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Zusammenfassung

Das Hauptziel dieser Arbeit ist die Entwicklung und Analyse e�zienter numerischer
Methoden für groÿe nichtlineare Parameterschätzprobleme. Solche Probleme haben eine
hohe Relevanz in vielen Bereichen der angewandten Mathematik, die versuchen das
zukünftige Verhalten von Prozessen basierend auf groÿen Datensätzen vorherzusagen
indem zunächst ein mathematisches Modell erstellt wird und dieses dann extrapoliert
wird. In dieser Arbeit interessieren wir uns für die Erstellung des mathematisches Mod-
ells. Dabei liegen die Schwierigkeiten in der Behandlung der Nichtlinearitäten und der
schieren Gröÿe der Datensätze und Unbekannten. Ein gängiger Ansatz zur numerischen
Behandlung solcher Parameter-Schätzprobleme ist die Gauss-Newton-Methode, die darin
besteht eine Reihe von linearisierten Unterproblemen zu lösen.

Ein Beitrag dieser Arbeit ist eine eingehende Analyse der Problemklasse auf Ba-
sis der kovarianten und kontravarianten κ-Theorie. Basierend auf dieser Analyse ist
es möglich ein neues Abbruchkriterium für die iterativen Lösungen der inneren lin-
earisierten Unterprobleme zu entwickeln. Die Auswertung zeigt, dass es ausreicht die
inneren Unterprobleme nur mit geringer Genauigkeit zu lösen ohne dabei die Konver-
genzgeschwindigkeit der äuÿeren Iterationen signi�kant zu senken. Des Weiteren wird
in dieser Arbeit gezeigt, dass das neue Abbruchkriterium ein quantitatives Maÿ dafür
ist, wie genau die Lösung der Unterprobleme erfolgen muss um inexakte Gauss-Newton-
Folgen zu erzeugen, die gegen eine statistisch stabile Abschätzung (deren Existenz wir
voraussetzen) konvergieren. Daher liefert dieser Ansatz eine neuartige inexakte Gauss-
Newton-Methode, die im Vergleich zu klassischen exakten Gauss-Newton-Methoden eine
geringere Zahl innerer Iterationen zur Berechnung des inexakten Gauss-Newton Schritts
benötigt. Auf diese Weise erhalten wir groÿe Recheneinsparungen verglichen mit der
klassischen exakten Gauss-Newton-Methode, die 100% innere Iterationen zur Berech-
nung des Gauss-Newton Schritts benötigt, was ungeheuer rechenintensiv ist, wenn die
Zahl der Parameter zu groÿ ist. Des Weiteren verallgemeinern wir die lokalen Ideen
dieses neuartige inexakten Gauss-Newton-Ansatzes und führen eine gedämpfte inexakte
Gauss-Newton-Methode ein, indem wir die Backward Step Control for global Newton-
type theory von Potschka benutzen.

Die Validierung unseres neuen Ansatzes erfolgt anhand zweier Beispiele. Zunächst
betrachten wir ein Parameteridenti�kationsproblem einer nichtlinearen, elliptischen, par-
tiellen Di�erentialgleichung. Anschliessend untersuchen wir ein groÿes Parameterschät-
zungsproblem aus dem Bereich der Bildverarbeitung. Beide Beispiele sind schlecht kon-
ditioniert, weshalb eine günstige Regularisierung angewandt wird. Mithilfe unsere nu-
merischen Experimente konnten wir bestätigen, dass, wie von unserer Theorie voausge-
sagt, der neueartige inexakte Gauss-Newton-Ansatz, die wenniger als 3% Zahl innerer
Iterationen zur Berechnung des inexakten Gauss-Newton-Schritts benötigen um gegen
eine statistisch stabile Abschätzung konvergieren.



Abstract

The principal goal of this thesis is the development and analysis of e�cient numerical
methods for large-scale nonlinear parameter estimation problems. These problems are of
high relevance in all sciences that predict the future using big data sets of the past by
�tting and then extrapolating a mathematical model. This thesis is concerned with the
�tting part. The challenges lie in the treatment of the nonlinearities and the sheer size of
the data and the unknowns. The state-of-the-art for the numerical solution of parameter
estimation problems is the Gauss-Newton method, which solves a sequence of linearized
subproblems.

One of the contributions of this thesis is a thorough analysis of the problem class on
the basis of covariant and contravariant κ-theory. Based on this analysis, it is possible
to devise a new stopping criterion for the iterative solution of the inner linearized sub-
problems. The analysis reveals that the inner subproblems can be solved with only low
accuracy without impeding the speed of convergence of the outer iteration dramatically.
In addition, I prove that this new stopping criterion is a quantitative measure of how
accurate the solution of the subproblems needs to be in order to produce inexact Gauss-
Newton sequences that converge to a statistically stable estimate provided that at least
one exists. Thus, this new local approach results to be an inexact Gauss-Newton method
that requires far less inner iterations for computing the inexact Gauss-Newton step than
the classical exact Gauss-Newton method based on factorization algorithm for computing
the Gauss-Newton step that requires to perform 100% of the inner iterations, which is
computationally prohibitively expensive when the number of parameters to be estimated
is large. Furthermore, we generalize the local ideas of this local inexact Gauss-Newton
approach, and introduce a damped inexact Gauss-Newton method using the Backward
Step Control for global Newton-type theory of Potschka.

We evaluate the e�ciency of our new approach using two examples. The �rst one
is a parameter identi�cation of a nonlinear elliptical partial di�erential equation, and
the second one is a real world parameter estimation on a large-scale bundle adjustment
problem. Both of those examples are ill conditioned. Thus, a convenient regularization
in each one is considered. Our experimental results show that this new inexact Gauss-
Newton approach requires less than 3% of the inner iterations for computing the inexact
Gauss-Newton step in order to converge to a statistically stable estimate.
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Introduction

A large variety of natural, industrial, social and economical phenomena can be modeled
by systems of partial di�erential equations (PDEs) where the solution describes the dy-
namic of such a phenomena. Most of the time the solution cannot be given explicitly and
must be estimated from a �nite number of indirect measurements. Thus, a discrete solu-
tion of such as PDEs that depends on a �nite number of unknown parameters is proposed
and an estimation process is implemented. If the discrepancy between the measurements
and the discrete solution with real parameters is an aleatory variable, which is indepen-
dent and normally distributed with expected value zero and variance-covariance matrix
known, then we can obtain a plausible estimation of the real parameters through the solu-
tion of a large-scale nonlinear least squares problem [7], which is typically ill conditioned.
Nevertheless, if a particular regularization for this optimization problems is available, we
can reformulate it and obtain a well conditioned problem but large-scale nonlinear least
squares problem. On the other hand, the estimation of discrete parameters can also yield
a large-scale nonlinear least squares problems, as example we can consider the parameter
estimation of large-scale bundle adjustment problems, whose may be ill conditioned. In
this thesis, we focus on the treatment of the nonlinearities and the sheer size of mea-
surement and unknown parameters. The state-of-the-art for numerically solving such as
large-scale parameter estimation problems is the Gauss-Newton (GN) method, which is
a variant of the Newton method for �nding roots of a nonlinear equation in where sec-
ond order derivative information is not taken into account. The GN method determines
an estimation by solving a sequence of linearized subproblems whose solutions de�ne
the Gauss-Newton step. The principal drawback of such a GN approach is the com-
putation at every iterate of the GN step, which may be computationally prohibitively
expensive especially for large scale problems. Thus, inner iterative methods that de-
termine an approximation of such GN step must be considered for ensuring numerical
e�ciency, which de�ne di�erent variations of the Gauss-Newton method known as the
inexact Gauss-Newton (IGN) methods. In order to develop e�cient IGN methods for
large-scale nonlinear least squares problems, we require three ingredients.

(i) A cheap inner iterative method for approximately solving the linearized subprob-
lems.

(ii) An early inner termination rule that only depends on cheaply available information,
and that

(iii) the IGN sequence, which IGN step is generated using (i) and (ii), converges locally
and linearly to a statistically stable solution.

An important question is: (Q1) What level of accuracy is required in approximately solv-
ing the linearized subproblems to preserve the local convergence of GN method?. The
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2 Introduction

answer is intimately related with the development of an inner termination rule that only
depends on cheaply available information. Because an IGN sequence can also be consid-
ered as an inexact Newton (IN) sequence, we can reformulate the above question: (Q2)
What level of accuracy is required in approximately solving the linearized subproblems
to preserve locally rapid convergence of Newton method?. The κ-theory is dedicated
to give answer to (Q2) question through the control of the discrepancies generated be-
tween the IN method and the Newton method. It classify the answer in two di�erent
approach: Covariant κ-Theorems that ensures locally rapid convergence of IN sequence,
or contravariant κ-Theorems that ensure locally rapid convergence of the IN residual se-
quences. Thus, within the κ-theory the most popular measures of such discrepancies are
given by: covariant error matrix, covariant inner residual relative error, contravariant
error matrix, and contravariant inner residual relative error. Many authors presented
Theorems that control one of the above errors and ensure local convergence of IN se-
quence for covariant approaches and IN residual sequence for contravariant approaches.
Relevant examples are the following κ-Theorems:

• Ostrowski [64, Section 10.2.1] controlled how large must be the spectral radius of
the contravariant error matrix or the spectral radius of the covariant error matrix,
and concludes local convergence of the IN sequence with root factor of convergence.

• Dennis [24, Theorem 1] controlled how large must be the contravariant error matrix
with ‖y‖-norm, and concludes local and linear convergence of the IN sequence.

• Dembo, Stanley, Eisenstat, and Steihaug [22] controlled how large must be the
contravariant inner residual relative error with ‖y‖-norm, and conclude local and
linear convergence of the IN sequence with a particular ‖y‖∗-norm instead of ‖y‖-
norm.

• Bock [10] controlled how large must be the covariant inner residual relative error,
and concludes local and linear convergence of the GN sequence to a statistically
stable solution.

Furthermore, C tina³ [16] studied what magnitudes can be allowed in perturbing the
Newton matrix so that the convergence order of the resulting method does not de-
crease. Gratton, Lawless, and Nichols [40] introduced a deep analysis of truncated
and perturbed GN methods. Deu�hard [27] studied how theoretical results from κ-
Theorems can be exploited for the construction of adaptative algorithms. Hohmann
[42] provided a computationally available stopping criterion that depends on a cer-
tain forcing sequence based on the calculation of sharpened contravariant quantities,
and guarantees local and linear convergence. For a deeper study of κ-Theorems see
e.g.,[64, 27, 22, 24, 70, 40, 16, 39, 31, 67, 18, 42].

The idea of inexact Gauss-Newton methods that satisfy (i), (ii), and (iii) is con-
ceptually simple, but it is also surprisingly hard to propose a numerical method, which
satis�es all those requirement. The principal problems are implementation, numerical
e�ciency, and statistically stable solutions.

Implementation. The issue in this part is the gap between the κ-theory results
and practical implementations. Covariant κ-conditions deliver computationally unavail-
able termination rules, and the contravariant Theorem of Dembo, Stanley, Eisenstat, and



3

Steihaug [22] delivers a computationally available termination rule that control how large
the contravariant inner residual relative error must be in order to conclude linearly and
locally convergent with a particular ‖y‖∗-norm of the inexact Newton sequence, which
represents the principal drawback of this κ-condition since in such IGN methods sec-
ond order derivative information is not available. Thus, if we want to provide an inner
termination rule that satis�es (ii) based on a contravariant κ-condition, we must pro-
pose an a�ne contravariant κ-Theorem for our IGN method that controls how large the
contravariant inner residual error with respect to the GN method must be in order to
guarantee local convergence of IGN sequences.

Numerical e�ciency of an IGN method depends on the numerical e�ort for the
calculation of the IGN step at every iteration and the linear convergence factor of our
IGN sequence. Thus, we must provide an inner termination criterion that is satis�ed,
as early as possible. In order words, we must ensure that the number of inner iterations
necessary for computing IGN step using a certain numerical linear algebra for solving
approximately the linearized problems is "small". An important question at this point
is: How does the inaccuracy of an IGN method with respect to the GN method in�uence
locally the convergence factor of IGN sequence.

Statistically stable solutions. We say that an estimation is statistically stable
under statistical perturbations in the measurement data if it can be considered as a con-
tinuous deformation of the true parameter. Using a combination of the above κ-Theorems
for determining an inner termination rule that satis�es (ii), we are interested in provid-
ing an IGN method, whose estimation is statistically stable. Nevertheless, within the
κ-theory, we can conclude that IN sequence converges locally to an estimation or that
IN residual sequences converges locally to zero, but we cannot conclude that such an
estimation is statistically stable, in this scenario the κ-theory is not too wide. Bock
[10] provides a local covariant κ-Theorem for GN method known as the local contrac-
tion Theorem, which ensures that the GN method converges linearly and locally to a
statistically stable estimation, but as we said before covariant Theorems do not deliver
computationally available termination rules for IGN methods.

The challenge in this thesis is that from covariant Theorems that guarantees locally
rapid convergence of IGN sequence, we cannot obtain an available termination rule suit-
able for (ii), and (iii). On the other hand, there is a contravarinat Theorem that provides
an available termination rule for inexact Newton methods, but not for IGN methods
since here the second order derivative information is not available. Furthermore, not all
κ-Theorem provides statistically stable solutions.

Contributions of the thesis

Assuming that the contravariant error matrix with ‖y‖-norm introduced by the GN
method is bounded by a κGN -constant less than one, we present a new IGN method that
computes the IGN step using the LSQR [65] or the LSMR [33] Krylov subspace method
as numerical linear algebra method for solving the inner linearized subproblems with
an new early inner termination criterion that depends on cheaply available information,
which implies that the contravariant inner residual relative error with respect to the
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Newton method is bounded by a κ-constant less than one. Furthermore,

• The IGN step is computed using less inner iteration than the necessary for satisfying
the standard termination rule of LSQR and LSMR based on the backward error
provided by Stewart [78]. Indeed, we prove that the inner linearized subproblems
can be solved with only low accuracy without impeding the speed of convergence
of the outer iteration dramatically.

• We prove that there is a ‖y‖∗-norm such that if the contravariant error matrix
with ‖y‖-norm is bounded by a κ-constant less than one, then the covariant error
matrix with ‖y‖∗-norm is bounded by a constant less than one. Reciprocally, there
is a norm ‖y‖? such that if the covariant error matrix with ‖y‖-norm is bounded
by a constant less than one, then the contravariant error matrix with ‖y‖?-norm is
bounded by a constant less than one. Thus, we conclude: This new IGN method,
which assumes that the contravariant error matrix with ‖y‖-norm introduced by
the GN method is bounded by κGN less than one, implies that the covariant error
matrix with ‖y‖∗-norm introduced by the GN method is bounded by a constant
less than one. This result says that our �rst hypothesis is essentially a covariant
hypothesis with ‖y‖∗-norm. Moreover, this result can also be extended to our new
stopping criterion since we prove that controlling the discrepancies between this
IGN approach and the GN method, we can also conclude that our inner termination
rule implies that the covariant inner realtive error introduced by our IGN method
with norm ‖y‖∗-norm is also bounded by a constant less than one. Both results
allow to say that our IGN approach is essentially a covariant approach with ‖y‖∗-
norm.

• The results in the above item allow to conclude that the hypotheses with ‖y‖∗-norm
of the local contraction Theorem presented by Bock [10] for this IGN approach
are valid. Therefore, it is possible to guarantee locally rapid convergences with
‖y‖∗-norm of our IGN sequences. Moreover, we propose a κ-Theorem for our IGN
approach that explains how the inaccuracy of this IGN approach with respect to the
GN method in�uences locally and linearly the convergence factor with ‖y‖∗-norm
of the IGN sequence.

• We prove that this new IGN approach provides local statistically stable estimation
provided that at least one exists.

• Because an e�cient IGN method must deal with initial guesses that are not neces-
sarily close to a local solution, we generalize the local ideas of this IGN approach,
and introduce a damped IGN method using the Backward Step Control for Global
Newton-type theory of Potschka [70], which ensures the existence of an inexact
Gauss-Newton path x(t) that connects a particular initial guess with some solu-
tion of our large scale nonlinear least squares problem and along it, the residual
level function decreases exponentially. Furthermore, using a backward analysis
argument based on following the above path x(t), we provide a class of damped
inexact Gauss-Newton sequences that converge to a particular local solution of our
large-scale nonlinear least squares problem.

• We evaluate the e�ciency of our new approach using two examples. The �rst one
is a parameter identi�cation of a nonlinear elliptic partial di�erential equation,
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and the second one is a real world parameter estimation on a large-scale bundle
adjustment problem. Both of those problems represent a challenge. The �rst one is
a particular inverse problem where the parameter is in an in�nite dimensional space,
therefore a discrete form of the problem is considered using �nite element methods,
in this setting, we obtain a �nite dimensional nonlinear least squares problem where
only a �nite number of unknown parameters can be estimated. In order to avoid ill
posedness in our inverse problem, we focus on the regularization appoach proposed
by Jun Zou [84], which provides at least a theoretical well posed problem such
that its �nite dimensional nonlinear reformulation is well conditioned. Our results
show that our IGN approach requires just less than 3% of the inner iterations
for computing the IGN step at every outer iteration, in spite of we work with a
discretization that generated 1032 parameters to be estimated and the exact GN
step at every outer iteration requires 1032 (100%) inner iterations to be computed.
Furthermore, the estimation obtained is statistically stable. The challenge in the
second example is that the Jacobian Jf (xk) is rank de�cient at every outer iteration,
and this problem is a large scale nonlinear least squares problem. We work with
one experiment where 485013 parameters must be estimated, and obtain the IGN
step at every outer iteration with just less than 1% of the inner iterations, which
represent an enormous computational saves in comparison with the GN method
based on factorization algorithm that requires to perform 485013 (100%) inner
iterations in order to compute the GN step at every outer iteration.

Thesis overview

This thesis is organized as follows: Chapter 1 contains the parameter estimation for-
mulation problem, as well as, the de�nition of Newton, GN, IGN, IN, and Newton-type
method for numerically solving such a problem. We de�ne the most popular errors that
measure the discrepancy between GN and IGN method, and the discrepancy between
IGN and Newton method, and set down the relation between the above di�erent methods.

Chapter 2 presents the most popular numerical linear algebra for solving linear least
squares problems: LSQR [65] or the LSMR [33], and introduces the new termination
criterion that de�nes our IGN approach. We �nalize this Chapter with the most relevant
properties derived from this new IGN estrategy.

In Chapter 3, we prove that our IGN approach is essentially a covariant startegy with
‖y‖∗-norm, and we discuss brie�y when our IGN approach implies that the hypotheses
with ‖y‖∗-norm of the local contraction Theorem introduced by Bock [10] for our IGN
approach are satis�ed.

In Chapter 4, we prove that our IGN method guarantees statistically stable solutions
provided that at least one exists.

In Chapter 5, we present an analysis based on the classical globalization strategies
based on the popular Residual Monotonicity Test and on the Natural Monotonicity Test
that reveals the principal drawbacks of globalization strategies based on a particular
merit function. Rather, we focus on globalization strategies that follow the a�ne covari-
ant Newton path x(t). Thus, we survey two globalization strategies based on following
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such a path x(t), one of them was introduced by Bock, Kostina, and Schlöder [12] and is
known as the Restrictive Monotonicity Test (RMT), and the other one was introduced
by Potschka [70] and is known as the Backward Step Control (BSC) method, which pro-
vides, under reasonable assumptions, a global convergence Theorem from the basis of a
backward step argument.

In Chapter 6, we introduce our damped IGN method based on BSC theory.

Finally, we evaluate the e�ciency of our new IGN approach in Chapter 7 using two
examples. The �rst example is a parameter identi�cation of a nonlinear elliptical partial
di�erential equation, and the second example is parameter estimation on a large-scale
bundle adjustment problem.



Chapter 1

Preliminaries

1.1 Parameter Estimation Formulation Problem

The parameter estimation of a mathematical model is the process of �nding a parameter
which makes that our mathematical model reproduces, as close as possible, a collection
of observed data. Let D ⊂ Rn be a nonempty open set, h : D ⊂ Rn → Rm be a twice
continuously di�erentiable function representing such a mathematical model with n ≤ m,
and let us consider a series of observed data points

ηi ∈ R, i ∈ {1, · · · ,m},

which are obtained during the experimental phase. We de�ne the measurement error
ε ∈ Rm introduced by the observations as the deviation of the model in the true but
unknown parameter xtrue and the observational data, i.e., the entry i of ε is de�ned by

εi := ηi − hi(xtrue).

Let us assume that the Jacobian Jh(xtrue) of h(x) at xtrue is full rank, that the model
is structurally correct and the measurement error ε = (ε1, · · · , εm) is a random variable
such as

• εi and εj are pairwise independent if i 6= j,

• εi is normally distributed for all j, with

• mean value zero, which means that the expectation value of the observational data
is equal to the model responses.

• The variance-covariance matrix is known and equal to the diagonal matrix

Σ = diag(σ1, σ2, · · · , σm).

Let L(x) be the correspondent Likelihood function of the parameter x, i.e.,

L(x) := P (ε|x) =
m∏
i=1

Pi(εi),

7



8 Chapter 1. Preliminaries

where Pi is the probability density function of our normally distributed variable εi. It is
well known (see Bard [7]) that the maximum likelihood function estimator can also be
obtained solving the following nonlinear least squares problem:

arg min
x∈D

1

2
‖f(x)‖22 (1.1)

where f(x) ∈ Rm, and its entry i is fi(x) = ηi−hi(x)
σi

. Let us de�ne the residual level
function T (x) = 1

2‖f(x)‖22, and let us consider the following nonlinear equation

∇T (x) = 0.

We say that x∗ ∈ D is a stationary point of (1.1) if x∗ is a root of the above equation.

The practical way to �nd a local solutions of (1.1) is given by the �rst-order necessary
condition Theorem and second-order su�cient Theorem.

Theorem 1.1 (Fisrt-Order Necessary Condition). If T is a continuously di�erentiable
function, and x∗ ∈ D is a local minimizer of (1.1), then x∗ is a stationary point of (1.1).

Proof. Nocedal and Wright[63, Chapter 2].

�

Theorem 1.2 (Second-Order Necessary Condition). If T is a twice continuously di�er-
entiable function, x∗ ∈ D is a local minimizer of (1.1), then x∗ is a stationary point of
(1.1) and ∇2T (x∗) is positive semide�nite.

Proof. Nocedal and Wright[63, Chapter 2].

�

Let Jf (x) ∈ Rm×n be the Jacobian matrix of f , i.e.,

Jf (x) =



∇f1(x)T

∇f2(x)T

...
∇fm(x)T


.

The �rst-order necessary condition Theorem establishes that in order to obtain a local
solution of (1.1), we need to solve �rst of all the nonlinear equation,

F (x) := ∇T (x) =
m∑
i=1

fi(x)∇fi(x) = JTf (x)f(x) = 0. (1.2)

Nevertheless, not all the solutions of (1.2) are also local solution of (1.1). The following
second-order su�cient condition Theorem gives us the su�cient conditions to know when
a stationary point become a local minimizer.

Theorem 1.3 (Second-Order Su�cient Condition). If T is a twice continuously di�er-
entiable function, x∗ ∈ D is a stationary point of (1.1), and the Hessian ∇2T (x∗) is
positive de�nite, then we can guarantee that x∗ ∈ D is a strict local minimizer of (1.1).
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Proof. Nocedal and Wright[63, Chapter 2].

�

In our case, we can rewrite the Hessian as,

∇2T (x) =
∑m

i=1∇fi(x)∇fi(x)T +
∑m

i=1 fi(x)∇2fi(x)

= Jf (x)TJf (x) +
∑m

i=1 fi(x)∇2fi(x).

De�ning

Qε(x) :=

m∑
i=1

fi(x)∇2fi(x), (1.3)

we obtain
JF (x) := ∇2T (x) = Jf (x)TJf (x) + Qε(x). (1.4)

Remark 1.4. Let us consider a positive constant κ < 1. By de�nition, we know that

fi(x) =
ηi − hi(x)

σi
and εi = ηi − hi(xtrue).

Thus, Jf (x) = − [Σ]−1 Jh(x) and because Jh(xtrue) is full rank, we obtain that for ε = 0

Q0(xtrue)[J
T
f (xtrue)Jf (xtrue)]

−1 = 0,

and from the continuity properties, it follows that there is an r∗ > 0 such that

V :=
{
x ∈ D

∣∣∣ J(x) is full rank and
∥∥∥Qε(x)

[
Jf (x)TJf (x)

]−1
∥∥∥ ≤ κ}

is not empty for all ε ∈ B(0, r∗).

Let us assume that there is a stationary point x∗ ∈ V ⊂ D of (1.1). Using Theorem
1.3, it is possible to conclude that x∗ is also a local minimizer of (1.1) if ∇2T (x∗) is
positive de�nite. Note that the matrix ∇2T (x∗) is the sum of the positive de�nite matrix
Jf (x∗)

TJf (x∗), and the symmetric matrix Qε(x∗). A natural question is: What property
must Qε(x∗) satisfy in order to conclude that ∇2T (x∗) is positive de�nite?. The answer
is given by the following Proposition, which requires a preparation Lemma given below.

Lemma 1.5. Let M and N be two n × n symmetric matrices. If M and MN + NM
are positive de�nite, then N is also positive de�nite.

Proof. Note that N is invertible. In fact, let us �x x ∈ Kern (N), then Nx = 0.
Because MN + NM is positive de�nite, we obtain x = 0. Otherwise, we conclude that
x 6= 0 and xT [MN +NM ]x = 0, which is not possible since MN + NM is positive
de�nite.

In the following lines, we prove that N is positive de�nite. Let λ ∈ R − {0} be
a eigenvalue of N , then there is an unitary vector v such that Nv = λv. From our
hypothesis, it follows
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0 < vT [MN +NM ] v = 2λ
[
vTMv

]
,

since M is positive de�nite, we obtain 0 < λ, which said that all the eigenvalues of N
are positive, i.e., N is positive de�nite.

�

Proposition 1.6. Given a stationary point x∗ ∈ D of (1.1), let us assume that Jf (x) is
full rank in a neighborhood V∗ ⊆ D of x∗. If one of the following matrices[

Jf (x)TJf (x)
]−1

Qε(x) =
[
Jf (x)TJf (x)

]−1∇2T (x)− I

or

Qε(x)
[
Jf (x)TJf (x)

]−1
= ∇2T (x)

[
Jf (x)TJf (x)

]−1 − I

has Euclidean norm or spectral radius less than one in V∗, then ∇2T (x) is positive de�nite
for all x ∈ V∗.

Proof. From (1.4), we have

∇2T (x) = Jf (x)TJf (x) +Qε(x),

therefore,

∇2T (x)
[
Jf (x)TJf (x)

]−1
= I +Qε(x)

[
Jf (x)TJf (x)

]−1
(1.5a)

[
Jf (x)TJf (x)

]−1∇2T (x) = I +
[
Jf (x)TJf (x)

]−1
Qε(x). (1.5b)

Let us de�ne M =
[
Jf (x)TJf (x)

]−1 and N = ∇2T (x). Adding (1.5a) and (1.5b), we
obtain,

MN +NM = 2I +
[
Jf (x)TJf (x)

]−1
Qε(x) +Qε(x)

[
Jf (x)TJf (x)

]−1
.

Statement: MN + NM is a symmetric and positive de�nite matrix. MN + NM is a
symmetric matrix because M and N are symmetric matrices. Let us assume that

ρ
([
Jf (x)TJf (x)

]−1
Qε(x)

)
= ρ

(
Qε(x)

[
Jf (x)TJf (x)

]−1
)
< 1 (1.6)

where ρ (M) denotes the spectral radius of the matrix M. Let λ be an eigenvalue of
MN +NM , then there is a nonzero vector u such that

2u+
[
Jf (x)TJf (x)

]−1
Qε(x)u+Qε(x)

[
Jf (x)TJf (x)

]−1
u = λu,

or equivalently,[[
Jf (x)TJf (x)

]−1
Qε(x) +Qε(x)

[
Jf (x)TJf (x)

]−1
]
u = (λ− 2)u.

From (1.6) it follows that |(λ − 2)| < 2, which implies that 0 < λ < 4. We prove that
all the eigenvalues of MN +NM are positive, therefore MN +NM is positive de�nite.
Applying the Lemma 1.5, it follows that N = ∇2T (x) is a positive de�nite matrix for all
x ∈ V∗.



1.2 Newton Method for Nonlinear Equations 11

�

Remark 1.7. The Proposition 1.6 says that if x∗ is a stationary point of (1.1), Jf (x∗)
is full rank, and∥∥∥[Jf (x∗)

TJf (x∗)
]−1

Qε(x∗)
∥∥∥ < 1, or

∥∥∥Qε(x∗) [Jf (x∗)
TJf (x∗)

]−1
∥∥∥ < 1,

then ∇2T (x∗) = JF (x∗) is positive de�nite. Therefore, we conclude directly from Theorem
1.3 that x∗ is also a strict local solution of (1.1).

We �nalize this section introducing a de�nition that classi�es the convergence factor
of a convergent sequence (yk).

De�nition 1.8 (Convergence factor). Let us consider a sequence (yk) in Rn that con-
verges to y∗. We said that,

1. (yk) converges with superlinear convergence factor if

lim
k→∞

‖yk+1 − y∗‖
‖yk − y∗‖

= 0,

2. (yk) converges with order p ∈ [1,∞) and with quotient convergence factor κ if

κ := lim sup
k→+∞

‖yk+1 − y∗‖
‖yk − y∗‖p

exists. In particular, when p = 1 (p = 2) we say that the convergence is linear
(quadratic).

3. (yk) converges with root convergence factor ρ if

ρ = lim sup
k→+∞

‖yk − y∗‖
1
k

exists.

4. (yk) converges with weak order p ∈ [1,∞) and root convergence factor ρ if

ρ = lim sup
k→+∞

‖yk − y∗‖
1

pk

exists.

From this de�nition it follows that the convergence factor depends on the norm in 1.,
2.; and does not in 3..

1.2 Newton Method for Nonlinear Equations

In this section, we focus on numerically solving the nonlinear equation (1.2), i.e.,

F (x) = JTf (x)f(x) = 0,

with Jacobian
JF (x) = ∇2T (x) = Jf (x)TJf (x) + Qε(x).
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Since h is a twice continuously di�erentiable function then JF (x) is continuously di�er-
entiable function. Let us assume that JF (x) is invertible, the most relevant approach
for numerically solving nonlinear equation problems is the Newton method. In our case,
the Newton method solves (1.2) starting from an initial guess x0 ∈ D, and consequently,
form a linear model functionMF (x) of F (x) by taking the �rst two terms of its Taylor se-
ries approximation around the current iterate xk. Using this linear model, we iteratively
compute a sequence (xk) according to

xk+1 = xk + ∆xk, with MF (xk + ∆xk) = 0.

In other words, this method approaches to the solution of (1.2) by solving a sequence of
linear equation subproblems. We present its algorithm in Algorithm 1.1.

Algorithm 1.1 Newton's Algorithm for Nonlinear Equations

Step 0: Choose the initial guess x0 close to a local solution x∗ of (1.2).
Step 1: Repeat until convergence:

Step 1.1: Solve MF (xk + ∆xk) = 0,
i.e., JF (xk)∆xk = −JTf (xk)f(xk).

Step 1.2: Set xk+1 = xk + ∆xk.

The classical Theorems describing the convergence properties of the Newton sequence
(xk), as well as, the uniqueness of a local solution x∗ of (1.2) are the Newton-Kantorovich
Theorem [58] and the Newton-Mysovskikh Theorem [60], but the above Theorem is more
attractive for the convergence analysis because it does not require the existence of such
a local solution x∗.

Assuming that

(i) the Jacobian matrix JF (x) is a Lipschitz function in D, with Lipschitz constant
γF ,

(ii) there is a positive constant βF , such that, ‖ [JF (x)]−1 ‖ ≤ βF for all x ∈ D, and

(iii) x0 ∈ BγF where
BγF := {x ∈ D | βFγF ‖∆x0‖ < 2} ,

Newton and Mysovskikh [60] proved that the Newton sequence (xk) converges to a root
x∗ ∈ D of (1.2) with quadratic convergence rate. Thus, BγF de�ne a neighborhood
of x∗ ∈ D where quadratic convergence of the Newton method is guaranteed. Let us
consider the following class of problems

AF (x) = 0 where A is a invertible matrix. (1.7)

Therefore, giving an initial guess x0 ∈ D, we obtain that the Newton sequences (xk) of
the class of problems (1.7) is calculated by,

xk+1 = xk + ∆xk, with AJF (xk)∆xk = −AF (xk),
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or JF (xk)∆xk = −F (xk), which means that our Newton sequence (xk) is invariant under
transformations on the images space of F (x), but BγAF is not invariant since the Lipschitz
constant γAF of AF (x) in (i) and βAF in (ii) depend on A. We focus, at this point, on
convergence Theorems of Newton method that provide a neighborhood N∗ of x∗ ∈ D
such that

• N∗ is invariant under transformations on the images space of F , if our Newton
sequence (xk) is invariant under transformations on the images space of F , and

• if x0 ∈ N∗, then the quadratic convergence of Newton sequence (xk) with initial
guess x0 is guaranteed.

Thus, the Newton-Mysovskikh Theorem is not adecuate for our interest. Deu�hard
[27] presented variations of Newton-Mysovskikh Theorem by restricting the convergence
analysis of our Newton sequence (xk) to a�ne invariance convergence Theorems.

1.3 A�ne Invariance

In this section, we consider the problem

G(y) = AF (By) = 0, x = By (1.8)

with nonsingular matrices A and B, and we are interested in the study of a�ne invariance
convergence properties of Newton's method. We observe that the Newton sequence (yk)
with initial guess y0 = B−1x0 satis�es,

yk+1 := yk + ∆yk, for all k ∈ N,

where
JG(yk)∆yk = −G(yk) and JG(yk) = AJF (Byk)B.

Note that the Newton sequence (xk) of (1.2) and the above new Newton sequence
(yk) are related through

xk = Byk, for all k ∈ N. (1.9)

From here, it is the clear that the sequences (xk) and (yk) are invariant under trans-
formations on the image spaces of F , an invariance property de�ned by Deu�hard [27]
as a�ne covariance, and they are related through (1.9) under transformations on the
domain D, an invariance property de�ned by Deu�hard [27] as a�ne contravariance.

In order to provide a�ne invariance convergence Theorems of Newton method, we
need to guarantee that our convergence Theorems provide results that inherit such as
a�ne invariance properties.

1.3.1 A�ne Covariance

Here, we keep B = I �xed in (1.8), i.e., we consider the class of problems,

G(y) = AF (x) = 0

generated by the class GL(n) of nonsingular matrices A. The above class of problems has
the same roots and generate the same Newton sequences. The last ingredient necessary
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for building an a�ne covariant Newton method theory is reduced to present a Theo-
rem, which results are invariant under transformation on the images spaces. Deu�hard
[27] presented a variant of the Newton-Mysovskikh Theorem, which is invariant under
transformations on the images spaces.

Theorem 1.9 (A�ne covariant Newton-Mysovskikh). Let us assume that D is convex,

(i) There is some ω > 0 such that JF (x) satis�es the covariant Lipschitz condition

‖JF (z)−1 [JF (x+ t(y − x))− JF (x)] (y − x)‖ ≤ tω‖y − x‖2 for all x, y, z ∈ D,

and t ∈ [0, 1] .

(ii) Given some α < 2, the initial guess x0 satis�es

x0 ∈ VN :=
{
x ∈ D

∣∣∣ ω ∥∥∥[JF (x)]−1 F (x)
∥∥∥ ≤ α < 2

}
, and

B(x0, ρ) ⊂ D where ρ :=
‖∆x0‖

1− [ω‖∆x0‖] /2
.

Then, the Newton sequence (xk) stays in B(x0, ρ), and converges quadratically to a root
x∗ ∈ D of (1.2) in the sense that

‖xk+1 − xk‖ ≤
1

2
ω‖xk − xk−1‖2.

Furthermore, the estimate xk of x∗ satis�es

‖xk − x∗‖ ≤
‖xk − xk−1‖

1− 1

2
ω‖xk − xk−1‖

.

Proof. Deu�hard [27].

�

1.3.2 A�ne Contravariance

This setting is dual to the preceding one. Here, we keep A = I �xed in (1.8), i.e., we
consider the class of problems,

G(y) = F (By) = 0, where B ∈ GL(n) and x = By.

In this case, we have that x∗ is a root of (1.2), i� y∗ is a root of G(y) = F (By) = 0 where
x∗ = By∗. The residual Newton sequence (F (xk)) and the residual Newton sequence
(F (Byk)) generated by the above class of problems coincide. In order to present a
contravariant a�ne Newton method theory, we need to provide a residual convergence
Theorem, which is invariant under transformations on the domain spaces. Deu�hard
[27] presents a variant of the Newton-Mysovskikh Theorem, which is invariant under
transformations on the domain spaces.
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Theorem 1.10 (A�ne contravariant Newton-Mysovskikh). Let us assume that D is con-
vex. If there is a constant ω > 0 such that JF (x) satis�es the contravariant Lipschitz
condition

‖ [JF (y)− JF (x)] (y − x)‖ ≤ ω‖JF (x)(y − x)‖2,

for all x, y ∈ D; and the initial guess x0 ∈ Lω where

Lω :=

{
x ∈ D | ‖F (x)‖ < 2

ω

}
with Lω ⊂ D,

then the Newton sequence (xk) stays in Lω, and the residual sequence (F (xk)) converges
quadratically to zero.

Proof. Deu�hard [27].

�

Remark 1.11. In the above Theorem, we can show that there is at least a subsequence
(xkn) of (xk) that converge to x∗ ∈ Lω such that F (x∗) = 0. Unfortunately, neither can
we ensure that (xk) converges, nor can we determine the convergence rate of such an
subsequence.

1.4 Gauss-Newton Method

The Gauss-Newton Method is the most popular approach for numerically solving nonlin-
ear least squares problems, in our case the problem (1.1). GN is a variant of the Newton
method in which we are not taking into account the second order derivative information.
The process of generating a Gauss-Newton sequence starts with an initial guess x0 ∈ D,
and consequently form a linear model function Mf (x) of f(x) by taking the �rst two
terms of its Taylor approximation around of the current iterate xk. Using this linear
model, we construct iteratively a sequence (xk) according to,

xk+1 = xk + ∆xk,

where

∆xk := arg min
1

2
‖Mf (xk + ∆x)‖22 with Mf (xk + ∆xk) := Jf (xk)∆xk + f(xk). (1.10)

If Jf (xk) is full rank for all k, then the Gauss-Newton step ∆xk is given by the Moore-
Penrose pseudoinverse of the function f(x) at xk, i.e.,

∆xk = −
[
JTf (xk)Jf (xk)

]−1
JTf (xk)f(xk).

Thus, the GN method approaches to a local solution x∗ of (1.1) by solving a sequence of
linear least squares problems. The following Theorem provides su�cient conditions that
guaranty convergence of the GN method.

Theorem 1.12 (Spectral Radius). Let us assume that for our function f de�ned in (1.1)
the following are valid,

(O1) x∗ ∈ D is a stationary point of T (x) =
1

2
‖f(x)‖22.
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(O2) The Jacobian Jf (x) of f has full rank in a neighborhood of x∗.

(O3) The spectral radius (SR) of the matrix
[
JTf (x∗)Jf (x∗)

]−1
Qε(x∗) is less than one,

i.e.,

ρ∗ = ρ
([
JTf (x∗)Jf (x∗)

]−1
Qε(x∗)

)
< 1 (1.11)

where JF (x) = ∇2T (x) = JTf (x)Jf (x) +Qε(x) with Qε(x) de�ned in (1.3).

Then, there is a particular neighborhood VSR ⊂ D of x∗ such that for all x0 ∈ VSR the
correspondent Gauss-Newton sequence (xk) converges to a local solution x∗ of (1.2) with
root coe�cient factor ρ∗.

Proof. Orthega and Rheinboldt [64, Section 10.2].

�

Indeed, the SR Theorem tells more than the GN sequence converges to a stationary
point x∗ of (1.1). It conclude also that ∇2T (x∗) is positive de�ne, which implies that x∗
is also a local solution of (1.1).

Corollary 1.13. Let (O1), (O2) and (O3) in Theorem 1.12 hold. Then

∇2T (x∗) =
[
JTf (x∗)Jf (x∗)

]
+Qε(x∗)

is positive de�nite. Furthermore, there is a particular neighborhood VSR ⊂ D of x∗ such
that for all x0 ∈ VSR the correspondent Gauss-Newton sequence (xk) converges to a local
solution x∗ of (1.1) with root coe�cient factor ρ∗..

Proof. Proposition 1.6 and Theorem 1.12.

�

Remark 1.14. Giving a positive constant κ < 1, let us assume that there is a stationary
point x∗ ∈ D of (1.1) such that Jf (x∗) is full rank and∥∥∥Qε(x∗) [JTf (x∗)Jf (x∗)

]−1
∥∥∥ < κ.

Let us de�ne

Vκ :=
{
x ∈ D

∣∣∣Jf (x) is full rank and
∥∥∥Qε(x)

[
JTf (x)Jf (x)

]−1
∥∥∥ ≤ κ < 1

}
, (1.12)

from remark (1.4), it follows that Vκ and its interior are nonempty set. Thus, starting
from x0 ∈ Vκ such that ‖F (x0)‖ is su�cient close to zero, we obtain that the GN method
generates sequences (xk) that are well de�ned. In the following Theorem we explain with
more detail how to choose such an initial guess x0.

Theorem 1.15. Let us assume that

• D is convex.

• (O1) and (O2) are valid.
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• Given a positive constant κ < 1, x∗ ∈ D satis�es∥∥∥Qε(x∗) [JTf (x∗)Jf (x∗)
]−1
∥∥∥ < κ < 1.

• The closure of Vκ de�ned in (1.12) is compact and subset of D.

If we de�ne

L :=
{
x ∈ Vκ | ω‖

[
JTf (x)Jf (x)

]−1
F (x)‖ ≤ 2(1− κ)

}
(1.13)

where ω is the Lipschitz constant of JF (x) in Vκ, then the Gauss-Newton sequence (xk)
starting from x0 ∈ L converges linearly to x∗ with convergence factor less than κ.

Proof. We omit the proof of this Theorem because it is a particular case of Theorem
3.2.

�

Remark 1.16. In the above Theorem, there is a point that is not clear: Is Theorem
1.15 a covariant or a contravariant Theorem?. The set Vκ is a contravariant set but L
is neither covariant nor contravariant. We answer this question in Chapter 3 in where
we prove that there is a norm ‖y‖∗ and a neighborhood Vδ of x∗ such that

Vδ :=
{
x ∈ D

∣∣∣Jf (x) is full rank and
∥∥∥[JTf (x)Jf (x)

]−1
Qε(x)

∥∥∥
∗
≤ κ+ δ < 1

}
⊂ VκGN

where Vδ is covariant with ‖y‖∗-norm and the above Theorem is also valid for all

x0 ∈ Lδ :=
{
x ∈ Vδ

∣∣∣ω ∥∥∥[JTf (x)Jf (x)
]−1

F (x)
∥∥∥
∗
≤ 2(1− κ)

}
⊂ L.

Thus, we can also say that the Theorem 1.15 is covariant with respect to ‖y‖∗-norm.

Relation between the Gauss-Newton and the Newton Method

Unlike the Gauss-Newton method, the Newton method attacks the solution of (1.2)
by solving a sequence of linear equation problems

MF (xNk +∆x) = 0 where MF (xNk +∆x) :=
[
JTf (xNk )Jf (xNk ) +Qε(x

N
k )
]

∆x+JTf (xNk )f(xNk ),

i.e., MF (xNk + ∆x) is an linear approximation of F (x) = JTf (x)f(x) at the iterate xNk .
Let us de�ne a new linear approximation Mf (xGNk + δx) of F (x) = JTf (x)f(x) around
xGNk by dropping the term Qε(x

GN
k ) in MF (xGNk + δx), i.e.,

Mf (xGNk + δx) := JTf (xGNk )Jf (xGNk )δx+ JTf (xGNk )f(xGNk ). (1.14)

Therefore, we determine a new sequence (xGNk ), which is de�ned by xGNk+1 = xGNk + δxGNk
with Mf (xGNk + δxGNk ) = 0 that satis�es the following properties,

(G1) The sequence (xGNk ) is the Gauss-Newton sequence that approaches locally to a
local solution x∗ of (1.1) with root coe�cient factor ρ∗ if the hypotheses of Corollary
1.13 are valid.
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(G2) The Newton step at the iterate xGNk satis�es[
JTf (xGNk )Jf (xGNk ) +Qε(x

GN
k )

]
∆xNk = −JTf (xGNk )f(xGNk )

while the Gauss-Newton step

JTf (xGNk )Jf (xGNk )∆xGNk = −JTf (xGNk )f(xGNk ).

(G3) The covariant discrepancy between Newton method and GN method is measured
through the covariant relative error at the iterate xGNk

‖∆xNk −∆xGNk ‖
‖∆xNk ‖

, (1.15)

and the covariant error matrix with ‖y‖-norm∥∥∥I − [JTf (x)Jf (x)
]−1∇2T (x)

∥∥∥ =
∥∥∥[JTf (x)Jf (x)

]−1
Qε(x)

∥∥∥ for all xk ∈ Vκ (1.16)

where Vκ is de�ned in (1.12). Furthermore, the covariant relative error and the
covariant matrix error are related through

‖∆xNk −∆xGNk ‖
‖∆xNk ‖

≤
∥∥∥[JTf (xGNk )Jf (xGNk )

]−1
Qε(x

GN
k )

∥∥∥ for all x ∈ Vκ.

(G4) The contravariant discrepancy between Newton method and GN method is mea-
sured through the contravariant error matrix with ‖y‖-norm∥∥∥I −∇2T (x)

[
JTf (x)Jf (x)

]−1
∥∥∥ =

∥∥∥Qε(x)
[
JTf (x)Jf (x)

]−1
∥∥∥ for all x ∈ Vκ (1.17)

where Vκ is de�ned in (1.12).

(G5) The covariant Newton-Mysovskikh Theorem (1.9) ensures locally that the Newton
sequence (xNk ) converges to x∗ with quadratic convergence factor, the spectral ra-
dius Corollary 1.13 ensures locally that the GN sequence (xGNk ) converges to x∗
with root convergence factor ρ∗, and Theorem 1.15 ensures locally that the se-
quence (xGNk ) converges linearly to x∗. Thus, the spectral radius Corollary delivers
locally faster convergence GN sequence than Theorem 1.15 since the spectral radius
of the error matrix that measure the discrepancy between Newton method and GN
method does not depend on the norm neither the case (covariant or contravariant),
i.e.,

ρ∗ = ρ
([
JTf (x∗)Jf (x∗)

]−1
Qε(x∗)

)
= ρ

(
Qε(x∗)

[
JTf (x∗)Jf (x∗)

]−1
)
.

1.5 Inexact Gauss-Newton Method

Often, we work with large-scale nonlinear least squares problems that arise from problems
like Bundle Adjustment [56], or inverse problems such as in�nite dimensional parameter
identi�cation problems of Partial Di�erential Equations models [84] where the Gauss-
Newton step cannot be computed directly, but has to be approximated. The inexact
Gauss-Newton method approaches to a local solution of (1.1) by solving iteratively a
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sequence of linear least square problems. We restrict our study to the use of iterative
technique based on projection processes onto orthogonal Krylov subspaces.

The whole process starts with an initial guess x0 ∈ D, and consequently, we de�ne a
sequence (xk) by

xk+1 = xk + δxk

where δxk solves approximately the linear least squares problem (1.10) using a certain
orthogonal Krylov subspace method with a certain termination rule (or stopping crite-
rion). In comparison with the exact Gauss-Newton step ∆xGNk at the iterate xk, the
inexact Gauss-Newton (IGN) method introduce at every iterate xk the following error

δxk −∆xGNk .

On the other hand, de�ning

r(xk) := Jf (xk)δxk + f(xk),

the inner residual error introduced by our inexact Gauss-Newton step δxk is given by

JTf (xk)r(xk) = JTf (xk)Jf (xk)δxk + JTf (xk)f(xk).

Thus, we are able to measure the discrepancy between the inexact and the exact Gauss-
Newton method through:

(1) The covariant inner residual relative error

‖J+(xk)r(xk)‖
‖J+(xk)f(xk)‖

=
‖δxk −∆xGNk ‖
‖∆xGNk ‖

(1.18)

provided that Jf (xk) is full rank and F (xk) 6= 0.

(2) The contravarinat inner residual relative error

‖JT (xk)r(xk)‖
‖JT (xk)f(xk)‖

=

∥∥∥[JTf (xk)Jf (xk)
] [
δxk −∆xGNk

]∥∥∥∥∥∥[JTf (xk)Jf (xk)
]

∆xGNk

∥∥∥ (1.19)

provided that Jf (xk) is full rank and JT (xk)f(xk) 6= 0.

(3) If there is a functionM : V ⊆ D → GL(n) such that the IGN step can be written as
δxk = −M(xk)J

T
f (xk)f(xk) for all k and Jf (x) is full rank in V, the contravariant

inverse error matrix with ‖y‖-norm is de�ned as∥∥∥I − [M(x)]−1 [JTf (x)Jf (x)
]−1
∥∥∥ for all x ∈ V. (1.20)

(4) The contravariant error matrix with ‖y‖-norm is de�ned as∥∥I − [JTf (x)Jf (x)
]
M(x)

∥∥ for all x ∈ V (1.21)

where M(x) is introduced in (3).
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We introduce in Chapter 2 a new early inner termination criterion that only depends
on cheaply available information for our IGN method, which implies that the errors
(1.18), (1.19), (1.20), and (1.21) are bounded. Furthermore, our IGN approach delivers
linearly and locally convergent IGN sequence that converges to a local statistically stable
solution of (1.1) provided that at least one exists. We postpone the proof of all result to
Chapter 2 and 3.

1.6 Newton-Type Method

We start the Newton-type method with our initial guess x0 ∈ D and propose a better
approximation to a local solution x∗ of (1.2) through

xk+1 := xk + δxk where δxk := −M(xk)J
T
f (xk)f(xk) (1.22)

where M(x) could be interpreted as an approximation of the Jacobian inverse [JF (x)]−1

of F (x), i.e.,

[JF (x)]−1 =
[
∇2T (x)

]−1
=
[
JTf (x)Jf (x) +Qε(x)

]−1
and Qε(x) de�ned in (1.3).

If M(x)=[∇2T (x)]
−1, then the sequence (xk) generated by (1.22) is the Newton sequence.

If M(x)=[JTf (x)Jf (x)]
−1, then (xk) is the Gauss-Newton sequence. If M(x) is an approx-

imation of [JTf (x)Jf (x)]
−1, then (xk) is the inexact Gauss-Newton sequence. From this

argument we conclude that the Newton method, the Gauss-Newton method and the in-
exact Gauss-Newton method are particular cases of Newton-type method.

Given a nonnegative sequence (ηk), the inexact Newton method is another particular
case of Newton-type method, which de�nes an inexact Newton sequence starting from
x0 ∈ D as follows:

xk+1 = xk + δxk (1.23)

where the inexact Newton step δxk solves approximately the following Newton equation

∇2T (xk)∆x = −JTf (xk)f(xk),

and de�ning the inner residual error as Rk := ∇2T (xk)δxk + JTf (xk)f(xk), the inexact
Newton satis�es δxk satis�es

‖Rk‖ ≤ ηk‖JTf (xk)f(xk)‖.

Remark 1.17. There is a matrix M(x) ≈ [JF (x)]−1 (see for example [69, Lemma 5.1])
such that the inexact Newton step satis�es δxk = −M(xk)J

T
f (xk)f(xk) for all k.

An important question is: what level of accuracy is required in our inexact Newton
step δxk to preserve the rapid local convergence of Newton method?. Dembo, Stanley,
Eisenstat, and Steihaug [22] answered the above question in the following Theorem

Theorem 1.18. Let us assume

(D1) There is an x∗ ∈ D such that F (x∗) = 0.

(D2) F : D ⊆ Rn → Rn is di�erentiable in a neighborhood of x∗.
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(D3) JF (x∗) is nonsingular.

if (ηk) is a positive sequence such that ηk ≤ ηmax < t < 1, then there is an neighborhood
VD of x∗ such that for all x0 ∈ VD the correspondent inexact Newton sequence (xk)
de�ned in (1.23) converges to x∗. Moreover, the convergence is linear in the sense

‖xk+1 − x∗‖∗ ≤ t‖xk − x∗‖∗

where ‖y‖∗ = ‖JF (x∗)y‖∗.

Proof. Dembo, Stanley, Eisenstat, and Steihaug [22].

�

Remark 1.19. Dembo, Stanley, Eisenstat, and Steihaug [22] not only analyzed the local
behavior of the inexact Newton sequence (xk) (1.23), but also characterized the order of
convergence of (xk) and indicated how to choose a forcing sequence (ηk) such that (xk)
preserves the rapid convergence of Newton method. In other words, in [22] there is a
recipe of how to construct inexact Newton convergence sequences. In the following, we
summarize the most important results of such a paper related to the order of convergence
of (xk). Let us assume that an inexact Newton sequence (xk) satis�es Theorem 1.18 then
(xk) converges locally to x∗. Furthermore, if x0 is su�ciently close to x∗ then

(i) (xk) converges with superlinear factor of convergence if

lim
k→∞

ηk = 0.

(ii) (xk) converges with strong order at least 1 + p if JF (x) is Hölder continuous with
exponent p at x∗, and ‖Rk‖ = O(‖F (xk)‖1+p) when k goes to in�nity.

(iii) (xk) converges with weak order at least 1 + p if JF (x) is Hölder continuous with
exponent p at x∗, and (Rk) converge to zero with weak order at least 1 + p.

In this thesis, we do not take into account (i), (ii), (iii) because those conditions say that
the inner residual sequence (Rk) converges to zero too quickly, but, we are interested in
an early stopping criterion, which means that we need to keep the residual ‖Rk‖ as large
as possible at every iteration.

Remark 1.20. Let us consider κ < 1 and an inexact Newton sequence (xk) ⊂ D such
that

‖Rk‖ ≤ κ‖F (xk)‖ and JF (xk) nonsingular for all k.

Then, we cannot ensure using Theorem 1.18 that (xk) converges since this Theorem is
local, i.e., x0 must be su�ciently close to a root x∗ of (1.2).

Given positive constants κ∗ < 1, κ < 1, and x0 ∈ D, let us consider the following
IGN sequence (xIGNk ) such that

xIGNk+1 = xIGNk + δxIGNk where δxIGNk

solves approximately

JTf (xIGNk )Jf (xIGNk )∆x = −JTf (xIGNk )f(xIGNk ), (1.24)
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using a certain iterative technique based on projection process onto Krylov subspaces
with stopping criterion

‖RIGNk ‖ ≤ κ∗‖JTf (xk)f(xk)‖ where RIGNk := ∇2T (xIGNk )δxIGNk + JTf (xIGNk )f(xIGNk )
(1.25)

then such as stopping criterion is unavaible because the calculation of the residual RGNk
requires knowledge of Qε(x), which is unavailabe for IGN methods. Instead of cal-
culating RIGNk other authors as Lourakis, Manolis and Argyros [56] propose to calcu-
late an approximation rIGNk of RIGNk that does take into account the term Qε(x) in
∇2T (x) = JTf (x)Jf (x) +Qε(x), i.e.,

rIGNk = JTf (xIGNk )Jf (xIGNk )δxIGNk + JTf (xIGNk )f(xIGNk ),

and introduce the following stopping criterion

‖rIGNk ‖ ≤ κ‖JTf (xIGNk )f(xIGNk )‖. (1.26)

Natural questions are:

(Q1) Using the stopping criterion (1.26), does (xIGNk ) converge?,

(Q2) What is the convergence factor of such a sequence?, in the case that it converges.

In this thesis, we propose a new IGN method where our IGN step δxIGNk is computed
using LSQR [65] or LSMR [33] as iterative linear algebra method for appproximately
solving the inner linearized least squares subproblem (1.24) with a new early inner ter-
mination criterion that only depends on cheaply available information, which implies
that stopping criterion (1.25) and stopping criterion (1.26) are valid, and ensures linear
and local convergence of (xIGNk ) to a local solution x∗ of (1.1). Furthermore, we propose
a new damped IGN method based on our new local IGN approach and in the backward
step control theory presented by Potschka [70]. We �nalize this Chapter introducing def-
initions that allow to measure the discrepancy between the IGN method (with sequence
(xk)) and the Newton method.

(1) The contravarinat inner residual relative error

‖R(xk)‖
‖F (xk)‖

=

∥∥[JF (xk)]
[
δxk −∆xNk

]∥∥∥∥[JF (xk)] ∆xNk
∥∥ (1.27)

where JF (x) is positive de�nite, R(xk) = JF (xk)δxk + F (xk) and F (xk) 6= 0.

(2) If there is a functionM : V ⊆ D → GL(n) such that the IGN step can be written as
δxk = −M(xk)J

T
f (xk)f(xk) for all k; and JF (x) is nonsingular in V , the covariant

error matrix with ‖y‖-norm is de�ned as

‖I −M(x)JF (x)‖ for all x ∈ V. (1.28)

(3) The contravariant error matrix with ‖y‖-norm is de�ned as

‖I − JF (x)M(x)‖ for all x ∈ V (1.29)

where M(x) is de�ned in (2) and JF (x) is nonsingular in V .
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(4) The covarinat inner residual relative error

‖M(xk+1)R(xk)‖
‖M(xk)F (xk)‖

(1.30)

where R(xk) is de�ned in (1), M(x) is de�ned in (2) and F (xk) 6= 0.
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Chapter 2

Iterative Linear Algebra for

Parameter Estimation

In this Chapter, we are concerned with the development of e�cient numerical methods
for large-scale nonlinear parameter estimation problems. The state of the art for such
parameter estimation problems is the Gauss-Newton method. We propouse a new inex-
act Gauss-Newton method for numericaly solving such large-scale nonlinear parameter
estimation problems in where the inexact Gauss-Newton step is computed using LSQR
[65] or LSMR [33] as iterative linear algebra method for appproximately solving the inner
linearized least squares subproblems with a new early inner termination criterion that
only depends on cheaply available information. The idea of such an inner termination
criterion is based on the contravariant κ-theory result introduced by Dembo, Stanley,
Eisenstat, and Steihaug [22] and local κ-theory introduced by Potschka [70]. Our new
approach results to be an inexact Gauss-Newton method that guarantees statistically
stable solutions provided that at least one exists.

This chapter is organized as follows, we introduce the most relevant Krylov subspace
numerical solvers for linear systems of equations. Later, we present LSQR and LSMR
Krylov space numerical methods for approximately solving linear least squares problems,
which standard termination rule is based on backward error minimization properties
[17]. It turns out that such a standard termination rule is too conservative for our inexact
Gauss-Newton method since in this setting it is not necessary to have high precision when
we compute our inexact Gauss-Newton step. Instead, it is fundamental control how large
the inner residual generated in our inner linearized subproblem must be in order to ensure
convergence of our IGN sequences (xk). In the last section of this chapter, we introduce
our new inner termination criterion and we study its principal properties.

2.1 Krylov Space Methods for Linear Systems

Let B be a nonsingular symmetric n × n matrix, b ∈ Rn a vector, and consider the
following linear system of equations

B∆x = b. (2.1)

The aims of this section are to survey e�cient numerical methods for solving the above
linear system of equation. When the matrix B is so large-scale where matrix-vector prod-

25



26 Chapter 2. Iterative Linear Algebra for Parameter Estimation

ucts can be evaluated e�ciently, direct factorization methods such as Gaussian elimina-
tion or Cholesky decomposition are computationally expensive, and therefore numerical
methods that depend on this kind of factorization are not a valid choice. Instead, we
are interested in iterative methods for solving (2.1) based on projection process, both
orthogonal and oblique, onto Krylov subspaces.

De�nition 2.1. We de�ne the ith Krylov subspace of (B, b), which is denoted by Ki(B, b),
as

Ki(B, b) := span
{
b, Bb, B2b, · · · , Bi−1b

}
(2.2)

where i is a positive integer.

De�nition 2.2. Let Li be a subspace of Rn with the same dimension as Ki(B, b).
Starting with the initial guess x0 = 0 ∈ Rn, a Krylov method is an iterative method,
which �nds at every iterate i a better approximation δxi ∈ Ki(B, b) of ∆x by imposing
the Petrov-Galerkin condition,

b−Bδxi ⊥ Li

The di�erent versions of Krylov subspace methods arise from di�erent choices of the
subspace Li. We restrict our study to Li := Ki(B, b), and the popular minimum residual
method given by Li := BKi(B, b).

Lemma 2.3. Let B be a positive de�nite matrix. If Li := Ki(B, b) then the following
problems have the same solution,

• Find δxi ∈ Ki(B, b), such that b−Bδxi ⊥ Li.

• δxi = arg min
δx∈Ki(B,b)

‖∆x− δx‖B where ‖y‖B :=
[
yTBy

]1/2
.

Proof: Saad [73, Proposition 5.2].

Lemma 2.4. Let us assume that B is nonsingular. If Li := BKi(B, b) then the following
problems have the same solution,

• Find δxi ∈ Ki(B, b), such that b−Bδxi ⊥ Li.

• δxi = arg min
δx∈Ki(B,b)

‖b−Bδx‖2.

Proof: Saad [73, Proposition 5.3].

The previous Lemmas provide another way to classify our Krylov subspace methods
based on the error and residual properties.
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• Minimum Error Krylov Method

δxi := arg min
δx∈Ki(B,b)

‖∆x− δx‖B

• Minimum Residual Krylov Method

δxi := arg min
δx∈Ki(B,b)

‖b−Bδx‖2

Remark 2.5. Let {v1, · · · , vi} be a basis of Ki(B, b) with i ≤ n, and let us de�ne its
corresponding matrix as Vi = [v1 | v2 | · · · | vi]. If we want to solve approximately (2.1)
using Minimum Error Krylov method then there is a yi ∈ Ri such that δxi = Viyi and

b−BViyi ⊥ Vi

i.e.,

V T
i [b−BViyi] = 0,

which means that yi is the solution of the following system

V T
i BViyi = V T

i b. (2.3)

When B is symmetric and positive de�nite, the spectral decomposition theorem allows
to write the matrix B as follows,

B = QnΛQTn ,

where the diagonal matrix Λ = diag(λ1, · · · , λn) contains the eigenvalues of B, and
Qn = [q1 | · · · | qn] is a orthogonal matrix. If we assume without loss of generality that
{q1, · · · , qi} is a basis of Ki(B, b) then solve (2.3) is equivalent to solve

QTi BQiyi = QTi b

where QTi BQi = Λ is diagonal, it means that the solution of the above system is calculated
with just n steps. On the other hand, constructing a matrix Qi is computationally ex-
pensive. In the following section we are interested in building a computationally cheaper
basis Vi of our Krylov space such that the system (2.3) can be solved e�ciently.

2.1.1 Lanczos Process

When B is a symmetric and positive de�nite matrix, the Lanczos process provides a
recursive formula for building an orthogonal basis {v1, · · · , vi} of Ki(B, b) such that
V T
i BVi is tridiagonal. From the above remark it is clear that this method approximates

the solution of (2.1) through δxi = Viyi where yi solves the tridiagonal system of i ≤ n
equations (2.3). Formally, we present its recursive algorithm in Algorithm 2.1.

Properties:

(LP1) Bvi = βivi−1 + αivi + βi+1vi+1, for all i < n.
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Algorithm 2.1 Lanczos Process

1: v0 := 0, β1 := bT b and β1v1 := b
2: for i = 1, · · · , n− 1 do
3: if βi 6= 0 then
4: pi := Avi, and αi := vTi pi
5: βi+1vi+1 := pi − αivi − βivi−1, where βi+1 serves to normalize vi+1

6: end if

7: end for

(LP2) BVi = [v1 | v2 | · · · | vi−1 | vi]


α1 β2

β2 α2 β3

β3 α3
. . .

. . . . . . βi
βi αi


i×i︸ ︷︷ ︸

Ti

+βi+1vi+1e
T
i , which im-

plies, V T
i BVi = Ti.

(LP3) BVi = Vi+1

 Ti

βi+1e
T
i


(i+1)×i︸ ︷︷ ︸

T i

i.e., BVi = Vi+1T i.

2.1.2 Minimum Error Krylov Method

From (LP1) we obtain V T
i b = β1e1 where e1 ∈ Ri is the canonical vector with �rst entry

one and the rest zero. Using (LP2), the system given by (2.3), i.e.,

Tiyi = β1e1

is tridiagonal. If we apply the Cholesky factorization to the matrix Ti then our iterative
method for solving (2.1) is knowing by LanczosCG method.

2.1.3 Minimum Residual Krylov Method

In this method, the orthogonal basis {v1, · · · , vi} of Ki(B, b) is given by the Lanczos pro-
cess and our approximation solution is given by δxi = Viyi where yi solves the following
linear least squares problem

yi := arg min
y∈Ri
‖b−BViy‖2.

Using the property (LP3) and that Vi+1 is an orthogonal matrix, we have that

yi := arg min
y∈Ri
‖β1e1 − T iy‖2

where e1 ∈ Ri+1 is the canonical vector with its �rst entry one and the rest zero. If we
apply the a QR factorization to the matrix T i then we obtain the popular Krylov space
method MINRES to approximately solve (2.1).
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LanczosCG MINRES

Subproblem Tiyi = β1e1 yi = arg miny∈Ri ‖β1e1 − T iy‖

Factorization Ti = LiDiL
T
i QiT i =

[
Ri
0

]
Estimate δxi = Viyi ∈ Ki(B, b) δxi = Viyi ∈ Ki(B, b)

New basis of the Krylov Spaces Wi = ViL
−T
i Di = ViR

−1
i

New subproblem LiDizi = βie1 Rizi = β1

[
Ii 0

]
Qie1

New estimate δxk δxi = Wizi δxi = Dizi

ith residual min ‖b−Byi‖B−1 min ‖b−Byi‖2

Orthogonality ri⊥Ki(B, b) BT ri⊥Ki(B, b)

ith error min ‖x̂− δxi‖B unknown

Table 2.1: LanczosCG vs MINRES. We resume the principal properties present in both
methods and visualize its di�erences where Vi denote the basis generated by The Lanczos
Process, V T

i BVi = Ti, and BVi = Vi+1T i.

We �nalize this section with a resumme of the principal properties present in the
MINRES and LanczosCG methods, which is presented in Table 2.1. For a deeper study
of the di�erents iterative methods for solving linear equation based on Krylov space, and
its comparative tables, we sugesst Choi's dissertation thesis [20].

2.2 Krylov Space Methods for Solving Least-Squares Prob-
lems

Let J ∈ Rm×n be a matrix with n ≤ m, f ∈ Rn a non zero vector, and let us assume
that J has full rank. We consider the following linear least squares (LS) problem,

∆x := arg min
x∈Rn

‖Jx+ f‖2 (2.4)

In this section, we are interested in the study of computational e�cient iterative
methods based on orthogonal Krylov spaces for solving (2.4). Solving the above linear
LS problem is equivalent to solving the following linear system of equations

JTJ∆x = −JT f (2.5)

The general approach is reduced to �nding a basis Vi of Ki(J
TJ, JT f), and an approxi-

mation δxi = Viyi of the solution ∆x of (2.4) such that

JT [JViyi + f ] ⊥ Vi.

In other words, yi is the solution of the following linear system of equations,

V T
i

[
JTJ

]
Viyi = −V T

i J
T f. (2.6)
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A variant of the Lanczos process with matrix JTJ and starting vector −JT f provides a
way to compute such as basis Vi.

Golub-Kahan bidiagonalization Process

The Golub-Kahan algorithm [37] builds a pair of unitary matrices Ui+1 = [u1 | · · · | ui+1]
and Vi = [v1 | · · · | vi] such that

UTi+1JVi

is a bidiagonal matrix and V T
i

[
JTJ

]
Vi is a tridiagonal matrix. In the following we

introduce its algorithm and later its properties,

Algorithm 2.2 Golub-Kahan bidiagonalization Process

1: β1u1 = −f (shorthand β1 = ‖f‖2 6= 0 and u1 unitary)
2: α1v1 = JTu1

3: for i = 1, · · · do
4: βi+1ui+1 = Jvi − αiui
5: αi+1vi+1 = JTui+1 − βi+1vi
6: end for

Properties:

(GK1) The scalars αi and βi+1 are positive.

(GK2) JVi = Ui+1Bi, where

Bi =


α1

β2 α2

β3
. . .
. . . αi

βi+1


(i+1)×i

(GK3) JTUi+1 = ViB
T
i + αi+1vi+1e

T
i+1, which is equivalent to

JTUi+1 = Vi+1

[
BT
i

αi+1e
T
i+1

]
= Vi+1

[
Bi αi+1ei+1

]T︸ ︷︷ ︸
LTi+1

.

Using (GK2) and (GK3), we conclude

JTJVi = JTUi+1Bi = Vi+1

[
BT
i

αi+1e
T
i+1

]
Bi = Vi+1

[
BT
i Bi

αi+1βi+1e
T
i+1

]
.

From the above equality, it is clear that the Golub-Kahan bidiagonalization process is
equivalent to what would be generated by the Lanczos process applied to the matrix JTJ
and starting vector −JT f , and also that our matrix V T

i

[
JTJ

]
Vi is tridiagonal.

In order to introduce the algorithms that solve approximately our linear least squares
problem (2.4), we need to explain how yi must be calculated. We have two options that
generate two completely di�erent algorithms. First of all, yi solves (2.6) if and only if
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LSQR: yi := arg min
y∈Ri
‖JViy + f‖2.

and the other option is given by the following result: If

LSMR: yi := arg min
y∈Ri
‖JTJViy + JT f‖2.

then yi solve (2.6).

2.2.1 LSQR: Sparse Linear Least Squares Iterative Algorithm Based

on QR-factorization.

LSQR was introduced by C. Paige and M. Saunders, [65], and is a particular orthogonal
Krylov Space method for numerically solving our linear least squares problem (2.4). The
approximate solution is given by δxi = Viyi, where

(i) Vi is a basis of our Krylov space Ki := Ki(J
TJ, JT f) generated by the Golub-

Kahan bidiagonalization process, and

(ii) yi := arg min
y∈Ri

‖JViy + f‖ = arg min
y∈Ri

‖Ui+1 (β1e1 +Biy)︸ ︷︷ ︸
ti+1

‖ = arg min
y∈Ri

‖tk+1‖.

LSQR is similar in style to the LanczosCG method applied to the normal equation (2.5),
and the inner LSQR residuals ri := Jδxi + f are monotonically decreasing.

In the following, we build a new basis Di = {d1, d2, · · · , di} of our Krylov space Ki,
which is easy to compute, and allows to write δxi as a linear combinations of δxi−1 and
di. Applying a QR factorization to the matrix Bi,

Qi [Bi β1e1] =

[
Ri fi
0 φi+1

]
=



ρ1 θ2 φ1

ρ2 θ3 φ2

. . . . . .
ρi−1 θi φi−1

ρi φi
0 0 0 0 0 φi+1


. (2.7)

Then the vector yi is given by,

Riyi = −fi and ti+1 = QTi

[
0

φi+1

]
.

Thereby,
δxi = Viyi = Vi[Ri]

−1fi = Difi,

where the columns of Di := [d1 | d2 | · · · di] can be iteratively calculated from the
system RTi D

T
i = V T

i using forward substitution. In other words, starting from d0 =
δx0 = 0, we can calculate the columns di of Di using the following formula,

di =
1

ρi
(vi − θidi−1)

therefore,
δxi = Viyi = Vi−1yi−1 + φidi = δxi−1 + φidi.
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2.2.2 LSMR: Sparse Linear Least Squares Iterative Algorithm Based

on Double QR-factorization.

This method was introduced by Fong and Saunders [33], and is a particular orthogonal
Krylov Space method for numerically solving our linear least squares problem (2.4). The
approximate solution is given by δxi = Viyi where

(i) Vi is a basis of our Krylov space Ki := Ki(J
TJ, JT f) generated by the Golub-

Kahan bidiagonalization process, and

(ii) yi := arg min
y∈Ri

‖JTJViy + JT f‖ = arg min
y∈Ri

∥∥∥∥Vi+1

[
β1e1 +

[
BT
i Bi

βi+1e
T
i

]
y

]∥∥∥∥, where
βi = αiβi.

LSMR method is equivalent to MINRES method applied to the normal equation (2.5),
and the inner LSMR residuals ‖JT ri‖2 are monotonically decreasing where ri := Jδxi+f .
Furthermore, the stopping criterion using in LSQR and LSMR is obtained from a Back-
ward error analysis, but such a stopping criterion is satis�ed earlier in LSMR than in
LSQR. We go into more detail about such a stopping criterion in Section 2.2.4.

In the following we build a new basis W i = {w1, w2, · · · , wi} of our Krylov space Ki,
which is easy to compute, and allows to write our estimate δxi as a linear combinations
of δxi−1 and wi. Applying a QR factorization to the matrix Bi,

Qi+1Bi =

[
Ri
0

]
, where Ri :=


ρ1 θ2

ρ2 θ3

. . . . . .
ρi−1 θi

ρi

 (2.8)

therefore,

BT
i Bi =

[
RTi 0

]
Qi+1Q

T
i+1

[
Ri
0

]
= RTi Ri.

If we de�ne qi ∈ Ri such that RTi qi = βi+1ei, then qi =
βi+1

ρi
ei = ϕiei, and consequently,

we obtain

yi = arg miny∈Ri

∥∥∥∥Vi+1

[
β1e1 +

[
BT
i Bi

βi+1e
T
i

]
y

]∥∥∥∥
= arg miny∈Ri

∥∥∥∥Vi+1

[
β1e1 +

[
RTi Ri
qTi Ri

]
y

]∥∥∥∥
= arg miny∈Ri

∥∥∥∥Vi+1

[
β1e1 +

[
RTi
ϕie

T
i

]
Riy

]∥∥∥∥ .
Introducing the variable change t = Riy, we simplify the above problem to,

ti := Riyi = arg min
t∈Ri

∥∥∥∥Vi+1

[
β1e1 +

[
RTi
ϕie

T
i

]
t

]∥∥∥∥ .
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Performing a second QR factorization

Qi+1

[
RTi β1e1

ϕie
T
i 0

]
=

[
Ri zi
0 ξi+1

]
, where Ri :=


ρ1 θ2

ρ2
. . .
. . .

θi
ρi

 , (2.9)

we obtain

yi := R−1
i arg min

t∈Ri

∥∥∥∥Vi+1

[
β1e1 +

[
RTi
ϕie

T
i

]
t

]∥∥∥∥ = R−1
i arg min

t∈Ri

∥∥∥∥[ zi
ξi+1

]
+

[
Ri
0

]
t

∥∥∥∥
and this subproblem is solved choosing ti such that,

Riti = −zi where zi := (ξ1, · · · , ξi)T .

Let Wi and W i be computed by forward substitution from

RTi W
T
i = V T

i and R
T
i W

T
i = W T

i . (2.10)

Then from δxi = Viyi, Riyi = ti, and Riti = −zi, and δx0 = 0, we have

δxi = WiRiyi = Witi = W iRiti = −W izi = δxi−1 − ξiwi.

Note that we can compute the elements of our basis W i e�ciently, because from (2.10)
and (2.8), it follows that

wi =
1

ρi
(vi − θiwi−1) where w0 = δx0 = 0,

and from (2.10) and (2.9), it follows

wi =
1

ρi
(wi − θiwi−1) where w0 = 0.

We �nalize this section with the Table 2.2 that compares the principal properties present
in the LSQR and LSMR methods.

2.2.3 Krylov Solvers Based on Backward Error Minimization Proper-

ties

In this Section, we are interested in measuring the backward error introduced in the
left-hand side of (2.5), i.e., JTJ∆x = −JT f when it is solved using LSQR and LSMR.
Let δxi be its approximate solution, ri := Jδxi+f , then the contravariant inner residual
JT ri of δxi satis�es

JTJδxi = −JT f + JT ri.

In the following Lemma, we prove that there is a matrix E such that

J
T
Jδxi = −JT f where J := J + E.

and also that there is a matrix Ẽ, such that,[
JTJ − Ẽ

]
δxi = −JT f.

Those elemental results set up the basis of our consecutive Sections.
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LSQR LSMR

Subproblem yi := arg min
y∈Ri

‖JViy + f‖ yi = arg min
y∈Ri

‖JTJViy + JT f‖

Factorization Qi [Bi β1e1] =

[
Ri fi
0 φi+1

] Qi+1Bi =

[
Ri
0

]

Qi+1

[
RTi β1e1

ϕie
T
i 0

]
=

[
Ri zi
0 ξi+1

]
Estimate δxi = Viyi ∈ Ki(J

TJ, JT f) δxi = Viyi ∈ Ki(J
TJ, JT f)

New subproblem arg miny∈Ri ‖β1e1 +Biy‖ arg miny∈Ri

∥∥∥∥β1e1 +

[
BT
i Bi

βi+1e
T
i

]
y

∥∥∥∥
New basis of Di = ViR

−1
i W i = ViR

−1
i R

−1
i

the Krylov Spaces
Estimate in function δxi = Difi δxi = −W izi
of the new basis
Orthogonality JT ri⊥Ki(J

TJ, JT f) JT ri⊥Ki(J
TJ, JT f)

Table 2.2: LSQR vs LSMR. We resume the principal properties present in both methods
and visualize its di�erences where Vi is a basis of our Krylov space Ki := Ki(J

TJ, JT f)
generated by the Golub-Kahan bidiagonalization process.

Lemma 2.6 (Backward error). Let J ∈ Rm×n be a full rank matrix with n ≤ m, and
assume that JT f 6= 0.

(BE1) If δxi 6= 0 is an approximate solution of (2.5) calculated via LSQR or LSMR with
ri = Jδxi + f , then

J
T
Jδxi = −JT f,

where

J := J + E, and E = −
[Jδxi]

[
JT ri

]T
‖Jδxi‖2

.

(BE2) If Ẽ =

[
JT ri

] [
JTJδxi

]T
‖Jδxi‖2

, δxi is the exact solution of the following problem,

[
JTJ − Ẽ

]
δxi = −JT f.

(BE3) The matrix A = [JTJ ]− Ẽ is invertible, its inverse is

M := A−1 =
[
JTJ

]−1

[
I +

[
JT ri

]
δxTi

‖Jδxi‖2

]
,

and δxi = −MJT f .
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Proof.

(BE1) Since
[
JT ri

]T
δxi = 0, then

J
T
Jδxi =

[
J −

[Jδxi]
[
JT ri

]T
‖Jδxi‖2

]T [
J −

[Jδxi]
[
JT ri

]T
‖Jδxi‖2

]
δxi

=

[
JT −

[
JT ri

]
[Jδxi]

T

‖Jδxi‖2

]
Jδxi

= JTJδxi − JT ri

= −JT f.

(BE2) From the (BE1), it follows that

J
T
Jδxi =

[
JTJ −

[
JT ri

] [
JTJδxi

]T
‖Jδxi‖2

]
δxi = −JT f.

(BE3) Let us de�ne the following matrices

A =

[
JTJ −

[
JT ri

] [
JTJδxi

]T
‖Jδxi‖2

]
and P :=

[
I −

δxi
[
JT ri

]T
‖Jδxi‖2

]
,

then AT =
[
JTJ

]
P and let us prove that P is an invertible matrix. Given u ∈ Ker (P ),

we have by de�nition that

P (u) = u−
δxi
[
JT ri

]T
u

‖Jδxi‖2
= 0,

i.e.,

u =
δxi
[
JT ri

]T
u

‖Jδxi‖2
. (2.11)

Multiplying (2.11) by JT ri, it follows that

[
JT ri

]T
u =

[
JT ri

]T
δxi
[
JT ri

]T
u

‖Jδxi‖2
δxi⊥JT ri= 0,

i.e.,
[
JT ri

]T
u = 0, and substituting the above equality in (2.11), we conclude that u = 0.

Therefore Ker (P ) = {0}, which implies that P is invertible. Consequently, AT and A
are invertible matrices. Because A is invertible, we can apply the Sherman-Morrison-
Woodbury formula, which yields

M := A−1 =
[
JTJ

]−1
+

[
JTJ

]−1 [
JT ri

] [
JTJδxi

]T [
JTJ

]−1

‖Jδxi‖2 − [JTJδxi]
T [JTJ ]−1 [JT ri]

,

where

‖Jδxi‖2 −
[
JTJδxi

]T [
JTJ

]−1 [
JT ri

] δxi⊥JT ri= ‖Jδxi‖2 = δxTi
[
JTJ

]
δxi > 0,
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it means

M =
[
JTJ

]−1

[
I +

[
JT ri

]
δxTi

‖Jδxi‖2

]
,

which complete the proof.

�

2.2.4 Error Estimate

Let δxi be an approximate solution of (2.4) which is computed using LSQR or LSMR.
A variant of the acceptable least squares solution de�nition introduced by Chang, Paige
and Titley-Peloquin [17, Section 2] says that δxi is a v-acceptable least squares solution
if it is the exact solution of a linear least squares problem within an accepted range of
relative errors in the data. In other words, δxi is acceptable if ξ(δxi, ri) < 1 where

ξ(δxi, ri) := min
E

{
‖E‖2
‖JTJ‖2

: [J + E]T [J + E] δxi = − [J + E]T f and ri = Jδxi + f

}
.

It is well known from Golub and Van Loan [38, Section 5.3.7] that the relative error

‖∆x− δxi‖
‖∆x‖

is bounded by a constant that is directly proportional to ξ(δxi, ri). Because, �nding an
analytical expression of ξ(δxi, ri) remains an open question, it was laid down stopping
criteria from easily computable upper bound on ξ(δxi, ri) see for example [33, 65, 17, 46].
The standard stopping criterion used in LSQR and LSQR is derived from the backward
error introduced by Stewart [78], i.e.,

Es =
ri[J

T ri]
T

‖ri‖2
,

which satis�es

[J + Es]
T [J + Es] δxi = − [J + Es]

T f = −JT f + JT ri and ‖Es‖2 =
‖JT ri‖
‖ri‖

.

Therefore,

‖JTJ‖2ξ(δxi, ri) ≤
‖JT ri‖
‖ri‖

.

Thus, from a given ATOL > 0, the standard stopping criterion used in LSQR and LSMR
is provided the approximate solution δxi of ∆x if

Standard Stopping Criterion: ‖JT ri‖ ≤ ATOL‖JTJ‖2‖ri‖ (2.12)

where ‖JTJ‖2 can be estimated.
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2.3 Inexact Gauss-Newton Method Based on LSQR and
LSMR

If we use the inexact Gauss-Newton method for numerically solving the problem (1.1)
where δxk is calculated iteratively using LSQR or LSMR, we note that the stopping
criterion (2.12) is too conservative since in this setting it is not necessary to have a
high precision when we compute our inexact step δxi, but it is rather fundamental to
control the size of the contravarinat inner residual JTf (xk)rk because in the Gauss-Newton
method JTf (xGNk )rGNk = 0 where rGNk = Jf (xGNk )∆xGNk + f(xGNk ).

Using the Lemma 2.6 part (BE3), it follows that there is a matrix M(xk) such that
δxk = −M(xk)J

T
f (xk)f(xk), therefore

JTf (xk)rk = JTf (xk)
[
f(xk)− Jf (xk)M(xk)J

T
f (xk)

]
=
[
I − JTf (xk)Jf (xk)M(xk)

]
JTf (xk)f(xk),

thereby
‖JTf (xk)rk‖ ≤ ‖I − [JTf (xk)Jf (xk)]M(xk)‖‖JTf (xk)f(xk)‖.

If we assume that for all iterates xk

‖I − [JTf (xk)Jf (xk)]M(xk)‖ ≤ α < 1,

then a new possible stopping criterion may be

Stopping Criterion I: ‖JTf (xk)rk‖ ≤ α‖JTf (xk)f(xk)‖. (2.13)

A natural question is: Does the iterate xk+1 = xk + δxk where δxk is computed via
LSQR or LSMR with stopping criterion (2.13) converge to a local solution of (1.1)?, If
the answer is positive, what is the factor of convergence of such a sequence?. A partial
answer is given by Gratton, Lawless and Nichols in [40], but in this case, it is assumed
that

• There is a positive constant β such that

‖Qε(xk)[JTf (xk)Jf (xk)]
−1‖2 ≤ β < 1,

• the forcing sequence (βk) satis�es

0 < βk ≤
β − ‖Qε(xk)[JTf (xk)Jf (xk)]

−1‖
1 + ‖Qε(xk)[JTf (xk)Jf (xk)]−1‖

,

• and the stopping criterion is given by

‖JTf (xk)rk‖ ≤ βk‖JTf (xk)f(xk)‖.

Therefore, it is proved there that the sequence (xk) converges locally and linearly to x∗.
Nevertheless, the forcing sequence (βk) must be very small specially if we have that

β − ‖Qε(xk)[JTf (xk)Jf (xk)]
−1‖ ≈ 0,
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which means that the above stopping criterion is not satis�ed early for iterates that are
not close to solution, since in this cases βk must be fast zero and thus it is required a large
number of inner iteration in order to satisfy such a stooping criterion. But intuitively,
we expect to implement less e�ort in obtained our IGN step when we are in an iterate
far away from the solution. We conjecture that from the stopping criterion (2.13) with
α very close to one it is not possible to prove convergence of our sequence (xk). The
problem is that in such a case the size of the inner residual ‖JTf (xk)rk‖ may be too large
that an extra condition that restricts the behavior of ‖JTf (xk)rk‖ must be taken into
account. In the Gauss-Newton method, we know that JTf (xGNk )rGNk = 0 for all k, but it
does mean that just bounding the contravariant inner relative residual using (2.13), we
obtain convergence when α is close to one.

On the other hand, using the Theorem 1.18 given by Dembo, Stanley, Eisenstat,
and Steihaug [22], we are able to characterize linear and local convergence of inexact
Gauss-Newton sequence (xk) through the following condition

‖∇2T (xk)δxk +∇T (xk)‖ ≤ κ‖∇T (xk)‖ with T (x) =
1

2
‖f(x)‖22 and κ ∈ (0, 1).

But this stopping criterion is not available for IGN method since here

∇2T (xk) = [JTf (xk)Jf (xk)] +Qε(xk)

where Qε(xk) is unavailable for IGN method. In the following, we lay down su�cient
conditions that make possible to conclude the above inequality provided that the Gauss-
Newton method generates locally and linearly convergent sequence, which limit point x∗
is a satistically stable solution of (1.1). We go into more detail about staistically stable
properties in Chapter 4.

Hypotheses

(S1) Let D be convex, open and nonempty set. Giving a positive constant κGN < 1, let
us assume that there is a stationary point x∗ ∈ D of (1.1) such that Jf (x∗) is full
rank and ∥∥∥Qε(x∗) [JTf (x∗)Jf (x∗)

]−1
∥∥∥ < κGN .

(S2) The closure of VκGN is compact and contained in D where VκGN is de�ned in (1.12),
i.e.,

VκGN :=
{
x ∈ D

∣∣∣Jf (x) is full rank and
∥∥∥Qε(x)

[
JTf (x)Jf (x)

]−1
∥∥∥ ≤ κGN < 1

}
.

(S3) Let us choose κ ∈ (κGN , 1). We generate our Inexact Gauss-Newton sequence (xk)
according to xk+1 = xk + δxk where δxk solves via LSQR or LSMR the following
linear problem

JTf (xk)Jf (xk)∆x = −JTf (xk)f(xk) (2.14)

with stopping criterion given by

‖JTf (xk)rk‖ ≤ κ‖JTf (xk)f(xk)‖ − κGN‖[JTf (xk)Jf (xk)]δxk‖ (2.15)

where rk = Jf (xk)δxk + f(xk).
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Theorem 2.7. Let (S1), (S2), and (S3) hold. Then, (xk) converges locally and linearly
to x∗. Moreover, the convergence is linear in the sense that

‖xk+1 − x∗‖∗ ≤ t‖xk − x∗‖∗

where ‖y‖∗ = ‖JF (x∗)y‖∗ and t ∈ (κ, 1).

Proof. Note that from stopping criterion (2.15) it follows that

‖JF (xk)δxk + F (xk)‖ ≤ ‖JTf (xk)rk‖+ ‖Qε(x)[JTf (xk)Jf (xk)]
−1[JTf (xk)Jf (xk)]δxk‖

≤ ‖JTf (xk)rk‖+ κGN‖[JTf (xk)Jf (xk)]δxk‖

≤ κ‖JTf (xk)f(xk)‖

The rest of the proof follows from Theorem 1.18.

�

Computational availability:

• The �rst question that arise is: Is the right side of stopping criterion (2.15) pos-
itive?. We prove in Lemma 2.9 that it is positive for all κ ∈ (κGN , 1), and if
κ = κGN , δxk is the Gauss-Newton step.

• We assume in this thesis that [JTf (xk)Jf (xk)] is large, sparse, and the matrix vec-
tor product [JTf (xk)Jf (xk)]δxk can be evaluated e�ciently. Therefore, the stopping
criterion (2.15) is an inner termination rule that only depends on available infor-
mation if κGN is known. Thereby, our IGN sequences (xk) converges linearly and
locally to an estimate x∗ of xtrue if we choose an initial guess x0 su�ciently close
to x∗.

• A natural question is: How must we choose an initial guess in order to obtain
linear convergence of our IGN sequence using such an IGN approach. Theorem 2.7
does not provide explicitly a set of initial guesses where the linear convergence is
guaranteed. Nevertheless, in Chapter 3, we provide explicitly such a set using the
hybrid Theorem 3.2 for Newton-type method introduced by Potschka [70]. Since
all those results are locally valid and we cannot have at the beginning a good initial
guess, we globalize this local IGN approach in Chapter 6.

We �nalize this Section introducing some results that describe the principal properties
derived from our new stopping criterion (2.15). The �rst one says that stopping criterion
(2.15) implies stopping criterion (2.13), and the second property says that the right side of
our stopping criterion (2.15) is not negative. The last properties are focus on measuring
the discrepancy between the GN and IGN method trough the contravariant error matrix
(1.21), and the contravariant inverse error matrix (1.20).

Lemma 2.8. Let (S1), (S2), and (S3) hold. Then

‖JTf (xk)rk‖ ≤ (κ− κGN )‖JTf (xk)f(xk)‖.
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Proof. Because JTf (xk)rk ⊥ K(JTf (xk)Jf (xk), J
T
f (xk)f(xk)), we obtain that JTf (xk)rk

and JTf (xk)f(xk) are orthogonal vectors. using

JTf (xk)Jf (xk)δxk = −JTf (xk)f(xk) + JTf (xk)rk,

and Pythagorean theorem, it follows that

‖JTf (xk)Jf (xk)δxk‖2 = ‖JTf (xk)f(xk)‖2 + ‖JTf (xk)rk‖2,

i.e., ‖JTf (xk)f(xk)‖ ≤ ‖JTf (xk)Jf (xk)δxk‖, which implies

‖JTf (xk)rk‖+ κGN‖JTf (xk)f(xk)‖ ≤ ‖JTf (xk)rk‖+ κGN‖JTf (xk)Jf (xk)δxk‖
(2.15)

≤ κ‖JTf (xk)f(xk)‖.

�

Lemma 2.9. Let (S1), (S2) , and (S3) hold. Then

0 ≤ RS = κ‖JTf (xk)f(xk)‖ − κGN‖[JTf (xk)Jf (xk)]δxk‖.

Furthermore, the equality of the above expression is only possible if κ = κGN .

Proof. Since JTf (xk)Jf (xk)δxk = −JTf (xk)f(xk) + JTf (xk)rk and using the triangle
inequality, it follows

‖JTf (xk)Jf (xk)δxk‖ ≤ ‖JTf (xk)f(xk)‖+ ‖JTf (xk)rk‖,

Lemma 2.8 yields,

‖JTf (xk)Jf (xk)δxk‖ ≤ ‖JTf (xk)f(xk)‖+ ‖JTf (xk)rk‖
≤ [1 + (κ− κGN )]‖JTf (xk)f(xk)‖.

Therefore,

−κGN‖JTf (xk)Jf (xk)δxk‖ ≥ −κGN [1 + (κ− κGN )]‖JTf (xk)f(xk)‖,

which implies,

RS ≥ [κ− κGN [1 + (κ− κGN )]] ‖JTf (xk)f(xk)‖
= (κ− κGN )(1− κGN )‖JTf (xk)f(xk)‖,

i.e., RS > 0 if κ ∈ (κGN , 1). If κ = κGN , Lemma 2.8 guaranties that JTf (xk)rk = 0 and
consequently, we have

JTf (xk)Jf (xk)δxk = −JTf (xk)f(xk) + JTf (xk)rk = −JTf (xk)f(xk),

i.e., RS = 0.

�
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Lemma 2.10. Let (S1), (S2) , and (S3) hold. Then

‖I −
[
JTf (xk)Jf (xk)

]
M(xk)‖ ≤ (κ− κGN )cond([JTf (xk)Jf (xk)])

for all k ∈ N.

Proof. From the Lemma 2.6 part (BE3), we obtain that

M(xk) =
[
JTf (xk)Jf (xk)

]−1

I +

[
JTf (xk)rk

]
δxTk

‖Jf (xk)δxk‖2

 (2.16)

therefore,

‖I −
[
JTf (xk)Jf (xk)

]
M(xk)‖ ≤

‖JTf (xk)rk‖
‖δxk‖

δxTk δxk

δxTk

[
JTf (xk)Jf (xk)

]
δxk

. (2.17)

Let λm and λM be the smallest and the biggest eigenvalue of
[
JTf (xk)Jf (xk)

]
respec-

tively, then

λm ≤
δxTk

[
JTf (xk)Jf (xk)

]
δxk

δxTk δxk
≤ λM

i.e.,

δxTk δxk

δxTk

[
JTf (xk)Jf (xk)

]
δxk
≤ 1

λm
= ρ

([
JTf (xk)Jf (xk)

]−1
)
≤ ‖

[
JTf (xk)Jf (xk)

]−1 ‖.

(2.18)
From Lemma 2.8, it follows that ‖JTf (xk)rk‖ ≤ (κ− κGN )‖JTf (xk)f(xk)‖. Using the

above information, we conclude

‖JTf (xk)rk‖
‖δxk‖

≤ (κ− κGN )
‖JTf (xk)f(xk)‖
‖δxk‖

≤ (κ− κGN )
∥∥∥[JTf (xk)Jf (xk)

]∥∥∥ ‖JTf (xk)f(xk)‖∥∥∥[JTf (xk)Jf (xk)
]∥∥∥ ‖δxk‖

≤ (κ− κGN )
∥∥∥[JTf (xk)Jf (xk)

]∥∥∥ ‖JTf (xk)f(xk)‖∥∥∥[JTf (xk)Jf (xk)
]
δxk

∥∥∥ .
(2.19)

By hypotheses T Tf (xk)rk ⊥ K(JTf (xk)Jf (xk), J
T
f (xk)f(xk)), in particular T Tf (xk)rk ⊥

JTf (xk)f(xk) and because

JTf (xk)Jf (xk)δxk = −JTf (xk)f(xk) + JTf (xk)rk,

we can apply the Pythagorean theorem, which yields

‖JTf (xk)Jf (xk)δxk‖2 = ‖JTf (xk)f(xk)‖2 + ‖JTf (xk)ri‖2.
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Therefore ‖JTf (xk)f(xk)‖ ≤ ‖JTf (xk)Jf (xk)δxk‖, which means

‖JTf (xk)f(xk)‖∥∥∥[JTf (xk)Jf (xk)
]
δxk

∥∥∥ ≤ 1.

Substituting the above information in (2.19), we have

‖JTf (xk)rk‖
‖δxk‖

≤ (κ− κGN )
∥∥[JTf (xk)Jf (xk)

]∥∥ . (2.20)

Substituting (2.18) and (2.20) in (2.17), we obtain the result.

�

Lemma 2.11. Let (S1), (S2) , and (S3) hold. De�ning A(xk) := [M(xk)]
−1, we obtain

A(xk) =

I −
[
JTf (xk)rk

]
δxTk

‖Jf (xk)δxk‖2

 [JTf (xk)Jf (xk)
]
,

and
‖I −A(xk)

[
JTf (xk)Jf (xk)

]−1 ‖ ≤ (κ− κGN )cond([JTf (xk)Jf (xk)]).

Proof. We prove in Lemma 2.6 part (BE3) that

A(xk) =

I −
[
JTf (xk)rk

]
δxTk

‖Jf (xk)δxk‖2

 [JTf (xk)Jf (xk)
]
,

therefore,

I −A(xk)
[
JTf (xk)Jf (xk)

]
=

[
JTf (xk)rk

]
δxTk

‖Jf (xk)δxk‖2
.

The rest of the proof follows analogy to Lemma 2.11.

�



Chapter 3

Di�erent κ-Theories

In this Section, we are interested in measuring and bounding the discrepancy between
our new local IGN approach (S3) and Newton method. Furthermore, we want to in-
terpreted the meaning of such a results. Our IGN approach assumes two contravarinat
hypotheses. The �srt one is that the contravariant error matrix (1.17) introduced by the
GN method is bounded by a positive constant κGN < 1 and the other one is related to
our new stopping criterion (2.15), which implies that the contravariant inner residual rel-
ative error (1.27) generated by our IGN method is bounded by a constant less than one.
An important question is: Why does we obtain local and linear convergence with our
contravariant IGN method?. Typically, contravariant methods ensure faster convergence
of the IGN residual sequence, but not of IGN sequence. The answer is that our IGN
method is essentially a locally covariant approach. In order to justify this a�rmation, we
prove in this Chapter that in a vicinity of a stationary point of the nonlinear least squares
problem (1.1) the following are valid: If the contravariant error matrix (1.17) introduced
by GN method is bounded by κGN , then there is a certain ‖y‖∗-norm such that the
covarinat error matrix introduced by GN method (1.16) with ‖y‖∗-norm is also bounded
by a constant less than one; and if the covarinat error matrix introduced by GN method
(1.16) with euclidean norm is bounded by a constant less than one, then there is a certain
‖ · ‖?-norm such that the contravarinat error matrix introduced by GN method (1.17)
with ‖y‖?-norm is also bounded by a constant less than one. This result say that our �rst
hypothesis is essentially a covariant hypothesis with ‖y‖∗-norm. Furthermore, controlling
the discrepancy between the IGN method and the GN method, we prove that our new
stopping criterion de�ned in (2.15) ensures that the contravariant inner residual relative
error (1.27) and the covariant inner relative error with ‖y‖∗-norm (1.30) are bounded by
a constant less than one. Thus, we can also say that our stopping criterion is essentially a
covariant stopping criterion with ‖y‖∗-norm. In this sense, our IGN approach is a covari-
ant approach with ‖y‖∗-norm. Those results allow also to proof that the hypotheses with
norm ‖y‖∗-norm of the famous local covariant contraction Theorem presented by Bock
[10] for our IGN method are valid. Thus, with our IGN approach, we are able to produce
a class of locally and linearly convergent IGN residual sequences with euclidean norm,
and also produce a class of locally and linearly convergent IGN sequence with ‖y‖∗-norm.

We organize this Chapter as follows: In the �rst Section, we presented the covariant
local contraction Theorem for Newton-type method of Bock [10] and the hybrid Theorem
for Newton-type method of Potschka [70]. Therefore, we prove locally that there is a
relation between the covariant error matrix with ‖y‖-norm introduced by Newton-type

43



44 Chapter 3. Di�erent κ-Theories

method and the contravariant error matrix with ‖y‖∗-norm introduced by Newton-type
method. In the second Section, we are focus on our new IGN method, we prove that
the discrepancy between our IGN method and GN method are bounded. Furthermore,
we present a result that explain how the inaccuracy of our IGN method with respect to
GN method in�uences the convergence factor of our IGN sequence. Finally, we discuss
brie�y when our IGN method implies that the hypotheses of the contravariant contraction
Theorem of Bock with ‖y‖∗-norm are valid.

3.1 A�ne Covariant and Hybrid Convergence Theory for
Newton-type method

In this secction, we work just with Newton-type method in where we assume that
F : D ⊂ Rn → Rn is a continuously di�erentiable function with invertible Jacobian
JF (x) andM(x) is a function that may be interpreted as an approximation of [JF (x)]−1,
and de�nes our Newton-type method (see (1.22)). The following Theorem is a variant
of the a�ne covariant Newton-Mysovskikh Theorem 1.9, which controls how large the
covarinat inner residual relative error of our Newton-type sequence must be in order to
guarantee local and linear convergence. Let us de�ne

N :=
{

(x, x′) ∈ D ×D | x′ = x−M(x)F (x)
}

and consider the following condition

(i) Covariant Lipschitz condition. There is a positive and �nite constant ω̃ such
that

‖M(x′)
[
JF (x+ t(x′ − x))− JF (x)

]
(x′ − x)‖ ≤ ω̃t‖(x′ − x)‖2

for all t ∈ [0, 1] and (x, x′) ∈ N .

(ii) κ̃-covariant condition. There is a positive constant κ̃ < 1 such that

‖M(x′) [I− JF (x)M(x)]F (x)‖ ≤ κ̃‖(x′ − x)‖

for all (x, x′) ∈ N .

(iii) The initial guess x0 ∈ D is su�ciently close to a solution in the sense that

c̃0 := κ̃ +
ω̃

2
‖δx0‖ < 1 and the closed ball D0 := B

(
x0;

‖δx0‖
1− c̃0

)
⊆ D. Further-

more, we de�ne c̃k = κ̃+
ω̃

2
‖δxk‖.

Theorem 3.1 (Covariant). If (i), (ii) and (iii) hold then the Newton-type sequence (xk),
which is de�ned in (1.22), satis�es the following

• xk ∈ D0, for all k ∈ N and the sequence (xk) converges to some x∗ ∈ D0 with a
convergence rate

‖δxk+1‖ ≤ c̃k‖δxk‖

• Furthermore, the a-priori estimate

‖xj+k − x∗‖ ≤
(c̃k)

j

1− c̃k
‖δxk‖ ≤

(c̃0)j+k

1− c̃0
‖δx0‖

holds and the limit x∗ satis�es

M(x∗)F (x∗) = 0.
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Proof. Bock [10].

�

In the following, we present the hybrid Theorem of Potschka [70] for Newton-type residual
method.

Theorem 3.2 (Hybrid). Let us assume that the following are valid

(1) Hybrid Lipschitz condition. There is a positive and �nite constant ω such that

‖
[
JF (x+ t(x′ − x))− JF (x)

]
(x′ − x)‖ ≤ ωt‖(x′ − x)‖‖F (xk)‖

for all t ∈ [0, 1] and (x, x′) ∈ N .

(2) κ-contravariant condition. There is a positive constant κ < 1 such that

‖ [I− JF (x)M(x)]F (x)‖ ≤ κ‖F (x)‖.

for all (x, x′) ∈ N .

(3) The initial guess x0 ∈ D is su�ciently close to a solution in the sense that

x0 ∈ L := {x ∈ D | ω‖M(x)F (x)‖ ≤ 2(1− κ)} .

Then, the residual sequence (F (xk)) where (xk) is the Newton-type sequence de�ned in
(1.22) converges to zero with convergence rate

‖F (xk+1)‖ ≤
[
κ+

ω

2
‖δxk‖

]
‖F (xk)‖,

and (F (xk)) ⊂ L.

�

Of course, the above Theorems are not the only Theorems that determine how large
the discrepancy between the Newton method and the Newton-type method must be
in order to guarantee local convergence. Indeed, the κ-theory is dedicated to provide
κ-condition that controls the error produced by the Newton-type method. Particular
examples are:

• Ostrowski κ-Theorem [64, Section 10.2.1] that controls how large must be the espec-
tral radius of the contravariant error matrix or the espectral radius of the covariant
error matrix, and concludes local convergence of the Newton-type sequence with
root factor of convergence.

• Dennis κ-Theorem [24, Theorem 1] that controls how large must be the contravari-
ant error matrix with ‖y‖-norm, and conclude local and linear convergence of the
Newton-type sequence.

• Dembo, Stanley, Eisenstat, and Steihaug [22] κ-Theorem that controls how large
must be the contravariant inner residual relative error with ‖y‖-norm, and con-
cludes local and linear convergence of the Newton-type sequence with a particular
‖y‖∗-norm instead of ‖y‖-norm.
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A natural question for our IGN approach is: how does the inexactness of our IGN
method with respect to GN method in�uence the convergence factor of our IGN se-
quence?. We answer this question for our IGN approach described in (S3) in the follow-
ing Section, and prove that with certain ‖y‖∗-norm such a convergence factor depends on
the constant κGN and κ using in our new stopping criterion (2.15). We �nalize this Sec-
tion setting out a connection between the κ-covariant condition based on the covariant
matrix error and κ-contravariant condition based on the contravariant matrix error.

Lemma 3.3. Let x∗ ∈ D be a root of F (x). Let us consider that the both functions JF (x)
and M(x) are continuous at x∗, and that JF (x) is nonsingular at x∗.

(i) Covariant condition: Let us de�ne the following norm ‖y‖? := ‖ [JF (x∗)]
−1 y‖ .

If ‖I −M(x∗)JF (x∗)‖ < κ < 1, then for all δ ∈ (0, 1− κ) there is a vicinity Vδ of
x∗ that satis�es

‖I − JF (x)M(x)‖? ≤ κ+ δ < 1 and ‖I −M(x)JF (x)‖ ≤ κ+ δ < 1

for all x ∈ Vδ where ‖A‖? = sup
‖Ax‖?
‖x‖?

. Furthermore, M(x) and JF (x) are non-

singular in Vδ.

(ii) Reciprocally, contravariant condition: Let us de�ne the following norm ‖y‖∗ =
‖ [JF (x∗)] y‖. If ‖I − JF (x∗)M(x∗)‖ < κ < 1, then for all δ ∈ (0, 1− κ) there is a
vicinity Vδ of x∗ which satis�es

‖I −M(x)JF (x)‖∗ < κ+ δ < 1 and ‖I − JF (x)M(x)‖ ≤ κ+ δ < 1

for all x ∈ Vδ, where ‖A‖∗ =
‖Ax‖∗
‖x‖∗

. Furthermore, M(x) and JF (x) are nonsin-

gular in Vδ.

Proof. Because JF (x) is nonsingular at x∗, we obtain

Part (i) ‖ [JF (x∗)]
−1 [I − JF (x∗)M(x∗)] [JF (x∗)] ‖ = ‖I −M(x∗)JF (x∗)‖ < κ < 1,

Part (ii) ‖ [JF (x∗)] [I −M(x∗)JF (x∗)] [JF (x∗)]
−1 ‖ = ‖I − JF (x∗)M(x∗)‖ < κ < 1.

Given δ ∈ (0, 1 − κ), it follows by continuity of JF (x) and M(x) at x∗ that there is a
vicinity Vδ of x∗ such that JF (x) is nonsingular in Vδ,

Part (i)‖I −M(x)JF (x)‖ ≤ κ+ δ < 1

Part (ii) ‖I − JF (x)M(x)‖ ≤ κ+ δ < 1,

in Vδ, furthermore,

Part (i) ‖ [JF (x∗)]
−1 [I − JF (x)M(x)] [JF (x∗)] ‖ ≤ κ+ δ < 1,

Part (ii) ‖ [JF (x∗)] [I −M(x)JF (x)] [JF (x∗)]
−1 ‖ ≤ κ+ δ < 1.

From the above inequalities we obtain the result because the following are valid

Part (i) ‖A‖? = sup
‖Ax‖?
‖x‖?

= sup
‖ [JF (x∗)]

−1A [JF (x∗)] [JF (x∗)]
−1 x‖

‖ [JF (x∗)]
−1 x‖
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= ‖ [JF (x∗)]
−1A [JF (x∗)] ‖,

Part (ii) ‖A‖∗ = sup
‖Ax‖∗
‖x‖∗

= sup
‖ [JF (x∗)]A [JF (x∗)]

−1 [JF (x∗)]x‖
‖ [JF (x∗)]x‖

= ‖ [JF (x∗)]A [JF (x∗)]
−1 ‖.

There is just a point that we need to clarify: IsM(x) nonsingular in Vδ?. The answer
is positive, we prove just Part (i). Proof by contradiction: Let us assume that M(x) is
singular in Part (i), then there is a v ∈ Vδ such that Kern(M(v)) 6= 0. Let us choose
w ∈ Kern(M(v)), then

‖w‖ = ‖[I − JF (v)M(v)]w‖ ≤ (κ+ δ)‖w‖ < ‖w‖,

which is a contradiction.

�

3.2 Relation between Covariant and Contravariant Gauss-
Newton Type method

Let us assume that (S1) is valid and consider the set VκGN de�ned in (1.12). Given a
positive constant κ ∈ (κGN , 1), we say that a Newton-type method for solving (1.2) is a
Gauss-Newton type method if there is a function M : VκGN → GL(n) continuous at x∗
such that

‖I − JF (x)M(x)‖ ≤ κ for all x ∈ VκGN , (3.1)

and the GN-type sequence is de�ning by

xk+1 = xk + δxk where δxk = −M(xk)F (xk) (3.2)

where x0 ∈ VκGN .

Relation between contravariant and covariant GN-type approach

Note that the above GN-type method controls how large must be the contravariant matrix
error de�ned in (3.1), and also

‖Qε(x)[JTf (x)Jf (x)]−1‖ = ‖I − JF (x)[JTf (x)Jf (x)]−1‖ ≤ κGN for all x ∈ VκGN ,

which means using Proposition 1.6 that JF (x) is invertible for all x ∈ VκGN , in particular
at x∗. Lemma 3.3 ensures that there is a neighborhood Vδ ⊂ VκGN of x∗ such that
GN-type method controls also how large the following covariant matrix errors must be

‖I−M(x)JF (x)‖∗ ≤ κ+δ < 1 and ‖[JTf (x)Jf (x)]−1Qε(x)‖∗ ≤ κGN+δ < 1 for all x ∈ Vδ
(3.3)

where ‖A‖∗ is de�ned in Lemma 3.3.

Reciprocally, let us de�ne

VκGN :=
{
x ∈ D

∣∣∣Jf (x) is full rank and
∥∥∥[JTf (x)Jf (x)

]−1
Qε(x)

∥∥∥ ≤ κGN < 1
}
.
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and assume that x∗ ∈ VκGN . If we de�ne our GN-type method based on controlling the
following covariant matrix error

‖I −M(x)JF (x)‖ ≤ κ < 1 for all x ∈ VκGN , (3.4)

where M(x) is continuous at x∗ and x0 ∈ VκGN , we can also conclude using Lemma
3.3 that the following contravariant matrix errors with ‖y‖?-norm are bounded in a
neighborhood Vδ ⊂ VκGN of x∗

‖I−JF (x)M(x)‖? ≤ κ+δ < 1 and ‖Qε(x)[JTf (x)Jf (x)]−1‖? ≤ κGN+δ < 1 for all x ∈ Vδ
(3.5)

where ‖A‖? is de�ned in Lemma 3.3.

Theorem 3.4. The following are valid:

• If x∗ ∈ VκGN then there is a neighborhood Vδ ⊂ VκGN of x∗ such that GN-type
methods based on controlling contravariant matrix error with ‖y‖-norm (3.1) are
also GN-type methods based on controlling covariant matrix errors with ‖y‖∗-norm
(3.3).

• If x∗ ∈ VκGN then there is a neighborhood Vδ ⊂ VκGN of x∗ such that GN-type
methods based on controlling covariant matrix error with ‖y‖-norm (3.4) are also
GN-type methods based on controlling contravariant matrix errors with ‖y‖?-norm
(3.5).

�

Relation between GN-type method and our IGN approach

Let (S1), (S2), and (S3) hold. Then

(i) The following contravariant matrix error with ‖y‖-norm is bounded by κGN

‖Qε(x)[JTf (x)Jf (x)]−1‖ = ‖I − JF (x)[JTf (x)Jf (x)]−1‖ ≤ κGN for all x ∈ VκGN .

(ii) Our IGN sequence (xk) ⊂ VκGN satis�es

‖JTf (xk) [Jf (xk)δxk + F (xk)] ‖ ≤ κ‖F (xk)‖ − κGN‖[JTf (xk)Jf (xk)]δxk‖,

which implies that the following contravariant inner residual error is bounded by κ

‖JF (xk)δxk + F (xk)‖ ≤ κ‖F (xk)‖. (3.6)

Therefore, from Theorem 3.4, it follows that hypothesis (i) implies that the covariant
error matrix with norm ‖y‖∗-norm (1.17) is bounded by a constant less than one. Hy-
pothesis (ii) says that our new stopping criterion implies (3.6), we would like to conclude
locally that the following

‖M(xk+1) [JF (xk)δxk + F (xk)] ‖∗ ≤ κ̃‖M(xk)F (xk)‖∗ with κ̃ < 1 (3.7)

is also valid for all k. We prove in the following Section that it is possible to conclude
the above relation (3.7) from hypotheses (i) and (ii).
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3.3 Inexact Gauss-Newton Contravariant Convergence The-
ory

Let (S1), (S2), and (S3) hold. In this Section, we present a new Theorem for our IGN
method that guarantees linear and local convergence of our IGN sequence (xk). We mea-
sure and bound the discrepancy between our new IGN approach and the GN method
through the covariant inner residual relative error (1.18), the contravarinat inner residual
relative error (1.19), the contravariant inverse error matrix (1.20), and the contravari-
ant error matrix (1.21). We present a result that explain how the inaccuracy of our
IGN method with respect to GN method in�uences the convergence factor of our IGN
sequence. De�ning

‖y‖∗ :=
∥∥[JTf (x∗)Jf (x∗)

]
y
∥∥ ,

we explain when our new stopping criterion (2.15) implies that the covariant inner relative
error with ‖y‖∗-norm (1.30) is bounded by a constant less than one. Finally, we discuss
brie�y when our IGN method implies that the hypotheses with ‖y‖∗-norm of the covari-
ant local contraction Theorem of Bock are valid for our IGN sequence (xk). We start the
analysis proving the existence of a function Mκ(x) such that δxk = −Mκ(x)F (x).

Lemma 3.5 (De�ning Mκ(x)). Let (S1), (S2) and (S3) hold. We de�ne the function
g : VκGN ⊂ D → Rn as follows: for all x ∈ VκGN , g(x) solves via LSQR or LSMR the
following linear problem

JTf (x)Jf (x)∆x = −JTf (x)f(x) (3.8)

with stopping criterion

‖JTf (x)r(x)‖ ≤ κ‖JTf (x)f(x)‖ − κGN‖[JTf (x)Jf (x)]g(x)‖ (3.9)

where r(x) = Jf (x)g(x) + f(x). Let us consider the function Mκ : VκGN ⊂ D → GL(Rn)
such that

Mκ(x) =



[
JTf (x)Jf (x)

]−1

I +

[
JTf (x)r(x)

]
g(x)T

‖Jf (x)g(x)‖2

 if ‖JTf (x)f(x)‖ 6= 0

[JTf (x)Jf (x)]−1 if ‖JTf (x)f(x)‖ = 0

Then, Mκ(x) is well de�ned, invertible with Aκ(x) = [Mκ(x)]−1, δxk = −Mκ(xk)F (xk)
for all k ∈ N, and the following are valid,

The contravariant error matrix with ‖y‖-norm
‖I −

[
JTf (x)Jf (x)

]
Mκ(x)‖ ≤ (κ− κGN )cond([JTf (x)Jf (x)]), and

(3.10)

The contravariant inverse error matrix with ‖y‖-norm
‖I −Aκ(x)

[
JTf (x)Jf (x)

]−1
‖ ≤ (κ− κGN )cond([JTf (x)Jf (x)]).

(3.11)
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Proof. Lemma 2.10, and Lemma 2.11.

�

Remark 3.6. Mκ(x) is bounded in VκGN .
Proof. Let us de�ne

K = max
x∈V κGN

‖[JTf (x)Jf (x)]−1‖ < +∞ and K = max
x∈V κGN

‖[JTf (x)Jf (x)]‖ < +∞.

Using the Lemma 3.5 part (3.10), we obtain

M := sup
x∈V κGN

‖M(x)‖

≤ sup
x∈V κGN

[
(κ− κGN )cond([JTf (x)Jf (x)]) + 1

]
‖[JTf (x)Jf (x)]−1‖

≤
[
(κ− κGN )KK + 1

]
K.

�

Lemma 3.7. Let (S1), (S2), and (S3) hold. The function g(x) = −Mκ(x)F (x) de�ned
in the above Lemma is continuous at x∗.

Proof. Here, we need to show that for all sequence (xk) ⊂ VκGN that converges to
x∗, we have that

lim
k→∞

g(xk) = g(x∗) =
[
JTf (x∗)Jf (x∗)

]−1
F (x∗) = 0.

From Lemma 2.8 and construction of g(x) it follows

‖JTf (x)r(x)‖ = ‖
[
JTf (x)Jf (x)

]
g(x) + F (x)‖ ≤ (κ− κGN )‖F (x)‖.

Given (xk) ⊂ VκGN such that (xk) converges to x∗, we have by the above inequality that
(JTf (xk)r(xk)) converges to zero. By construction of g(x) we obtain that[

JTf (xk)Jf (xk)
]
g(xk) + F (xk) = JTf (xk)r(xk).

Thus,
g(xk) =

[
JTf (xk)Jf (xk)

]−1
JTf (xk)r(xk)−

[
JTf (xk)Jf (xk)

]−1
F (xk),

which implies that g(xk) converges to zero, i.e., g(x) is continuous at x∗.

�

Remark 3.8. Since g(x) de�ned in Lemma 3.5 is continuous at x∗ and g(x∗) = 0 then
there is a δ∗ such that

g(x) = −Mκ(x)F (x) ∈ VκGN for all x ∈ B(x∗, δ∗) ⊂ VκGN , (3.12)

and x∗ is the only root of F (x) in B(x∗, δ∗).

�
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Lemma 3.9. Let (S1) holds. For all δ ∈ (0, 1−κGN ) there is a neighborhood Vδ ⊆ VκGN
of x∗ such that for all x ∈ Vδ the following are valid

The contravariant error matrix (1.17) introduced by GN method:∥∥∥Qε[JTf (x)Jf (x)]−1
∥∥∥ =

∥∥∥I − JF (x)[JTf (x)Jf (x)]−1
∥∥∥ ≤ κGN + δ < 1, and

The covariant error matrix (1.16) introduced by GN method:∥∥∥[JTf (x)Jf (x)]−1Qε(x)
∥∥∥
∗

=
∥∥∥I − [JTf (x)Jf (x)]−1JF (x)

∥∥∥
∗
≤ κGN + δ < 1,

(3.13)

where ‖y‖∗ =
∥∥∥[JTf (x∗)Jf (x∗)]y

∥∥∥ and ‖A‖∗ = sup
‖Av‖∗
‖y‖∗

.

Proof. Analogous to Lemma 3.3.

�

Remark 3.10. The above Lemma says that our hypothesis (S1) is essentially a covariant
hypothesis with ‖y‖∗-norm.

�

Lemma 3.11. Let (S1), (S2), and (S3) hold. Then, for all x ∈ VκGN we have

‖I − JF (x)Mκ(x)‖ ≤ κGN + (1 + κGN )(k − κGN )cond
(
[JTf (x)Jf (x)]

)
.

Proof.

I − JF (x)Mκ(x) = I − [JTf (x)Jf (x)]Mκ(x) +Qε(x)Mκ(x)

= I − [JTf (x)Jf (x)]Mκ(x) +Qε(x)[JTf (x)Jf (x)]−1[JTf (x)Jf (x)]Mκ(x).

The result follows from Lemma 3.5.

�

Remark 3.12. Let us de�ne

κ̃ := κGN + (1 + κGN )(k − κGN )cond
(
[JTf (x∗)Jf (x∗)]

)
.

If κ̃ < 1, from the above Lemma there is a positive constant δ and a neighborhood Vδ ⊂
VκGN of x∗ such that

‖I − JF (x)Mκ(x)‖ ≤ κ̃+ δ < 1

for all x ∈ Vδ. Because Mκ(x) is not continuous at x∗, we cannot conclude using an
argument analogous to Theorem 3.3 that

‖I −Mκ(x)JF (x)‖∗ ≤ κ̃+ δ < 1 in Vδ.

�

Lemma 3.13. If (S1), (S2), and (S3) hold, then there is a positive constant ω such that

‖ [JF (x+ tg(x))− JF (x)]Mκ(x)F (x)‖ ≤ ωt‖g(x)‖‖F (x)‖

for all t ∈ [0, 1], x ∈ VκGN , and g(x) ∈ VκGN .
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Proof. From hypothesis JF (x) is continuous and the closure of VκGN is compact then
JF (x) is Lipschitz with Lipschitz constant ω̃. Thus,

‖JF (x− tMκ(x)F (x))− JF (x)‖ ≤ tω‖Mκ(x)F (x)‖

if x and Mκ(x)F (x) are in x ∈ VκGN . Therefore,

‖ [JF (x− tMκ(x)F (x))− JF (x)]Mκ(x)F (x)‖ ≤ tω‖Mκ(x)F (x)‖M‖F (x)‖

de�ning ω := ω̃M , we obtain the result.

�

Theorem 3.14. Let (S1), (S2), and (S3) hold, and let us de�ne

L :=
{
x ∈ ∩ ∈ B(x∗, δ∗)

∣∣ ωM‖F (x)‖ < 2(1− κ)
}
⊂ VκGN (3.14)

where M is de�ned in Remark 3.6, B(x∗, δ∗) in Remark 3.8, and ω in Lemma 3.13. We
obtain that the following are valid.

(i) Contravariant result: If x0 ∈ L then the IGN sequence (xk) stays in L and the
IGN residual sequence (F (xk)) converges to zero. Furthermore,

‖F (xk+1)‖ ≤
[
κ+

ω

2
‖δxk‖

]
‖F (xk)‖. (3.15)

(ii) Linear-result. Let us choose x0 ∈ L such that c0 := κ +
ω

2
M‖F (x0)‖ < 1,

and B0 := B

(
x0,

M‖F (x0)‖
1− c0

)
⊂ L. Then, the IGN sequence (xk) stays in B0.

Furthermore, (xk) converges to x∗ with linear convergence factor and

‖xk − x∗‖ ≤M (c0)k
‖F (x0)‖
1− c0

. (3.16)

(iii) Covariant result with ‖ · ‖∗-norm. There is an κ ∈ (κGN , 1) such that for all
κ ∈ (κGN , κ) there is a vicinity Vκ ⊂ L of x∗ that satis�es the following

(R1) For all x0 ∈ Vκ the correspondent IGN sequence (xk) stays in B0. Further-
more, (xk) converges to x∗.

(R2) Descent argument. We obtain

‖δxk+1‖∗ ≤ c̃(xk)‖δxk‖∗ for all k ∈ N, (3.17)

where
‖y‖∗ :=

∥∥∥[JTf (x∗)Jf (x∗)
]
y
∥∥∥ ,

ρ∗ :=

∥∥∥∥[JTf (x∗)Jf (x∗)
]−1
∥∥∥∥ ,

µ∗ :=

∥∥∥∥[JTf (x∗)Jf (x∗)
]−1
∥∥∥∥∥∥∥[JTf (x∗)Jf (x∗)

]∥∥∥ .
and

c̃(xk) := (1 + 2(κ− κGN )µ∗)
4
[
κ+

ωρ∗
2
‖δxk‖∗

]
< 1.



3.3 Inexact Gauss-Newton Contravariant Convergence Theory 53

(R3) a-priori estimate:

‖xk+j − x∗‖∗ ≤
(c̃(xk))

j

1− c̃(xk)
‖δxk‖∗ ≤

(c(x0))k+j

1− c(x0)
‖δx0‖∗

Proof. (i) Note that

F (xk + tkδxk) = F (xk) +

∫ tk

0
J(xk + tδxk)δxkdt.

therefore,

‖F (xk + tkδxk)‖ ≤ ‖F (xk) + tkJF (xk)δxk‖+

∫ tk

0
‖ [J(xk + tδxk)− JF (xk)] δxk‖dt

≤ (1− tk)‖F (xk)‖+ ‖tkF (xk) + tkJF (xk)δxk‖+

∫ tk

0
ωt‖δxk‖‖F (xk)‖dt

≤ (1− tk)‖F (xk)‖+ tkκ‖F (xk)‖+ ω
t2k
2
‖δxk‖‖F (xk)‖

≤
[
1− (1− κ)tk + ω

t2k
2
‖δxk‖

]
‖F (xk)‖,

i.e.,

‖F (xk + tkδxk)‖ ≤
[
1− (1− κ)tk + ω

t2k
2
M‖F (xk)‖

]
‖F (xk)‖. (3.18)

Using induction, we prove in what follows that (xk) ⊂ L. By hypothesis x0 ∈ L. Let us
assume that x1, · · · , xk ∈ L, then

‖F (xk + tkδxk)‖
(3.18)

≤
[
1− (1− κ)tk + ω

t2k
2
M‖F (xk)‖

]
‖F (xk)‖

xk∈L
≤

[
1− (1− κ)tk + (1− κ)t2k

]
‖F (xk)‖.

(3.19)

Note that ϕ(t) = 1 − (1 − κ)t + (1 − κ)t2 de�nes a convex parabola which has its

minimum in (1/2, ϕ(1/2)), therefore 0 < 1− 1− κ
4

= ϕ(1/2) ≤ ϕ(t) ≤ 1 for all t ∈ [0, 1].

Consequently, we obtain

‖F (xk + δxk)‖ ≤ ϕ(1)‖F (xk)‖ ≤ ‖F (xk)‖,

which shows that xk+1 ∈ L. Thus, the above inequality is valid for i = 0, 1, · · · , k −
1, k, k + 1, which implies

‖F (xk+1)‖ ≤
[
κ+ ω

1

2
M‖F (xk)‖

]
‖F (xk)‖ ≤ · · · ≤

[
κ+

ω

2
M‖F (x0)‖

]k
‖F (x0)‖

and because κ+
ω

2
M‖F (x0)‖ < 1, we obtain the result.
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(ii) Using induction, we prove in what follows that (xk) ⊂ B0. Let us assume that
xk ∈ B0 then

‖xk+1 − x0‖ ≤
k∑
i=0

‖Mκ(xi)F (xi)‖ ≤M
k∑
i=0

‖F (xi)‖ ≤M
k∑
i=0

(c0)i ‖F (x0)‖.

Thereby, it holds that

‖xk+1 − x0‖ ≤M‖F (x0)‖1− (c0)k+1

1− c0
<
M‖F (x0)‖

1− c0
.

Consequently, xk+1 ∈ B0. Telescopic application of the triangle inequality yields

‖xk+m − xk‖ ≤
k+m−1∑
i=k

‖Mκ(xi)F (xi)‖ ≤M‖F (x0)‖
m−1∑
i=k

(c0)k (c0)i ≤M (c0)k
‖F (x0)‖
1− c0

,

which proves that (xk) is a Cauchy sequence, therefore it converges to some root x̃∗ of
F (x). Note that x∗ = x̃∗ since x∗ is the only root of F (x) in L (see Remark 3.8). The
convergence rate (3.16) follows from the above inequality since

‖xk+m − xk‖ ≤M (c0)k
‖F (x0)‖
1− c0

and taking the limit m→ +∞ we obtain

‖x∗ − xk‖ ≤M (c0)k
‖F (x0)‖
1− c0

.

(iii) From hypothesis (S1) we have that F (x∗) = 0. Let us de�ne

1 ≤ µ∗ :=
∥∥[JTf (x∗)Jf (x∗)

]∥∥ ∥∥∥[JTf (x∗)Jf (x∗)
]−1
∥∥∥

and let us choose an κ ∈ (κGN , 1) su�cient close to κGN , such that

(1 + 2(κ− κGN )µ∗)
4κ < 1.

Let us �x κ in (κGN , κ). Because
[
JTf (x)Jf (x)

]
and

[
JTf (x)Jf (x)

]−1
are continuous at

x∗, there is an ε∗ ∈ (0, 1) such that for all x ∈ B∗ := B(x∗, ε∗) the following are valid,

∥∥∥∥[JTf (x∗)Jf (x∗)
]([

JTf (x)Jf (x)
]−1
−
[
JTf (x∗)Jf (x∗)

]−1
)∥∥∥∥ ≤ 2(κ− κGN )µ∗,

∥∥∥∥([JTf (x)Jf (x)
]
−
[
JTf (x∗)Jf (x∗)

]) [
JTf (x∗)Jf (x∗)

]−1
∥∥∥∥ ≤ 2(κ− κGN )µ∗,

∣∣∣∣∥∥∥[JTf (x)Jf (x)
]∥∥∥ ∥∥∥∥[JTf (x)Jf (x)

]−1
∥∥∥∥− µ∗∣∣∣∣ ≤ µ∗,

‖F (x)‖ < 2
1− κ
Mω

. (3.20)
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Applying the triangle inequality, we obtain∥∥∥[JTf (x∗)Jf (x∗)
] [
JTf (x)Jf (x)

]−1
∥∥∥ ≤ 2(κ− κGN )µ∗ + 1, (3.21a)

∥∥∥[JTf (x)Jf (x)
] [
JTf (x∗)Jf (x∗)

]−1
∥∥∥ ≤ 2(κ− κGN )µ∗ + 1, (3.21b)

∥∥[JTf (x)Jf (x)
]∥∥ ∥∥∥[JTf (x)Jf (x)

]−1
∥∥∥ ≤ 2µ∗, (3.21c)

for all x ∈ B∗ := B(x∗, ε∗). Let us de�ne

ρ∗ :=

∥∥∥∥[JTf (x∗)Jf (x∗)
]−1
∥∥∥∥ ,

c̃(x) := (1 + 2(κ− κGN )µ∗)
4
[
κ+

ρ∗ω

2
‖Mκ(x)F (x)‖∗

]
,

c(x) := κ+
ω

2
M‖F (x)‖ and c0 := c(x0).

Let us consider the following set

Vκ :=

{
x ∈ B

(
x∗,

ε∗
2

) ∣∣∣∣ M‖F (x)‖
1− (1 + 2(κ− κGN )µ∗)4c(x)

<
ε∗
2

}
,

which by construction satis�es Vκ ⊆ B∗ = B(x∗, ε∗) ⊆ L (see (3.20)). In the following

lines, we prove that if x0 ∈ Vκ, the sequence (xk) stays in B0 := B

(
x0,

M‖F (x0)‖
1− c0

)
and

converges to x∗. Let us choose x0 in Vκ, therefore x0 ∈ L and it follows form the part (i)
that

‖F (xk+1)‖ ≤
[
κ+

ω

2
‖δxk‖

]
‖F (xk)‖ for all k ∈ N (3.22)

and from part (ii) we conclude that (xk) stays in B0 and converge to x∗. We �nalize this
part verifying that B0 ⊆ B∗ = B(x∗, ε), which is an important part in the rest of our
argument. Let us �x x ∈ B0, because x0 ∈ Vκ, we obtain

‖x− x∗‖ ≤ ‖x− x0‖+ ‖x0 − x∗‖

≤ M‖F (x0)‖
1− c0

+
ε∗
2

≤ M‖F (x0)‖
1− (1 + 2(κ− κGN )µ∗)4c0

+
ε∗
2

ε∗
2

+
ε∗
2

= ε∗,

which implies that x ∈ B∗ = B(x∗, ε).

(R2) Descent argument proof. Multiplying both sides of the inequality (3.22) by

‖
[
JTf (x∗)Jf (x∗)

]
Mκ(xk+1)‖
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we obtain

‖Mκ(xk+1)F (xk+1)‖∗ ≤ ‖
[
JTf (x∗)Jf (x∗)

]
Mκ(xk+1)‖‖

[
κ+

ω

2
‖δxk‖

]
‖F (xk)‖ (3.23)

Lemma 3.5 and the triangle inequality yield

‖
[
JTf (xk+1)Jf (xk+1)

]
Mκ(xk+1)‖ ≤ (κ− κGN )cond

([
JTf (xk+1)Jf (xk+1)

])
+ 1. (3.24)

Using (3.21c), and that (xk) ⊂ B0 ⊆ B∗, it follows

cond
([
JTf (xk+1)Jf (xk+1)

])
≤ 2µ∗. (3.25)

Substituting (3.25) in (3.24), we obtain

‖
[
JTf (xk+1)Jf (xk+1)

]
Mκ(xk+1)‖ ≤ 2(κ− κGN )µ∗ + 1. (3.26)

From (3.21a) and using that (xk) ⊂ B0 ⊆ B∗, we obtain

‖
[
JTf (x∗)Jf (x∗)

] [
JTf (xk+1)Jf (xk+1)

]−1‖ ≤ 2(κ− κGN )µ∗ + 1. (3.27)

Because,[
JTf (x∗)Jf (x∗)

]
Mκ(xk+1) =[

JTf (x∗)Jf (x∗)
] [
JTf (xk+1)Jf (xk+1)

]−1 [
JTf (xk+1)Jf (xk+1)

]
Mκ(xk+1), (3.28)

and using (3.26) and (3.27), we conclude

‖
[
JTf (x∗)Jf (x∗)

]
Mκ(xk+1)‖ ≤ (2(κ− κGN )µ∗ + 1)2 (3.29)

the above inequality and (3.23) yields,

‖Mκ(xk+1)F (xk+1)‖∗ ≤ (1 + 2(κ− κGN )µ∗)
2
[
κ+

ω

2
‖δxk‖

]
‖F (xk)‖ (3.30)

Note that,

‖F (xk)‖ = ‖Aκ(xk)
[
JTf (x∗)Jf (x∗)

]−1 [
JTf (x∗)Jf (x∗)

]
Mκ(xk)F (xk)‖

≤ ‖Aκ(xk)
[
JTf (x∗)Jf (x∗)

]−1
‖‖δxk‖∗

≤ ‖Aκ(xk)
[
JTf (xk)Jf (xk)

]−1
‖‖
[
JTf (xk)Jf (xk)

] [
JTf (x∗)Jf (x∗)

]−1
‖‖δxk‖∗

From Lemma 3.5, triangle inequality, (3.21c),(3.21b) and using that (xk) ⊆ B0 ⊆ B∗ it
follows

‖F (xk)‖ ≤ (2(κ− κGN )µ∗ + 1)2‖δxk‖∗ (3.31)

Substituting the above information in (3.30) and using that

‖δxk‖ = ‖
[
JTf (x∗)Jf (x∗)

]−1 [
JTf (x∗)Jf (x∗)

]
δxk‖ ≤ ρ∗‖δxk‖∗,
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we obtain

‖δxk+1‖∗ ≤ (1 + 2(κ− κGN )µ∗)
4
[
κ+

ωρ∗
2
‖δxk‖∗

]
‖δxk‖∗

≤ c̃(xk)‖δxk‖∗

i.e.,
‖δxk+1‖∗ ≤ c̃(xk)‖δxk‖∗ (3.32)

we have proved that from (3.22) it follows (3.32), since (3.22) is valid for all k ∈ N,
we conclude that (3.32) is also valid for all k ∈ N. Note that c̃(xk) ≤ c(x0) < 1 for all
k ∈ N, and rest of the proof follows similar ideas as we did in part (ii).

�

Discussion: In our IGN approach it is assumed

(i) The following contravariant matrix error with ‖y‖-norm is bounded by κGN

‖Qε(x)[JTf (x)Jf (x)]−1‖ = ‖I − JF (x)[JTf (x)Jf (x)]−1‖ ≤ κGN for all x ∈ VκGN .

Using Lemma 3.9, we conclude that there is a positive constant δ and a neighbor-
hood Vδ ⊂ VκGN such that

‖I−JF (x)[JTf (x)Jf (x)]−1‖ ≤ κGN and ‖I− [JTf (x)Jf (x)]−1JF (x)‖∗ ≤ κGN +δ < 1

for all x ∈ VκGN , which means that our hypothesis (i) implies that the above con-
variant error matrix with ‖y‖∗-norm is valid. Thus, hypothesis (S1) is essentially
a covarinat hypothesis with ‖y‖∗-norm.

(ii) Our IGN sequence (xk) ⊂ VκGN satis�es

‖JTf (xk) [Jf (xk)δxk + F (xk)] ‖ ≤ κ‖F (xk)‖ − κGN‖[JTf (xk)Jf (xk)]δxk‖,

which implies that the following contravariant inner residual error is bounded by κ

‖JF (xk)δxk + F (xk)‖ ≤ κ‖F (xk)‖. (3.33)

From the proof of Theorem 3.14, we have that for a x0 su�ciently close to x∗ the IGN
sequence (xk) satis�es (3.33) and also

‖[JTf (x∗)Jf (x∗)]Mκ(xk+1)‖ ≤ (2(κ− κGN )µ∗ + 1)2 see (3.29),

which implies using (3.33) that

‖Mκ(xk+1)[JF (xk)δxk + F (xk)]‖∗ ≤ (2(κ− κGN )µ∗ + 1)2κ‖F (xk)‖.

Using (3.31), we obtain

‖Mκ(xk+1)[JF (xk)δxk + F (xk)]‖∗ ≤ (2(κ− κGN )µ∗ + 1)4κ‖Mκ(xk)F (xk)‖∗. (3.34)

Thus, locally, our new stopping criterion (2.15) implies that the contravariant inner
residual error with ‖y‖-norm (3.33) is bounded by κ < 1, and the covariant inner residual
error with ‖y‖∗-norm (3.34) is bounded by κ̃ := (2(κ−κGN )µ∗+1)4κ provided that κ̃ < 1.



58 Chapter 3. Di�erent κ-Theories

Therefore, our new stopping criterion is essentially a covariant stopping criterion with
‖y‖∗-norm if κ̃ < 1. Furthermore, from the proof of Theorem 3.14 it follows also that

‖Mκ(xk+1) [JF (xk − tMκ(xk)F (xk))− JF (xk)]Mκ(xk)F (xk)‖∗ ≤
w̃t‖Mκ(xk)F (xk)‖2∗ (3.35)

for all k where w̃ := (2(κ−κGN )µ∗+1)4ρ∗Mω. A natural question is: Is there a relation
between the local contraction Theorem for our local IGN approach (3.1) and Theorem
(3.14)?. The answer is that locally, our IGN approach implies that the hypotheses of
such a Theorem are valid with ‖y‖∗-norm if k̃ = (2(κ− κGN )µ∗ + 1)4κ < 1.



Chapter 4

Sensitivity Analysis of the Solution

In this Section, we are focus on proving the following result: If we apply the local IGN
approach (S3) for numerically solving the nonlinear least squares problem (1.1), the
solution obtained is statistically stable provided that at least one exists. Using the same
notation as in Chapter 1, we have that h(x) ∈ Rm represents a mathematical model with
a true but unknown parameter xtrue ∈ Rn, η ∈ Rm represents the observational data,
and the measurement error ε ∈ Rm is de�ned as εi = ηi − hi(xtrue), which is assumed to
be independent and normally distributed with expected value zero and known variance-
covariance matrix Σ = diag(σ1, · · · , σm), i.e.,

ε ∼ N (0,Σ) .

The discrepancy between the observational data and the model are measured trough the
residual function

fε(x) := Σ−1 [η − h(x)] ,

and a plausible estimation xε∗ of xtrue is obtained if we solve the following nonlinear least
squares problem

xε∗ := arg min
x∈D

1

2
‖fε(x)‖22 =: Tε(x). (4.1)

De�ning ŷ := h(xtrue), we have

fε(x) = Σ−1 [η − h(x)] = Σ−1 [ε+ h(xtrue)− h(x)] = Σ−1 [ε+ ŷ − h(x)] , (4.2)

which means that yε∗ = fε(x
ε
∗) is a perturbation of 0 = f0(xtrue). A natural question

is: how close are xε∗ and xtrue?, or in another words: how good is the estimation xε∗
of our true parameter xtrue?. Intuitively, if we are making small perturbations on the
observational data of our problem (4.1), i.e, ‖ε‖ is small, we must conclude that the
distance between xε∗ and xtrue is small. Otherwise, xε∗ is not a reliable estimation of xtrue.
In order to answer the above question, we focus in this Chapter on estimation xε∗ of xtrue
that satis�es the following de�nition.

De�nition 4.1. We say that a local solution xε∗ of (4.1) is statistically stable under
perturbation makes in the measurement error ε if xε∗ is a continuously deformation of
xtrue, i.e., there is a continuously function φ : B(0, r∗) → D such that xε∗ = φ(ε),
xtrue = φ(0), and xε∗ is locally the unique solution of (4.1) for all ε ∈ B(0, r∗).

Note that from the hypotheses assumed in Chapter 1, we have that the following are
valid.
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(i) The function fε(x) is twice continuously di�erentiable with Jacobian Jfε(x), and
there is a neighborhood V of xtrue such that Jfε(x) is full rank for all x ∈ V .

(ii) De�ning

Hε(x) := ∇2Tε(x)
(1.3)
=
[
JTfε(x)Jfε(x)

]
+Qε(x),

we obtain that H0(xtrue) = JTf0(xtrue)Jf0(xtrue) is positive de�nite.

Lemma 4.2. There is a positive constant r∗, and a continuously di�erentiable path
φ : B(0, r∗) → D such that xε∗ = φ(ε) and xtrue = φ(0), where xε∗ = φ(ε) satis�es the
following

(L1) φ(ε) is locally the unique stationary point of (4.1), i.e.,

∇Tε(φ(ε)) = [Jfε(φ(ε))]T fε(φ(ε)) = 0. (4.3)

(L2) Hε(φ(ε)) is positive de�nite.

Proof. Let us consider the following functions

F(x, ε) = fε(x) and T (x, ε) = Tε(x) with (x, ε) ∈ V × R,

and note that from (i) it follows that F is twice continuously di�erentiable. Let us
consider the following nonlinear equation

∇xT (x, ε) = ∇Tε(x) = [Jfε(x)]T fε(x) = 0,

then from (i) and (ii) we obtain that

∇xT (xtrue, 0) = 0 and ∇2
xT (xtrue, 0) = H0(xtrue) is positive de�nite,

which implies by virtue of the implicit function Theorem the existence of a ball B(0, r∗) ⊂
V ⊂ D and a continuously di�erentiable path φ : B(0, r∗) → V such that φ(ε) satis�es
(L1). Because H0(xtrue) is a positive de�nite matrix and also a continuous function with
respect to ε, we can reduce the value of r∗ if it is necessary and conclude that Hε(φ(ε))
is a positive de�nite matrix for all ε ∈ B(0, r∗).

�

Remark 4.3. The second-order su�cient condition Theorem 1.3 guarantees that xε∗ =
φ(ε) de�ned in the above Lemma is locally the unique solution of the nonlinear least
squares problem (4.1) for all ε ∈ B(0, r∗). Furthermore, xε∗ = φ(ε) is a statistically stable
solution of (4.1) for all ε ∈ B(0, r∗).

We organize the rest of this chapter as follows: �rts, we present the covariant κ̃-
Theorem of Bock [10] known as the local contraction Theorem for GN method, which
determines locally when the GN method converges to a statistically stable xε∗. Later, we
prove that our IGN approach (S3) locally provides statistically stable solutions provided
that at least one exists.
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4.1 Statistically Stable κ-Theorems

Let us consider the Moore-Penrose pseudoinverse J+
ε (x) of Jfε(x) in V de�ned in (i), i.e.,

J+
ε (x) =

[
JTfε(x)Jfε(x)

]−1
JTfε(x) for all x ∈ V,

the Gauss-Newton step ∆x = −J+
ε (x)fε(x), and the Gauss-Newton inner residualRε(x) =[

I − Jfε(x)J+
fε

(x)
]
fε(x).

Theorem 4.4 (Local Contraction). Let us assume

(B1) Lipschitz covariant condition. There is a constant ω <∞ such that

‖J+
ε (x′)

[
Jfε(x

′)− Jfε(x)
]

(x′ − x)‖ ≤ ωt‖x′ − x‖2 for all x′, x ∈ V.

(B2) κ̃-covariant condition. There is a constant κ̃ < 1 such that∥∥J+
ε (x′)Rε(x)

∥∥ ≤ κ̃‖x′ − x‖ for all x′, x ∈ V. (4.4)

(B3) The initial guess x0 ∈ V is su�ciently close to a solution that

c0 := κ̃+
ω

2
‖∆x0‖ < 1 and B0 := B

(
x0,
‖∆x0‖
1− c0

)
⊂ V.

De�ning ck = κ̃+
ω

2
‖∆xk‖, we obtain

(R1) xk ∈ B0, for all k ∈ N and the Gauss Newton sequence (xk) converges linearly to
xε∗ ∈ B0 with descent argument

‖∆xk+1‖ ≤ ck‖∆xk‖.

(R2) Furthermore, the a-priori estimate

‖xj+k − xε∗‖ ≤
(ck)

j

1− ck
‖∆xk‖ ≤

(c0)j+k

1− c0
‖∆x0‖

holds.

(R3) The limit xε∗ satis�es

Fε(x
ε
∗) = ∇Tε(xε∗) = [Jfε(x

ε
∗)]

T fε(x
ε
∗) = 0.

Proof. Bock [10].

�

Theorem 4.5 (GN-Statistically Stable Solution). If the following condition∥∥J+
ε (x)Rε(x

ε
∗)
∥∥ ≤ κ̃‖x− xε∗‖

is valid for all x in a neighborhood of xtrue then the matrix Hε(x
ε
∗) is positive de�nite.

Proof. Bock [10].
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�

Remark 4.6. Note that if Theorem 4.4 is valid, then the hypothesis of Theorem 4.5
is also valid, and consequently, we conclude that the Gauss-Newton sequence (xk) that
satis�es the conditions of Theorem 4.4 converges to statistically stable solutions.

Remark 4.7. Bock [10] proposed that the statistically stable solutions xε∗ of (4.1) are
de�ned by the 100α% con�dence region

G :=
{
ε | ‖ε‖2 ≤ γ2(α)

}
where α ∈ [0, 1] and γ2(α) = X 2

n(1 − α) is the quantile of the X 2-distribution with n
degree of freedom. For example, we can choose in most of the case α = 0.95.

Remark 4.8. If is clear that if ε ∈ G then ε ≈ 0, which implies from (4.2) that ε ≈
fε(xtrue) − fε(xε∗), therefore the con�dence region is de�ned by other authors [54, 8, 51]
as

G(α, xtrue) :=
{
x ∈ V | ‖fε(x)‖2 − ‖fε(xtrue)‖2 ≤ γ2(α)

}
,

which is a more adequate presentation since we handle directly with the statistically sta-
ble solutions. Because the parameter xtrue is unknown, it is used GL(α, xε∗) instead of
G(α, xtrue) where GL(α, xε∗) describe the con�dence ellipsoid which is a �rst order ap-
proximation of the nonlinear con�dent region G(α, xtrue) , i.e.,

GL(α, xε∗) =
{
x ∈ V | ‖fε(xε∗) + Jfε(x

ε
∗) [x− xε∗] ‖2 − ‖fε(xε∗)‖2 ≤ γ2(α)

}
.

Körkel proved in his dissertation thesis [54] that

GL(α, xε∗) =
{
x ∈ V | x− xε∗ = J+

fε
(xε∗)δw and ‖δw‖2 ≤ γ2(α)

}
.

For a deeper study of statistically stable solution and its applications see e.g., [8, 54, 52,
51, 11].

Theorem 4.9. Let (S1), (S2), and (S3) hold. Then our IGN method produces statisti-
cally stable solutions.

Proof. Let us de�ne

κ(xε∗) :=
∥∥∥Qε(xε∗) [JTfε(xε∗)Jfε(xε∗)]−1

∥∥∥ , (4.5)

and note that κ(xtrue) = 0 since in this case Q0(x) = 0, thus there is a r̃∗ > 0 such that

κ(xε∗) ≤ κGN for all ‖ε‖ ≤ r̃∗.

Using Theorem 3.14, we conclude that the IGN sequence (xk) converges linearly and
locally to xε∗ for all ‖ε‖ ≤ r̃∗, and from the proposition 1.6 it follows that Hε(x

ε
∗) is

positive de�nite. Thus, the implicit function Theorem applies to the nonlinear equation
(4.3) delivers the ball B(0, r̃∗), and a continuously di�erentiable path φ : B(0, r̃∗) → D
such that xε∗ = φ(ε) and xtrue = φ(0) where xε∗ = φ(ε) is the unique local solution of
(4.3). Choosing an α su�cient close to one, we conclude that the solutions xε∗ of (4.1)
with ε ∈ G are statistically stable solutions.

�



Chapter 5

Global Newton Methods

Let F : D ⊂ Rn → Rn be a continuously di�erentiable function with Jacobian JF (x),
and let us consider the nonlinear equation

F (x) = 0. (5.1)

In this Chapter, we restrict our study to globalization strategies based on the Newton
method with damping strategy, i.e.,

xk+1 = xk + tk∆xk, with tk ∈ [0, 1] , and JF (xk)∆xk = −F (xk), (5.2)

where x0 ∈ D is pre-chosen and not necessarily close to a solution x∗ of (5.1), and tk is
the step size or damping factor. An analysis made in the classical globalization strategies
based on the popular residual monotonicity test, and on the natural monotonicity test
reveals the principal drawbacks of the globalization strategies based on a particular merit
function. Rather, we focus on globalization strategies that follow the a�ne covariant
Newton path P(t), which connects the initial guess x0 with a solution x∗ of our problem
(5.1) and produces along of it an exponential descent in every general level function [27].
Two globalization strategies based on following such a path P(t) are presented, one of
them was introduced by Bock, Kostina, and Schlöder [12] and is known as Restrictive
Monotonicity Test (RMT). The other one was introduced by Potschka [70] and it is
known as Backward Step Control (BSC), which provides, under reasonable assumptions,
a global convergence Theorem on the basis of a backward step argument.

5.1 Residual Based Descent

In this section, we focus on a line search strategy based on the residual level function,

TF (x) =
1

2
‖F (x)‖22 (5.3)

with associated level set,

G(x0) := {y ∈ D | TF (y) ≤ TF (x0)} (5.4)

where x0 ∈ D is a pre-chosen initial guess. Note that in this case the Newton step ∆xk
is a descent direction of our residual level function TF (x) if ∆xk 6= 0, since

[∇TF (xk)]
T ∆xk = −2TF (xk) < 0.
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In order to produce the maximal descent in this direction, we must choose tk such that

t∗k := min
t∈[0,1]

TF (xk + t∆xk).

An exact minimization is expensive and unnecessary. Instead, we apply an approxi-
mate line search which determines the largest damping factor tk such that the residual
reduction is in some sense optimal. The following Lemma tells us how to choose it.

Lemma 5.1. Let F : D ⊆ Rn → Rn be a continuously di�erentiable function, with D
open, convex, and JF (x) nonsingular for all x ∈ D. Assuming that the a�ne con-

travariant Lipschitz condition

‖ [JF (x)− JF (y)] (y − x)‖ ≤ ω‖JF (x)(x− y)‖2 for all x, y ∈ D

is valid and de�ning the convenient notation hk := ω‖F (xk)‖, we conclude that

‖F (xk + t∆xk)‖ ≤ ρk(t)‖F (xk)‖ for all t ∈ [0, 2/hk] ,

where ρk(t) := 1− t+
1

2
t2hk, and the optimal choice of the damping factor is given

by

tok := min(1, 1/hk).

Proof. Deu�hard [27, Theorem 3.7].

�

The following Theorem says that the damped Newton sequence (xk) with damping
factor tk ≈ tok converges to a solution x∗ of (5.1) for all pre-chosen initial guess x0 ∈ G0,
where G0 denote the path-connected component of G(x0) containing x0.

Theorem 5.2. If the hypotheses of Lemma 5.1 are valid and G0 ⊆ D is compact, then
the damped Newton iteration (5.2) with damping factor in the range

tk ∈ [ε, 2tok − ε] ,

where ε > 0 is su�ciently small and depends on G0, converges to some solution point x∗
of (5.1).

Proof. Deu�hard [27, Theorem 3.8].

�

We discourage the use of this line search strategy �rst of all because it can not be
implemented directly since the quantity hk is computationally unavailable due to the
a�ne contravariant Lipschitz constant ω. On the other hand, if we know the value of
ω then this line search strategy applied to mildly ill-conditioned problems may produce
small stepsizes even in a vicinity of x∗ where the quadratic convergence of the Newton
sequence with full-step is guaranteed. The reason for this behavior is that the damping
factor depends directly on the merit function. We explain in more detail such a behavior
in the following section.
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5.2 Error Oriented Descent

Here, we focus on a line search strategy based on the general level function

TF (x | A) =
1

2
‖AF (x)‖22 (5.5)

with A ∈ GL(n), and associated level set,

G(x0 | A) := {y ∈ D | TF (y | A) ≤ TF (x0 | A)}
where x0 ∈ D is a pre-chosen initial guess.

Remark 5.3. In this case, the Newton step ∆xk = − [JF (xk)]
−1 F (xk) is a descent

direction with respect to all such level functions (5.5), since

∆xTk∇TF (xk | A) = −2TF (xk | A) < 0.

The following Lemma reveals the reason why the line search strategy based on the
residual level function may be ine�cient already in mildly ill-conditioned problems.

Lemma 5.4. Let F : D ⊆ Rn → Rn be a continuously di�erentiable function, with
D open, convex, and JF (x) nonsingular for all x ∈ D. If xk ∈ G(xk | A) for some
A ∈ GL(n), and the a�ne covariant Lipschitz condition

‖ [JF (x)]−1 [JF (y)− JF (x)] (y − x)‖ ≤ ω‖(x− y)‖2

is valid for all x, y ∈ D, then with the convenient notation

hk := ω‖∆xk‖, hk := hkcond (AJF (xk)) ,

we obtain that

TF (xk + t∆xk | A) ≤ ρk(t | A)TF (xk | A) for all t ∈
[
0,min

(
1, 2/hk

)]
(5.6)

where ρk(t | A) := 1− t− 1

2
t2hk, and the optimal choice of the damping factor is

given by
tok(A) := min

(
1, 1/hk

)
.

Proof. Deu�hard [27, Theorem 3.12].

�

The optimal choice of the damping factor tok(I) = tok when we are working with a line
search strategy based on the residual level function (A = I) may be ine�cient, since even
for mildly ill-conditioned problems cond(JF (xk)) may be too large, and consequently the
interval where (5.6) is valid may be very small. Thereby, the damping factor tk may be
tiny even when the quadratic convergence of the Newton sequences with full Newton step
is guaranteed. Therefore such an approach is ine�cient. An example (Rosenbrock-type)
that describes this behavior was given by Bock in [10].

On the other hand, if we choose as merit function the Natural Level Function,

Tk(x) := TF (x | [JF (xk)]
−1) =

1

2
‖ [JF (xk)]

−1 F (x)‖2

then from the Lemma 5.4 the line search strategy based on Natural level function at the
iterate xk satis�es the following properties:
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1. Extremal properties (Deu�hard [27]), For all A ∈ GL(n) the reduction factor
ρk(t | A) and the theoretical optimal damping factor tok(A) satisfy,

ρk(t | [JF (xk)]
−1) ≤ ρk(t | A),

tok([JF (xk)]
−1) = min

(
1, 1/hk

)
≥ tok(A).

2. Steepest Descent (Deu�hard [27]): The Newton correction ∆xk given by
JF (xk)∆xk = −F (xk) is a descent direction with respect to all such level functions
(5.5).

3. Full step in a vicinity of x∗ (Deu�hard [27]). From the a�ne covariant Newton-
Mysovskikh Theorem 1.9, we know that local quadratic convergence of the Newton
sequence is guaranteed in the vicinity V∗ of some solution x∗ where

V∗ :=
{
x ∈ D | ω‖ [JF (x)]−1 F (x)‖ ≤ α < 2

}
.

If hk = ω‖∆xk‖ < 1, then tok([JF (xk)]
−1) = min

(
1, 1/hk

)
= 1, i.e., using the

Natural level function at the iterate xk, our damping factor is equal to one in the
vicinity V∗.

4. Asymptotic distance function (Bock [12]). For F twice continuously di�eren-
tiable, and assuming that (xk) converge to x∗, then∥∥∥[JF (xk)]

−1 F (x)
∥∥∥

2
= ‖x− x∗‖2 [1 +O(‖x− x∗‖2) +O(‖xk − x∗‖2)] .

Both line search strategies have their disadvantages. The line search strategy based on
the natural level function at the iterate xk satis�es the above outstanding property but all
of them are just valid at the iterate xk, therefore we cannot guarantee with this strategy
descent of our merit function Tk(x) for all iterate of our Newton damping sequence,
which is the major drawback of this approach, since the classical arguments of global
convergence cannot be applied. Indeed, Ascher and Osborne [4] constructed a theoretical
example that show the existence of two-cycles for successive quadratic programming
solver method based on the natural level function at the iterate xk. On the other hand, a
global convergence proof exists for Newton damping iterate based on the residual function
Deu�hard [27, Theorem 3.13]. Nevertheless, we have seen that this approach produces
tiny damping factors even in the vicinity of the solution where full-step Newton sequence
converges quadratically.

5.3 The Newton Path

In this section, we present the Newton-path, which is an a�ne covariant path that pro-
duces descent in the whole class of merit functions (5.5). Furthermore, we introduce the
intuitive ideas that motivate the line search strategies based on RMT and BSC.

In order to avoid the arbitrary choice of a merit function introduced by the whole
class (5.5), we focus on the intersection of all correspondent level sets
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G(x) :=
⋂

A∈GL(n)

G(x | A).

It is clear that this set is a�ne covariant since by construction it do not depend on
A ∈ GL(n). The following Theorem reveals its properties.

Theorem 5.5. Let F : D ⊆ Rn → Rn be a continuously di�erentiable function with
JF (x) nonsingular for all x ∈ D. For some Â ∈ GL(n), let the path-connected component
of G(x0 | Â) in x0 be compact and contained in D. Then the path-connected component
of G(x0) is a topological path x0 : [0, 2]→ Rn, which satis�es

F (x0(λ)) = (1− λ)F (x0), (5.7)

TF (x0(λ) | A) = (1− λ)2TF (x0 | A), (5.8)

dx0

dλ
= − [JF (x0)]−1 F (x0),

x0(0) = x0,
x0(1) = x∗ where F (x∗) = 0,

(5.9)

dx0

dλ
(0) = ∆x0 (5.10)

where ∆x0 is the ordinary Newton correction.

Proof. Deu�hard [27, Theorem 3.6].

�

Remark 5.6. In the proof of the above Theorem the di�erential equation (5.9) is derived
from the homotopy

H(x, λ) = F (x)− (1− λ)F (x0) = 0, (5.11)

which de�nes the function x0(λ) upon the invocation of the implicit function Theorem. A
natural strategy to construct our damped Newton factor λk would be: choose it such that

F (xk + λk∆xk)− (1− λk)F (xk) ≈ 0.

From (5.7), it follows that x(λk) ≈ xk+1. This approach will be explained in more detail
in the following section, and with additional requirements, it is known as the Restrictive
Monotonicity Test (RMT).

Remark 5.7. Introducing the reparametrization λ(t) = 1 − e−t, we obtain from the
above homotopy (5.11) the so called continuous Newton method or Davidenko di�erential
equation [21],

˙̂x0(t) = − [JF (x̂0(t))]−1 F (x̂0(t)), t ∈ [0,+∞), x̂0(0) = x0. (5.12)

Furthermore, lim
t→+∞

x̂0(t) = x∗.



68 Chapter 5. Global Newton Methods

Remark 5.8. From the remark (5.7) we conclude that the Newton path x̂0(t) is connect-
ing continuously a starting guess x0 with a local solution x∗ of our problem (5.1) in some
optimal sense:

(i) For any t ∈ [0,+∞), x̂0(t) is the unique local solution of the following equation,

H(x, λ(t)) = F (x)− e−tF (x0) = 0,

which is not our original nonlinear equation but its solution x̂0(t) is very close to
x∗ when t is large.

(ii) From property (5.8), and the reparametrization λ(t), it is clear that the Newton
path x̂0(t) produces exponential descent in the whole class of merit functions (5.5)
when t ∈ [0,+∞).

Remark 5.9. Another strategy for choosing our damping factor, which is not so natural
as the introduced in remark (5.6), would be to construct our iterate xk+1 = xk + tk∆k,
with tk ∈ [0, 1], such that

lim
k→+∞

x̂0

(
k−1∑
i=1

ti

)
− xk = 0, (5.13)

and

lim
k→∞

k−1∑
i=1

ti = +∞. (5.14)

From (5.13) and remark (5.8) we conclude that our sequence (xk) converges to x∗.

A way to construct such an damped sequence (xk) is possible if we assume some
hypotheses introduced by Potschka [70].

5.4 The Restrictive Monotonicity Test

The Monotonicity Restrictive Test (RMT) introduced by Bock, Kostina, and Schlöder
[12] is a Global Newton Strategy, which chooses as damping factor tk a positive number
such that xk+1 = xk + tk∆xk is close to the Newton path xk(t) that emanates from xk.
In fact, it was proved in [12, Lemma 7] that if

εk(t) := xk(t)− xk − t∆xk

and F (x) is twice continuously di�erentiable then

εk(t) = − [J(xk)]
−1 [F (xk + t∆xk)− (1− t)F (xk)] +O(t3).

From this result, the damping factor can be chosen such that

‖t∆xk‖η∗ ≤ ‖ [J(xk)]
−1 [F (xk + t∆xk)− (1− t)F (xk)] ‖ ≤ ‖t∆xk‖η∗.

The above relation is controlled by the choice of the positive numbers η∗, η∗ < 2. This
RMT strategy, which can be interpreted as a step size control for integration of the
Davidenko di�erential equation (5.12) with the explicit Euler method, shows very good
practical applications, in particular, it does not lead to two cycles. The explicit Euler
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method can be extended by a number of so-called back projection steps which diminish
the distance of the iterate xk+1 to the Newton path xk(t), therefore this RMT method
can be extended through repeated back projections step that provide us the bene�t of a
global convergence Theorem. Nevertheless, numerical experience shows that more than
one back projection step does not improve convergence considerable and thereby it should
be avoided [12].

5.5 Backward Step Control for Damped Newton Methods

Let us assume that JF (x) is invertible for all x ∈ G(x0) and let us de�ne

g(x) = [JF (x)]−1 F (x) and h(x, t) = g(x− tg(x))− g(x).

Let us consider the Davidenko equation (5.12) with starting point xk and k ≥ 1, i.e.,

˙̂xk(t) = −g(x̂k(t))
x̂k(0) = xk.

(5.15)

Motivation: Given a positive constant H, we are interested in choosing a step size
tk ∈ [0, 1] such that the following properties are valid:

1. Starting from xk, the forward Euler method applied to (5.15) provides the iterate
xk+1 = xk − tkg(xk).

2. Starting from xk+1, the backward Euler method applied to

˙̂xk+1(t) = −g(x̂k+1(t))
x̂k+1(tk) = xk+1.

(5.16)

provides the backward iterate x̃k(0) = xk+1 + tkg(xk+1).

3. ‖x̂k(0)− x̃k(0)‖ = ‖xk − (xk+1 + tkg(xk+1)) ‖ = tk‖h(xk, tk)‖ = H.

Intuitively, the center piece of BSC strategy focuses on keeping control the distance

‖x̂k(tk + t)− x̂k+1(t)‖,

provided that the backward distance

‖x̂k(0)− x̃k(0)‖ = tk‖h(xk, tk)‖ = H.

This argument combining with Telescopic application of the triangle inequality allow us
to bounded the distance ∥∥∥∥∥x0

(
k−1∑
i=0

ti

)
− xk

∥∥∥∥∥ ,
for a constant that contains the factor H, and therefore, a global convergence Theorem
proof bases on follow the Gauss-Newton path x̂0(t) is possible.

Backward Step Control: The BSC strategy keeps control the distance between xk
and x̃k(0) using a damping factor tk de�ned as follows

tk = minBH(xk) where BH(xk) := {t ∈ [0, 1] | H = t‖h(xk, t)‖} ∪ {1} (5.17)
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�

The �rst result derived from BSC strategy is that we can guarantee the existence of a
lower bound for all damping factors tk, which depends on H. In the rest of this Chapter
we are working with the Newton step ∆xk = − [JF (xk)]

−1 F (xk).

Lemma 5.10 (Potschka [70]). If g(x) is a Lipschitz function with Lipschitz constant
L > 0 and xk ∈ G(x0) then

tk ≥

√
H

LM‖F (x0)‖

where

M = max
x∈G(x0)

‖ [JF (x)]−1 ‖.

�

In the following, we introduce reasonable hypotheses that allow a global convergence
proof based on following the Newton path x̂0(t), and later we present a Theorem that
contains the principal properties of this strategy. We omit the proof of any result in this
Section because we study all of them in more detail in the next Chapter.

Hypotheses:

(H1) G(x0) is compact and connected.

(H2) There is a Lipschitz constant L < +∞ such that

‖g(x)− g(y)‖ ≤ L‖x− y‖ for all x, y ∈ G(x0).

(H3) There is a constant ω < +∞ such that

‖ [JF (x)− JF (x− tg(x))] [JF (x)]−1 ‖ ≤ ωt‖g(x)‖

for all x ∈ G(x0) and t ∈ [0, 1].

(H4) For all ∆ > 0 there are constants γ, tγ > 0 such that

‖g(x− tg(x))− g(x)‖ ≥ γt

for all x ∈ G(x0) (see equation (5.4)) such that ‖g(x)‖ > ∆ and t ∈ [0, tγ ].

The following Theorem resumes the principal properties derived from the above hy-
potheses and the BSC strategy.

Theorem 5.11 (Potschka [70]). Let (H1), (H2), (H3) and (H4) hold. If F is contin-
uously di�erentiable with JF (x) invertible for all x ∈ G(x0) then the principal properties
of the BSC strategy are

(i) Given an H > 0 there is a positive lower step size bound for the sequence
de�ned by tk = minBH(xk).
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(ii) For given θ, t ∈ (0, 1) there is an H > 0 such that for all H ∈ (0, H] the following
is valid

minBH(x) ≤ t

for all x ∈ G(x0) with ω‖F (x)‖ ≥ 2θ(1− κ).

(iii) For a given θ ∈ (0, 1) there is an H > 0 such that for all H ∈ (0, H], we obtain

ωminBH(xk)‖g(xk)‖ ≤ 2θ

if xk ∈ G(x0).

(iv) Linear Contravarinat Theorem There is an H > 0 such that for all H ∈ (0, H]
the residual sequence (F (xk)) converge linear to zero. Furthermore, if there is
θ ∈ (0, 1) such that

ωminBH(xk)‖g(xk)‖ ≤ 2θ for all k

then
‖F (xk+1)‖ ≤ θ‖F (xk)‖.

(v) Existence of a-priori estimate using the same H of the above item, there is a
constant c > 0 H-independent such that

√
‖F (xk)‖ ≤

√
‖F (x0)‖ − kc

√
H for all k ≤

√
‖F (x0)‖
c2H

.

(vi) Linear covariant Theorem There is an H > 0 such that for all H ∈ (0, H] the
sequence (xk) with damping factor tk = minBH(xk) converges to x∗ := lim

t→∞
x̂0(t).

�

Full step in the vicinity of the solution: A drawback of the damped Newton
methods based on residual monotonocity is that we derive a damping factor that is
tiny even in the vicinity of our solution x∗ where full step Newton sequence converges.
Nevertheless, the above strategy ensures not only linear convergence of our residual
sequence (F (xk)), but also ensures convergence of our sequence (xk) to the solution x∗.
Furthermore, full Newton step of our sequence is guaranteed in a vicinity of the solution
x∗. Indeed, if ‖F (xk)‖ < H/(LM) then it follows from the hypotheses (H1) and (H2)
that

t‖h(xk, t)‖ ≤ Lt2‖g(xk)‖ ≤ LM‖F (xk)‖ < H.

Therefore, tk = BH(xk) = 1.
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Chapter 6

Global Inexact Gauss-Newton

Methods

In this Chapter, we are focus on introducing a damped IGN strategy that globalizes
our local IGN approach introduced in Chapter 2 for numerically solving the nonlinear
least squares problem (1.1). The functions f(x) and F (x) are de�ned in (1.1) and (1.2)
respectively, and T (x) = 1

2‖f(x)‖22. Furthermore, Jf (x) is the Jacobian of f(x), and

F (x) = ∇T (x), JF (x) =
[
JTf (x)Jf (x)

]
+Qε(x)

where Qε(x) is de�ned in (1.3). We assume that (S1) is valid. Using the Backward
Step Control theory of Potschka [70], we introduce an ineaxct Gauss-Newton path x(t)
that connect our initial guess x0 ∈ D with a local solution x∗ of the nonlinear least
squares problem (1.1) that satis�es (S1) and along it, the residual level function TF (x) =
1
2‖F (x)‖22 decreases exponentially. Furthermore, using a backward analysis argument
based on following the above path x(t), we provide a class of damped IGN-type se-
quences that converge to x∗. The classical Gauss-Newton path x∗(t) Deu�hard [27,
Theorem 4.11], or the classical IGN paths x̃(t) Deu�hard [27, Theorem 4.12] are not
convenient for our purpose because x∗(t) depends on the unknown local solution x∗ of
F (x) = 0 and x̃(t) does not connect x0 with x∗.

The damped IGN-type strategy with damping factor tk for numerically �nding a root
of F (x) assumes that there is a function M : VκGN ⊂ Rn → GL(n), and it is de�ned as
follows

xk+1 = xk + tkδxk, with δxk = −M(x)F (x) and tk ∈ (0, 1]. (6.1)

where x0 ∈ VκGN is pre-chosen, VκGN is de�ned in (1.12), and M(x) can be interpreted
as an approximation of [JTf (x)Jf (x)]

−1. We organize this Chapter as follows: We introduce
reasonable hypotheses that allow to conclude a global inexact Gauss-Newton Theorem
for the damped IGN-type sequence (6.1) with Backward Step Control (BSC) damping
factor. We prove the existence of an inexact Gauss-Newton path x(t), which connects
x0 with x∗. Later, we introduce the de�nition of our inexact Gauss Newton Backward
Step Control damping factor tk that de�nes our IGN-BSC globalization strategy. Con-
sequently, we prove that the above IGN-BSC approach converges to x∗. We �nalize this
section explaining some details of the algorithm realization, and why this strategy is
adequate for a globalization of our local IGN approach introduced in Chapter 2.

73
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Hypotheses: Let us assume that

G(x0) := {x ∈ VκGN | TF (x) ≤ TF (x0)}

is compact and connected, and the following are valid,

(A1) There is a constant κ ∈ [κGN , 1) such that

‖ [I − JF (x)M(x)]F (x)‖ ≤ κ‖F (x)‖ for all x ∈ G(x0).

(A2) The function g : G(x0) ⊂ Rn → Rn de�nes as g(x) = M(x)F (x) is Lipschitz with
Lipschitz constant L.

(A3) There is a constant ω < +∞ such that

‖ [JF (x)− JF (x− tg(x))] g(x)‖ ≤ ωt‖g(x)‖‖F (x)‖

for all x ∈ G(x0) and t ∈ [0, 1].

(A4) De�ning h(x, t) := g(x − tg(x)) − g(x), we assume that for all ∆ > 0 there are
constants γ, tγ > 0 such that

‖h(x, t)‖ ≥ γt (6.2)

for all x ∈ G(x0) such that ‖g(x)‖ > ∆ and t ∈ [0, tγ ].

Remark 6.1. Note that the GN method satis�es hypotheses: (A1) with κ = κGN , (A2),
and (A3) since in this case

M(x) =
[
JTf (x)Jf (x)

]−1
,

which implies

I−JF (x)M(x) = I−
[[
JTf (x)Jf (x)

]
+Q(x)

] [
JTf (x)Jf (x)

]−1
= −Q(x)

[
JTf (x)Jf (x)

]−1
,

and from hypothesis (S1) it follows that

‖ [I − JF (x)M(x)]F (x)‖ ≤ κGN‖F (x)‖

for all x ∈ G(x0). Furthermore, M(x) =
[
JTf (x)Jf (x)

]−1
satis�es also (A2) and (A3)

since JF (x) and g(x) are continuous and G(x0) is compact.

The condition (A4) says that if
∂g

∂x
(x)g(x) exists, it must be bounded away from zero,

i.e., ∥∥∥∥∂g∂x(x)g(x)

∥∥∥∥ ≥ γ for all x ∈ G(x0) with ‖g(x)‖ > ∆,

which is a relevant condition that excludes pathological examples from our analysis. We

conclude from this remark that M(x) =
[
JTf (x)Jf (x)

]−1
satis�es (A1), (A2), and (A3),

but (A4) must be assumed.

The following Theorem proves that it is possible to de�ne an IGN path x(t) that
connect our initial guess x0 with x∗.
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Theorem 6.2 (The Inexact Gauss-Newton path). Let (A1), and (A2) hold. Then the
following di�erential equation

ẋ = −g(x),
x(0) = x0

(6.3)

de�nes a path x : [0,∞)→ Rn such that

x∗ := lim
t→∞

x(t) and F (x∗) = 0.

Furthermore,

TF (x(t)) ≤ TF (x0)e−(1−k)t for all t ∈ [0,∞).

Proof. Potschka [70, see Lemma 5.5 and Theorem 5.6] .

�

6.1 Inexact Gauss-Newton Backward Step Control (IGN-
BSC)

Let us de�ne our damped IGN sequence as follows

xk+1 = xk − tkg(xk) (6.4)

with inexact Gauss-Newton BSC damping factor

tk := minBH(xk) where BH(xk) := {t ∈ [0, 1] | H = t‖h(xk, t)‖} ∪ {1} . (6.5)

The geometrical interpretation of our IGN damping factor follows in analogous to the
BSC for Newton method introduced in the Chapter 5, but here we take into account the
IGN path x(t) de�ned in Theorem 6.2 instead of the Newton path.

�

The �rst result, which is given by the following Lemma, derived from this IGN-BSC
strategy is the existence of a lower bound for all damping factors tk.

Lemma 6.3. Let (A1), and (A4) hold and let H be a positive constant. If tk :=
minBH(xk) for all xk, then

tk ≥

√
H

LM‖F (xk)‖
≥

√
H

LM‖F (x0)‖
=: cH

where,

M := max
x∈G(x0)

‖M(x)‖.

Proof. Potschka [70].

�
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Lemma 6.4. Let (A1), and (A3) hold. If xk ∈ G(x0) then

‖F (xk+1)‖ ≤
[
1− (1− κ)tk +

ω

2
t2k‖g(xk)‖

]
‖F (xk)‖.

Furthermore, if there is an θ ∈ (0, 1) such that the damping factor tk satis�es

ωtk‖g(xk)‖ ≤ 2θ(1− κ)

then xk+1 ∈ G(x0) and

‖F (xk+1)‖ ≤ [1− (1− θ)(1− κ)tk] ‖F (xk)‖. (6.6)

Proof. Potschka [70, see Lemma 6.2].

�

The following result says that we can control how large our IGN damping factor
minBH(x) is when x ∈ G(x0) is far away from a local solution of (1.2).

Lemma 6.5. Let (A1), (A2), (A4). If θ, t ∈ (0, 1), there is an H > 0 such that for all
H ∈ (0, H] the following is valid

minBH(x) ≤ t

where x ∈ G(x0) and ω‖g(x)‖ ≥ 2θ(1− κ).

Proof. Potschka [70, see Lemma 8.2].

�

Theorem 6.6 (BSC Potschka [70]). Let (A1), (A2), and (A4) hold. For a given θ ∈
(0, 1), there is an H > 0 such that for every H ∈ (0, H] our inexact Gauss-Newton BSC
sequence (xk) de�ned in (6.5) has the following properties,

(i) Our inexact Gauss-Newton BSC damping factor tk = minBH(xk) satis�es

ω‖g(xk)‖tk ≤ 2θ(1− κ) for all k ∈ N. (6.7)

(ii) Our residual IGN damped sequence (F (xk)) converges to zero, (xk) converges to a
local solution of (1.1), and (xk) ⊂ G(x0).

(iii) Let us de�ne

ĉ =
1

2

(1− θ)(1− κ)√
ML

,

then the �rst iterates of our sequence (xk) satisfy that

√
‖F (xk)‖ ≤

√
‖F (x0)‖ − kĉ

√
H for all k ≤

√
‖F (x0)‖
ĉ2H

.

Proof. Let us de�ne

t :=
2θ(1− κ)

ωM‖F (x0)‖

whereM is de�ned in Lemma 6.3. In the �rst step of this proof we focus on showing that
(6.7) is valid and therefore we prove that the sequences (F (xk)) and (xk) are convergent.
We have two case:
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• If ω‖g(x0)‖ ≤ 2θ(1− κ) then we can choose an arbitrary positive constant H.

• Otherwise, Lemma 6.5 delivers a constant H such that

ω‖g(x0)‖minBH(x0) ≤ 2θ(1− κ) for all H ∈ (0, H].

Let us �x H ∈ (0, H] and assume by induction that (6.7) is valid for xk ∈ G(x0) then
from Lemma 6.4 it follows,

‖F (xk+1)‖ ≤ [1− tk(1− θ)(1− κ)] ‖F (xk)‖ < ‖F (x0)‖ with tk = minBH(xk),

i.e., xk+1 ∈ G(x0).

If tk+1 := minBH(xk+1) ≤ t, then

ω‖g(xk+1)‖tk+1 ≤ ωM‖F (xk+1)‖tk+1 < ωM‖F (x0)‖tk+1 ≤ 2θ(1− κ).

If t < tk+1, then t ≤ 1, which implies ωM‖F (x0)‖ ≤ 2θ(1−κ) and from here, we conclude

ω‖g(xk+1)‖tk+1 ≤ ωM‖F (xk+1)‖ < ωM‖F (x0)‖ ≤ 2θ(1− κ).

Thus, we prove that (6.7) is valid for all xk. In the following line we prove that (F (xk))
converges to zero. In fact, from Lemma 6.4, we have

‖F (xk+1)‖ ≤ [1− tk(1− θ)(1− κ)] ‖F (xk)‖ for all k,

and using that our damping factors are lower bounded by cH < 1 de�ned in Lemma 6.3,
we conclude

‖F (xk+1)‖ ≤ [1− cH(1− θ)(1− κ)]k ‖F (x0)‖,

which implies that (F (xk)) converges to zero. Let us de�ne

c := [1− cH(1− θ)(1− κ)] < 1

and let us show that (xk) is a Cauchy sequence.

‖xk+m − xk‖ ≤
k+m−1∑
i=k

‖M(xi)F (xi)‖ ≤M‖F (x0)‖
m−1∑
i=k

ckci ≤ M‖F (x0)‖ck

1− c
,

which prove that (xk) is a Cauchy sequence, therefore it converges to x∗ ∈ G(x0).

The proof of part (iii) follows in analogous to Potschka [70, Theorem 8.4].

�

Up until now, we have proved that our damped IGN-BSC sequence (xk) converges to
a local solution x∗ of (1.2). Nevertheless, we cannot predict how close x∗ is to x0. The
following Theorem says that x∗ and x0 are connected by the IGN path de�ned in (6.2).

Lemma 6.7. Let (A1), (A2), (A3), and (A4) hold. Then tk = minBH(xk) satis�es

‖xk(tk)− xk+1‖ ≤
t2k
2
L‖g(xk)‖eLtk , (6.8)

and

‖xk(tk + t)− xk+1(t)‖ ≤
t2k
2
L‖g(xk)‖eL(tk+t) for all t ≥ 0. (6.9)
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Proof. Potschka [70, Lemma 7.1 and Lemma 8.5]

�

Theorem 6.8 (IGN-BSC covariant result, Potschka [70]). Let (A1), (A2), (A3), and
(A4) hold. Then there is an H > 0 such that for every H ∈ (0, H] our IGN-BSC
sequence (xk) converges to x∗ := lim

t→∞
x(t) where x(t) is the IGN path emanating from x0.

Proof. Let us assume ‖F (x0)‖ > 0. Theorem 6.2 ensure the existence of a solution
x∗ of our equation F (x) = 0 such that x0 and x∗ are connected by the IGN path x(t).
Because JF (x) is invertible for all x ∈ G(x0), we have that x∗ is an isolate point, therefore,
there is a ε > 0 such that x∗ is the unique root of F or unique equilibrium point of the
Davidenko equation (6.3) in B(x∗, r) with

r = ε

[
1 +

ML

1− κ

]
where M is de�ned in Lemma 6.3. Let us �x θ ∈ (0, 1) and assume without loss of
generality that ε is su�cient small to satisfy

ωLMε ≤ 2θ(1− κ). (6.10)

Because x∗ = lim
t→∞

x(t), we can choose T∗ such that

‖x(t)− x∗‖ ≤
ε

2
for all t ≥ T∗ − 1. (6.11)

Note that ‖g(x(t))‖ > 0 for all t ∈ [0, T∗]. Otherwise, it follows that g(x0) = 0, which
implies F (x0) = 0 contrary to our assumption. Thus, we can choose ε̃ ∈ (0, ε) that
implies the existence of a constant ∆ε̃ > 0 such that

∆ε̃ ≤ ‖g(x)‖ for all t ∈ [0, T∗], x ∈ G(x0) with ‖x(t)− x‖ ≤ ε̃. (6.12)

Hypothesis (A4) yields the existence of constants γ, tγ that satis�es (6.2). It follows from
Lemma 6.5 that there is a constant H such that

tk = minBH(xk) ≤ t = min

{
tγ ,

2θ(1− κ)

ωM

}
for all H ∈ (0, H]. Let us assume without loss of generality (we can decrease H, it is
necessary) that

0 < H ≤ min

{
LM‖F (x0)‖, [γẽ2]

[T∗eLT∗ ]2[LM‖F (x0)‖]3

}
. (6.13)

Basically, the proof consists in two step:

(i) we prove that there is a k such that xk ∈ B(x∗, ε).

(ii) we prove that there is a k̃ ≥ k such that (xk)k≥k̃ ⊂ B(x∗, r) and (xk) converges to
x∗.
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(i) Let us �x H ∈ (0, H]. By virtue of Lemma 6.3, we can choose k depend on H
such that

T∗ − 1 ≤
k−1∑
i=0

ti ≤ T∗. (6.14)

Using once more Lemma 6.3, and the above equation, it follows

k

√
H

LM‖F (x0)‖
≤

k−1∑
i=0

ti ≤ T∗, (6.15)

therefore

k

√
H

LM‖F (x0)‖
≤ T∗,

which implies

k ≤ T∗

√
LM‖F (x0)‖

H
. (6.16)

In the following argument, it is proved that∥∥∥∥∥∥x
k−1∑
i=0

ti

− xk
∥∥∥∥∥∥ ≤ ε̃

2
(6.17)

Telescopic application of the triangle inequality and (6.9) yields,∥∥∥∥∥∥x
k−1∑
i=0

ti

− xk
∥∥∥∥∥∥ ≤

k−1∑
i=0

∥∥∥∥∥∥xi
k−1∑
j=i

tj

− xi+1

 k−1∑
j=i+1

tj

∥∥∥∥∥∥
≤

k−1∑
i=0

t2i
2
L‖g(xi)‖eLT∗ ,

(6.18)

since ti := minB(xi) ≤ tγ for all i ≤ k, we conclude from (6.2) and de�nition of ti that

γt2i ≤ ti‖h(ti, xi)‖ = H. (6.19)

Thereby,

t2i ≤
H

γ
. (6.20)

Subtitling (6.20) in (6.18), we obtain∥∥∥∥∥∥x
k−1∑
i=0

ti

− xk
∥∥∥∥∥∥ ≤

k−1∑
i=0

H

2γ
L‖g(xi)‖eLT∗

= k
H

2γ
LM‖F (x0)‖eLT∗

(6.16)

≤ T∗e
LT∗ [LM‖F (x0)‖]3/2

2γ

√
H ≤ ε̃

2
.
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Thus,

‖xk − x∗‖ ≤

∥∥∥∥∥∥x
k−1∑
i=0

ti

− xk
∥∥∥∥∥∥+

∥∥∥∥∥∥x
k−1∑
i=0

ti

− x∗
∥∥∥∥∥∥ ≤ ε̃

2
+
ε

2
= ε.

(ii) From Theorem 6.6, it follows that (xk) converges to x∗ and F (xk) converges to
zero. Using an argument analogous to Chapter 5 (page 65), we can guarantee that there

is a vicinity B
(

0,
H

LM

)
and k̃ ≥ k such that F (xk) ∈ B

(
0,

H

LM

)
and tk = 1 for all

k ≥ k̃. Thus, if k ≥ k̃ and de�ning c = 1− (1− θ)(1− κ) < 1, we obtain

‖xk−x∗‖ ≤ ‖xk−x∗‖+
k−1∑
i=k

‖xi+1−xi‖ ≤ ε+
M‖F (xk)‖

1− c
≤ ε+ ML

(1− θ)(1− κ)
< ε

[
1 +

ML

1− κ

]
,

which implies (xk)k≥k̃ ⊂ B(ε, r), and because x∗ is the only solution of F (x) = 0 in
B(x∗, r) it follows that x∗ = x∗.

�

Remark 6.9. In contrast to Lemma 5.1 and Lemma 5.4 presented in Chapter 5, we can
conclude that IGN-BSC is an essentially a�ne covariant strategy since

tk = min
({
t ∈ [0, 1] | H = t‖g(xk + tδxk)− g(xk)‖ = t‖h(xk, t)‖

}
∪ {1}

)
,

which means that t‖h(xk, t)‖ is a�ne covariant because (A2) and (A4) are covariant
properties, and H given in the above Theorem is a constant that depends on (A1) (con-
travariant property) and (A2). Thus, the damped factor tk in IGN-BSC startegy does not
depend on transformations on the images spaces of F (x).

Algorithm Realization

In the following, we explain how to compute at every iteration xk the damping factor
tk = minBH(xk) where tk = 1 or tk is the smallest solution of

tk‖h(xk, tk)‖ = H.

As described in [70], a rigoruos approach is based on monotone iteration [35] for which
we require an overestimate L′ of the Lipschitz constant L de�ned in (A2). From [70,
Lemma 10.1], it follows that

[tk]j+1 =

√
[tk]

2
j +

H − [tk]j‖h(xk, [tk]j)‖
L′‖g(xk)‖

.

Furthermore, from [35], we conclude ([tk]j) is monotonically increasing and either con-
verge in [0, 1] or leaves the interval in a �nite number of step. Because �nding an adequate
estimate L′ of L is not of all an easy task, this rigorous approach is not implemented.
Instead, Potschka [70, Secction 10.2] implements a simple root �nding procedure for ap-
proximately solving H = t‖h(xk, t)‖ using a bracketing procedure with exponentially
smoothed step size prediction. Basically, we �nd a tk that satis�es

tk‖h(xk, tk)‖ ∈ [H l, Hu] where H l < H and H < Hu are close to H, or

tk = 1 if t‖h(xk, t)‖ < H for all t ∈ [0, 1]
(6.21)
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with step size prediction, which is proposed by [70, Section 10.2], given by

[tk]0 = min

(
1, tk−1

[
α+ (1− α)

H

tk−1‖h(xk, tk−1)‖

])
where α ∈ [0, 1] is the smoothing factor. The advantage of working with this strategy
is that often the step size prediction satis�es (6.21) and thus tk = [tk]0. It is not the
case then with a few number of iteration and thus almost no extra computational ef-
fort in term of the residual evaluation F (xk + [tk]iδxk) and the increment evaluation
g(xk + [tk]iδxk) we obtain a damping IGN-BSC factor tk = [tk]i that satis�es (6.21).

Discussion: In the following, we justify why this IGN-BSC strategy is adequate for
a globalization of the local IGN approach introduced in Chapter 2. We have proved in
Chapter 3 that there is a matrix Mκ(x) such that gκ(x) = Mκ(x)F (x), and δxIGNk =
−gκ(xIGNk ) (see Lemma 3.5). Nevertheless, we cannot ensure that gκ(x) satis�es (A2)
since δxIGNk depends on the number of inner iteration m necessary for ensuring that
stopping criterion (2.15) is valid, which may chance from one k-iteration to another.
However, a small modi�cation δx̃k of the IGN step δxk de�ned in (S3) allows to conclude
that (A2) is valid. Let us de�ne the following IGN step

δx̃k := (1− αk) [δxk]
m−1 + αk [δxk]

m ,

where [δxk]
m solves (2.14) via LSQR or LSMR with stopping criterion (2.15) but [δxk]

m−1

does not ful�ll (2.15), and αk is the smaller value in [0, 1] such that ϕ(α) = 0 where

ϕ(α) := ‖JTf (xk) [f(xk) + Jf (xk)δx̃k] ‖
− κ‖JTf (xk)f(xk)‖+ κGN

∥∥[JTf (x)Jf (x)
]
δx̃k
∥∥ ,

and the existence of such a value αk ∈ [0, 1] is guaranteed by virtud of the vale inter-
mediate Theorem since ϕ(1) < 0, ϕ(0) > 0 and ϕ(α) is continuous. It turns out that
de�ning g̃(xk) = −δx̃k, we obtain that the hypotheses (A1), (A2), and (A3) are valid for
g(x) := g̃(x). Therefore, if (A4) is valid for the above g̃(x), all the results of this Chapter
are valid, which means that

x∗ := lim
t→∞

x(t) = lim
k→∞

x̃k

where x(t) is the IGN path emanating from x0, and x̃k+1 = x̃k + minBH(x̃k)δx̃k.
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Chapter 7

Applications and numerical results

7.1 Parameter Identi�cation of nonlinear steady-state dif-
fusion equation

Given a measuring data function z, we are interested in identifying the unknown coe�-
cient c(x, y) ∈ R of the nonlinear steady-state di�usion equation

−∇ · (c(x, y)∇u(x, y)) = f(x, y), ∀(x, y) ∈ Ω ⊆ R2, (7.1)

where Ω := B((1, 1); 1), c(x, y) ∈ H1(Ω), u(x, y) ∈ H1
0 (Ω) and with Dirichlet condition:

u(x, y) = 0,∀(x, y) ∈ ∂Ω.

The above partial di�erential equation (7.1) may describe the �ow of a �uid (e.g.,
groundwater) through some medium with permeability c(x, y).

Statement: If the above problem is formulated as a constrained optimization prob-
lem using the output least squares methods with a particular H1(Ω) regularization and
a penalty term, then this particular problem is well posed in the sense of Hadamard, i.e.;

1. The problem has at least one solution.

2. The solution is locally unique,

3. The solution depends continuously on the data.

In this section, we explain brie�y the result given by Jun Zou [84], which ensures
that the above statement is valid. Later, we use a �nite element method to discretize
the above problem, which yields a sequence of unconstrained minimization problems.
De�ning the following set

K :=
{
c(x, y) ∈ L1(Ω) | ‖c(x, y)‖H1(Ω) <∞ and α1 ≤ c(x, y) ≤ α2, a.e.

}
, (7.2)

we formulate our parameter identi�cation problem as the following constrained mini-
mization problem introduced by Jun Zou [84],

minimize
c∈K,u∈H1

0 (Ω)
J(c) =

1

2

∫
Ω
c‖∇u−∇z‖22d(x, y) +

γ

2
‖u− z‖2H1

0 (Ω) +
ε

2

∫
Ω
P−c d(x, y) (7.3a)

83
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subject to
∫

Ω
c∇u · ∇ϕd(x, y) =

∫
Ω
fϕd(x, y) for all ϕ ∈ H1

0 (Ω). (7.3b)

where the function z(x, y) ∈ H1
0 (Ω) is the measured data, γ > 0 is a regulation weights,

and ε > 0 is a penalty parameter with,

P−c (x, y) = [c(x, y)− α1]2− + [α2 − c(x, y)]2−, where [y]− = max{−y, 0}.

Discretization

In the following, the problem (7.3) is discretized using a piecewise linear �nite element
method and then the constrained �nite element minimization problem is reduced to a
sequence of unconstrained minimization subproblems. Let us consider a triangulation
Th = {P, E , T ,Vh} of Ω, where

P denotes the set of all nodal points of the triangulation, i.e.,
P = {e1, e2, · · · , enE , v1, v2, · · · , vnP} .

E denotes the set of all nodes of the triangulation that are in ∂Ω, i.e.,
E = P ∩ ∂Ω = {e1, e2, · · · , enE} .

T denotes the set of all triangles of our triangulation, i.e.,
T = {41(v1, u1, w1),42(v2, u2, w2), · · · ,4nT (vnT , unT , wnT )}, where {vi, ui, wi} ⊆ P
denotes the vertices of the triangle 4i(vi, ui, wi) ∈ T .

Xh denotes the classical test function generator of C(Ω), which are de�ned as

Xh =
{
χ41 , χ42 , · · · , χ4nT

}
where χ4i(x) = 1 for all x ∈ 4i and

χ4i(x) = 0 for all x ∈ Ω \ 4i.

M denotes the set of all triangle centers of T , i.e.,
M = {m41 ,m42 , · · ·m4nT }.

Vh denotes the classical test function generator of H1(Ω), i.e., ϕ ∈ Vh if and only if there
is v ∈ P such that ϕ(w) = δv(w) for all w ∈ P and ϕ

∣∣
4 ∈ P1 for all 4 ∈ T .

Vh =
{
ϕe1 , ϕe2 , · · · , ϕenE , ϕv1 , ϕv2 , · · · , ϕvnP

}
.

◦
Vh denotes the classical test functions generator of H1

0 (Ω), i.e.,
◦
Vh =

{
ϕv1 , ϕv2 , · · · , ϕvnP

}
.

Given vi ∈ P, let us consider the set Dϕvi
of all triangle in T such that one of its

vertices is vi, i.e.,

Dϕvi
=
{
4i1(vi, vi1 , vi2),4i2(vi, vi2 , vi3), · · · ,4in̂−1

(vi, vin̂−1
, vin̂i ),4in̂i

(vi, vin̂i , vi1)
}
.

With the above preparation we de�ne the standard nodal value interpolation function

uh associated with the �nite element space span(
◦
Vh) as,

uh =

nP∑
i=1

uiϕvi where u = (uh(v1), uh(v2), · · · , uh(vnP )) (7.4)
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where the derivative ∇uh is given by

∇uh =

nP∑
i=1

ui∇ϕvi =

nP∑
i=1

ui
∑

4∈
◦
Dϕvi

∇ϕvi
∣∣
4. (7.5)

Let Rh : H1
0 (Ω)→

◦
Vh be the projection operator on

◦
Vh de�ned by

Rh(g) =

nP∑
i=1

g(vi)ϕvi ,

and let us consider the interpolation function ch associated with the �nite element space
span(Xh) such as,

ch =

nT∑
i=1

ciχ4i where c = (ch(m41), ch(m42), · · · , ch(m4nT )). (7.6)

Consequently, the discrete constrained subset Kh of K (see (7.2)) is de�ned by,

Kh =

{
nT∑
i=1

ciχ4i | α1 ≤ ci ≤ α2 for all i ∈ {1, 2, · · · , nT }

}
,

Kch = {c ∈ RnT | α1 ≤ ci ≤ α2 for all i ∈ {1, 2, · · · , nT }} .

The discretization of the minimization problem (7.3)

De�ning P−c (x, y) =

nT∑
i=1

[ci − α1]2−χ4i(x, y) + [α2 − ci]2−χ4i(x, y), and

Jh(c, u) =
1

2

∫
Ω
ch‖∇uh −∇Rh(z)‖22d(x, y) +

γ

2
‖uh −Rh(z)‖2H1

0 (Ω) +
ε

2

∫
Ω
P−c d(x, y),

the discretization of the minimization problem (7.3) is given by,

minimize
c∈Kch,u∈R

nP
Jh(c, u) (7.7a)

subject to
∫

Ω
ch∇uh · ∇ϕd(x, y) =

∫
Ω
fϕd(x, y) for all ϕ ∈

◦
Vh. (7.7b)

Theorem 7.1 (Jun Zou [84]). The following are valid,

(i) There is at least one local minimizer to the optimization problem (7.3).

(ii) There is at least one minimizer to the optimization problem (7.7).

(iii) If the sequence (ch) in Kh converges to some c ∈ K as h tends to zero, then the
sequence (uh) de�ning by (7.7b) converges to u weakly in H1

0 (Ω) and

lim
h→0

∫
Ω
ch‖∇uh −∇Rh(z)‖22d(x, y) =

∫
Ω
c‖∇u−∇z‖22d(x, y).
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(iv) If the sequence (cn) in K converges to some c ∈ K in L1(Ω) as n tends to in�nity,
then the sequence (un) de�ning by (7.3b) converge to u weakly in H1

0 (Ω) and

lim
n→∞

∫
Ω
cn‖∇un −∇z‖22d(x, y) =

∫
Ω
c‖∇u−∇z‖22d(x, y).

(v) Let (c∗n) be a sequence of local minimizers of the discrete minimization problem
(7.7), then each subsequence of (c∗n) has a subsequence converging to one local min-
imizer of the continuous problem (7.3).

Unconstrained Minimization Problem

Let us consider the following unconstrained optimization problem

minimize
c∈Kch

J εh(c) := J̃h(c) +
ε

2

∫
Ω
P−c d(x, y) (7.8)

where the functional J̃h is de�ned as following

J̃h(c) =
1

2

∫
Ω
|ch|‖∇uh −∇Rh(z)‖22d(x, y) +

γ

2
‖uh −Rh(z)‖2H1

0 (Ω)

and uh satis�es the following linear system of equations,∫
Ω
|ch|∇uh · ϕvid(x, y) =

∫
Ω
fϕvid(x, y) for all i ∈ {1, 2, · · · , nP}. (7.9)

Remark 7.2. In (7.8), we use absolute value of ch in the functional J̃h, but in (7.7a)
was not taking into account, the principal reason for this change is to ensure that uh that
satis�es (7.7b) is well de�ned for each ch. If we keep the original ch instead of |ch|, uh
may be unde�ned, say when ch is very close to zero or negative in some subregion.

Theorem 7.3 (Jun Zou [84]). Let (εn) be a strictly monotone increasing sequence con-
verging to in�nity, and (c∗εn) be a local minimizer of (7.8), then each subsequence of (c∗εn)
has a subsequence converging to a local minimizer of (7.7).

Nonlinear least-squares subproblem

In this part, we explain how from (7.8), we obtain a nonlinear least squares problem.
First, we obtain from (7.9) a system of linear equation, whose solution de�nes uh. Later,

we de�ne a vector �eld function f(c) such that T (c) =
1

2
‖f(c)‖22 = J εh(c).

Reducing (7.9) to a system of linear equation

from (7.4) and (7.6), it follows

|ch|∇uh · ∇ϕvi =

nP∑
j=1

uj
∑

4s∈Dϕvj

|cs|∇ϕvj
∣∣
4s · ∇ϕvi

∣∣
4s

substituting the above information in (7.9), we obtain∫
Ω
|ch|∇uh · ∇ϕvi =

nP∑
j=1

uj
∑

4s∈Dϕvj

|cs|
∫
4s
∇ϕvj

∣∣
4s · ∇ϕvi

∣∣
4s .
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De�ning the matrix K1(c) ∈ RnP×nP and F ∈ RnP such that

(K1(c))ij =
∑

4s∈Dϕvj

|cs|
∫
4s
∇ϕvj

∣∣
4s · ∇ϕvi

∣∣
4s ,

and

Fi =

∫
Ω
fϕvid(x, y),

we obtain from the de�nitions of M1(c), F , and (7.9) that u solve the following system
of linear equations,

K1(c)u = F .

Writing (7.8) as a level function T (c) =
1

2
‖f(c)‖22. For such purpose, we work with

every term of our functional (7.8) where

J1(c) =
1

2

∫
Ω
|ch|‖∇uh −∇Rh(z)‖22d(x, y),

J2(c) =
γ

2

∫
Ω
‖uh −Rh(z)‖22d(x, y) +

γ

2

∫
Ω
‖∇uh −∇Rh(z)‖22d(x, y),

J3(c) =
ε

2

∫
Ω

nT∑
i=1

[ci − α1]2−χ4id(x, y), and

J4(c) =
ε

2

∫
Ω

nT∑
i=1

[α2 − ci]2−χ4id(x, y).

Functional J1:

∇uh −∇Rh(z) =

nP∑
i=0

(ui − zi)

 ∑
4s∈Dϕvi

∇ϕvi
∣∣
4s


therefore,

|ch| [∇uh −∇Rh(z)] =

nP∑
i=0

(ui − zi)

 ∑
4s∈Dϕvi

|cs|∇ϕvi
∣∣
4s

 .
De�ning the sparse matrix M1(c) ∈ RnP×nP such that

(M1(c))ij =

 ∑
4s∈Dϕvi

|cs|∇ϕvi
∣∣
4s

 ·
 ∑
4s∈Dϕvj

∇ϕvj
∣∣
4s

 ,
we obtain

J1(ch) =
1

2
(u− z)TM1(c)(u− z).

Let us assume that |cs| > 0 for all s ∈ {1, 2, · · · , nP} then by construction M1(c) is
symmetric and positive de�ne, which means that we can apply the Cholesky factorization,



88 Chapter 7. Applications and numerical results

i.e., there is a lower triangular matrix L(c) ∈ RnP×nP such that L(c)TL(c) = M1(c).
De�ning f1(c) = L(c)[u− z], then

1

2
‖f1(c)‖22 = J1(ch).

Functional J2: Let us de�ne the mass matrix M ∈ RnP×nP and the Sti�ness S ∈
RnP×nP of triangulation T as follow

Mij =

∫
Ω
ϕviϕvj and Sij =

∫
Ω
∇ϕvi · ∇ϕvj .

Because the above matrices are positive de�ned, we apply the Cholesky factorization to
both of them, therefore there are lower triangular matrices LM ∈ RnP×nP and LS ∈
RnP×nP such that LTMLM = M and LTSLS = S. Since

uh −Rh(z) =

nP∑
i=0

(ui − zi)ϕvi

and

∇uh −∇Rh(z) =

nP∑
i=0

(ui − zi)

 ∑
4s∈Dϕvi

∇ϕvi
∣∣
4s

 ,
then we conclude

‖√γLM [u− z]‖22 + ‖√γLS [u− z]‖22 = J2.

De�ning f2(c) =
√
γ
[
LTM , L

T
S

]T
(u− z), we obtain

1

2
‖f2(c)‖22 = J2.

Functional J3 and J4: From (7.6), we know that

Rh(c) =

nT∑
i=1

ciχ4i .

De�ning the diagonal matrix M3 ∈ RnT ×nT , such that

(M3)ii =

∫
Ω
χ4id(x, y),

we obtain

J3(c) =
ε

2
[c− α1]T−M3 [c− α1]− and J4(c) =

ε

2
[α2 − c]T−M3 [α2 − c]−

where α1, α2 ∈ RnT such that α1 = (α1, α1, · · · , α1) and α2 = (α2, α2, · · · , α2). De�ning
f3(c) =

√
ε[
√
M3(c− α2),

√
M3(α1 − c)]T , it follows that

1

2
‖f3(c)‖22 = J3(c) + J4(c).

De�ning the vector �eld: Let us consider the following vector �eld

f(c) = [f1(c), f2(c), f3(c)]T

then by construction our problem (7.8), it is reduced to minimize the following,

min
c∈Kch

1

2
‖f(c)‖22 =: T (c) with F (c) := ∇T (c). (7.10)
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Figure 7.1: An automatic generated triangulation of B((1, 1); 1) with maximum edged
size 0.1, 485 nodes (nP) in the interior of Ω, 64 nodes (nE) in the rand of Ω, and 1032
triangles (nT ).

Experiment I.

Let us de�ne the projection operator Rh : L1(Ω)→ span (Xh) such that

Rh(c) =

nT∑
i=1

c(m4i)χ4i ,

and let us choose for our elliptic di�erential equation (7.1) the function

f(x, y) = 1− x2 − y2,

which has as exact solution

ctrue(x, y) = 0.1 + 0.9
[
0.5 + 0.5 sin

(
10π

√
x2 + y2

)]
.

We choose as observed data z = Rh(ctrue) + 10−2Rh(ϕ), where ϕ is the standard nor-
mal distribution. The penalty parameter ε and the step size control parameter H are
taken to be ε = 104 and H = 0.5 max (1, ‖δc0‖). The �nite element triangular mesh is
generated using an automatic Delanuary mesh generation approach [36], which provides
a triangulation mesh with maximum edged size 0.1, 485 nodes (nP) in the interior of Ω,
64 nodes (nE) in the rand of Ω, 1032 triangles (nT ), therefore our variable c ∈ R1032 and
f(c) ∈ RnP+2nT , we show such a mesh in Figure 7.1. The lower and upper bound α1

and α2 in the constrained set Kh are taken to be 10−4 and 1 to ensure the identifying
parameter lies in the above range. The initial guess c0 is the constant one everywhere
and the termination criterion for the outer iterates is ‖F (ck)‖ ≤ 10−4. The damped
inexact Gauss-Newton sequence (ck) is de�ned by

ck+1 = ck + tkck where tk = minBH(ck), and δck := [δck]ikmax

satis�es the following conditions:

(1) [δck]i solves approximately the linear equation[
JTf (ck)Jf (ck)

]
∆ck = −F (ck) for all i = 0, 1, · · · , ikmax.
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(2) De�ning the inner residual error JTf (ck)[rk]i := JTf (ck)[δck]i + F (ck), we obtain
that [δck]ikmax

ful�ll the stopping criterion (2.15), but [δck]
i do not for all i =

0, · · · , ikmax − 1.

We compare the performance of three di�erent IGN methods:

• IGN-LSQR, which uses LSQR as numerical linear algebra for computing the IGN
step δck with stopping criterion (2.15), κ = 0.55 and κGN = 0.5.

• IGN-LSMR, which uses LSMR as numerical linear algebra for computing the IGN
step δck with stopping criterion (2.15), κ = 0.55 and κGN = 0.5.

• IGN-CGS, which uses conjugate gradient squared (CGS) method [63] as numerical
linear algebra for computing the IGN step δck with stopping criterion (2.15), κ =
0.1 and κGN = 0. Note that this approach does not �x with the theory presented
in this thesis, but this way to compute the IGN step was proposed in [2]. Thus,
we want to compare its performance with the new IGN methods (IGN-LSQR and
IGN-LSMR) proposed in this thesis.

Inner Iteration: We start the analysis saying that IGN-LSMR requires for most of
the outer iterations less inner iterations ikmax for computing the IGN step [δck]ikmax

than
IGN-LSQR and IGN-CGS. The reason is that in LSMR the inner residual ‖JTf (ck)[rk]i‖
is monotonically decreasing at every inner iteration i. Thus, we can ensure that our
stopping criterion (2.15), i.e.,

‖JTf (ck)[rk]i‖ ≤ κ‖F (ck)‖ − κGN‖
[
JTf (ck)Jf (ck)

]
[δck]i‖,

which implies by virtue of Lemma 2.8 that

‖JTf (ck)[rk]i‖ ≤ (κ− κGN )‖F (ck)‖,

must be earlier satis�ed in IGN-LSMR. On the other hand, IGN-CGS is for most of the
outer iterations the most computational expensive IGN method of the above. The reason
is that in CGS the minimum error

‖∆ck − [δck]i‖[JTf (ck)Jf (ck)] where ‖y‖[JTf (ck)Jf (ck)] =
(
yT
[
JTf (ck)Jf (ck)

]
y
)1/2

is monotonically decreasing at every inner iteration i, but we cannot guarantee here that
the inner residual is monotonically decreasing. Thus, it is needed more inner iterations
in order to ful�ll (2.15) with κ = 0.05 and κGN = 0, i.e.,

‖JTf (ck)[rk]i‖ ≤ 0.05‖F (ck)‖.

Despite IGN-LSMR and IGN-LSQR use the same stopping criterion, we obtain that
IGN-LSQR requires more inner iterations for computing the IGN step since in LSQR
‖[rk]i‖ is monotonically decreasing but ‖JTf (ck)[rk]i‖ is not. Clearly, Fig. 7.2c shows
that the number of inner iterations necessary for computing the IGN-LSMR step δck
is modestly small in comparison to IGN-LSQR and IGN-CGS. Indeed, IGN-LSMR re-
quires less than 30 (3%) LSMR-inner iterations for computing δck, which represents a
huge savings in comparison with the n = 1032 (100%) inner iterations that requires the
exact GN method for computing the GN step ∆ck.
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Speed of Convergence: The six largest singular values of Jf (ck) are given by

IGN-LSMR Jf (c43) 1.0333, 0.7774, 0.7585, 0.6616, 0.6133, 0.5951.

IGN-CGS Jf (c45) 1.0333, 0.7766, 0.7584, 0.6615, 0.6134, 0.5947.

IGN-LSQR Jf (c46) 1.0336, 0.7774, 0.7586, 0.6617, 0.6131, 0.5944.

and the six smallest singular values of Jf (ck) are given by

IGN-LSMR Jf (c43) 6.68(10)−11, 1.6(10)−11, 1.16(10)−11, 2.7(10)−12, 0, 0.

IGN-CGS Jf (c45) 4.6(10)−11, 1.4(10)−11, 5.2(10)−12, 8.8(10)−15, 0, 0.

IGN-LSQR Jf (c46) 9.3(10)−10, 2.8(10)−10, 7.8(10)−12, 0, 0, 0.

Thus, we can expect that the above IGN methods be slow as we can appreciate in
Fig. 7.2b. Nevertheless, IGN-LSMR reaches with just 43 outer iteration and less than 30
inner iterations for computing the IGN step a statistically stable solution (see Fig. 7.3).
On the other hand, note that from Fig. 7.2c and the above smallest singular values, we
can conclude that IGN-LSMR requires less inner iterations for computing the IGN step
in most of the outer iterations, and in some outer iterations IGN-LSMR requires more
inner iterations for computing the IGN step. The reason is that there is some outer iter-
ations in IGN-LSQR and IGN-CGS where Jf (ck) is rank de�cient, which means that the
Krylov subspaces Kki

([
Jf (ck)

TJf (ck)
]
, F (ck)

)
in IGN-LSQR and IGN-CGS has lower

dimension than the Krylov subspaces Kki
([
Jf (ck)

TJf (ck)
]
, F (ck)

)
in IGN-LSMR, and

therefore it is necessary less inner iterations for computing the IGN step in IGN-LSQR
and IGN-CGS.

Di�erence between IGN and GN step: A natural question when we work with
IGN methods is: How inaccurate must the IGN step be in order to ensure convergence
of the IGN method?. Let us de�ne

κk :=
‖Jf (ck)

TJf (ck)δck + Jf (ck)
T f(ck)‖

‖Jf (ck)T f(ck)‖
,

and note that κk is measured how far away the IGN step δck is from the GN step ∆ck
since

Jf (ck)
TJf (ck)∆ck = −Jf (ck)

T f(ck),

which implies

κk :=
‖δck −∆ck‖[Jf (ck)T Jf (ck)]

‖∆xk‖[Jf (ck)T Jf (ck)]
where ‖y‖[Jf (ck)T Jf (ck)] =

√
cTk [Jf (ck)TJf (ck)] ck.

In Lemma 2.8, we prove that the stopping criterion (2.15) implies that

κk ≤ κ− κGN ,
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which means that such a stopping criterion provides implicitly an upper bound that
predict how inaccurate our IGN step δck must be in order to produce convergence of
the IGN sequence (ck). Fig. 7.2e shows that the relative error between IGN step and
the GN step for the above IGN methods is not bigger than 0.05 using ‖y‖[Jf (ck)T Jf (ck)]
as norm. We �nalize this section with another experiment that uses the IGN-LSMR
approach described in the above experiment I with κ = 0.9. We want to show that
the numerical results that we obtain in IGN-LSMR with κ = 0.55 do not depend on
κ ∈ (κGN , 1). Indeed, if κ is close to one, then the number of inner LSMR-iteration
necessary for computing the IGN step δck decrease, but the number of outer iteration k
necessary for satis�es our outer stopping criterion ‖F (ck)‖ ≤ 10−4 increase, the results
obtained in this experiment are presented in Fig 7.4. We did not perform IGN-CGS with
κ = 0.4 because this method does not converge.

7.2 Large-Scale Bundle Adjustment Problems

We start with a quote form [2] �Recent work in Structure from Motion (SfM) has demon-
strated the possibility of reconstructing geometry from large-scale community photo col-
lections. Bundle adjustment, the joint non-linear re�nement of camera and point param-
eters, is a key component of most SfM systems, and one which can consume a signi�cant
amount of time for large problems. As the number of photos in such collections contin-
ues to grow into the hundreds of thousands or even millions, the scalability of bundle
adjustment algorithms has become a critical issue.�

Given a set of measured image feature locations and correspondences, the goal of
Bundle adjustment is to �nd 3D point positions and camera parameters that minimize
the projection error. This optimization problem is formulated as a nonlinear least-squares
problem, where the error is the squared L2-norm of the di�erence between the observed
feature location and the projection of the corresponding 3D point on the image plane of
the camera.

Camera Model

In [2] is used a pinhole camera model where the parameters to be estimated correspond
to the camera c are (xc, yc, zc) for the rotation matrix R(xc, yc, zc) ∈ R3×3, a translation
vector tc ∈ R3, a focal length fc ∈ R and two radial distortion parameters kc1, kc2 ∈ R.
The formula for projecting a 3D point v into a pixel coordinates is:

Pc(v) = R(xc, yc, zc)v + tc (conversion from world to camera coordinates)

pc(v) = − 1

(Pc(v))3

[(Pc(v))1 , (Pc(v))2] (perspective division) where (Pc(v))i

is the entry i of Pc(v) ∈ R3.

Pc(v) = fcrc(pc(v))pc(v) (conversion to pixel coordinates)

rc(p) is a function that computes a scaling factor to undo the radial distortion and is
de�ned by



7.2 Large-Scale Bundle Adjustment Problems 93

(a) T (ck) vs. outer-iteration (b) ‖F (ck)‖ vs. outer-iteration

(c) Inner-iteration vs. outer-iteration (d) Step size tk vs. outer-iteration

(e) κk vs. outer-iteration (f) Inner Residual Error vs. outer-iteration

Figure 7.2: Experiment I. Parameter identi�cation of the nonlinear steady-state di�er-
ential equation (7.1) with f = 1−x2−y2. We solve the discretization unconstrained min-
imization sub-problem (7.10) that estimate our parameter on the �nite element subspace
generated by piecewise constant function with a regulation weight γ = 10−4, penalty
parameter ε = 104, triangulation mesh given by Fig. 7.1, and outer stopping criterion
‖F (ck)‖ ≤ 10−4. The IGN step is calculated using three di�erent numerical linear algebra
with stopping criterion (2.15) that de�nes three di�erent IGN methods: • ING-LSQR
uses LSQR with κ = 0.55, and κGN = 0.5, • IGN-LSMR uses LSMR with κ = 0.55, and
κGN = 0.5, • IGN-CGS uses CGS with κ = 0.05, and κGN = 0.

rc(p) = 1 + kc1‖pc‖2 + kc2‖pc‖4.
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(a) ctrue (b) IGN-LSMR cestimate

Figure 7.3: Experiment I. ctrue vs. cestimate. In each �gure is drawn the triangulation
mesh Fig. 7.1 in the plane xy and the color bar represents the value of the parameter on
the triangle centers.

(a) T (ck) vs. outer-iteration (b) ‖F (ck)‖ vs. outer-iteration

(c) Inner-iteration vs. outer-iteration (d) IGN-LSMR cestimate

Figure 7.4: Performance of three di�erent IGN methods: • ING-LSQR with κ = 0.55,
and κGN = 0.5, • IGN-LSMR with κ = 0.9, and κGN = 0.5, • IGN-CGS with κ = 0.05,
and κGN = 0.

Pc gives a projection in pixels where the origin of the image is the center of the image,
the positive x-axis points right, and the positive y-axis points up (in addition, in the
camera coordinate system, the positive z-axis points backwards, so the camera is looking
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down the negative z-axis).

R(xc, yc, zc) is given by a particular Rodrigues's rotation matrix where (xc, yc, zc)
describes the axis of rotation about which v rotates by the angle θc =

√
x2
c + y2

c + z2
c

according to the right hand rule. De�ning the following matrix,

K =

 0 −zc yc
zc 0 −xc
−yc xc 0


the Rodrigues's rotation matrix in this case is given by

R(xc, yc, zc) = I +
sin(θc)

θc
K +

(1− cos(θc))

θ2
c

K2 where θc =
√
x2
c + y2

c + z2
c

Data

We experimented with two sources of data taken from
http://grail.cs.washington.edu/projects/bal/

• Images captured at a regular rate using a Ladybug camera mounted on a moving
vehicle. Image matching was done by exploiting the temporal order of the images
and the GPS information captured at the time of image capture.

More information about the data setting it is available in [2, 1, 76, 55].

The data format in this problem is provided as a matrix D of four column where the
�rst row it is stored the following information,

D(1, 1) the total number of cameras to be used.

D(1, 2) the total number of points v to be estimated.

D(1, 3) the total number of pixel coordinates observed.

Therefore, the column one contains all the information referring to camera index, column
two is related to all the information referring to the points index, the columns four and
�ve are related to the pixel points that were already observed. Thus, column four for the
coordinate x of our pixel point and column �ve for the coordinate y. Using the above
information we work with the following group of cameras C = {c1, c2, · · · , cD(1,1)}, the
group of points in 3D V = {v1, v2, · · · , vD(1,2)} to be estimated, and group of observa-
tions O = {O1, · · · ,OD(1,3)}. The row i ∈ {2, · · · , D(1, 3) + 1} of D stores the following
information,

D(i, 1) the camera index with which the pixel (D(i, 3), D(i, 4)) was generated.

D(i, 2) the index of a point vD(i,2) ∈ V to be estimated, which approximately
generated through the camera cD(i,1) the pixel information (D(i, 3), D(i, 4)).
In other words, PcD(i,1)

(vD(i,2)) ≈ (D(i, 3), D(i, 4)).
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Residual Function f(x)

We de�ne our residual function f(x) using the data information D described in the
above section where the variable vector was stored as in [2], i.e., x has a block structure
x = [y1, y2, · · · , yD(1,1), v1, v2, · · · vD(1,2)] where yi correspond to nine parameter related
to the camera ci, i.e., yi = (xci , yci , zci , t

ci
1 , t

ci
2 , t

ci
3 , fci , k

ci
1 , k

ci
2 ) and vj = (vj1, v

j
2, v

j
3) corre-

spond to the point parameters.

We de�ne our residual function as f(x) = (f1(x), f2(x), · · · , fD(1,3)
(x)) where

fi(x) = PcD(i+1,1)
(vD(i+1,1))

T − (D(i+ 1, 3), D(i+ 1, 4))T .

then our bundle adjustment problem is reduced to solve the following optimization prob-
lem,

minimize T (x), where T (x) =
1

2
‖f(x)‖22. (7.11)

Let Jf (x) be the Jacobian of f(x), then our damped IGN-BSC sequence (xk) is gen-
erated using (S3) with tk = minBH(xk), where H = Hrel max (1, ‖δx0‖). Clearly, the
matrix is sparse since in fi there is not a single term that includes two or more cameras
or point blocks. We use LSMR for generated our Inexact Gauss-Newton step δxk with
stopping criterion (2.15).

One of the challenges of this particular problem is that the Jacobian Jf (xk) is rank
de�cient at every iteration, which means that the dimension of our Krylov subspace
Kn
(
JTf (xk)Jf (xk), J

T
f (xk)f(xk)

)
is smaller than n, and thus the inner iteration [δxk]i

may stagnate at zero, for an example of such a behavior see [16, Example 4.1]. In order
to avoid this scenario we introduce a regularization term when we compute our inexact
Gauss-Newton step, thus, instead of solving approximately via LSMR the following linear
least squares problem

min
∆x

1

2
‖Jf (xk)∆xk + f(xk)‖22, (7.12)

we solve
min
∆x

1

2
‖Jf (xk)∆xk + f(xk)‖22 + γ‖D(xk)∆xk‖22 (7.13)

where D(xk) is the square root of the diagonal of the matrix JTf (xk)Jf (xk) and γ > 0

represents a parameter such that H(xk) = JTf (xk)Jf (xk)+γD(xk)
TD(xk) is positive def-

inite, which is a typical regularization term using in the Levenberg Marquardt Algorithm
[63]. In our case, we have been keeping γ �xed at every iteration because it is su�cient
to add a regularization term such that JTf (xk)Jf (xk)+γD(xk)

TD(xk) is positive de�nite.

Experiment I

The Ladybug Dataset were taken from http://grail.cs.washington.edu/projects/bal/ with
�le name problem-1723-156502-pre.txt.bz2, which is a problem with 1723 cameras, 156502
points, and 678718 pixel observations, therefore the total number of parameters to be
estimated is n := 1723 × 9 + 156502 × 3 = 485013 and the total number of residual
errors is m := 2 × 678718 = 1357436. Thus, in this case the Jacobian matrix size is
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1357436 × 485013. We �x the following parameters, κGN = 0.2, κ = 0.3, γ = 0.01, the
initial guess is taken from problem-1723-156502-pre.txt.bz2 and H = 0.3∗max (1, ‖δx0‖).
We use as outer stopping criterion

‖JTf (xk)[Jf (xk)δxk + f(xk)]‖ < 0.5.

At every iterate xk we use the scaling matrix Dk = diag(dk1, · · · , dkn) [62, Seccion 6,
Equation (6.3)] where

d0
i := ‖Jf (x0)ei‖,
d1
i := max{‖Jf (x0)ei‖, ‖Jf (x1)ei‖},
...
dki := max{‖Jf (xk−1)ei‖, ‖Jf (xk)ei‖}.

since some parameters (e.g. distortion) are up to 20 orders of magnitude more sensitive
than others (e.g. rotations). The goal of this experiment is to show that the new
damped IGN-BSC approach performs well despite this problem does not �x with the
theory presented in Chapter 6. The results are presented in Fig. 7.5 and 7.6. As linear
iterative solver for computing the IGN step we choose LSMR, which required less than
35 (less than 1%) inner iterations (see Fig. 7.5b) for computing our IGN step despite
the GN method requires in this example 485013 (100%) inner iterations for computing
the GN step. Fig. In 7.5e is measured how inexact the IGN step δxk is in comparison
with the GN step ∆xk since

H(xk)∆xk = −F (xk), and H(xk)δxk = −F (xk) + JTf (xk)rk

where rk = Jf (xk)δxk + f(xk) which implies

JTf (xk)rk = H(xk)[∆xk − δxk],

thus, if ‖JTf (xk)rk‖ = 0, then ∆xk = δxk. As we observe, Fig. 7.5e shows than the
inner residual error is decreasing from ‖JTf (x0)r0‖ = 1.338533 ∗ 103 to ‖JTf (x28)r28‖ =

6.968297 ∗ 10−1. A important question is: How the inacuracy of our IGN step δxk does
the convergence rate of our damped IGN-BSC approach in�uence?, the answer is given
in Fig. 7.5b in where we observe that the speed of convergence of the outer iterates are
not slow since with just 28 outer iteration we decrease from 5.4 ∗ 1013 to 1.4 ∗ 1008. This
result allows to say that it is possible to solve the inner subproblems with low accuracy
without reducing the seep of convergence of the outer iteration dramatically. Finally Fig.
7.5g and Fig. 7.5h show the entries of the initial residual error f(x0) and the entries of
the Final residual error f(x28) respectively and Fig. 7.6 shows a 3D representation of
our estimation x28.
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(a) T (xk) vs. outer-iteration (b) ‖F (xk)‖2 vs. outer-iteration

(c) ‖δxk‖2 vs. outer-iteration (d) inner iteration vs. outer-iteration

(e) Inner Residual vs. outer-iteration (f) tk vs. outer-iteration

(g) Initial Residual Error (h) Final Residual Error

Figure 7.5: Parameter estimation of Ladybug problem with 1723 cameras, 156502 points,
and 678718 pixel observations. T (x) = 1

2‖f(x)‖2 is the objective function, F (x) =
∇T (x), H = 0.3 ∗ max (1, ‖δx0‖), κGN = 0.2, κ = 0.3, γ = 0.01 with a particular
initial guess taken from problem-1723-156502-pre.txt.bz2. As outer stopping criterion
we require that the inner residual Error be less than 1.
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Figure 7.6: 3D solution of Experiment I.
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Chapter 8

Conclusions and outlook

In this Thesis, we have introduced a local inexact Gauss-Newton approach for solving
nonlinear least squares problems, which uses LSQR [65] or LSMR [33] as numerical linear
algebra for solving approximately the linear least squares linearized subproblems with a
new and early computationally available termination rule. Furthermore, we have proved
that locally the above IGN approach is essentially a covariant approach with ‖y‖∗-norm
where the hypotheses with ‖y‖∗-norm of the famous local contraction theorem introduced
by Bock [10] are valid. Thus, we can ensure that this approach converges locally and
linearly with ‖y‖∗-norm to a statistically stable solution. Finally, We have generalized
the local ideas of this new local IGN method and introduced a damped IGN method
based on the Backward Step Control theory of Potschka [70]. This new approach results
to be a damped inexact Gauss-Newton globalization strategy that requires far less inner-
iterations for computing the IGN step than the classical exact Gauss-Newton method
based on factorization algorithm for computing the GN step that requires 100% of the
inner iterations. In our experiments, we have showed that this new damped IGN approach
requires less than the 3% of inner iterations for computing the IGN step in order to
converge to a statistically stable solution, which represents a huge computational savings
in comparison with the classical exact Gauss-Newton.

Outlook

we observe in the experimental example given by the steady state equation (7.1) that
for κ ≈ κGN the damped IGN sequence needs more inner iterations for calculated the
IGN step and needs less outer iterations to satisfy the outer stopping criterion than the
damped IGN sequence computed using an κ ≈ 1. Thus, it would be interested to know
what is the optimal κ than produce the minimum numbers of inner iteration and the
minimum numbers of outer iterations.

We have proved that locally our new IGN approach is essentially a covariant ap-
proach with ‖y‖∗-norm if k̃ = (2(κ − κGN )µ∗ + 1)4κ < 1 where κ ∈ (κGN , 1), and

µ∗ = cond
(
JTf (x∗)Jf (x∗)

)
. We conjecture that this result is valid for all κ ∈ (κGN , 1).

Unfortunately, a proof of such a result is outside the scope of this thesis and is theme of
future research.

The new IGN approach is based on a known linear algebra for solving linear least
squares problems and a new early stopping criterion. Thus, the following question arises:

101
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Is there a numerical linear algebra for solving linear least squares problems that requires
less inner iterations for computing the IGN step than the IGN approach presented in this
thesis and de�nes a new local IGN approach that provides statistically stable solutions
provided that one exists?.

As continuation of this dissertation research, we would like to apply our IGN global-
ization strategy to large scale parameter estimation problems with nonlinear constraints
and also be able to prove in this general setting that our IGN approach converges to a sta-
tistically stable solution provided that one exists. Let us write formally such a problem as
follows: Let f1 : D ⊆ Rn → Rm1 , and f2 : D ⊆ Rn → Rm2 be two twice di�erential func-
tions with correspondent Jacobian J1(x) and J2(x), such that J(x) = [JT1 (x), JT2 (x)]T

and J2(x) are full rank matrices for all x ∈ D with n < m := m1+m2 andm2 < n. De�n-
ing f(x) = [fT1 (x), fT2 (x)], we present our parameter estimation problems with nonlinear
constraints as,

minimize
x∈D

1

2
‖f(x)‖22

f2(x) = 0.

(8.1)

In order to solve the above problem, we need to �nd the k − k − t points de�ned by the
following nonlinear system of equation where λ represent the Lagrange multiplier,

F (x) :=

 JT (x)f(x)− JT2 (x)λ

f2(x)

 = 0. (8.2)

Given an initial guess x0 ∈ D, the exact Gauss-Newton method �nds a possible local
solution of (8.1) according to xk+1 = xk + ∆xk, where ∆xk is the only solution of

min
∆x∈Rn

1

2
‖J(xk)∆x+ f(xk)‖22

s.t J2(xk)∆xk + f2(xk) = 0.

(8.3)

The principal issue here is that LSQR or LSMR cannot be applied to solved approxi-
mately (8.3). Nevertheless, a possible strategy to deal with this drawback may be: The
GN step can be write as

∆xk = ∆x1
k + ∆x2

k where ∆x1
k ∈ Rank(J2(xk)) and ∆x2

k ∈ Null(J2(xk)).

Thus, we can easily calculate the value of ∆x1
k solving the following equation

J2(xk)∆x
1
k = −f2(xk), (8.4)

which solution is given by ∆x1
k = −JT2 (xk)

[
J2(xk)J

T
2 (xk)

]−1
f2(xk), and

∆x2
k = arg min

∆x2∈Rn

1

2

∥∥J(xk)∆x
2 + J(xk)∆x

1
k + f(xk)

∥∥2

2
. (8.5)

Thus, an Inexact Gauss-Newton approach for solving (8.1) would be according to

xk+1 = xk + δxk with δxk = δx1
k + δx2

k
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where δx1
k is calculated using LSQR or LSMR as numerical linear algebra with some

particular early inner termination rule that only depends on cheaply available informa-
tion, which is the topic of a future research. δx2

k is calculated using LSQR or LSMR as
numerical linear algebra with a variant of the stopping criterion that we developed in this
work. A globalization of the above approach is always possible based on the Backward
Step Control theory introduced by Potschka [70].



104 Chapter 8. Conclusions and outlook



Bibliography

[1] S. Agarwal, Y. Furukawa, N. Snavely, I. Simon, B. Curless, S. M. Seitz, and
R. Szeliski. Building Rome in a Day. Commun. ACM, 54(10):105�112, October
2011.

[2] S. Agarwal, N. Snavely, S.M. Seitz, and R. Szeliski. Bundle Adjustment in the Large.
In Proceedings of the 11th European Conference on Computer Vision: Part II, pages
29�42, Berlin, Heidelberg, 2010. Springer Verlag.

[3] M. Arioli, I. Du�, and D. Ruiz. Stopping Criteria for Iterative Solvers. SIAM J.
Matrix Anal. Appl., 13(1):138�144, January 1992.

[4] U. Ascher and M.R. Osborne. A note on solving nonlinear equations and the natural
criterion function. Journal of Optimization Theory and Applications, 55:147�152,
1987.

[5] K. Astala and L. Päivärinta. Calderón's Inverse Conductivity Problem in the Plane.
Annals of Mathematics, 163(1):265�299, 2006.

[6] K. Astala, L. Päivärinta, and M. Lassas. Calderón's Inverse Problem for Anisotropic
Conductivity in the Plane. Communications in Partial Di�erential Equations, 30(1-
2):207�224, 2005.

[7] Y. Bard. Nonlinear parameter estimation. Academic Press, 1974.

[8] I. Bauer, H.G. Bock, S. Körkel, and J.P. Schlöder. Numerical methods for opti-
mum experimental design in DAE systems. Journal of Computational and Applied
Mathematics, 120(1):1 � 25, 2000.

[9] Å. Björck. Numerical Methods for Least Squares Problems. Society for Industrial
and Applied Mathematics, 1996.

[10] H.G. Bock. Randwertproblemmethoden zur Parameteridenti�zierung in Syste-
men nichtlinearer Di�erentialgleichungen, volume 183 of Bonner Mathematische
Schriften. Universität Bonn, Bonn, 1987.

[11] H.G. Bock, E. Kostina, and J.P. Schlöder. Numerical Methods for Parameter
Estimation in Nonlinear Di�erential Algebraic Equations. GAMM-Mitteilungen,
30(2):376�408, 2007.

[12] H.G. Bock, E. Kostina, and J.P. Schlöder. On the Role of Natural Level Functions
to Achieve Global Convergence for Damped Newton Methods, pages 51�74. Springer
US, Boston, MA, 2000.

105



106 Bibliography

[13] H. Borouchaki, P.L. George, F. Hecht, P. Laug, and E. Saltel. Delaunary mesh
generation governed by metric speci�cations. Part I. Algorithms. Finite Element in
Analysis and Desing, pages 61�83, 1997.

[14] P. N. Brown. A Theoretical Comparison of the Arnoldi and GMRES Algorithms.
SIAM Journal on Scienti�c and Statistical Computing, 12(1):58�78, 1991.

[15] P.N. Brown and Y. Saad. Convergence Theory of Nonlinear Newton�Krylov Algo-
rithms. SIAM Journal on Optimization, 4(2):297�330, 1994.

[16] E. C tina³. Inexact perturbed Newton methods and applications to a class of Krylov
solvers. Journal of Optimization Theory and Applications, 108(3):543�570, Mar
2001.

[17] X.W. Chang, C.C. Paige, and D. Titley-Péloquin. Stopping criteria for the iterative
solution of Linear Least Squares problems. SIAM J. Matrix Analysis Applications,
31(2):831�852, 2009.

[18] J. Chen. The convergence analysis of inexact Gauss-Newton methods for nonlinear
problems. Computational Optimization and Applications, 40(1):97�118, May 2008.

[19] J. Chen and W. Li. Convergence of Gauss-Newton's method and uniqueness of the
solution. Applied mathematics and computation, 170(1):686�705, 2005.

[20] Sou-Cheng (Terrya) Choi. Iterative Methods for Singular Linear Equations and
Least-square Problems. PhD dissertation, Stanford Univertity, 2006.

[21] D.F. Davidenko. On a new method of numerical solution of systems of nonlinear
equations. Doklady Akademii nauk SSSR, 88:601�602, 1953.

[22] R.S. Dembo, S.C. Eisenstat, and T. Steihaug. Inexact Newton Methods. SIAM
Journal on Numerical Analysis, 19(2):400�408, 1982.

[23] J. Dennis and R. Schnabel. Numerical Methods for Unconstrained Optimization and
Nonlinear Equations. Society for Industrial and Applied Mathematics, 1996.

[24] J.E. Dennis. On Newton-like methods. Numerische Mathematik, 11(4):324�330,
May 1968.

[25] J.E. Dennis and J.J. Moré. A Characterization of Superlinear Convergence and Its
Application to Quasi-Newton Methods. Mathematics of Computation, 28(126):549�
560, 1974.

[26] P. Deu�hard. Global inexact newton methods for very large scale nonlinear prob-
lems. IMPACT of Computing in Science and Engineering, 3(4):366 � 393, 1991.

[27] P. Deu�hard. Newton Methods for Nonlinear Problems. A�ne Invariance and Adap-
tive Algorithms. 2004.

[28] P. Deu�hard, R. Freund, and A. Walter. Fast secant methods for the iterative
solution of large nonsymmetric linear systems. IMPACT of Computing in Science
and Engineering, 2(3):244 � 276, 1990.



BIBLIOGRAPHY 107

[29] S.C. Eisenstat and H.F. Walker. Globally Convergent Inexact Newton Methods.
SIAM Journal on Optimization, 4(2):393�422, 1994.

[30] S.C. Eisenstat and H.F. Walker. Choosing the Forcing Terms in an Inexact Newton
Method. SIAM Journal on Scienti�c Computing, 17(1):16�32, 1996.

[31] G. Fasano, F. Lampariello, and M. Sciandrone. A truncated nonmonotone Gauss-
Newton method for Large-Scale Nonlinear Least-Squares Problems. Computational
Optimization and Applications, 34(3):343�358, Jul 2006.

[32] O.P. Ferreira, M.L.N. Gonçalves, and P.R. Oliveira. Local convergence analysis of
the Gauss�Newton method under a majorant condition. Journal of Complexity,
27(1):111 � 125, 2011.

[33] D. Fong and M. Saunders. LSMR: An Iterative Algorithm for Sparse Least-Squares
Problems. SIAM Journal on Scienti�c Computing, 33(5):2950�2971, 2011.

[34] D. Fong and M. Saunders. CG versus MINRES: An empirical comparison. Sultan
Qaboos University Journal for Science, 17(1):44�62, 2012.

[35] A. Galántai and J. Aba�y. Always convergent iteration methods for nonlinear equa-
tions of Lipschitz functions. Numerical Algorithms, 69(2):443�453, Jun 2015.

[36] P.L. George. Automatic mesh generation: Application to �nite element methods.
International Journal for Numerical Methods in Engineering, 1991.

[37] G. Golub and W. Kahan. Calculating the Singular Values and Pseudo-Inverse of a
Matrix. Journal of the Society for Industrial and Applied Mathematics Numerical
Analysis, 2(2):205�224, 1965.

[38] G.H. Golub and C.F. Van Loan. Matrix Computations. Johns Hopkins University
Press, Baltimore, 2nd edition, 1989.

[39] M.L.N. Gonçalves. Inexact Gauss-Newton like methods for injective-overdetermined
systems of equations under a majorant condition. Numerical Algorithms, 72(2):377�
392, Jun 2016.

[40] S. Gratton, A.S. Lawless, and N.K. Nichols. Approximate Gauss�Newton Methods
for Nonlinear Least Squares Problems. SIAM Journal on Optimization, 18(1):106�
132, 2007.

[41] Ming Gu. Backward Perturbation Bounds for Linear Least Squares Problems. SIAM
Journal on Matrix Analysis and Applications, 20(2):363�372, 1998.

[42] A. Hohmann. Inexact Gauss Newton methods for parameter dependent nonlinear
problems. Shaker Aachen, 1994.

[43] Ilse Ipsen and Carl D. Meyer. The Idea Behind Krylov Methods. 105:1�16, 11 1997.

[44] Kazufumi Ito. Functional Analysis and Optimization, November 2014.

[45] Jr. J.E. Dennis and J.J. Moré. Quasi-Newton Methods, Motivation and Theory.
SIAM Review, 19(1):46�89, 1977.



108 Bibliography

[46] P. Jiránek and D. Titley-Peloquin. Estimating the Backward Error in LSQR. SIAM
J. Matrix Anal. Appl., 31(4):2055�2074, may 2010.

[47] B. Kaltenbacher. Parameter Identi�cation in Partial Di�erential Equations, WS
2005/06.

[48] E.M. Kasenally. GMBACK: A generalised minimum backward error algorithm for
nonsymmetric linear systems. SIAM J. Sci. Comput., 16(3):698�719, 1995.

[49] E.M. Kasenally and V. Simoncini. Analysis of a Minimum Perturbation Algorithm
for Nonsymmetric Linear Systems. SIAM Journal on Numerical Analysis, 34(1):48�
66, 1997.

[50] C. Kelley. Iterative Methods for Linear and Nonlinear Equations. Society for Indus-
trial and Applied Mathematics, 1995.

[51] S. Körkel and E. Kostina. Numerical Methods for Nonlinear Experimental Design. In
H.G. Bock, H.X. Phu, E. Kostina, and R. Rannacher, editors, Modeling, Simulation
and Optimization of Complex Processes, pages 255�272, Berlin, Heidelberg, 2005.
Springer Berlin Heidelberg.

[52] E. Kostina. Robust Parameter Estimation in Dynamic Systems. Optimization and
Engineering, 5(4):461�484, Dec 2004.

[53] E.A. Kostina, M.A. Saunders, and I. Schierle. Computation of covariance matrices
for constrained parameters. Technical report, Universität Heidelberg, 2009.

[54] S. Körkel. Numerische Methoden für optimale Versuchsplanungsprobleme bei nicht-
linearen DAE-Modellen. PhD thesis, Universitä Heidelberg, 2002.

[55] X. Li, C. Wu, C. Zach, S. Lazebnik, and J. Frahm. Modeling and Recognition of
Landmark Image Collections Using Iconic Scene Graphs. In Proceedings of the 10th
European Conference on Computer Vision: Part I, pages 427�440, Berlin, Heidel-
berg, 2008. Springer Verlag.

[56] M.I.A. Lourakis and A.A. Argyros. SBA: A Software Package for Generic Sparse
Bundle Adjustment. ACM Trans. Math. Softw., 36(1):2:1�2:30, March 2009.

[57] M.L.A. Lourakis and A.A. Argyros. Is Levenberg-Marquardt the most e�cient
optimization algorithm for implementing bundle adjustment? In Tenth IEEE In-
ternational Conference on Computer Vision, volume 1. IEEE, 2005.

[58] G.P. Akilov L.V. Kantorovich. Functional Analysis in Normed Spaces. Fizmatgiz,
Moscow, 1959. German translation: Berlin, Academie-Verlag, 1964.

[59] H. Martínez, Z. Parada, and R.A. Tapia. On the characterization of Q-superlinear
convergence of Quasi-Newton interior-point methods for nonlinear programming.
1:16, 04 1995.

[60] I. Misovskikh. On convergence of Newton's method. (Russia). Trudy Mat. Inst.
Steklov, 28:145�147, 1949.

[61] J.J. More. Levenberg�Marquardt algorithm: implementation and theory. 1 1977.



BIBLIOGRAPHY 109

[62] J.J. Moré. The Levenberg-Marquardt algorithm: Implementation and theory. In
G. Watson, editor, Numerical Analysis, pages 105�116, New York, 1978. Springer
Verlag.

[63] J. Nocedal and S.J. Wright. Numerical Optimization. Springer-Verlag, New York,
NY, USA, 2nd edition, 2006.

[64] J.M. Ortega and W.C. Rheinboldt. Iterative Solution of Nonlinear Equations in Sev-
eral Variables. Classics in Applied Mathematics. Society for Industrial and Applied
Mathematics, 1970.

[65] C.C. Paige and M.A. Saunders. LSQR: An Algorithm for Sparse Linear Equations
and Sparse Least Squares. ACM Trans. Math. Softw., 8(1):43�71, March 1982.

[66] V. Pereyra. Iterative Methods for Solving Nonlinear Least Squares Problems. vol-
ume 4, pages 27�36, 1967.

[67] M. Porcelli. On the convergence of an inexact Gauss�Newton trust-region method
for nonlinear least-squares problems with simple bounds. Optimization Letters,
7(3):447�465, Mar 2013.

[68] F.A. Potra. On Q-order and R-order of convergence. Journal of Optimization Theory
and Applications, 63(3):415�431, Dec 1989.

[69] A. Potschka. A direct method for the numerical solution of optimization problems
with time-periodic PDE constraints. PhD thesis, Universität Heidelberg, 2011.

[70] A. Potschka. Backward Step Control for Global Newton-Type Methods. SIAM
Journal on Numerical Analysis, 54(1):361�387, 2016.

[71] E. Ramirez. Finite element methods for parameter identi�cation problem of linear
and nonlinear steady-state di�usion equations. PhD thesis, Virginia Tech, 1997.

[72] W.C. Rheinboldt. Methods for Solving Systems of Nonlinear Equations. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 2nd edition, 1998.

[73] Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 1st edition, 1996.

[74] F.J. Sayas. A gentle introduction to the Finite Element Method. Lecture notes,
University of Delaware, 2008.

[75] A.H. Sherman. On Newton-Iterative Methods for the Solution of Systems of Non-
linear Equations. SIAM Journal on Numerical Analysis, 15(4):755�771, 1978.

[76] N. Snavely, S.M. Seitz, and R. Szeliski. Skeletal graphs for e�cient structure from
motion. In Proc. Computer Vision and Pattern Recognition, 2008.

[77] G.W. Stewart. On the Perturbation of Pseudo-Inverses, Projections and Linear
Least Squares Problems. SIAM Review, 19(4):634�662, 1977.

[78] G.W. Stewart. Research development and LINPACK. In J. R. Rice, editor, Mathe-
matical Software III, pages 1�14. Academic Press, New York, 1977.



110 Bibliography

[79] G.W. Stewart and J.G. Sun. Matrix Perturbation Theory. Academic Press, 1990.

[80] P.-Å. Wedin. On the Gauss-Newton Method for the Nonlinear Least Squares Prob-
lems. Working Paper 24, Institute for Applied Mathematics, Stockholm, 1974. Cited
in Åke Björck's bibliography on least squares, which is available by anonymous ftp
from math.liu.se in pub/references.

[81] Per-Åke Wedin. Perturbation theory for pseudo-inverses. BIT Numerical Mathe-
matics, 13(2):217�232, Jun 1973.

[82] S.J. Wright and J.N. Holt. An inexact Levenberg-Marquardt method for large sparse
nonlinear least squres. The Journal of the Australian Mathematical Society. Series
B. Applied Mathematics, 26(4):387�403, 1985.

[83] X. Xun, J. Cao, B. Mallick, A. Maity, and R.J. Carroll. Parameter Estimation of
Partial Di�erential Equation Models. Journal of the American Statistical Associa-
tion, 108(503):1009�1020, 2013.

[84] Jun Zou. Numerical methods for elliptic inverse problems. International Journal of
Computer Mathematics, 70(2):211�232, 1998.


	Introduction
	Contributions of the thesis
	Thesis overview

	Preliminaries
	Parameter Estimation Formulation Problem
	Newton Method for Nonlinear Equations
	Affine Invariance
	Affine Covariance
	Affine Contravariance

	Gauss-Newton Method
	Inexact Gauss-Newton Method
	Newton-Type Method

	Iterative Linear Algebra for Parameter Estimation
	Krylov Space Methods for Linear Systems
	Lanczos Process
	Minimum Error Krylov Method
	Minimum Residual Krylov Method

	Krylov Space Methods for Solving Least-Squares Problems
	LSQR: Sparse Linear Least Squares Iterative Algorithm Based on QR-factorization.
	LSMR: Sparse Linear Least Squares Iterative Algorithm Based on Double QR-factorization.
	Krylov Solvers Based on Backward Error Minimization Properties
	Error Estimate

	Inexact Gauss-Newton Method Based on LSQR and LSMR

	Different -Theories
	Affine Covariant and Hybrid Convergence Theory for Newton-type method
	Relation between Covariant and Contravariant Gauss-Newton Type method
	Inexact Gauss-Newton Contravariant Convergence Theory

	Sensitivity Analysis of the Solution
	Statistically Stable -Theorems

	Global Newton Methods
	Residual Based Descent
	Error Oriented Descent
	The Newton Path
	The Restrictive Monotonicity Test
	Backward Step Control for Damped Newton Methods

	Global Inexact Gauss-Newton Methods
	Inexact Gauss-Newton Backward Step Control (IGN-BSC)

	Applications and numerical results
	Parameter Identification of nonlinear steady-state diffusion equation
	Large-Scale Bundle Adjustment Problems

	Conclusions and outlook
	Bibliography

