles by using fluorescent
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CHAPTER 1. INTRODUCTION

proteins. Based on this technique time-lapse image sequences can be acquired for mon-

itoring the location of subcellular particles over time. However, besides the motion

of particles within a cell nucleus, also the motion and deformation of the nucleus are

observed in the images. The observed motion in the image data represents therefore

a mixture of both the motion of the particles and the motion and deformation of the

nucleus (Figs. 1.1 and 1.2). Thus, a quantitative analysis of particle motion directly on

the original microscopy image data is generally inaccurate.

To compensate the nucleus motion and deformation, image registration techniques

can be used to align the frames of a time-lapse image sequence with reference to the

first frame. Image registration yields a mapping of homologous points of a cell along

the sequence of images, which can be used to compensate the cell nucleus motion and

deformation. The registration task can be quite challenging for a number of reasons,

for example, autofluorescence causes significant background noise, and photobleaching

reduces the image contrast over time. Additional challenges exist for image sequences

acquired during prophase and prometaphase, when cell nuclei are going into mitosis (cell

division). During these cell phases, the shape and the intensity structure of the nucleus

are changing strongly due to, for example, chromatin condensation which leads to the

shrinking of the nucleus, nuclear envelope breakdown which causes the disassembly of

the nucleus (cf. Figs. 1.1 and 1.2), or the disappearance of internal structures such as

the nucleoli.

1.2 Registration of Live Cell Microscopy Images

In this work, we consider image registration approaches to compensate the nucleus

motion and deformation in live cell microscopy image sequences. In this section, we first

introduce the basic biological concepts for the cell nucleus, focusing on the behavior of

nuclei during mitotic entry. Next, we describe the properties and issues of the image data

2
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(a) t = 1 (b) t = 30 (c) t = 60 (d) t = 90

(e) t = 1 (f) t = 30 (g) t = 60 (h) t = 90

Figure 1.1: Example images from a 2D dynamic two-channel microscopy image sequence
((a)-(d) nucleus channel, (e)-(h) particle channel, contrast enhanced).

acquired using time-lapse fluorescence microscopy and then we discuss the challenges of

the image registration task on compensating cell nucleus and deformation in time-lapse

fluorescence microscopy image data.

1.2.1 Cell Nucleus and Entry into Mitosis

The cell nucleus is the largest and most important organelle in an eukaryotic cell, playing

a central role in many cellular functions. This well-organized and highly compartmen-

talized organelle contains the majority of the genetic material of a cell, organized as

multiple chromosomes. The genetic information directs the activity of the entire cell,

and the most important cellular processes take place within the cell nucleus, such as

DNA replication and recombination as well as RNA transcription and processing [5].

The nucleus is physically separated from the cytoplasm of a cell by the nuclear enve-

lope which consists of an inner and an outer membrane. Important functions of the

nuclear envelope are that it encloses the genetic material and that it allows interactions

3
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of proteins between the nucleus and the cytoplasm [6].

During prophase and prometaphase, i.e., the first stages of mitosis (cell division),

cell nuclei undergo significant and irreversible changes. Events which cause changes to

cell nuclei and degrade the nucleo-cytoplasmic compartmentation are nuclear envelope

breakdown and chromatin condensation [7]. When nuclear envelope breakdown occurs,

the nuclear envelope disassembles and forms compartments, creating gaps at the border

between the nucleus and the cytoplasm. In Figs. 1.1(c) and 1.2(c) we show examples

of microscopy images acquired during nuclear envelope breakdown. It can be seen, that

the shape of the cell nucleus changes significantly, and that a clear boundary between

the nucleus and the cytoplasm is not visible.

After nuclear envelope breakdown, chromatin (i.e., a complex of macromolecules

consisting of DNA, protein, and RNA) condenses to form chromosomes. Condensed

chromatin is a major contributor to nuclear stiffness [2] and it has been shown that

chromatin condensation leads to nucleus shrinking [8]. In Figs. 1.1 and 1.2 it can be

seen, that the depicted nucleus shrinks significantly over time. In addition, nucleoli

which are located within cell nuclei, disappear during prophase. To summarize, during

the first stages of mitosis different events occur which significantly change the shape and

the structure of cell nuclei.

1.2.2 Time-Lapse Fluorescence Microscopy

Fluorescence microscopy plays an important role in cellular and molecular biology since

it allows to visualize cellular, subcellular or molecular structures in live cells and tis-

sues [9]. This imaging technique is based on tagging structures of interest using fluo-

rophores (e.g., green fluorescent protein, GFP). The fluorophores emit light of different

wavelength compared to the light emitted by the background after excitation with a light

source, such as a laser. The structures of interest are visualized with higher contrast in

the acquired image data, compared to imaging techniques which are based on the absorp-
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(a) t = 1 (b) t = 50 (c) t = 100

(d) t = 1 (e) t = 50 (f) t = 100

(g) t = 1 (h) t = 50 (i) t = 100

(j) t = 1 (k) t = 50 (l) t = 100

Figure 1.2: Example images from a 3D dynamic two-channel microscopy image sequence
((a)-(f) nucleus channel, (g)-(l) particle channel, contrast enhanced). (a)-(c) and (g)-(i):
maximum intensity projection (MIP) images, and (d)-(f) and (j)-(l): rendered volumes.
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tion of light. Tagging different subcellular structures with different fluorophores allows

to simultaneously acquire multiple images of the different structures (multi-channel im-

age data). A drawback of fluorescence microscopy is that the background may also emit

light since different cellular structures have intrinsic autofluorescence [9]. The autofluo-

rescence decreases the contrast between the structures of interest and the background.

Additional factors which degrade the quality of fluorescence microscopy image data are

the inherent image noise and optical limitations of fluorescent microscopes related to

the small size of the structures of interest.

In time-lapse fluorescence microscopy, the acquisition of temporal image sequences

enables to study the dynamics of tagged structures of interest over time. An issue

with time-lapse imaging is that the used fluorophores permanently lose their ability to

fluoresce due to chemical damages caused by the light source (photobleaching). This

results in a decrease of the intensity of the emitted light over time. Hence, the intensity

levels for a structure of interest in an image sequence decrease over time, and the contrast

of the structures w.r.t. the background decreases over time as well.

1.2.3 Image Registration Tasks and Challenges

The cell nucleus motion and deformation in live cell microscopy image sequences can be

compensated using image registration approaches. Accurate registration is crucial since

registration errors influence the subsequent study of particle movement and degrade the

performance of the quantitative motion analysis. The microscopy image data is often

acquired with two channels, one displaying the cell nucleus (e.g., the chromatin), and

the other displaying the subcellular particles of interest. Using the nucleus channel of an

image sequence (e.g., Fig. 1.1(a-d)), registration can be used to compute transformations

between each frame of the sequence and a reference frame (typically the first frame of the

sequence). The determined transformations describe the change in position over time

for each image point in the nucleus channel. Then, the transformations can be applied
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to the image sequences of the particle channel to compensate for the nucleus motion

and deformation (e.g., Fig. 1.2(a-f)). Having decoupled the particle motion from the

nucleus motion and deformation, the motion of subcellular particles can be accurately

quantified.

Registration of cell nuclei in fluorescence microscopy image data is not a trivial

task, due to challenges related to fluorescence microscopy and properties of cell nuclei.

Determining transformations between corresponding image frames is difficult due to the

typically low quality of microscopy images. The optical limitations of typical fluorescent

microscopes in conjunction with the small size of the cellular structures result in a

distorted appearance of the intensities of these structures. Cellular autofluorescence,

i.e. the light emission of the cellular background, generally leads to a low contrast in the

acquired images. In addition, the contrast is decreasing over time due to photobleaching,

since the fluorescence intensity decreases over time. Due to these factors, as well as the

typically high level of the inherent image noise, the intensity of corresponding image

structures in the different frames can differ significantly. Cell nuclei going into mitosis

introduce additional challenges. The significant structural changes that occur during

this cell phase (e.g., change of the nucleus shape, disappearance of structures) further

influences the image intensities over time and increases the difficulties of the registration

task. To summarize, the registration of cell nuclei in live microscopy image sequences

involves a number of challenges, such as the limitations of fluorescent microscopes, the

inherent image noise, photobleaching, and structural changes which occur in cell nuclei

going into mitosis.

1.3 Approach and Contributions

This dissertation is concerned with non-rigid registration of cell nuclei in time-lapse

microscopy images. The image data in our application consist of two channels (nucleus
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channel and particle channel) and the displayed cells are going into mitosis. Therefore,

strong changes in the intensity structure and strong deformations occur over time. In

particular:

• We propose two intensity-based multi-frame non-rigid registration approaches

based on optic flow estimation. Compared to pairwise registration, the proposed

approaches take advantage of additional temporal information to improve the reg-

istration accuracy. In both multi-frame approaches, each frame of an image se-

quence is registered by exploiting information from multiple consecutive images

and by taking into account computed transformations from previous time steps.

A local differential consecutive registration scheme is employed which computes

deformation vectors for each pixel of an image and thus exploits the full image

information. This is important in our application because of the strong structural

changes that increase over time (e.g., nuclear envelope breakdown, disappearance

of nucleoli). Moreover, an advantage compared to, for example, contour-based

registration approaches is that segmentation of the cell nuclei is not required since

the intensity-based approaches exploit directly the image intensities.

• Our first multi-frame non-rigid registration approach computes a transformation

for each frame of a live cell temporal microscopy image sequence based on the min-

imization of the sum of squared intensity differences between the current frame

and several previous frames. The previous images are warped using the trans-

formations computed at previous time steps. Transformations are represented by

deformation vector fields and regularization of transformations is performed using

Gaussian kernels. We present a symmetric, a weighting, and a symmetric weight-

ing variant of our intensity-based non-rigid multi-frame registration approach. In

addition, we propose two temporal weighting schemes which control the influence

of single previous frames on the registration result, based on the temporal distance

and on the image similarity.
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• Our second approach is a diffeomorphic multi-frame non-rigid registration ap-

proach and computes diffeomorphic transformations, which guarantees the invert-

ibility of the transformations. This is important since the inverse of the computed

transformations is required for multi-frame registration. The transformations are

determined based on velocity vector fields which are computed in the log-domain

and allow efficient computation of the inverse transformations. This is advanta-

geous, since the inverse transformations are required at each time point of an image

sequence. Diffeomorphic multi-frame non-rigid registration approaches have not

been employed earlier for dynamic live cell image data. To register single images

of an image sequence to a reference image, we use a temporally weighted mean

image which is constructed based on inverse transformations and multiple con-

secutive frames. The diffeomorphic transformations are computed based on the

minimization of the sum of squared intensity differences between each image of

the image sequence and the temporal mean image. We present a weighting as well

as a symmetric weighting intensity-based variant of our diffeomorphic multi-frame

registration approach. In addition, for regularization of the computed deforma-

tion vector fields, we use a flow boundary preserving method instead of standard

Gaussian smoothing to avoid over-smoothing.

• We have successfully applied our multi-frame non-rigid registration approaches to

2D and 3D synthetic as well as real live cell microscopy image data of cell nuclei.

We have used the nucleus channel of the image sequences, which consist of a

relatively large number of image frames (100-200 time points). To quantitatively

assess the performance of the developed approaches, we determined the registration

errors using synthetic image sequences with ground truth transformations and

using real image sequences with manually determined spot-like structures. We

also performed an experimental comparison with previous pairwise [10], [11], and

temporal groupwise [12] registration approaches. It turned out, that our multi-
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frame approaches outperform previous registration approaches.

1.4 Overview of the Thesis

This thesis is organized as follows. In Chapter 2 we review previous work on image

registration with focus on biomedical applications. Chapter 3 introduces our non-

diffeomorphic multi-frame approach for non-rigid registration of cell nuclei in live cell

microscopy image sequences. We also present three intensity-based variants of the multi-

frame registration approach and investigate two different temporal weighting schemes.

In Chapter 4 we introduce our diffeomorphic multi-frame non-rigid registration approach

using a temporally weighted mean image. We describe the used iterative log-domain

diffeomorphic registration scheme as well as the flow boundary preserving method for

regularization of the deformation vector fields. In Chapter 5 we present experimental

results for the proposed multi-frame registration approaches using both synthetic and

real live cell microscopy image data. We also performed an experimental comparison

with previous registration approaches. Finally, in Chapter 6 we conclude the thesis with

a discussion and a summary.
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Chapter 2

Overview of Previous Work

In this chapter, we first describe the basic concepts of image registration and focus on

registration approaches based on optical flow. Then, we review previous approaches for

registration of cells and cell nuclei in microscopy image data. Registration approaches

for other biological applications using microscopy image data are also discussed. Finally,

we describe previous methods for temporal registration in medical image analysis and

point out the differences to temporal registration of cell nuclei in microscopy image data.

2.1 Image Registration

Image registration describes the process of determining an optimal geometric transfor-

mation that maps a target (or moving) image to a reference (or fixed) image, such that

corresponding structures in the two images are aligned to each other [13]. The two

images can depict the same object acquired at different time points, or different objects.

The task of image registration is challenging due to the wide range of applications and

the wide range of imaging modalities. Thus, a universal approach that is appropriate

for all registration tasks does not exist [14]. In addition, the registration task describes

a challenging optimization problem, since often the problem of determining an optimal

transformation does not have a unique solution (ill-posedness of image registration [15]).
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Registration approaches require a selection of a feature space, a similarity measure

which describes the alignment quality, a transformation type, and a search strategy. For

reviews on image registration, we refer to, for example, Zitová and Flusser [14], Crum et

al. [16], and Holden [13]. Registration approaches have been widely used in biomedical

applications, for example, to align cells or organs in images acquired at different time

points. For reviews in biomedical image registration we refer to, for example, Maintz

and Viergever [17], Rohr [18, 19], Oliveira and Tavares [20], and Sotiras et al. [15]. In

the following, we review registration approaches and distinguish between the employed

transformation model (i.e., rigid, affine, or non-rigid) and the used type of information

for the alignment of the images (i.e. geometry-based or intensity-based).

2.1.1 Transformation Model

The transformation model should be chosen based on the type of the geometric trans-

formation that is required to align the objects of interest in the different images. The

geometric transformation can be rigid, affine, or non-rigid, and defines the degrees of

freedom that can be used to align the images.

Rigid transformations can be described by a single rotation and a translation. For

registration problems which require more degrees of freedom, the rigid transformation

can be extended to an affine transformation, which additionally includes scaling and

shearing. Rigid and affine transformation models are global, since the same transfor-

mation is used to align all image points. However, for images with objects that are

deforming, rigid or affine transformations are not sufficient. In this case, non-rigid

transformations are required which describe local transformations (i.e. different trans-

formations may be required for the alignment of different image points).

Non-rigid transformations vary from smooth regional variations using a small number

of parameters to dense deformation fields describing the transformation at each image

point (pixel or voxel). Non-rigid registration approaches determine deformations either
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allowing any type of transformation (free-form transformations), or based on a physical

model which takes into account the properties of the object of interest (e.g., tissue

elasticity or fluid flow). Free-form registration approaches often use a grid of control

points which are moved to maximize a similarity measure between the images, and

B-spline functions to model the deformations (e.g., [21]). Popular elastic models are

based on the Navier equation of linear elasticity and consider the objects of interest

in the images being elastic solids that deform under the application of external forces

(e.g., [22]). Fluid registration methods are based on a viscous fluid model (e.g., [23]) and

are able to cope with larger deformations, compared to elastic models. Optical flow -

based registration approaches address the problem of registration as a motion problem

and estimate the movement of pixels between the images (e.g., [24]).

2.1.2 Image Information

Registration schemes are distinguished into geometry-based and intensity-based, de-

pending on the type of image information used to determine the searched transforma-

tion.

Geometry-based registration approaches are based on the alignment of salient ge-

ometric features in the images. These features can be sets of points (or landmarks),

contours, or surfaces that are representative for the objects of interest. Depending on

the type of the images, the features can be extracted automatically (e.g., salient points),

or segmentation may be required (e.g., contours, surfaces). The extracted features are

used to establish correspondences between the different images. Based on the determined

correspondences, rigid registration approaches determine the transformation based on

optimization schemes which minimize a distance measure between the corresponding

sets of features. For example, the iterative closest point scheme [25] is often used for

landmark-based approaches, or the Chamfer matching scheme [26] for binary structures.

For non-rigid registration, deformable models can be used to compute the transforma-
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tion for segmented structures such as curves or surfaces. Spline-based schemes are often

employed for landmark-based non-rigid registration. The landmarks are used as control

points on a non-uniform grid, and, for example, thin-plate splines (e.g., [27]) or Gaussian

elastic body splines (e.g., [28]) can be used for matching corresponding landmarks, while

the correspondences for the other image points are determined based on interpolation.

The extracted set of features in geometry-based registration is sparse compared to the

original image content, allowing for a relatively fast optimization process. The main

problem of geometry-based registration is that the registration accuracy depends on the

employed technique for feature extraction. Depending on the nature of the images, ex-

tracting features can be challenging, for example in microscopy images with high noise

levels.

Intensity-based registration approaches directly exploit the intensity information of

the images and match intensity patterns based on mathematical or statistical criteria.

The transformation that aligns the target and the reference image is determined based

on the minimization of intensity dissimilarity (or the maximization of a measure of

intensity similarity). Dissimilarity measures include the mean squared differences of

intensities (MSD), the mean correlation coefficient (CC), the mutual information (MI),

or measures based on optic flow. Rigid intensity-based registration approaches often

use the intensities to align the center of gravity and the principal directions of the

two images (e.g., [29]). Non-rigid intensity-based registration is often formulated as an

energy minimization problem. For the minimization problem a set of partial differential

equations can be derived, which can be solved using the finite difference method [30],

the finite element method [31], or the variational method [32]. The energy (or cost)

function contains a similarity measure term and often an additional regularization term

which imposes constrains on the computed transformation. These constraints can be

defined by physical deformation models, such as elastic or fluid models. Alternatively,

approaches based on level sets (e.g., [33]) or optic flow (e.g., [34]) can be used to compute
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the transformation.

2.2 Optical Flow-Based Registration

Optical flow methods are used to determine the motion of objects between successive

frames of image sequences. Since optical flow is based on the estimation of correspon-

dences of points between different images, it is closely related to image registration.

The correspondences are described by a displacement vector field and can be used to

obtain the transformation between two frames. Optical flow estimation is based on the

intensity constancy assumption which states that the intensity value of image points re-

mains constant across successive frames, and is expressed for the 3D case by the general

differential formulation of optical flow [35]:

I(x+ ux, y + uy, z + uz, t+ ∆t) = I(x, y, z, t), (2.1)

where I denotes the image function and ux, uy, uz are the x, y, z components of the image

velocity or optical flow. Assuming that the motion between successive frames is small,

first order Taylor expansion can be performed [35]:

∂I

∂x

ux
∆t

+
∂I

∂y

uy
∆t

+
∂I

∂z

uz
∆t

+
∂I

∂t
= 0. (2.2)

Often it is assumed that ∆t = 1 for the time interval between the reference image f and

the target image g, thus ∂I
∂t

= g − f . Eq. (2.2) can be rewritten as:

∇g · u + g − f = 0. (2.3)

where ∇g = ( ∂g
∂x
, ∂g
∂y
, ∂I
∂z

) denotes the spatial intensity gradient of the image g, and

u = (ux, uy, uz) is the displacement vector field describing the optical flow. Eq. (2.2) is
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not sufficient for computing a unique solution for the optical flow with three unknowns

at each image position (aperture problem). To tackle the aperture problem and estimate

the optical flow it is required to introduce additional constraints. In the following, we

briefly describe the two main classes of optical flow approaches (i.e. global and local

optical flow), as well as the demons algorithm which is also based on optical flow.

2.2.1 Global Optical Flow

Horn and Schunck [35] proposed to constrain the estimation of the optical flow by a

global smoothness term (or regularization term). The problem was formulated by a

global energy functional:

∫ (
(∇g · u + g − f)2 + α|∇u|2

)
dxdydz, (2.4)

where α denotes a regularization parameter which controls the influence of the smooth-

ness term by penalizing large flow gradients (|∇u|2 = |∇ux|2 + |∇uy|2 + |∇uz|2). To

minimize the functional in (2.4), the corresponding Euler-Lagrange equations are solved

using the iterative Gauss-Seidel method. An advantage of the global formulation in (2.4)

is that the smoothness term allows to estimate the optical flow even for image regions

where the first term of (2.4) (data term) is zero or close to zero. This results in a dense

displacement vector field (i.e. a vector is estimated for each image point), however, the

method is sensitive to image noise. Extensions of the Horn/Schunck global optical flow

approach [35] include approaches allowing discontinuities in the estimated optical flow

field (e.g., [36], [37], [38]), or approaches allowing the estimation of optical flow for larger

displacements (e.g., [39], [40], [41]).
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2.2.2 Local Optical Flow

Lucas and Kanade [42] proposed a local optical flow approach to overcome the aperture

problem. Based on the assumption that the unknown optical flow vector is constant

within a local image neighborhood Ω, an overdetermined linear system of equations

using (2.3) is proposed:

∑
x,y,z∈Ω

W 2(x, y, z) (∇g · u + g − f)2 = 0, (2.5)

where W (x, y, z) is a weighting function which gives more influence to pixels in the

center of the neighborhood Ω. The optical flow vector u for the neighborhood Ω can be

estimated using a least square minimization method:

∑
x,y,z∈Ω

(∇gTW 2(x, y, z)∇g)u =
∑

x,y,z∈Ω

∇gTW 2(x, y, z)(f − g). (2.6)

The estimation of the optical flow is performed iteratively, by computing the current ui

at iteration i based on an additive rule:

ui = ui−1 + du, (2.7)

where du is an update vector field which can be computed using (2.6), and ui−1 is the

deformation vector field of the previous iteration. Note, that u0 is the zero vector field.

The advantage of local optical flow is the robustness to image noise, since information

from a local spatial neighborhood is exploited for the computation of each vector [43].

However, the estimated vector field is sparse since one vector for each neighborhood Ω

is computed [42]. To overcome this issue, a vector can be computed for each pixel of

an image using (2.6). Extensions of the Lucas/Kanade local optical flow approach [42]

include approaches based on the image gradient constancy for increasing the robustness

to illumination changes (e.g., [44], [45]), approaches that use robust statistics (e.g., [46]),
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or approaches using parametric models of higher order (e.g., [47]).

2.2.3 Demons

Thirion [34] introduced the demons algorithm for non-rigid image registration, based

on the optical flow equations and inspired by Maxwell’s demons in thermodynamics.

The demons describe forces which reduce the differences between the reference and the

target image, by moving image points according to local characteristics of the images.

The estimation of the demons forces is similar to solving the optical flow equation (2.3):

u =
(f − g)∇g

|∇g|2 + (f − g)2
. (2.8)

The displacement vector field is computed iteratively (see (2.7)), and a Gaussian filter is

used to regularize the displacement field. In [48] the demons approach was described as

a global energy minimization problem, and in [49, 50] symmetric schemes of the demons

have been proposed.

In general, using a local optical flow approach or a local demons-based approach

is advantageous for the registration of dynamic live cell image data with local struc-

tural changes over time. Such local registration approaches can cope well with local

deformations.

2.3 Diffeomorphic Registration

For biomedical applications it is advantageous to compute diffeomorphic transformations

to preserve the topology of objects in the registered images, and to prevent foldings. Dif-

feomorphic registration approaches determine transformations which are invertible and

the transformation as well as its inverse are smooth (continuously differentiable). Typ-

ically, diffeomorphic registration approaches require high computation times due to the

18



CHAPTER 2. OVERVIEW OF PREVIOUS WORK

use of complex partial differential equations (e.g., [51, 52, 53]). In [54], a computationally

efficient diffeomorphic registration approach based on the demons method was proposed.

The approach combines the alternate optimization scheme of demons [50] with the Lie

group structure on diffeomorphic transformations [55]. To ensure the diffeomorphism of

a computed transformation at iteration i, the displacement vector field of the previous

iteration is composed with the exponential map of an update stationary velocity field:

ui = ui−1 ◦ exp (dv) , (2.9)

where dv denotes the update velocity field, and the exponential map is efficiently de-

termined based on the scaling and squaring method [56]. The diffeomorphic demons

approach [54] was extended in [10] by computing the spatial transformation in the log-

domain:

exp(vi) = exp(vi−1) ◦ exp (dv) , (2.10)

where vi and vi−1 are the velocity vector fields in the log-domain for the iterations i and

i− 1, respectively, and the deformation vector field ui can be determined by computing

the exponential map of the respective velocity field, i.e., ui = exp (vi). This allows

for an efficient computation of the inverse transformation, which can be determined by

computing the exponent of the negative velocity vector field, i.e., u−1
i = exp(−vi).

2.4 Registration of Cells and Cell Nuclei in Live Mi-

croscopy Image Data

In this section, we review previous work on the registration of cells or cell nuclei in mi-

croscopy image data. We distinguish between rigid and affine, and non-rigid registration

approaches.
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2.4.1 Rigid and Affine Registration

Rieger et al. [57] proposed an approach for 3D rigid registration of cell nuclei in 3D

confocal microscopy image sequences. The approach uses the spot channel of the image

data and exploits the intensity information of labeled proteins located within the cell

nucleus. The translation and the rotation of cell nuclei is determined based on the

weighted center of mass and the principal axes of the inertia tensor of the intensity

distribution of the labeled proteins.

A correlation-based approach has been developed by Wilson and Theriot [58] for rigid

registration of cells in time-lapse phase-contrast microscopy image sequences. The task

of estimating the rotation of cells between consecutive frames is converted to the task of

estimating the translation of the 2D Fourier-transformed images. A polar transform to

the magnitude spectrum of each transformed image is applied, and the translation (which

describes the rotation in the original images) is computed based on cross-correlation.

Cross-correlation is also used to compute the translation of cells between consecutive

frames of the image sequences.

Sage et al. [59] used a model-based approach based on a least-squares fit of an ellipse

and 2D segmentations of nuclear membranes to determine the translation of nuclei in

time-lapse fluorescence microscopy image sequences. Each frame of an image sequence

is registered w.r.t. a reference time point.

In Matula et al. [60], a point-based rigid registration of multiple cells in 3D time-lapse

microscopy image sequences was presented. The approach is based on the matching of

centroids of certain intracellular structures in consecutive frames of an image sequence.

A 3D extension of the matching pairs support algorithm is used, and the rotation is

assumed to occur only around the z-axis. The 3D transformation is determined by min-

imizing the mean-squared distances between the point sets of consecutive time points.

An approach for rigid 3D registration of cell nuclei in dynamic live cell microscopy

image data was described in De Vos et al. [61]. The approach consists of two steps. In

20



CHAPTER 2. OVERVIEW OF PREVIOUS WORK

the first step, the intensity weighted centres of mass of segmented nuclei are used to

determine the translation, and the correlation coefficients of consecutive frames w.r.t.

the centres of mass are used to determine the rotation. In the second step, the computed

transformation is refined by utilizing the geometric centre of the 3D locations of telomeric

dots.

Dzyubachyk et al. [62] introduced an affine shape-based approach for registration

of cells in fluorescence microscopy images. The approach uses the maximum intensity

projection images of 3D segmented cell shapes. The parameters for translation, rotation,

and scaling are obtained by minimizing an energy functional based on distance functions

between the nuclear shapes in consecutive frames of an image sequence. In addition, the

energy functional can be extended by a deformation field which acts as a complement

for the affine transformation.

In Kim et al. [63], an approach for rigid registration of live cells in 2D FRAP (Flu-

orescence Recovering After Photobleaching) image sequences was proposed. To cope

with intensity changes after bleaching, registration is based on the minimization of the

mutual information between cell nuclei using a regular step gradients descent optimizer.

Li et al. [64] proposed fitting the axes of an ellipse model to segmented nuclei for

determining the rotation of multiple mitotic nuclei in laser scanning confocal microscopy

image data. A similar approach was used in [65] for rigid registration of cells in dynamic

image sequences. The two first components of a principal component analysis (PCA) of

the intensities of segmented cells were used to determine translation and rotation.

In the context of multi-modal image registration, Klein et al. [66] registered confocal

Raman microscopic images to immunofluorescence microscopy images of the same live

cells. A rigid transformation is determined using the normalized mutual information

between the intensity distribution of the immunofluorescence microscopy images, and

the intensity distribution of PCA components of the Raman microscopic images.

In addition, other approaches for global registration of images containing cells or cell
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nuclei have been described. For example, in Würflinger et al. [67], microscopy images of

cell nuclei acquired using different stains were rigidly registered based on an intensity-

based approach and the Powell minimization algorithm. Goobic et al. [68] proposed to

compute the 2D translation in intravital video microscopy images of rolling leukocytes

using a correlation-based approach. A phase-correlation based approach has been used

in Kim et al. [69] to determine the translation in time-lapse confocal microscopy image

sequences of live cells.

2.4.2 Non-Rigid Registration

Rigid registration approaches cannot cope with cell or nucleus deformations over time,

affecting the accuracy of the movement analysis of subcellular particles. In the following,

we review previous work on non-rigid registration of cells or cell nuclei in microscopy

image data.

Mattes et al. [70] described a semi-automatic non-rigid registration approach for cell

nuclei. Point sets which represent cell nuclei are interactively determined from two im-

ages of the same cell nucleus acquired at different time points, based on the confinement

tree feature extraction method. The transformation is obtained by minimizing a cost

functional based on the Euclidean distance between the two point sets. Optimization

is performed using the Levenberg-Marquardt algorithm, and interpolation is performed

using thin-plate splines.

In Yang et al. [71], a demons-based approach was presented for registration of 3D

cell nuclei in live cell fluorescence microscopy image data. The approach was used to

register different nuclei in static images, as well as the same nuclei in dynamic multi-

channel image sequences. First, the cell nuclei are segmented using a global thresholding

approach, and the images are smoothed using a Gaussian filter. Then, rigid registration

is performed based on the normalized correlation coefficient and the regular gradient

descent optimizer. For non-rigid registration, an extension of the demons approach with
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symmetric forces was proposed. This extension uses the image gradients of both the

reference and the target images to compute a displacement vector field:

u =
2(f − g)(∇f +∇g)

|∇f +∇g|2 + (f − g)2
. (2.11)

In contrast to the original demons formulation (2.8), the symmetric demons allows to

compute a displacement vector at image locations with zero or close to zero values

of the image gradient ∇g. To reduce the computation time, an adaptive step length

optimization scheme as well as a coarse to fine multi-resolution scheme was used.

Kim et al. [11] proposed an intensity-based approach for non-rigid registration of

cell nuclei in 2D and 3D dynamic live cell microscopy image data. The approach is

based on the Lucas-Kanade optic flow algorithm, and minimizes the mean squared

intensity differences between consecutive frames of an image sequence. The iterative

Gauss-Newton optimization method is performed for each image point, providing dense

deformation vector fields. The computed deformation fields are regularized using a

Gaussian kernel, and an incremental scheme is used to compute deformation fields for

each time point w.r.t. the first time point of an image sequence. In addition, three

variants of the proposed approach have been introduced. First, a symmetric variant was

proposed which uses the gradients of both the reference and the target image:

∑
x,y,z∈Ω

(∇g +∇f)(∇g +∇f)TU/2 =
∑

x,y,z∈Ω

(∇g +∇f)(f − g), (2.12)

where U denotes a vector of the displacement vector field u. Second, a weighting

approach based on the Levenberg-Marquardt optimization method was introduced:

∑
x,y,z∈Ω

(∇g∇gT + D)U =
∑

x,y,z∈Ω

∇g(f − g), (2.13)

where D is a diagonal matrix which depends on the similarity of the two image gradients
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and controls the optimization process. Finally, the third symmetric weighting variant

represents a combination of the symmetric and the weighting variants.

A contour-based non-rigid registration approach was proposed by De Vylder et

al. [72] for registration of 2D cell nuclei in dynamic image sequences. First, the con-

tours of cell nuclei are extracted from the segmented images. Then, the correspondences

between contours in consecutive frames of an image sequence are established based on

signatures which provide a description of the contours. The mapping is performed using

a dynamic time warp algorithm defining the displacements of the nucleus boundary. The

dense deformation field is determined by interpolating the displacements of the nucleus

boundary points using thin-plate splines.

Sorokin et al. [73] presented a contour-based approach based on the Navier equation

for non-rigid registration of 2D cell nuclei in dynamic image sequences. First, the cell

nuclei in consecutive frames are registered using a rigid cross-correlation approach and

the extracted contours of the nuclei. For non-rigid registration, correspondences between

the two contours are established based on morphological contour matching and the

generalized geodesic distance. Based on the computed displacements on the cell nuclei

boundary, the Navier equation is used for modelling the nucleus deformation. The

approach was extended in [74] with a dynamic elasticity model for forward simulation

of nucleus motion and deformation. The contour matching process was embedded as a

constraint into the system of equations describing the elastic behavior of the nucleus.

In general, intensity-based approaches are more suitable for the registration of nuclei

in multi-channel image data, compared to contour-based or landmark-based approaches.

Using the full intensity information of the nucleus channel generally allows to compute

local deformations within cell nuclei with higher accuracy, compared to contour-based

or landmark-based approaches which determine the deformation for the inner part of

nuclei based on interpolation. On the other hand, contour-based or landmark-based

registration approaches are advantageous for image data consisting of a single channel,
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since stable landmarks on the contours of nuclei are used to determine the nucleus

motion and deformation. In comparison, the determined transformations in intensity-

based approaches may be influenced by the local motion of subcellular structures.

2.5 Non-Rigid Registration of Microscopy Image Data

for other Biological Applications

Besides temporal registration of cells and cell nuclei as described in Sect. 2.4 above, non-

rigid registration approaches for microscopy image data have also been used in other

biological applications. In the following, we briefly describe representative approaches

for different applications.

In the field of cell nucleus shape modeling, Rohde et al. [75] developed a diffeomor-

phic registration approach to compute deformations between cell nuclei in static or 2D

time-lapse images. The registration approach combines the large deformation metric

mapping with multi-dimensional scaling, and minimizes the geodesic distances between

the segmented nuclei. Johnson et al. [76] used the former approach to additionally

compute deformations between corresponding cells and nuclei, for constructing spatio-

temporal models of cell and nuclear shape variation. Yoshizawa et al. [77] employed an

interactive approach for non-rigid registration of the same nucleus in images acquired

with different fluorescent markers. The registration uses features from segmented nuclei

and the plasma membrane, and deformations are modeled by triharmonic radial basis

functions.

To detect cell division in 2D dynamic confocal laser scanning microscopy image

sequences, Tokuhisa and Kaneko [78] used a viscous fluid registration approach. A

displacement vector field is determined between consecutive frames of an image sequence,

and a similarity maximization step is used to cope with dividing nuclei.

To track cells in 2D dynamic phase-contrast microscopy image sequences, Hand et
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al. [79] registered segmented cells using a symmetric local optical flow approach [80]. A

deformation vector is computed for each node of a regular cubic grid placed across the

image, and interpolation is performed using trilinear basis functions. A global optical

flow approach has been used in Scherf et al. [81] to track cells in 2D time-lapse confocal

microscopy image sequences of cell colonies. The approach minimizes the mean squared

intensity differences between consecutive frames and the resulting partial differential

equations are solved numerically using a fast Poisson solver.

For 3D reconstruction of static fluorescence confocal microscopy image stacks of

Drosophila muscles, Du and Wasser [82] introduced an intensity-based non-rigid regis-

tration approach using thin-plate splines. Allgeier et al. [83] reconstructed static 3D

confocal laser scanning microscopy image data using a registration algorithm based on

phase correlation. Hsu et al. [84] employed a non-rigid registration approach based on

analytic robust point matching for the 3D reconstruction of vessels of rat brains in static

histological microscopy images. For 3D reconstruction of static electron microscopy im-

ages, Akselrod-Ballin et al. [85] described a feature-based registration approach, and

Saalfeld et al. [86] used a block-matching registration approach. Hogrebe et al. [87]

introduced a landmark-based approach based on B-splines to register axons in 3D histo-

logical serial sections of fluorescence confocal microscopy image data. Lorenz et al. [88]

employed an intensity-based registration approach using B-splines for 3D reconstruction

and reduction of motion-induced artifacts in intravital images of living animals. In Wang

et al. [89], a combined area-based and feature-based non-rigid registration approach has

been described for 3D reconstruction of laser scanning microscope images and serial

section transmission electron microscope images.

To analyze gene expression data in confocal microscopy images, Tomer et al. [90]

described an intensity-based free-form non-rigid registration approach using third-order

B-splines. For atlas construction of Drosophila brains in 3D laser scanning microscopy

images, Peng et al. [91] introduced a landmark-based registration approach based on
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thin-plate splines. The former approach was extended by a point-based rigid registration

method in Qu et al. [92], for registration of images to atlas models of fruit fly brains.

Fowlkes et al. [93] established a spatiotemporal gene expression atlas of Drosophila using

a point-based registration approach based on segmented boundaries of cells or cell nuclei

in two-photon microscopy image data.

For motion estimation of cells and tissue in 3D time-lapse laser scanning microscopy

image data, Lombardot et al. [94] evaluated different registration approaches based on

B-splines, a viscous fluid model, demons, and level-set optical flow. Pizarro et al. [95] ap-

plied a B-spline based free-form deformation approach as well as a combined local/global

optical flow approach to estimate motion in dynamic light and electron microscopy image

data. For motion correction in temporal microscopy image data of biological structures

such as vessels, dendrites, and axons, Kumar et al. [96] proposed a point-based registra-

tion approach based on thin-plate splines.

2.6 Non-Rigid Registration of Temporal Medical Im-

age Data

In medical image analysis, temporal groupwise registration approaches have been pro-

posed, which simultaneously take into account all or multiple images of a dynamic image

sequence. Most temporal groupwise registration approaches are based on the minimiza-

tion of a dissimilarity metric between all frames of an image sequence and a reference

frame (e.g., [97, 98, 99, 100, 101]). In [12, 102, 103, 104], group mean images were used as

reference for temporal registration. Other approaches use dissimilarity metrics between

all consecutive frames [105, 106], between all possible combinations of frames [107],

or between all frames and a reference frame and simultaneously between consecutive

frames [108, 109, 110]. In addition, several registration approaches consider all images

of different dynamic image sequences simultaneously for the construction of a dynamic
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atlas or for comparison of the different sequences (e.g., [111, 112, 113, 114, 115, 116, 117]).
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Non-Rigid Multi-Frame

Registration

In this chapter, we present our non-rigid multi-frame approach for registration of cell

nuclei in temporal microscopy image data. Previous approaches for non-rigid registration

of cell nuclei or other biological structures in dynamic data (Section 2.4) are based on

pairwise registration, where each frame of an image sequence is registered either to a

chosen reference frame, or to the previous frame. Thus, pairwise registration decomposes

the 2D+t or 3D+t registration task into multiple independent 2D or 3D registration

tasks. However, to improve the accuracy of temporal registration, it is necessary to

exploit additional information from the dynamic image sequences.

First, we describe the general incremental scheme of our non-rigid temporal regis-

tration approach. Then, we briefly review a previous pairwise consecutive registration

scheme and subsequently introduce our multi-frame consecutive registration approach.

We describe the used iterative registration scheme, and present three intensity-based

variants of the multi-frame registration approach. We also investigate two different

temporal weighting schemes for the multi-frame approach. The work in this chapter

was published in Tektonidis et al. [118].
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3.1 Incremental Temporal Registration Scheme

Our non-rigid multi-frame registration approach is based on an incremental scheme,

where each image gk of an image sequence at time point k ≥ 2 is registered to the

reference image g1 at the first time point. First, the transformation of the image gk

to the image gk−1 is computed and represented by a dense deformation vector field

u(gk, gk−1). Then, the transformation of gk to g1 is obtained by concatenating u(gk, gk−1)

and u(gk−1, g1):

u(gk, g1) = G ∗ (u (gk, gk−1) (x) + u (gk−1, g1) (T (x,uk,k−1))) , (3.1)

where T (x,uk,k−1) = T (x,u (gk, gk−1)) denotes the transformation using the deforma-

tion vector field u (gk, gk−1), and x = (x, y) is the spatial coordinate. The vector field

u(gk−1, g1) is computed analogously (recursively), u(g1, g1) is a zero vector field, and G

represents a Gaussian kernel for regularization of the vector fields.

3.2 Pairwise Consecutive Registration Scheme

Pairwise registration approaches for cell images estimate for each time point k the de-

formation vector field u(gk, gk−1) by exploiting the information from two consecutive

images gk−1 and gk (e.g., [11]). The image gk is registered to the previous image gk−1

by computing the deformation vector field u(gk, gk−1) which minimizes a similarity met-

ric S (e.g., squared intensity differences, normalized cross correlation) between the two

images:

S (gk (T (x,uk,k−1)) , gk−1 (x)) (3.2)

where gk (T (x,uk,k−1)) is the image at time point k warped with the currently estimated

u(gk, gk−1). Note, that since we use a local registration approach, pixelwise minimization

of the similarity metric is performed.
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3.3 Multi-Frame Consecutive Registration Scheme

In our multi-frame registration approach, we estimate for each time point k the defor-

mation vector field u(gk, gk−1) by exploiting the information from N ≥ 3 consecutive

images of an image sequence simultaneously. The image gk is registered simultaneously

to the N−1 warped previous images, for which the transformations have been computed

in previous time steps. Note, however, that N −1 previous images are available only for

k ≥ N . Generally, for a time point k, the temporal range of available previous images

gl is given by max(k −N + 1, 1) ≤ l ≤ k − 1, and the number of the available previous

images is Nl = min(N − 1, k − 1).

Since the searched vector field u(gk, gk−1) describes the transformation between the

coordinate systems of gk and gk−1, the Nl previous images gl have to be warped into

the coordinate system of gk−1. For warping, a vector field u(gl, gk−1) is required, which

can be determined by combining vector fields that have been computed for images at

previous time points. For example, to determine u(gk−3, gk−1) for warping gk−3, we

concatenate the vector fields u(gk−2, gk−3) and u(gk−1, gk−2), and compute the inverse

of the resulting vector field (see also Section 5.2.1 below). In general, each image gl is

warped using the following vector field:

u(gl, gk−1) = G ∗ u−1 (gk−1, gl) , (3.3)

where u (gk−1, gl) is calculated recursively using computed vector fields of previous time

points. Note, that the regularization of the deformation vector fields with a Gaussian

kernel G can be interpreted as an approximation to elastic deformations [48]. The

inverse vector field u−1 (gk−1, gl) in (3.3) is computed as follows. For each pixel of an

image we determine a number of vectors (we used three vectors) of the original vector

field which point closest to the pixel. Then, the weighted average of these vectors is

computed (using the Euclidean distance as weight) and its negative vector is used as
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inverse vector for this pixel. Note, that u(gk−1, gk−1) is a zero vector field, and therefore

the image gk−1 is not warped.

The multi-frame consecutive registration approach computes the deformation vector

field u(gk, gk−1) which minimizes for each time point k the sum of a similarity metric S

between the image gk and the images g?l :

1

Nl

∑
l

S (gk (T (x,uk,k−1)) , g?l ) , (3.4)

where

g?l = gl (T (x,ul,k−1)) (3.5)

denotes the previous image at time point l warped using u(gl, gk−1) (3.3). Note, that

also in (3.4) pixelwise minimization of the similarity metric is performed. A diagram of

the multi-frame consecutive registration approach is shown in Fig. 3.1, which gives an

overview of the use of the different deformation vector fields and images.

An advantage of our consecutive incremental registration approach is that multiple

successive images are registered and that the intensity similarity measure is computed

between time points within a certain time range of an image sequence. Thus, strong

changes in shape and intensity structure over the entire image sequence (e.g., due to

nuclear envelope breakdown or photobleaching) can be coped better with compared to

computing the similarity measure between time points that are very far apart (e.g., first

and last time point of an image sequence). Note that with our consecutive registration

approach only the information of previous time points is used since only for those time

points transformations have been computed. The information from later time points

cannot be used since the transformations have not yet been computed.
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time

l

Figure 3.1: Diagram of the multi-frame consecutive registration approach. The searched
transformation u(gk, gk−1) (red solid arrow) is computed based on information from
multiple consecutive images. In the upper part of the diagram, the location of an
example image point (red dot) has been marked at different consecutive time points.
The example point has different coordinates at the different time points. Warping of the
previous Nl images is performed using vector fields (dotted arrows) that are determined
based on the vector fields computed at previous time points (dashed arrows). After
warping, the spatial coordinates of the example image point are the same in all warped
previous images g?l (lower part of diagram).
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3.4 Iterative Registration Scheme

To compute the searched deformation vector field u (gk, gk−1) in (3.4) we use an iterative

scheme. At each iteration i the current ui(gk, gk−1) is updated by:

ui(gk, gk−1) = G∗ (ui−1 (gk, gk−1) +G∗dui (g∗k, gk−1)) , (3.6)

where

g∗k = gk (T (x,ui−1 (gk, gk−1))) (3.7)

is the transformed image at time point k using the vector field from the previous iteration

i− 1, and dui (g
∗
k, gk−1) is an update field (see Section 3.5 below). For regularization of

the vector fields a Gaussian kernel G is used. The initial vector field u0 (gk, gk−1) is the

zero vector field. The iteration terminates either when a certain number of iterations is

reached or when the sum of the similarity metric in (3.4) is below a threshold value.

3.5 Intensity-Based Non-Rigid Multi-Frame Regis-

tration

For minimizing the similarity metric in (3.4), we introduce three intensity-based variants

of the non-rigid multi-frame registration approach, which are based on local optic flow

estimation. In general, a local optical flow registration approach is advantageous in

our application since many local structural changes occur within cell nuclei in the live

cell microscopy data. For image data of cell nuclei going into mitosis, additional local

structural changes occur due to, for example, the nuclear envelope breakdown or the

disappearance of nucleoli. A local registration approach can generally better cope with

local deformations compared to global optical flow approaches.
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3.5.1 Weighting Approach

The first variant of the multi-frame approach is an extension of the pairwise weight-

ing approach in [11]. The pairwise weighting approach has been previously used for

registration of microscopy images and it performed better than other optic flow based

registration approaches, for example, symmetric Demons [71] and Lucas-Kanade [11, 43].

The pairwise weighting approach minimizes for each image point the squared intensity

differences between pairs of successive images. In our multi-frame weighting approach,

we minimize for each time point k and for each image point xc the sum of squared

intensity differences between the image g∗k in (3.7) and the Nl previous warped images

g?l in (3.5) over a spatial neighborhood region Ω around each pixel xc:

min
U

∑
x∈Ω

1

Nl

∑
l

[g∗k (x + U)− g?l (x)]2 , (3.8)

where U denotes the vector of the update field dui (g
∗
k, gk−1) at position xc, and a

Gaussian function is used to emphasize image points at the center of the neighborhood

Ω. Note, that a local transformation model x + U is used since the optimization is

performed separately for each pixel xc, and that considering a neighborhood region

imposes spatial smoothness [42]. The squared intensity differences in (3.8) correspond

to the similarity metric S in (3.4). The non-linear formulation in (3.8) can be linearized

by performing a first order Taylor expansion:

min
U

∑
x∈Ω

1

Nl

∑
l

[
g∗k +∇g∗Tk U− g?l

]2
. (3.9)

Note, that g∗k, ∇g∗k, and g?l are evaluated at coordinate x. Minimization of (3.9) yields

the following system of linear equations:

∑
x∈Ω

1

Nl

∑
l

(
∇g∗k∇g∗Tk

)
U =

∑
x∈Ω

1

Nl

∑
l

∇g∗k (g?l − g∗k) . (3.10)
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from which U can be determined. The gradient ∇g∗k is determined using a four point

central difference scheme, and the terms on both sides of (3.10) are weighted with the Eu-

clidean norm ‖∇g∗k‖ to emphasize image points with strongly changing intensity ([43]).

In the pairwise weighting approach [11] an extension of the Lucas-Kanade optic

flow approach [42, 43] was used, which includes a weighting matrix and performs an

optimization similar to the method of Levenberg-Marquardt (e.g., [119]). Analogously

to [11], we introduce a weighting matrix Dl in the multi-frame registration approach

defined in (3.10):

∑
x∈Ω

1

Nl

∑
l

(
∇g∗k∇g∗Tk + Dl

)
U =

∑
x∈Ω

1

Nl

∑
l

∇g∗k (g?l − g∗k) , (3.11)

where Dl is a diagonal matrix which indicates whether the current estimate of U is close

to the solution or not. The elements of the matrix are given by:

Dl,nn = c wl(x)

(
∂g∗k
∂xn

)2

, (3.12)

where c is a constant (in our experiments we used c = 1.0). The weighting function

wl(x) is computed for each pixel x by:

wl(x) =
(‖∇g?l ‖ − ‖∇g∗k‖)

2

2 (‖∇g?l ‖2 + ‖∇g∗k‖2)
+

∣∣∣arccos
(
∇g?l ∇g

∗
k

‖∇g?l ‖‖∇g
∗
k‖

)∣∣∣
2π

, (3.13)

and quantifies the similarity between the image g∗k and each image g?l on the basis of the

image gradient magnitude (first term) and the gradient orientation (second term). For

identical gradients, the weight wl(x) is zero and for dissimilar gradients, wl(x) is close

to one.

The motivation for using the weighting function wl(x) in (3.11), (3.12) is as follows.

The linear approximation g∗k (x + U) ≈ g∗k (x) + ∇g∗Tk (x) U in (3.9) is generally good

for relatively small magnitude values of U. However, since higher order terms are
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neglected, the approximation may not be good for large magnitude values of U and the

solution in (3.10) can be subject to errors. In comparison, depending on the values of

the matrix Dl at each iteration in (3.11), the Levenberg-Marquardt method switches

between the Gauss-Newton method (i.e. the linear approximation used in the Lucas-

Kanade approach) and the steepest-descent method to improve the result. If the current

estimate is close to the solution (i.e. the magnitude value of U is small), the values of

Dl are small (since the values of wl(x) are small), and (3.11) becomes more similar

to the original formulation in (3.10). Otherwise, the values of Dl are larger and the

steepest-descent method is used.

3.5.2 Symmetric Approach

The second variant of the multi-frame approach is based on the pairwise symmetric

approach [11], which exploits the image gradient of both images g∗k and gk−1 and allows

to compute U in image regions where at least one of the image gradients ∇g∗k and ∇gk−1

is not a zero vector (or not close to a zero vector). Note, that using the image gradient of

both images is analogous to symmetric schemes for the demons approach (Thirion [34],

Yang et al. [49], Vercauteren et al. [50]). The multi-frame symmetric approach exploits

the gradients of the image at time point k and also the gradients of the previous Nl

images, and is based on the minimization problem:

min
U

∑
x∈Ω

1

Nl

∑
l

[
g∗k

(
x +

U

2

)
− g?l

(
x− U

2

)]2

. (3.14)

A linear expansion of (3.14) yields:

min
U

∑
x∈Ω

1

Nl

∑
l

[
g∗k +∇g∗Tk

U

2
− g?l +∇g?Tl

U

2

]2

. (3.15)
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Minimization of (3.15) leads to a linear system of equations which includes the gradients

of the image g∗k and the gradients of the images g?l :

∑
x∈Ω

1

Nl

∑
l

(∇g?l +∇g∗k) (∇g?l +∇g∗k)
T U

2
=

∑
x∈Ω

1

Nl

∑
l

(∇g?l +∇g∗k) (g?l − g∗k) . (3.16)

The multi-frame symmetric approach allows to compute U when at least one of the

gradients ∇g∗k or ∇g?l is not a zero vector (or not close to a zero vector). Thus, the

larger the number of frames N used by the multi-frame approach, the more likely is

that at least one of the N used image gradients is not a zero vector, and that a solution

for U can be computed.

3.5.3 Symmetric Weighting Approach

The third variant of the multi-frame approach combines the weighting approach with

the symmetric approach described above. The vector U in the multi-frame symmetric

weighting approach is obtained by:

∑
x∈Ω

1

Nl

∑
l

(
(∇g?l +∇g∗k) (∇g?l +∇g∗k)

T + Dl

)
U

2
=

∑
x∈Ω

1

Nl

∑
l

(∇g?l +∇g∗k) (g?l − g∗k) , (3.17)

with

Dl,nn = c wl(x)

(
∂g∗k
∂xn

+
∂g?l
∂xn

)2

, (3.18)

where c is a constant (we used c = 1.0) and wl(x) is defined as in (3.13).
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3.6 Temporal Weighting

In the proposed multi-frame registration approach, the image gk is simultaneously reg-

istered to the Nl previous warped images g?l of an image sequence. To compute the

deformation vector field u(gk, gk−1), each image g?l contributes equally. However, gen-

erally it is advantageous to control the influence of each image g?l on the registration

result. To this end, we compute a temporal weight Wl for each g?l , and use the normalized

weight W l = Wl/
∑

lWl. For the multi-frame weighting approach we then have:

∑
x∈Ω

∑
l

W l

(
∇g∗k∇g∗Tk + Dl

)
U =

∑
x∈Ω

∑
l

W l∇g∗k (g?l − g∗k) , (3.19)

which is an extension of (3.11). The extension for the two other variants of the multi-

frame approach in (3.16), (3.17) is analogous. The weights Wl can be defined based on

different criteria. In the following we describe two different possibilities for choosing Wl.

3.6.1 Temporal Distance

In the first temporal weighting scheme, we exploit the temporal distance between the

time points l and the time point k. For example, the influence of image g?k−1 is larger

than for g?k−2, thus Wk−1 > Wk−2. This is meaningful if we assume that an image g?l at

a time point closer to k is more similar to g∗k than an image g?l at a more distant time

point. Additionally, the computed deformation vector field for an image g?l at a time

point closer to k represents a relatively small deformation, and can be considered to be

more reliable. To determine the temporal weights we used a Gaussian function, which

within the range [k−Nl, k−1] takes its maximum value at k−1 and its minimum value

at k −Nl:

Wl =
1√

2πNl

e
− (l−(k−1))2

2N2
l . (3.20)

39



CHAPTER 3. NON-RIGID MULTI-FRAME REGISTRATION

3.6.2 Image Similarity

The second temporal weighting scheme is based on the similarity of the images g?l and

the image g∗k. As image similarity measure we use the mean Euclidean norm of the

differences of the image gradients between g∗k and each g?l . The temporal weights are

defined as follows:

Wl =
1

1
n

∑
x‖∇g?l −∇g∗k‖α

, (3.21)

where n denotes the total number of pixels in an image and the exponent α ∈ N controls

the strength of the image similarity (we used α = 4). The difference to computing the

weights in (3.20) is that the weights in (3.21) are computed at each iteration i since the

image g∗k is updated in (3.7) and thus requires longer computation times.
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Chapter 4

Diffeomorphic Non-Rigid

Multi-Frame Registration

In this chapter, we describe our diffeomorphic multi-frame approach for non-rigid reg-

istration of cell nuclei in 2D and 3D live cell fluorescence microscopy images. A diffeo-

morphic approach has the advantage that the determined transformations are invertible

and smooth. First, we give an overview of our approach. Then, we introduce the multi-

frame registration scheme based on a temporally weighted mean image. We describe the

employed iterative log-domain diffeomorphic registration scheme as well as two intensity-

based weighting approaches based on local optic flow estimation. Finally, we present

the used flow boundary preserving method for regularization of the deformation vector

fields. The work in this chapter was published in [120].

4.1 Overview of the Approach

An overview of our diffeomorphic multi-frame non-rigid registration approach is given

in Fig. 4.1. In our approach, each image gk of an image sequence at time point k ≥ 2

is registered to the reference image g1 at the first time point using the diffeomorphic

transformation φk,1 which is determined based on an incremental temporal registration
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scheme:

φk,1 = φk,k−1 ◦ φk−1,1, (4.1)

where the transformation φk−1,1 is computed analogously (recursively). The diffeomor-

phic transformation φk,k−1 is determined by exploiting the information from N ≥ 3

consecutive frames simultaneously, and can be described by a deformation vector field

uk,k−1 which is added to the identity transformation, i.e., φk,k−1 : x 7→ x+uk,k−1 (x). We

determine φk,k−1 using a temporally weighted mean image g?k−1 (see Section 4.2 below)

based on the previous N − 1 consecutive images (gk−N+1, ..., gk−1) and a log-domain

diffeomorphic method [10] which allows efficient computation of the inverse transforma-

tion φ−1
k,k−1. This method uses a Lie group structure [55] which defines an exponential

mapping from the vector space of smooth velocity fields to diffeomorphisms. Thus, the

diffeomorphic transformation φk,k−1 can be defined as an exponential of a smooth sta-

tionary velocity vector field vk,k−1 in the log-domain, i.e., φk,k−1 = exp (vk,k−1), and the

inverse transformation is given by φ−1
k,k−1 = exp(−vk,k−1). The velocity field vk,k−1 is

determined iteratively based on an update velocity field dv
(i)
k,k−1 (see Section 4.3 below).

Finally, the determined φk,1 is regularized using the corresponding deformation vector

field:

uk,1 ← F ∗ uk,1, (4.2)

where F is the flow boundary preserving operator (see Section 4.5 below).

4.2 Multi-Frame Non-Rigid Registration Using a Tem-

porally Weighted Mean Image

To compute the diffeomorphic transformation φk,k−1 in (4.1), the image gk is registered to

the temporally weighted mean image determined from the N − 1 previous images which

have been transformed using the computed inverse transformations from previous time
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steps. Note, that for k < N the temporally weighted mean image is determined based on

the k− 1 previous images. For a time point k, the temporal range of available previous

images gl is given by max(k − N + 1, 1) ≤ l ≤ k − 1, and the number of the available

previous images is given by Nl = min(N − 1, k − 1). The required transformations can

be computed recursively by composing the inverse transformations from previous time

points:

φl,k−1 = φ−1
l+1,l ◦ φl+1,k−1, (4.3)

where φ−1
l+1,l denotes the inverse transformation for the image at time point l + 1, and

φl+1,k−1 is computed analogously (recursively). Note, that φl,k−1 is diffeomorphic since

it is a composition of diffeomorphic transformations. The computed transformation is

regularized using the corresponding deformation vector field ul,k−1:

ul,k−1 ← F ∗ ul,k−1, (4.4)

where F is the flow boundary preserving operator (see Section 4.5 below). The tempo-

rally weighted mean image is given by:

g?k−1 =
∑
l

W l (gl ◦ φl,k−1) , (4.5)

where gl ◦ φl,k−1 denotes the image at time point l transformed with φl,k−1 and W l is

a normalized weight factor which controls the influence of the previous images on the

registration result. We determine the weights Wl using a Gaussian function and based

on the temporal distance between the time points l and k:

Wl =
1√

2πNl

e
− (l−(k−1))2

2N2
l . (4.6)
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The Gaussian function takes its maximum at k−1 and its minimum at k−Nl within the

range [k − Nl, k − 1]. A weighted mean image based on diffeomorphic transformations

has been also used for temporal groupwise registration of medical images (e.g., Lom-

baert et al. [121]). Note, that the temporal weighting scheme in (4.5) is analogous to

the temporal weighting scheme used in the non-diffeomorphic multi-frame registration

approach (see Section 3.6).

We compute the transformation φk,k−1 by minimizing for each time point k and for

each image point x = (x, y) or x = (x, y, z) the sum of squared intensity differences

between the image gk and the temporally weighted mean image g?k−1 in (4.5) within a

neighborhood region Ω:

∑
x∈Ω

(
(gk ◦ φk,k−1) (x)− g?k−1 (x)

)2
(4.7)

where gk ◦ φk,k−1 denotes the image at time point k transformed with the searched

transformation φk,k−1.

Note that our diffeomorphic multi-frame approach has several main differences to

the non-diffeomorphic multi-frame approach in Chapter 3. First, according to (4.7)

we compute the sum of squared intensity differences only between the image gk at

time point k and the temporal mean image g?k−1, whereas in (3.4) the sum of squared

intensity differences are computed betweenN−1 pairs of consecutive images (gk and each

gl ◦ φl,k−1). This reduces the computation time significantly and allows application to

3D image data. Second, our diffeomorphic multi-frame approach employs diffeomorphic

transformations compared to the multi-frame approach in Chapter 3 which guarantees

that the transformations as well as the compositions of transformations in (4.3) are

smooth and invertible.
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4.3 Computation of the Diffeomorphic Velocity Vec-

tor Field

The velocity vector field vk,k−1 used for determining the diffeomorphic transformation

φk,k−1 in (4.1) is computed iteratively in the log-domain. At each iteration i the current

v
(i)
k,k−1 is updated by [10]:

v
(i)
k,k−1 = F ∗

(
Z
(
v

(i−1)
k,k−1, G ∗ dv

(i)
k,k−1

))
, (4.8)

where dv
(i)
k,k−1 is an update vector field for the transformation between the image g∗k =

gk ◦ exp
(
v

(i−1)
k,k−1

)
and the temporal mean image g?k−1 (4.5), and G is a Gaussian kernel

for regularization of the update field. The employed update scheme ensures that the

computed transformation is diffeomorphic in contrast to the additive [42] or the com-

positive [122] update scheme. Z
(
v

(i−1)
k,k−1, G∗dv

(i)
k,k−1

)
denotes a velocity vector field such

that:

exp(Z(v, dv)) ≈ exp(v) ◦ exp(dv), (4.9)

where for simplicity v = v
(i−1)
k,k−1 and dv = G∗dv(i)

k,k−1. This velocity vector field is

determined using the Baker-Campbell-Hausdorff formula [123]:

Z(v, dv) = v + dv +
1

2
[v, dv] +

1

12
[v, [v, dv]] , (4.10)

where the Lie bracket [v, dv] represents a vector field at each position x:

[v, dv](x) = Jac(v)(x) dv(x)− Jac(dv)(x) v(x), (4.11)

where Jac denotes the Jacobian of the respective vector field. The iteration terminates

either when a certain number of iterations is reached or when the sum of squared inten-

sity differences in (4.7) is below a threshold value.
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4.4 Intensity-Based Non-Rigid Diffeomorphic Multi-

Frame Registration based on Local Optic Flow

For minimizing the sum of squared intensity differences in (4.7), we use two local

intensity-based optimization variants of the non-rigid diffeomorphic multi-frame reg-

istration approach.

4.4.1 Weighting Approach

The first variant is based on a local weighting optimization scheme which was previously

used in our non-diffeomorphic approach described in Chapter 3 above [118, 124]. In our

diffeomorphic multi-frame weighting approach, we minimize for each image point xc of an

image the sum of squared intensity differences between the image g∗k = gk ◦ exp
(
v

(i−1)
k,k−1

)
and the temporally weighted mean image g?k−1 within the neighborhood region Ω. The

approach includes a weighting matrix and performs an optimization similar to the

method of Levenberg-Marquardt (e.g., [119]). The optimization is performed for each

time point k over the neighborhood region Ω around each voxel xc of an image, where

a vector V at the position xc of the update vector field dv
(i)
k,k−1 (4.8) in the log-domain

is computed by:

∑
x∈Ω

(
∇g∗k∇g∗Tk + D

)
V =

∑
x∈Ω

∇g∗k
(
g?k−1 − g∗k

)
, (4.12)

where ∇g∗k denotes the gradient of the image g∗k at voxel x, and the weighting matrix D

is a diagonal matrix which indicates whether the current estimate of V is close to the

solution or not. The elements of D are given by:

Dnn = c w(x)

(
∂g∗k
∂xn

)2

, (4.13)
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where c is a constant (in our experiments we used c = 1.0). The weighting function

w(x) is computed for each pixel x by:

w(x) =

(
‖∇g?k−1‖ − ‖∇g∗k‖

)2

2
(
‖∇g?k−1‖2 + ‖∇g∗k‖2

) +

∣∣∣arccos
(
∇g?k−1∇g

∗
k

‖∇g?k−1‖‖∇g
∗
k‖

)∣∣∣
2π

, (4.14)

and quantifies the similarity between the image g∗k and the temporal mean image g?k−1

on the basis of the image gradient magnitude (first term) and the gradient orientation

(second term). For identical gradients, w(x) is zero and for dissimilar gradients, w(x)

is close to one.

4.4.2 Symmetric Weighting Approach

The second variant of our diffeomorphic multi-frame registration approach is based on

a local symmetric weighting optimization scheme which was previously used in our

non-diffeomorphic approach described in Chapter 3 above [118]. Our diffeomorphic

symmetric weighting approach exploits the gradients of the image at time point k and

the gradient of the temporally weighted mean image g?k−1. A vector V of the update

vector field dv
(i)
k,k−1 in (4.8) in the log-domain is computed by:

∑
x∈Ω

((
∇g?k−1 +∇g∗k

) (
∇g?k−1 +∇g∗k

)T
+ D

)
V

2
=

∑
x∈Ω

(
∇g?k−1 +∇g∗k

) (
g?k−1 − g∗k

)
, (4.15)

with the elements of the weighting matrix D given by:

Dnn = c w(x)

(
∂g∗k
∂xn

+
∂g?k−1

∂xn

)2

, (4.16)

where c is a constant (we used c = 1) and w(x) is defined as in (4.14). The diffeomorphic

multi-frame symmetric weighting approach allows to compute the vector V when at least
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one of the two gradients ∇g∗k or ∇g?k−1 is not a zero vector (or not close to a zero vector).

4.5 Flow Boundary Preserving Smoothing of Vector

Fields

In previous non-parametric registration approaches typically Gaussian filters were used

for regularization of deformation vector fields (e.g., [10, 118]). In our diffeomorphic non-

rigid registration approach, we use a method which prevents over-smoothing across flow

boundaries. Flow boundaries represent discontinuities in a vector field, i.e., neighboring

vectors have strongly different directions. In our diffeomorphic non-rigid registration

approach we employ a flow boundary preserving method [125] which was previously used

for optic flow computation and determines the smoothed vector U∗xc
at each position of

the deformation vector field uk,k−1 as the weighted average of the vectors Uxi
of uk,k−1

within the neighborhood ΩFB:

U∗xc
=

∑
xi∈ΩFB

wxi
Uxi

, (4.17)

where xc denotes the center position and xi are positions in the neighborhood ΩFB. We

compute the weight wxi
for each vector based on the Euclidean distance between the

positions xc and xi, and the intensity difference between the corresponding positions in

the image gk:

wxi
= exp

(
−‖xc − xi‖2

σ2
dist

− |gk(xc)− gk(xi)|
2

σ2
int

)
, (4.18)

where σdist and σint control the influence of the Euclidean distance between the positions

and the intensity difference, respectively. The weight wxi
describes how likely the voxels

at positions xi and xc belong to the same image region.

In Fig. 4.2, an example for smoothing two deformation vector fields using the flow

boundary preserving method in comparison to using a Gaussian kernel with standard
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deviation σG is shown for cropped regions of two 2D vector fields for cell nuclei registra-

tion. For the Gaussian kernel we used σG = 1 pixel (we used a kernel size of 5×5 pixel),

and for the flow boundary preserving method we used σdist = 2 pixel, σint = 4, and a

5× 5 pixel neighborhood for ΩFB. For both deformation vector fields, the region in the

center of the figures is located on a flow boundary (the vectors in this region have very

different directions). It can be seen, that using a Gaussian kernel in Figs. 4.2(a) and

4.2(c) results to over-smoothing, yielding close to zero vectors or vectors with signifi-

cantly reduced magnitude in the center due to the averaging of the original vectors with

very different directions (e.g., cf. the vector at coordinate x = (211, 239) in Fig. 4.2(a),

and the vector at coordinate x = (174, 182) in Fig. 4.2(c)). In comparison, the flow

boundary preserving method in Figs. 4.2(b) and 4.2(d) better preserved vectors on the

flow boundary, and neighboring vectors at image points with similar intensities have sim-

ilar direction. These examples demonstrate that the flow boundary preserving method

is superior to Gaussian smoothing at flow boundaries, however, the computation time

is also higher.

To reduce the computation time of our non-rigid registration approach we use the flow

boundary preserving method only for vectors located at flow boundaries, while vectors

in homogeneous regions of the vector field are smoothed using a Gaussian kernel [125].

We detect flow boundaries based on the gradient magnitude of the deformation vector

field:

UFB
x = {Ux | ‖∇Ux‖ ≥ ‖∇u‖+ c σ‖∇u‖}, (4.19)

where ‖∇u‖ and σ‖∇u‖ denote the mean and standard deviation of the Euclidean norm of

the gradients of the vector field, respectively, and c is a weighting factor (we used c = 1).

In our non-rigid registration approach we use this smoothing scheme for regularization

of the vector fields in (4.4), (4.8), and (4.2).
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Figure 4.2: Examples demonstrating the smoothing of two deformation vector fields
using a Gaussian kernel (a, c), and the flow boundary preserving method (b, d). Red
arrows depict the original vectors and yellow arrows depict the smoothed vectors.
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Chapter 5

Experimental Results

In this chapter, we present our experimental results for the developed multi-frame (Chap-

ter 3) and the diffeomorphic multi-frame (Chapter 4) non-rigid registration approaches.

We use synthetic as well as real microscopy image sequences displaying cell nuclei going

into mitosis to study the performance of the approaches and to perform a quantitative

comparison with previous non-rigid registration approaches. In Section 5.1, we first

describe the used 2D and 3D live cell fluorescence microscopy image data, and in Sec-

tions 5.2 and 5.3 we present the results of applying our multi-frame and our diffeomorphic

multi-frame registration approaches, respectively.

5.1 Image Data

We have used four 2D and two 3D real live cell microscopy image sequences (denoted

as A, B, C, D, for the 2D, and E, F, for the 3D sequences). The 2D data consist of

100 up to 200 images with a size of 384 × 384 up to 512 × 512 pixel, and the 3D data

consist of 100 images with a size of 512 × 512 × 10 and 512 × 512 × 15 voxel (see Ta-

ble 5.1). The data has kindly been provided by Y.-C. Chen and D.L. Spector, Cold

Spring Harbor Laboratory. For the acquisition of the images, a DeltaVision RT wide-

field microscope (Applied Precision) at a resolution of 0.216µm × 0.216µm for the 2D
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Real image Image size Number of

sequence [pixel/voxel] time points

2D

A 512× 512 150

B 384× 384 200

C 512× 512 100

D 512× 512 149

3D
E 512× 512× 15 100

F 512× 512× 10 100

Table 5.1: Real live cell microscopy image data used for the experimental evaluation.

sequences, and 0.216µm× 0.216µm× 0.5µm as well as 0.216µm× 0.216µm× 1.5µm for

the 3D sequences was used. The image sequences consist of two channels: the first chan-

nel displays nuclei of human live cells (U2OS cell line) with different chromatin stainings

(H2A-mCherry, YFP-SP100 with Hoechst), and the second channel displays subcellular

particles (CFP stained PML bodies). Our approaches are applied for registration of the

nucleus channel. The cells depicted in the investigated image sequences are going into

mitosis and therefore strong changes in the intensity structure and strong deformations

occur. In addition, the intensities of the cell nuclei decrease over time due to photo-

bleaching. The real image data was used for quantitative evaluation of our approaches

and comparison with previous approaches (Sections 5.2.2 and 5.3.3). We also used the

real image data for generating synthetic image sequences (see Sections 5.2.1 and 5.3.2).

In the experiments based on synthetic data we investigated the influence of image noise

as well as intensity scaling.

5.2 Non-Rigid Multi-Frame Registration

5.2.1 Synthetic Image Data

In this section, we describe experimental results of applying the non-rigid multi-frame

registration approach described in Section 3 to synthetic image data. To simulate the
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motion and deformation of cell nuclei over time, we have generated four 2D synthetic

image sequences (denoted by S1, S2, S3, S4) using the first frame of different real 2D real

microscopy image sequences (sequences A-D, see Table 5.1) and computed registration

results for the real data. An advantage of the generated image sequences is that, on the

one hand, we have ground truth for the evaluation, and, on the other hand, the image

quality is very similar to real data. We used the first image g1 from the nucleus channel

of a real image sequence as well as the computed deformation vector fields u(gk, g1)

over time using the pairwise weighting registration approach. To generate the synthetic

image data, we used the inverted vector fields to transform the image g1 yielding images

at subsequent time points of an image sequence:

g•k = g1

(
T
(
x,u−1

k,1

))
. (5.1)

The inverse vector field is computed as follows. For each pixel of an image we determine

a number of vectors (we used three vectors) of the original vector field which point

closest to the pixel. Then, the weighted average of these vectors is computed (using

the Euclidean distance as weight) and its negative vector is used as inverse vector for

this pixel. Finally, for regularization we smooth the inverse vector field with a Gaussian

kernel of σ = 1 pixel.

We have applied our non-rigid multi-frame registration approach to the synthetic

image data and compared for each time point the computed vector field with the re-

spective ground truth vector field. As performance measure we used the endpoint error

(EE), which is often used for evaluation of optic flow approaches (e.g., [126]), and is

defined by:

EE = ‖U−UGT‖, (5.2)

where U and UGT are vectors of the computed vector field and the ground truth vector

field, respectively. The mean endpoint error EEmean over all computed vectors of a cell
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nucleus was determined for each time point. For our multi-frame registration approach

we used different numbers of multiple frames (N = 3, 5, 10, 20, 30, 50) and compared

the results with pairwise registration (N = 2). In all our experiments we used σ = 2

pixel for the standard deviation of the Gaussian kernel for regularization of the vector

fields. The value for the standard deviation was determined empirically and is a good

compromise. Generally, the width of the Gaussian kernel should not be chosen too small

(since the regularization effect would be too weak) and should not be chosen too large

(since this would result in oversmoothing of the vector fields).

As an example, in Fig. 5.1(a) the result of EEmean over time for a synthetic image

sequence using the multi-frame weighting registration approach is shown. It can be

seen, that compared to the pairwise approach the error for the multi-frame approach

is lower for all different values of N and for all time points. The registration result

improves with increasing N . The lowest error averaged over all time points (EEmean)

is obtained for N = 50, resulting an improvement of 29.8% compared to the pairwise

approach. The results for all four synthetic image sequences and the three variants of the

multi-frame registration approach are shown in Table 5.2 (columns “Original synthetic

sequences”). In all cases, the multi-frame approach with N = 3 yields better results

than the pairwise approach, and the result is further improved by increasing N up to

a certain value. Averaging EEmean over the four image sequences (column “Average”),

the lowest error is obtained for N = 30 for all three variants of the multi-frame approach

yielding an improvement of 24% − 29% compared to pairwise registration. The lowest

error among the three variants is obtained with the multi-frame symmetric approach.

Additionally, we have computed the standard deviation for the errors of the four image

sequences for each N (columns “Std”). It turns out, that in all cases the standard

deviation for the multi-frame approach is smaller compared to pairwise registration.

Note, that the averaged errors differ significantly for the different image sequences. A

main reason is that the strength of the deformations in the different image sequences
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(a) Original synthetic sequence

(b) Synthetic sequence with Gaussian noise and random intensity scaling

Figure 5.1: EEmean for the (a) original and (b) modified synthetic image sequence S2
as a function of time for multi-frame registration (for different values of N ≥ 3) and
pairwise registration (N = 2). The weighting approach was used.
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differs significantly. We computed the mean length of the ground truth displacements

in the image sequences S1, S2, S3, S4 as a measure for the strength of the deformations,

and obtained values of 6.78, 13.34, 29.90, and 20.45 pixel, respectively. These values

correspond with the averaged errors, for example, for S3 and S4 the relatively large errors

correspond to large values of the mean displacements (Table 5.2, first four columns of

“Original synthetic sequences”).

To increase the level of difficulty for registration, we added Gaussian noise with

standard deviation σn = 3 pixel. In addition, we generated synthetic image data which

simulates cell nucleus intensity variations over time by scaling the intensities of the noisy

data by a uniformly distributed random factor ρk (0.95 ≤ ρk ≤ 1.05) multiplied with the

intensity values. The random factor is determined for each time point independently.

The results for these more difficult synthetic image sequences can be found in the cor-

responding columns of Table 5.2. It can be seen, that the error increased (as expected),

but also in this case the multi-frame approach outperforms the pairwise approach (for

all values of N). Averaging the errors over all four image sequences, the best result is

obtained by the multi-frame approach for N = 30, for all three variants. The improve-

ments are 34% − 40% for the sequences with Gaussian noise, and 35% − 41% for the

sequences with Gaussian noise and intensity scaling. The lowest error in the first case is

obtained by the symmetric approach and in the second case by the weighting approach.

In Fig. 5.1(b) an example of EEmean over time using the pairwise and the multi-frame

weighting approach for a synthetic sequence with added Gaussian noise and intensity

scaling is shown. The image sequence used in this example is the same as for Fig. 5.1(a).

We can observe, that the multi-frame approach yields a better result than the pairwise

approach. The lowest value of EEmean is obtained for N = 50, yielding an improvement

of 44.6%.

To investigate whether the improvement of the multi-frame approach compared to

pairwise registration is statistically significant, we performed a Wilcoxon signed-rank
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(a) (b) (c)

(d) (e) (f)

Figure 5.2: Overlays of images for time points 1 (red) and 50 (green) of the synthetic
image sequence S4 with Gaussian noise and random intensity scaling for (a) the unreg-
istered images, and for the registered images using (b) the pairwise weighting approach
and (c) the multi-frame weighting approach (N = 20). (d)-(f) Enlarged sections for the
marked regions in (a)-(c). Yellow indicates overlapping intensities.

test (non-parametric test). Prior application of a Shapiro-Wilk test showed that the

data does not follow a normal distribution in all 54 cases (3 registration variants, 3

classes of image sequences, 6 different values of N). Using the Wilcoxon signed-rank

test we obtained p < 0.063 in all 54 cases. Thus, the multi-frame approach yields a

statistically significant improvement compared to pairwise registration. For a visual

inspection of the results we show an overlay of the cell nuclei for two different time

points, before and after registration using the pairwise and the multi-frame approach

for N = 20 (Fig. 5.2). It can be seen, that the alignment of the nuclei improved using

the multi-frame approach.

To quantify the influence of Gaussian noise and intensity scaling on the registration

results we averaged EEmean of Table 5.2 (columns “Average”) over the three variants
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Gaussian noise Gaussian noise and

intensity scaling

pairwise +23.1% +43.8%

m
u
lt

i-
fr

am
e

N = 3 +16.7% +33.6%

N = 5 +11.0% +28.5%

N = 10 +3.9% +18.8%

N = 20 +6.6% +21.4%

N = 30 +6.0% +21.3%

N = 50 +6.3% +20.1%

Table 5.3: Changes in percentage of EEmean for the modified synthetic image sequences
w.r.t. the error in the original synthetic sequences. The changes have been computed
using the EEmean values from Table 5.2 (columns “Average”) averaged over the three
variants of the registration approach.

of the pairwise and the multi-frame approach, and compared the errors for the more

difficult synthetic sequences (Gaussian noise, Gaussian noise and intensity scaling) with

those for the original synthetic sequences. The differences in percentage can be found in

Table 5.3. We can observe, that for both cases the error has been increased, as expected.

However, the increase is higher for the pairwise approach and the multi-frame approach

for small N (N = 3, 5), while for larger values of N (N = 10, 20, 30, 50) the increase of

the error is lower. This shows that the multi-frame approach is more robust to Gaussian

noise and intensity scaling than the pairwise approach, and a larger N increases the

robustness.

Furthermore, we studied the influence of the standard deviation σn of the Gaussian

noise on the registration result for different values of N . We added Gaussian noise with

different values of σn (σn = 1, 3, 5, 7, 9 pixel) to the synthetic image sequence S2 and

applied the pairwise as well as the multi-frame weighting approach. The results can

be found in Fig. 5.3. It can be seen, that for all values of σn the error for the multi-

frame approach is lower compared to pairwise registration, and the error is decreasing

for increasing N .
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Figure 5.3: EEmean as a function of the standard deviation σn of Gaussian image noise
for the synthetic image sequence S2, for the pairwise and the multi-frame weighting
approach.

5.2.2 Real Image Data

We have also applied our non-rigid multi-frame registration approach to the 2D real

microscopy image data of live cells. First, we studied the convergence properties of

the multi-frame registration approach based on two metrics: The root mean squared

(RMS) intensity differences and the correlation coefficient (CC). For the multi-frame

approach we used different numbers of multiple frames (N = 3, 5, 10, 20, 30, 50), and in

all our experiments we used σ = 2.0 pixels for the standard deviation of the Gaussian

kernel for regularization of the vector fields. We computed the mean RMS and the

mean CC for each iteration (we used 10 iterations) averaged over all image pairs of

the transformed gk and g?l (using (3.4)) as well as over all time points of an image

sequence. Fig. 5.4 shows an example of both metrics for the multi-frame and the pairwise

symmetric weighting approach applied to one real image sequence. It can be seen, that

the multi-frame approach (for the different values of N) and the pairwise approach

converge and have a similar rate. We can also observe, that the RMS values of the multi-

frame approach are larger and the CC values are smaller than the corresponding values
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of the pairwise approach (except for N = 3 for which the multi-frame approach yields

a slightly better result than pairwise registration). This is what we expect, since the

multi-frame approach is based on the minimization of the sum of mean squared intensity

differences between several images, while in pairwise registration the minimization is

computed only between two images. To provide further evidence on this, we computed

the mean RMS between each registered image and the reference image (first image)

for the same real image sequence (Fig. 5.5). This metric describes the quality of the

registration for the whole image sequence. It can be seen that the multi-frame approach

yields a lower error than pairwise registration.

Second, we performed a quantitative evaluation of the multi-frame approach based

on manually tracked structures in the nucleus channel of the image sequences. For each

sequence, positions of 9 spot-like structures within cell nuclei were tracked for 38 up

to 125 subsequent time points. For each structure and each time point we computed

the registration error as the Euclidean distance of the current position of the structure

(center of gravity) to its position in the image at the first tracked time point. In Fig. 5.6

we show an example of the registration error for one spot-like structure in the image

sequence B when applying the multi-frame symmetric weighting approach for different

values ofN (N = 3, 5, 10, 20, 30, 50). It can be seen, that the multi-frame approach yields

a better result compared to the pairwise approach (grey line) and the error decreases

with increasing N . We also computed the mean registration error emean over all time

points. It turns out, that multi-frame registration with N = 10 reduces emean by 16%

compared to pairwise registration, and for N = 20 and N = 50 the improvement is 22%

and 40%, respectively. In Fig. 5.7 the original and the registered images at time point 60

overlaid with the positions of the 9 tracked spot-like structures are displayed. It can be

seen, that the displacements of the positions over time w.r.t. the ground truth positions

at the first frame (which represent the registration error) for the multi-frame approach

are much smaller compared to the unregistered case and smaller compared to pairwise
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(a) Mean RMS

(b) Mean CC

Figure 5.4: (a) Mean of root mean squared (RMS) intensity error and (b) mean of
correlation coefficient (CC) averaged over all time points for each iteration step. The
multi-frame and the pairwise symmetric weighting approach was applied to the real
image sequence C.
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Figure 5.5: Mean of root mean squared (RMS) intensity error between each registered
image and the reference image of the image sequence C using the multi-frame and the
pairwise symmetric weighting approach.

Figure 5.6: Registration error for one spot-like structure in the real image sequence B as
a function of time for the multi-frame and the pairwise symmetric weighting approach.
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(a) Unregistered

(b) Pairwise weighting approach (c) Multi-frame weighting approach
(N = 10)

Figure 5.7: Positions over time for 9 spot-like structures overlaid with an image (t = 60)
from image sequence B (nucleus channel). In (a) the original image and positions over
time for the unregistered case are shown, and in (b) and (c) the registered images and
positions over time for the pairwise and the multi-frame registration approaches are
shown.

registration (in particular for the structures 3, 5, and 9). Note that at the border of a

nucleus the deformations are generally larger than in the center and therefore also the

registration improvement is larger there.

The results for the mean error averaged over all 9 spot-like structures (emean) for the

image sequence B are shown in Table 5.4 (column “Without temporal weighting”) for

each of the three variants of the multi-frame approach. It can be seen that for all three
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[pixels] Without temporal Temporal weighting Temporal weighting

weighting based on based on

temporal distance image similarity

emean emax emean emax emean emax

unregistered 13.97 26.16 13.97 26.16 13.97 26.16

W
ei

gh
ti

n
g

pairwise 2.87 6.09 2.87 6.09 2.87 6.09

m
u
lt

i-
fr

am
e

N = 3 2.76−4% 5.83−4% 2.78−3% 5.91−3% 2.79−3% 5.80−5%

N = 5 2.52−12% 5.56−9% 2.58−10% 5.61−8% 2.60−10% 5.61−8%

N = 10 2.33−19% 5.21−14% 2.47−14% 5.43−11% 2.45−15% 5.32−13%

N = 20 2.21−13% 8.07+32% 2.51−12% 5.45−11% 2.42−16% 5.33−12%

N = 30 2.14−25% 8.47+39% 2.48−14% 5.67−7% 2.38−17% 5.98−2%

N = 50 2.53−12% 9.75+60% 2.49−13% 6.60+8% 2.45−14% 7.00+15%

S
y
m

m
et

ri
c

pairwise 2.97 6.20 2.97 6.20 2.97 6.20

m
u
lt

i-
fr

am
e

N = 3 2.74−8% 5.80−7% 2.77−7% 5.91−5% 2.70−9% 5.66−9%

N = 5 2.46−17% 5.48−12% 2.32−22% 5.23−16% 2.47−17% 5.37−13%

N = 10 2.32−22% 5.33−14% 2.27−24% 5.09−18% 2.27−23% 5.04−19%

N = 20 2.32−22% 7.97+28% 2.27−24% 5.16−17% 2.23−25% 4.97−20%

N = 30 2.29−23% 8.10+31% 2.27−24% 5.26−15% 2.18−27% 4.85−22%

N = 50 2.10−29% 7.95+28% 2.26−24% 5.95−4% 2.20−26% 5.33−14%

S
y
m

m
et

ri
c

w
ei

gh
ti

n
g pairwise 2.84 6.05 2.84 6.05 2.84 6.05

m
u
lt

i-
fr

am
e

N = 3 2.70−5% 5.79−4% 2.73−4% 5.86−3% 2.74−3% 5.88−3%

N = 5 2.47−13% 5.45−10% 2.49−12% 5.46−10% 2.54−10% 5.51−9%

N = 10 2.32−18% 5.51−9% 2.40−16% 5.36−11% 2.40−15% 5.37−11%

N = 20 2.53−11% 8.12+34% 2.53−11% 5.89−3% 2.52−11% 5.56−8%

N = 30 2.54−11% 8.79+45% 2.56−10% 7.21+19% 2.48−13% 5.63−7%

N = 50 2.70−5% 10.17+68% 2.59−9% 7.76+28% 2.57−9% 7.25+20%

Table 5.4: Registration error for 9 spot-like structures of the real image sequence B
using three variants of the multi-frame and pairwise registration combined with different
temporal weighting schemes. Percentages indicate the change to pairwise registration.

variants the multi-frame approach with N = 3 yields a lower error than the pairwise

approach, and the error is further reduced by increasing N up to a certain value. The

value of N for which the result is best generally varies depending on the image sequence

and on the variant of the multi-frame approach. For the weighting, the symmetric, and

the symmetric weighting approach the best result is obtained for N = 30, N = 50,
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and N = 10, respectively, yielding an improvement of 25%, 29%, and 18% compared

to pairwise registration. The lowest error is obtained with the symmetric approach

(emean = 2.10 pixel).

To study the reliability of the registration results in terms of outliers we also deter-

mined the maximum registration error emax for all 9 spot-like structures. The maximum

error averaged over all structures (emax) of the image sequence B is shown in Table 5.4

(column “Without temporal weighting”). Compared to pairwise registration, multi-

frame registration with N = 3, 5, and 10 reduces emax for all three variants, and the

best result is obtained for either N = 10 or N = 5 (depending on the variant) yielding

an improvement of 10%− 14%. For N = 20, 30, 50, emax is larger than for pairwise reg-

istration, which is an indication of outliers due to the very different intensity structure

of the nuclei within the relatively large temporal range (N ≥ 20 time points).

An example for outliers in the results for a tracked structure using the multi-frame

symmetric approach for image sequence B is shown in Fig. 5.8(a). It can be seen, that

in this image sequence for certain time points around t = 100 and for the multi-frame

approach with N = 20, 30, 50 the errors are very large. To reduce the errors we have used

the two temporal weighting schemes (temporal distance, image similarity) described in

Section 3.6. From the results in Fig. 5.8(b) and 5.8(c) it can be seen, that the outliers

have been significantly reduced for both temporal weighting schemes. The errors at

the other time points have been slightly increased. Note that for this image sequence

the errors at the end of the sequence decrease for all approaches as well as for the

unregistered case since the cell is moving back to its initial location. The results for all

9 spot-like structures and for both temporal weighting schemes are shown in Table 5.4.

We can observe, that for both schemes and for all three variants with N = 3, 5, 10, the

values for emax are similar as in the case without temporal weighting. On the other

hand, emax is significantly lower for N = 20, 30, 50. For the symmetric and symmetric

weighting approach the lowest values for emax are obtained by the temporal weighting
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(a) Without temporal weighting

(b) Temporal weighting based on temporal distance

(c) Temporal weighting based on image similarity

Figure 5.8: Registration error for one spot-like structure in the real image sequence B as
a function of time for the multi-frame symmetric approach without and with temporal
weighting, and the pairwise symmetric approach.
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Temporal weighting Temporal weighting

based on based on

temporal distance image similarity

emean emax emean emax

m
u
lt

i-
fr

am
e

N = 3 +1.1% +1.5% +0.4% −0.5%

N = 5 −0.9% −1.2% +2.1% −0.0%

N = 10 +2.5% −1.1% +2.3% −2.0%

N = 20 +3.8% −31.7% +1.7% −34.3%

N = 30 +5.0% −28.5% +1.0% −35.1%

N = 50 +0.1% −27.1% −1.5% −29.7%

Table 5.5: Changes in percentage of emean and emax for the multi-frame registration
approach using temporal weighting compared to the errors without temporal weighting.
The changes have been computed using the error values for the real image sequence B
from Table 5.4 averaged over the three variants of the multi-frame approach.

schemes. For emean, in most cases we can observe a slight increase for the temporal

weighting schemes compared to using no temporal weighting.

We also computed the changes in percentage for the registration error for the multi-

frame approach using the two temporal weighting schemes in comparison to using no

temporal weighting. The results averaged over the three variants of the multi-frame

approach can be found in Table 5.5. We can observe, that for both temporal weighting

schemes and for N = 3, 5, 10, emax has not changed significantly while for N = 20, 30,

50, emax is significantly lower. For both temporal weighting schemes we can observe for

most values of N a slight increase of emean. It also turns out, that the temporal weighting

scheme based on image similarity with gradient differences yields in most cases better

results than the scheme based on temporal distance.

Finally we have applied the multi-frame registration approach with temporal weight-

ing based on image similarity for different values of N to all four real image sequences

(Table 5.6). It can be seen, that we obtain similar results for the different image se-

quences. The best result for emean averaged over all four sequences is obtained forN = 10

or N = 50 (depending on the variant) and yields an improvement of 20%− 24%, com-
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pared to the respective pairwise registration. Note, that the results for N = 10, 20,

30, 50 are very similar. For emax the best result is obtained for N = 20 or N = 30,

which is an improvement of 11%− 16%, compared to pairwise registration. The lowest

value for emean is obtained with the multi-frame weighting approach (N = 50), and the

lowest value for emax is obtained with the multi-frame symmetric weighting approach

(N = 30).

To investigate whether the improvement of the multi-frame approach compared to

pairwise registration for the real image sequences is statistically significant, we performed

a Wilcoxon signed-rank test (non-parametric test). Prior application of a Shapiro-Wilk

test showed that the data does not follow a normal distribution in all 18 cases (3 registra-

tion variants, 6 different values of N). Using the Wilcoxon signed-rank test we obtained

p < 0.0009 in all 18 cases. Thus, the multi-frame approach yields a statistically signif-

icant improvement compared to pairwise registration. We also performed a statistical

test on the improvement between the multi-frame approach and pairwise registration

compared (normalized) to the unregistered case (Wilcoxon signed-rank test, symmetric

weighting approach) which yielded p < 0.008 in all 18 cases. Thus, the improvement of

the multi-frame approach is statistically significant compared to the unregistered case

as well.

In addition, we have performed an experimental comparison with the temporal group-

wise registration approach of Metz et al. [12] which is based on B-splines and was pre-

viously applied for the registration of medical image data (CT, MR, and US images

of the heart and the lung). With this approach, all images of an image sequence are

registered simultaneously by minimizing the sum of mean squared intensity differences

between all images and the mean image of the whole sequence. For our comparison, we

used the implementation of the approach in elastix [127]. We have applied the temporal

groupwise registration approach to image sequence B using a grid spacing of 16 × 16

pixel and each time point as well as three multiresolution levels. We tested different val-
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[pixels] emean emax

Sequence

A B C D Average Average

unregistered 6.56 13.97 26.65 27.84 18.76 33.26
W

ei
gh

ti
n
g

pairwise 3.23 2.87 4.39 7.08 4.39 9.61
m

u
lt

i-
fr

am
e

N = 3 3.03 2.79 3.87 6.51 4.05−8% 9.16−5%

N = 5 3.09 2.60 3.67 5.81 3.79−14% 8.90−7%

N = 10 2.99 2.45 3.56 5.31 3.58−19% 8.58−11%

N = 20 2.83 2.42 3.60 5.35 3.55−19% 8.58−11%

N = 30 2.78 2.38 3.54 5.27 3.49−20% 8.78−9%

N = 50 2.75 2.45 3.52 5.23 3.49−21% 9.13−5%

S
y
m

m
et

ri
c

pairwise 3.70 2.97 4.95 7.06 4.67 10.13

m
u
lt

i-
fr

am
e

N = 3 3.44 2.70 4.26 6.03 4.11−12% 9.27−9%

N = 5 3.31 2.47 3.94 5.70 3.85−18% 9.03−11%

N = 10 3.20 2.27 3.91 5.30 3.67−21% 8.74−14%

N = 20 3.11 2.23 3.79 5.18 3.58−23% 8.49−16%

N = 30 3.11 2.18 3.74 5.14 3.54−24% 8.46−16%

N = 50 3.11 2.20 3.73 5.12 3.54−24% 8.47−16%

S
y
m

m
et

ri
c

W
ei

gh
ti

n
g pairwise 3.39 2.84 4.79 6.90 4.48 9.63

m
u
lt

i-
fr

am
e

N = 3 3.21 2.74 4.03 6.30 4.07−9% 9.08−6%

N = 5 3.14 2.54 3.71 5.73 3.78−16% 8.89−8%

N = 10 3.14 2.40 3.53 5.19 3.57−20% 8.57−11%

N = 20 3.15 2.52 3.56 5.35 3.65−19% 8.36−13%

N = 30 3.18 2.48 3.48 5.28 3.60−20% 8.26−14%

N = 50 3.20 2.57 3.46 5.19 3.61−20% 8.96−7%

Table 5.6: Registration error for 9 tracked spot-like structures for four real image se-
quences using the three variants of the multi-frame approach with temporal weighting
based on image similarity and the pairwise approach. Percentages indicate the change
compared to pairwise registration.

ues for the grid spacing and used the grid with the best result. In Fig. 5.9 we show an

example of the registration error for a spot-like structure in image sequence B using the

temporal groupwise registration approach in comparison to our multi-frame symmetric

weighting approach (N = 10, with temporal weighting based on image similarity). It

can be seen, that the temporal groupwise registration approach yields the lowest errors

for time points in about the middle of the sequence, which is what we expect since the
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Figure 5.9: Registration error for one spot-like structure in the real image sequence B
as a function of time for the temporal groupwise approach of Metz et al. [12] and the
multi-frame symmetric weighting approach (N = 10).

images at these time points are most similar to the mean image. However, for time

points away from the middle time point the error increases strongly. In comparison,

our multi-frame registration approach yields significantly lower errors (except for time

points in the middle) and the variation of the errors is smaller over the image sequence.

The mean error for the temporal groupwise approach computes to emean = 8.38 pixel,

while our approach yields a significantly lower error of emean = 2.34 pixel. When consid-

ering all 9 spot-like structures for image sequence B, the temporal groupwise approach

yields emean = 8.38 pixel (same value as before), while for our approach we obtain

emean = 2.40 pixel (cf. Table 5.4). We also computed the mean error over all four

real image sequences (analogously to the result in Table 5.6). The temporal groupwise

approach yields emean = 12.91 pixel and for our approach we obtain emean = 3.57 pixel.

Thus our approach yields a better result.

The computation time for the multi-frame registration approach is proportional to

the chosen number of frames N . We determined the computation time for 100 images

of the live cell microscopy image sequence B with a size of 384 × 384 pixels. The
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experiments were run on a workstation under Linux with an Intel Xeon E5530 CPU

(2.4 GHz). The computation time for the pairwise weighting approach was 40 min,

while the multi-frame weighting approach with N = 3, 10, and 30 took 1 h 16 min,

4 h 26 min, and 12 h 49 min, respectively. Note, that our implementation is currently

not parallelized and further optimization is possible, thus the computation time can be

further reduced.

5.3 Diffeomorphic Non-Rigid Multi-Frame Registra-

tion

In this section, we present experimental results for the diffeomorphic multi-frame non-

rigid registration approach described in Chapter 4.

5.3.1 Parameter Setting

For our diffeomorphic multi-frame non-rigid registration approach the same parameter

setting was used for all 2D and 3D image data. We have determined the parameter

setting based on the real and synthetic image sequences (see Sections 5.3.2 and 5.3.3).

We first used an extensive range of parameter values for one real image sequence. Then,

the result for the other image sequences was checked and a subset of the parameters

was refined. Finally, this parameter setting was applied for all real and synthetic data

in our experiments. The evaluation was based on the minimization of the registration

errors and also the smoothness of the computed transformations was taken into account.

Generally, a certain amount of smoothness is necessary, however, too strong smoothing

results in over-smoothing. Below, we provide the parameters for the 3D case, the pa-

rameters for the 2D case are obtained by omitting the z-dimension. For computing the

velocity vector field vk,k−1 in (4.8) we have used a maximum number of 10 iterations and

a threshold of 0.0001 for the sum of squared intensity differences in (3.4) (in most cases
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the maximum number of iterations was used since the threshold is relatively small),

and for regularization of the computed deformation vector field we have used the flow

boundary preserving operator (σdist = 5 voxel, σint = 7, 5 × 5 × 3 voxel neighborhood

for ΩFB) at flow boundaries combined with Gaussian smoothing with standard deviation

σG = (2, 2, 1) voxel (for the x-, y-, and z-dimension, respectively, we used a kernel size

of 7 × 7 × 5 voxel) in other image parts (see Section 4.5 above). For regularization

of the deformation vector fields ul,k−1 in (4.4) and uk,1 in (4.2) we have used the flow

boundary preserving operator (σdist = 2 voxel, σint = 4, 5 × 5 × 3 voxel neighborhood

for ΩFB) combined with a Gaussian kernel of σG = (1, 1, 0.5) voxel (we used a kernel size

of 5 × 5 × 3 voxel). We found, that less strong smoothing of these deformation vector

fields compared to smoothing of the computed vector field in (4.8) generally improves

the result. This is expected, since the deformation vector fields in (4.4) and (4.2) are

based on the composition of transformations which are represented by already smoothed

deformation vector fields. The update field in (4.8) was regularized using a Gaussian

kernel with σG = (2, 2, 1) voxel since for this vector field the flow boundary preserving

method did not yield a significant improvement but requires more computation time.

For the 3D data we reduced the smoothing strength (size of the operators) w.r.t. the

z-dimension because of the lower resolution compared to the x- and y-dimensions. We

found, that this generally improves the result. In (4.10) we used the two first terms of

the Baker-Campbell-Hausdorff formula (as suggested in [10]) since adding more terms

did not significantly change the result. For computing the update vector V in (3.11) a

5 × 5 × 3 voxel neighborhood was used.

For optimizing the parameter values we mainly used one real image sequence. Using

this parameter setting, the result for other real image sequences (e.g., see the sensitivity

analysis for the parameters σdist and σint in Section 5.3.3) as well as for the synthetic

image sequences was checked and a subset of the parameters was refined. Then this

parameter setting was applied for all real and synthetic data in our experiments (i.e., we
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did not tune the parameters for single image sequences). Note that the synthetic data

is quite different from the real data (e.g., higher noise level and intensity scaling, see

Section 5.3.2). Generally, the optimal parameter setting depends on different factors,

for example, the cell motion, the cell deformations, the noise level, and the intensity

changes.

5.3.2 Synthetic Image Data

In this section, we describe experimental results of our diffeomorphic multi-frame reg-

istration approach for synthetic 2D and 3D image data. To simulate the motion and

deformation of cell nuclei over time, we have generated four 2D (denoted by S1, S2, S3,

S4) and two 3D (denoted by S5, S6) synthetic image sequences using the first frame of

the different real microscopy image sequences (sequences A-D for 2D and sequences E, F

for 3D, see Table 5.1) and computed registration results. An advantage of the generated

image sequences is that we have ground truth for the evaluation and that the image

quality is similar to real data. We used the first image g1 from the nucleus channel of a

real image sequence as well as the transformations φ1,k:

φ1,k = φ−1
k,k−1 ◦ φ1,k−1, (5.3)

which are obtained based on the previously computed inverse transformations φ−1
k,k−1.

The used inverse deformation fields were computed using the pairwise weighting variant

of our diffeomorphic non-rigid registration approach. To generate the synthetic data,

we used the smoothed transformation φ1,k to transform g1 yielding an image g•k for each

time point k of an image sequence:

g•k = φ1,k ◦ g1. (5.4)

We have applied our multi-frame registration approach to the synthetic data and
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compared for each time point the computed vector field with the ground truth vector

field. As performance measure we used the endpoint error (EE) which is defined as

the Euclidean distance between the vectors of the computed vector field and the ground

truth vector field (see Eq. (5.2)). For each time point we determined the mean endpoint

error EEmean over all computed vectors of a cell nucleus. For our approach we used

different numbers of multiple frames (N = 3, 5, 10, 20) and compared the results with

pairwise registration (N = 2), for the weighting as well as for the symmetric weighting

registration approach.

As an example, in Fig. 5.10(a) the result of the mean registration error EEmean over

time for a 3D synthetic image sequence using the diffeomorphic multi-frame weighting

registration approach is shown. It can be seen, that the multi-frame approach yields a

lower registration error compared to pairwise registration, for all values of N . The im-

provement for the registration error compared to pairwise registration is 9%, 15%, 19%,

and 20%, for N = 3, 5, 10, and 20, respectively. The registration error for our weighting

approach averaged over all time points of each image sequence (EEmean) and over the

four 2D and the two 3D synthetic image sequences for different values of N is shown

in Table 5.7 (columns “Original synthetic sequences”). It can be seen, that the error

using multiple frames (N ≥ 3) is lower for all N compared to the pairwise registration

(N = 2), for the 2D as well as for the 3D case. In both cases, the result improves with

increasing N , and the lowest error is obtained for N = 20. The improvement is 30% for

the 2D image data and 17% for the 3D image data, compared to pairwise registration.

In addition, the registration error for our multi-frame symmetric weighting approach

for N = 10 and pairwise registration is also shown in Table 5.7. It can be seen, that

the improvement for the multi-frame registration compared to pairwise registration is

very similar with the improvement for the weighting approach (32% and 18%, for the

2D data and for the 3D data, respectively). An example of EEmean over time for a 2D

synthetic image sequence using the weighting and the symmetric weighting registration
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(a) 3D original synthetic sequence S6
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(b) 2D synthetic sequence S1 with Gaussian noise

Figure 5.10: Mean registration error EEmean for a 2D and a 3D synthetic sequence as a
function of time for multi-frame registration (for different values of N ≥ 3) and pairwise
registration (N = 2). The weighting approach was used.
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[pixel] / Original synthetic Sequences with Sequences with linear

[voxel] sequences Gaussian noise intensity decrease

and Gaussian noise

2D 3D 2D 3D 2D 3D

Weighting

pairwise 2.05 2.41 2.87 2.55 4.28 2.84

m
u
lt

i-
fr

am
e N = 3 1.65−19% 2.21−8% 2.26−21% 2.33−9% 3.19−25% 2.49−12%

N = 5 1.51−26% 2.09−13% 1.94−32% 2.18−15% 2.78−35% 2.31−19%

N = 10 1.47−28% 2.02−16% 1.73−40% 2.08−18% 2.66−38% 2.24−21%

N = 20 1.44−30% 2.01−17% 1.66−42% 2.05−20% 2.65−38% 2.23−22%

Symmetric weighting

pairwise 2.14 2.44 2.94 2.59 4.12 2.88

multi-frame (N=10) 1.45−32% 2.01−18% 1.71−42% 2.06−20% 2.68−35% 2.24−22%

Table 5.7: Mean endpoint error EEmean averaged over four 2D and two 3D synthetic
image sequences for the new diffeomorphic multi-frame registration approach and its
pairwise variant. Percentages indicate the change compared to pairwise registration and
bold values indicate the lowest error. The detailed error values for each image sequence
can be found in Table 5.9.

approach is shown in Fig. 5.11. It can be seen, that the errors over time are very similar

for the two multi-frame approaches, as well as for the two pairwise approaches.

We also studied synthetic image data with added Gaussian noise (standard deviation

σn = 3 voxel). The results are provided in Table 5.7 (columns “Sequences with Gaussian

noise”). It can be seen, that the error increases compared to the data without noise (as

expected), but also in this case the multi-frame weighting approach (for all values of

N) and the multi-frame symmetric weighting approach (for N = 10) outperform the

respective pairwise registration (for the 2D as well as for the 3D image data). Averaging

the errors over the four 2D image sequences and the two 3D image sequences, the best

result for the multi-frame weighting approach is obtained for N = 20. The improvements

are 42% and 20% for the 2D and the 3D image data, respectively. For the multi-frame

symmetric weighting approach (N = 10) the improvements w.r.t. pairwise registration
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Figure 5.11: Mean registration error EEmean for the 2D synthetic sequence S4 as a func-
tion of time applying our diffeomorphic multi-frame weighting and symmetric weighting
registration approach (for N = 10) and pairwise registration (N = 2).

are 42% and 20% for the 2D and the 3D image data, respectively. Also for the synthetic

image sequences with Gaussian noise the errors for the symmetric weighting approach

are similar with the errors for the weighting approach. In Fig. 5.10(b) we show an

example of the registration error over time for a 2D synthetic sequence with Gaussian

noise. It can be seen, that the multi-frame weighting approach yields a better result than

pairwise registration for all time points, and the improvement increases with increasing

N (for N = 20 the improvement is 52%). For visual inspection of the results we show a

2D and a 3D example for a cropped region of a ground truth and the computed inverse

vector field using the pairwise and the multi-frame weighting approach for N = 10

(Figs. 5.12 and 5.13). It can be seen, that in both examples the computed vectors using

the diffeomorphic multi-frame approach are more similar to the ground truth vectors

compared to pairwise registration, where the vectors are very different from the ground

truth.
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(a) Ground truth vectors and vectors for the pairwise approach

(b) Ground truth vectors and vectors for the multi-frame (N = 10) approach

Figure 5.12: Region of the ground truth inverse deformation vector field for the 3D
synthetic sequence S5 with Gaussian noise for t = 50 (gray arrows) and computed
inverse vector field (green arrows) using the diffeomorphic pairwise registration approach
(a) and the symmetric weighting diffeomorphic multi-frame registration approach (b).
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(a) Ground truth vectors and vectors for the pairwise approach

(b) Ground truth vectors and vectors for the multi-frame (N = 10) approach

Figure 5.13: Region of the ground truth inverse deformation vector field for the 3D
synthetic sequence S5 with Gaussian noise for t = 50 (gray arrows) and computed
inverse vector field (green arrows) using the diffeomorphic pairwise registration approach
(a) and the weighting diffeomorphic multi-frame registration approach (b).
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To simulate photobleaching in fluorescence microscopy image sequences, we also

generated data where the image intensities are linearly scaled over time. We used a

scaling factor λk = 1 − 0.001k, i.e. the intensities are linearly decreased by 10% for

every 100 time points (we have determined this value based on the real image data).

In addition, to introduce a random component, the scaling factor λk was multiplied by

a uniformly distributed random factor ρk (0.95 ≤ ρk ≤ 1.05) which is determined for

each time point independently. We also added Gaussian noise with σn = 3 voxel. Note,

that photobleaching is difficult to simulate, since the scale of the intensity decrease is

different for the different molecules. The results for these synthetic image sequences

can be found in Table 5.7 (last two columns). We can observe, that the diffeomorphic

multi-frame weighting approach (for all values of N) and the multi-frame symmetric

weighting approach (for N = 10) outperform the respective pairwise registration (for

the 2D as well as for the 3D image data). The best result for the weighting approach

is obtained for N = 20 for the 2D and the 3D data, and the improvement is 38% and

22%, respectively. The results of the symmetric weighting approach are very similar

with the results of the weighting approach, and the improvement compared to pairwise

registration is 35% and 22% for the 2D and for the 3D data, respectively. Interestingly,

the error for the 3D data is smaller compared to the 2D data. The reason for this is that

the linear intensity decrease is a global change of an image, and for 3D data there are

more measurements compared to the 2D data. Therefore, the registration approach can

cope better with the intensity changes. In Fig. 5.14 an example of EEmean over time

for a 3D synthetic sequence with linear intensity decrease and added Gaussian noise is

shown. We can observe, that the multi-frame approach for all values of N outperforms

the pairwise approach. The lowest value of EEmean is obtained for N = 10, yielding an

improvement of 19%.

To investigate whether the improvement of the diffeomorphic multi-frame approach

compared to pairwise registration in Table 5.7 is statistically significant, we performed
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Figure 5.14: Mean registration error EEmean for a 3D synthetic sequences as a function of
time for multi-frame registration (for different values of N ≥ 3) and pairwise registration
(N = 2). The weighting approach was used.

a Wilcoxon signed-rank test (non-parametric test). Prior application of a Shapiro-Wilk

test showed that the data does not follow a normal distribution in all 15 cases (3 types

of image sequences, 2 registration variants, 4 different values of N for the weighting

variant and one value of N for the symmetric weighting variant). Using a significance

level of 5% we obtained p < 0.016. Thus, the multi-frame approach yields a statistically

significant improvement compared to pairwise registration, for both the weighting as

well as for the symmetric weighting variant.

Furthermore, we quantified the influence of Gaussian noise and the linear intensity

decrease scaling on the registration results for the weighting (for different values of N)

as well as for the symmetric weighting approach (for N = 10). We compared the errors

for the more difficult synthetic sequences with those for the original synthetic sequences

using the values of Table 5.7. The differences in percentage can be found in Table 5.8.

We can observe, that for all cases the error increased, as expected. The increase for
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Sequences with Sequences with linear

Gaussian noise intensity decrease

and Gaussian noise

2D 3D 2D 3D

Weighting

pairwise +40% +6% +109% +18%

m
u
lt

i-
fr

am
e N = 3 +37% +5% +93% +13%

N = 5 +28% +4% +84% +11%

N = 10 +18% +3% +81% +11%

N = 20 +15% +2% +84% +11%

Symmetric weighting

pairwise +37% +6% +93% +18%

multi-frame (N=10) +18% +2% +85% +11%

Table 5.8: Changes in percentage of EEmean for the new diffeomorphic weighting and the
symmetric weighting registration approach for the modified synthetic image sequences
w.r.t. the error in the original synthetic sequences. The changes have been computed
using the EEmean values from Table 5.7.

the 2D data is significantly larger compared to the respective increase for the 3D image

data. The reason is that for the 3D image data there are more measurements available

than for the 2D data, and therefore, registration can cope better with the performed

changes. In addition, it can be seen, that the increase is higher for the pairwise approach

compared to the multi-frame approach, and that for most cases the percentages decrease

for increasing N . This shows that the multi-frame approach is more robust to Gaussian

noise and intensity scaling than the pairwise approach, and a larger N generally increases

the robustness.

5.3.3 Real Image Data

We have also applied our diffeomorphic multi-frame registration approach to four 2D

and two 3D real microscopy image data (image sequences A, B, C, D, E, F, see Sec-

tion 5.1 above). We performed a quantitative evaluation based on manually determined
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[pixels] / 2D Sequences 3D Sequences

[voxels] EEmean EEstd EEmean EEstd

S1 S2 S3 S4 Average Average S5 S6 Average Average

Original synthetic sequences

Weighting

pairwise 1.38 1.63 2.54 2.64 2.05 0.84 2.88 1.94 2.41 0.90

m
u
lt

i-
fr

am
e N = 3 0.92 1.21 2.18 2.30 1.65−19% 0.64−23% 2.66 1.76 2.21−8% 0.83−7%

N = 5 0.77 1.10 2.02 2.16 1.51−26% 0.59−30% 2.54 1.64 2.09−13% 0.80−11%

N = 10 0.75 1.08 1.95 2.09 1.47−28% 0.58−31% 2.47 1.57 2.02−16% 0.78−13%

N = 20 0.75 1.07 1.89 2.06 1.44−30% 0.57−31% 2.47 1.55 2.01−17% 0.79−12%

Symmetric weighting

pairwise 1.41 1.66 2.66 2.84 2.14 0.89 2.93 1.96 2.44 0.91

multi-frame (N=10) 0.73 1.09 1.91 2.10 1.45−32% 0.57−36% 2.45 1.56 2.01−18% 0.78−14%

Sequences with Gaussian noise

Weighting

pairwise 1.63 2.00 3.15 4.68 2.87 1.19 2.97 2.12 2.55 0.94

m
u
lt

i-
fr

am
e N = 3 1.06 1.48 2.53 3.96 2.26−21% 0.91−24% 2.74 1.91 2.33−9% 0.88−7%

N = 5 0.86 1.28 2.20 3.44 1.94−32% 0.76−36% 2.60 1.75 2.18−15% 0.84−11%

N = 10 0.79 1.17 2.02 2.94 1.73−40% 0.65−45% 2.51 1.65 2.08−18% 0.81−14%

N = 20 0.78 1.14 1.93 2.78 1.66−42% 0.61−48% 2.48 1.62 2.05−20% 0.80−15%

Symmetric weighting

pairwise 1.65 2.02 3.33 4.77 2.94 1.24 3.04 2.14 2.59 0.97

multi-frame (N=10) 0.78 1.15 1.98 2.93 1.71−42% 0.65−48% 2.49 1.64 2.06−20% 0.80−18%

Sequences with linear intensity decrease and Gaussian noise

Weighting

pairwise 3.22 4.49 4.20 5.21 4.28 1.51 3.29 2.40 2.84 1.04

m
u
lt

i-
fr

am
e N = 3 2.08 3.16 3.35 4.18 3.19−25% 1.14−24% 2.92 2.07 2.49−12% 0.92−11%

N = 5 1.77 2.64 3.02 3.70 2.78−35% 1.01−33% 2.74 1.88 2.31−19% 0.86−17%

N = 10 1.66 2.46 2.85 3.66 2.66−38% 1.01−33% 2.67 1.81 2.24−21% 0.84−18%

N = 20 1.63 2.45 2.80 3.69 2.65−38% 1.03−32% 2.67 1.79 2.23−22% 0.86−17%

Symmetric weighting

pairwise 2.95 4.02 4.11 5.39 4.12 1.51 3.30 2.46 2.88 1.04

multi-frame (N=10) 1.55 2.38 2.86 3.92 2.68−35% 1.08−29% 2.62 1.86 2.24−22% 0.83−20%

Table 5.9: Detailed mean endpoint error EEmean values for the 2D and 3D synthetic
image sequences in Table 5.7 applying our diffeomorphic registration approach.
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Figure 5.15: Mean registration error (emean) averaged over all spot-like structures of all
four 2D image sequences as a function of N .

structures in the nucleus channel of the image sequences. For each sequence of the 2D

image data, positions of 9 spot-like structures within cell nuclei were determined for 38

up to 125 subsequent time points, and for the 3D data positions of 6 spot-like structures

were determined for 28 up to 83 subsequent time points. For each structure and each

time point we computed the registration error as the Euclidean distance of the current

position (center of gravity) to its position at the first time point.

For our diffeomorphic multi-frame weighting approach we used different numbers of

multiple frames (N = 3, 5, 10, 20) and we computed for each spot-like structure the mean

registration error emean over all time points. The results for the mean error averaged

over all spot-like structures for the four 2D and the two 3D image sequences (emean)

are shown in Fig. 5.15 as a function of N . It can be seen, that for the 2D data the

multi-frame approach with N = 3 yields a lower error than the pairwise approach, and

the error is further reduced by increasing N up to N = 10, where the error reaches its

minimum. For N = 20 the error is slightly higher. Similarly, for the 3D data the error

decreases with increasing N , and the lowest error is reached for N = 20.

In Table 5.10 we show the results for emean for each 2D and each 3D real image se-
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[pixel] / 2D Sequences 3D Sequences

[voxel] emean σemean emean σemean

A B C D Average Average E F Average Average

Unregistered 6.56 13.97 26.65 27.84 18.76 9.53 24.94 21.24 23.09 11.69

W
ei

gh
ti

n
g

pairwise 2.20 1.94 3.27 4.99 3.10 2.06 9.03 5.02 7.03 4.55

m
u
lt

i-
fr

am
e N = 3 2.08 1.55 2.61 4.34 2.64−15% 1.88−9% 7.66 3.62 5.64−20% 3.87−15%

N = 5 2.06 1.40 2.40 3.30 2.29−26% 1.68−18% 6.05 2.80 4.42−37% 3.22−29%

N = 10 2.10 1.38 2.19 2.93 2.15−31% 1.64−20% 4.90 2.41 3.66−48% 2.66−41%

N = 20 2.11 1.41 2.51 2.89 2.23−28% 1.66−19% 4.49 2.27 3.38−52% 2.44−46%

Table 5.10: Registration error and standard deviation for spot-like structures in four 2D
real image sequences and two 3D real image sequences. Results for the diffeomorphic
multi-frame weighting approach for different values of N and the pairwise variant. Per-
centages indicate the change compared to pairwise registration, and bold values indicate
the lowest error.

quence (image sequences A-F, see Table 5.1 and Section 5.3.1) using the diffeomorphic

multi-frame weighting registration approach for different values of N and the pairwise

approach. We also computed the standard deviation of the mean error σemean for each

spot-like structure as well as the average over all structures and the four 2D and the two

3D image sequences (σemean). It turned out that for all 2D and 3D image sequences our

multi-frame weighting approach with N = 3 yields a lower error compared to pairwise

registration, and the error is further reduced by increasing N up to a certain value of

N . The value of N for which the result is best generally varies depending on the image

sequence. For the 2D image data, the best result for emean and for σemean averaged over

all image sequences is obtained for N = 10, yielding an improvement of 31% and 20%,

respectively, compared to pairwise registration. For the 3D image data, the best results

averaged over all image sequences are obtained for N = 20, yielding an improvement

of 52% and 46%, respectively, compared to pairwise registration. In Fig. 5.16 we show

examples of the registration error for one spot-like structure in the 2D image sequence C

and for one spot-like structure in the 3D image sequence F, when applying the diffeomor-

88



CHAPTER 5. EXPERIMENTAL RESULTS

phic multi-frame weighting registration approach with different values of N . It can be

seen, that for both examples the multi-frame approach yields a better result compared

to the pairwise approach (grey line) and the error generally decreases with increasing

N . We also computed the mean registration error emean over all time points. It turns

out, that for the 2D example (Fig. 5.16(a)) multi-frame registration with N = 2 reduces

emean by 57% compared to pairwise registration, and for N = 10 and N = 20 the im-

provement is 71% and 75%, respectively. For the 3D example (Fig. 5.16(b)), multi-frame

registration with N = 2 reduces emean by 31% compared to pairwise registration, and for

N = 10 and N = 20 the improvement is 61% and 64%, respectively. In Figs. 5.17 and

5.18 we have visualized the positions of the spot-like structures (used as ground truth)

over time for the 3D image sequences E and F for the unregistered case as well as for

registration using our multi-frame approach and the pairwise approach (weighting and

symmetric weighting approach, for the image sequence E and F, respectively). It can

be seen, that in both examples the displacements of the positions over time w.r.t. the

ground truth positions at the first frame (which represent the registration error) for the

multi-frame approach are much smaller compared to the unregistered case and smaller

compared to pairwise registration.

To confirm that our registration approach is diffeomorphic, we have computed for

each position of each 2D and 3D deformation vector field uk,k−1 the determinant of the

Jacobian. It turned out, that the determinant is positive, except for a negligible number

of image points (less than 0.01%) of a small number of deformation fields (less than 2%),

which have a negative determinant due to discretization issues. Thus, the determined

deformation fields can be considered diffeomorphic.

We also performed a study on the convergence properties of our diffeomorphic multi-

frame registration approach. We computed the mean RMS and the mean CC for each

iteration (we used 10 iterations) averaged over all time points of an image sequence.

Fig. 5.19 shows an example for both metrics for the multi-frame and the pairwise weight-
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Figure 5.16: Registration error for spot-like structures in a 2D and a 3D real image
sequence as a function of time for the diffeomorphic multi-frame weighting approach
and its pairwise variant.
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(a) Unregistered

(b) Diffeomorphic pairwise weighting approach

(c) Diffeomorphic multi-frame weighting approach

Figure 5.17: Positions over time for 6 spot-like structures overlaid with an MIP image
(t = 50) from the 3D image sequence E (nucleus channel). In (a) the original image and
positions over time for the unregistered case are shown, and in (b) and (c) the registered
images and positions over time for the diffeomorphic multi-frame weighting approach
and its pairwise variant are shown.
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(a) Unregistered

(b) Diffeomorphic pairwise symmetric weighting approach

(c) Diffeomorphic multi-frame symmetric weighting approach

Figure 5.18: Positions over time for 6 spot-like structures overlaid with an MIP image
(t = 70) from the 3D image sequence F (nucleus channel). In (a) the original image and
positions over time for the unregistered case are shown, and in (b) and (c) the registered
images and positions over time for the diffeomorphic multi-frame symmetric weighting
approach and its pairwise variant are shown.
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ing approach applied to one real image sequence. It can be seen, that the multi-frame

approach (for the different values of N) and the pairwise approach converge and have

a similar rate. We can also observe, that the RMS values of the multi-frame approach

decrease and the CC values increase with increasing N , compared to the corresponding

values of the pairwise approach. In our experiments, in most cases the number of itera-

tions was 10 (see Sections 4.3 and 5.3.1). It can be seen that the error converges after

few iterations and that a maximum number of 10 iterations is sufficient.

In Table 5.11 we show the results for emean and σemean for each 2D and each 3D real

image sequence using the diffeomorphic multi-frame registration approach (N = 10)

and pairwise registration, for both the weighting and the symmetric weighting variant.

It turned out that the symmetric weighting approach yields larger errors for most 2D

images sequences compared to the weighting approach, for both multi-frame as well as

pairwise registration. For the 3D image sequences, the symmetric weighting approach

yields lower errors, for both multi-frame as well as pairwise registration. However, the

differences between the errors for the weighting and the symmetric weighting approach

are relatively small. Compared to pairwise registration, also the multi-frame symmetric

weighting approach yields lower errors and the improvement for emean and σemean aver-

aged over all four 2D sequences is 30% and 21%, respectively. For the 3D image data the

respective improvement for emean and σemean averaged over the two 3D image sequences

is 51% and 44%, respectively. In Fig. 5.20 we show an example of the registration error

for one spot-like structure in the 3D real image sequence E using our diffeomorphic

multi-frame approach for the weighting as well as for the symmetric weighting variant,

and pairwise registration. It can be seen, that the errors over time are very similar for the

multi-frame weighting and for the multi-frame symmetric weighting approach. Similarly,

the errors over time are very similar for the pairwise variants of the approaches.

In addition, we have performed an experimental comparison with previous non-rigid

registration approaches for the 2D and 3D data. We have used the pairwise weighting
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Figure 5.19: Mean of root mean squared (RMS) intensity error (top) and mean of
correlation coefficient (CC, bottom) averaged over all time points for each iteration step.
The multi-frame (for different values of N ≥ 3) and the pairwise weighting approach
was applied to the 3D real image sequence E.
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Figure 5.20: Registration error for a spot-like structure in the 3D real image sequence
E as a function of time for the weighting and the symmetric weighting variant of our
diffeomorphic multi-frame approach as well as pairwise registration.

and symmetric weighting approach of Kim et al. [11] and our non-diffeomorphic multi-

frame weighting and symmetric weighting approach (with N = 10, see Chapter 4.2).

Both approaches are based on local optic flow estimation and have been previously

used for registration of cell microscopy images. Moreover, we have used the log-domain

diffeomorphic demons registration approach of Vercauteren et al. [10] (denoted with

Log-Demons) which was previously used for pairwise registration of static medical im-

ages (MR images of the brain). We have extended this approach for application to

temporal images using a pairwise as well as a multi-frame (with N = 10) consecutive

scheme (analogously to the pairwise and the multi-frame variant of our diffeomorphic

approach) and have included it in our comparison. For regularization of the vector

fields, we used a Gaussian kernel with σG = (2, 2, 1) voxel for the update velocity fields

dv
(i)
k,k−1 as well as the velocity fields v

(i)
k,k−1, and σG = (1, 1, 0.5) voxel for the inverse

deformation fields ul,k−1 as well as the deformation fields uk,1. We tested different pa-

rameters for the Gaussian kernel and used the ones which yielded the best results. For
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Non-rigid registration Temporal Spatial Diffeo- Flow boundary

approaches registration optimization morphic preserving

regularization

Pairwise [11] pairwise local No No

Multi-frame [118] multi-frame local No No

Log-Demons [10] pairwise global Yes No

Temporal groupwise [12] groupwise global Yes No

Diffeomorphic pairwise pairwise local Yes Yes

Diffeomorphic multi-frame multi-frame local Yes Yes

Table 5.12: Non-rigid registration approaches investigated in the experiments.

the multi-frame extension we have used a temporally weighted mean image based on

Gaussian weighting (see Section 4.2). For the evaluation based on 2D data we have also

applied the temporal groupwise diffeomorphic registration approach of Metz et al. [12]

which is based on B-splines and was previously used for temporal registration of med-

ical images (CT, MR, and US images of the heart and the lung). With this approach,

all images of an image sequence are registered simultaneously by minimizing the sum

of squared intensity differences between all images and the mean image of the whole

sequence. For our comparison, we used the implementation of the approach in elastix

[127]. We used a grid spacing of 16 × 16 pixel, each time point of the sequences, and

three multiresolution levels. We tested different values for the grid spacing and used

the grid with the best result. An overview of the investigated non-rigid registration ap-

proaches and their main characteristics is given in Table 5.12. In Fig. 5.21(a) we show

an example of the registration error for one spot-like structure in the 2D real image

sequence C using our diffeomorphic multi-frame weighting approach and its pairwise

variant in comparison to four previous approaches. It can be seen, that the tempo-

ral groupwise approach [12] yields the largest errors and a mean error of emean = 16.4

pixel. For time points in about the middle of the sequence, [12] yields the lowest errors,
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Figure 5.21: Registration error for a spot-like structure in two real image sequences as
a function of time for the diffeomorphic multi-frame approach (N=10) and its pairwise
variant as well as for other registration approaches.
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which is what we expect since the images at these time points are most similar to the

employed mean image. In contrast, for time points away from the middle time point

the error increases strongly. The mean errors for the Log-Demons [10] pairwise exten-

sion, the Log-Demons [10] multi-frame extension, the pairwise weighting approach [11],

and the multi-frame weighting approach [118] are emean = 6.73 pixel, emean = 3.01 pixel,

emean = 4.09 pixel, and emean = 3.26 pixel, respectively. Our diffeomorphic multi-frame

weighting approach yields the lowest error (emean = 1.63 pixel). When averaging over

all spot-like structures of all four 2D real image sequences our diffeomorphic multi-frame

registration approach yields the lowest values for emean and σemean (either by the weight-

ing or the symmetric weighting approach) compared to the six previous approaches, and

the improvement is 40% and 37%, respectively, compared to the lowest error obtained

by six previous approaches (cf. Table 5.11). In Fig. 5.21(b) we show an example of

the registration error for one spot-like structure in the 3D real image sequence E using

our approach in comparison to three previous approaches. Also in this example our dif-

feomorphic multi-frame weighting approach yields the lowest error emean = 6.19 voxel,

and the pairwise variant yields emean = 10.3 voxel. In comparison, the Log-Demons [10]

pairwise extension, the Log-Demons [10] multi-frame extension, the pairwise weighting

approach [11], and the multi-frame weighting approach [118] yield emean = 20.1 voxel,

emean = 15.2 voxel, emean = 11.8 voxel, and emean = 9.53 voxel, respectively. When

averaging over all spot-like structures of the two 3D real image sequences our symmetric

weighting approach yields the lowest errors for emean and σemean , and the improvement is

37% and 31%, respectively, compared to the lowest error obtained by the three previous

approaches (cf. Table 5.11).

To investigate whether the improvement of the diffeomorphic multi-frame approach

(for both the weighting and the symmetric weighting variant) compared to the pre-

vious registration approaches as well as compared to pairwise registration for the 2D

and 3D real data is statistically significant, we performed Wilcoxon signed-rank tests
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(non-parametric test). Prior application of a Shapiro-Wilk test showed that the data

do not follow a normal distribution in all 12 cases (2 registration variants, 6 image se-

quences). Using a significance level of 5% we obtained p < 0.016 for all tests. Thus,

the multi-frame approach yields a statistically significant improvement compared to the

previous registration approaches as well as compared to pairwise registration, for both

the weighting as well as the symmetric weighting variant.

In Fig. 5.22 we show a comparison of results for our diffeomorphic multi-frame weight-

ing approach and the Log-Demons [10] multi-frame extension as well as for the respective

pairwise registration approaches, for the 2D real image sequence D (time points 1 and

20). It can be seen, that the alignment of the nucleus in the registered images is sig-

nificantly improved compared to the unregistered case for all approaches. It can be

also seen, that the alignment of subcellular structures in the inner part of the nucleus

is better for multi-frame registration, compared to pairwise registration, for both reg-

istration approaches. In addition, the alignment of subcellular structures is better for

our diffeomorphic multi-frame and pairwise weighting approach, compared to the re-

spective Log-Demons extensions. There are two reasons for the improved performance.

First, the local optimization employed in our approach copes better with the strong

local structural changes compared to the global optimization used in [10]. Second, the

flow boundary preserving smoothing of deformation vector fields avoids oversmoothing

and improves registration accuracy, compared to smoothing using a Gaussian kernel.

To provide further evidence on this and to investigate the influence of the local

optimization scheme and the flow boundary preserving scheme separately, we have im-

plemented a modified version of our diffeomorphic registration approach which uses

Gaussian kernels for smoothing of deformation vector fields (with the same parameters

as in [10], see above) instead of the flow boundary preserving scheme. The results of

applying our modified approach can be found in Table 5.11, for the diffeomorphic multi-

frame weighting registration approach, as well as for pairwise registration. First, it can
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(a) Unregistered

(b) Log-Demons pairwise extension (c) Log-Demons multi-frame extension

(d) New diffeomorphic pairwise (e) New diffeomorphic multi-frame

Figure 5.22: Overlays of images for time points 1 (red) and 20 (green) of the 2D real im-
age sequence D for (a) the unregistered images, and for the registered images using (b,c)
the Log-Demons [10] extensions and (d,e) the new diffeomorphic weighting approach.
Yellow indicates overlapping intensities.
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be seen, that for almost all cases the registration error for the diffeomorphic weight-

ing approach using Gaussian kernels is larger compared to our original diffeomorphic

weighting approach with flow boundary preserving regularization (for pairwise as well

as multi-frame registration). The improvement for pairwise registration averaged over

the four 2D and the two 3D image sequences is 10% and 4%, respectively, and the re-

spective improvement for multi-frame registration is 21% and 20%, for the 2D and the

3D image data, respectively. Thus, flow boundary preserving regularization is superior

compared to regularization based on Gaussian kernels. Second, compared to [10], our

modified approach yields lower errors, and the improvement for pairwise registration

averaged over the four 2D and the two 3D image sequences is 43% and 52%, respec-

tively. The improvement for multi-frame registration is 33% and 58% for the 2D and

the 3D image data, respectively. We also show an example of the registration error

for one spot-like structure in the 3D real image sequence F using our modified pair-

wise and multi-frame approach in comparison to the respective Log-Demons approaches

(Fig. 5.23). It can be seen, that our modified pairwise and multi-frame approach yields

lower errors compared to the Log-Demons extensions, for all time points of the image

sequence. Thus, the main reason for the improved performance of our approach for the

used image data compared to [10] is the employed local optimization scheme.

We have also performed a sensitivity analysis of the parameters σdist and σint which

control the smoothing of the deformation vector fields in Eq. (4.2). These parameters

influence the registration result most compared to the other parameters. We used dif-

ferent values for σdist and σint and applied them for all 2D and 3D real image sequences

(N = 10) for the weighting variant of our diffeomorphic multi-frame registration ap-

proach. We computed the mean registration error as well as the gradient norm of the

deformation vector fields which characterizes the smoothness averaged over all image

sequences (see Fig. 5.24). For the diagrams of σdist in Figs. 5.24(a) and 5.24(c) we used

σint = 4, and for the diagrams of σint in Figs. 5.24(b) and 5.24(d) we used σdist = 2 voxel
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Figure 5.23: Registration error for a spot-like structure in the 3D real image sequence
F as a function of time for our diffeomorphic multi-frame weighting approach (using
Gaussian smoothing) and the Log-Demons multi-frame extension, as well as for the
respective pairwise registrations.

(as in the parameter setting used for our approach, see Section 5.3.1). In Fig. 5.24(c) it

can be seen, that for achieving a certain level of smoothness for the deformation vector

fields, a value of σdist ≥ 2 voxel is required. Note, that a certain amount of smoothness

is necessary, however, too strong smoothing results to over-smoothing. We have cho-

sen σdist = 2 voxel since increasing the value to σdist = 3 voxel significantly increases

the mean registration error in Fig. 5.24(a). Generally, we considered changes of more

than about 5% as significant. Analogously, based on the diagrams in Figs. 5.24(c) and

5.24(d) a good choice for σint are the values 3 or 4. Taking also into account a sensitivity

analysis for the 2D and 3D synthetic data, we have chosen values of σdist = 2 voxel and

σint = 4 in our experiments.

Finally, we determined the computation time for registration of the first 100 images

of the 2D real image sequence B (384 × 384 pixel) and the first 50 images of the 3D

image sequence F (512× 512× 10 voxel). We compared our diffeomorphic multi-frame
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Figure 5.24: Registration error (top) and mean gradient norm (bottom) averaged over
the 2D and the 3D real image sequences as a function of the parameters σdist and σint
for the new diffeomorphic multi-frame weighting registration approach (N = 10). For
the different values of σdist we have used σint = 4, and for the different values of σint we
have used σdist = 2 voxel.

weighting approach with its pairwise variant as well as with the pairwise and the multi-

frame weighting approaches in [118] (see Chapter 3). For the 2D data the computation

times can be found in Table 5.13. For both multi-frame approaches the computation

time is increasing with increasing N , however, the increase is significantly smaller for our

diffeomorphic multi-frame approach compared to [118]. For example, the increase of the

computation time for N = 10 is 565% for [118] and 36% for our approach, compared to

the respective pairwise registration. We have determined the differences of computation
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Multi-frame New diffeomorphic

weighting [118] multi-frame Difference

pairwise 0 h 40 1 h 36 +140%
m

u
lt

i-
fr

am
e N = 3 1 h 16+90% 1 h 37+1% +27%

N = 5 2 h 04+210% 1 h 47+11% −14%

N = 10 4 h 26+565% 2 h 11+36% −51%

N = 20 8 h 23+1158% 2 h 41+68% −68%

Table 5.13: Computation time for the registration of the first 100 images from the
2D real image sequence B using the new diffeomorphic multi-frame weighting approach
compared to the multi-frame weighting approach [118] for different values of N . Per-
centages indicate the increase compared to pairwise registration. The percentages in the
last column indicate the difference of the computation time between the diffeomorphic
multi-frame approach and the approach in [118].

times in percentage between our diffeomorphic multi-frame approach and [118] for each

value of N (column “Difference” in Table 5.13). For N = 2 (pairwise registration)

the computation time of our approach is higher compared to [118], and the difference

is +140%. For N = 3 the difference decreases to +27%, and further decreases with

increasing N . For N ≥ 5 the differences are negative, i.e., the computation time is lower

for our approach compared to [118]. For the 3D data, our diffeomorphic multi-frame

approach with N = 10 yields a computation time of 27 h 50 min. The change compared

to pairwise registration is +49%, and the change compared to [118] is −91%. We used

a workstation under Linux with an Intel Xeon E5530 CPU (2.4 GHz). Note, that our

implementation is currently not parallelized and further optimization is possible, thus

the computation time can be further reduced.
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Chapter 6

Discussion and Conclusion

6.1 Discussion

6.1.1 Non-Rigid Multi-Frame Registration

From the experimental results based on synthetic as well as real microscopy image

sequences, it turned out that our multi-frame registration approach outperforms pairwise

registration. The main reason for the improved performance of the multi-frame approach

is the exploitation of the information from multiple images which improves the accuracy

of the registration results.

Based on synthetic image sequences we showed that the multi-frame approach is

more robust to image noise and intensity variations compared to pairwise registration.

The reason for the higher robustness is that the multi-frame approach takes advantage

of the additional temporal information and the previously computed transformations

which are used to warp the multiple consecutive images. The multiple warped images

exploited by the multi-frame approach act as a kind of regularization that constrains the

registration result compared to the pairwise approach. This improves the robustness to

noise and structural changes of the intensities.

Based on real microscopy image sequences, we showed that using the multi-frame
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approach the registration error is significantly lower compared to pairwise registration

and outliers are significantly reduced using N ≥ 20 number of image frames and tem-

poral weighting. The temporal weighting schemes reduce the influence of less relevant

images, i.e. images that are more distant or less similar to the image at the current time

point. Temporal weighting does not only reduce outliers, but also reduces the influence

of N on the results since the variation of the registration error for the different values of

N (particularly for 5 ≤ N ≤ 30 and for the maximum registration error) is smaller com-

pared to the multi-frame approach without temporal weighting. The number of frames

N for multi-frame registration should be chosen based on the application, i.e. whether

the mean or the maximum registration error is more important. For our application,

considering the mean and maximum error and the computation time, a good choice

based on the experimental results is N = 10 or N = 20 for the multi-frame approach

with temporal weighting based on image similarity. These values for N are a good com-

promise between the computation time and the registration accuracy. Compared to, for

example, N = 30, the computation time is much lower and the difference in performance

is not so large. In general, the main factors for determining the optimal value of N are

the strength of the cell motion, the strength of the cell deformations, and the strength

of the intensity changes. However, finding a quantitative relation between all these fac-

tors (that change over time) and the optimal value of N is difficult, and the question is

whether for a new data one can estimate these factors beforehand. Generally, the larger

the changes the smaller the value for N should be chosen. The reason is that in case

of large changes the images differ more. In addition, N should not be chosen too large

because of computational complexity, for example, for N = 30 the computation time is

relatively high. Thus, in other applications, where the cell motion, the cell deformations,

and the intensity changes are not as large as in our case, a larger value of N could be

chosen or vice versa.

All three variants of the multi-frame approach yield a significant improvement com-
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pared to pairwise registration, however, there is no clear preference for one of the vari-

ants. The symmetric variant generally yields the best result for the synthetic image

data, while the weighting approach yields the best result for the real image data (e.g.,

based on the average value). However, the differences between the three variants are

generally not very large. Moreover, we investigated the convergence rate of the opti-

mization scheme of the multi-frame approach and found that the convergence rate is

similar to the pairwise approach. Finally, we showed that our approach yields better

results than a temporal groupwise registration approach which was previously used for

the registration of medical image data.

6.1.2 Non-Rigid Diffeomorphic Multi-Frame Registration

From the experiments based on synthetic as well as real 2D and 3D microscopy image

sequences, it turned out that our diffeomorphic multi-frame non-rigid registration ap-

proach yields better results than pairwise registration and our non-diffeomorphic multi-

frame registration approach. There are two main reasons for the improved performance.

First, our approach is diffeomorphic which guarantees that the determined transfor-

mations are invertible and smooth. This is important since our approach uses inverse

transformations to construct a temporal mean image which is used to register single

frames of the image sequence. In contrast, our non-diffeomorphic multi-frame registra-

tion approach uses a scheme for inversion of transformations which are not guaranteed

to be invertible. Second, the employed flow boundary preserving smoothing method pre-

vents over-smoothing of deformation vector fields, leading to more accurate registration

results compared to standard Gaussian smoothing. In addition, our diffeomorphic multi-

frame registration approach is computationally more efficient than our non-diffeomorphic

approach, for two main reasons. First, our diffeomorphic approach is based on the min-

imization of the sum of squared intensity differences between each frame of an image

sequence and a temporal mean image, in contrast to the non-diffeomorphic approach,
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where the sum of squared intensity differences between each frame and multiple previous

frames are minimized. Second, in our diffeomorphic approach the inverse transforma-

tions are efficiently computed using vector fields computed in the log-domain. From

our experimental results we found that the reduction of computation time due to these

two reasons is larger for multiple frames N ≥ 5 than the increase in computation time

due to the use of the log-domain diffeomorphic update rule (compared to the additive

update rule in our non-diffeomorphic approach) and due to the use of the flow bound-

ary preserving smoothing (compared to Gaussian smoothing in our non-diffeomorphic

approach). From a comparison of the two intensity-based variants (weighting and sym-

metric weighting) of our diffeomorphic registration approach it turns out that the results

are similar. In most cases the weighting approach yields slightly lower registration errors

for the 2D image data, and the symmetric weighting approach yields lower errors for

the 3D image data. However, the differences are relatively small.

We have also shown that our diffeomorphic multi-frame registration approach out-

performs a pairwise as well as a multi-frame temporal extension of the diffeomorphic

registration approach in [10]. The first reason is that our approach is based on local

optic flow estimation which is advantageous for our application since the image data

contain many local structural changes, compared to the global optimization in [10].

Second, employing flow boundary preserving smoothing in our approach prevents over-

smoothing of deformation vector fields, compared to Gaussian smoothing in [10]. Based

on a quantitative comparison, we have shown that the improvement is mainly due to

the local optimization scheme, compared to the flow boundary preserving smoothing.

Compared to a temporal groupwise approach [12] which is based on B-splines and was

previously used for registration of medical images, our approach yields better results.

The reason is, that the simultaneous registration of all frames of an image sequence with

large temporal structural changes as in our case is disadvantageous since the frames of

an image sequence differ significantly, and the difference generally increases with time
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(e.g., compared to medical images of periodic movements such as respiratory motion).

It also turned out that the multi-frame temporal extension (using the proposed multi-

frame registration scheme) of the diffeomorphic registration approach in [10] significantly

outperforms the pairwise extension. Thus, our proposed multi-frame registration scheme

can be used also in conjunction with other approaches for registration of temporal image

data, yielding significantly improved results compared to pairwise registration.

6.2 Conclusion

We have presented two multi-frame approaches for temporal non-rigid registration of

cell nuclei in live cell microscopy images. Compared to pairwise registration, both

multi-frame registration approaches use information from multiple consecutive images

simultaneously and take into account computed transformations from previous time

points. For our non-diffeomorphic multi-frame registration approach we introduced

three intensity-based variants and also investigated two different temporal weighting

schemes that control the influence of single frames on the registration result. Using

synthetic as well as real 2D cell microscopy image sequences, we have investigated the

performance of our approach and we have performed a quantitative comparison with

pairwise registration. The results demonstrate that the multi-frame approach yields

a more accurate result than pairwise registration, and is more robust against image

noise and intensity scaling. We also showed that temporal weighting reduces outliers in

the registration results. We have also presented a diffeomorphic multi-frame approach

for temporal non-rigid registration of live cell microscopy images. The registration ap-

proach computes diffeomorphic transformations based on local optic flow estimation.

The determination of diffeomorphic transformations in the log-domain allows efficient

computation of the inverse transformations which are used to construct a temporally

weighted mean image. The use of a temporal mean image to register single frames of
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an image sequence significantly reduces the computation time compared to the non-

diffeomorphic multi-frame registration approach. We introduced two intensity-based

variants of the diffeomorphic multi-frame registration approach and for regularization

of vector fields, we employed a flow boundary preserving method which prevents from

over-smoothing of deformation vector fields. Using synthetic as well as real 2D and

3D live cell microscopy image sequences, we have investigated the performance of our

approach and we have performed a quantitative comparison with pairwise registration

as well as with other temporal registration approaches. The results demonstrate that

the diffeomorphic multi-frame registration approach yields a more accurate result than

pairwise registration, and significantly outperforms the non-diffeomorphic multi-frame

registration approach, a temporal pairwise extension, and a multi-frame extension of a

diffeomorphic registration approach, and a temporal groupwise registration approach.

6.3 Future Work

A limitation of the proposed multi-frame registration approaches is that the number

of multiple frames is chosen in advance for each image sequence, and is fixed for all

time points of a sequence. In future work, the number of multiple frames could be

determined automatically for each time point of an image sequence, for example, based

on the image similarity of the multiple consecutive frames. To further improve the

registration accuracy, different schemes for computing the temporal mean image could

be considered. In addition, our registration approaches could be applied to microscopy

data from other biological applications. Also, the computation time could be reduced,

for example, by parallelization.
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[117] S. Durrleman, X. Pennec, A. Trouvé, J. Braga, G. Gerig, and N. Ayache,“Toward a

comprehensive framework for the spatiotemporal statistical analysis of longitudinal

shape data,” International Journal of Computer Vision, vol. 103, no. 1, pp. 22–59,

2013.

123



BIBLIOGRAPHY

[118] M. Tektonidis, I.-H. Kim, Y.-C. Chen, R. Eils, D. Spector, and K. Rohr, “Non-

rigid multi-frame registration of cell nuclei in live cell fluorescence microscopy

image data,” Medical Image Analysis, vol. 19, no. 1, pp. 1–14, 2015.

[119] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in C:

The Art of Scientific Computing, Second Edition. Cambridge, UK: Cambridge

University Press, 1992.

[120] M. Tektonidis and K. Rohr, “Diffeomorphic multi-frame non-rigid registration of

cell nuclei in 2D and 3D live cell images,” IEEE Transactions on Image Processing,

vol. 26, no. 3, pp. 1405–1417, 2017.

[121] H. Lombaert, L. Grady, X. Pennec, N. Ayache, and F. Cheriet, “Spectral log-

demons: Diffeomorphic image registration with very large deformations,” Interna-

tional Journal of Computer Vision, vol. 107, no. 3, pp. 254–271, 2014.

[122] S. Baker and I. Matthews, “Lucas-Kanade 20 years on: A unifying framework,”

International Journal of Computer Vision, vol. 56, no. 3, pp. 221–255, 2004.

[123] M. Bossa, M. Hernandez, and S. Olmos, “Contributions to 3D diffeomorphic atlas

estimation: Application to brain images,” in Proc. International Conference Med-

ical Image Computing and Computer-Assisted Intervention (MICCAI), 2007, pp.

667–674.

[124] M. Tektonidis, I.-H. Kim, and K. Rohr, “Non-rigid multi-frame registration of live

cell microscopy images,” in Proc. IEEE International Symposium on Biomedical

Imaging (ISBI), 2012, pp. 438–441.

[125] D. Sun, S. Roth, and M. J. Black, “A quantitative analysis of current practices in

optical flow estimation and the principles behind them,” International Journal of

Computer Vision, vol. 106, no. 2, pp. 115–137, 2014.

[126] S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. J. Black, and R. Szeliski, “A

database and evaluation methodology for optical flow,” International Journal of

Computer Vision, vol. 92, no. 1, pp. 1–31, 2011.

[127] S. Klein, M. Staring, K. Murphy, M. A. Viergever, J. P. Pluim et al., “Elastix:

a toolbox for intensity-based medical image registration,” IEEE Transactions on

Medical Imaging, vol. 29, no. 1, pp. 196–205, 2010.

124


