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Abstract

Background: Automated image analysis enables quantitative measurement of steatosis in histological images.
However, spatial heterogeneity of steatosis can make quantitative steatosis scores unreliable. To improve the reliability,
we have developed novel scores that are “focused” on steatotic tissue areas.

Methods: Focused scores use concepts of tile-based hotspot analysis in order to compute statistics about steatotic
tissue areas in an objective way. We evaluated focused scores on three data sets of images of rodent liver
sections exhibiting different amounts of dietary-induced steatosis. The same evaluation was conducted with the
standard steatosis score computed by most image analysis methods.

Results: The standard score reliably discriminated large differences in steatosis (intraclass correlation coefficient
ICC = 0.86), but failed to discriminate small (ICC = 0.54) and very small (ICC = 0.14) differences. With an appropriate
tile size, mean-based focused scores reliably discriminated large (ICC = 0.92), small (ICC = 0.86) and very small
(ICC = 0.83) differences. Focused scores based on high percentiles showed promise in further improving the
discrimination of very small differences (ICC = 0.93).

Conclusions: Focused scores enable reliable discrimination of small differences in steatosis in histological images.
They are conceptually simple and straightforward to use in research studies.
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Background
Hepatic steatosis describes the pathological accumulation
of fat in the liver. It is the defining characteristic of fatty
liver disease (FLD), one of the most common liver disor-
ders in the Western world [1]. Without treatment, FLD
can progress into steatohepatitis, cirrhosis, and hepatocel-
lular carcinoma [2]. In clinical routine, steatosis is assessed
to determine the severity of FLD or the selection of grafts
suitable for liver transplantation. In research studies, stea-
tosis is assessed in order to investigate risk factors of FLD,
like alcohol abuse, obesity, or drug toxicity, and to develop
anti-steatotic therapies [2, 3].
Histological analysis is the gold standard for assessment

of steatosis [4]. For this purpose, liver tissue samples are
processed into paraffin-embedded slides and stained with
Hematoxylin and Eosin (H&E). This paper exclusively

considers macrovesicular steatosis, which is commonly
assessed in clinical routine and research studies [5, 6].
Under the microscope, macrovesicular steatosis appears
as white roundish fat droplets in the cytoplasm of hepa-
tocytes. These fat droplets must be distinguished from
other white structures, such as vessels or tissue cracks
(see Fig. 1).
Steatosis is typically distributed heterogeneously across

the tissue. In steatotic areas, hepatocytes contain fat drop-
lets of different numbers and sizes. In non-steatotic areas,
hepatocytes do not contain any fat droplets (see Fig. 2). It
is common to distinguish between diffuse and focal distri-
butions. Diffuse steatosis often reflects the lobular struc-
ture of the liver and is concentrated near portal fields or
central veins [7]. Focal steatosis is confined to clearly de-
fined regions surrounded by large areas of non-steatotic
tissue [8].
Visual estimation by a hepatopathologist is the trad-

itional method of assessing steatosis in histological slides
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[4]. However, in recent years, various automated analysis
methods were developed to make the measurement of stea-
tosis in histological images more efficient and reproducible
[9–14]. These methods quantify steatosis in terms of the
steatosis area fraction, that is, the area fraction of macrove-
sicular fat droplets with respect to the total tissue area.
Spatial heterogeneity of steatosis can make the quantifi-

cation of steatosis area fractions unreliable. For one thing,
steatosis area fractions are sensitive to the proportion of
steatotic to non-steatotic tissue in the sample, which is dif-
ficult to standardize. For another thing, if non-steatotic
areas are much larger than steatotic areas, then steatosis
area fractions are often so small that they become sensi-
tive to minor image analysis errors.
Hotspot analysis is a common approach to quantify het-

erogeneously distributed tissue parameters. The idea is to
consider only regions with particularly high or abnormal
values which are assumed to be characteristic for the par-
ameter distribution [15]. Hotspot analysis is routinely per-
formed in the assessment of the Ki67 proliferation index
[16] and other quantitative tissue parameters, like PD-L1
biomarker expression [17], or tumor vascularity [18]. Its
results critically depend on both the location and the size
of the considered regions [16]. When performed manually,

the selection of both the location and the size of hotspot
regions tends to be very subjective [15, 18, 19].
Tile-based approaches make hotspot analysis more ob-

jective. They divide tissue images into a regular grid of
tiles and determine tissue parameters for each tile indi-
vidually. Both operations are performed by automated
image analysis. This makes it possible to objectively se-
lect hotspot regions based on the parameter values of
tiles. Furthermore, it enables characterization of the
spatial distribution of a tissue parameter through statis-
tics about its values across the tiles.
Plancoulaine et al. describe a tile-based approach to ob-

jectify the hotspot analysis of the Ki67 proliferation index
[19]. First, they select a stable proportion of tiles with high
proliferation values, and then they compute the Ki67 pro-
liferation index as a percentile of the values of the selected
tiles. Nawaz et al. describe an approach for the develop-
ment of novel prognostic scores for estrogen-receptor-
negative breast cancer [20]. They select clusters of tiles
containing high numbers of tumor or immune cells, re-
spectively, and subsequently they compute statistics about
the co-localization of the selected tiles.
In this paper, we present novel scores for reliable quanti-

fication of heterogeneously distributed steatosis. The idea

Fig. 1 Appearance of steatosis. In histological sections, macrovesicular steatosis appears as white fat droplets (a) in the cytoplasm of hepatocytes.
They must be distinguished from other white structures like vessels (b) or tissue cracks (c)

Fig. 2 Spatial heterogeneity of steatosis. Steatotic areas (a) and non-steatotic areas (b) are distributed heterogeneously across the tissue
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is to focus the computation of scores on steatotic tissue
areas in order to reduce their sensitivity to tissue sampling
and to image analysis errors. Hence, the scores were
named “focused scores”. For the computation of focused
scores, we adopted concepts of tile-based hotspot analysis
in order to select steatotic areas in an objective way. We
evaluated different variants of focused scores in terms of
their ability to discriminate differences in steatosis. For
comparison, the same evaluation was conducted with the
standard score computed by most image analysis methods.

Methods
Score computation
All steatosis scores considered in this paper were com-
puted in a simple two-step process. First, a whole-slide
image of a H&E-stained liver section was divided into a
grid of square tiles and the steatosis area fractions in the
individual tiles were determined by automated image
analysis (see Fig. 3). Second, the score value was com-
puted as a summary statistic about the steatosis area
fractions of selected tiles (see Fig. 4).
This process is independent of the particular method for

computing steatosis area fractions and arbitrary methods
can be used. In [9], different methods for computing stea-
tosis area fractions were compared in terms of their
agreement with human observers. One algorithm was sig-
nificantly superior to the others and suggested as a suit-
able automated replacement for manual analysis. We
created a custom software implementation of this algo-
rithm and used it for the evaluation of steatosis scores.
The algorithm for computing steatosis area fractions

was applied at an image resolution of 454 nm/pixel

(approx. 20× magnification). First, pixels were classified
as foreground or background. Afterwards, blobs of con-
nected foreground pixels were classified as fat droplets
or other white structures, such as vessels or tissue
cracks. Both operations were performed with machine-
learning classifiers, using features derived from satur-
ation and brightness values for the pixel classification,
and shape features for the blob classification.

Standard score
The steatosis score computed by most automated image
analysis methods is the steatosis area fraction within the en-
tire section. We used this “standard score” as the baseline
for the evaluation of novel steatosis scores in this paper.
When sections are divided into tiles of the same size,

the standard score roughly equals the mean of the stea-
tosis area fractions of all tiles. As long as tiles are small
enough to accurately cover the entire tissue section, the
standard score is practically unaffected by the tile size.
For this reason, we computed the standard score with a
small tile size of 8 μm.

Focused scores
In addition to the standard score derived from all tiles,
we considered focused scores that were only derived
from steatotic tiles. Steatotic tiles were required to have
a steatosis area fraction greater than zero. A minimum
of 100 steatotic tiles were required in order to obtain a
sound estimate of the statistic, or else the score was
deemed undefined.
In contrast to the standard score, focused scores are

affected by the tile size. The tile size determines the

Fig. 3 Tile-based steatosis quantification. The steatosis area fractions of tiles are visualized as colors from purple to yellow. At highest magnification,
the identified fat droplets are masked in yellow
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level of detail with which steatotic areas are selected.
We considered focused scores based on tiles with edge
lengths of 8 μm, 16 μm, 32 μm, 64 μm, or 128 μm, re-
spectively. The tile sizes cover the size range from small
macrovesicular fat droplets (8 μm) to groups of 10–20
hepatocytes (128 μm).
Furthermore, we considered focused scores based on

the mean and on certain percentiles of the steatosis
area fractions of steatotic tiles. The mean is a reason-
able statistic for characterizing symmetric and
mound-shaped distributions, such as the normal distri-
bution. Tile-based distributions of steatosis area frac-
tions, however, tend to be asymmetric and heavily
skewed to the right (see Fig. 4). This applies even when
considering only steatotic tiles.
For asymmetric and skewed distributions, percentiles

are more appropriate statistics because they make no as-
sumptions about the shape and are robust towards out-
liers. Percentiles are simple to compute and interpret.
The 50th percentile, also called median, reflects the cen-
tral tendency of a data set. Low and high percentiles,
such as the 10th or 90th percentiles, reflect its spread to
the left or right. We considered focused scores based on
the 10th, 20th, 30th, 40th, 50th, 60th, 70th, 80th, and
90th percentile.

Data sets
We evaluated the scores on three preexisting data sets
of images of H&E-stained rodent liver sections, denoted
as data set A, B, and C. Every data set was divided into

multiple groups of images, with each group representing
a distinct level of steatosis. Steatosis scores were ex-
pected to vary significantly between groups but insignifi-
cantly within groups. Also, inter-group differences were
expected to be large in data set A, small in data set B
and very small in data set C.

Data set A
Data set A contained 24 whole-slide images of rat liver
sections. The data set was divided into four groups of
six male Lewis rats each. The individual groups were fed
different diets (Ssniff Spezialdiäten GmbH, Soest,
Germany) for 3 months:

� Ctrl: Normal rat chow
� D1: Low methionine-low choline plus high starch diet
� D2: Low methionine-low choline plus high fat diet
� D3: Methionine-choline-deficient diet

At the end of the feeding periods, a 70% partial hepa-
tectomy was performed and liver tissue was collected for
further analysis. Sections of the left lateral lobe and the
median lobe were stained with H&E and scanned with a
Hamamatsu NanoZoomer HT 2.0 whole-slide scanner at
a resolution of 227 nm/pixel.
Steatosis scores were expected to vary significantly be-

tween groups because the diets differed in their capacity
to induce steatosis. However, only insignificant differ-
ences were expected within groups because the

Fig. 4 Score computation. The plots show distributions of tile-based steatotic area fractions of two example images. The columns illustrate the
computation of the standard score and a mean-based focused score, respectively. While all tiles are considered for the standard score, only steatotic
tiles are considered for the focused score. The large peak at value 0 makes the standard scores of both images indistinguishable
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respective animals were of the same strain and fed with
the same diet for the same time. The groups were sorted
according to the average steatosis level induced by the
respective diet, as determined by the mean steatosis area
fraction within sections.
Rats were obtained from the Central Animal Labora-

tory, University Hospital Essen, Germany. All procedures
were carried out in accordance with German animal
welfare legislation.

Data set B
Data set B contained 30 whole-slide images of sections
of murine left liver lobes. The data set was divided into
five groups of six mice each. All animals were male
C57BL/6J mice that were treated according to the STAM
model [21] for variable periods of time. The severity of
steatosis in this model is related to the feeding time and
includes the whole disease spectrum of FLD including
hepatocellular carcinoma.
On the second day after birth, the mice were given a

single subcutaneous injection of 200 μg streptozotocin
(Sigma, MO, USA) to induce insulin deficiency and pro-
duce a model of diabetes (first hit). Four weeks later,
four groups were fed a high fat diet (second hit; HFD32,
CLEA, Japan) for 6, 8, 12, or 20 weeks. An additional
control group was maintained on normal chow for
6 weeks. Afterwards, the animals were sacrificed and
their livers were histologically processed. Sections of the
left lobe were stained with H&E and scanned with a Ha-
mamatsu NanoZoomer HT 2.0 whole-slide scanner at a
resolution of 227 nm/pixel.
Steatosis scores were expected to vary significantly be-

tween groups because the animals were subjected to the
dietary protocol for different periods of time. However,
only insignificant differences were expected within groups
because the respective animals were of the same strain
and fed with the same diet for the same time.
Mouse livers were obtained from Stelic Institute & Co.,

Inc., Tokyo, Japan. Their transportation to Germany was
approved by LANUV NRW, Recklinghausen, Germany.

Data set C
Data set C contained 30 whole-slide images showing serial
sections of one mouse liver. The data set was divided into
five groups of six consecutive sections each. The individ-
ual groups were about 300 μm apart, so that the five
groups spanned a depth of about 1.2 mm. The consecutive
sections were about 3 μm apart.
The animal was a male C57/BL6N mouse that was fed

a methionine-choline-deficient high fat diet (Ssniff Spe-
zialdiäten GmbH, Soest, Germany) for 4 weeks. After-
wards, it was sacrificed and its liver was histologically
processed. Serial sections were cut from the center of
the liver using a rotary microtome, stained with H&E,

and scanned with a Hamamatsu NanoZoomer HT 2.0
whole-slide scanner at a resolution of 227 nm/pixel.
Even though the groups were only 300 μm apart, small

but significant differences were expected between groups
because of intra-liver heterogeneity [22]. However, only
insignificant differences were expected within groups be-
cause consecutive sections show almost the same tissue.
The mouse was obtained from Charles River Laborator-

ies, Sulzfeld, Germany. All procedures were carried out in
accordance with German animal welfare legislation.

Statistical analysis
We pursued a clinimetric approach to evaluate the con-
sidered scores, which is a common way to evaluate clin-
ical measures [23, 24]. In the clinimetric approach, the
ability to measure changes or differences in a clinical
parameter is assessed in terms of reliability and validity.
We used two descriptive statistics to quantify the reli-
ability and validity of steatosis scores, the intraclass cor-
relation coefficient (ICC) and the Kendall’s tau rank
correlation coefficient.

Reliability
Reliability represents the extent to which distinct levels
of the measured concept can be distinguished from each
other, despite measurement errors [24]. Reliability is
often used synonymously with precision and reproduci-
bility. It is typically quantified by an intraclass correl-
ation coefficient (ICC) that assumes values between 0
for poor and 1 for perfect reliability [25].
In our case, the ICC was computed as the ratio of the

variance between groups to the total variance, that is, the
variance between plus the variance within groups. The
variance within groups was assumed to represent meas-
urement errors and biological variability. ICC values were
estimated from variance components of a one-way ana-
lysis of variance (ANOVA). One-way ANOVA was used
because the groups in the data sets consisted of different,
randomly-selected animals.

Validity
Validity is defined as the degree to which a measure ac-
tually measures what it is supposed to measure [23]. It is
often used synonymously with accuracy. A measure can
be reliable without being valid. It is most straightforward
to evaluate the validity of a novel measure by compari-
son to an established gold standard [24]. However, be-
cause of their novelty, there was no gold standard for
the focused scores presented in this paper.
When no gold standard is available, validity is com-

monly assessed through correlation with other features
which are assumed to be related [24]. For data set A, we
assumed that groups were sorted according to their stea-
tosis levels. Therefore, we assessed the correlation
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between steatosis scores and diet indices. For data set B,
we assumed that steatosis increased over time with con-
tinued feeding. Therefore, we assessed the correlation
between steatosis scores and feeding time. For data set
C, we could not make reasonable assumptions about the
order of steatosis levels. Therefore, we refrained from
evaluating validity on this data set.
Correlation was quantified using Kendall’s tau rank

correlation coefficient [26], which does not depend on
linearity and can account for ties in the data, such as
multiple values per group. Kendall’s tau values range be-
tween −1 and +1, signifying negative and positive correl-
ation, respectively. A value of 0 implies no correlation.

Results
Tile size evaluation
We evaluated focused scores based on different tile sizes
in terms of their clinimetric quality and compared them
against the standard score. Like the standard score, all
considered focused scores were based on the mean. The
evaluation was conducted on all three data sets. The
resulting ICC and Kendall’s tau values are summarized
in Table 1.
Focused scores always performed comparably to or

better than the standard score. While all scores achieved
excellent reliability and validity on data set A, focused
scores performed substantially better than the standard
score on data set B and data set C. However, the per-
formance of focused scores strongly depended on the tile
size. The best reliability was obtained with tile sizes of
16 μm or 32 μm. Of these two, a tile size of 32 μm
achieved the best overall results on all data sets. The
quality gradually dropped when the tile size became
smaller or larger.
Figure 5 plots the values of the standard score and the

focused score computed with a tile size 32 μm obtained
on the three data sets. It becomes apparent that there is
substantial overlap between the standard score values of
the different groups. The focused score values, on the

other hand, tend to be better separated between groups
and more tightly clustered within groups.

Percentile evaluation
We evaluated focused scores based on different percen-
tiles in terms of their clinimetric quality and compared
them against the mean-based focused score. The evalu-
ation was conducted on all three data sets. Again, the
best results were obtained with tile sizes of 16 and
32 μm. For brevity, we only present results obtained
with a tile size of 32 μm because they consistently
ranked among the best. The corresponding ICC and
Kendall’s tau values are listed in Table 2.
Focused scores based on high percentiles tended to

perform better than focused scores based on low percen-
tiles. This applied to all data sets and both the reliability
and validity. However, on data set B and C, focused
scores based on very high percentiles (80th, 90th) proved
to be less reliable than focused scores based on some-
what smaller percentiles. The best overall results were
achieved by the focused score based on the 70th per-
centile. While its performance was comparable to the
mean-based focused score on data set A and B, its reli-
ability was considerably higher on data set C.
The values of the 70th-percentile-based focused score

are plotted in the third column of Fig. 5. Apart from be-
ing on a different scale, the value distributions of the
percentile-based and mean-based focused scores were
nearly indistinguishable on data set A. On data set B,
there appears to be less intra-group variation in the per-
centile values and the 6 week group appears to be better
separated from the control group. On data set C, the
percentile values of the last two groups were much bet-
ter separated from the values of the first three groups
than the corresponding mean values.

Discussion
Focused scores appear to be better suited for the quantifi-
cation of steatosis in histological images than the standard
score. As evidenced by their superior performance on data
sets B and C, their particular advantage is the reliable dis-
crimination of small differences in steatosis. By focusing
only on steatotic tiles, the scores become insensitive to the
sampling of non-steatotic tissue. Also, since focusing only
on steatotic tiles increases their value, the scores are less
sensitive to image analysis errors.
However, the performance of focused scores strongly

depends on the tile size. If the tile size is too small, then
most tiles lie either completely within or outside of
macrovesicular fat droplets. In this case, scores are
poorly resolved and, at the extreme, only assume the
values zero or one. If the tile size is too large, then tiles
cover substantial areas of non-steatotic tissue. In this
case, focused scores become sensitive to the spatial

Table 1 Results of the tile size evaluation on data set A, B, and
C. Kendall’s tau values were only computed for data set A and B
because validity assumptions could only be made for these data
sets. The tile size of the standard score was labeled as not
applicable (N/A) because this score is practically unaffected by
the tile size

Score Tile size Statistic ICC A ICC B ICC C tau A tau B

standard N/A mean 0.86 0.54 0.14 0.78 0.60

focused 8 μm mean 0.84 0.76 0.72 0.79 0.73

focused 16 μm mean 0.94 0.83 0.79 0.81 0.76

focused 32 μm mean 0.92 0.86 0.83 0.81 0.82

focused 64 μm mean 0.87 0.77 0.67 0.78 0.79

focused 128 μm mean 0.86 0.62 0.28 0.77 0.70
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heterogeneity of steatosis in the same way as the stand-
ard score. Interestingly, the best results were obtained
when the tile size approximately matched the size of sin-
gle hepatocytes (16 to 32 μm).
Focused scores based on percentiles can potentially

further improve the discrimination of very small differ-
ences in steatosis over mean-based focused scores. This
is suggested by the superior reliability of the focused
score based on the 70th percentile on data set C. How-
ever, in the absence of validity assumptions for data set
C, it is impossible to say whether the result is meaning-
ful in practice. The superior performance of scores based

on high percentiles over scores based on low percentiles
can be explained with the premise of hotspot analysis,
namely, that particularly high values are characteristic
for the parameter distribution [15]. Very high percen-
tiles, on the other hand, often capture inevitable arti-
facts, like vessels or cracks that were incorrectly
classified as fat droplets. This might explain why the
highest percentiles were less reliable than somewhat
smaller percentiles on data set B and C.
Our results mirror findings obtained in the tile-based

hot spot analysis of other histological parameters. Nawaz
et al. also found the tile size to be a major factor in the

Fig. 5 Score values. Distributions of score values obtained on data set A, B, and C. The horizontal axes give the groups of the respective data set,
the vertical axes give the respective score values. Every dot represents one image. For better readability, the dots where randomly displaced by
small amounts in horizontal direction
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prognostic quality of scores for estrogen-receptor-negative
breast cancer [20]. Likewise, Plancoulaine et al. elaborate
on the sensitivity of very high percentiles to artifacts in
the context of the Ki67 proliferation index [19].
Computing focused scores is conceptually simple and

straightforward to standardize, which is essential for
widespread adoption and reproducibility. Also, it re-
quires no manual interaction and virtually no additional
computational costs over the standard score. The fo-
cused scores approach is complementary to many previ-
ously published methods for computing steatosis area
fractions [9–14]. Deriving focused scores from these
methods can be a simple way to improve their reliability.
It must be pointed out, however, that the values of fo-
cused scores are on a different scale and, therefore, in-
comparable to the standard score.
Having reliable means for discriminating small differ-

ences in steatosis reduces the number of samples needed
for demonstrating significant effects in research studies.
This will not only reduce the effort of conducting studies,
but in studies using animal models, it will also reduce the
number of animal experiments required. Focused scores
are likely to be beneficial in clinical practice as well, be-
cause the microscopic appearance of steatosis in human
liver tissue is similar to the one in rodent tissue. However,
further studies are necessary that evaluate how different
states of fatty liver disease are reflected in different fo-
cused score values. Only when clinical guidelines are spe-
cifically tailored to focused scores, it will be possible to
make full use of their increased reliability.
Focused scores were superior to the standard score on

all three data sets used in the evaluation. Nevertheless,
to prove their general superiority, they must be evalu-
ated on further data sets. These should cover a broad
range of applications and ideally also include human

liver tissue. Performing a clinimetric evaluation for hu-
man tissue is much more difficult because of the impos-
sibility to evaluate reliability in controlled experiments.
Besides steatosis, there are many histological parame-

ters that are heterogeneously distributed across tissue
sections. This includes scores quantifying the expression
of biomarkers like Ki67, hormone receptors, HER2, or
PD-1/PD-L1, which are important prognostic or predict-
ive factors in the treatment of cancer. Future work
should, therefore, be invested in evaluating whether fo-
cused scores can make the assessment of these bio-
markers more reliable as well.

Conclusion
Focused scores enable reliable quantification of hetero-
geneously distributed steatosis in histological images.
They appear to be generally superior to the steatosis area
fraction across the entire tissue, which is computed by
most automated image analysis methods. Their superior-
ity was particularly evident in the discrimination of small
differences in steatosis. Focused scores are conceptually
simple and straightforward to use in research studies.
Provided that an appropriate tile size is used, their high
reliability can potentially reduce the number of samples
needed for demonstrating significant effects.
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