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Abstract  

BACKGROUND: Rhabdomyolysis (RM)-induced acute renal failure (ARF) accounts for about 10–
40% of all cases of ARF.  

AIM: The present study investigated the possible protective effect of two nitric oxides (NO)-
releasing third generation β-blockers, carvedilol (Carv) and nebivolol (Nebi), against RM-mimicking 
glycerol (Gly)-induced ARF in rats.  

MATERIAL AND METHODS: After 24 h dehydration, rats received a single dose of 50% Gly (8 
ml/kg, im). They were treated with vehicle, Carv (2.5 mg/kg/day, po) or Nebi (10 mg/kg, po) for 3 
successive days starting from an hour prior to Gly injection. Evaluation of blood pressure and 
locomotor activity was performed during the experiment. 72 h following Gly administration, total 
protein in the urine, serum levels of creatinine, blood urea nitrogen, sodium and potassium as well 
as the renal contents of malondialdehyde, reduced glutathione and NO were assessed, together 
with a histopathological examination of renal tissues.  

RESULTS: Carv and Nebi attenuated Gly-induced renal dysfunction and histopathological 
alterations. They decreased the Gly-induced oxidative stress and increased renal NO 
concentration. Restoration of normal blood pressure and improvement of locomotor activity were 
also observed.  

CONCLUSION: The results clearly demonstrate protective effects of Carv and Nebi against renal 
damage involved in RM-induced ARF and suggest a role of their antioxidant and NO-releasing 
properties. 

 

 

 

Introduction 

 

Rhabdomyolysis (RM) is an important cause 
of acute renal failure (ARF). It results in about 10-40% 
of all cases [1]. The term rhabdomyolysis refers to the 
disintegration of skeletal muscles leading to the 
release of intracellular myoglobin (Mb), enzymes and 
electrolytes from myocytes into blood circulation [2]. It 
may be caused by trauma, ischemia, some drugs, 
toxins, metabolic disorders, or infections [3].  

Many factors are known to contribute to RM-
induced ARF; one of them is hypovolemia that results 
from the accumulation of a large amount of 
intravascular fluid in the space created from the 

damage of muscular tissue [4]. This hypovolemia 
resulted in a considerable reduction in renal blood 
flow (RBF) and glomerular filtration rate (GFR) that 
lead to ARF [5]. Hypovolemia is also associated with 
the sympathetic nervous system and reticular 
angiotensin aldosterone system (RAAS) activation 
with increased production of vasoconstricting 
molecules and inhibition of production of vasodilatory 
prostaglandins [6]. These, together with the 
vasoconstricting endotoxins and cytokines released 
into the systemic circulation after muscle damage, 
lead to renal hypoperfusion and tissue injury [7]. 
Another important factor contributes to RM-induced 
ARF is Mb that released by the dead myocytes. Mb 
scavenges nitric oxide (NO) which is the most potent 
endogenous vasodilatory factor, and this contributes 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Access Macedonian Journal of Medical Sciences 

https://core.ac.uk/display/162147011?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Basic Science 
_______________________________________________________________________________________________________________________________ 

_______________________________________________________________________________________________________________________________ 

  330                                                                                                                                                                                                                     http://www.mjms.mk/ 
http://www.id-press.eu/mjms/ 

 

to the renal hypoperfusion and tissue injury in the 
setting of RM [8]. In addition, the intracellular 
degradation of Mb at the urinary pH to globin and 
ferriheme leads to free iron overloading of tubular 
cells [8]. Free iron is an oxidative metal that either 
facilitates the production of oxygen free radicals or 
acts as a free radical by itself [9]. This oxidative stress 
generated in the cytoplasm of tubular cells increases 
oxidation of lipids, proteins and DNA that resulting in 
ARF [10]. Lipid peroxidation occurs in the kidney 
markedly increases isoprostanes which are also 
potent vasoconstrictors [11].  

Carvedilol (Carv) is a third-generation, non-
selective β-blocker that also possesses α1-adrenergic 
blocking activity [12]. It is indicated for the treatment of 
essential hypertension, heart failure, and post-
myocardial infarction left ventricular dysfunction [13]. 
Data indicate that the vasodilation effect of Carv is 
mediated through both α1-adrenergic receptor 
blockade and enhanced endothelial NO release [14]. 
Carv also has a number of ancillary activities including 
antioxidant, anti-inflammatory, anti-apoptotic, anti-
ischemic, anti-proliferative, and Ca

2+ 
antagonist 

properties [15]. These properties may provide 
protection for several major organ systems including 
the heart, blood vessels, kidneys and brain [16]. Carv 
has been found to decrease renal vascular resistance 
and improve renal hemodynamics by improving RBF 
and GFR [17]. Other renoprotective effects of Carv 
were found to be independent of its vasodilatory effect 
rather than its antioxidant and antiproliferative 
properties as well as its capability to reduce 
expression of profibrotic factors [18]. 

Nebivolol (Nebi) is a third generation selective 
β1-adrenergic receptor blocker with vasodilator 
properties mediated by a direct stimulatory effect on 
the endothelial nitric oxide synthase (eNOS) (L-
arginine-NO pathway) [19]. Nebi has also been shown 
to reduce the expression and protein levels of 
molecules involved in adhesion, inflammation, 
hypertension, and vascular remodelling that are 
induced by oxidative stress [20]. Treatment with Nebi 
has been shown to decrease renal fibrosis and 
glomerular injury as well as improving endothelial 
dysfunction. These effects have been attributed to 
vasodilatation, reduction in oxidative stress in addition 
to the enhancement of NO bioavailability [21]. 

Taken together, these pharmacological 
properties of both drugs, Carv and Nebi, with their 
renoprotective effects could be of potential interest in 
patients with renovascular diseases such as RM-
induced ARF. For that, the present study was 
performed to investigate the possible protective 
effects of them against an RM-mimicking Gly-induced 
ARF in rats.  

 

 

Material and Methods 

 

Animals 

Adult male Wistar rats weighing 150-200 g 
were utilised in the present study. Standard food 
pellets and tap water were supplied ad libitum unless 
otherwise stated. Animals and food pellets were 
obtained from the animal house colony of the National 
Research Center (NRC) (Cairo, Egypt). All the animal 
experiments were carried out in accordance with 
guidelines evaluated and approved by the ethics 
committee of NRC (Cairo, Egypt). 

 

Drugs 

Carv and Nebi were obtained from Sigma-
Aldrich (USA). They were available as a powder, and 
used in the current study at doses of 2.5 mg/kg, po 
[22] and 10 mg/kg, po [23], respectively. Drugs were 

freshly prepared at the beginning of each experiment 
by being suspended in distilled water and volumes 
were adjusted so each rat received 1 ml 
suspension/100 g body weight. All other chemicals 
used were of the highest purity available.  

 

Experimental Design 

RM-induced ARF in rats was induced using a 
single dose of hypertonic glycerol (Gly) solution (50% 
v/v in sterile saline) following 24 h of dehydration [24]. 
Animals were randomly allocated into four groups; 
each group consisted of 10 rats. The rats received an 
injection of Gly solution (8 ml/kg, i.m.) or equal volume 
of saline for animals of the 1

st
 group, which served as 

the normal control. The injected volume was divided 
equally between the two hind limbs. Administration of 
drugs was carried out daily for 3 successive days, 
starting 60 min prior to the Gly injection. The first 2 
groups, normal and RM-ARF groups, received saline 
orally, and the other 2 groups received Carv (2.5 
mg/kg/d, po) and Nebi (10 mg/kg/d, po), respectively. 
Animals were allowed free access to food and tap 
water during the course of the experiment, while rats 
of the last 3 groups were deprived of drinking water 
for 24 h before the Gly administration. 

 

Assessment of locomotor activity 

On day 0 and 1 h following the last drug 
administration, locomotor activity was measured by 
detecting rat movements using grid floor activity cage 
(Model no. 7430, Ugo-Basile, Italy). Interruptions of 
infrared beams were automatically detected during a 
10 min test session. Beam interruption information 
was processed in the activity cage software to provide 
an index of horizontal movements. Rats were 
acclimatised for 1 h to the test room, before placing 
the animal in the activity cage (exposure) [25]. The 
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basal activity counts of rats were pretested for a 15 
min interval the day before the experiment to 
habituate them to the apparatus; they were adapted 
for 5 min and the basal activity counts were then 
recorded for 10 min [26]. 

 

Systolic Blood Pressure (SBP) 
Measurement 

Blood pressure was measured non-invasively 
on day 0 and 1 h following the last drug administration 
using tail-cuff technique attached to blood pressure 
recorder (UGO BASILE 58000, Italy). 

 

Urine and serum biochemical analysis 

On day 2, urine samples were collected from 
animals of all groups through the housing in individual 
metabolic cages for 24 h for estimation of urinary total 
protein (UTP) using commercial reagent kit (Stanbio, 
USA). Blood samples were withdrawn via the retro-
orbital plexus under ether anaesthesia from all rats on 
day 3, after 1 h of the last drug administration. The 
serum was isolated for estimation of blood urea 
nitrogen (BUN), serum creatinine (SCr), potassium 
(K

+
) and sodium (Na

+
) levels, using specific 

commercial kits, (Stanbio, USA), (Quimica Clinica 
Aplicada S.A., Spain), (Quimica Clinica Aplicada S.A., 
Spain), and (Teco Diagnostics, USA), respectively. 

 

Renal tissue biochemical and 
histopathological analysis 

Directly after collecting the blood samples, 
rats were sacrificed by cervical dislocation under ether 
anaesthesia and both kidneys were isolated. The right 
kidneys were rinsed in chilled 0.9 % NaCl (pH 7.4) 
then homogenised. The homogenates were used for 
estimation of kidney contents of lipid peroxides 
measured as malondialdehyde (MDA) according to 
Ruiz-Larrea et al. [27], reduced glutathione (GSH) 
according to [40] and NOx (nitrite and nitrate, stable 
metabolites of NO) using commercial reagent kit 
(Cayman chemical company, Germany). 

The left kidneys from all groups were 
removed and fixed in 10% neutral buffered formal 
saline for 72 h at least. All the specimens were 
washed in tap water for half an hour and then 
dehydrated in ascending grades of alcohol, cleared in 
xylene and embedded in soft paraffin. Paraffin 

sections of 5 m thick were stained with haematoxylin 
and eosin (H&E) [28], for histopathological 
examination. Images were captured and processed 
using Adobe Photoshop version

 
8.0. 

 

Statistical Analysis 

All the values are presented as means ± 

standard error of the means (SEM). Comparisons 
between different groups were carried out using one-
way analysis of variance (ANOVA) followed by Tukey 
HSD test for multiple comparisons [29]. Graphpad 
Prism software, version 5 was used to carry out these 
statistical tests. For locomotor activity, square root 
transformed percent was calculated [30], while 
Statistica version 7 was used for two-way ANOVA 
followed by Tukey HSD as multiple comparison tests 
for blood pressure analysis. The difference was 
considered significant when p ˂ 0.05.  

 

 

Results 

 

Locomotor activity of rats  

 Gly model of RM-induced ARF markedly 
decreased the basal locomotor activity on day 3 of Gly 
administration, compared with normal group. 
Pretreatment with Carv (2.5 mg/kg) and Nebi (10 
mg/kg) led to a significant protection in locomotor 
activity on day 3 from Gly administration compared to 
ARF group (Table 1).  

Table 1: Locomotor activity 

       Parameter 
 
 
Groups 

Locomotor activity 

Count/10 min 
Percentage of 
basal activity 

Square-root- 
transformed % of 

basal activity 

Day 0 Day 3 Day 3 / Day 0 Day 3 

Saline 271.50 ± 8.08 199.33 ± 5.11 73% 0.96
b 
± 0.02 

Gly 172.10 ± 9.23 28.90 ± 2.19 17% 0.41
a 
± 0.02 

Gly-Carv 178.30 ± 8.27 116.90 ± 6.73 65% 0.81
ab 

± 0.03 
Gly-Nebi 187.80 ± 16.57 113.50 ± 7.14 60% 0.80

ab 
± 0.04 

Saline, rats treated with saline and considered as normal rats; Gly, rats treated with 
glycerol; Gly-Carv, rats treated with glycerol and carvedilol; Gly-Nebi, rats treated with 
glycerol and nebivolol. Data are presented as mean ± SE, n=10. 

a
 Significantly different 

from Saline; p ˂ 0.05. 
b 
Significantly different from Gly; p ˂ 0.05. 

 

Systolic blood pressure 

  Gly markedly increased the basal SBP of rats 
on day 3. However, pretreatment of rats with Carv and 
Nebi significantly protected against this Gly-induced 
elevation of SBP (Fig. 1).  

 
Figure 1: Systolic blood pressure. Saline, rats treated with saline 
and considered as normal rats; Gly, rats treated with glycerol; Gly-
Carv, rats treated with glycerol and carvedilol; Gly-Nebi, rats treated 
with glycerol and nebivolol. Data are presented as mean ± SE, 
n=10. a Significantly different from Saline; p ˂ 0.05. b Significantly 
different from Gly; p ˂ 0.05 
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Urine and serum biochemical analysis 

Induction of ARF in rats by a single dose of Gly 
markedly increased the normal UTP on day 2 of Gly 
administration and increased SCr and BUN levels on 
day 3. A marked decrease in normal Na

+
 level and 

increase in K
+
 level were also observed on day 3. 

Pretreatment of rats with Carv and Nebi preserved the 
normal levels of UTP, SCr, BUN, Na

+
, and K

+
 (Table 

2).  

Table 2: Levels of urine total protein, serum creatinine, blood 
urea nitrogen, serum sodium and serum potassium 

Parameters 
Groups 

UTP 
(mg/dl) 

SCr 
(mg/dl) 

BUN 
(mg/dl) 

Na+ 
(mEq/l) 

K+ 
(mmol/l) 

Saline 30.11b ± 2.48 0.48b ± 0.01 21.38b ± 0.95 147.65b ± 1.86 3.79b ± 0.09 
Gly 156.08a ± 14.34 3.75a ± 0.25 49.10a ± 2.03 122.03a ± 2.36 7.17a ± 0.24 
Gly-Carv 53.58b ± 3.95 0.96b ± 0.09 21.97b ± 1.47 140.56b ± 2.36 4.10b  ± 0.25 
Gly-Nebi 53.14b ± 3.73 1.06b ± 0.09 22.14b ± 1.41 140.63b ± 2.72 4.19b ± 0.17 

Saline, rats treated with saline and considered as normal rats; Gly, rats treated with 
glycerol; Gly-Carv, rats treated with glycerol and carvedilol; Gly-Nebi, rats treated with 
glycerol and nebivolol; UTP, urine total protein; SCr, serum creatinine; BUN, blood urea 
nitrogen; Na

+
, serum sodium; K

+
, serum potassium. Data are presented as mean ± SE, 

n=10. 
a
 Significantly different from Saline; p ˂ 0.05. 

b 
Significantly different from Gly; p ˂ 

0.05. 

 

Renal tissue biochemical analysis 

Induction of ARF in rats using Gly markedly 
increased the normal renal MDA level by 86% and 
decreased GSH and NOx levels by 83% and 44%, 
respectively. Pretreatment of rats with Carv or Nebi 
conserved the normal renal levels of MDA and GSH. 
Moreover, a marked protection of kidney NOx level 
was also detected; this protection was more 
significant in the group treated with Nebi rather than 
Carv (Fig. 2).  

 
Figure 2: Kidney contents of malondialdehyde, reduced glutathione 
and nitric oxide. Saline, rats treated with saline and considered as 
normal rats; Gly, rats treated with glycerol; Gly-Carv, rats treated 
with glycerol and carvedilol; Gly-Nebi, rats treated with glycerol and 
nebivolol; MDA, malondialdehyde; GSH, reduced glutathione;  NOx, 
nitrite and nitrate, stable metabolites of NO. Data are presented as 
mean ± SE, n=10. a Significantly different from Saline; p ˂ 0.05. b 
Significantly different from Gly; p ˂ 0.05. c Significantly different 
from Gly-Carv; p ˂ 0.05 

 

Histopathological features of the renal 
tissues 

The renal tissue of the normal rats showed 
normal glomeruli formed of a tuft of capillaries 
enclosed in Bowman’s capsule and separated from it 
by the urinary space. Two types of tubules were also 
observed, proximal convoluted tubules with their 

brush borders and distal convoluted tubules (Fig. 3. A 
& B). In the rat sacrificed 72 h following Gly 
administration, a marked vacuolar degeneration in 
proximal tubules with discontinuity of the brush border 
as well as a widening of urinary space of glomeruli 
were observed (Fig. 3. C). In addition, a marked 
decrease in the height of the lining epithelium of distal 
tubules and widening of their lumen are also noticed 
(Fig. 3. D). On the other hand, the renal tissues of a 
rat with Gly-induced ARF that were pretreated with 
Carv showed a significant decrease in vacuolar 
degeneration induced by Gly in proximal tubules, and 
the distal tubules showed an increase in the height of 
their lining epithelium with no signs of vacuolar 
degeneration. The glomeruli appeared more or less 
normal (Fig. 3. E). the renal sections of rats treated 
with Nebi-Gly showed the persistence of the Gly-
induced vacuolar degeneration, especially in proximal 
tubules. However, the lumens of the distal convoluted 
tubules were less dilated if compared to the Gly-
treated group, while the urinary space appeared more 
or less normal (Fig. 3. F). 

 

Figure 3: Histopathological features of the renal tissues. 
Photomicrographs of renal sections from rats treated with the 
following: Saline (A) & (B) show normal glomeruli (G) enclosed in 
Bowman’s capsule and separated from it by the urinary space 
(arrow), proximal convoluted tubules (P) with their brush borders 
(arrowhead), and distal convoluted tubules (D); Gly (C & D) show 
marked vacuolar degeneration in proximal tubules with discontinuity 
of the brush border (arrow), widening of urinary space, and a 
marked decrease in the height of the lining epithelium of distal 
tubules with widening of their lumen (arrowhead); Gly-Carv (E) 
shows a significant decrease in vacuolar degeneration in proximal 
tubules (arrow), an increase in the height of the lining epithelium of 
the distal tubules with no signs of vacuolar degeneration 
(arrowhead), and a normal glomeruli; Gly-Nebi (F) shows the 
persistence of the Gly-induced vacuolar degeneration, especially in 
proximal tubules, (arrow in the left part of the figure), less dilated 
lumens of distal convoluted tubules, and a normal urinary space 
(arrowhead in the right part of the figure). (H & E X 200) 
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Discussion 
 

Induction of RM-mimicking ARF in rats, in the 
current study, with Gly that was evidenced by the 
impairment of the kidney function biomarkers and 
confirmed by the histopathological findings is in 
accordance with other studies reported that the acute 
volume depletion model of Gly-ARF induces a closely 
related syndrome to the RM-ARF in human beings 
[31]. Renal vasoconstriction and hypoperfusion have 
been suspected to play a major role in the 
pathogenesis of this model [32].  

Several potential mechanisms may contribute 
to this renal vasoconstriction. Muscle necrosis creates 
a dramatic fluid third spacing, leading to intravascular 
volume depletion and hypotension; this impairs the 
renal perfusion and causes a severe renal ischemia 
and tubular dysfunction [4]. The decreased serum 
Na

+
 level observed in the current Gly model of RM-

ARF, and before [33], indicated this tubular 
dysfunction with a decreased Na

+
 reabsorption. 

However, a significant increase in serum Na
+
 levels 

was reported in other studies [34, 35]. This may be 
due to acute tubular necrosis that could lead to a 
decrease in the number of functioning nephrons. This 
effect may trigger multiple adaptive processes in the 
hyper-functioning remaining nephrons, most notably 
the augmented rates of Na

+
 reabsorption that lead to 

hypernatremia. On the other hand, the observed 
increase in the serum K

+
 level in the present Gly 

model of RM-ARF, which is correspondingly reported 
previously [33, 36], could be explained by the direct 
release of the intracellular K

+
 from the damaged 

muscles [37]. Remarkably, this hyperkalemia has not 
been observed in other studies using different models 
of ARF rather than RM-ARF [35, 38]. The 
pathogenesis of Gly-induced RM-ARF can also 
involve Mb release from the damaged muscles that 
facilitates the production of reactive oxygen species 
(ROS) [10]. Oxidative stress has been found to cause 
renal damage [39]. It promotes the formation of a 
variety of vasoactive mediators that can affect the 
renal function directly by causing renal 
vasoconstriction and thus reduce the GFR [40]. In the 
present study, induction of renal oxidative stress by 
Gly was demonstrated clearly by a significant increase 
in the normal renal MDA and decrease in GSH 
contents. A similar pattern was recorded by many 
studies [41, 42]. The increased tissue levels of ROS 
can also oxidize the locally released NO and 
diminishes its bioactivity [43]. Correspondingly, a 
significant decrease in the normal renal tissue content 
of NOx was demonstrated in the present Gly-ARF 
model, a result that is in line with other studies [44, 
45].  

The current Gly-induced RM-ARF was 
accompanied with a significant decrease in the normal 
locomotor activity of rats. It has been found that renal 
failure results in an accumulation of numerous organic 
substances that possibly act as neurotoxins and result 

in a development of a case that is known as uremic 
encephalopathy [46]. Uremic encephalopathy is 
associated with a generalised decrease in brain 
energy use, and thus a decrease in the locomotor 
activity [46].  

Moreover, a significant increase in the SBP 
was also observed in the current Gly-ARF model. A 
similar finding was observed with gentamicin-induced 
ARF model [47]. Renal failure reduces the afferent 
glomerular arteriolar pressure, leading to the 
activation of the renin-angiotensin system, leading to 
hypertension [48]. Co-treatment of rats with either 
Carv or Nebi showed a significant protective effect 
against the current Gly-induced RM-ARF model. This 
observed renoprotective effect is in agreement with 
the findings of studies that used Carv or Nebi as a 
protective agent against other models of ARF in which 
restoration of the normal levels of renal function 
biomarkers was reported [49, 50]. 

The significant attenuation of Gly-induced 
oxidative stress in the rats treated with Carv or Nebi 
indicates that antioxidant pathway played a role in the 
renoprotective effects of both drugs. Many studies also 
reported this antioxidant effect of Carv and Nebi [49, 
51]. Carv has been found to scavenge oxygen 
radicals and inhibit their release from activated 
neutrophils [52, 53]. It was found to accumulate in 
specific plasma membrane sites allowing it to 
approach the site of fatty acid side chain unsaturation 
where lipid peroxidation is thought to occur; this 
explains its high potency as an antioxidant [54]. On 
the other hand, Nebi has vasodilating properties 
mediated by direct stimulation of eNOS, thereby 
increasing the availability of NO [19]. It has been 
shown that NO donors can scavenge ROS by the 
NADPH oxidase [55].  

The significant improvement of the serum Na
+
 

and K
+
 levels observed in Gly-Carv and Gly-Nebi as 

compared to Gly group indicated a protective effect of 
Carv and Nebi against Gly-induced hyponatremia and 
hyperkalemia. In addition, adrenergic β-blockade 
would increase proximal Na

+
 reabsorption [56], 

contributing to the drugs-induced hypernatremia. 
Correspondingly, in the previous study, Nebi, in 
combination with hydrochlorothiazide, reduced the 
Na

+ 
clearance [57]. On the contrary, Rodriguez-Perez 

et al. [58], and Greven and Gabriels [59] reported that 
Carv and Nebi, respectively, produced a significant 
natriuresis followed by hyponatremia in rats with 
severe nephrosclerosis. This natriuresis was 
attributed to a compensatory renal mechanism due to 
an improvement of GFR produced by those drugs, 
which in turn increased urinary excretion of Na

+
 and 

fluids. On the other hand, the antioxidant activities of 
Carv and Nebi could explain the reversal of ROS-
induced hyperkalemia that resulted from the loss of 
intracellular K

+
 due to the increasing cell membrane 

permeability by membrane lipids peroxidation [60, 61]. 
In addition, Carv by having a α1-adrenergic blocking 
activity can retain K

+
 intracellularly, contributing to 
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hypokalemia induced by Carv [62]. On the contrary, it 
has been suggested that β-adrenergic receptor 
antagonism could suppress the renin-angiotensin 
aldosterone system (RAAS), by inhibiting renin 
secretion, hence, predisposing patients to K

+
 retention 

[63]. 

In addition to those observed renoprotective 
effects of Carv and Nebi that consequently caused an 
improvement of the locomotor activity of rats, both 
have been reported to have a direct neuroprotective 
effect [64-66]. Carv protected against 3-nitropropionic 
acid induced behavioural alterations in rats [67], and 
Nebi improved the neurological status and the hind limb 
motor function in a spinal cord ischemia/reperfusion injury 
model in rabbits [65, 66]. Therefore, this improvement in 
the locomotor activity demonstrated in the current 
study could be up to a point due to a direct 
neuroprotective effect against uremic encephalopathy. 
Similarly, the protective effect of Carv and Nebi 
against Gly-induced SBP-elevation could be 
accounted partly for the observed renoprotective 
effect of those treatments and also to their renowned 
direct antihypertensive effects [68, 69]  

The present data revealed that animals 
treated with Carv or Nebi showed a significant 
increase in renal NOx content as compared to Gly 
group; this protection was more significant in the 
group treated with Nebi rather than Carv. 
Correspondingly, previous studies demonstrated that 
Carv and Nebi increased NO content [70-74]. 

Carv effects have been found to be blocked 
by the inhibition of eNOS enzyme using L-NAME [70]. 
This suggests that Carv’s actions are largely NO-
mediated. Moreover, this might explain the current 
observed Carv-induced rise in renal NO content and 
suggests it to be dependent on stimulation of intact 
eNOS. The Nebi-induced elevation of NO content was 
more significant than that of Carv because Nebi can 
increase NO bioavailability by, at least, two 
mechanisms: by increasing NOS activity [75], or, 
under conditions of oxidative stress, by reducing O2

-
 

generation and inhibiting eNOS uncoupling and, 
therefore, NO inactivation [76]. 

NO exerts a protective role against renal 
damage in several animal models of kidney disease 
as well as in human chronic renal failure. It promotes 
the increase of RBF and exerts antigrowth and 
antiproliferative effects on vascular smooth muscle 
[77]. It also plays an important role in regulating renal 
hemodynamic and functions [78]. Interestingly, Maree 
et al. [79] indicated that NOS inhibition worsens Gly-
induced ARF model, while NO supplementation 
protects against it. 

In conclusion, the present study revealed that 
treatment of rats with Carv (2.5 mg/kg/day, po) or 
Nebi (10 mg/kg, po) protected against renal damage 
involved in Gly-induced RM-mimicking ARF. The 
findings demonstrated the involvement of the 

antioxidant and NO releasing properties of both drugs 
and suggested their involvement in this renoprotective 
effect. 
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