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Abstract

Background: Tumor budding, meaning a detachment of tumor cells at the invasion front of colorectal carcinoma
(CRC) into single cells or clusters (<=5 tumor cells), has been shown to correlate to an inferior clinical outcome by
several independent studies. Therefore, it has been discussed as a complementary prognostic factor to the TNM
staging system, and it is already included in national guidelines as an additional prognostic parameter. However, its
application by manual evaluation in routine pathology is hampered due to the use of several slightly different
assessment systems, a time-consuming manual counting process and a high inter-observer variability. Hence, we
established and validated an automatic image processing approach to reliably quantify tumor budding in
immunohistochemically (IHC) stained sections of CRC samples.

Methods: This approach combines classical segmentation methods (like morphological operations) and machine
learning techniques (k-means and hierarchical clustering, convolutional neural networks) to reliably detect tumor buds
in colorectal carcinoma samples immunohistochemically stained for pan-cytokeratin. As a possible application, we
tested it on whole-slide images as well as on tissue microarrays (TMA) from a clinically well-annotated CRC cohort.

Results: Our automatic tumor budding evaluation tool detected the absolute number of tumor buds per image with a
very good correlation to the manually segmented ground truth (R2 value of 0.86).
Furthermore the automatic evaluation of whole-slide images from 20 CRC-patients, we found that neither the detected
number of tumor buds at the invasion front nor the number in hotspots was associated with the nodal status.
However, the number of spatial clusters of tumor buds (budding hotspots) significantly correlated to the nodal status
(p-value = 0.003 for N0 vs. N1/N2). TMAs were not feasible for tumor budding evaluation, as the spatial relationship of
tumor buds (especially hotspots) was not preserved.

Conclusions: Automatic image processing is a feasible and valid assessment tool for tumor budding in CRC on whole-
slide images. Interestingly, only the spatial clustering of the tumor buds in hotspots (and especially the number of
hotspots) and not the absolute number of tumor buds showed a clinically relevant correlation with patient outcome in
our data.
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Declaration of presentation of findings at a
conference
This study was presented in part at the 101st annual
meeting of the German Society of Pathology (DGP) in
Berlin, Germany in May 2018 and will be presented at
the 30th European Congress of Pathology in Bilbao,
Spain, in September 2018.

Background
Tumor budding as an additional prognostic parameter in
colorectal cancer
The most commonly applied clinicopathological staging
system for colorectal cancer (CRC), which is one of the
most frequent solid tumors worldwide [1], is the T
(tumor) N (lymph nodes) M (metastases) staging system,
which classifies tumors based on primary tumor exten-
sion, regional nodal involvement and the absence or pres-
ence of metastases [2, 3].
Despite this complex and multivariate staging system,

there is still room for improvement. On one hand, cases
with a low T or N stage sometimes show distant metas-
tasis, while on the other hand, high T or N stage tumors
can exhibit an uneventful clinical course [4–6]. For cases
classified as intermediate according to TNM, prognostic
statements are nearly impossible. It is therefore generally
agreed that new features or molecular markers allowing
a better stratification are necessary [6].
One morphological feature that is discussed to close

this gap is the concept of tumor budding, which goes
back to the 1950s, when Imai postulated the existence
and biological relevance of detachment of tumor cells at
the invasion front [7]. For this feature—despite the dif-
ferent concepts around how to define tumor budding,
the problem of how to evaluate budding and the huge
inter-observer variance—many studies in general, and in
particular for CRC [8], have been able to show a correl-
ation to clinical outcome and to the likelihood of nodal
positivity [9, 10].

Different tumor budding definitions and assessment
approaches
The morphological feature “tumor budding” was first de-
scribed in the 1950s and showed a correlation to clinical
outcome in many studies with different analytical ap-
proaches (e.g., visual assessment vs. image processing)
[4, 5, 7, 9–13], especially in colorectal carcinoma. This is
notable since the definition of tumor buds is not trivial
and there have been many discussions about how to as-
sess budding.
Most research projects on tumor budding in CRC de-

fined a tumor bud as a cluster of a few (in most studies
less than 5 neighboring cells) poorly or dedifferentiated
tumor cells in the desmoplastic stroma that are detached
from larger tumor islands. This more or less arbitrary

definition goes back to works from Gabbert et al. [14]
and Hase et al. [8]. They defined tumor buds as clusters
of tumor cells with a distinct morphology that could be
described as epithelial-mesenchymal transition or focal
dedifferentiation [14, 15]. Obviously, this has led to con-
fusion with dedifferentiated morphology in the sense of
the WHO grading and is also difficult to discriminate
from a diffuse infiltration pattern [1, 8, 16].
Concerning the assessment of tumor budding, there

are different approaches throughout the literature. Most
approaches include focusing on hotspots, without expli-
citly defining them, and subsequent evaluation of the
numbers of tumor buds. For instance, the German S3
guidelines from 2017, which included tumor budding as
an additional risk factor for nodal positivity in early
colorectal cancer, gives the following recommendations
[17–21]: 1) the invasion front should be scanned at low
magnification for the area of the highest tumor budding
(“hottest spot”) [17, 21]; 2) in this area, the absolute
number of tumor buds should be counted [17, 21]; 3)
the tumor should be graded based on the number of
buds (grade 1 with 0–4 buds, grade 2 with 5–9 buds and
grade 3 with < 9 buds) [17, 21].

Study aims
Although tumor budding evaluation is a painstaking
counting task, there are only a few works focusing on
automatization. In the context of CRC, there is only one
work from Caie et al. on automatic tumor budding
quantification [12]. The vast majority of works rely on
human evaluation with the abovementioned problems of
low inter-observer correlation. Additionally, this is very
time consuming and requires intensive training.
Against this background, we here establish an automatic

image processing approach to reliably quantify tumor
budding in immunohistochemically (IHC) stained sections
of CRC samples. By publicly sharing all source codes, we
hope to enable others to reproduce our results and apply
it in their own scientific work or on routine histology sec-
tions. We also tested our tool on whole-slide images
(WSI) with clinical annotations, investigating whether
there is a correlation with clinical outcome, which has
been shown for this patient cohort previously by manual
counting [9, 10]. Furthermore, we also tested our ap-
proach on tissue microarrays (TMAs) to check whether
this could be used for the assessment of tumor budding.

Methods
Patient specimens and raw data generation
Specimen and data management
Whole-slide tissue specimens of formalin-fixed paraffin-
embedded tumor tissue (n = 20 whole tissue slides) and
TMAs of tumor tissue were retrieved from the pathology
archive of the Institute of Pathology (Medical University
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of Graz, Austria). These cases belong to a previously
published patient cohort of 381 patients (166 males,
215 females; median age 70.1 years) used and described
by Harbaum et al. [9]. All procedures were carried out
in accordance with the Declaration of Helsinki and in
accordance with the local ethics committee (decision
18–199 ex 06/07).
All cases have been included in the study in a com-

pletely anonymized way with unique identifier for case
(e.g., “GraMa001”), sample (which corresponds to tissue
type) (e.g., “Samp001”) and TMA core (e.g., “Core0001”). In
the end, every measurement has one complete unique com-
posite identifier, such as “GraMa001-Samp001-Core0001”.
The clinical information includes age, gender, TNM
stage, number of infiltrated lymph nodes, grading and
recurrence time.

Staining and digitalization
The tissue blocks underwent routine histochemical (HE)
and immunohistochemical staining for pan-cytokeratin
(cytokeratin, clone AE1/AE3, M3515, Dako/Agilent,
Santa Clara, CA, USA) [22, 23]. The resulting sequential
sections were digitalized as whole-slide images (WSI)
using a digital microscope and M8 scanner (PreciPoint
GmbH, Freising) and saved after conversion as svs files
on a local Omero server [24].

Image processing in general
Image processing was performed in MATLAB (R2017a)
on a desktop PC (Windows 7 Enterprise, Intel Core i7–
4790, 32GB RAM, NVIDIA GeForce GT 630).
MATLAB-coding was carried out in accordance with

style guidelines proposed by Johnson to increase the
readability [25, 26]. Furthermore, object-oriented pro-
gramming was applied [27], and speed up guidelines by
Altman were followed [28].
In summary, all images underwent image modifying

processing steps as part of the analysis, which are men-
tioned within the text and the legends in accordance with
Digital Image Ethics [29].

Convolutional neural network training and application in
general
To decide whether a tile (a tumor bud proposal) con-
tained a single tumor bud or not, we used MatConvNet
by Vedaldi et al. as CNN-toolbox in MATLAB [30]. For
this classification task, we constructed an 8-layer CNN
(see Additional file 1: Table S1). It was trained on a data
set of 6292 images (100 × 100 pixel). These data set had
been manually labeled by a pathologist (CAW). The
dataset is available on HeiData.
The training was performed for 10,000 epochs with a

constant learning rate of 10–5 on the BwUniCluster
(state of Baden-Württemberg, bwHPC).

Tissue microarray (TMA) image processing
The MATLAB code of the method described below is
available on GitHub (DOI: https://doi.org/10.5281/
zenodo.1300211). It comprises tools tested for a scien-
tific approach.

Data access and image registration
On the basis of the MATLAB Omero toolbox [24, 31],
thumbnails from two WSIs (HE- and IHC-stained) were
loaded into MATLAB’s workspace (Additional file 2:
Figure S3).
By using color thresholding, the TMA cores were sepa-

rated from the background, the images were converted to
binary images and the objects were automatically counted
and named per image (Additional file 3: Pseudocode 1).
Subsequently, the thumbnails were registered by the

MATLAB built-in SURF-based registration. These regis-
tration results were visually checked and in the case of
an obviously wrong registration, a manual control-point-
based registration was applied. By doing so, the corre-
sponding core pairs could be consolidated for their
numbers and positions in both images (Additional file 3:
Pseudocode 2).

Download of the TMA cores
On the basis of the consolidated core pairs, every single
core could be loaded from the Omero server in full reso-
lution and locally saved as TMA core object (containing
the slide ID, the core ID, the core position and an HE
and IHC image of the core).

Core analysis
The pan-cytokeratin-stained cores were analyzed by a
custom-written MATLAB tool to detect tumor buds, de-
fined as small, independent clusters of 1–5 poorly or un-
differentiated tumor cells:

(i) A custom-written implementation of color decon-
volution was applied to separate the background
and foreground staining [32, 33].

(ii) The intensity information for the brown
component was thresholded by k-means clustering
for back- and foreground and thus converted into a
binary image (Additional file 3: Pseudocode 3).

(iii)The detected objects in the binary image underwent
two steps of clustering. First, objects with near
coordinates and equal morphology (area, perimeter)
were combined. Thereby, huge tumor areas with
unequal staining were recombined. Second, objects
were clustered in regard to their border distance
and area. By doing so, small tumor fragments that
were in close proximity to a huge tumor mass were
included with that mass (Additional file 3:
Pseudocode 4).
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(iv)Then, objects were classified in regard to their size;
if they were too small or too big to be a tumor bud,
they were discarded. Next, they were classified by a
custom-trained convolutional neural network
(CNN; MatConvNet by Vedaldi et al. [30]) to dis-
card objects that did not show the expected morph-
ology. The (completely anonymous) training and
validation data is available on heiDATA.

(v) Finally, for the resulting labeled images, the number,
size, shape, etc. of the objects could be calculated
by MATLAB built-in functions [34]. Furthermore,
the spatial distribution and the distances of all ob-
jects to their neighbors were calculated on the basis
of Delaunay triangulation [34]. In contrast to other
works on automatic tumor bud detection, we relied
only on pan-cytokeratin-positive area and size [12].

Whole-slide image (WSI) image processing
Tumor and tumor border region of interest generation
On the pan-cytokeratin-stained WSI (n = 20) a region of
interest (ROI) for the complete tumor and the border
zone tumor-surrounding tissue was manually drawn in a
local Omero client [24]. The corresponding ROI data
were loaded by the Omero-MATLAB-toolbox [31] into
the local MATLAB workspace.

Generation of virtual TMA (vTMA) cores
A grid with a grid point distance of half the mean TMA
core diameter (1800 pixel) was drawn on the WSI (com-
pare Fig. 3). Thereby, every grid point corresponded to the
center of one virtual TMA (vTMA) core. Subsequently, all
grid points within the above specified ROI were loaded on
the basis of the Omero-MATLAB-toolbox and saved as a
TMA core object (containing the slide ID, the core name
and position, and an IHC image of the core).

vTMA core analysis
Due to different times of staining (TMA slides were
stained in 2016, whole-slide cases were stained in
2017) there were staining differences between the two
batches (initial TMA slides and whole tissue slides).
To overcome this, Rheinard stain normalization was
applied in a MATLAB implementation by Manohar P.
Kuse [35–37]. However, best results were obtained with
k-means clustering of the colors and CNN evaluation
without color adaption.
Subsequently, the virtual cores underwent the same

image processing workup as described above for the TMA
cores (section “Convolutional neural network training and
application in general”).

Data management
As described above, image processing was performed in
the MATLAB environment. The results were saved in

Excel spreadsheets (Microsoft Excel 2010, Microsoft
Corporation, Redmond, WA, USA).
The clinical information and the TMA slide information

(link between TMA core position and patient ID) were
also saved in Excel spreadsheets. For the latter, we manu-
ally combined the automatic MATLAB generated core
numbers (referred to as MATLAB core IDs) with the
real-world IDs on a schematic illustration of the TMAs in
a (humorously Rosetta Stone-like) Excel spreadsheet.
The information was gathered in different R databases

[38]: one database for the patient level and one database
for the core level. Statistical analyses were performed in
R version 3.2.4 [38].
Major parts of the image processing data are also

freely available on heiDATA.

Monte Carlo simulation
To determine what sample size, how many randomly
distributed cores per case were needed to reassemble the
cases’ characteristics, we ran a Monte Carlo-like analysis.
Therefore, (i) from every case, a predefined number of
vTMAs were randomly (10 times per case and sample
size) selected and then the median number of buds, the
median budding score and the normalized Shannon en-
tropy were calculated [39–45]; (ii) then the number of
random samples (n = [2:1:200]) was changed and step i
was repeated.
By doing so, we obtained a range of expected values

for every sample size or relative sample size (normalized
to the total number of slides per case).

Results
Is there a correlation between the human estimation-
based budding score and clinical parameters within the
analyzed patient cohort?
As previously published by Harbaum et al. [9] and Max
et al. [10] on the herein analyzed patient database, there
was a correlation between a high budding score based
on visual estimation on whole-tissue slides to clinical pa-
rameters such as positive nodal status and inferior re-
gression free survival. By using their data and sample
set, we could independently confirm the previously pub-
lished correlation between nodal status and budding
score (Fig. 1a) (p < 0.05), as well as the correlation be-
tween the budding score and regression-free survival
(Fig. 1b). As a new analytical feature, we could also find
a correlation between the budding score and morpho-
logic tumor grading within these datasets (Fig. 1c) [8].

Can we define a reliable and reproducible automatic
image processing approach?
There is no common generally valid definition of
tumor budding in the literature. We decided to use
the definition established by Satoh et al. [13], in
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which they defined tumor budding as “cancer cell
nests of fewer than five cells in the interstitium” with
subsequent grouping of budding in an interval of 5
grades (grade 0 with 0 buds, grade 1 with 1–5 buds,
grade 2 with 6–10 buds, grade 3 with 10–19 buds
and grade 4 with ≥20 buds). This work was chosen
because of its linear grading intervals for stratification
of tumor buds.

Transferred to our image processing approach, this
corresponds to a stained/brown area of 72–750 μm2

(300–3125 pixels) as a threshold for tumor buds (com-
pare red circle in Fig. 2 A and histograms of the area of
tumor objects in Fig. 2b). On the basis of this definition,
potential tumor buds could be separated from other
small tumor aggregates, which we referred to as tumor
islets and which are larger in size. Since this area-based

A

C

B

Fig. 1 Correlation of the budding score to clinical data. The externally provided budding score of 328 cases showed a correlation to the patient’s
nodal status (a) and to the regression-free survival (b), as previously published by [9, 10]. Furthermore, within the database there is also a
significant correlation between the budding score (grades 1 to 4 with the intervals [0–5], [5–17], [17–20] and [20-∞] to stratify the absolute
number of tumor buds [9]) and the morphology-based tumor grading (Grade 1–4) (c)

A
B

Fig. 2 Definition and detection of tumor buds. a Example single TMA core stained for pan-cytokeratin and hematoxylin and eosin (HE). The red
circle highlights a tumor bud next to larger tumor island. The blue circle is a small tumor part, which we referred to as a “tumor islet”; which is a
small tumor aggregate but does not meet all criteria for a tumor bud. b Histogram of pan-cytokeratin positive tumor area per core (upper plot)
and pan-cytokeratin tumor bud area per core (lower plot). One can see that the mean area of all tumor fragments (upper panel) shows a huge
dispersion (x-axis 0–100,000), whereas the mean area of the tumor buds is less distributed (x-axis 0–1000)
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definition is prone to size variation (e.g., clusters of more
than 5 very small tumor cells or stained area without nu-
clei) or staining variations (e.g., big structures are un-
equally stained leading to several stained spots in one
structure), further validation steps were applied.
The detected tumor buds underwent further evaluation

by cluster analysis (in regard to size, shape and border dis-
tance) and by a convolutional neural network (custom--
trained MatConvNet [30]) to reduce the false positive rate.
By doing so, small islets of positive staining within whole
tumor mass were no longer recognized as tumor buds.
Our detection method (details in section “Tissue

microarray (TMA) image processing”) was optimized
and validated on 20 test cores (10 real TMA cores
(rTMA) and 10 virtual TMA cores (see section “Is there
a correlation between the number of tumor buds and
the budding score to the nodal status in virtual
TMA-cores?”)). We initially marked tumor buds manu-
ally on images of these cores (“ground truth”) and com-
pared these findings to the automatic segmentation;
regarding the absolute number of tumor buds per core,
there were more discrepancies, especially for cores with
high numbers of tumor buds, but still an R2-value of
0.86 was achieved. With one exception (budding score 3
instead of 2), we achieved an R2-value of 0.96 (perfect
correlation) for manual vs. automatic evaluation.

vTMA as a method to represent whole slide image
analysis
Is there a correlation between the number of tumor buds
and the budding score to the nodal status in virtual TMA-
cores?
We randomly selected 20 cases from our cohort (pN0
(n = 9), pN1 (n = 5), pN2 (n = 6)) and digitalized pan

cytokeratin-stained whole slides, with manually delineated
tumor areas (“ROI tumor”) and tumor invasion fronts
(“ROI tumor border”). These regions were used to create
virtual TMA (vTMA), which were TMA core sized tiles
cropped from the whole-slide image (Fig. 3 A and section
“Tissue microarray (TMA) image processing”).
Comparing image processing results with human

estimation-based data from previous publications [9, 10]
for these 20 cases showed only a weak correlation for
median budding (data not shown). Furthermore, there
was no significant correlation for the median number of
tumor buds in the ROI border or for the 10 hottest spots
within the ROI border. The latter (10 hottest spots) was
implemented according to Koelzer et al., who proposed
to focus on the 10 hottest spots with the highest bud-
ding activity. There is also no correlation between our
automatically obtained budding score and the median
number of tumor buds (Fig. 4a). Furthermore, we found
no correlation between the obtained budding score and
the nodal status (Fig. 4b).

Is there a difference regarding hotspots for pN1/2 cases vs.
pN0 by vTMA?
Dealing with spatial data, we plotted our measurements
per vTMA in relation to their coordinates on the slide and
interpolated between the measurement points. To carve
out significant hotspots, we calculated the Z-score for
every measurement with the formula (x − μ)/σ), where x is
the local value, μ is the mean value and σ is the standard
deviation. Then, we plotted the Z-score values against the
coordinates (heat maps in Additional file 4: Figure S2)
and finally defined hotspots as areas with a Z-score >
1.67 (in parallel to our previous work on angiogenic
hotspots in CRC [33]).

A
B

C

Fig. 3 Sketch of the analysis. A) ROI tumor (not shown) and the ROI border (dashed red line) were manually delineated by a pathologist (CW).
A1: a sliding window moved over the ROI border and cropped every half TMA diameter in the underlying, TMA core-sized image. A2: The
resulting tile (exactly the size of one TMA core) was then defined as a virtual TMA (vTMA). b, c This procedure leads to a value (number of tumor
buds or budding score) per vTMA. This spatial data could be plotted as a heat map (example heat maps with arbitrary values in the left part) or
as a histogram (right part of the figure)
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By doing so, the number of significant budding hotspots
(areas where the number of tumor buds is significantly
different in regard to the overall distribution of that case)
could be calculated per slide. The number of budding hot-
spots normalized to the analyzed area significantly corre-
lated with the nodal status (Wilcoxon rank sum test
p-value = 0.031) (Fig. 4c-d). Modeling the nodal infiltra-
tion (present or absent) by logistic regression led to good
fit with an area under the curve (AUC) of 0.838.

Is there spatial heterogeneity for budding and nodal status
in whole-slide images by vTMA?
The above described data indicates that the number of
budding hotspots (calculated in comparison to the
underlying distribution) and not the underlying values
themselves show a correlation to the nodal status; for
example, in the sketch in Fig. 3b, the heat map has a
mean value of 1.25 and the two tiles with an arbitrary
value of 3 are significant hotspots in relation to their
background. The heat map in Fig. 3c has a mean value
of 3.75 and the tiles with an arbitrary value of 6 are sig-
nificant hotspots. Thus, the absolute value per tile does
not define our approach a hotspot, but the relation of
the tile value to the rest. In addition, these hotspots are

defined by the distance of the tiles. For example, both
heat maps in Fig. 3b-c had two significantly different
tiles, but only in Fig. 3b are they spatially separated and
therefore forming two hotspots and not one as in Fig. 3c.
The histograms for both example heat maps have equal
statistical distributions. In conclusion, it seems to be a
problem of spatial heterogeneity.
Since the spatial information is lacking for the later

rTMA analysis in sections, we checked whether features
describing the heterogeneity, calculated on the basis of
the histogram, were able to predict the nodal outcome.
First, we separated the histogram on the basis of the
Z-score into measurements within and outside the nor-
mal distribution of the cases (histograms in Additional
file 4: Figure S2) and then analyzed the values outside
the normal distribution; no correlation to the nodal sta-
tus was found for the resulting number of significant
vTMAs normalized to the overall number of vTMAs per
slide (n = 0.07 ± 0.02, n = 0.07 ± 0.01 and n = 0.07 ± 0.01),
the median number of tumor buds per vTMA (n =
19.50 ± 7.46, n = 26.40 ± 17.60 and n = 31.67 ± 31.50), or
the maximum number of tumor buds per vTMA (n =
26.44 ± 10.57, n = 45.20 ± 33.32 and n = 46.50 ± 36.74).
The latter, interestingly, is in contrast to the work by

A
B

DC

Fig. 4 Analysis of vTMAs from 20 cases. From 20 selected cases (pN0 (n = 9), pN1 (n = 5), pN2 (n = 6)) one pan-cytokeratin-stained slide was digitalized
and disassembled into virtual, overlapping vTMA cores (n = 290 ± 152). a No significant correlation was detected between the resulting budding score
and the nodal status and b the median number of tumor buds within the 10 hottest spots and the nodal status for the complete ROI border. c, d
Significant positive correlation between the nodal status and the absolute number of significant budding hotspots and the normalized number of
significant budding hotspots. The latter is done to compensate for a trend toward higher tumor areas on the WSI for pN1 and pN2 cases
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Koelzer et al. [11] proposing to focus on hotspots. Simi-
larly, comparing the median and maximum budding
score for these vTMAs outside the normal distribution
showed no correlation.
Second, we calculated the histological Shannon’s en-

tropy [40, 41] as proposed by Kayser et al. [42–45] and
as previously applied by us to describe the spatial het-
erogeneity in thymus specimens [39]. The entropy nor-
malized to the sample size (Fig. 5a and c) showed a no
significant trend towards higher entropy for pN1 and
lower entropy for pN2 (pN0 0.83 ± 0.13 bit, pN1 0.86 ±
0.11 bit and pN2 0.78 ± 0.17 bit).

Summary of vTMA analysis
In summary, within the subcohort of 20 cases, there were
no significant correlations among the absolute number of
tumor buds, the budding score and their statistical deri-
vates (e.g., median values). Accordingly, by means of our
established tumor bud detection, we could not reproduce
for whole-slide images the previously published results
that were based on human evaluation [9, 10].
However, we could show a significant correlation be-

tween the number of significant budding hotspots and
the nodal status for that subcohort. Since a hotspot def-
inition based on histogram analysis only failed to show a
significant correlation, we defined hotspots on the basis
of spatial statistics by taking the relation of a local value
to the remaining analyzed field (histogram analysis) and
by taking the position of measurement values (spatial in-
formation) into account.

Analysis of real TMA (rTMA)
What is a reasonable number of TMA cores per case to
reproduce whole-slide analyses?
Regarding rTMA data, we tested how many TMA cores
per slide were needed to reassemble the cases’ character-
istics, especially in regard to their heterogeneity. There-
fore, we ran a Monte Carlo-like simulation on the basis
of our vTMA data from the tumor border (compare sec-
tion “rTMA: Correlation between ground truth and
TMA-based budding score”).
As expected, the simulation showed that the results

for normalized entropy (Fig. 5b) and for the median
number of buds per core (Fig. 5d) align to the overall re-
sults (Fig. 5a and c) with increasing relative sample size.

rTMA: Correlation between ground truth and TMA-based
budding score
As mentioned above, in previous works, the budding
score was evaluated by a pathologist for this patient co-
hort [9, 10]. Therefore, we defined this budding score as
ground truth for our work.
In our rTMA data, the number of cores from the

tumor region with n = 4 ± 2 was rather constant (Fig. 6a).
However, in regard to the results of the Monte Carlo
simulation, where the values began to close on the over-
all values for sample sizes > 100, these numbers are far
too small to be representative.
Consequently, comparing to this human estimation-

based ground truth, the median (accuracy = 0.208) and
the maximum rTMA-based budding score (accuracy =
0.239) showed only a weak correlation. Furthermore,

A B

C D

Fig. 5 Monte Carlo-like simulation. From every case (of the 20 cases with 290 ± 152 vTMAs from the tumor border) repetitively a predefined
number of vTMAs were chosen at random, and subsequently the median number of buds, the median budding score and the normalized
entropy were calculated. This process was repeated several times (n = 10) with different sample sizes (from n = 2 to n = 200). a and c show the
normalized entropy and the median number of tumor buds in relation to the sample size, respectively. b and d show the normalized entropy
and the median number of tumor buds for the complete tumor border, respectively
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stratifying the median (Fig. 6b) or maximum (Fig. 6c)
rTMA-based budding score to clinical data such as
nodal status did not reveal any correlation.
Against this background, with more or less randomly

sampled TMA cores without spatial information, calcu-
lating the number of significant budding hotspots (as
previously described in section “Is there a difference re-
garding hotspots for pN1/2 cases vs. pN0 by vTMA?”) is
not possible. Calculating the entropy on the basis of the
number of cores per case and the obtained probabilities
does not show significant differences in regard to the
nodal status (pN0 0.57 ± 0.20 bit, pN1 0.60 ± 0.22 bit
and pN2 0.57 ± 0.24 bit). In this context, changing the
number of intervals and the cut-off criteria of the bud-
ding score also did not lead to a better distinction. The
above-described algorithms were tested on a set of new
tiles (n = 16) from different tissue blocks, staining and pro-
cessing rounds after manual annotation in Fiji. These im-
ages had not been used in the process of CNN-training or
method development. To avoid overlap and edge issues,
these images contained only complete cells and the edge
zones were blackened (compare black area in Fig. 3a).
For these 16 tiles, the results of the manual segmenta-

tion (as ground truth) were compared to the results of
the automatic, CNN cascade-based detection on the
basis of calculating the bounding box overlap (as de-
scribed above). By doing so, the correct positive rate
(0.87 ± 0.03), false positive rate (0.11 ± 0.04), false nega-
tive rate (0.11 ± 0.04), double detection rate (0.04 ± 0.01)

and precision (0.88 ± 0.03) were calculated (compare
Fig. 3c for tile #5).

Discussion
Comparison of the tumor budding definition and
assessment in the literature with our approach
In literature, tumor budding is most often defined as (i)
clusters of 1–5 poorly or dedifferentiated tumor cells at
the invasive front of tumors, next to larger, circum-
scribed tumor formations [14, 15]; (ii) and needs to be
strictly discriminated from a diffuse infiltrative growth
pattern [1, 8, 16]. Our image processing approach is
consistent with the abovementioned definition. It takes
the size and the localization in relation to the main
tumor masses into account and considers the tumor bud
morphology through a convolutional neural network.
Furthermore, it covers the problematic area of diffuse
growth or infiltration pattern by the hierarchical cluster-
ing step, which sums up such formations as one object
due to the shape and localization of its subparts (step iii
in section “Convolutional neural network training and
application in general”.3). Several works from different
groups address tumor budding for CRC and its related
role as a prognostic factor, in particular in regard to
nodal status [8, 10, 16, 46–48]. Thereby, a plethora of
different tumor budding assessments have been applied.
For example, some groups have counted tumor buds in
absolute numbers (e.g., Ueno et al. [48], Prall et al. [16]),
others have stratified the absolute number into different

A

B C

Fig. 6 Correlation of the TMA data to clinical data. a Histogram of the number of TMA cores from the tumor region per case (n = 4 ± 2). b, c
Histogram of the b median budding score per case [0–4] and the c maximal budding score per case. The nodal status [pN0–2] is added by
color coding
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grades (e.g., Max et al. [10]), and still others just de-
fined high- and low-grade budding activity on the
basis of the absolute numbers (Hase et al. [8]). Our
approach primarily counted the number of tumor
buds per high power field (one high-power field had
approximately the size of a single TMA core). These
numbers were then stratified into five budding grades
(from grade 0 with no budding to grade 4 with ex-
tensive budding) in reference to previous works by
Koelzer et al. and Satoh et al. [11, 13]. Of note, the
findings of Koelzer and Satoh were mainly established
based on HE staining, and their transferability to
more sensitive IHC-based estimations is problematic.
The higher sensitivity of the latter method could lead
to higher grades [49].
In comparison to the results of a manually defined

ground truth (blinded annotation by a trained patholo-
gist, CAW), the automatic evaluation showed a very
good accordance for the budding score and a good ac-
cordance for the overall number of tumor buds for
whole-slide analysis (section “Tissue microarray (TMA)
image processing” and Additional file 5: Figure S1),
which opens the possibility of analyzing entire sections
in a reliable and reproducible fashion.

One spatial statistics derived definition of clinically
significant budding hotspots
For a subcohort of 20 cases, we focused on the manually
delineated infiltrative border in accordance with Caie
et al., who also focused on infiltrative border and
showed a correlation of immunofluorescence-based
image processing-based tumor budding assessment
with manual budding analyses and clinical parame-
ters [12]. Surprisingly, for our data, we could not
show a correlation between the median or maximum
number of tumor buds and the nodal status. Add-
itionally, we found no correlation between budding
score and nodal status. Even focusing budding ana-
lyses on hotspots (as proposed by many researchers)
did not lead to a significant stratification of cases in
regard to the nodal status.
By applying methods of spatial statistics [50–53] to

describe the spatial heterogeneity (as recently published
for vessels in CRC [33], for lymphatic hyperplasia in
the thymus [54] or for lymphatic infiltrates in the bone
marrow [55]), we found significant accumulations of
tumor budding foci independent of the overall fre-
quency of tumor budding, which we called budding
hotspots. The number of these budding hotspots and
not their budding metrics (e.g., median budding score
in the hotspots) did correlate with the nodal status.
This leads obviously to the conclusion that TMAs are
not suitable for analyzing tumor budding.

Pros and cons of our automatic image processing and the
ground truth
In addition to the nonnegligible hassle of counting tumor
buds in a section, the reproducibility of human-based re-
sults and/or the training efforts to ensure such reproduci-
bility are major limitations and hamper routine estimation
of budding. Studies showed inter-observer variations in
the range of kappa = 0.61–0.83 [56, 57]. However, a differ-
ent human-based evaluation method using 10 high power
fields (hpf) in the region with the highest density of
peri-tumoral budding showed a slightly better reproduci-
bility (kappa-values in the range 0.5–0.87) [11, 58].
Our image processing approach has been validated in

terms of absolute budding number and budding score
with good to very good accordance compared to manu-
ally drawn “ground truth” (Additional file 5: Figure S1).
This offers the option for reproducible, time-saving
whole-slide analysis and the resulting possibility of ap-
plying spatial statistics.
Interestingly, mimicking the strategies of the human

evaluation (considering only the hottest spot or the 10
hottest spots) with our automatized method did not lead
to significant results. Only the number of hotspots de-
fined by spatial statistics correlated with nodal status.

Conclusions
Tumor budding in CRC is a complex phenomenon for
which the visual assessment by a surgical pathologist can-
not be easily reproduced by automatic image processing.
On the basis of a combination of image processing and
machine learning, we found that not the absolute number
of tumor formations classified as “tumor buds” within the
infiltrative region but rather their spatial arrangement in
significant hotspots and especially the number of such
hotspots is clinically meaningful. Consequently, the advice
for the surgical pathologist is to focus more on the spatial
distribution (as kind of pattern diagnosis), rather than on
the absolute number, of tumor buds.

Additional files

Additional file 1: Table S1. Architecture of the applied CNN. The 8-
layer CNN has been designed to classify (100x100x3 pixel) images to the
classes “tumor bud” and “no tumor” bud. It consists of two block of a
combination of convolutional, rectifier and pooling layers and a fully con-
nected layer. (DOCX 14 kb)

Additional file 2: Figure S3. Finding the corresponding core on two
separate TMA-slides. Thumbnail of an HE-stained (A) and a pan-cytokeratin-
stained (B) TMA-slide. The green circle highlights the same core on both
slides, which has due morphological variations different numbers by the
image processing based automatic counting. (PDF 6510 kb)

Additional file 3: Pseudocode 1 create TMA-map. Pseudocode 2 com-
bine TMA-maps of different staining. Pseudocode 3 image analysis part I.
Pseudocode 4 image analysis part II. (DOCX 16 kb)

Additional file 4: Figure S2. Dealing with spatial heterogeneity by
different means. Histogram: On basis of the Z-score the vTMAs with
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values outside the underlying normal distribution could be identified. By
doing so the histogram for the number of tumor buds per vTMA could be
binarized into vTMA within and outside. Overlay WIS and heatmap for the
ROI border: Furthermore by plotting the Z-score values against the coordi-
nates on the WSI, a heatmap with the hotspot-probability could be ob-
tained. In this map values > 1.67 are regarded as significant. (PDF 4012 kb)

Additional file 5: Figure S1. Validation of the detection method on 20
test cores. In 10 real TMA cores (rTMA) and 10 virtual TMA-cores (vTMA)
every tumor bud has been manually segmented in Fiji [23] as ground
truth. (PDF 9248 kb)

Abbreviations
CNN: Convolutional neural network; CRC: Colorectal carcinoma; rTMA: real
TMA; TMA: Tissue micro array; vTMA: virtual TMA
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