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Abstract

Background: This paper summarizes the contributions from the Genome-wide Association Study group (GWAS
group) of the GAW20. The GWAS group contributions focused on topics such as association tests, phenotype
imputation, and application of empirical kinships. The goals of the GWAS group contributions were varied. A real or
a simulated data set based on the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) study was
employed by different methods. Different outcomes and covariates were considered, and quality control
procedures varied throughout the contributions.

Results: The consideration of heritability and family structure played a major role in some contributions. The
inclusion of family information and adaptive weights based on data were found to improve power in genome-wide
association studies. It was proven that gene-level approaches are more powerful than single-marker analysis. Other
contributions focused on the comparison between pedigree-based kinship and empirical kinship matrices, and
investigated similar results in heritability estimation, association mapping, and genomic prediction. A new approach
for linkage mapping of triglyceride levels was able to identify a novel linkage signal.

Conclusions: This summary paper reports on promising statistical approaches and findings of the members of the
GWAS group applied on real and simulated data which encompass the current topics of epigenetic and
pharmacogenomics.
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Background
Over the last decade, genome-wide association studies
(GWAS) have proven a useful systematic method to in-
vestigate the genetic complexities of hundreds of disease
phenotypes and their associations with common gen-
omic variations. To date, more than 1000 GWAS have
identified more than 4000 significant loci as associated
with 500 human diseases and traits [1]. Although GWAS
for common variants have thus far achieved substantial
success, their findings generally only explain a modest
fraction of disease heritability [2, 3]. Potential reasons of
missing heritability could be the limited power of GWAS

[3] or the contribution of genetic variation such as rare
variants [4]. As a consequence of the statistical burden
of multiple comparisons in GWAS, reaching the thresh-
old of statistical significance by GWAS can be a chal-
lenge. To be considered “‘GWAS significant,” only those
associations with a p < 5 × 10− 8 are considered statisti-
cally significant with single-marker analysis [3, 5].
To increase power and interpretability of GWAS, re-

searchers of the Genome-wide Association Study Group
of GAW20 have focused on topics such as gene-level asso-
ciation studies for main [6] or gene–environment inter-
action effects [7]; haplotype-based tests [8]; joint analysis
of multiple phenotypes [9]; joint analysis of genetic and
epigenetic data [10]; phenotype imputation [11] and
employing the empirical kinships in estimating phenotype
heritability [12]; genome-wide linkage scan [13]; and gen-
omic prediction of phenotypes [14] (Table 1 and Table 2).
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Here, we provide a summary of the current literature
with respect to methods in GWAS and ways to increase
the power of these tests. We then provide contributions
from the Genome-wide Association Study Group of
GAW20 in the methods and results sections and con-
clude with recommendations and open problems in the
discussion section.

Current literature on association tests
Single-trait association tests
GWAS is considered as the standard approach to detect-
ing common genetic variants associated with complex
traits. It is now popular to extend the most popular
single-nucleotide polymorphism (SNP)-level analysis to
gene-level analysis by aggregating multiple SNPs in a

Table 1 Contributions toward association tests from the GWAS group

Goal Reference Phenotype Data type Statistic type

A gene-level association test Park et al. [6] Single quantitative trait Family real GOLDN genetic
data

Combined score based
test

A haplotype based association test Zhou et al. [8] Single binary trait Case-control and trio GOLDN
real genetic data

Bayes factor

A gene-environment interaction test Gao et al. [7] Single quantitative or binary
trait

GAW20 Case-control simulated
genetic data

Score based test

Joint association analysis of single SNPs
and DNA methylation markers

Shen et al.
[10]

Single quantitative trait Family real GOLDN genetic
and methylation data

Score based test

Jointly analyzing multiple phenotypes Deng et al. [9] Multiple quantitative traits Family real GOLDN genetic
data

Pedigree-based USAT
(pUSAT)

GOLDN Genetics of Lipid Lowering Drugs and Diet Network, SNP single-nucleotide polymorphism, USAT, unified score-based association test

Table 2 Contributions toward phenotype imputation and empirical kinship application from the GWAS group

Contribution Genotypes Phenotypes Evaluation Quality Control

Chen
et al. [11]

Restricted simulated SNP genotypes.
1. Null scenario: 19,763 SNPs
on chromosomes 21 and 22
2. Alternative scenario: 5 known
causal SNPs (rs9661059, rs736004,
rs1012116, rs10828412 and rs4399565)

Simulated TG levels
(a) Average difference between
pretreatment (visits 1 and 2)
and posttreatment
(visits 3 and 4) or (b) single
difference between visits 1
and 3 of log-transformed TG levels

1. Type I error
rate evaluation
in “null scenario”
2. Power
evaluation in
“alternative
scenario”

No quality control (QC) conducted
on restricted simulated data

Blackburn et
al. [12]

Genome-wide (autosome) SNP data
from 822 subjects in 173 pedigrees

TG and HDL-C levels were averaged
for pre-treatment (visits 1 and 2) and
post-treatment (visits 3 and 4) and
regressed on age, sex, their interactions
(age × sex, age2, age2 × sex), study
center, smoking, and principal
components 1–4; resulting residuals
were inverse normalized

Under 3
different kinship
models:
1. Heritability
analyses
2. Single variant
association
testing

Exclusion of 6 individuals with
unexpected relationships
Variants were uplifted to hg19
mapping coordinates, excluding
135 conversion failures

Porto
et al. [14]

Genome-wide (autosome) SNP data
from 822 subjects in 173 pedigrees

Averaged TG levels of pre- (visits 1 and 2)
and post-treatment (visits 3 and 4)

Genomic best
linear unbiased
prediction (G-
BLUP) under 3
different kinship
models

Exclusion of 6 individuals with
unexpected relationships; variants
were uplifted to hg19 mapping
coordinates, excluding 135
conversion failures

Peralta
et al. [13]

Genome-wide (autosome) SNP data
from 822 subjects in 173 pedigrees

Averaged and log-transformed TG
levels pre-treatment (visits 1 and 2)
and post-treatment and corresponding
empirical genetic values (EGVs)
from Porto et al. [14]
Simulated traits with zero mean, unit
variance and a 35% heritability,
but not linked to any real loci

Multipoint
variance
component
linkage analyses
under the
pedigree-based
kinship model

Exclusion of 2 individuals with
unexpected relationships and
1 monozygotic twin to guard
against the artificial inflation of
heritability estimates.
Variants were uplifted to hg19
mapping coordinates, excluding
135 conversion failures; LD based
pruning of r2 ≥ 0.9 and exclusion
of variants of minor allele count
(MAC) > 5 left 375,632 variants for
analysis

HDL-C high-density lipoprotein cholesterol, LD linkage disequilibrium, SNP single-nucleotide polymorphism, TG triglyceride
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gene, pathway, network, or any region in the genome,
such as a haplotype block [15]. SNP-set association tests
are believed to be advantageous in several ways [16]. By
incorporating linkage disequilibrium and haplotype in-
formation among the markers being tested, joint analysis
of multiple markers can be more powerful in detecting
associated variants with small effects. In addition, the re-
sults obtained from SNP-set tests at the gene level can
be more readily extended to and integrated with down-
stream functional and pathogenic investigation because
a gene is the basic functional unit of inheritance [17]. As
a complement to the standard single SNP-based ap-
proach, the gene-level approach can achieve higher re-
producibility. Additional benefits of the gene-level
approach include a decreased number of hypotheses to
be tested, thus a reduced burden of multiple testing.
Several multimarker methods have been proposed based

on dimension-reduction techniques, such as principal
component analysis [18], partial least-squares regression
[19, 20], and methods that are based on combining the p
values of single-marker tests [21–23]. However, these
SNP-set based methods are limited to unrelated samples.
Their extensions to incorporate family data may not be
feasible. Recently, several methods that are based on a lin-
ear mixed model or a generalized linear model have
gained increasing popularity [24, 25], such as the kernel
machine regression test [26, 27], the sum of squared score
(SSU) test [28], the sum of powered score tests [29], vari-
able weight test for testing the effect of an optimally
weighted combination of variants (VW-TOW) [30], and
haplotype-based logistic Bayesian LASSO (least absolute
shrinkage and selection operator) [31]. They provide a
flexible and computationally efficient framework for test-
ing the joint effect of SNPs in a SNP set, and have been
shown as an attractive alternative to the standard multi-
variate test under a variety of settings.

Multiple traits association tests
Increasing evidence shows that pleiotropy, the effect of 1
variant on multiple traits, is a widespread phenomenon in
complex diseases [32]. Furthermore, in genetic association
studies of complex diseases, multiple related traits are usually
measured. Although most published GWAS analyze each of
the related traits separately, joint analysis of multiple traits
may increase statistical power to detect genetic variants [33].
Consequently, joint analysis of multiple traits is now popular.
Several statistical methods have been developed for joint
analysis of multiple traits. These methods can be roughly di-
vided into 3 groups: combining the univariate analysis results
[34], regression methods [35–37], and dimension reduction
methods [38, 39]. Yang et al. [39] and Ott et al. [38] describe
a number of approaches elaborately, including multivariate
regression models, variable reduction methods such as prin-
cipal component analysis, and canonical correlation analysis.

However, there is no single approach that is uniformly most
powerful across all situations. The sum of squared score
(SSU) test does not explicitly incorporate trait correlation,
and multivariate analysis of variance (MANOVA) could fail
to detect pleiotropy when a strong trait correlation exists
and the traits have same direction of association [40]. Con-
sidered to be an optimal weighted combination of MAN-
OVA and SSU, the unified score-based association test
(USAT) by Ray et al. [40] may provide higher power, espe-
cially for detecting pleiotropy.

Methods
GAW20 data
The GAW20 data are derived from the Genetics of Lipid
Lowering and Diet Network (GOLDN) study, which
aims to identify genetic markers of lipid response to
fenofibrate treatment. The real data consists of
high-density lipid cholesterol (HDL-C) and triglyceride
(TG) levels measured before (visits 1 and 2) and after
(visits 3 and 4) treatment with fenofibrate in 822
pedigree-based European Americans from 2 different
centers in the United States (Minneapolis and Salt Lake
City). In GAW20, genome-wide methylation, as well as
genome-wide SNP data, from the GOLDN project was
made available. Furthermore, simulated post-treatment
and pre-treatment TG, methylation levels and SNP
genotype data are provided based on the real GOLDN
data set. Tables 1 and 2 provide information on the data
used in each contribution, whether the data is real or
simulated, the phenotype of interest, and the evaluation
method used, as well as information on quality control.
The 9 contributions from the GWAS group of

GAW20 extend upon the current literature and reflect
varied goals, including the creation of new statistic tests,
development of phenotype imputation methods, and ap-
plication of the empirical kinship matrices. Table 1 sum-
marizes contributions that focused on association study
and Table 2 summarizes contributions on imputation
and empirical kinship estimation.

New statistics
To perform a gene-level association test to detect genes
significantly associated with a single trait using the
GAW20 data while effectively controlling for the
false-positive rate, Park et al. [6] extended the adaptive
sum of powered score (aSPU) test [29], which accounts
for unknown and varying association patterns across the
genes, thereby maintaining higher power than other non-
adaptive gene-level tests. The aSPU test is based on gener-
alized linear models (GLMs). It is computationally feasible
as it is not necessary to fit separate models for each SNP
or gene, and it is shown to satisfactorily control
false-positive rates. To account for individual relatedness
and population structures in pedigree data such as
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GAW20, Park et al. [6] proposed a gene-level aSPU test
based on the framework of linear mixed models (LMMs).
It is a data-adaptive method that combines the results
across a class of score-based tests and only requires fitting
a model under the null hypothesis for the whole genome,
which makes it computationally efficient.
Zhou et al. [8] proposed an extension of the logistic

Bayesian LASSO methodology so that both case-control
and trio data can be analyzed jointly in the hope of obtain-
ing an increased statistical power, especially for detecting
association between rare haplotypes and complex diseases.
The methodology is further extended to account for famil-
ial correlation among the case-control subjects and the
trios. The authors described the composite likelihood of
the whole data as a multiplication between the
haplotype-based likelihood for the case-control data and
the haplotype-based likelihood for the case-parent trios.
However, as a consequence of the complex relationships
among the extracted cases, controls, and trios, it is diffi-
cult to formulate the correct likelihood. Fortunately, it is
possible to obtain correct inferences based on the misspe-
cified composite likelihood through appropriate adjust-
ment. Based on a Bayesian framework, they used the
adjusted likelihood for correct inference. The posterior
odds over the prior odds, namely the Bayes factor, is used
to assess the significance of the coefficients of the genetic
terms in the logistic regression model.
Existing methods to detect the main effect of rare vari-

ants cannot be readily applied for testing the gene envir-
onment interaction effect of rare variants, as those
methods either have unstable results or inflated Type I
error rates when the main effect exists. To overcome these
difficulties, Gao et al. [7] developed a novel score-based
test for testing of optimally weighted combinations of
SNP environment interaction (TOW-SE) of rare variants.
The authors employed a GLM to model the relationship
between the trait and gene–environment interactions.
They first obtained the residuals of the trait and gene–en-
vironment interaction, respectively, by adjusting for covar-
iates. They used the residuals to build a new GLM. They
analytically derived a score test with optimal weight for
gene–environment interactions to test the TOW-SE.
Based on TOW-SE, they proposed a variable weight
TOW-SE (VW-TOW-SE) to test gene–environment inter-
action effects for both common and rare variants.
Advances in high-throughput technologies provide

comprehensive assessment of biomarkers, which enable
us to systematically study the role of different types of
omic data (eg, DNA, DNA methylation) in human dis-
eases. The collection of multilevel omic data from these
studies provides us a great opportunity to integrate infor-
mation from different levels of omic data into association
analysis. Although omic-based association analysis holds
great promise for discovering novel disease-associated

biomarkers, there is a lack of appropriate statistical tools
to analyze multilevel omic data [41, 42]. The development
of advanced methods to address analytical challenges
faced by ongoing omic data analysis can enhance our abil-
ity to identify new disease-associated biomarkers. Shen et
al. [10] proposed a joint conditional autoregressive model
to model the joint effect of genetic markers and DNA
methylation on the phenotype of interest. A linear score
test is used for hypothesis testing and the corresponding p
value can be obtained using the Davies method [43].
The true genetic sizes and the direction of associations

are usually unknown (a priori) and therefore one would
not know which approach is the best for the study. Ray
et al. [40] proposed an approach called the USAT to
combine MANOVA and SSU. USAT takes the advan-
tages of MANOVA and SSU but does not require the
prior knowledge of true effect sizes or correlations
among traits. The method was originally designed for in-
dependent samples. To account for individual related-
ness and population structures in pedigree data, Deng et
al. [9] expanded USAT to related samples as a
pedigree-based USAT (pUSAT).

Phenotype imputation
The aim of GWAS is the identification of particular SNPs
associated with an outcome of interest, such as the TG or
HDL levels in the GAW20 data set. To identify associated
SNPs with small and large effect sizes, the power (probabil-
ity of rejecting a false null hypothesis correctly) of GWAS
should be sufficiently high. Missing phenotype data, owing
to cost, loss of follow-up or inaccessibility of data, might
lead to a decrease of statistical power and consequently to
the loss of true SNP associations. A well-known approach
to deal with missing data in GWAS is imputation based on
available phenotypic data, for instance with methods such
as PhenIMP [44]. Chen et al. [11] modified this imputation
method by including information on family structure,
which might lead to higher statistical power in GWAS
compared to the consideration of phenotypic data for im-
putation alone. The information on family structure is de-
rived from the kinship matrix, which might be obtained
using the pedigree structure in families or empirical estima-
tions with genotypes. Chen et al. [11] derived a multivariate
normal distribution for missing phenotypes with the infor-
mation on the estimated family structure and additional
correlated phenotypes. The expected missing phenotypes
were then estimated using the maximum likelihood estima-
tor (MLE) in the SOLAR (Sequential Oligogenic Linkage
Analysis Routines) software [45].

Empirical kinship matrix application
“Kinship” typically refers to the degree of genetic related-
ness or coefficient of relationship between individual
members of a pedigree. There are at least 2 ways to model

Wang et al. BMC Genetics 2018, 19(Suppl 1):79 Page 112 of 140



kinship of a pedigree: (a) pedigree-based kinship uses spe-
cified pedigree relationships, and (b) empirical kinship es-
timates familial relationships using genomic data.
Pedigree-based kinship estimation may be inaccurate or
incomplete. Compared to the pedigree-based kinship esti-
mation, the uncertainty surrounding pedigree relation-
ships is reduced with empirical kinship estimates [46] The
potential beneficial effect of empirical kinship is investi-
gated by 3 of the GAW20 contributions (eg, Blackburn et
al. [12]; Peralta et al. [13]; and Porto et al. [14]) on herit-
ability estimates, genomic predictions, and association and
linkage mapping. The software PREST-plus was used to
confirm recorded pedigree relationships and examine un-
expected relatedness between individuals within and
across pedigrees. Inconsistencies were removed for all
analyses of the empirical kinship contributions. The
remaining pedigree records served to compute the pedi-
gree based kinship estimates with the software SOLAR
[46]. Two established methods, LDAK [47] and IBDLD
[48], were used to calculate the empirical kinship esti-
mates based on the GAW20 SNP array genotype data.
Phenotypes are influenced by environmental and gen-

etic factors. When it is predicted with genome-wide
markers alone, this is called genomic prediction. The
resulting empirical genetic value is interpreted as the in-
dividual’s phenotype with environmental effects re-
moved. One promising approach for genomic prediction
is the genomic–best linear unbiased prediction method
(G-BLUP), which uses kinship estimates. With the pedi-
gree and empirical kinships as respective input to
G-BLUP, Porto et al. [14] applied the G-BLUP method
to the empirical genetic value for each TG phenotype
and each individual.

Results
Park et al. [6] applied the proposed gene-level aSPU ap-
proach to test for association with the high-density lipo-
protein (HDL) ratio of post-treatment and pre-treatment
in GAW20 data. Using the LMM similar to that used by
Aslibekyan et al. [49], the proposed method identified 2
nearly significant genes (APOA5 and ZNF259) near
rs964184, while none of the other gene-level tests nor
the standard test on each individual SNP detected any
significant associations in a genome-wide scan.
Zhou et al. [8] used a 2-step strategy to analyze the

GAW20 real data. In the first step, they used the Monte
Carlo pedigree disequilibrium test to scan the whole
genome and determine interesting regions for the ad-
enosine triphosphate binary trait. In the second step,
they formed haplotype blocks around the SNPs selected
from the first step. They then applied an extension of
the logistic Bayesian LASSO to identify haplotypes
within each block that have a significant influence on
the adenosine triphosphate binary trait. Decision on the

significance of a haplotype is based on both Bayes factor
(> 2) and confidence interval. Six significantly associated
haplotypes were identified (the Bayes factor of the most
significant haplotype is 20.7); most are in blocks con-
tained in protein-coding genes that appear to be relevant
for metabolic syndrome.
Simulation studies of Gao et al. [7] showed that the

95% confidence interval of the estimated Type I error
rates covered the true Type I error. Comparing the 2
methods with the existing interaction sequence kernel
association test [50], the VW-TOW-SE was the most
powerful test; TOW-SE was the second most powerful
test when gene–environment interaction effect exists for
both rare and common variants. The proposed tests are
applied to the GAW20 simulated data, among the 5 re-
gions, including causal SNPs rs736004, rs1012116,
rs4399565, rs9551059, and rs10828412, in which the
main effect of common SNPs was included and the
gene–age interaction effect was not included. As ex-
pected, none of the tests indicate positive results.
The joint conditional autoregressive model of Shen et

al. [10] was applied to the GAW20 data from the
GOLDN project. In this application, the authors con-
sider a baseline model and a full model. In the baseline
model, they considered 3 different scenarios: a model
with only genetic information, a model with only DNA
methylation information at visit 2, and a model using
both genetic and DNA methylation information at visit
2. For the full model, they considered both genetic and
DNA methylation information at visit 2 and visit 4. The
top 10 significant genes were reported for each model.
Based on the results, they found that the gene MYO3B
was significant when the methylation information was
considered in the analysis (p value = 0.000759).
Deng et al. [9] applied different approaches to analyze

multiple traits (eg, TG and HDL) in the GAW20 real
samples and compared the results. Through simulation
studies, they confirmed that the Type I error rate of the
pUSAT is appropriately controlled. In marginal analysis
of TG levels, they found 1 subgenome-wide significant
variant on chromosome 6. Joint analyses identified sev-
eral suggestive genome-wide significant signals on chro-
mosomes 4, 6, and 12 associated with TG and HDL. The
pUSAT yielding the greatest number of significant
results.
Chen et al. [11] evaluated the proposed approach on

complete and incomplete data sets. The incomplete data
set corresponded to the simulated data set where sam-
ples with at least 1 missing TG value were removed,
leading to an incomplete data set of 563 individuals. In
contrast, the complete data set contained available TG
values and imputed values of missing TG values for a
total of 680 individuals. The Type I error rates were
evaluated based on the null scenario of 19,763 simulated
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noncausal SNPs on chromosomes 21 and 22. Statistical
power in association analyses were evaluated based on 5
causal SNPs, described in the GAW20 Simulation Solu-
tions. The distribution of missing values is derived using
information contained in the missing sample’s relatives
and additional correlated phenotypes. They showed that
this imputation method can improve power in the asso-
ciation analysis compared with excluding observations
with missing data, while achieving the correct Type I
error rate.
Blackburn et al. [12] estimated heritability and con-

ducted single-variant association testing using estimates
of the pedigree-based kinship and empirical kinship
matrices, respectively. The phenotypes under consider-
ation were inverse-normalized residuals of regressed and
averaged pre-treatment (visits 1 and 2) and
post-treatment (visits 3 and 4) TG and HDL-C levels.
Using SOLAR, pedigree-based kinships and empirically
calculated kinships (from IBDLD and LDAK) are used to
calculate phenotype heritability. In addition, a
genome-wide association study was conducted using
each kinship model for each phenotype to identify gen-
etic variants significantly associated with phenotypic
variation. The variant rs247617 is significantly associated
with HDL-C levels both pre-treatment and
post-treatment with fenofibrate. Overall, the phenotype
heritabilities calculated using pedigree-based kinships or
either of the empirical kinships generated using IBDLD
or LDAK were comparable. Phenotype heritabilities esti-
mated from empirical kinships generated using IBDLD
were closest to the pedigree-based estimations.
Porto et al. [14] studied 2 different factors that influ-

ence the prediction of accuracy of G-BLUP for the ana-
lysis of human data: (a) the choice of kinship matrix,
and (b) the overall level of relatedness. The resulting
genetic values represent the total genetic component for
the phenotype of interest and can be used, therefore, to
represent a trait without its environmental component.
Finally, they demonstrated using empirical data how this
method can then be used to increase the power of gen-
etic mapping studies.
Peralta et al. [13] (collaborators of Porto et al. [14])

chose the multipoint variance component approach for
linkage mapping. Averaged log-normalized TG levels
pre-treatment and post-treatment and the corresponding
empirical genetic value derived from Porto et al. [14]
were considered in the analyses. It was expected that
traits, fully explained by available genome-wide markers
(ie, with a 100% heritability), will increase the genetic
signal in linkage studies. They conducted a genome-wide
linkage scan to detect loci that influence the levels of
fasting TGs in plasma. Multipoint identity by descent
matrices are derived from genotypes using IBDLD.
Variance-component linkage analyses were then

conducted using SOLAR. They found evidence of link-
age (LOD [logarithm of odds] ≥3) at 5 chromosomal re-
gions with TG levels in plasma. Their results suggest
that a chromosome 10 locus at 37 cM (LODpre = 3.01,
LODpost = 3.72) influences fasting TG levels in plasma
regardless of the fenofibrate intervention, and that loci
in chromosomes 1 at 170 cM and 4 at 24 cM cease to
affect the TG levels when fenofibrate is present, whereas
the regions in chromosomes 6 at 136 cM to 162 cM and
11 at 39 cM to 40 cM appeared to influence TG levels in
response to fenofibrate.

Discussion
A central goal of human genetics is to identify genetic risk
factors for common, complex diseases such as schizophre-
nia and Type II diabetes. GWAS that measures and ana-
lyzes DNA sequence variations from across the human
genome is a valuable effort to identify genetic risk factors
for diseases that are common in the population. The ul-
timate goal of GWAS is to use genetic risk factors to make
predictions about who is at risk and to identify the bio-
logical underpinnings of disease susceptibility for develop-
ing new prevention and treatment strategies.
Contributions from the GWAS group of GAW20 pro-

vided various statistical approaches which are beneficial
in GWAS. Figure 1 summarizes all the contributions of
the GWAS group. Population-based study and
family-based study are 2 broadly defined study designs
employed in GWAS. Gao et al. [7] developed novel tests
to detect gene–environment interaction effects using a
population-based study design. Shen et al. [10], Black-
burn et al. [12], Park et al. [6], Deng et al. [9], Peralta et
al. [13], and Chen et al. [11] developed novel methods to
detect marginal genetic effect based on family-based de-
sign. Zhou et al. [8] developed a novel approach to test
for marginal genetic effects by using both
population-based case-control data and family-based trio
data. For a fixed genotyping budget, population-based
design is often the most powerful study design [51]. It is
generally believed that family-based design is robust
against spurious association because of population strati-
fication or admixture [52].
In genetic association studies of complex diseases,

multiple related traits are usually measured. For ex-
ample, correlated TG and HDL are provided in the
GAW20 data, hypertension is evaluated using systolic
and diastolic blood pressures, metabolic syndrome is
based on observing 3 of 5 criteria [53], and there are
highly correlated lipids traits TG and HDL. Although
most published GWAS analyze each of the related traits
separately, the joint analysis of multiple traits can not
only increase statistical power to detect genetic variants
[37, 39], but can also be crucial for understanding the
genetic architecture of the disease of interest [54].
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Consequently, the joint analysis of multiple traits has be-
come popular. Deng et al. [9] extend the USAT to re-
lated samples as a pUSAT by incorporating family
structure. pUSAT provided comparable results with
slightly smaller p values than the existing methods when
applied to the GAW20 data. Therefore, when there are
multiple traits available, we suggest jointly analyzing
multiple traits, which can increase both the power and
the interpretability of the findings.
The genetic variants discovered by GWAS account for

only a small portion of the heritability of complex traits
[55, 56]. One possible explanation for the missing herit-
ability is that the analysis strategy commonly used in
GWAS, testing for association of the phenotype with
each SNP individually, is not well suited for detecting
multiple variants with small effects [57]. Proposed re-
search strategies to uncover this missing heritability in-
clude studying rare variants such as the TOW-SE
proposed by Gao et al. [7], or epigenetic effects such as
with the score test developed by Shen et al. [10]. Ad-
vanced analyses of GWAS data using novel statistical
methods such as gene-set (SNP-set or network-assisted)
analysis also have been proposed as a way to extract
additional information from genome-wide SNP data
[58]. Gene-set analysis aims to assess the overall evi-
dence of association of variation in an entire set of SNPs
or genes with a phenotype. The gene set can be defined
using canonical pathways [59] gene ontology categories
[60], or subnetworks. Pathway-based analysis is 1 type of
gene-set analysis that uses canonical pathways, gene
ontology biological process categories, or other pathway
annotations as its gene-set unit. Gene set has the poten-
tial to detect subtle effects of multiple SNPs in the same
gene set that might be missed when assessed individually
[61]. Because numerous genes can be combined into a
limited number of gene sets for analysis, the multiple
testing burden may be greatly reduced by gene-set

analysis. Moreover, the incorporation of biological know-
ledge in the statistical analysis may aid researchers in the
interpretation of results [62].
To increase the power of a gene-set–based test, many

weighting strategies have been proposed [63]. Gao et al.
[7] analytically derived optimal weights for TOW-SE to
detect gene–environment interaction for rare variants.
The assumption of TOW-SE is the independence be-
tween variants, which usually holds for rare variants, it
needs to explore a more flexible form of the statistic
when it is used to common variants. Park et al. [6] pro-
posed a gene-level association test that accounts for in-
dividual relatedness and population structures in
pedigree data in the framework of LMMs. This method
is based on a class of the sum of powered score tests
indexed by a positive integer ɣ. Park et al. [6] suggested
to treat ɣ as a factor that decides the weight on each
score element. If the test statistic could be treated as a
function of ɣ, a further work might be done to find the
optimal ɣ where the test statistic reaches its maximum.
Zhou et al. [8] proposed an extension of the logistic
Bayesian LASSO methodology to jointly analyze both
case-control and trio data. This is a haplotype-based ap-
proach that needs phased haplotypes. Therefore, to ease
computational burden, this method should be used on
specific genetic regions rather than the whole genome.
GWAS have discovered hundreds of common genetic

variants associated with multifactorial diseases. These vari-
ants can be added to classical clinical and environmental
risk factors for the improvement of risk-prediction assess-
ment. However, for most common diseases, the addition of
genetic variants to traditional risk factors has produced
only modest improvements [64, 65]. The subsequent gen-
etic risk profiles generated are still unlikely to provide suffi-
cient discrimination to warrant individualized prevention.
Porto et al. [14] show that the G-BLUP methods borrowed
from animal breeding can be employed to increase the

Fig. 1 Summary of GAW20 GWAS group contributions
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accuracy of genomic prediction of complex phenotypes and
the power of genetic mapping studies.

Conclusions
In summary, the contributions from the GWAS group
of the GAW20 provide useful tools for genetic associ-
ation studies regarding to single variant single-trait ana-
lysis [12], gene-based single-trait analysis [6, 8],
gene-based joint analysis of multiple traits [9],
gene-based gene–environment interaction analysis [7],
and joint analysis of genetic and epigenetic effect [10].
Moreover, phenotype imputation technology developed
by Chen et al. [11] could be a useful tool to increase
sample size and eventually increase power of a test. All
the significant genetic variants identified with the afore-
mentioned methods could be used in building
risk-prediction models [14] to predict the disease risk of
an individual in the general population for a given dis-
ease. A well-established prediction model would greatly
benefit patients, clinicians, and researchers because it
would allow individuals at high risk to be identified at
the earliest stage. Early stage detection would be very
helpful in reducing disease related morbidity and mor-
tality because treatment might be most effective at the
earliest stages of most of the diseases.
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