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Abstract 

 

 
This thesis investigates the possibilities opened to a programmer when their programming 

environment not only utilises Spatial Hypermedia functionality, but embraces it as a core 

component.  Designed and built to explore these possibilities, SpIDER (standing for Spatial 

Integrated Development Environment Research) is an IDE featuring not only traditional 

functionality such as content assist and debugging support but also multimedia integration 

and free-form spatial code layout.  Such functionality allows programmers to visually 

communicate aspects of the intent and structure of their code that would be tedious—and 

in some cases impossible—to achieve in conventional IDEs.  

Drawing from literature on Spatial Memory, the design of SpIDER has been driven by the 

desire to improve the programming experience while also providing a flexible authoring 

environment for software development.  The programmer’s use of Spatial Memory is 

promoted, in particular, by: utilising fixed sized authoring canvases; providing the capacity 

for landmarks; exploiting a hierarchical linking system; and having well defined occlusion 

and spatial stability of authored code.   

The key challenge in implementing SpIDER was to devise an algorithm to bridge the gap 

between spatially expressed source code, and the serial text forms required by compilers.  

This challenge was met by developing an algorithm that we have called the flow walker.  We 

validated this algorithm through user testing to establish that participants’ interpretation of 

the meaning of spatially laid out code matched the flow walker’s implementation. 

SpIDER can be obtained at: https://sourceforge.net/projects/spatial-ide-research-spider
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Chapter 1  

Introduction 

When attempting to understand an algorithm, do you fare better if it is explained 

diagrammatically or if you are given the straight code to read?  What if you were given 

both?  What about when you are developing an algorithm.  Do you sketch it out on paper 

first?  Even a cursory review of algorithm textbooks shows that diagrams play an important 

role in explanations.  Despite this, we develop code primarily in tools that limit us to text 

authoring.  This thesis documents the design, development and evaluation of an approach 

that seeks to address this disconnect, manifest through a software tool we have called 

SpIDER.  Standing for Spatial Integrated Development Environment Research, SpIDER 

provides programmers with the capability to express executable code in a diagrammatic 

manner, including multimedia elements such as pictures to further promote code 

understanding.  This is achieved while retaining functionality that programmers have come 

to expect in Integrated Development Environments (IDEs), such as continuous compilation, 

debugging and content assist.   

To give an indication of this new way of writing code, Figure 1.1 shows a screenshot taken 

from SpIDER, featuring functioning code, which centres on modelling the lanes vehicles can 

use in a traffic simulation program.  Examples such as Figure 1.1 are used throughout the 

thesis to illustrate the diversity of code structures supported by SpIDER.  We return to this 

particular example in Chapter 9 to discuss it fully. 
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Figure 1.1: Example of functioning code produced in SpIDER, later discussed in Section 9.3. 

In truth, all but the most trivial programs are a maze of logically interconnected elements 

that makes software difficult to understand despite our best intentions. Programming 

language block structures create nested hierarchies.  Method calls and data access often 

work between the branches of these hierarchies, forming cross-cutting linkages; or even 

between projects, as in the case of units and their unit test code.  Beyond the confines of 

the programming language syntax, software projects also contain heterogeneous 

associations, such as links from code to planning documents.  Sometimes, these connections 

can even be between digital and physical artefacts, from the computer to the office 

whiteboard for example.   

Many techniques exist for handling the complexity of software development.  Programming 

paradigms provide sets of concepts designed to make certain types of programs easier to 

express, for example: Object-oriented code encourages programmers to encapsulate 

information into objects and has the programmer design their program around the 

interactions between these objects; Functional languages attempt to limit side effects and 

use immutable data which helps keep each piece of code self-contained; and Event-driven 

languages determine the flow of a program by reacting to received messages like user input. 

Programming methodologies help by managing the development process of a piece of 

software and encourage (or stipulate) certain practices.  Programmers following Extreme 
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Programming might for example: construct prototypes, program in pairs to improve the 

quality of code, and refactor completed code to make it more manageable. 

Integrated development environments (IDEs) bring many core tools that a programmer 

finds useful into one piece of software.  Some tools help with producing code.  Syntax 

highlighting, error reporting and content assist (also known as code completion) all help 

ease cognitive load while editing programs.  They allow the programmer to concentrate 

more on the intellectual task at hand, and worry less about the specifics of the language 

they are using.  Other tools within IDEs simplify the compile, run, test, debug cycle by 

allowing the programmer to perform all these functions in a single workflow.  This avoids, 

for example, the necessity of having to manually relate tool output, such as error message 

line numbers, to source code.     

1.1 Issues with Software Development Tools 

In addition to editing and program execution support, IDEs provide a variety of tools for 

particular prescribed tasks.  For example, Eclipse provides the user with a window called the 

Outline for navigating through the high-level hierarchy of the currently active class.  The 

Eclipse Outline provides buttons for: 

 Sorting class members in alphabetical order or in the order they occur in the file. 

 Hiding or showing the fields. 

 Hiding or showing static members. 

 Hiding or showing non-public members. 

 Hiding or showing local types. 

These are all potentially useful options, however they are all options that have been 

manually built into the tool by Eclipse developers.  If a programmer wanted to sort the 

Outline in any other way then they must either: convince an Eclipse developer that it would 

be worthwhile implementing the desired functionality, and then wait for it to happen; make 

the change themselves in a private copy; or do without the change.  If the desired sort was 

something simple but specific (for example sorting alphabetically but with functions whose 

name starts with ‘Execute’ appearing at the head of the list) then the last is by far the most 

likely outcome. 
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A close study of IDEs reveals that this prescribed approach pervades the interface 

components provided: from the package explorer, through the creation of projects, to the 

exploration of a running program in the debugger.  It is not even possible to include 

diagrams alongside code or mix font sizes.  You are only able to alter the environment when 

the developers have thought to allow a specific modification. 

So, need IDEs be so inflexible?  A programmer cannot manually rearrange the Eclipse 

Outline because there is not a large enough demand for the functionality, however, if the 

widget allowed for modifications in the same fashion as the text area then programmers 

could arrange content as it suited on a case-by-case basis.  In comparison to IDEs, other 

editing software is more flexible.  Microsoft Word, for example, allows you to include 

images alongside your text and control the font size for individual tokens.  These are 

features that a programmer may find useful but are not present in the popular IDEs of 

today.  People acknowledge that programming is a problem-solving task and that IDEs help 

with this.  People also acknowledge that programming is a creative task.  Would a more 

expressive environment better support programmers?  We contend that it would.  This 

thesis explores what can be achieved by applying the expressive and flexible features of 

Spatial Hypermedia editing to the programming domain. 

1.2 Context 

This thesis builds upon three principal topics drawn from the literature: Spatial Memory, 

IDEs and Spatial Hypermedia.  We discuss what Spatial Memory is and how it can be 

leveraged; the history that has led to today’s IDEs and how they can be further improved; 

what Spatial Hypermedia is, how it differs from Hypermedia in general and how it has 

previously been utilised, both generally and for programming. 

Spatial Memory.  Spatial Memory is a field in cognitive psychology concerned with the way 

in which people navigate environments and remember the locations of objects.  Chapter 2 

discusses how Spatial Memory is automatic and benefits from practice.  It is for this reason 

that we seek to allow programmers to exploit their spatial memory to improve the software 

development process.  Concepts such as landmarks, overviews and the fixed or variable size 

of application windows are discussed as ways of affecting an individual’s utilisation of 

Spatial Memory.  We also document some research that shows that programmers are both 

willing and able to use their Spatial Memory to assist in programming. 
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IDEs.  An historical approach is taken to examining the development of IDEs, culminating in 

popular IDEs such as Visual Studio and Eclipse.  As part of this, the early adoption of tools 

that accelerate the programming task are documented.  We establish a core set of 

functionality that programmers have come to expect in an IDE.  The role of abstraction in 

programming is also discussed.  This allows us to refine the question previously stated in 

Section 1.1: need IDEs be so inflexible?  Can IDEs be more flexible? 

Spatial Hypermedia.  Spatial Hypermedia is a form of authoring application with a novel 

user interface and interaction set.  This user interface and interaction set is more capable 

than a standard user interface at utilising Spatial Memory.  Chapter 4 properly defines 

Spatial Hypermedia, comparing it to other forms of authoring software systems.  Several 

Spatial Hypermedia systems are documented and examined, some laying in the 

programming domain.   

Towards the end of Chapter 5 we expand on the Spatial Hypermedia literature by discussing 

the benefits and issues with specific approaches to developing Spatial Hypermedia.  For 

example, are we better off retrofitting Spatial Hypermedia functionality into an existing IDE 

or adding IDE functionality to an existing Spatial Hypermedia application? 
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1.3 Spatial Hypermedia as a Solution 

The review of these three areas of literature—Spatial Memory, IDEs and Spatial 

Hypermedia—assisted in the design and development of a Spatial Hypermedia based IDE 

that we call SpIDER.  Four prominent features of SpIDER are: 

 Spatial Code Layout: Providing a system for laying code out on fixed sized (see 

Section 2.5) canvases so that programmers may use layout to spatially communicate 

information.  If a programmer desires, they are able to use this functionality to blur 

the lines between planning diagrams and functioning code. 

 Linking: The ability to link canvases together in an ad hoc fashion to form a web of 

relationships between distinct pieces of content. 

 Informal Abstractions: The utilisation of linking or specific multimedia objects to 

create abstractions distinct from the programming language. 

 Multimedia Elements: Allowing for embedding hypermedia elements such as 

pictures and diagrams so that planning and development can be more tightly 

coupled. 

SpIDER provides programmers with an authoring environment reminiscent of a canvas, 

lacking a scrollbar.  This encourages careful consideration of how the code is written and 

organised, by breaking it down into logical blocks (chunks) laid out spatially and nested in a 

manner that can extend the syntax that the programming language allows.  This new way of 

writing code is serialised into the form the compiler is expecting through an algorithm called 

the flow walker.  The SpIDER canvas is referred to as a Frame.  Elements on a SpIDER Frame 

are referred to as Items. 

Spatially Laying out Code.  Code can be spatially laid out to convey meaning.  A major boon 

of laying code out spatially in a fixed sized application window is the increased opportunity 

to provide for the use of Spatial Memory.  Figure 1.2 shows a screenshot taken from Eclipse 

showing the code for a small class containing a single static function.  The code produces an 

array of a specified size and fills it with random numbers, capped to a specified maximum 

value.  The same code can be seen spatially laid out in SpIDER in Figure 1.3.  Spatial layout 

has been used to separate and emphasise the code that does the random generation from 

the code that constructs the array.  Furthermore, the parameter to the constructor of 
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Random has been placed in its own box in order to further highlight that a seed is supplied 

and make it easy to change at a later date if desired. 

 

 

Figure 1.2: Code to produce a list of specified size with random elements in Eclipse. 

 

Figure 1.3: Code to produce a list of specified size with random elements in SpIDER. 

Linking.  Any Item in SpIDER can contain a hyperlink to another Frame.  Items with links are 

denoted by a small hollow circle displaced to the left of the Item.  The flow walker algorithm 

follows links when serialising the spatially laid out code. 
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Figure 1.4 shows another screenshot taken from Eclipse.  This screenshot shows the entry 

point to the QuickSort class.  As development is still occurring, the entry point currently 

contains code to test the sort function.  It begins by gathering together information passed 

as arguments to the program along with user input to decide on the length of the list to 

generate and what the max element will be.  The second step is it to generate an array using 

the ListGenerator class from Figure 1.3.  The array is printed before and after sorting.  The 

remainder of the QuickSort class has been excluded from the screenshot. 

 

Figure 1.4: Main function inside class QuickSort (Eclipse). 

While this is a simple program, it can be broken down further using SpIDER.  Figure 1.5 

shows the same content produced in SpIDER.  Links have been used to move content off-

page where the developer has thought it useful to do so.   

 The import statement has been moved off Frame so that it does not take up space 

on the current Frame.  It is still accessible by clicking on the linked Item.   

 The code establishing the size and max value in the randomly generated list to sort 

has also been moved to its own Frame. 
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As an aside, this is an example of the flexibility provided by SpIDER.  While the first bullet 

point details an example that is similar to the functionality present in today’s popular IDEs—

the ability to collapse the import statements so that only one is visible—the second bullet 

point details an example where the programmer has achieved similar behaviour in an 

instance where the IDE is not aware of any meaningful grouping. 

 

Figure 1.5: Main function inside class QuickSort (SpIDER). 

Figure 1.6 is a diagram showing how the featured QuickSort program is broken up over 

multiple frames.  Six Frames are present, each has been cropped to fit the dimensions of its 

content.  Dashed arrows have been overlaid across each Frame arrived at by following the 

linked Items. 
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Figure 1.6: Example of linking relations between Frames. 

Abstraction.  Traditionally in programming languages, the smallest abstraction is considered 

a function, however in reality–even if a function is doing only one thing–they can still be 

broken down into steps.  Throughout the previous section we described the how links work 

in SpIDER and demonstrated how a fragment of code can be moved to another Frame.  This 

is one form of a programming language independent abstraction that SpIDER supports. 

Figure 1.5 also shows another form of programming language independent abstraction that 

SpIDER supports.  A print statement has been placed in a box with two arrows from 

separate parts of the code pointing to it.  We call this Anonymous Indirection.  It utilises out 

of flow functionality provided by the flow walker. 

Multimedia Elements.  As a Spatial Hypermedia system, SpIDER allows for the embedding of 

a variety of non-textual information.  This allows programmers to integrate more of their 

work into one platform.  Rather than having to switch between planning documents and 
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code, programmers can instead include their planning documents side-by-side with their 

code.  Figure 1.7 shows an example of multimedia being used to enrich the implementation 

of a graphical user interface (GUI) for a simple up/down counter application.  The code is 

boxed and positioned around the image to communicate how the sketch relates to the 

code.  Details concerning how spatially laid out code such as this is serialised is provided in 

Section 7.1.   

 

Figure 1.7: Integrating sketch with code. 

The sketch itself links to the page seen in Figure 1.8.  The programmer has added the 

controls to the GUI but has yet to customise them: a screenshot of the running program has 

been taken and positioned in a similar fashion as to the sketch from Figure 1.7.  By keeping 

the screenshot up-to-date the programmer can see what is left to be done.  Moreover, in 

SpIDER, it is easy to keep the old screenshots archived on a separate Frame, allowing the 

programmer to access a history of development if they so desired. 
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Figure 1.8: Integrating screenshot with code. 

1.4 Thesis Outline 

This thesis has been organised as follows.  Chapter 2 begins by describing Spatial Memory 

and how programmers already utilise it through space, shape and relative position of code.  

It explains the motivations for creating a Spatial Hypermedia-based IDE.  We then move to 

an analysis of existing IDEs such as Eclipse in Chapter 3, and establish what functionality is 

core.  We also examine elements of spatial functionality present in these IDEs.   

General purpose Spatial Hypermedia environments are reviewed in Chapter 4.  In support of 

this examination, Chapter 4 introduces a formal descriptive model of the authoring process.  

In Chapter 5 we turn our attention to existing IDEs with significant use of spatial features, 

again using the formal model to structure the analysis.  Building on these examples, the 

chapter continues with a broader discussion showing that there are more ways in which 

Spatial Hypermedia capabilities can be applied to the needs of programmers than can be 

seen in existing solutions.  This leads to the decision to extend an existing general purpose 

Spatial Hypermedia system and integrate IDE functionality into it by using the Eclipse Java 

Development Tools.  The resulting system was called SpIDER. 

Expeditee, the Spatial Hypermedia system that SpIDER is built on, is further documented in 

Chapter 6.  Its unusual user interface, with a lack of widgets and heavy use of the mouse is 

discussed.  Chapter 7 documents the design and implementation of SpIDER.  The flow 
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walker is evaluated in Chapter 8 through an initial and follow up study.  The results show 

that: with restrictive examples, on their first impression, people are able to understand code 

laid out in SpIDER’s spatial style.  These results influence Chapter 9 where the idea of 

‘Spatial Development Patterns’ are introduced and discussed.  A series of examples is used 

to show the benefits of SpIDER whilst discussing the motivations behind each example.  

While not exhaustive, these examples demonstrate what has been gained through a 

combination of spatial layout and uniform treatment of elements.  Chapter 10 explores the 

potential pitfalls associated with the spatial freedom provided by SpIDER.  Chapter 11 

concludes the thesis by summarising what has been gained from the research and a brief 

discussion of future work.  

Two hypotheses encapsulate the goals of this thesis: 

 A process can be established that allows for spatially arranged code to be 

unambiguously understood by programmers and compilers.  This process should 

allow code layout practice to range from serial (as seen in conventional IDEs such as 

Visual Studio) to diagrammatic.  

 

 A Spatial Hypermedia-based IDE can be used to integrate many stages of the 

software development process.  The uniform treatment of elements within a Spatial 

Hypermedia system will allow programmers to intertwine forms of documentation 

that are traditionally kept separate from the code (test results, variable dumps etc.) 

and allow programmers to better customise their environment for each project. 

The key contributions of this research are: 

 A review of literature connecting Spatial Memory, Spatial Hypermedia and 

programming in Integrated Development Environments.  

 A review of the Spatial Hypermedia system Expeditee. 

 The design and implementation of the Spatial Hypermedia-based IDE SpIDER.  

 The analysis and evaluation of the algorithm designed to allow for the spatial layout 

of code in SpIDER. 

 An exploration of how a Spatial Hypermedia system can be used for programming, 

the benefits and risks involved, especially concerning the quality of produced code.   
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Chapter 2  

Spatial Memory for Software Development 

Spatial Memory is a field in cognitive psychology concerned with the way in which people 

navigate environments and remember the locations of objects [1].  People utilize their 

Spatial Memory on a daily basis to navigate around environments and locate objects they 

need.  Making your way to your desk when you arrive at work and fetching a particular size 

of paper from the office stationery cupboard to refill the printer are both examples where 

Spatial Memory is used.  There are parallels in these activities with those that software 

developers undertake when writing software, especially when they are required to navigate 

through extensive bodies of source code (text) to access information they have visited 

before.   

A large fraction of time programming is spent on complex comprehension tasks such as 

debugging and testing [2].  Spatial Memory can be leveraged to reduce cognitive load [3, 4], 

reducing the time spent attempting to understand previously authored code and 

consequently increasing the time they have available to focus more on the complex 

comprehension tasks necessary to complete their work. 
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In this chapter, we define what Spatial Memory is and how it can be leveraged to help with 

programming, particularly when complex comprehension tasks are performed.  This 

discussion is a precursor to presenting the design and implementation of SpIDER in Chapter 

7. 

This chapter also covers: 

i. The terminology used for describing graphical interfaces that utilise Spatial 

Memory. 

ii. Examples of the way in which programmers currently use Spatial Memory. 

iii. Issues for designing an IDE that amplifies the use of Spatial Memory, using 

observations made about (i) and (ii).  

Section 2.1 elaborates on Spatial Memory by discussing the short and long-term 

components and how it can be utilized for navigation and object location.  The terminology 

we will be using to describe interfaces that utilize Spatial Memory (spatial interfaces) will be 

covered in Sections 2.2 and 2.3 and is adapted from Scarr et al. [5].  These sections review 

Spatial Memory literature (with a focus on object location over navigation) and produce a 

set of guidelines designed to help interface designers create interfaces that can utilize 

Spatial Memory.  Section 2.4 gives examples and an analysis of how programmers currently 

make use of their Spatial Memory.  Section 2.5 extends the work done by Scarr et al. by 

applying the concepts discussed in previous sections to authored content—with a focus on 

program code. 

2.1 Spatial Memory 

Cognitive psychology uses a model of Spatial Memory consisting of two components: short 

and long-term memory.  Below we discuss the functioning of these components and give 

examples of how they are utilized by people in day-to-day life.  Also discussed are the 

differences between utilizing Spatial Memory for object location and navigation. 

 Short-Term Memory 

Short-term Spatial Memory is a space limited system that is useful for performing complex 

cognitive tasks [6].  People are able to keep pertinent information in mind while working 

towards a specific goal, such as remembering which streets they walked down on the way to 

the park so that they can retrace their steps to return home.  Baddeley and Hitch’s multi-
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component model [7] is a popular theory explaining how three parts of working memory are 

able to work together to achieve these results.  Baddely and Hitch’s model has been subject 

to refinement since its initial publication [8]; Figure 2.1 shows recent thinking on how these 

three parts interact. 

 

Figure 2.1: The functioning of three separate but interacting systems in working memory.1 

The diagram shows three separate systems that interact indirectly [8]: 

1. The Phonological Loop which processes and stores information relating to auditory 

and linguistic information. 

2. The Visuospatial Sketchpad which processes and stores visual and spatial 

information. 

3. The Episodic Buffer that orders events. 

  

                                                           
1 https://commons.wikimedia.org/w/index.php?curid=12843390.  Last Accessed on during October 
2017 

https://commons.wikimedia.org/w/index.php?curid=12843390
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These three systems are directed by the Central Executive to achieve a specific task.  

Extending our example from earlier: when travelling from home to the shops to buy milk a 

person utilises the three systems of their short-term memory by: 

 Remembering the names of the streets they walk down, a language task handled by 

the Phonological Loop. 

 Recalling the order of the streets they walk down, utilising the Episodic Buffer. 

 Forming a mental map of their trip in their mind, utilising the Visuospatial 

Sketchpad.  

Spatial Memory is primarily concerned with the Visuospatial Sketchpad, which processes 

both spatial and visual information. 

 Long-Term Memory 

Long-Term Spatial Memory utilizes a hierarchical structure [9].  In our example, when a 

person forms a mental map of their trip to the shops in their mind, this map is represented 

hierarchically once moved into long-term Spatial Memory.  When repeating the trip at a 

later time the person starts at their ‘home’ node and decides on which street to walk down, 

eventually arriving at the next node and making another decision; at each node the person 

is able to recall the next step to take. 

 Object Location and Navigation 

Spatial Memory can be used for both navigation and object location [5].  These two uses of 

Spatial Memory differ significantly according to the viewpoint of the individual when 

attempting recall.  During object location, a person has an overview of the environment 

they are engaged with, for example: finding an item in a filing cabinet or a particular icon on 

their desktop computer.  Conversely when using Spatial Memory to navigate a person is 

inside the environment and is able to build a map in their mind to get to their destination, 

for example: taking the quickest route to the office with the filing cabinet.  The map created 

in the individual’s mind provides an overview of the route.  In contrast to the overview 

present when performing object location, this overview is imagined. 

A popular test for measuring a candidate’s ability to leverage their Spatial Memory is the 

Corsi Block-Tapping Task [13].  In this test participants are exposed to a set of spatially and 

haphazardly arranged blocks.  The scientist running the experiment taps on several of the 
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blocks and has the participant reproduce the order.  This continues in rounds with the 

number of blocks being ‘activated’ increasing on each round.  Other studies, both for 

navigation [10, 11] and object location [12, 4, 13], have shown the importance of 

Landmarks, which are discussed in more detail in Section 2.2 below. 

2.2 Single View and Viewport Interfaces 

Scarr et al. discuss how choices made in designing a program interface can affect a user’s 

ability to utilize their Spatial Memory [5].  Here we begin to summarise their work with 

particular emphasis on their concepts of ‘Single View’ and ‘Viewport’ interfaces.  

Interfaces—or large interface components—that show all their widgets at once are 

classified as a ‘Single View’ interface.  Figure 2.2 shows a screenshot of the Windows 10 

Scientific Calculator, which is an example of a ‘Single View’ interface.  Conversely, interfaces 

that conceal some fraction of their widgets at any given time and provide the user with 

some level of control over what is visible—for example, through scrollable panels—are 

considered ‘Viewport’ interfaces.   

 

Figure 2.2: The Windows 10 Scientific Calculator: an example of a ‘Single View’ interface. 
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 Single View Interfaces 

When designing interfaces to utilize a user’s Spatial Memory for object location, a ‘Single 

View’ interface tends to produce better results than a ‘Viewport’ interface.  This is due to 

two characteristics of Spatial Memory: 

 Spatial Memory is built through the repeated use of the spatial interface [14].  

Having a single view means each use of the interface does not split progress 

developing Spatial Memory between multiple views.  Furthermore, Doeller and 

Burgess discuss the benefits of the strict boundaries present in ‘Single View’ 

interfaces and how they help build Spatial Memory [4]. 

 

 When a user is provided with an interface they are familiar with, the efficiency of 

using Spatial Memory to locate, navigate and activate controls causes actions that 

change the visibility or position of controls to be a comparative bottleneck [15]. 

Scarr et al. also discuss their experiments with widgets they call CommandMaps [15].  Figure 

2.3 shows a CommandMap widget being used to replace the existing Ribbon system in 

Microsoft Word.  They find that experienced users are able to use the CommandMap 

system to execute commands faster than the Ribbon system.  Inexperienced users perform 

about the same regardless of which system is being used. 

Placing all controls onto one panel, rather than requiring users to switch between which set 

of controls is active, has allowed for better utilisation of Spatial Memory by those with 

experience.  As inexperienced users perform the same, regardless of their use of 

CommandMap or traditional layout, this suggests that there is no downside to using a 

CommandMap. 
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Figure 2.3: An example of a CommandMap widget being used in place of the Microsoft Word Ribbon [15]. 

 Viewport Spatial Interfaces 

Due to restrictions such as screen size or design goals, it is often implausible to present all 

the controls to the user at once.  Therefore ‘Viewport’ interfaces work by providing the user 

with a limited view.  A common method to achieve viewport behaviour is to provide the 

user with a pan and zoom interface.   

Pan and zoom interfaces give the user fine-grain control over what region of the 

information space is visible.  They are able to centre details that they are currently engaged 

with and choose a level of zoom that provides them with the information they want to see 

while minimizing unneeded information.  Google Maps is a prime example of an interface 

that needs to use a viewport spatial interface, driven by the fact that it is providing access to 

an information space (the map) that is vast in size.   

Spatial Memory is not as easily leveraged in a ‘Viewport’, compared to a ‘Single View’ 

interface, because the boundaries of the information are no longer anchored to the edges 
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of the application window [5, 4].  There are two methods that can be used to mitigate this 

issue: overviews and landmarks. 

 Overviews 

Overviews are low-detailed, scaled down representations of the entire information space.  

They feature heavily in strategy computer games such as the Sid Meier’s Civilisation series.  

An in-game screenshot of Sid Meier’s Civilisation V (Civ5) can be seen in Figure 2.4, where 

the screenshot has been modified to include dotted line circles for the purpose of 

discussion. 

Inside the red dotted circle is the mini-map.  The mini-map contains: 

 A trapezoid-shaped box showing where the current viewport is currently aimed at. 

 Fog-of-war representation: a concept from strategy games of map area that the 

player has yet to explore. 

 Colour coded areas representing territory controlled by other in-game factions. 

The information communicated by the mini-map can help the player build and retain a 

spatial map in their mind by anchoring the player’s position to an absolute position on the 

map.  Broadly speaking an overview provides a undetailed and miniature stand-in ‘Single 

View’ spatial interface inside the larger and more detailed ‘Viewport’ spatial interface that 

the user can use to obtain an absolute position of the active region they are examining 

through the viewport. 
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Figure 2.4: An example of a Viewport spatial interface featuring the use of an overview and several landmarks. 

 Landmarks 

Another potential way for users to build and retain Spatial Memory in a ‘Viewport’ spatial 

interface is through the use of landmarks [11].  Landmarks are noticeable and significant 

aspects of the interface that can be used as anchor points.  A spatial map can be built with 

the landmark as a central point and with other items in the interface being remembered in 

relation to that landmark.   

Unfortunately, like overviews, and as Doeller and Burgess show, landmarks are not a 

complete stand-in for a ‘Single View’ interface as building spatial relationships to landmarks 

is not as automatic as building those relationships to the edge of an interface [4].  Doeller 

and Burgess examine the automatic nature of Spatial Memory.  They find evidence 

suggesting that people build a spatial map in their mind automatically when dealing with 

‘Single View’ spatial interfaces but require a more conscious effort when utilising landmarks 

in ‘Viewport’ spatial interfaces. 

When using Spatial Memory to navigate in the real world, landmarks might be notable shop 

signs or large roundabouts.  Consider, for example, how many times you have received 

directions to a location where one of the instructions was along the lines of: “keep going 

until you see the big green sign”.  In software, landmarks might be particularly important 
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icons.  Using Figure 2.3 as an example, the “Spelling & Grammar” icon could be considered a 

landmark due to its size, prominent positioning and possibly frequent use. 

Figure 2.4 uses blue dotted line circles to give examples of landmarks present in Civ5.  Four 

of the five highlighted areas are towns—a major aspect of the game—three of which are 

from one faction and the fourth from another faction.  Furthermore, these landmarks can 

be seen as coloured dots on the mini-map, connecting the overview with common 

landmarks.  The fifth landmark is not a city and is not represented on the mini-map, it is a 

mountain range.  Mountain ranges are reasonably rare impassable terrain which makes 

them good candidates from which to anchor other aspects of the game off. 

2.3 Spatial Stability 

Scarr et al. also discuss the concept of spatial stability [5].  An interface whose content tends 

to remain in a fixed position is referred to as a spatially stable interface.  A spatially stable 

interface lends itself to utilising Spatial Memory for object location more than a malleable 

interface, allowing users to navigate directly to remembered location of the content they 

want rather than having to search for it.  Figures 2.2 and 2.3 are both examples of spatially 

stable interfaces.  

 The calculator in Figure 2.2 is spatially stable but is also very simple. 

 The CommandMap example from Figure 2.3 is also highly spatially stable but 

significantly more complicated.  Complex components, such as the font selection 

feature, utilise a scrollbar and are therefore not spatially stable.  A spatially stable 

alternative to font selection is discussed in Section 2.3.1. 

 Scrolling 

Scrollable widgets are commonly used and unfortunately cause problems with utilising 

Spatial Memory.  Three studies are detailed below that compare scrollable content with 

spatially stable content, finding that participants both prefer spatially stable content and 

that, when interacting with spatially stable content, they complete complex comprehension 

tasks to a higher standard.  It should be noted that while scrollable widgets destabilise the 

position of content, and therefore interfere with the development of Spatial Memory, they 

are still a useful component for accessing an unbounded quantity of information; especially 

if the information lends itself to a specific ordering, such as alphabetic. 
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O’Hara and Sellen discuss an experiment comparing scrollable on-line documents with 

paper versions of those documents [16].  They report that participants moved through 

pages in the paper version with speed and accuracy, and were able to use “the fixity of 

information with respect to the physical page” to find what they were looking for.  In sharp 

contrast, on-line document navigation was found to be slower and participants found 

themselves splitting the cognitive load between the task they were attempting to achieve 

and navigating around the document. 

Cockburn et al. developed and reported on an interface called Space-Filling Thumbnails 

(SFT) [17] that was designed for navigation using Spatial Memory object location.  Instead of 

being able to scroll through pages a user is able to click the middle mouse button to be 

taken to a navigation page as seen in Figure 2.5.  Clicking on a thumbnail in this view 

navigates the user to that page.  Results from comparing SFT to other types of interfaces 

showed that SFT performed well, especially when compared to scrolling interfaces. 
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Figure 2.5: Space-Filling Thumbnails [17]. 

Gutwin and Cockburn developed another interface called ListMaps [18], designed to utilise 

Spatial Memory for object location.  ListMaps take content normally presented in a 

scrollable list (such as fonts) and displays that content in a 2D array-like structure, a 

screenshot of which can be seen in Figure 2.6.  Through experimentation, they found that 

task times for inexperienced participants increased but task times for practised participants 

were significantly faster. 
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Figure 2.6: ListMap for font selection [5]. 

2.4 Programmers Navigating with Spatial Memory 

With Sections 2.4 and 2.5 we now turn our attention to looking at the task of applying 

Spatial Memory to programming.  This goes beyond the work done by Scarr et al. [5, 17, 18, 

15] who focused on traditional computer interfaces that contained non-editable 

components such as buttons and labels.  Prior to discussing our solution for applying their 

work to program code we will first analyse three examples from popular IDEs and discuss 

how programmers can utilise their Spatial Memory with the example interface.  

 Eclipse Package Explorer 

The Package Explorer in Eclipse (as seen in Figure 2.7) is an interface designed to allow a 

programmer to navigate around their project.  As explained in Section 2.1, long-term Spatial 

Memory is hierarchical in nature, and so too is the structure of a software project.  This 
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match should help a programmer perform faster object location by using packages as 

landmarks.  While a small project with all of the components expanded could be 

represented with a 'Single View' interface, more reasonably sized projects are likely to 

require scrollable interfaces--and so the representation will interfere with spatial memory.  

Furthermore, spatial stability is hurt further by the collapsible components of this interface, 

for example: expanding the org.apollo.gui package (Figure 2.7) will place the revealed 

classes at different positions, based on what is expanded above it. 

 

Figure 2.7: Hierarchical structure of program as shown in Eclipse. 

 Eclipse Outline 

The Eclipse Outline is another interface that has trouble utilising Spatial Memory.  It 

summarises the content of the selected Java source file, an example of which can be seen in 

Figure 2.8.  Like the Package Explorer, the Outline also features collapsible components with 

the potential for scrolling; as a result of this, they share the same problems utilising Spatial 

Memory.  However, it also adds additional functionality–sorting and filtering.  The 

programmer is able to move the position of the content around by sorting it alphabetically 

or filtering certain items out, for example: hiding private fields will move the constructor 
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ExpReader(String) further up the list.  It should be noted that while these features of the 

interface hurt spatial stability (and therefore Spatial Memory), they do not make it a bad 

interface.  Instead, it shows that it is more useful for searching or browsing than it is for 

utilising Spatial Memory for object location. 

 

Figure 2.8: The Eclipse outline interface: useful for searching but not spatial object location. 
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 Program Code 

While not specifically an interface, code lends itself to being utilised by Spatial Memory.  In 

this way, it is more akin to the Google Maps interface that provides access to an information 

space.  The hierarchical structure of classes (classes containing functions, functions 

containing statements, etc.), heavy use of indentation and other white space all contribute 

to forming Spatial Memory.  DeLine et al. augment Visual Studio [12] to leverage the unique 

shape of code for Spatial Memory.  Two separate augmentations are developed and tested:  

1. The Code Thumbnail Scrollbar (CTS)—as seen in Figure 2.9—is an interactive 

augmented scrollbar that acts as an overview to the complete editor.  As discussed 

in Section 2.2 the editor can be considered a ‘Viewport’ spatial interface (when 

there is enough content to require scrolling) because the scrollbar allows the user 

access to currently unseen content.  Also, as discussed, adding an overview to a 

‘Viewport’ spatial interface should help the user leverage their Spatial Memory. 

2. The Code Thumbnail Desktop (CTD)—as seen in Figure 2.10—is a newly designed 

‘Single View’ spatial interface similar to Space-Filling Thumbnails [17] designed by 

Cockburn et al.  

Their evaluation used 11 participants, with an average age of 34 and an average of 15 years 

programming experience.  Once participants had been given time to familiarise themselves 

with the provided code they were asked to make a series of alterations.  Following this, they 

were asked to perform a series of targeted search tasks, such as being asked to navigate to a 

particular function.  The version of Visual Studio the participants used not only included 

Code Thumbnails but also recorded their actions. 

 



 
 

31 
 

 

Figure 2.9: Code Thumbnail Scrollbar [12]. 

 

Figure 2.10: Code Thumbnails Desktop [12]. 
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During the series of programming tasks, DeLine et al. found that participants opted to use 

some aspect of Code Thumbnails for between 40% and 91% of their navigations [12]. CTD 

was used (on average) slightly more frequently than CTS.  Other common forms of 

navigation were: using Visual Studio’s build-in search, ‘Solution Explorer’ (equivalent to 

Eclipse’s ‘Package Explorer’) and ‘Go to Definition’ functionality. 

When performing targeted search tasks rather than alterations to the code, the 

programmer’s behaviour changed.  The CTD was used more frequently, being used on 

average in 64% of searches.  However, the CTS was only used during 11% of searches, falling 

behind text search at 16%.  This suggests that having had practice using both new systems, 

participants favoured the ‘Fixed View’ spatial interface option. 

 Software Visualisation 

Software Visualisations, such as Codemap which Kuhn et al present [19], use Spatial 

Hypermedia elements such as size and position to communicate information about the code 

base of a software project.  An example of a Codemap can be seen in Figure 2.11.  In this 

example, directed arrows are used to communicate the flow of potential execution from an 

origin: a function within the MenuAction class.  The proximity and size of heat map bubbles 

in relation to labels communicates the extent of test coverage on that area of code.  

Therefore, in this particular example, there might be a reproducible bug present in the 

application that can be triggered by interacting with the menu item associated with the 

MenuAction class—this visualisation can assist in identifying likely locations were the 

offending code is. 
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Figure 2.11: Example output of the Codemap Software Visualisation Tool. 

Evaluation of the Codemap software visualisation found evidence that: 

 Programmers reason about a code base in spatial terms—thinking about some 

programming elements as being higher or lower than others—and that ideally 

programmers should be given the freedom to spatially arrange visualisations 

themselves rather than be limited to a procedurally generated visualisation. 

 Spatial layout can promote the usefulness of functionality, such as search results, 

that are frequently displayed in a mundane fashion. 

 Programmers strongly relate program package structure with code connectivity and 

act surprised when a visualisation spatially positions functionality based on some 

other ruleset; even when there is good reason for this to be the case. 

Another stated use for the Codemap software visualisation is the ability to colour code a 

heat map representation of the code to signify which source files individual programmers on 

a team currently have open. 
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2.5 Utilising Spatial Memory for Programming 

This chapter has listed and discussed the considerations that need to be made when 

designing an interface to utilise Spatial Memory.  However, the literature discussed deals 

with non-authored content—widgets such as buttons and labels.  The experiments carried 

out by DeLine et al. show that experienced programmers are both willing and able to use 

Spatial Memory to navigate around C# projects [12].  However, this thesis is concerned with 

creating an IDE that utilises Spatial Memory throughout the entire development process; 

not only for navigation but also for planning, authoring (editing code) and debugging. 

The question remains: What would an IDE designed to utilise Spatial Memory from the 

ground up look like? 

 Applying Single View and Viewport Interface Concepts to Authored Content 

Throughout Section 2.2 we established that:  

 ‘Single View’—compared to ‘Viewport’—spatial interfaces produce better results 

when attempting to utilise Spatial Memory.   

 Overviews and landmarks in ‘Viewport’ spatial interfaces help close this gap.   

 Landmarks are generally helpful, regardless of which type of spatial interface is 

present.  

While it might be better—for Spatial Memory—to use a ‘Single View’ spatial interface, it is 

not always possible or desirable due to the amount of content.  This problem is especially 

prominent in an authoring application where the quantity of content is not fixed—and 

realistically unbounded.  Consider an application such as Microsoft Word, where the 

quantity of information that needs to be displayed will be different based on what is 

written.  At one extreme of the spectrum, a short poem may be written, such as a limerick, 

at the other, a Computer Science PhD thesis could be written!  For this reason, it is less 

useful to talk about ‘Fixed View’ and ‘Viewport’ spatial interfaces when talking about 

authoring applications.  However, it is still beneficial to consider concepts such as 

landmarks, overviews and utilisation of the edges of the screen when discussing authoring 

applications. 

As an extension to the work done by Scarr et al. [5, 15] we use the terms Fixed Size Spatial 

Interface and Variable Size Spatial Interface to classify authoring applications based on how 
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they occlude content once there is too much to display without growing the size of the 

application window.  Strictly speaking, both classifications are a form of ‘Viewport’ 

interface, though Fixed Sized Spatial Interfaces share many of the properties that ‘Single 

View’ interfaces do.   

A Fixed Size Spatial Interface aims to allow the edges of the screen to be used for growing a 

user’s Spatial Memory.  In order to achieve this, methods for occluding information by 

stretching or distorting the size of the information space—commonly scrolling and 

zooming—cannot be used, as these techniques cause the position of items relative to the 

edge of the screen to change.  Instead, functionality that provides a surrogate is used.  For 

example, on a webpage, a hyperlink with the text ‘Employees’ that directs a user to another 

webpage listing a company’s employees is a surrogate for the content on that page.  

Another commonly seen example is the ability to collapse a named section of a Microsoft 

Word document. 

Conversely, a Variable Sized Spatial Interface does not limit the types of functionality that 

can be used to occlude information.  Typically, a Variable Sized Spatial Interface makes use 

of scrolling (or panning).  Such functionality is able to dynamically adjust the size of the 

authorable space.  

It should be noted that these definitions rely on a fair appraisal of how the application was 

intended to be used.  To clarify, avoiding the use of scrollbars in authoring applications such 

as Microsoft Word is possible by limiting the amount of content or making heavy use of 

external-facing links.  However, this is not the typical use of this software and as such we 

consider Microsoft Word to be a Variable Sized Spatial Interface.  

 The Shape of Code and Other Media – Landmarks 

Compare the shape of code with the shape of content in Microsoft Word.  An argument can 

be made that code lends itself to utilising Spatial Memory more due to the heavy use of 

indentation—creating more unique shapes and therefore giving more opportunities for 

landmarks.  Conversely, the opposite argument can be made as code tends not to have 

other forms of media such as figures—lessening the opportunity for landmarks. 
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 Spatial Stability of Authored Content 

As program code is authored and frequently rewritten, spatial stability is a unique challenge.  

Traditional flat file text editors, as seen in currently popular IDEs, can have chain reactions 

occur throughout significant portions of the file simply by adding a character to a string.  For 

example, a traditional flat file editor may decide to move an entire word to the following 

line as it grows in length, potentially having run-on effects throughout the file.  

Furthermore, traditional text editors use scrolling, which—beyond the discussion in Section 

2.3—has the effect of ordering functions in a similar fashion to how paragraphs are ordered 

when writing a prose.  When writing prose, the order paragraphs appear in contributes to 

the meaning of the entire text.  However, the ordering of functions in a file is comparatively 

pointless. 
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Chapter 3  

Traditional Programming 

Anecdotally, programmers often talk about the time they spend authoring code.  Regardless 

of experience—whether they have been programming for years or decades—they note how 

it always seems to take them longer to ‘code up something’ than they expect.  It is also 

often said that a programmer spends more time thinking about their existing code than 

writing new code.  Noticing the lack of empirical evidence to support such claims, Minelli et 

al. conducted an investigation of how programmers spend their time [20].  They achieved 

this by collecting fine-grained usage data with a custom built interaction profiler.  The 

results of their study showed that very little time spent programming is actually spent 

editing code.  Most notably, 70% of a programmer’s time is spent performing code 

understanding, higher than the 50% figure they cite as being anecdotally reported in the 

literature.  Their study also found that 14% of a programmer’s time is spent performing 

‘non-significant’ user interface interactions.  These are classified as actions, such as moving 

or resizing windows, that do not directly contribute to the completion of the programmer’s 

task.  The remaining portions of a programmer’s time are spent (in order of magnitude) 

outside the IDE, editing code and navigating.  The IDE Minelli et al. used in their experiment 

makes it difficult to generalise their results due to differences in user interface design as 

compared with popular IDEs such as Eclipse [21]. 

These first two statistics, the time spent performing code understanding and performing off-

task user interface interactions, are the biggest concerns.  In Chapter 2 we discussed Spatial 

Memory, the benefits it provides and how to best leverage it.  With up to 70% of a 

programmer’s time being ‘consumed’ by code understanding, we seek to reduce this figure 

through the introduction of Spatial Hypermedia to promote the use of Spatial Memory.    

The introduction of Spatial Hypermedia to programming may also help reduce time spent on 
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off-task user interface interactions and minimise the need to task switch to other 

applications—a cognitively expensive process [22]—through its inclusion of multimedia. 

Throughout this thesis, we need to refer to the type of IDE that is prevalent today, such as 

Eclipse and Visual Studio.  It is tempting to refer to today’s programming environments as 

modern IDEs.  However, for our purpose, this term is ambiguous.  To distinguish research-

led experimental IDEs, such as those we review in Chapter 4, from main-stream commercial 

IDEs, we refer to the latter as traditional IDEs. 

In this chapter, we examine the development of programming environments in order to 

identify some underlying issues that contribute to longer than necessary software 

development cycles, such as those identified above by Minelli et al.  Identifying these issues 

will help direct the focus of this thesis.  In Section 3.1 we document traditional IDEs, both 

the history behind them and the resulting form they take today.  We take note of their core 

components, using these notes to help establish the scope of development for our Spatial 

IDE (SpIDER).  Functionality that is considered core to the design of a traditional IDE must 

have an analogue in SpIDER.  Section 3.2 looks at the concept of abstractions in 

programming.  We document both prescribed and artificial abstractions and discuss the 

support they receive in traditional IDEs.  Using our analysis from Section 3.2 we then 

address rigidity in IDEs in Section 3.3, identifying where there is room for improvement.    

3.1 Traditional Integrated Development Environments 

Today, the base feature set of an IDE is well established.  However, this has not always been 

the case; functionality such as syntax highlighting was once considered a novel idea [23].  

Section 3.1.1 uses an historical lens to examine the emergence of IDEs as tools designed to 

assist with the task of programming.  Notable milestones, driven by academic and economic 

forces are documented.  Having arrived at the modern-day IDE by the end of Section 3.1.1, 

Section 3.1.2 then discusses the collection of functionality that we consider ‘core’ to the IDE 

experience.  This allows us to establish the set of functionality that our spatial IDE will 

support. 

 The Emergence of Integrated Development Environments 

Historically.  In the 1950s high-level programming languages such as FORTRAN, developed 

at IBM, first appeared as alternatives to assembly language.  They were characterized by a 
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batch driven process of compile, link and go.  Each of these stages was segregated from the 

other.  The 1960s and 1970s saw further development in programming languages.  Two 

notable languages from this period were Dartmouth BASIC and FORTRAN 77.   

Thanks to several advances, including the ability to store entire programs in memory, these 

next-generation languages were able to more tightly couple the execution of code with a 

command line environment—the beginnings of integrated development environments 

(IDEs).  Dartmouth BASIC allowed programmers to issue commands via a command line 

interface.  For example, ‘LIST’ could be used to display the currently loaded program to the 

screen and ‘OLD’ allowed a previously saved program to be moved from long-term storage 

to memory.  Programming in FORTRAN 77 took a significant step forward with the 

development of the utility program WATFOR at the University of Waterloo.  WATFOR 

allowed students at the university to submit their code for execution without having to 

concern themselves with the compile, link and go process, freeing them to focus on 

producing better quality code.  With the compile, link and go process being handled in a 

single pass process, should a student’s code contain errors, they were able to get immediate 

feedback.  WATFOR was to be succeeded by multiple versions of WATFIV. 

The next significant milestone in the historical development of IDEs came in the form of 

Maestro I and Turbo Pascal.  Many consider Maestro I—released in the mid to late 1970s—

to be the first purpose-built commercial IDE.  Differing from previous systems that used card 

readers and punch cards to load a programmer’s source code into memory, the Maestro I 

included a purpose-built keyboard that allowed programmers to directly type their code 

into the system.  This furthers the established pattern of integrating more of a 

programmer’s activities into a single environment, thereby providing a more responsive 

production cycle.  As with previous innovations, and as indicated by its name, Turbo 

Pascal—released in the 1980s—placed an emphasis on the speed that code could be 

compiled and ran.  As a piece of software, Turbo Pascal was both commercially and 

functionally successful.  Unlike Maestro I which was designed to be rentable, Turbo Pascal 

was priced for installation on personal computers.  Like Maestro I, programming in Turbo 

Pascal was achieved by entering program code via a keyboard.  Turbo Pascal also featured 

debugging functionality and the ability to include inline assembly language. 
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Traditional IDEs.  With the advent of graphical window desktop environments, IDEs 

underwent another transformation, transitioning from the text-based interfaces like those 

seen in Turbo Pascal (Figure 3.1) to the IDEs we use today.  Microsoft Visual Studio and 

Eclipse are the two most popular IDEs [24], with Eclipse being preferred by over half of Java 

developers [21].  By taking a historical look at the development of IDEs we have been able 

to see the breadth of innovation they have progressed through.  There is little need for the 

average modern-day programmer to think about the process of compiling and linking their 

code.  Integrated debugging, as seen in Turbo Pascal, is now commonplace.  Furthermore, 

functionality such as content assist and hyperlink marked up code, and graphical user 

interfaces (GUIs) with mouse interaction have further accelerated the development process. 

 

Figure 3.1: Screenshot of Turbo Pascal. 

An examination of the last couple decades shows that innovation in traditional IDEs has 

slowed.  Eclipse 1.0, developed by IBM, was released open source in November of 2001,2 

shortly followed by Eclipse 2.0 in June of the following year.  As noted by Nackman, the vice 

president of product development at IBM, it was at this point that it became clear that 

Eclipse would be successful [21]. 

  

                                                           
2 Archived versions of the Eclipse IDE: http://archive.eclipse.org/eclipse/downloads/index.php 
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A technical overview, which was initially produced for Eclipse 1.0 and then updated for 

Eclipse 2.1, documents the features that Eclipse provided to programmers in its formative 

years [25].  It lists support for: 

 The creation and management of Java Projects. 

 The browsing of Java Projects that are arranged hierarchically using Java elements 

such as packages, types, functions and fields. 

 Editing Java code.  This includes the code formatter, code completion and error 

messages. 

 Refactoring Java code such as function extraction. 

 Searching Java Code with results hyperlinked to appropriate locations. 

 Comparison of two Java files, presumably for the purposes of version control. 

 Compile, run and debug functionality. 

Innovation since then is difficult to point to.  All of the functionality in the above list has 

been iterated on and as a result improved, however additional functionality or significant 

changes to the environment is left to the realm of plugins.  While the plugin system of a 

traditional IDE can be impressive [26, 27], it relies on programmers being aware they want 

certain functionality and the ability to locate and install the appropriate plugin.  In place of a 

historical view on Visual Studio, it is sufficient to notice that the feature set in all traditional 

IDEs is similar.  Task tracking, GUI creation and integrated testing are examples of 

innovation that builds on the above list.  However, they tend to be separate, specially 

created widgets with minimal impact on other parts of the environment. 

The remaining content of this section is divided into two parts.  In order to establish what 

the core functionality of a traditional IDE is, and to point out the similarities between them, 

the first part documents and describes important aspects of IDEs.  In the second part, we 

then perform a brief evaluation of the user interface (UI) associated with the functionality 

that part one listed.  We note the lack of flexibility and difficulty in making minor changes to 

this UI. 
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 Integrated Development Environment Functionality 

Project Management.  Traditional IDEs such as Eclipse and Visual Studio reflect the 

hierarchical structure of the languages they support.  Purpose-built panels, such as the 

Outline or Package Explorer in Eclipse and Solution Explorer in Visual Studio use collapsible 

tree widgets (as seen in Figure 2.7) to reflect the languages hierarchical structure.  These 

panels provide a visual way to browse the content of a project.  When combined with 

hyperlinked markup they also provide a way to navigate to the file that results from that 

browsing.  For example, in Java, the top level component is a project.  Projects contain 

references to directories such as ‘src’ and ‘bin’ which contain source code and binaries 

respectively.  Source files are then arranged into packages.  Each of these levels of 

abstraction is represented in Eclipse’s Package Explorer.  The completely collapsed tree 

widget will show the name of the project.  Expanding the tree widget one level will reveal 

the directories containing source code and binaries.  Further expanding the tree by opening 

the representation of the source code directory will provide the programmer with access to 

the packages and source files of the project.  

Support for other project management tasks such as managing external libraries and 

maintaining the classpath is also provided.  In contrast to the GUI panels that provide 

browsing and navigation over a project, these tangential tasks use secondary windows that 

are accessible through a series of menus.  This lower level of accessibility is indicative of 

how frequently the developers of traditional IDEs believe it will be used.   

Syntax Highlighting.  Traditional IDEs use syntax highlighting to increase the readability of 

code.  By assigning specific colours to specifically recognised tokens, an IDE assists the 

programmer by providing visual cues about the state of the code.  Syntax highlighting allows 

a programmer to more easily comprehend large fragments of code or easily confirm they 

have entered a recognised keyword.  For example, under default settings, both Eclipse and 

Visual Studio set the font colour of comments to green.  This allows a programmer to 

mentally segregate comments from code, reducing the effort required in code 

understanding.  This has been shown to have a positive effect by Sarkar [28].  

Problem Reporting.  Similar to syntax highlighting, error reporting has a visual effect on the 

code.  When an IDE is informed (by the compiler) that there is a problem with the produced 
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code, it flags the offending tokens by highlighting them.  The two most common categories 

of problem reporting are warning and error notifications.     

Traditional IDEs take this process a step further.  As an acknowledgement of the fact that 

warnings and errors can occur on tokens not currently visible on screen, a purpose-built 

panel—‘Problems’ in Eclipse, ‘Error List’ in Visual Studio—lists all the problems currently 

being reported.  The items in this list are hyperlinked to the location of the problem.  A 

programmer can activate this hyperlink by double-clicking on the list item.  Doing so brings 

the file containing the problem into focus and causes the text area to scroll to the 

appropriate position in the file. 

Content Assist.  Content assist, also commonly referred to as code completion, provides a 

programmer with a list of syntactically valid options for completing a statement, reserved 

keyword or language construct.  One way content assist can be used is to accelerate the 

typing of long member names.  Consider a function with the name 

“parseJavaCodeFromString”.  Instead of scrolling through a potentially long list of 

suggestions from the IDE, the programmer can make use of the fact that camel case (medial 

capitals) is being used and can instead type the first letter of each word—p-J-C etcetera.  As 

the programmer types, the list of possible options is filtered to include this new context.  By 

pressing enter, the IDE will complete the string that programmer had selected in the 

provided list. 

Some completion results will contain structure themselves and the IDE may position the 

cursor and alter the behaviour of the tab key to assist with further completion.  Extending 

our previous example, a complete function signature could be 

“parseJavaCodeFromString(String, String, int)”.  When the programmer has pressed enter to 

select the correct suggestion, the IDE then places the cursor in the position of the first 

parameter so that the desired value may be entered.  Instead of inserting white space, 

pressing the tab key will then move the cursor to the position of the next parameter.   

Continual Compilation.  During the introduction to this section, we mentioned the system 

WATFOR and how it supported the use of FORTRAN77 by simplifying the compile, link and 

go processes.  Traditional IDEs take this a step further by periodically compiling the code in 

the background and maintaining rich data structures such as abstract syntax trees.  These 
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data structures are used to provide problem reporting and content assist in a timely 

manner. 

Run & Debugging.  A programmer is able to execute the code they have written from within 

their IDE.  Not having to perform work outside of the IDE makes it easier for programmers 

to make incremental additions to their code, checking their results as they go. 

When a programmer’s code is producing unexpected results, the integrated debugging 

system can be used to investigate.  Programmers are able to set breakpoints and execute 

code in a stepwise fashion, investigating the changes in data as the program runs.  A 

purpose built panel allows for code inspection and contains controls for performing steps.  

When debugging a console application standard out and standard error are redirected to a 

purpose-built panel, referred to as “Console” in Eclipse and “Output” in Visual Studio. 

Code Formatting.  Traditional IDEs provide functionality aimed at keeping produced code 

tidy and easy to read.  Upon starting a new line, a traditional IDE will insert a number of tabs 

to the head of the new line.  The number of tabs that are inserted depends on the ‘depth’ of 

the surrounding structure as defined by the supported language.  For example, when writing 

a Java For Loop in Eclipse, the content between the two braces that represent the scope of 

the loop, will be one level of depth more than the loop statement itself.  Therefore, this 

internal content will contain one additional tab. 

Another form of Code Formatting occurs at the request of the programmer.  When the 

programmer executes a specific key combination the IDE will alter the code to make it more 

readable.  This is achieved by adding whitespace characters such as tabs and newlines.  For 

example, a long line of code may be split over two lines.  A programmer is able to alter the 

behaviour of the code formatter through a settings dialog.                

Refactoring.  A collection of refactoring tasks exist, aimed at making non-trivial but tedious 

programming tasks easier by having the IDE perform some of the work.  For example, if a 

frequently used function name needs to be changed, then instead of manually changing the 

code in each place the function is called, a rename refactoring can be performed.  Through 

the use of an ephemeral menu, the programmer can request that the function name is 

changed.  After supplying the new name, the IDE will automatically find and replace all 

instances of the old name with the new one.  A variety of refactoring tasks are provided, 
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such as the ability to transform a selection of lines into a new function or the ability to 

promote class members to a superclass. 

3.2 Abstractions in Programming 

Throughout the development of an application, a programmer will make use of 

abstractions.  Some of these abstractions are rigorously defined.  When developing a piece 

of functionality for an end user (in the case of an IDE, the end user is a programmer), a 

rigorously defined abstraction provides a blueprint from which to build—guaranteeing that, 

if the protocol of the abstraction is carefully followed, the finished product will be widely 

compatible and understandable.  Consider the //TODO: tag in Eclipse.  A programmer is able 

to use this tag to leave themselves a note, stating what is left to be done.  This tag is an 

example of a rigorously defined abstraction.  The established protocols around this tag allow 

task tracking extensions to automatically update.   

Conversely, other abstractions are informal.  An informal abstraction lacks a specified 

protocol, unfortunately meaning that they cannot be relied upon when developing a system 

for an end user.  Informal abstractions provide a lot of flexibility to the end user.  They rely 

on good judgement and consistency from the end user if they are to be helpful.  Consider 

the ability to reorganise tabs—each holding the content of a different file—in traditional 

IDEs.  When developing the IDE, the programmer may not consider the order of the tabs, as 

specified by an end user, to be important.  There is certainly no rigorously defined rule 

stating that the tabs should be kept in a specific order.  This gives the programmer (end 

user) the option of ordering their tabs in a useful fashion; perhaps placing the tab holding 

the content of a superclass prior to those holding the content of subclasses. 

Sections 3.2.1 and 3.2.2 below each present two examples of abstractions used when 

developing applications; one of which is rigorously defined and one of which is not.  Section 

3.2.1 covers abstractions that are used during the planning phase of development and are 

thus likely distinct from the IDE.  Section 3.2.2 specifically covers abstractions used to assist 

with the authoring of code. 

 Abstractions in Planning 

Rigorously Defined.  UML—Unified Modelling Language in full—is a set of rigorously 

defined abstractions used in software development.  An example of a class diagram, one of 
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the structural diagrams in the UML standard, can be seen in Figure 3.2.  The symbols 

denoting classes, their functions and the relationships between classes are all specified in a 

standardised set of rules.  For instance, a two tailed arrow with a hollow arrow head 

signifies that the Leaf and Composite classes are both subtypes of Component.  The protocol 

established by the collection of all standardised rules allows applications to provide 

specialised support for UML diagrams.   

 

 

Figure 3.2: A class diagram in UML. 

If a programmer wishes to document something in a UML diagram, but is unable to find a 

way to express it within the rigorously defined ruleset of UML, then they are forced to 

either forgo strict adherence to the rules or use a less formal diagramming method.  If they 

are using an application that has been specifically designed to support UML, then the first 

option may not be feasible. 

Informal.  Instead of using a formal documentation method such as UML, a programmer 

may decide to use an informal diagramming technique.  Such techniques rely on intuition to 

be widely understood.  While informal diagramming may have some basic tool support, 

such as a canvas on which to sketch, formally defined support is not possible. 

Informal diagramming can be anything from class documentation that looks vaguely like 

UML—but does not conform upon closer inspection—to crude sketches of what an interface 

might look like.  As informal abstractions do not need to abide by a specification, the 
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environment programmers may produce informal diagrams in can vary widely, from a 

physical piece of paper (potentially scanned), to a photograph of a whiteboard (potentially 

photographed), to a professional paint application on their computer.  

 Abstractions in Code 

Rigorously Defined.  Consider the Eclipse Outline.  One of the stipulations of the Java 

language is that a Java function must exist within a Java class.  This stipulation means that 

the Outline does not need a way of expressing the idea that a Java function is contained in a 

package. 

Informal.  An example of an informal abstraction can be seen when separating two sets of 

statements from each other with a blank line.  For example, blank lines may be used to 

visually distinguish the base case, processing and recursive case in a recursive function from 

each other.  Note that, the inclusion of a blank line is completely up to the discretion of the 

programmer.  From the perspective of the environment, there is no functional reason to 

insert a blank line.   

In their development of an application to automatically assess the readability of code, Buse 

and Weimer establish that there is a strong positive correlation between average number of 

blank lines in a function and code readability [29].  As the average number of blank lines 

increases, so too does the readability.  Inserting a blank line into a function is a spatial 

behaviour; visually dividing one group of statements from another.  Given the relevance of 

informal abstractions to this research, we wished to assess how frequently blank lines were 

used in this fashion. 

For our experiment we processed a corpus of over 14 thousand Java projects and found 

prevalent use of blank lines.  The corpus of code we used was compiled by Allamanis and 

Sutton, sourced from GitHub repositories [30].  We wrote a program to count the number of 

blank lines in each function and calculate how frequently a function contains at least one 

line.  Our analysis program was written by utilising the Java parsing functionality provided 

by the Eclipse Java Development Tools (JDT).  Of the 14,317 Java projects, we were able to 

parse all but 78 (0.55%) without error.  Those that we were unable to successfully parse 

with JDT were excluded from our calculations. 
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We analysed a total of 17,675,847 functions, counting a total of 26,305,608 blank lines.  

Blank lines that occur after the function signature but before the first statement in the body, 

and those that occur after the last statement in the body but before the closing bracket 

were not counted.  We found that 35% of functions contained at least one blank line—a 

non-trivial but not especially high figure.  Further inspection suggested that functions 

without a blank line were often very short.  This in combination with our finding that 

functions which contain at least one blank line, contain an average of 4.5 blank lines, 

suggests that a calculation excluding outliers would significantly increase the 35% figure. 

3.3 The Rigidity of Traditional IDEs 

Through our analysis of traditional IDEs in Section 3.1 and the use of abstractions in 

software development as documented in Section 3.2, we are lead to pose the question: 

where is the support for informal abstractions in IDEs?  Abstraction in IDEs, where 

supported, tends to be rigorously defined and rigid. 

In Section 3.2.1 we discussed the use of blank lines when authoring code.  While this is an 

example of informal, and thus flexible, abstraction, it is not an abstraction that is specifically 

supported by IDE functionality.  In other words, even if all the IDE functionality was taken 

away, the ability to use blank lines as a form of abstraction would still be possible: it is a 

product of the relative authoring environment that traditional IDEs use. 

There are some glimmers of support for informal abstractions that we are able to identify.  

For example, the ability to reorganise the order of tabs in a traditional IDE as we discussed 

in the introduction to this chapter.  Alternatively, the ability to relocate panels so that they 

are docked to various sides of the IDE.  It is debatable as to whether these abstractions are 

supported by IDE functionality or coincidentally result from unrelated IDE development 

decisions.   

It is our opinion that IDEs lack support for informal abstractions and that this is a 

shortcoming.  We also note that, some functionality, such as the state of the program while 

halted at a breakpoint, is not only rigid, but also that it is transient in nature.  As the 

information provided by this functionality cannot be stored, it is not possible to use it for 

longer term improvements to code.  For example, the user is unable to utilise IDE 

functionality to record the state of the program at a specific time.  We seek to address these 
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shortcomings by consciously maximising the flexibility our Spatial IDE will provide to 

programmers.  With this goal in mind, we now move forward to discuss general purpose 

authoring—with a focus on Spatial Hypermedia—in Chapter 4.  
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Chapter 4  

Editing Environments and Authoring  

This chapter explores and compares various distinct forms of authoring, demonstrating that 

a set of—often seemingly incidental—design decisions in a specific editing environment 

shape the type of, and form of, content that it can accept.  In order to assist with this 

comparison a formal descriptive model of the authoring process has been developed.  The 

model introduces the notions of Fundamental Element, First Class Citizen and the data 

structures used to represent them. 

One particular form of authoring that that is less widely understood than more traditional 

authoring environments is Spatial Hypermedia.  As we are using Spatial Hypermedia 

authoring to address the goals of this thesis, we preface the primary content of this chapter 

in Section 4.1 by defining Spatial Hypermedia through a comparison to a more widely 

understood concept—Hypermedia.  Section 4.2 then describes the formal descriptive model 

and uses it to analyse traditional text, pixel image, Hypermedia and Spatial Hypermedia 

authoring environments; the later bridging the definition from Section 4.1 with the model of 

a minimalistic Spatial Hypermedia application.  Section 4.3 then moves from the theoretical 

to the concrete by reviewing three general purpose Spatial Hypermedia authoring 

environments.  For each of these applications, their citizenry, exploitation of spatial memory 

and methods for authoring are analysed.  For each environment, a discussion of their 

previous evaluation, as presented in the literature, is included. 

4.1 Defining Spatial Hypermedia 

As noted in [31], due to the infrequent and varying use of Spatial Hypermedia interfaces, it 

is difficult to form a precise definition of Spatial Hypermedia that has widespread 

agreement.  In this thesis, we define Spatial Hypermedia as a form of interface that 
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promotes a users’ Spatial Memory by subscribing to the absolute view of space rather than 

the relative view of space, as explained shortly in this section. 

Content in a Spatial Hypermedia system can be spatially positioned to communicate 

meaning, for example, spatially positioning content into columns to indicate similarity.  

Furthermore, Spatial Hypermedia gives ample opportunities to create landmarks, both 

through the thoughtful positioning of important content—such as headings and images—

and through emphasis given to text through choices of colour, size and font style.  Spatial 

Hypermedia achieves this treatment of content though flexible building blocks which we call 

First Class Citizens—defined in Section 4.2.  Our assertion is that the rigidity of traditional 

IDE functionality such as content assist and debugging can be reduced by using First Class 

Citizens instead of purpose-built user interface components.  The reduced rigidity of IDE 

elements will give programmers more opportunities to adapt their programming 

environment to suit the tasks at hand. 

 Absolute and Relative Space 

While the term Spatial Hypermedia is not well understood, the term Hypermedia is much 

more commonly used.  The qualifier ‘Spatial’ suggests that Spatial Hypermedia is a more 

narrowly defined form of Hypermedia.  However, given the way the term Hypermedia is 

traditionally used, this is not the case.  Instead, both Hypermedia and Spatial Hypermedia 

are a refinement of a broader, unnamed concept.  As a solution to this confusion, when 

referring to Spatial Hypermedia, we are careful to specifically use the term Spatial 

Hypermedia.  When using the term Hypermedia, we are specifically referring to Hypermedia 

that is not spatial. 

Kolb employs an analogy to discuss a key difference between Hypermedia and Spatial 

Hypermedia [32] that alludes to Leibniz’s and Newton’s rival theories of the nature of space.  

Leibniz contended that space was defined by the relationships between the objects that 

existed in space, whereas Newton considered space to be absolute with objects having their 

position as a property.  This analogy emphasizes the difference between Hypermedia and 

Spatial Hypermedia:  Hypermedia subscribes to the Leibnizian view on space and Spatial 

Hypermedia to the Newtonian view.  Consider web pages, a prevalent example of 

Hypermedia: the author must consider the order they create content.  The position of 

content will be relative to the content listed before and after it in the HTML file.   
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In contrast to Hypermedia, Spatial Hypermedia utilises the absolute positioning of content.  

Information entered into a Spatial Hypermedia system becomes an ‘item’ that is positioned 

on a canvas at specific coordinates and therefore the order in which items are created is of 

no importance—the location of the item is what matters.  Editing a slide in Microsoft 

PowerPoint is an example of this and as such PowerPoint can be considered a form of 

Spatial Hypermedia. 

When applying this analogy to help distinguish between Hypermedia and Spatial 

Hypermedia the dominant aspect of the program must be considered.  Microsoft Word 

provides users with the ability to insert shapes, text boxes and images at an absolute 

position (having existing text flow around text boxes and images) and therefore it might be 

tempting to classify Microsoft Word as a Spatial Hypermedia system.  However, text input is 

the primary feature of Microsoft Word, and that behaves relatively, with the text being 

reshuffled when new text is added.  For this reason, we consider Microsoft Word to 

primarily subscribe to the Leibnizian view on space and therefore a Hypermedia system, 

with supporting uses of Spatial Hypermedia.  On the other side of the coin a user might look 

at a collection of slides in Microsoft PowerPoint and decide that, as the slides come in a 

specific order and are positioned relative to each other, it is a Hypermedia environment 

rather than—as we have determined in the previous paragraph—a Spatial Hypermedia 

environment.  However, just as we consider absolute image positioning in Microsoft Word 

to be a secondary feature, we consider the ordering of slides in Microsoft PowerPoint to be 

of less importance than the ability to edit the content of slides.  We recognise that, as slide 

ordering is necessary in all but the most remedial Microsoft PowerPoint files, this second 

example is more subjective, however, it demonstrates the difficulty of classifying 

applications as Spatial Hypermedia or not.  

4.2 Content and Meaning 

Because of the absolute position of content that is characteristic of Spatial Hypermedia, 

those wanting to design and build Spatial Hypermedia systems must consider how content 

is going to be created, interacted with and stored.  This section works to provide an 

explanation of the requirements of a Spatial Hypermedia system as well as address some of 

the decisions that can be made to maximise the benefits that Spatial Hypermedia provides 

to authors.  To achieve this, we first introduce the idea of a ‘Fundamental Element’ in an 
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authoring application—a specific and important component in the application.  We then 

discuss how this can be used to measure the mutability of other kinds of components 

present in the same application.  We examine a progression of authoring systems, starting 

with traditional text editors and image editors, progressing to include non-textual media 

with multimedia editors and moving on to Hypermedia to discuss tree-like sequential 

ordering of elements.  For each type of application, we identify its Fundamental Element 

and use it to evaluate other components of the system.  Finally, we discuss the abstract 

notion of a Spatial Hypermedia system and the implications this has on the requirements for 

a Spatial Hypermedia’s Fundamental Element.  During the review of existing Spatial 

Hypermedia in Sections 4.3 and 5.1 we show how each specific system fulfils and expands 

on these requirements. 

 Fundamental Elements, System Representations and First Class Citizens 

The Fundamental Element of an authoring system is defined to be:  

The primary building block for creating content.  For example, a character. 

The System Representation of an authoring system is defined to be:  

A conceptual data structure specifying properties and operations that can be applied 

to the Fundamental Element and other authored components; and how the 

Fundamental Elements are stored. 

Traditional Text Editors.  In traditional text editors, such as Microsoft Notepad and GNU 

Emacs the only, and therefore primary, building block is the character.  Even whitespace, 

such as paragraph breaks and indentation, are implemented using specific characters.  By 

the definition provided above, the character is the Fundamental Element of a traditional 

text editor.  Characters are stored in sequence, forming a string.  Operations concerning 

characters are those that manipulate this sequence by inserting, removing or replacing 

characters.  Figure 4.1 diagrammatically shows the Fundamental Element (left) and System 

Representation (right) of a traditional text editor, taking into account the above description. 
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Text Document  

Content: Seq[Characters] 

Operations: Insert, Remove or Replace Characters 

  

Figure 4.1: The Fundamental Element of a traditional text editor and its System Representation 

 
In general, to discuss the functional capabilities of applications, we make—what we believe 

to be fair—judgements on what operations to include when talking about System 

Representations. These judgements are made based on how important they are to a user’s 

experience.  For example, a traditional text editor needs to print characters to the screen 

using a font.  However, it is reasonable to omit the ability to change fonts, or even specify 

the presence of a font, in the System Representation—at least in a traditional text editor.  In 

applications, such as Microsoft Notepad, a user rarely considers the font that is being used.  

Furthermore, lacking the ability to change the font of individual characters, if the user 

wished to change the font then they would have to change the font used for the entire 

string.  Conversely, we include the operation to replace characters in Figure 4.1 (right).  

Technically speaking, the replace functionality could be implemented as a pair of remove 

and insert operations.  However, from the user’s perspective, the ability to replace a stream 

of characters is a common editing task and one that a user perceives as close to atomic in 

operation.  Therefore, we include the replace operation in the System Representation. 

When discussing authoring applications, we use the term ‘citizen’ to refer to components in 

the system used for authoring.  We use the term ‘information space’ to refer to the 

collection of citizens that convey information to the authors/readers.  The operations that 

can be applied to manipulate the citizens or their ordering alter the information space.  As 

alluded to earlier, in traditional text editors the only citizen is the character.  As we discuss 

other systems we will have a more varied collection of citizens and therefore a more 

complicated information space.  When this occurs, we will distinguish between those 

citizens which are first class and those which are not. 

We define a First Class Citizen in an authoring system to be:  

A citizen of the system that can be manipulated in same ways as the Fundamental 

Element. 

Character 
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We adopt this term—First Class Citizen—from the programming literature [33] and adapt it 

to suit our needs.  A function is considered a First Class Citizen in its programming language 

if it can be used in a similar fashion to other elements in the language.  Given a specific 

programming language, if we consider variables to be First Class Citizens, then for a function 

to be considered the same it must be usable in the same ways variables are.  For example, a 

programming language that allows functions to be passed as parameters (unevaluated), in 

the same way as variables, treats its functions as first class citizens. 

Pixel Image Editors.  Pixel image editors—such as Microsoft Paint—give users the ability to 

modify individual pixels in an image.  Like traditional text editors, it is an example of a 

homogeneous editing environment, this time for modifying images.  The Fundamental 

Element of an image editor, pixels—unlike their counterpart characters—can only be 

replaced.  Functionality such as the ability to resize an image may be considered operations 

that add or remove pixels from an image, however, these are not atomic operations and 

result in new images.  This observation allows us to specify the data structure for holding 

pixels to be an array (as opposed to a sequence), specifically a 2-D array.  Figure 4.2 shows 

the Fundamental Element (left) and System Representation (right) of a pixel image editor. 

Image  

Content: Array2D[Pixel, Pixel] 

Operations: Replace Pixel 

  

Figure 4.2: The Fundamental Element of an image editor and its System Representation. 

Multimedia Editors.  A multimedia editor—such as Microsoft WordPad—extends a 

traditional text editor by adding non-textual media such as images; transitioning the editor 

from supporting homogeneous to heterogeneous citizens.  To help with the progression of 

editors being described we assume minimal functionality in this multimedia editor.  Text is 

plain, without formatting, hyperlinking or nesting.  Images are embedded into the sequence 

of citizens, which is predominately text in practice. 

Characters remain the Fundamental Element of the system.  This means that a multimedia 

editor must retain the ability to add, remove or replace characters in a sequence of citizens 

that make up the information space.  Figure 4.3 shows a diagrammatic representation of the 

citizens (left) and System Representation (right) for our minimal multimedia editor.  The box 

Pixel 
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representing characters in the diagram is outlined in blue to emphasise that it is the 

Fundamental Element. 

 

 

Figure 4.3: The citizens and System Representation from a minimal multimedia editor. 

The inclusion of additional citizens (as compared to traditional text editors) has resulted in 

two changes.  The first is that each additional citizen has its own set of operations.  The new 

operations that come with additional citizens can be used to decide if they are First Class 

Citizens.  In our example from Figure 4.3, the operations of the two citizens (characters and 

images) are identical.  Because of this, images from that example are considered First Class 

Citizens.  Should a system not support certain operations on an image then this would no 

longer be the case.  For example, a multimedia editor application that did not allow images 

to be copied, but did allow characters to be, would not have images as First Class Citizens. 

The other change is that the data structure used to store citizens has had to be altered to 

cope with non-textual citizens.  This has been achieved by changing the data structure from 

a sequence of characters to a sequence of characters and images.    It is important to note 

that the data structure is still a sequence; indicating that the content is relatively positioned.  

For example, an image is not positioned at absolute coordinates, rather it is positioned 

between two other citizens, such as characters.  Both changes are represented in the 

example System Representation in Figure 4.3. 

Hypermedia.  When examining hypermedia systems, we see that their structure is more 

complicated than those discussed earlier.  Let us use a web page built using HTML as an 

example.  We want to consider applications designed specifically for authoring web pages.  

While many of us have become accustomed to editing HTML syntax directly using a text 

Citizen

Character Image

Multimedia Document 

Content: Seq[Character|Image] 

Operations: Insert, Remove or 

Replace Citizen 

Citizen(Node)

Nesting Node

Link Node
Paragraph 

Node
Body Node ...

Leaf Node

Text Node Video Node Image Node Audio Node ...

Figure 4.4: The citizens of a web page built using HTML. 

Non-Text Leaf Nodes 



 
 

58 
 

editor, this is not the best way to conceive of HTML for the purposes of our discussion.  

Instead, consider applications such as Adobe Dreamweaver that include specifically 

designed functionality for authoring web pages. 

A web page can be viewed as a collection of nodes arranged in a tree [34].  An editor for 

web pages needs to be able to understand—and present for modification—this tree 

structure.  The application need not explicitly show the tree structure to the author, but it 

must show some representation of it.  Figure 4.4 shows a selection of possible Nodes and 

hierarchically arranges them per their use.  We classify some nodes to be nesting nodes and 

others to be leaf nodes.  The defining feature of a nesting node is that it contains a 

sequence of other nodes.  This allows for the tree structure to be built.  Nesting nodes affect 

the structure of the content rather than the content itself.   

 

Consider Figure 4.5, which shows an example of a 

paragraph node.  A paragraph node is a nesting node 

because it may contain several other nodes.  This 

example contains three child nodes: a text node, 

followed by an image node followed by another text 

node.  The ordering of the nodes is significant.  When 

the web page is displayed (assuming no style sheets or additionally executed code such as 

Java Script), the image produced by the image node will occur after the text produced by 

the first text node and before the text from the second text node. 

Figure 4.6 shows the System Representation for the abstract HTML editing environment we 

have discussed.  It showcases the nesting ability of nodes, the operations each node can 

execute and properties that nodes can contain.  The complete document is represented by a 

single root node that contains—as its content—a sequence of other nodes.  Some of these 

nodes are nesting nodes, which is denoted with the subscript ‘NNode’.  Each node has the 

ability to insert new or remove existing nodes from its own content; allowing nodes to form 

a hierarchical structure.  Each node also has a type, specifying its function.  The highest-level 

parent node will have a type marking it as such.  Finally, each node has a set of adjustable 

properties. 

Paragraph 
Node

Text Node
Image 
Node

Text Node

Figure 4.5: A paragraph node 
structuring an image and some text. 
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Hypermedia Document 

Content: Seq[LinkNNode|PargraphNNode|BodyNNode|…|Text] 

Content.Operations: Insert or Remove Nodes 

LinkNNode|PargraphNNode|BodyNNode|…|Text Type: 

Properties: Set[Align|Class|Font|….] 

Properties.Operations: Replace Property Value 

Figure 4.6: A System Representation for an abstract HTML authoring application. 

As with the other editing systems that we have discussed, we would like to identify the 

Fundamental Element for an HTML editing system, and by extension, some First Class 

Citizens.  Previous systems that we have examined used characters as their Fundamental 

Element.  However, HTML diverges from these systems by introducing the ability to 

structure content, which it achieved through a node system, as is shown in Figure 4.4.  The 

nesting nodes, are wrapped around leaf nodes to provide the completed web page with 

structure.  As the presence of structure is a significant change, and the structure is achieved 

through the use of nesting nodes, it follows that the Fundamental Element to be some form 

of node, be it a leaf or nesting node.   There are three types of candidates to choose from.  

Table 4.1 lists the three candidates and highlights the differences between each.  Each of 

these is a candidate for Fundamental Element.  By examining the differences between them 

we are able to identify which is suitable for such a designation. 

 Can Alter Content Have Properties 

Structural (Nesting)   

Non-Text Content 

(Leaf) 
  

Text Node (Leaf)   

Table 4.1: A comparison of three types of nodes in HTML. 

The first candidate is any of the concrete nodes under the category of structural nodes.  We 

will use a div node for the purpose of explanation, but similar logic can be applied to any 

other structural node, such as paragraph, link or body nodes.  Structural nodes provide 

structure to the document and are exclusively nesting nodes.  They have the ability to alter 

their own content, by inserting and removing other nodes from their sequence.  They also 

have properties that can be replaced.  Figure 4.7 shows what the Fundamental Element 



 
 

60 
 

would look like if it were a structural node, for example, the div node.  As the ability to edit 

content is important in an editing environment, a positive of using a structural node as the 

Fundamental Element is that all First Class Citizens would require the ability to alter their 

content.  For div and other structural nodes, this means the ability to insert or remove 

nodes from their sequence.  However, as a div node has properties, all other First Class 

Citizens must also have properties, which would preclude text nodes.  This is undesirable, 

therefore, ideally, an alternative should be found.  

Div Node 

Content: Seq[LinkNNode|PargraphNNode|…|Text] 

Content.Operations: Insert or Remove Nodes 

DivNNode Type: 

Properties: Set[Align|….] 

Properties.Operations: Replace Property Value 

Figure 4.7: Proposed Fundamental Element – paragraph node. 

The second candidate is any of the concrete nodes under the category of non-text content 

nodes—such as images and audio.  The ability to edit non-text content is not typical of 

functionality that would be expected in an HTML authoring environment—typically they are 

edited in an external application, such as a pixel image editor.  While we are discussing a 

theoretical HTML authoring environment, we choose to retain this restriction.  As we have 

established that editing is important to an authoring environment, it follows that non-text 

content is not suitable as the Fundamental Element. 

The third candidate is text nodes.  Like structural nodes, text nodes can edit their content.  

We can think of text nodes as a ‘mini-world’ traditional text editor as specified in Figure 4.1.  

This means that we can consider text nodes to be a sequence of characters with the ability 

to add, remove or replace characters in this sequence.  Unlike structural nodes, text nodes 

do not contain properties.  Figure 4.8 shows the Fundamental Element of an HTML 

authoring environment if a text node is used as the Fundamental Element.    

Text Node 

Content: Seq[Character] 

Content.Operations: Insert, Remove or Replace Characters 

Figure 4.8: Proposed (& accepted) Fundamental Element – text node. 
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By using text node as the Fundamental Element, we overcome the issue we had when using 

a structural node instead.  That is, now both text nodes and structural nodes can be 

considered First Class Citizens.  This is because they are both editable—where text nodes 

can have their sequence of characters altered, structural nodes can have their sequence of 

nodes altered.  While structural nodes contain properties and text nodes do not, our 

definition for a First Class Citizen uses the requirements presented by the Fundamental 

Element as a minimum.  The nesting nodes are seen as building on top of the requirements 

specified by the Fundamental Element.  As non-editable elements, non-text content nodes 

are not considered First Class Citizens.  This is logical—as mentioned earlier, these elements 

cannot be edited in an HTML authoring environment and are therefore less mutable than a 

text node.  

As a postscript to the discussion of text nodes, it should be pointed out that while they do 

not contain properties, this does not preclude them from being themed.  It is possible to 

alter the appearance of text in HTML indirectly through the properties of surrounding 

nesting nodes.  For example, a nesting node may specify the font of a text node that is its 

child.  

Spatial Hypermedia.  In Section 4.3 we will discuss specific Spatial Hypermedia systems and 

will provide a Fundamental Element and System Representation for each.  In this section, 

we will list the minimal requirements for a Spatial Hypermedia Fundamental Element.  As 

Spatial Hypermedia subscribes to the Newtonian view of space, the position of each Item in 

the system must be recorded.  A logical way to achieve this is for each citizen to store its 

own position.  Figure 4.9 shows the minimum requirements for a Fundamental Element 

(left) and System Representation (right) of a Spatial Hypermedia System.  We assume the 

minimum require of two dimensions of space.  Specific Spatial Hypermedia systems may 

contain additional dimensions; which they may choose to represent as an additional 

coordinate in their position property. 
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Element 

Content:  Multimedia 

Properties: Position (x,y) 

 

Figure 4.9: The Minimum Requirements for a Fundamental Element and  
System Representation of a Spatial Hypermedia System. 

In contrast to the Fundamental Element and System Representation of the specific form of 

Hypermedia previously reviewed (HTML), the Fundamental Element and System 

Representation of this minimalistic and theoretical Spatial Hypermedia system seem quite 

simplistic.  This is partly because hierarchical structure is not a necessity in Spatial 

Hypermedia, and partly because the additional operations and properties that specific 

Spatial Hypermedia systems may feature are not listed here.  The primary change between 

Spatial Hypermedia and the systems previously reviewed is the notion that the position of 

an element is recorded.  Sections 4.3 and 5.1 review multiple applications with Spatial 

Hypermedia functionality.  In doing so, the above Fundamental Element and System 

Representation will be expanded to include the properties and operations specific to those 

applications.    

 System Representation as Applied to Meaning 

The decision of an authoring environment to use relative or absolute space has an impact 

on how meaning is communicated in the documented produced by the editor.  In editing 

environments that subscribe to the Leibnizian view of space—such as traditional text editors 

and word processors—content is stored as a series of elements, frequently characters.  

Regardless of the reality of implementation, users can reason about the content as being 

stored sequentially—in terms of implementation, this naturally maps to a list data structure.  

A consequence of this is that the ordering of elements is uniquely defined.  Content earlier 

in the document produced in a traditional text editor can be considered to appear earlier in 

the data structure and vice-versa for content occurring later.  The sequential storage in 

traditional text editors is evident from the ability to move the cursor forward and backwards 

through the document with the left and right arrow keys on the keyboard.   

   Information Space 

Content: Set[Item] 

Operations: Add, Remove, Replace 

Items. 

Can Reposition Item 
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A relative-based authoring application often provides the user with the illusion of random 

access to anywhere in the document.  For example, a user may be able to position the 

mouse at a (x, y) position between any two characters and have the cursor move there by 

clicking.  This is not an atomic operation.  When the click occurs, computation must be 

carried out to relate the absolute positioning of the mouse to a relative position within the 

System Representation being used for the document.  A similar situation occurs when using 

the up and down arrows on the keyboard to navigate between lines in a file.  Evidence of 

computation, in this case, can be seen by noticing that different applications can produce 

different results when dealing with non-monospace fonts.  This behaviour of having to 

perform computations occurs frequently when applications move between relative and 

absolute aspects of their system. 

Editors can exploit the fact that the ordering of citizens is uniquely defined.  For example, 

Microsoft Word can scan for grammatical errors because the ordering of content is 

expected to make sense.  This means that the ordering of content is tied to the meaning of 

that content.  A corollary of this is that, in an environment that subscribes to the Leibnizian 

view of space, adjusting the ordering of citizens is likely to change the associated meaning.   

Conversely, in editing environments that subscribe to the Newtonian view of space—Spatial 

Hypermedia—citizens have no ordering imposed on them by the system.  In terms of 

implementation, this naturally maps to a set data structure.  This is because the order in 

which content is stored has no effect on the associated meaning.  Earlier in this section, we 

stated that the minimal requirements for the Fundamental Element in a Spatial Hypermedia 

system was to store its content, position and ability to be added, removed or replaced.  For 

the purposes of explanation, we omitted one other required field: a unique ID.  To reason 

about Items being stored in a set, each must be unique.  When working in a Leibnizian 

subscribed authoring environment, the ordering of citizens removes the possibility of two 

being identical.  However, in Spatial Hypermedia, if two citizens have the same content, are 

formatted identically and are positioned in the exact same spot, we need a unique ID to 

differentiate them.  The revised version of a Spatial Hypermedia Fundamental 

Representation can be seen in Figure 4.10.  
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Item 

Content:  Multimedia 

Properties: Position (x,y) 

 ID 

Figure 4.10: The (revised) minimum requirements of the Fundamental Representation  
in a Spatial Hypermedia system. 

Because the ordering of citizens in the set data structure does not influence the meaning of 

content, the meaning is frequently left for the user to interpret.  When it is necessary for a 

Spatial Hypermedia system to order elements—as it will be in a Spatial IDE, so that content 

can be serialized for compilation—it is common for the system to have an algorithm that 

can be initiated on demand by the user to apply meaning.   

Once again, consider a slide in Microsoft PowerPoint.  A single element on that slide can be 

thought of as belonging to a set of all elements in the slide.  The author spatially arranges 

content so those viewing a presentation of the slideshow will infer the ordering that the 

author wants.  The system does not impose an order of the elements.  However, at the 

author’s direction, Microsoft PowerPoint can control the order in which elements appear on 

the screen through animation; an example of an algorithm being used to apply meaning. 

 Content and Meaning Discussion 

By way of summary, Table 4.2 shows a range of document authoring systems.  This table 

covers and expands upon the systems already discussed in this section.  For each 

application, we specify: 

1. How content is positioned in the information space: either relative to existing 

content or absolutely positioned. 

2. The type of data structure that is used to store its citizens.  For clarity, we consider: 

sequences to be variable in length and ordered; arrays to be fixed in length and 

ordered and sets to be variable in length, unordered and with no repeated 

members.  We also specify if nesting is permitted in the System Representation. 

3. How ordering (or lack of) affects the meaning of the content.  An application may 

enforce that the ordering of citizens determines the meaning, which we refer to as 

‘Sequential’.  An application may leave the ordering—and therefore meaning—

unstated, allowing those viewing the document to decide on the meaning of 
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content, which we refer to as ‘User Inferred’.  An application may allow the user to 

initiate an algorithm to establish an ordering and therefore meaning, which we refer 

to as ‘Algorithmic’. 

4. What the Fundamental Element of each system reviewed is.  This is decided by 

treating the application as a black box—that is, we do not examine the code and 

instead decide based on interactions with the GUI of the system. 

5. What other First Class Citizens are in the system.  The Fundamental Element is 

always a First Class Citizen. 

Points 1-3 are interconnected.  For example, the relative positioning of citizens in the 

information space, an ordered data structure and sequential relationship between ordering 

and meaning are all suggestive of each other.  Points 4 and 5 are also connected, the 

Fundamental Element is required to decide which citizens are First Class. 

Microsoft OneNote—one of the more recent Desktop Applications in the Microsoft Office 

Suite—is included in the table.  It is marketed as an application for note-taking.  While it has 

not been mentioned up to this point, it has similarities to the general purpose Spatial 

Hypermedia systems that will be reviewed in Section 4.3.  We therefore include it here for 

subsequent comparison.  We also split Microsoft PowerPoint and Microsoft Word into two 

entries to illustrate the notion that applications have dominant and secondary uses.   
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Sequenc
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Set 

Allows 
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g 
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Microsoft 

Notepad 
         Character -  

GNU Emacs          Character -  

Microsoft 

Paint 
         Pixel -  

Minimal 

Multimedia 

Editor † 

         Character Image  

Microsoft 

WordPad 
         Character 

Non-

Text 

Media 

 

Microsoft 

Word 
  

-Text 

Authoring 

(Dominant) 

         Character 

Non-

Text 

Media 

 

-

SmartArt/Lin

e Drawing 

         Shape 
Diagram

s 
 

HTML 

Authoring † 
         Text Node 

Nesting 

Nodes 
 

Microsoft 

OneNote 
         Text Item 

Non-

Text 

Items 

 

Microsoft 

PowerPoint 
  

-Slide Editor 

(Dominant) 
         Text Item 

Non-

Text 

Items 

 

-Slide 

Organiser 
         Slide Section  

Table 4.2: A Range of traditional authoring applications.  For each: How content is positioned in each and how 
this relates to meaning.  The types of citizens that exist within each authoring application. 

† Abstract application for the purpose of discussion. 

4.3 General Purpose Spatial Hypermedia 

We now review three research-led modern general purpose Spatial Hypermedia systems.  

While applications such as HyperCard [35] helped popularise Spatial Hypermedia, we 

choose to focus on more recent applications.  Furthermore, the three applications reviewed 

can be thought of as representative of the two categories of Spatial Hypermedia—those 



 
 

67 
 

that use Variable Sized versus those that use Fixed Size spatial interfaces.  For each system, 

we begin by providing a brief introduction to the application before moving on to discussing 

how the concepts previously discussed in the thesis relate to the application.  These 

concepts are: 

 Identifying and describing important interface elements.  This includes 

diagrammatically describing the First Class Citizens of the application, how the 

Fundamental Element builds on the base requirements established in Section 4.2, 

and what the System Representation looks like. 

 Discussing Spatial Memory considerations: whether it is a Fixed Size or Variable 

Sized spatial interface, the presence of/ability to author landmarks and the 

presence or lack of overview. 

 How users can author in the system.  Specifically, how content can be spatially 

arranged. 

We end the discussion of each application by examining some evaluation that researchers 

have undertaken using these systems. 

Different Spatial Hypermedia systems use different terms to refer to authored content.  As 

we build SpIDER (our Spatial IDE) by extending Expeditee, we adopt the term Expeditee 

developers use—Item.  This is synonymous with the term citizen that we have been using 

thus far.  Individual components of each system will be referred to by the name their 

developers gave them, but the collection of authored elements will be referred to as Items. 

VIKI and VKB are the first two systems reviewed.  The first developed by Marshall et al. [36, 

37] at Xerox Palo Alto Research Center and the second by Shipman et al. [38, 39, 40] at 

Texas A&M University.  Lessons learned from the development and analysis of VIKI saw VKB 

developed as its successor, and as such, they share many similarities.  Together these 

systems represent a category of Spatial Hypermedia that utilises a scrollable canvas to 

contain information, forming a Variable Sized spatial interface.  Aspects, such as the 

scrollable canvas, have parallels with how Microsoft OneNote works. 

Expeditee is the third general purpose Spatial Hypermedia system to be reviewed.  

Developed at The University of Waikato, as the open source successor to KMS [41], 

Expeditee contrasts with VIKI and VKB by providing a Fixed Size spatial interface and utilising 
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a linking system to provide limitless space to spatially arrange chunks of content.  The result 

of this is that spatial arrangement happens at a finer level of detail, with some higher–level 

details getting less on-screen representation. 

 VIKI 

As a Spatial Hypertext system as opposed to a Spatial Hypermedia system, VIKI does not 

support non-textual media such as images.  Features in VIKI focus on making it easy to 

organise information.  The information space in VIKI is a scrollable canvas that adjusts in size 

to accommodate new content as it is added.  Information is spatially positioned on this 

canvas.  There are three items that VIKI provides to the user: Objects, Collections and 

Composites.  A screenshot of VIKI taken from [37] can be seen in Figure 4.11.  Towards the 

right-hand side of this screenshot, an example of an Object can be seen.  The Objects 

content is text beginning with “Title: Object description”.  Objects can be contained in other 

items: Collections and Composites.  Objects cannot be contained in other Objects.  

Collections can contain other Collections.  This allows for the formation of hierarchical 

structures.   

A series of menus and buttons are arranged along the top of VIKI—outside of the infinite 

canvas—that can be used to create and theme new Objects, Collections and Composites.  

Beyond the ability for users to categorise and hierarchically arrange information, one of 

these menus also provides the user with a spatial parser.  This spatial parser—an example of 

an algorithm being used to order items whose ordering is normally user inferred— can 

make suggestions to the user for implementing organisational structures based on the 

layout of content. 
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Figure 4.11: A Screenshot of VIKI, showcasing Objects and Collections, taken from [37]. 

Citizenship.  We now expand upon the three items that VIKI provides to its users—the 

Object, Collection and Composite.  As part of this process we specify the Fundamental 

Element, System Representation and any First Class Citizens.  To begin with, we clarify the 

information space.  When starting 

VIKI, users are initially presented with 

a scrollable canvas onto which 

information can be placed—this is the 

information space.  Excluding the 

menus and buttons present at the 

top of the screen, this canvas takes up the whole window.  Figure 4.12 shows the three 

Items in VIKI.  As we will explain, the Fundamental Element of VIKI is the Collection.  As we 

have done previously, we have highlighted this by outlining Collection in blue. 

Objects are the Items VIKI provides for storing text.  They can be spatially positioned inside 

Collections and can be themed by changing aspects such as colouring, border thickness and 

shape.  When an Object is placed inside a Collection it is at specific coordinates; it is 

absolutely positioned.  A user is able to maximise an Object.  This opens a separate window 

and provides the user with a relative editing environment such as those described in Section 

4.2 when discussing traditional text editors.  Figure 4.11 contains three examples of Objects. 

The rightmost object is not contained in a user-created Collection but rather on the initial 

canvas.  This Object is shaped differently from the others for the purpose of exposition; 

whereas the others are rectangles, this is an 8-sided polygon reminiscent of a curved 

Figure 4.12: The three items of VIKI. 

Item

Object Collection Composite
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cornered rectangle.  An array of buttons above the canvas control the shape of created 

Objects.  The other two Objects are contained within a Collection, which itself is contained 

in another Collection.  One of these Objects contains the text “Object A” and the other 

“Object B”.  Figure 4.13 shows a representation of Object using the style established for 

documenting Fundamental Elements.  It extends the minimal requirements for a Spatial 

Hypermedia Fundamental Element, as described in Section 4.2, by including content, an ID 

and a position.  As such, it is a candidate for being the Fundamental Element.  Note that as a 

Spatial Hypertext system we document its content as text rather than multimedia.   

Object 

Content:  Seq[Character] 

Properties: Position (x, y) 

 ID 

 Colour 

 Border Thickness 

 … 

Belongs to: Composite|Nil 

Figure 4.13: Representation of a VIKI item: Object. 

A Collection is a scrollable canvas—just like the initial canvas provided—which can contain 

other Collections as well as Composites and Objects.  Collections can be used for 

hierarchical navigation by ‘maximising’ them.  When a user maximises a Collection, VIKI 

performs an action akin to zooming that we will refer to as hierarchical zoom.  Hierarchical 

zoom does not behave in the same way as what is commonly thought of as zooming in a 

modern desktop environment.  Instead of being able to incrementally increase the portion 

of the screen that is taken up by content, r zoom is all or nothing.  That is, when 

hierarchically zooming into a Collection in VIKI, the entire screen is filled with the Collection 

that is being entered, effectively replacing the initial canvas or last Collection that was 

maximised.   

Collections cannot contain text but instead store a set of Objects and other Collections.  Like 

Objects, they can also be themed, but not to the same extent.  For example, both 

Collections and Objects can have their colour adjusted, but only Objects can be shaped in 

one of many ways—Collections are always rectangular.  As mentioned earlier, two 
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Collections can be seen in Figure 4.11, one is titled Collection 1 and the other Collection 2.  

Collection 2 is contained within Collection 1.  As we did with Object, Figure 4.14 shows a 

representation of Collection using the style established for documenting Fundamental 

Elements.  There are similarities between VIKI’s Collection Item and the structural nodes 

documented in Section 4.2. 

Collection 

Content: Set[Collection|Object] 

Content.Operations: Add or Remove Collection/Object 

Maximise Collection 

Properties: ID 

Belongs to: Composite|Nil 

Content.Properties: Set[Position|Colour|…] 

Content.Properties.Operations: Replace Property Value 

Figure 4.14: Representation of VIKI item: Collection. 

Composites exist outside the Collection/Object hierarchy.  They cannot be directly created 

by the author but instead occur as a result of laying content out in a way the system 

expects.  Users are able to specify that certain spatial arrangements are composites and 

then when the system notices that the author has used this spatial arrangement they will 

encase the contributing Objects and Collections into a Composite.  Composites can then be 

themed.  The user can opt to run VIKI’s spatial parser which will then attempt to make 

suggestions on Composites to adopt.  Figure 4.15 shows a representation of VIKI’s 

Composite, comparing it to the representation of VIKI’s Collection shows how Composites 

can be thought of as light-weight Collections. 

Composite 

Content: Set[Collection|Object] 

Properties: Set[Colour|Border Thickness|…] 

Properties.Operations: Replace Property Value 

Figure 4.15: Representation of VIKI item: Composite. 

When HTML was discussed in Section 4.2 we recognised that using structural nodes as the 

Fundamental Element would stop text nodes from being a First Class Citizen due to them 

not having properties.  In the case of VIKI, by comparing their representation, we see that 
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Collections are similar to structural nodes and that Objects and similar to text nodes.  

However, Objects in VIKI do have properties.  Furthermore, Objects have some properties 

that Collections do not.  It follows then that Collections are the Fundamental Element of VIKI 

and Objects are a First Class Citizen.   

Composites however are not as mutable as Collections; this is due to Composites occurring 

as a side effect of spatial arrangement instead of direct author intervention.  The System 

Representation for VIKI can be seen in Figure 4.16. 

VIKI Information Space 

Content: Set[Collection|Object|Composite] 

Content.Operations: Add, Remove or Reposition Collection/Object 

Figure 4.16: System Representation for VIKI. 

Spatial Memory Considerations.  VIKI can be considered a Variable Sized spatial interface.  

Examples of similar spatial interfaces in Chapter 2 used ‘Pan and Zoom’ navigational 

controls to allow the user to move around the information space.  In place of this, VIKI uses 

scrolling and hierarchical zoom.  As Chapter 2 explains, landmarks and the presence of an 

overview can help a user develop their Spatial Memory of the information space.  While 

landmarks are generally useful in both types of spatial interfaces, they are more useful in 

Variable Sized spatial interfaces, as the author does not have the edges of the application 

window to utilise.  Overviews however are only appropriate in Viewport spatial interfaces.   

In VIKI, each Collection has a title.  This title is displayed in bolded text and placed in a stable 

position at the top left-hand corner of the Collection, making it useful as a landmark.  At 

some level of hierarchical zoom however, no titles will be present.  At this point—and 

possibly at appropriate prior levels of zoom—the author must use the spatial arrangement 

of content to provide landmarks.  Figure 4.17 shows a screenshot of VIKI while inside a 

Collection.  The author has spatially arranged Items to imply groupings and provide headings 

to each group.  These manually created headings can be used as landmarks.   
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Figure 4.17: VIKI: Inside a Collection, arranged content to provide landmarks.  Taken from [37]. 

Unfortunately, VIKI does not have an overview.  An overview must provide users with a low-

detailed miniaturised view of the entire information space.  The closest functionality that 

VIKI has to an overview is if the user was to hierarchically zoom out as far as possible.  

However, even doing this is likely to omit information as some content may be hidden inside 

a Collection—either not or partially visible until that Collection is maximised.  Notice, for 

example, the Objects in Figure 4.11 are only partially visible. 

Authoring.  Entering content into VIKI is done by creating an Object and typing in the 

information you want to store.  This is not dissimilar to adding content in an application like 

Microsoft PowerPoint, substituting Text Boxes for Objects.  VIKI’s real strength however, is 

in organising content.  Users are able to spatially position Objects and create hierarchical 

structures using Collections to organise content.  When editing content in an Object users 

are provided with a relative editing environment, like those found in traditional text editors.  

However, the Item encasing the text, the Object, is still absolutely positioned—to either the 

edges of the encasing Collection or another Item. 
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VIKI’s spatial parser is able to make suggestions to improve the organisation of information.  

For example, given the workspace seen in Figure 4.17, the author is able to ask for a 

suggestion from the spatial parser.  VIKI might then notice the pattern of using one Object 

as a heading, followed by several more spatially indented Objects as members of a list.  The 

suggestion might be to take each spatially organised list and make them each a formal 

structure—a Composite. 

Evaluation.  Marshall and Shipman undertook a study to measure the effectiveness of VIKI 

for information triage [42].  They define information triage to be “the process of sorting 

through relevant materials, and organising them to meet the needs of a task”.  The study 

used 15 undergraduate students who had just started a course on HCI.  The participants had 

3.5-17 years of experience with computers and 3.5-11 years of experience with windowing 

systems.  Participants were given 75 articles relating to machine translation packages and 

asked to recommend one of the packages for use in a fictional company.  Participants were 

randomly sorted into three conditions: 

1. Use of the full VIKI system with all 75 articles pre-entered.  10–15 minutes of 

training to use VIKI was given. 

2. Use of VIKI without Collections and with all 75 articles pre-entered.  10–15 minutes 

of training to use VIKI was given. 

3. Use of paper and pen with all 75 articles printed out for them to sort through. 

Participants were all given 45 minutes to complete the task on their own.  An exit 

questionnaire was given that confirmed their recommendation to the fictional company and 

asked their opinion on how their task went. 

Many participants were not confident with their results.  This was put down to the time 

constraint of 45 minutes.  In general, those using paper were more confident of their 

recommendation.  Two other interesting observations were: 

1. Participants created order regardless of their environment.  Participants working 

with paper would create stacks of related material and participants using VIKI 

without Collections opted to spatially arrange content into groups anyway. 
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2. Participants less interested in reading all the content and more interested in making 

the best judgement call in the limited time finished the task with an appreciation of 

the idea of a system like VIKI. 

 VKB 

Building on top of VIKI, VKB retains most of the same functionality.  It retains the use of:  

 A scrollable canvas as its primary editing area. 

 An item called Collections that allow for hierarchical arrangement of information 

and hierarchical zoom. 

 An item called Objects for storing and spatially arranging information. 

It deviates from VIKI by: 

 Allowing for the insertion of non-textual data such as images.  This promotes VKB to 

a Spatial Hypermedia system rather than a Spatial Hypertext system as VIKI was. 

 Introduces cross-cutting links from one element in the Spatial Hypermedia system 

to another. 

The design of VKB was driven by the observation that individuals using Spatial Hypermedia 

systems develop their own methods for communicating meaning that others may have 

trouble interpreting.  This causes a problem when the author and the reader of a Spatial 

Hypermedia system are not the same person.  One solution to this problem may have been 

to provide users pre-built structures for communicating meaning, however this limits the 

strength of a Spatial Hypermedia system: the flexibility to create your own structures.  

Instead VKB provides users with the ability to navigate along a time-axis; inspecting the 

development of the information space as time passes.  This gives readers the opportunity to 

see the author’s decisions in the order they are made, hopefully giving the reader the ability 

to understand the spatial structures the author creates. 

Citizenship.  The three Items provided by VIKI are retained by VKB—the Object, Collection 

and Composite.  Minor changes have been made, for example, Objects can no longer be 

multiple shapes. However, the major details discussed when talking about VIKI remain the 

same.  These details include the selection of Fundamental Element, First Class Citizens and 

System Representation.  The addition of the ability to browse through the development of 
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the information space, however, does provide VKB with some new functionality worth 

discussing.   

Figure 4.18 shows an annotated screenshot of VKB.  A significant difference from VIKI is the 

inclusion of the ‘history toolbar’, which is a slider that is used as the primary method for 

navigating through time.  While the ability to navigate through time and the related controls 

are not strictly concerned with adding or editing content, they may affect an author’s work 

by helping them understand the spatial arrangement decisions that previous authors have 

made.  We will discuss the utility of this functionality as well as the problem of different 

authors and readers in Section 5.2—specifically how these issues relate to the development 

of a Spatial IDE. 

 

Figure 4.18: An annotated screenshot of VKB, taken from [40]. 

Spatial Memory Considerations.  As with VIKI, VKB provides the user with a Variable Sized 

spatial interface.  The Spatial Memory considerations for VIKI also apply to VKB. 

Authoring.  Creating content in VKB is very similar to creating content in VIKI.  Two points of 

difference are: 
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1. Images, not previously available in VIKI, are now supported in VKB.  They can be set 

as the background for a Collection or Object. 

2. Improvements have been made to the spatial parser that is used to make 

suggestions for organisation.  The revised algorithm applies some heuristics to 

Objects based on their similarity to other Objects. 

Evaluation.  In [39] Shipman et al. present anecdotes concerning the use of VKB.  VKB has 

been used for, the gathering of information by a high school chemistry teacher, report 

writing by an undergraduate student, project management by research groups consisting of 

university faculty members and undergraduate students, and organising the ACM Hypertext 

2000 conference.   

This use has led to refinements to VKB.  For example, as a result of complexities discovered 

by the high school chemistry teacher, VKB was altered to include the ability to create 

Objects containing information from the clipboard, therefore making it easier to import 

information from external sources into VKB.  Observations concerning the development of a 

spatial information space in VKB were also obtained by questioning the decisions individuals 

made.  For example, the undergraduate student that used VKB for report writing did so for 

multiple reports, each taking at least a month.  The spatial arrangement that the student 

came up with for each report differed, suggesting that different layout structures are useful 

for different tasks/subjects or that increased competence with VKB lead to varied 

behaviour.  This emphasises the importance of retaining the flexibility of Spatial Hypermedia 

systems. 

In [40] Shipman et al. report on an evaluation of VKB that had participants author poems.  

The goal of the study was to examine how collaborative work differed between a physical 

environment and a digitally augmented one.  Participants, from Texas A&M University, 

consisted of undergraduate students from the English department and graduate students 

from the College of Architecture and Department of Management Information Systems.   

There were eight participants in total and they were divided into four pairs.  A commercial 

product called a Magnetic Poetry set was used by the groups working in a physical 

environment and VKB by those working in the digital environment.  All pairs were instructed 

to create a poem out of an identical set of words (or word parts): those that were included 
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in the Magnetic Poetry set.  VKB was initially set up with individual Objects each containing 

the words from the Magnetic Poetry set. 

Participants were given 90 minutes to create a poem.  This time was divided into four parts.  

The first and last part had the pairs work collaboratively while the second and third parts 

had only one member of the pair work.  Participants were unable to verbally communicate 

with their pair when working individually, though they were able to leave each other notes. 

Results from a survey taken by participants revealed:  

 All participants were familiar with using Windows on computers. 

 Three of the four undergraduate English majors had Magnetic Poetry sets at home 

and the fourth was familiar with it.  None of the other participants were familiar 

with Magnetic Poetry. 

 The majority of students were happy with the time limitations of the task.  One 

reported that more than enough time had been given and one reported that not 

enough time had been given.  

 Three of the four participants using VKB found that the most time-consuming aspect 

of the task was finding specific words.  One participant using Magnetic Poetry also 

reported this to be the case.  

All participants were at least ‘somewhat satisfied’ with the poem they built.  These results 

suggest that a digital interface is a suitable environment for assembling text, but that limited 

practise time hinders the ability to organise disjoint information in a searchable fashion. 

 Expeditee 

Expeditee is a Spatial Hypermedia system developed as an open source implementation of 

work previously done by Akscyn et al. [41].  Expeditee supports a wide variety of multimedia 

forms including text, images and diagrams (line art).  Extensions to Expeditee exist to add 

support for audio authoring [43] and office applications such as spreadsheets [44].  In 

contrast to previous applications reviewed, Expeditee provides the user with a Fixed Size 

Spatial Interface.  In order to explain how Expeditee maintains a Fixed Size Spatial Interface 

and still allows for an unbounded quantity of information, we must first examine 

Expeditee’s information space. 
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Figure 4.19 shows a screenshot of Expeditee designed to showcase commonly used media 

elements (Items).  In Expeditee parlance, we refer to the information space that they are 

placed on as a Frame.  Content is positioned at specific coordinates on a Frame and no 

scrollbars exist.  Together, these two characteristics allow the edges of the application 

window to be used as anchor points for developing Spatial Memory.  Positioned 

prominently in the centre-top of the Frame is a title graphic that makes use of all the 

frequently used Expeditee Items.  Dismantling the graphic, we see the following Items: 

 Three Text Items: “Commonly Used”, “Expeditee” and “Items”.  All three of these 

Text Items happen to use the same font but the middle Text Item is given a larger 

font size. 

 Two Polygons: a pink/red triangle that encases all the Text Items and a yellow 

rectangle that encases the Text Item with a larger font.  The yellow rectangle spans 

the width of the red triangle. 

 An Image that is a caricature of the fictional goddess Expeditee.  

 Two Polylines, each flanking one side of the graphic.  The right Polyline features an 

arrowhead whereas the one on the left does not. 

 

Figure 4.19: A screenshot of an Expeditee Frame showcasing commonly used Items. 
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Citizenship.  Even without extensions to include support for audio content authoring and 

office documents, Expeditee has a large collection of Item types.  For the purposes of 

explanation, we will discuss some of the more commonly used Items that can be placed on a 

Frame.  For each Item type we will discuss how they fit into the citizenship of Expeditee, 

culminating by describing the Fundamental Element and First Class Citizens.  The Item types 

that will be discussed are shown in Figure 4.20.  An author is able to use these Item types to 

add text, images, polygons (with additional support for rectangles) and polylines (with or 

without arrowheads) onto the information space. 

The last previous systems reviewed—HTML authoring, VIKI and VKB—all featured some 

form of nesting.  VIKI and VKB used Collections to achieve this whereas HTML had nesting 

nodes.  In contrast, no Expeditee Item explicitly supports nesting.  It should be noted 

however, that Expeditee does feature algorithms that allow nesting to be emulated when 

the user executes certain actions.   

As we will shortly explain, the Text Item is the Fundamental Element of Expeditee and as 

such—in keeping with previously reviewed systems—we have highlighted this with a blue 

outline. 

A Dot Item is simply a visual dot on the screen.  On their own they are not particularly 

useful—an author may decide to use them to communicate some specific meaning or use 

them aesthetically, but this is not their principal role.  Rather, Dot Items can be connected 

by constraints (visualised as a line) to other Dot Items.  This allows for the creation of 

Polylines and Polygons.  A series of Dot Items connected with constraints that does not 

create an enclosure forms a Polyline.  Polylines can optionally have an arrowhead attached.  

If an enclosure is formed, then the author has created a Polygon and the enclosure is colour 

filled in to signify the state change.  Polylines and Polygons share many of the same 

properties that other Items do, such as colour and size (in this case thickness of line).  Figure 

4.21 shows a representation of the Dot Item. 

Item

Text Item Image Item Dot Item

PolyLine Polygon

...

Figure 4.20: The Items of Expeditee 



 
 

81 
 

Dot 

Content:  Set[Contraints] 

Properties: Position (x, y) 

 ID 

 Colour 

 Size 

 Tooltip 

 Permissions 

 … 

Figure 4.21: Representation of Expeditee Item, Dot—used for Polylines and Polygons. 

The capability of creating Polylines and Polygons is useful for the production of diagrams, 

tables and categories.  As rectangles are commonly used in diagrams and other structural 

components, the right mouse button—in free space—has been set aside as a quick way to 

create them.  Rectangles are also commonly used to temporarily group Items together, 

allowing them to be moved as a single unit. 

As with Object in VIKI/VKB and Text Nodes in HTML, a Text Item can be considered a ‘mini-

world’ traditional text editor.  When we were discussing the concept of a HTML authoring 

environment we identified an issue with Text Nodes in terms of uniform editing: their lack 

of properties.  As text is the primary way of communicating information, it is desirable that 

the citizen representing text be a First Class Citizen.  By our definitions of Fundamental 

Element and First Class Citizen, for Text Nodes to be First Class Citizens, the Fundamental 

Element of a HTML authoring system must not feature properties.  As Text Nodes are the 

only citizen in HTML that did not contain properties, it follows that the Fundamental 

Element must be the Text Node.  Therefore, the lack of properties on Text Nodes leads to 

weaker requirements for First Class Citizens.  As Expeditee Text Items include properties, 

they do not cause this same weakening in the requirements for First Class Citizens.  Figure 

4.22 shows a representation of the Text Item. 
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 Text Item 

Content:  Seq[Characters] 

Properties: Position (x, y) 

 ID 

 Colour 

 Size 

 Tooltip 

 Permissions 

 Font-Family 

 Font-Style 

 … 

Belongs to: Frame 

Figure 4.22: Representation of Expeditee Text Item. 

Figure 4.23 shows a representation of the Image Item.  Whilst not an Image Pixel Editor, 

Expeditee does support some operations for manipulating images.  Notably, the ability to 

copy a region of the pixels—providing the ability to create a cropped copy of the image.  

Image Item 

Content:  Array2D[Pixels,Pixels] 

Operations: Move, Scale, Copy region… 

Properties: Position (x,y) 

 ID 

 Size 

 Tooltip 

 Permissions 

 … 

Belongs to: Frame 

Figure 4.23:  Representation of an Expeditee Image Item. 

Because properties are present in Expeditee Text Items, we are able to identify this type of 

Item as the Fundamental Element of Expeditee without lessening the requirements for 

being a First Class Citizen.  Furthermore, all other Item types in Expeditee have the same 

level of editability, making them First Class Citizens.  Not only do they all feature a similar 

set of properties and data structure operations, but they are also manipulated consistently 
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by mouse controls.  Further discussion of Expeditee in this chapter will show other benefits 

of Text Items being the Fundamental Element in Expeditee.   

The system representation for Expeditee can be seen in Figure 4.24.  Subscript is used to 

show that Polygons and Polylines are created out of Dot Items and that Images are created 

out of Text Items; a detail we expand upon in Chapter 6. 

Expeditee Frame 

Content: Set[Dot|PolygonDot|PolyLineDot|Text|ImageText|…] 

Content.Operations: Add, Remove or Reposition Items 

Figure 4.24: System Representation of Expeditee. 

Spatial Memory Considerations.  We classify Expeditee as a Fixed Size spatial interface 

because—due to the lack of the possibility for scrolling or hierarchical zoom—an author is 

guaranteed the ability to relate the position of content to the edges of the screen.  To allow 

data sets larger than one screen, Expeditee uses a Frame and Linking system.  Figure 4.25 

shows how the Frame and link structure in Expeditee can be visualised.  Miniaturized copies 

of Frame screenshots previously seen in this review are arranged showing how they 

connect.  Arrows are used to show the connections that are formed by linked Items—one 

Frame contains a link to each of the other Frames.  An enlarged section of the image is 

shown in Figure 4.26 so that the circle that appears beside linked Items can be seen.   

 

Figure 4.25: Marked up Frame structure of previous examples. 
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Figure 4.26: Zoomed in Section of Frame structure example. 

In comparison to authoring applications that use a variable sized spatial interface, 

Expeditee’s use of a Frame and Linking system allows it to maintain a Fixed Sized Spatial 

Interface at the cost of likely occluding a greater percent of the total information at any 

given moment.  This trade-off will be discussed in Section 5.2. 

On the subject of landmarks and overviews: the ability to author landmarks in Expeditee is 

roughly comparable to doing so in VIKI and VKB.  As stated in the review of VIKI, the titles of 

Collections have limited use as landmarks.  Similarly, Expeditee Frames are generated with a 

title.  At some level of hierarchical zoom, a VIKI information space relies on the spatial 

positioning of its Objects and Collections to provide landmarks.  As VIKI allows users to 

spatially arrange Objects to author landmarks, so too does Expeditee allow authors to 

arrange Items.  While we have a Fixed Size Spatial Interface in Expeditee, as mentioned in 

the previous paragraph, not all content will be visible at once.  This is another issue to be 

discussed in Section 5.2. 

Authoring.  The subject of authoring in Expeditee is large.  For the purpose of section, we 

will focus on a single aspect of authoring that amplifies the classification of Text Items as 

First Class Citizens in Expeditee: property injection.  The subject of authoring in Expeditee is 

expanded on in Chapter 6. 

Figure 4.27 shows a fragment of an Expeditee screenshot.  A Text Item is towards the left of 

the image.  By left and right mouse clicking at the same time on this Text Item, the user has 

obtained a list of its common properties—seen on the right.  This same action can be 
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performed on any Item.  The list produced is not all of the properties that the specified Item 

has, but rather those that the developers have deemed as being used frequently.  The 

process of property injection—soon to be explained—can be used to adjust any property 

that an Item has.  Adjusting an unlisted property on a specific Item will cause it to be 

included in any list of properties requested from that Item in the future.   

 

Figure 4.27: A cropped screenshot of Expeditee showcasing the common properties of a Text Item. 

Notice that each property is listed as a name-value pair.  Property injection is the process of 

injecting a Text Item that is formatted as one of these name-value pairs into an existing 

Item, thereby changing that property.  This is done by: 

1. Creating a Text Item with content that is formatted as a name-value pair where the 

name is a valid property and the value is a valid setting for that property.  For 

example: FontStyle: BoldItalic 

2. Picking that Text Item up by attaching it to the cursor with middle click. 

3. Hovering the cursor over the Item whose property you wish to change with the 

previously created Text Item and middle clicking to inject that property. 

Figure 4.28 shows a before (left) and after (right) example of the example explained above.  

It should be noted that, similarly to a link node in HTML, the destination of a link is stored as 

a property on the linked Item.  This means that property injection can be used to create and 

alter links. 
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Figure 4.28: Property injection in Expeditee.  Before and after. 

Property injection gives Expeditee Items a reflective quality.  The Fundamental Element—

Text Items—can be used to adjust other Items, all of which are First Class Citizens.  As we 

drew on programming literature for the term First Class Citizen, we now also adopt the term 

Reflection from the same literature [45].  In a programming language, reflection is the 

process that code uses to analyse and modify itself during runtime.  This is analogous to the 

process of property injection that Expeditee uses to modify itself while running.  Due to the 

fact that we have established that Expeditee has the ability to modify itself through its 

Fundamental Element we can now strengthen our definition of a First Class Citizen.  

Expeditee features Reflective First Class Citizens:  

A citizen of the system that can be manipulated in similar ways and be 

modified by the Fundamental Element of that system. 

Evaluation.  Built upon the success of two predecessors, initially ZOG [41] and subsequently 

KMS [46], Expeditee is the result of a long period of iterative development.  Developed at 

Carnegie-Mellon University from 1972 to 1983, ZOG, Expeditee’s initial predecessor, was 

sponsored by the American Navy Office of Naval Research.  Thus, Expeditee, itself the result 

of nearly a decade of development, in addition to building on the lineage of direct 

predecessors with their three decades of development, has been subject to forty years of 

refinement.  Furthermore, Akscyn has been a principal architect of all three systems, 

meaning that the lessons learned from each previous iteration are being applied with first-

hand knowledge. 

Upon the completion of development, ZOG was deployed on the carrier class ship, the USS 

Carl Vinson to act as a collaborative-capable system—spanning 28 workstations—to assist 

with document authoring, viewing and task tracking.  For example, the ship policy manual 

could be viewed and edited and logs of ship maintenance were kept using ZOG.  Following 
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this, another year of collaboration between the ZOG team and crew members of the USS 

Carl Vinson occurred.  This final collaboration both helped refine ZOG (and latter KMS) and 

gave the ZOG team insights into the benefits of iterative software development that 

included regular client feedback [47]. 

In 1981, towards the end of the development of ZOG, a company named Knowledge 

Systems was formed to create a commercial variant of ZOG.  The resulting product, named 

KMS (short for Knowledge Management System) was initially released in 1983.  Used 

internally for a wide variety of tasks, the developers of KMS estimated their collective usage 

of the system to be (as of 1988) 10 thousand hours and 50 thousand frames created 

[41].  These values only represent time spent using the system as a user, notably excluding 

the time spent developing and testing.  Several other companies also worked with 

Knowledge Systems to utilise KMS in the running of their business; General Electric, Martin 

Marietta, Tennessee Eastman, GTE and the US NSA [48]. 

Two significant areas of design in KMS are collaboration and extensibility.  In [49] Yoder et 

al. discuss aspects of KMS designed to assist with collaboration.  Topics covered include: 

 The simultaneous access and authoring of information by multiple end users. 

 The ability to annotate Frames. 

 View previous versions of Frames. 

 Permission models so that an author may dictate how their content can be edited 

by others. 

 How Frames (and FrameSets) can be used as communication platforms with 

simultaneous access and authoring [41].   

All of this functionality would later be used to direct the development of Expeditee.  

Having not identified the personal nature of Spatial Memory as a potential issue (as 

Marshall et al. do a number of years later, see Section 4.3.2), they do not attempt to 

address this directly, however the recorded version history featured in KMS and Expeditee 

has similarities with the solution provided by the developers of VKB. 

Having seen the benefits of working closely with the crew on the USS Carl Vinson, the team 

at Knowledge Systems felt it important that KMS be extensible so that end-users would be 

able to add or manipulate existing functionality to suit their needs.  To this end, a scripting 
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language named ‘Action Language’ was developed [50].  Described as being block structured 

and using a simple ‘command line’ syntax, Action Language could be used to create 

independent chunks of code capable of manipulating and interacting with Frames.  These 

scripts could be authored on and executed from KMS Frames.  The fabrication of hundreds 

of these scripts within KMS, and the experience maintaining them, led Akscyn to believe 

that a Spatial Hypermedia system may not only be appropriate for programming, but 

beneficial [48].  Incentivised further by more recent attempts at using Expeditee to program 

by researchers at the University of Waikato, this observation was what initially spurred this 

thesis and the development of SpIDER. 

When developing Expeditee, Action Language was re-implemented as ‘SIMPLE’.  Rather than 

a direct port of Action Language, SIMPLE prioritised implementation of functionality to that 

which had proven useful.  Authoring and executing SIMPLE is achieved using Expeditee 

Frames and Text Items.  Every statement in SIMPLE is—in Akscyn’s words—“flat” [48].  This 

essentially means that statements, including those categorised as reserved keywords in 

other languages, behave as procedures and make use of Expeditee’s Frame and linking 

system.  One notable example is IF statements.  When executing, Expeditee will check if the 

conditional on the IF statement will resolve to TRUE.  If it does, and the IF statement Text 

Item contains a link, Expeditee will move onto executing the SIMPLE code behind that link.  

 General Purpose Spatial Hypermedia Discussion 

As we did when discussing non-spatial hypermedia applications in Section 4.2, we will now 

present Table 4.3 to summarise Section 4.3.  All of the three systems that we have analysed 

use absolute positioning (a requirement for Spatial Hypermedia) for their Items and 

algorithms or user inference to apply meaning to their content.  For this reason, those 

attributes are not included in this table.  We do however list three new categories: 

1. The type of nesting that the application allows.  We identify two dimensions of 

variability: 

i. How deep Branching can occur.  Shallow or Deep. 

 A group of citizens that can contain other citizens, and where at least 

one of the citizens can contain citizens of the same type is considered 

to have Deep Nesting.  A valid example is: given A, B, C are all types of 
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citizens, if A can contain B, and in turn B can contain C and other 

instances of B they are considered to have Deep Nesting.   

 If the structure of the citizens in question allows (or exhibits) nesting 

but none of the citizens can contain citizens of the same type then we 

consider them to have Shallow Nesting.  The previous example does 

not exhibit Shallow Nesting because the type B can contain other 

citizens of type B.  A valid example of a group of citizens with Shallow 

Nesting would be: given A, B, C are all types of citizens, they are set up 

so that A may contain B and B may contain C.   

 

The length of the branch does not affect its classification as either 

Shallow or Deep Nesting.  Taking the example used to explain Deep 

Nesting, the number of type B or type C that a type B contains is not 

considered.   

ii. The strength of containment.  Strict or Transient. 

 If the application has a strong notion of containment it is classified as 

having Strict Nesting.  We are primarily concerned with how the 

application represents nesting in its data structures.  An application 

that stores data to keep track of which citizens are nested within which 

uses Strict Nesting. However, we conjecture that a good approximation 

of the strength of containment can be made by examining the 

application. Typically, Strict Nesting can be identified by examining how 

nested citizens interact with the citizen they are nested within.  If a 

nested citizen can be occluded through spatial positioning this is a sign 

that it is subject to Strict Nesting.  Another sign that Strict Nesting is 

occurring would be the presence of a ‘snap-to’ grid as this suggests the 

application is monitoring containment. 

 Alternatively, an application may use Transient Nesting.  When 

Transient Nesting is being utilised the application does not store 

information related to nesting but rather calculates which citizens are 

nested within which when specific user actions occur.  Like with Strict 

Nesting, Transient Nesting can be identified by examining the running 
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application.  One way Transient Nesting may be implemented is based 

on geometry.  For example, when picking up a citizen, the application 

may algorithmically decide which citizens are contained within and pick 

those up two.  If this is the case then minor geometrical changes may 

change the behaviour.  For example, moving a citizen so that it overlaps 

less with another may cause the two to become ‘detached’.  

2. The form of Spatial Interface that the application uses.  Variable Sized Spatial 

Interfaces feature techniques that stop the edges of the screen being use to 

spatially position Items whereas Fixed Size Spatial Interfaces do not. 

3. Whether or not the application’s First Class Citizens are reflective. 

4. How likely and to what extent general use of the application will cause information 

to be occluded.   

Concerning the likelihood of occlusion given general use of an application: It is technically 

possible to, in all three applications, not have any information occluded.  As long as there is 

space left on screen, an author may choose not to use supported organisational 

functionality that causes occluded information.  In VIKI and VKB this means that a user does 

not make use of scrollbars or hierarchical zoom.  In Expeditee this means that a user does 

not make use of the Frame and Linking system.  Whilst these methods may be suitable 

under specific circumstances—perhaps for building a poster—they are not generally 

suitable, and as such, a more meaningful consideration is how likely information is to be 

occluded when using the supported organisation functionality that is provided.  Under 

general use, all three applications are likely to occlude information.   

A cursory exploration into each application reveals that, under normal circumstances, VIKI 

and VKB are likely to contain more information—when compared to Expeditee—before 

occlusion becomes likely.  Furthermore, at any given time, a larger portion of content is 

likely to be hidden when using Expeditee.  Factors such as the size of textual content and 

the prevalence of whitespace in Expeditee explain this.   

In VIKI/VKB, the presence of scrollbars on Objects provides authors with fine-grained control 

over the size of an Object.  They are able to perform a trade-off—increasing the amount of 

occlusion whilst reducing the size of an Object or vice versa.  On the other hand, in 

Expeditee, users frequently use a larger than normal font size.  It is theorised that the 
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limited size of an Expeditee Frame, combined with the linking system, encourages users to 

structure their documents using the Frame abstraction [48].  This in turn provides them with 

the ability to size content as if they are producing a low-content document—such as a 

poster—even when they are not. 

In VIKI/VKB, whitespace has no special use.  An author may leave some whitespace unfilled 

to communicate meaning such as a division.  In contrast, Expeditee uses whitespace for 

navigation and communicating meaning.  Left clicking in whitespace performs a Back 

Operation, navigating the user to the Frame they were on prior to the current.  The benefit 

of this is that navigating between Frames can be done rapidly, with whitespace being used 

to navigate backwards and links tending to have no disturbance near their hitbox.  More 

details concerning navigation in Expeditee are provided in Chapter 6. 

 

Data Structure 

Nesting Type 

Spatial Interface 
Fundamental 

Element 

Other First 

Class Citizens 
Multimedia 

Reflective 

First Class 

Citizens 

Level of 

Occlusion 
Sequence Array Set 

Allows 

Nesting 
Variable Fixed 

VIKI     Deep and Strict   Collection Object   
Likely, at 

least some 

VKB     Deep and Strict   Collection Object   
Likely, at 

least some 

Expeditee     Deep and Transient   Text Item 
Images, Dot, 

Line etc.   
Very likely, 

most 

Table 4.3: A summary of the three applications reviewed in this section.  For each: The type of data structure that 
can be thought of as being used to store citizens and if nesting is used.  The type of Spatial Interface is being 

used.  Details about the types of citizens present. 

4.4 Summary 

This chapter has thoroughly examined several aspects of the design of authoring 

environments that have significant effects on their capabilities.  We discussed the concept 

of spatially positioning content and used the ideas of absolute versus relative space to 

explain how this is achieved.   Not satisfied with simply providing a definition, we then set 

out to use examples to explain how we can identify Spatial Hypermedia applications. 

Contrast was drawn on the lines of relative or absolute positioning of content, how (and if) 

nesting is supported and the issue of occluded content—specifically when it becomes an 

issue when using absolute positioning.  This allowed us to demonstrate how the layout and 

meaning of content are tied together.  It was shown that these aspects influence an 

application’s suitability for different types of content.   



 
 

92 
 

A focus on Spatial Hypermedia authoring considerations, in combination with a review of 

three modern general purpose Spatial Hypermedia authoring applications, has shown that 

significant differences arise due to the design goals and decisions made when developing 

Spatial Hypermedia. 

The discussion in Sections 4.1 and 4.2 was undertaken to bring together and explain the 

relevance of Chapter 2 and 3 to this research.  In Chapter 2 we looked at Spatial Memory 

and how it can be applied to software development.  It was in this chapter that we 

encountered initial evidence showing that programmers are able and willing to use their 

Spatial Memory whilst programming.  We were also able to draw on literature reviewed in 

this chapter to distinguish between two different types of Spatial Hypermedia—Fixed and 

Variable Sized.  Chapter 3 then examined traditional IDEs, resulting in us noticing a distinct 

lack of malleability.  This observation motivated the development of a formal model of 

authoring built around the concepts Fundamental Element, System Representation and First 

Class Citizen.  These concepts allow us to identify the level of mutability present in an 

application and how wide-spread that mutability is over the application’s citizenship.  The 

goal of this work was to help establish a group of citizens designed with consistently high 

mutability.  These citizens can then be used to create a Spatial Hypermedia IDE that does 

not have the lack of malleability present in traditional IDEs.  
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Chapter 5  

Authoring in Spatial Hypermedia IDE 

Environments 

 

This chapter outlines and justifies the development direction that was taken in the 

development of SpIDER.  This is achieved by reviewing four examples in Section 05.1 of IDE 

authoring from the literature that use a significant amount of Spatial Hypermedia in their 

design: Code Thumbnails, Code Canvas, Code Bubbles and Debugger Canvas.  As will be 

explained in their appropriate sections, each of these applications approaches the task of 

using Spatial Hypermedia to utilise Spatial Memory differently.  The formal descriptive 

model described in Section 4.2 is applied to each application.  The format of the review 

mimics the format seen in Section 4.3.  In addition we relate each piece of software 

assessed to the work presented in Chapters 2 and 3.   

The aspects of Spatial Memory applicable to computer interfaces that were discussed in 

detail in Chapter 2 are: 

 Spatial Memory can be used for navigation and object location. 

 The use of Spatial Memory can be promoted through the positioning of components 

with respect to the edges of application windows. 

 Spatial Memory is better utilised with a Fixed Size spatial interface rather than a 

Variable Sized spatial interface. 

 The gap between Fixed Size and Variable spatial interfaces can be lessened by using 

overviews and landmarks. 
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o An overview is a miniaturized and less detailed version of the whole 

information space. 

o Landmarks are prominent components of the information space that people 

can use as focal points from which to map other elements. 

 Landmarks are generally useful—in both Fixed Sized and Variable Sized interfaces. 

 Long-term Spatial Memory is arranged hierarchically.  Similarly, interfaces may use a 

hierarchical structure to reveal or hide content.  

 It is a challenge to achieve spatial stability in content that is actively being authored. 

Chapter 3 discussed common functionality found in IDEs and users’ interactions with them.  

The purpose of this discussion was three-fold:  

1. To identify core functionality that a Spatial IDE would require. 

2. To analyse limitations that traditional IDEs exhibit in their implementation of 

functionality and the ways that Spatial Hypermedia can be used to overcome these 

limitations.   

3. To examine how programmers currently use space in traditional IDEs. 

The rigidity of IDE interfaces and functionality was explored as a weakness of traditional 

IDEs.  

Heading towards the completion of this chapter, in Section 5.2, we bring together several 

discussion points put forward earlier in the chapter (and thesis) so that in Section 5.3 we can 

explain why we believe the Spatial Hypermedia system Expeditee is the best platform of 

those reviewed for building a Spatial Hypermedia-based IDE. 

5.1 Spatial Hypermedia in IDEs 

We now review four research projects that resulted in the construction of Spatial 

Hypermedia functionality for programming.  Firstly, we review Code Thumbnails by DeLine 

et al. [12], an early investigation performed at Microsoft Research into how programmers 

are able to use Spatial Memory to navigate around a code base.  Code Canvas was 

subsequently produced by DeLine and associate Rowan [51], and is reviewed second.  In this 

work DeLine and Rowan create a programming environment that allowed Spatial Memory 

to be utilised for both producing code and navigating around an entire code base.  Code 

Bubbles is the third project to be reviewed [52, 53].  Created by Bragdon et al., Code 
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Bubbles, like Code Canvas, is a Spatial Hypermedia-based IDE.  Unlike Code Canvas, Code 

Bubbles does not attempt to provide users with the entire code base at once, instead opting 

to allow the user to work with fragments of the software project. 

Extending on our documentation of Code Thumbnails in Section 2.4, we now evaluate it in a 

fashion suitable for comparison with other Spatial Hypermedia IDEs.  For the remaining 

three applications, we perform the same analysis undertaken in Section 4.3: 

 We examine their citizenship, and identify First Class Citizens and its System 

Representation. 

 We discuss the implications that the application’s design has for Spatial Memory. 

 We review how authoring is performed in the application. 

 And finally, the evaluation that researchers undertook on their application. 

 Code Thumbnails 

Code Thumbnails is an extension to Microsoft Visual Studio, created by DeLine et al. at 

Microsoft Research [12].  We first introduced Code Thumbnails in Section 2.4 where we 

discussed the study that DeLine et al. undertook to evaluate a programmer’s willingness and 

ability to use Spatial Memory for programming.  We now extend that discussion by 

examining the design and functionality that Code Thumbnails provides as well as the effect 

the design has on Spatial Memory.    

Unlike the other applications reviewed, Code Thumbnails is not directly concerned with 

editing.  Instead it aims to accelerate a user’s navigation, thereby benefiting the 

programming experience.  In order to achieve the goal of allowing programmers to leverage 

Spatial Memory for navigating between code snippets, two interfaces are added: The Code 

Thumbnails Scrollbar and Code Thumbnails Desktop.  In terms of Spatial Memory 

considerations, they are both Fixed Sized spatial interfaces that are spatially stable.  The 

former resembles an overview as defined in Section 2.2.  In other words, it provides a 

miniaturized and less detailed view of the complete code file.  The latter resembles the 

Space-Filling Thumbnails developed by Cockburn et al. [17].   

Code Thumbnails Scrollbar.  A screenshot of the Code Thumbnails Scrollbar, taken from 

[12], can be seen in Figure 5.1.  Examining this screenshot, we see that the traditional 

scrollbar present in Visual Studio, for moving up and down through a code file, has been 
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augmented.  This is the Code Thumbnails Scrollbar.  To the left of the augmented scrollbar is 

the normal text editor for writing C# code.  To the right, the complete file is represented in a 

single view.  In order to fit all of the content, the text has been scaled down.  This provides 

text that is indicative of how long the lines of code are and how they are indented (the 

shape), but is not intended to be read.  However, a programmer is able to click on a portion 

of code in the augmented scrollbar and cause the code editor area on the left to centre on 

that content.  Unable to read the text in the scrollbar, if a programmer wishes to use it for 

navigation, they must instinctively start to use aspects of Spatial Memory to navigate the 

file.  Namely, the shape and spatial position—with reference to the edge of the file or 

relative position of other code they can already place (a landmark)—of the code snippet 

that contains the code they wish to navigate to.  In turn, this means that a successful 

navigation shows that they have utilised their Spatial Memory. 

We review the Code Thumbnails Scrollbar because it is a useful example of a tool that allows 

programmers to use their Spatial Memory to navigate around a source file.  However, unlike 

all the other applications we review in Chapter 5, the Code Thumbnails Scrollbar is not 

designed for authoring, instead it provides an overview of the authoring area.  All user 

interactions with the Code Thumbnails Scrollbar result in a navigation (to a new location in 

the main text editor area) and never a manipulation of content.  As we distinguish between 

relatively or absolutely positioned content and identify the type of data structure used to 

store citizens so that we can understand how authoring effects the application, it does not 

make sense to discuss these aspects.   
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Figure 5.1: Code Thumbnails Scrollbar, taken from [12]. 

Code Thumbnails Desktop.  A screenshot of the Code Thumbnails Desktop, taken from [12], 

can be seen in Figure 5.2.  Examining this screenshot, we see a canvas filled with spatially 

arranged thumbnails.  Each thumbnail is a further scaled down copy of a Code Thumbnails 

Scrollbar.  This means that, in contrast to the Code Thumbnails Scrollbar, which provides 

navigation within a single file, the Code Thumbnails Desktop provides navigation over all the 

code files of a complete software project.  Programmers are able to manually reposition 

each thumbnail, but the extension is otherwise completely spatially stable.  

Border thickness and shaded blue areas of differing intensity are used to communicate 

information such as which file was last opened and where the viewport on each file 

currently resides.  As with the Code Thumbnails Scrollbar, programmers are able to click on 

a thumbnail and cause Visual Studio to navigate to the selected file.   

Readable labels are provided on the thumbnails in the Code Thumbnails Desktop which 

could be used to accurately select the navigation target file.  Whilst present, these labels 

may be not needed.  Evaluation done by DeLine et al. (and reviewed in Section 2.4) shows 

that programmers who have had opportunity to practice using Code Thumbnails Desktop 
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with a specific software project are still able to use the tool once the entirety of all 

thumbnails were made invisible (including the titles), providing evidence that Spatial 

Memory is being utilised. 

 

Figure 5.2: Code Thumbnails Desktop, taken from [12]. 

Parallels.  Both CodeMap’s by Kuhn et al. [54] and Code Thumbnails seek to utilise a 

programmer’s Spatial Memory to assist with navigation.  Where Code Thumbnails uses the 

shape of source code to achieve this, individual CodeMap’s instead generate a spatial 

visualisation of the code.  Results seem to suggest, that for the purpose of accelerating 

navigation through Spatial Memory, the approach taken by DeLine et al. achieves better 

results. 

 Code Canvas 

Working with Rowan, DeLine extended research into the use of Spatial Memory for 

programming with the development of Code Canvas—a significant restructuring of 

Microsoft Visual Studio [51].  Unlike Code Thumbnails, Code Canvas is concerned with 
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authoring code.  This, combined with its leveraging of Spatial Memory, makes it a Spatial 

Hypermedia Integrated Development Environment.  As such, the developer’s approach, 

implementation and research questions are of interest to this thesis.  In their paper, they 

discuss the overall success of IDEs in general but highlight a level of stagnation in IDE 

interface design.  They make the case for looking to improve on the existing design by 

comparing the prevalence of high-end personal computers today with the computer 

systems that were commonplace when IDE interface design began to stagnate.  In an effort 

to address this lack of innovation and leverage Spatial Memory they designed and built a 

version of Microsoft Visual Studio that features an interface with similarities to that of 

VIKI/VKB. 

Figure 5.3, taken from [51], shows three screenshots of Code Canvas.  Each screenshot is at 

a further level of zoom beyond the former, with the top screenshot displaying the complete 

software project and the bottom zoomed in enough to allow text to be read comfortably.  

This form of zooming is dubbed Semantic Zoom by DeLine et al. because it each stage of 

zoom attempts to show the user an aspect of programming with semantic meaning.  Yellow 

highlighted content shows the results of a previous search and the red arrows show a stack 

trace of the software project. 
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Figure 5.3: Three levels of zoom in Code Canvas.  Project view, class view and editing view.  Taken from [51]. 

Citizenship.  By examining [35] we are able to map Code Canvas into our on-going 

discussion and analysis of citizenship in authoring environments.  The spatially positionable 

rectangular container for code fulfils the role of the Fundamental Element.  Unnamed in 

their work, we refer to this citizen as a Semantic Container, as it contains a semantically 

valid fragment of code as determined by the language.  Figure 5.4 explains this citizen 

diagrammatically.  As far as functionality that the author can directly affect, it is identical to 

a traditional text editor.  Additional hypermedia functionality is added to the editor based 
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on the content that is entered, such as hyperlinks from references to functions to their 

implementations.  Other functionality has visual aspects that may be thought of as citizens, 

such as the red arrow signifying a stack trace or the highlighting that is the result of a search 

initiated by the user. 

Semantic Container 

Content: Seq[Character] 

Operations: Insert, Remove or 

Replace Characters 

Figure 5.4: The primary citizen of Code Canvas. 

Figure 5.5 shows the System Representation of Code Canvas.  Supported operations are the 

ability to add, remove or replace citizens, spatially position Semantic Containers and 

perform Semantic Zoom.  The order of citizens is not important, as such it makes sense to 

think of them as being stored in a Set.   

Code Canvas 

Content: Set[Semantic Container|..] 

Operations: Add, Remove, Replace Citizens. 

Can Reposition Semantic Containers 

 Can perform Semantic Zoom 

Figure 5.5: The System Representation of Code Canvas. 

Spatial Memory Considerations.  Code Canvas utilises an infinite canvas with pan and zoom 

controls.  This results in the classification of a Variable Sized Spatial Interface.  As another 

example of a Variable Sized Spatial Interface, there are multiple similarities between 

VIKI/VKB and Code Canvas. 

 Content is represented in spatially positioned containers.  VIKI/VKB use Objects 

where Code Canvas uses Semantic Containers. 

 A restricted form of zooming is utilised.  In VIKI/VKB we referred to this as 

hierarchical zoom because it allows the user to view a specific part of the tree 

hierarchy that was formed.  The developers of Code Canvas refer to their restricted 

form of zooming as ‘semantic zoom’, because it uses the semantics of the 

programming language to determine what each stage of zoom does—for example, 
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one level of zoom may be designed for writing code and another for viewing the 

class structure. 

 No overview—as defined in Section 2.2—is present.  Zooming out as far as possible 

may or may not provide a complete overview of the information space, depending 

on the quantity of information present. 

 Prominent features, such as class or public variable names, are emphasised and may 

be used as landmarks.  This is similar to Collection titles in VIKI/VKB.  Other than 

this, as with VIKI/VKB, the shape of content must be used to provide landmarks.  

Two differences between VIKI/VKB and Code Canvas that are significant for utilising Spatial 

Memory are: 

1. The ability to vary font properties in VIKI/VKB but not in Code Canvas.  Code Canvas 

retains much of the editing functionality that traditional Microsoft Visual Studio 

provides.  This means that a programmer using Code Canvas is restricted in the 

ways they can emphasise specific pieces of code in a way that users of VIKI/VKB are 

not.  

2. Whilst both VIKI/VKB and Code Canvas feature infinite scrollable canvases, they 

differ in how they deal with an increasing amount of content.  VIKI/VKB use 

scrollbars on both the entire canvas and on their content containers (Objects).  In 

contrast, Code Canvas only has a scrollbar on the entire canvas.  Instead of 

producing a scrollbar once a container is full of content, the container grows.  This 

is a trade-off.  On the one hand, less information is forcibly occluded when 

interacting with a specific container because the container has grown to 

accommodate the content.  On the other, this same container growth may make it 

desirable to reposition other containers which may be damaging to Spatial 

Memory. 

Authoring.  The authoring in Code Canvas differs from the traditional form of Microsoft 

Visual Studio by allowing programmers to spatially position semantically determined chunks 

of code.  However, when editing a specific Semantic Container of code, the programmer 

must use the traditional text editor augmented with hypermedia functionality that is used in 

the traditional form of Microsoft Visual Studio.  The spatial layout of code is also used to 
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provide programmers with alternative ways of visualising information, such as the red 

arrows that present a stack trace. 

Evaluation.  DeLine and Rowan describe the implementation details of Code Canvas by 

stating research questions.  One of which is: “To what extent should Code Canvas be a 

collaborative space versus a personal space?” [35].  Progress towards answering this 

question is made in a follow-up publication [55].  This concept of a Code Map is presented.  

It is a diagrammatic way of presenting all of the relations between information contained in 

a software project, including code, documentation and planning.  A field study is undertaken 

where a Code Map is initially produced with pen and paper and later transferred to Code 

Canvas. 

A Code Map for a team of programmers is designed and produced.  Interviews, observation 

while the programmers work and analysis of diagrams that the programmers produce are all 

considered.  Several iterations of the Code Map are made and each is provided to the team 

of programmers by attaching it to the wall of a shared space.  Each iteration receives varied 

opinion from team member to team member.  Ultimately, it is reasoned that the lack of 

interactability and difficulty of modification by the programmers limits the usefulness of the 

paper Code Map.  At this point, a new version of the Code Map is created in Code Canvas, 

with each member of the team being able to access and modify it.  Through continued 

questioning, further evidence is found that programmers are able to utilise their Spatial 

Memory and find the Code Map to be a useful addition to their development cycle.  

 Code Bubbles 

Code Bubbles is a Spatial Hypermedia IDE for the Java Programming language developed by 

Bragdon et al. [52, 53] as an extension of Eclipse.  Like Code Canvas, Code Bubbles features 

an infinite scrollable canvas and uses spatially positionable containers to display code.  A 

container is referred to as a ‘Bubble’.  A Bubble contains a semantically meaningful 

fragment of text, such as a function or piece of documentation.  Related Bubbles are 

arranged into groups referred to as Bubble Groups.  For example, a programmer may opt to 

place all functions that add widgets to a window in a single Bubble Group.  In turn, multiple 

Bubble Groups form a Working Set which is represented in an overview along the top of the 

screen.  This overview is referred to as the Panning Bar.  A Working Set is intended to 
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contain all relevant—and no additional—information to address a specific issue, such as 

fixing a bug. 

Figure 5.6 shows a screenshot of a Code Bubbles workspace taken from a video published 

by Bragdon. 3  The primary difference between Code Canvas and Code Bubbles is illustrated 

in this screenshot.  Where Code Canvas spatially arranges a complete software project, 

Code Bubbles limits what is displayed to the content you are currently working with.  There 

are four Bubble Groups displayed in the screenshot, each with a different background 

colour.   

 The blue and green Bubble Groups both contain code.  The former contains four 

Bubbles and has been marked with an icon to indicate that it contains a bug.  The 

latter contains three Bubbles.   

 The pink and yellow Bubble Groups contain project-related information that is not 

code.  In the case of the yellow working set it is documentation.   

Unlike the Bubble Groups that contain code, which are arranged vertically, the yellow 

working set is arranged horizontally.  This is an example of using spatial layout to 

communicate meaning.  The Bubbles are ordered within their Bubble Group—each 

subsequent Bubble is a result of following a path from the previous.      

 

Figure 5.6: A Code Bubbles workspace featuring a single Working Set that contains four Bubble Groups with 
between one and four Bubbles each. 

                                                           
3 https://youtu.be/PsPX0nElJ0k Accessed April 2017 

https://youtu.be/PsPX0nElJ0k
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Citizenship.  Through examining [52, 53], the previously mentioned video and two Code 

Bubbles websites,4,5 we are able to map Code Canvas into our on-going discussion and 

analysis of citizenship in authoring environments.  The Fundamental Element of Code 

Bubbles is the Bubble.  Acting as a ‘mini-world’ traditional text editor, a Bubble can have 

characters inserted, removed or replaced.  Just as the semantic container from Code Canvas 

utilises the traditional Visual Studio editor for dealing with the content entered, the Bubble 

uses Eclipse’s traditional text editor.  This has the positive effect of automatically adding 

hyperlinks between references and implementations, but the negative effect of restricting 

users from modifying font style or inserting diagrams alongside code.  Figure 5.7 shows the 

diagrammatic representation of the Bubble Item. 

Bubble 

Content: Seq[Character] 

Operations: Insert, Remove or 

Replace Characters 

Figure 5.7: The Fundamental Element of Code Bubbles. 

Two other Items are worth discussing: Bubble Groups and the Working Set.  A Bubble Group 

is a collection of Bubbles.  Bubbles within a Bubble Group are not ordered.  Bubbles within a 

Bubble Group can be spatially positioned as long as they remain in contact with another 

Bubble in the Bubble Group—if contact is lost, that Bubble forms a new Bubble Group.  

Entire Bubble Groups can be spatially positioned.  Figure 5.8 shows the diagrammatic 

representation of the Bubble Group Item. 

Bubble Group 

Content: Set[Bubbles] 

Operations: Insert or Remove 

Bubbles 

Figure 5.8: The Code Bubbles Bubble Group. 

The Working Set is a collection of Bubble Groups that together are used to solve a specific 

task.  All Working Sets appear in the Panning Bar at the top of the application.  The Panning 

                                                           
4 http://cs.brown.edu/~spr/codebubbles/ Accessed April 2017 
5 http://www.andrewbragdon.com/codebubbles_site.asp Accessed April 2017 

http://cs.brown.edu/~spr/codebubbles/
http://www.andrewbragdon.com/codebubbles_site.asp
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Bar can be used to save, load or removing existing Working Sets from the application.  

Figure 5.9 shows the diagrammatic representation of the Working Set Item. 

Working Set 

Content: Set[Working Set] 

Operations: Insert or Remove 

Working Set 

Figure 5.9: The Code Bubbles Working Set. 

The System Representation of Code Bubbles must be able to store and manipulate multiple 

Working Sets and control the viewport based on the level of zoom the user sets as well as 

the active portion of the application (as specified by the Panning Bar).  Figure 5.10 shows 

the diagrammatic form of the System Representation for Code Bubbles.  Working Sets, 

Bubble Groups and Bubbles represent a thin hierarchy of Items that no other application 

reviewed has had.  This thin hierarchy places a significant amount of functionality on these 

Items rather than on the System Representation—for example, the containment of Bubbles 

in a Bubble Group. 

Code Bubbles 

Content: Set[Working Sets] 

Operations: Insert or Remove Working Sets 

Move between Working Sets 

Zoom in and out 

Figure 5.10: The Code Bubbles System Representation. 

Spatial Memory Considerations.  As another application with an infinite scrollable canvas, 

the Spatial Memory considerations for Code Bubbles are similar to those of Code Canvas 

and VIKI/VKB.  It is classified as a Variable Sized Spatial Interface due the ability to pan the 

viewport.  Unlike Code Canvas and VIKI/VKB, that use restrictive forms of zooming, semantic 

and hierarchical zoom respectively, Code Bubbles uses the traditional form of zooming—

where the size of content is scaled by a percent specified by the programmer. 

Code Bubbles’ working sets provide programmers with the ability to group related Bubbles.  

This is similar to the relation between Objects and Collections in VIKI/VKB but does not have 

the same hierarchical nature—that is, whilst a Collection can be placed inside another 
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Collection in VIKI/VKB, a Working Set cannot be placed inside another Working Set in Code 

Bubbles. 

Authoring.  As with the Semantic Containers of Code Canvas, a Bubble behaves as a 

traditional authoring environment—retaining the features and limitations of the Eclipse text 

editor.  It is the spatial positioning of Bubbles and expressiveness of working sets that makes 

Code Bubbles unique. 

Bubbles can be created either by following hyperlinks from existing Bubbles or through the 

Package Explorer docked to the right of the application (Figure 5.6).  New Bubbles join an 

existing logical Bubble Group (if there is one).  For example, if a Bubble is created from 

clicking a reference to a function, it will join the Bubble Group that the reference belonged 

to.  However, Bubbles can be individually detached from their current Bubble Group and 

attached to another or left as a new Bubble Group. 

Reconsider Figure 5.6.  Together, all four Bubble Groups are considered part of a Working 

Set.  Along the top of the window is an area that shows all currently active content.  This 

Working Set is spatially positioned in this overview.  A blue rounded rectangle displays 

where, in the entire information space, the current viewport is.  This provides programmers 

with a technique for spatially separating different tasks.  For example, should the 

programmer be working on fixing the bug in the blue working set, and a colleague asks for 

help on another part of the code base, they are able to navigate to a spatially separate part 

of the information space, and bring up the appropriate code fragments there. 

Evaluation.  In [52] Bragdon et al. discuss qualitative and quantitative evaluation of Code 

Bubbles that they undertook.  For their qualitative evaluation, they used 14 professional 

programmers (13 male, 1 female with a mean age of 31.85 years).  The participants were 

given a copy of Code Bubbles, and asked to ‘think out loud’ while they operated it.  The 

feedback received was positive.  It was noted that participants seemed to appreciate the 

concept of Working Sets, Bubble Groups and Bubbles and how they may be useful in: 

staying on task, organising their thoughts and working towards solving specific issues.  

Whilst participants did not miss the file structure organisation that traditional IDEs provide, 

there was discussion of how Code Bubbles would fare when dealing with large changes, 

such as rewriting complete classes.  It was suggested that a separate interface—referred to 

as a Class Bubble—would be useful for this. 
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In their quantitative evaluation Bragdon et al. wished to test their hypothesis that: “Code 

Bubbles users will be able to understand the code more quickly, take advantage of multiple 

simultaneous bubbles, and should use significantly fewer navigations/minute on average, 

and fewer repeated navigations/minute on average. [52]”.  Participants for this study were 

drawn from a pool of graduate and undergraduate Computer Science students at Brown 

University.  There were 20 participants in total (19 male, 1 female with a mean age of 21.95 

years).  Each participant had experience using Eclipse—the IDE that Code Bubbles was built 

on. 

In order to measure participant’s code understanding, they were given the task of fixing a 

bug while their actions were recorded.   Each participant was randomly assigned to one of 

two groups: a control group that used Eclipse and an experimental group using Code 

Bubbles.  Participants completed three tasks, the first was a ‘training’ task that they were 

given 15 minutes to complete and was not reported on.  The second (T1) and third (T2) tasks 

were more complicated bug fixes (more lines of code and members to consider as 

compared to the training task) and they were given 45 minutes to complete.   

Analysis of the results found that participants using Code Bubbles were both more 

successful in completing their tasks (meaning the bug was fixed)—with 6/4 completions in 

the control group and 10/7 in the experimental group, T1/T2 respectively—and faster doing 

so in the first non-training task—with T1 being performed almost twice as fast and T2 being 

completed slightly faster in the experimental group, compared to the control group.  Whilst 

Code Bubble performed slightly better in T2, it was not a statistically significant result.  

Adding together the time taken and success rate for both tasks produced a result showing 

that participants using Code Bubbles performed statistically better.  It was also found that 

users of Code Bubbles spent significantly less time navigating—with almost half as many 

navigation actions, resulting in significantly less time navigating. 

 Debugger Canvas 

Following Code Bubbles, Bragdon collaborated with DeLine et al. at Microsoft Research on 

Debugger Canvas [56].  As an extension to Microsoft Visual Studio, Debugger Canvas is 

intended as a production version of the Code Bubbles paradigm.  Debugger Canvas adapts 

the concept of a Bubble to filter a programmer’s debugging session to show only the 

relevant information.  Figure 5.11 shows a screenshot, taken from [56], of Debugger Canvas 
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running.  In the figure, six Bubbles are currently open.  These six Bubbles are divided into 

four groups.  Each group represents a thread of the running application.  Each group is 

distinguished by a different border colour.  The topmost group has a teal border.  Moving in 

order downwards, the other border colours are yellow, blue and purple.  The Bubble 

containing the currently active code is the right-most Bubble in the top group.  This is 

signified by a highlighted title to the bubble as well as a secondary thin border inside the 

existing border. 

The topmost group contains three Bubbles.  A series of arrows order the Bubbles within this 

group, showing the stack trace that resulted in those specific Bubbles being opened.  The 

three remaining groups contain a single Bubble each. 

In developing Debugger Canvas, DeLine et al. primarily wanted to gather data on 

programmers’ experiences with the Code Bubble paradigm.  Debugging was chosen (over an 

entire IDE overhaul) for a combination of reasons.  Debugging is often a cognitively difficult 

task that tends to last for several minutes, and so provides a good opportunity for data 

gathering.  It is the type of task that the Code Bubbles paradigm should perform well with.  

Furthermore, the researcher’s report that they were hesitant to replace the traditional style 

of code editing as it was thought that programmers may be unwilling to make such a 

significant change all at once.   
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Figure 5.11: A screenshot of Debugger Canvas, showing six bubbles and associated debugging information.  

Citizenship.  As Debugger Canvas is a variation on the Code Bubble paradigm, its citizenship 

is similar to Code Bubbles.  The Fundamental Element remains the Bubble and continues to 

act as a ‘mini-world’ traditional text editor.  Figure 5.12 shows the diagrammatic 

representation of the Debugger Canvas Bubble.  Whilst Bubbles maintain the ability to 

author content, they are also augmented with traditional Visual Studio tools to assist with 

debugging, such as a display showing the current value of variables.   

Bubble 

Content: Seq[Character] 

Operations: Insert, Remove or Replace Characters 

Debugging Specific Tools 

Figure 5.12: The Debugger Canvas Fundamental Element. 

Debugger Canvas arranges Bubbles based on their thread of execution.  This is comparable 

with the Bubble Group citizen in Code Bubbles.  We will refer to this citizen as a Thread 

Group.  Figure 5.13 shows the diagrammatic representation of the Thread Group citizen.  

Unlike in Code Bubbles where spatially positioning Bubbles close to each other caused 

Bubble Groups to form, Debugger Canvases Thread Groups are formed based on the 

semantics of the programming language—specifically, the thread of execution that a Bubble 

belongs to determines which group it belongs to.   
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Thread Group 

Content: Set[Bubbles] 

Operations: Insert or Remove Bubbles 

Figure 5.13: The Debugger Canvas Thread Group. 

Unlike the Bubble Group citizen from Code Bubbles, that has a direct parallel in the Thread 

Group citizen, there is no equivalent to the Code Bubbles Working Set.  Whilst programmers 

using Code Bubbles are able to specify which Working Set new Bubbles populate, in 

Debugger Canvas, new Bubbles always join the newest canvas that the programmer has 

created.  If a user does not create a new canvas for a new debugging session, Debugger 

Canvas does not visually separate the new session from the previous.  Furthermore, 

interaction with each canvas occurs in isolation from the others.  For example, each canvas 

keeps track of its own level of zoom and viewport position.  For these reasons, only one 

conceptual structure is needed to represent both the theoretical equivalent of the Code 

Bubbles Working Set and the Debugger Canvas System Representation, as can be seen in 

Figure 5.14. 

Canvas 

Content: Set[Thread Group] 

Operations: Insert or Remove Thread Groups 

Zoom and Pan 

Figure 5.14: The Debugger Canvas System Representation. 

Spatial Memory Considerations.  The Spatial Memory considerations for Debugger Canvas 

are—unsurprisingly—similar to those of Code Bubbles.  Both use a Variable Sized spatial 

interface supported by traditional pan and zoom functionality.   

The primary visual difference between Debugger Canvas and Code Bubbles is in their 

approach to displaying groups of Bubbles.  Whilst Code Bubbles uses the close positioning of 

Bubbles to form Bubble Groups, Debugger Canvas instead utilises Thread Groups, based on 

the thread the Bubble belongs to.  The freedom to spatially position Bubbles distinct from 

each other and still have their relationships recorded gives programmers flexibility.  This 

should result in more opportunities to visually communicate additional information for 

human interpretation.  However, this divergence from the Code Bubbles paradigm does 
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mean that programmers have lost the ability to determine which Bubbles belong to which 

group.   

The impact of this change is interesting to consider.  Another way to summarise this change 

is to say that programmers have gained more avenues for using space to communicate 

information directly to humans but have lost the ability to specify groupings to the 

computer, therefore decreasing the potential avenues for algorithmic assistance.  This 

appears to be a win for spatial communication, but—with the details reported in [56]—it is 

not clear if this is a net win overall.   

Generally speaking, it seems logical that when comparing two applications, the one with the 

wider scope should provide more flexibility to the user.  This should allow the user to deal 

with issues that the developer of the application did not foresee when designing the 

application.  In this specific case, we have Code Bubbles, designed to assist with 

programming as a whole, and Debugger Canvas, designed to assist with only debugging.  It 

follows that we should expect Code Bubbles to be more flexible, which in this case would 

mean more freedom to spatially position content.   

However, through the process of adapting the Code Bubbles paradigm for debugging, it 

seems the developers have increased the potential for spatial communication.  This 

observation is consistent with a comment made in [56] where DeLine et al. discuss having to 

re-evaluate the design decisions made when producing Code Bubbles. 

Authoring.  The authoring environment of Debugger Canvas does not differ from that of 

Code Bubbles, notwithstanding those already highlighted.  Namely: 

 The formation of groups of Bubbles being based on threads rather than proximity, 

 The merging of the Debugging Canvas System Representation and theoretical 

Working Set and 

 The addition of Debugging Specific Tools—such as the state of variables. 

Evaluation.  DeLine et al. performed multiple evaluations during and after development 

aimed at releasing Debugger Canvas as a production level tool.  They accomplished these 

evaluations by gathering both qualitative and quantitative user feedback and measuring the 

performance (execution speed) of Visual Studio with and without Debugger Canvas 

installed. 
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When discussing their evaluation of the performance of Debugger Canvas in [56], DeLine et 

al. delineate the development chronologically over two releases.  For our purposes, it is 

sufficient to discuss the final results that they obtained.  It was found that panning a canvas 

remains responsive with upwards of 100 Bubbles on the canvas.  This number of code 

fragments is more than enough to necessitate panning and is likely to be more code 

fragments than will typically be used in a single debug session.  DeLine et al. put this result 

down to the use of existing libraries that they were using. 

Other performance measurements reported showed a minor cost in execution speed when 

using Debugger Canvas.  After having hit a breakpoint, stepping through code on a canvas 

was shown to take 100 ms longer per step.  However, under normal circumstances, this 

speed decrease is regardless of the number of Bubbles present, therefore making this a 

negligible result.  Exceptional circumstances can occur however.  When multiple duplicate 

Bubbles are present, the time per step would increase linearly with the number of duplicate 

Bubbles.  Users are provided with an option to reuse Bubbles when the content is the same 

in order to avoid this issue.   

Another speed penalty was present when starting a new debugging session.  To measure 

this difference, the time between the ‘Start Debugging’ button being pressed and the UI 

being ready for use was measured: 

i. Without Debugging Canvas installed.  1.5 seconds measured. 

ii. With Debugging Canvas installed but not being used.  2.2 seconds measured. 

iii. With Debugging Canvas being used.  3 seconds measured. 

With the baseline established in (i), it was found that using Debugging Canvas (iii) doubled 

the load time. 

Prior to the public release of Debugger Canvas, 10 participants were given the goal of 

completing three tasks in Debugger Canvas in an hour.  This allowed DeLine et al. to gather 

early feedback and make appropriate changes.  It was from this trial that the decision to 

provide users with the ability to create a new canvas was made.  Prior to this, Visual Studio 

automatically made a new canvas for every debug session, and it was discovered that 

sometimes users wanted to continue using an existing canvas. 
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Following the public release, download data was recorded.  During the first week, six 

thousand instances of Debugger Canvas were installed.  Whilst this dropped significantly 

over the next couple of weeks, the number of new downloads did stabilise quickly.  DeLine 

et al. take this as a sign that word of mouth is causing adoption as no advertising attempt 

was made.  Over the first 40 weeks: weeks 1 to 3 saw 55% of the total downloads, leaving 

45% of downloads to occur between week 3 and 40.  Data was also collected through the 

Microsoft Cursor Experience Improvement Program.  The relative use of different 

commands was recorded.  One interesting comparison that can be made from this data is 

that for every new Bubble that was stepped into, there were 0.11 new canvases created.  Or 

in other words, the average canvas used contained slightly less than 10 Bubbles. 

 Spatial Hypermedia in IDEs Discussion 

Table 5.1 shows a summary of the applications covered in this section.  We group the two 

components of Code Thumbnails together.  We also group Code Bubbles and Debugger 

Canvas under the heading of Code Bubbles Paradigm.  In addition to many of the categories 

we have encountered in Sections 4.2.3 and 4.3.4, a new column is present: ‘Level of Detail’, 

which differentiates the applications reviewed based on the quantity of information they 

present to users. 

 As the Code Thumbnails Scrollbar provides an overview of a single code file, we 

state its level of detail as: code file.  The Code Thumbnails Desktop incorporates all 

of the code in a software project by providing thumbnails for each code file, we 

therefore state its level of detail as: code base  

 Code Canvas goes a step further by expanding the level of detail to: entire software 

project.  Not only does it allow the author to interact with the entire code base 

(through different levels of zoom) but also incorporates the ability to have non-

code content included alongside code files. 

 Code Bubbles and Debugger Canvas both have the level of detail: working set.  

Instead of attempting to provide programmers with the entire software project, 

these applications instead allow users to limit the amount of content displayed to 

them so that only pertinent information can be seen.  

Of all the applications reviewed in Section 0, only the Code Thumbnails paradigm utilises 

nesting.  We omit this detail from Table 5.1 in favour of stating the details here—simplifying 
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the tables layout.  The two orthogonal forms of nesting (as defined in Section 4.3.4) for the 

Code Bubbles paradigm are Shallow and Strict.  Shallow Nesting refers to the fact that there 

is no recursive nesting behaviour; that is: none of the citizens are able to contain another 

citizen of the same type.  Strict Nesting refers to the fact that the application determines 

which citizens are contained within which. 

 

Data Structure Spatial Interface 

Primary Citizen Multimedia 
Level of 

Occlusion 
Level of Detail 

Sequence Array Set 
Allows 

Nesting 
Variable Fixed 

           
Code Thumbnails           

-Scrollbar  N/A    Thumbnail  
None, but not 

intended to be 

read. 

Code File 

-Desktop       Thumbnail  
None, but not 

intended to be 

read. 

Code Base 

Code Canvas       
Semantic 

Container 
 

Likely, 

depending on 

zoom. 

Software 

Project 

Code Bubbles 

Paradigm 
        

 
 

-Code Bubbles       Bubble  

Very likely.  

Pertinent 

information 

likely visible. 

Working Set 

-Debugger Canvas       Bubble  

Very likely.  

Pertinent 

information 

likely visible. 

Working Set 

Table 5.1: Summary of applications discussed in Section 0.  For each: The type of data structure that can be 
thought of as being used to store citizens and if nesting is used.  The type of Spatial Interface is being used.  

Details about the types of citizens present. 

5.2 Discussion of Relevant Matters Arising  

Throughout the thesis there have been threads of discussion that we have not addressed in 

detail.  This was because dealing with them as they came up would have distracted from the 

main thrust of the earlier sections.  We now complete those discussions prior to the 

conclusion of the chapter.  The conclusion to the chapter in Section 5.3 uses the details we 

have enumerated to discuss the direction of our development of SpIDER.   

The topics for discussion in this section are summarised in the following sentences: 

 The Spatial Memory considerations of reviewed applications have been mentioned 

throughout Chapters 4 and 5 but we have not detailed how Spatial Memory 

considerations will affect the design of our Spatial Hypermedia IDE.   
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 Multimedia is well utilised in general purpose Spatial Hypermedia but is less 

common in programming environments utilising Spatial Hypermedia.  This would 

appear to be to the detriment of the usefulness of these applications. 

 Our review of traditional IDEs in Chapter 3 revealed a high level of rigidity in 

interface elements and the way in which content (code) is authored.  This limits a 

programmer’s ability to customise their environment for their task.  This 

observation leads us to investigate what happens when steps are taken to reduce 

rigidity.   

 It is infeasible for IDEs to show the entirety of a software project at once and 

therefore occlusion must be addressed.  Different applications choose to hide 

information in different ways, how may each of these techniques impact a 

programmer? 

 It is reported that Spatial Hypermedia can introduce new difficulties for 

collaboration [55, 39, 40].  How can these difficulties be handled? 

 Spatial Memory 

Designing and building a programming environment that maximises the opportunities for 

building, utilising and refining Spatial Memory is attractive because of the “automatic 

nature” of Spatial Memory [3].  Easily remembering the location of specific content, such as 

a function, and the relationships it has with other content will enable programmers to focus 

on producing the logic they require.  However, designing an authoring environment to 

maximise the use of Spatial Memory has some unique challenges.  The absolute positioning 

featured in Spatial Hypermedia applications provides the author with more opportunities to 

create relationships which can be utilised by Spatial Memory [4, 9, 13] and is therefore a 

good starting point.  This section is split into four parts, each addressing a group of related 

concepts important to Spatial Memory and the associated challenges.  First we address the 

size of the information space in an authoring environment.  Second we look at spatial 

stability.  Third we discuss the parallels between long-term Spatial Memory and 

programming.  Fourth and finally we address the authoring of landmarks. 

Size of Information Space.  The potentially limitless size of the content in an authoring 

environment is the primary obstacle.  In Chapter 2 we explained the distinction between 

Single View interfaces and Viewport interfaces [5].  To summarise, a Single View interface 
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provides access to the entirety of the information space at once whereas a Viewport 

interface limits what can be seen.  A Single View interface is better for forming and utilising 

Spatial Memory.  This is because Single View interfaces allow the user to relate the position 

of content to the edges of the screen as well as other content.  However, the unbounded 

information in an authoring system means that a Single View interface is not feasible.  This 

leads to many authoring applications utilising panning and scrollbars to access content 

which can lead to an increase in time spent navigating [16].  In an effort to retain the ability 

to use the edges of the screen we created the terms Fixed Size spatial interface and Variable 

Sized spatial interface in Section 2.5.1.  The latter refers to authoring applications that utilise 

scrollbars such as Microsoft Word.  The former makes use of a navigational tool, such as 

surrogates, that splits content up over multiple separate views.  Expeditee is notable in that 

it is the only general purpose Spatial Hypermedia application reviewed that uses a Fixed Size 

spatial interface. 

Activating a surrogate replaces the current view with another view that contains the 

underlying information.  The most common example of a surrogate is a hyperlink, such as 

those seen on web pages.  This example also demonstrates an important distinction.  In 

HTML, a hyperlink can not only be used to navigate between web pages, but also within a 

single web page.  For our purposes, we consider a hyperlink to be a surrogate if it is used to 

navigate between web pages as this requires a change of view.  However, when a hyperlink 

is used to navigate within a single web page, it is simply moving the viewport and therefore 

is not a surrogate. 

In Spatial Hypermedia—especially Fixed Sized spatial interfaces; surrogates can be exploited 

to make more efficient use of limited space.  An example we have used repeatedly to 

demonstrate rigidity in traditional IDEs is the relative positioning of functions.  In a 

traditional IDE there is only one ‘degree of freedom’, therefore programmers are limited to 

positioning two (at most three if both above and below can be used) functions side-by-side.  

The spatial positioning in Spatial Hypermedia IDE would then provide programmers with 

several degrees of freedom, allowing for one function to be spatially positioned close to 

several others.  For example, functionA() may call functionB(), functionC(), functionD() and 

functionE().  In a traditional IDE, a programmer could place functionB() below functionA(), 

and possibly functionC() above, but the two remaining functions complicate the positioning.  
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In a Spatial Hypermedia IDE, it is perfectly feasible for functions B through E to be 

positioned so that they circle functionA().  However, this approach can only scale until 2-

dimensional screen space becomes an issue.  This is where surrogates can be used.  By 

replacing the content of one or more of the encircling functions with a surrogate, more 

screen space is made available.  VIKI, VKB and Expeditee all make use of surrogates, with the 

latter using them exclusively. 

Spatial Stability.  Another challenge of producing an authoring environment that utilises 

Spatial Memory is addressing spatial stability.  As discussed in Section 2.3, spatial stable 

content is content that does not alter its position over time.  Non-spatially stable content is 

a hindrance to Spatial Memory [5, 16, 17].  For the purpose of user interface design, this 

means that components should not move.  For example, the items in a drop-down list 

should not alter their order.  However, this becomes more complicated when considering 

authored content.  Applications such as traditional text editors shuffle content up and down 

a page when new content is added or removed, retaining the order specific tokens appear 

in, but not the tokens position on screen.  Spatial Hypermedia applications, such as many of 

those reviewed in Sections 4.3 and 5.1, allow authors to spatially position blocks of content.  

As these blocks of content each contain a portion of the overall document, and as these 

blocks are spatially stable with respect to each other, this reduces the level of spatial 

instability when compared with traditional text editors.  However, inside these blocks, a 

traditional style text box is used for storing the content.  Therefore, spatial instability is still 

an issue at this smaller scale.   

There is a trade-off to be made.  As a spatially positionable block does not interfere with the 

positioning of other spatially positionable blocks, and the chance of spatial instability 

occurring within a block increases as the quantity of content increases with respect to the 

dimensions of the block, the overall spatial stability of the information space can be 

improved by limiting the quantity of content in each block.  Extending this notion, and with 

the development of a Spatial Hypermedia IDE in mind, if each block contains a single token 

from a programming language, we should be able to minimise spatial instability.  In order to 

make this trade-off, the design of spatially positionable blocks needs to be considered.  One 

example of a spatially positionable block design that does not lend itself to this trade-off is 

the citizen type Object in VKB.  The presence of a title and several pixel thick border means 
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that Objects take significantly more screen space then their content alone would require.  

These design decisions—made by the developers of VKB—communicates the intended use 

of the application and is appropriate for this use.  When designing an implementation of the 

VKB citizenship framework for programming, the Object equivalent would need to be 

minimalistic if each Object were to contain a single token.  An example of a minimalistic 

spatially positionable block can be seen in Expeditee.  Expeditee’s Text Item provides 

minimal padding between the enclosed content and the edges.  Furthermore, its border 

automatically adjusts to fit the content and becomes invisible when not selected.   

One final note on the spatial stability of authored content is worth mentioning.  Practice has 

been shown to have a positive effect on Spatial Memory [14].  This is a moderating factor if 

we limit the reshuffling of text to occur only as a result of a user action. 

Long-Term Spatial Memory Parallels.  As discussed in Section 2.1.2, long-term Spatial 

Memory is arranged hierarchically.  Arriving at a node on the hierarchy hastens the recall of 

possible next steps.  Whilst this may have application in other forms of authoring, there is 

an exaggerated parallel with programming.  While it can differ from language to language, 

programming frequently produces hierarchical structures.  At the macro level, software 

projects, packages and classes exist—each being contained within the last.  Even at the class 

level hierarchical structures exist: inner classes, functions, enclosing statements such as 

conditionals and loops, assignment and mathematical statements etc.  Furthermore, 

programming code requires maintenance and will be revisited after it was initially written, 

accentuating the usefulness of long-term memory.  The challenge then, is to further 

emphasise this hierarchical quality of code.  VIKI/VKB provide a set of citizens specifically 

designed to allow the building of hierarchies.  Expeditee on the other hand can achieve 

hierarchical layout through its use of surrogates.   

Landmarks.  Landmarks tend to be prominent citizens, normally due to their size or 

positioning.  Authors in a Spatial Hypermedia system are able to use landmarks to assist in 

building a spatial map of their environment.  They can use the position of a landmark to 

relatively position other content in their information space.  This is similar to the way in 

which the edges of the application can be used in Fixed Sized spatial interfaces—however 

they are not a complete replacement [4].  The goal therefore, is to design applications that 

maximise the potential for creating landmarks.  The option to position content in Spatial 
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Hypermedia naturally helps with this and allows for prominent positioning.  The ability to 

adjust the font size, style and colour are also important aspects.  Finally, the ability to create 

images and other forms of non-textual media also provides opportunity to create landmarks 

as these citizens tend to be significant and receive thoughtful positioning by the author. 

 Multimedia 

As just mentioned, non-textual media is well suited for use as landmarks.  This is one reason 

for providing programmers with the ability to insert multimedia into their coding 

environment.  Another is that we know programmers make frequent use diagrams—both 

during the development [55] and study of software [57, 58].  A benefit of working in an IDE 

is that they integrate functionality that a programmer may find useful into a single 

application.  It follows then, that programmers should be able to include useful diagrams 

side-by-side with their code.  Code Canvas, as reviewed in Section 5.1.2, is notable for 

providing programmers with this ability. 

In his seminal paper, Literate Programming [59], Knuth describes a form of programming 

that aims to allow programmers to focus on describing their logic to other humans rather 

than to a computer.  This is achieved by blurring the divide between program code and 

documentation.  That is, instead of settling for program code and documentation existing 

side-by-side, he aims to have them exist as one integrated entity.  Reminiscent of Knuth’s 

aims to integrate program code and documentation, we aim to allow for the integration of 

program code with non-textual media.  As we have previously stated, by leveraging Spatial 

Memory, it is hoped that programmers are able to spend more time crafting their logic and 

less time on tangential tasks.  An example of this integration in use might be the ability to 

insert a design sketch of the user interface and spatially position code snippets in 

appropriate places—such as code constructing a specific text field being spatially positioned 

over that text field in the sketch.   

This goal further specifies our design requirements.  Our Spatial IDE, SpIDER, must provide 

users with the ability to spatially layout code in a non-linear fashion.  In other words, it must 

be possible for two programming statements that should execute subsequently in the 

compiled application be spatially separated on screen.  
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 Rigidity 

A Spatial Hypermedia-based IDE will allow programmers to utilise their Spatial Memory for 

programming.  This is the primary goal of the thesis.  By examining traditional IDEs (Chapter 

3) we arrived upon a secondary goal for the thesis: minimising the rigidity that our Spatial 

IDE provides as a way of giving a programmer more choice over how they develop software.   

We distinguished between two types of abstraction: rigorously defined and informal.  IDEs 

lacked, to their detriment, informal abstractions.  This lead to rigidity in the interface 

components and text areas.  Previously we cited the Eclipse Outline component as an 

example of a rigid interface.  We consider content to be rigid when the application imposes 

an ordering that limits the relationships that two fragments of content can have.  An 

example we gave for this was the relative positioning of Java functions in the text editor 

pane.  When a user is unable to achieve a specific action due to the rigidity of the 

application they likely must accept this limitation as they are unable to easily effect change. 

The more rigidity an IDE exhibits, the more important it becomes for an IDE to contain 

functionality that its users will require to mitigate the loss of flexibility.  In the process of 

adapting the Code Bubbles paradigm to debugging, DeLine et al. were required to 

significantly alter the design of Bubble Groups to suit the task.  However, attempting to 

provide functionality for everything a user may need, without placing limits on the intended 

functionality, is an unwinnable battle.  The list of required functionality is never-ending.  

Instead, by providing flexibility (reducing rigidity), users are able to adapt their environment 

to suit their task, this however, comes at the cost of a steeper learning curve than 

traditional authoring applications.  This learning curve necessitates familiarising participants 

with Spatial Hypermedia aspects of an application prior to evaluation—as is frequently done 

through a learning period [56, 12, 40, 51].  In the evaluation of VKB we discussed an 

undergraduate student who was able to approach report writing differently based on the 

topic they were writing on.  They were able to do this because of the level of flexibility 

provided by VKB. 

This anecdote from the previous paragraph demonstrates that it is important to promote 

the flexibility of an IDE.  It is unreasonable to expect that an IDE could contain functionality 

for handling every possible scenario.  Furthermore, even if you could provide a lot of the 

functionality that a user desires, then you risk creating a difficult to use UI where only a 
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small portion of the functionality is used by any single person.  By maintaining flexibility and 

allowing functionality to be quickly built, this issue is avoided. 

In order to measure flexibility of a system we defined the terms Fundamental Element, First 

Class Citizen and System Representation.  Using these terms we have reviewed several 

applications.  The spatial positioning of content in Spatial Hypermedia helps address the 

issue of rigidity.  Of the eight Spatial Hypermedia applications we reviewed, there is a varied 

amount of support for reducing rigidity overall.  However, one stands out above the rest.  

Expeditee’s citizens not only achieve a high level of mutability but they also have the added 

benefit of reflective citizens.  The ability to reasonably spatially position content as small as 

a character is also only available to Expeditee.  We believe that Expeditee citizens are best 

suited to help minimise both content and interface rigidity through its Reflective First Class 

Citizens.  

Other citizens systems are potential candidates as well.  We believe that a system with 

citizens similar to VKB provides the potential to build flexible interfaces.  A modification to 

the visual aspects of VKB Objects would allow smaller amounts of content to be spatially 

positioned without too much window chrome.  This is similar to the approach Code Bubbles 

took. 

 Occlusion 

When we introduced the terms Fixed Sized and Variable Sized spatial interface we were 

making a compromise.  Whilst both are a sub-category of Viewport interfaces, we chose to 

distinguish between interfaces where the edges of the application can be used to map the 

position of content and those that cannot.  However, as discussed in Section 2.2, there are 

other benefits to Single View interfaces that Fixed Sized spatial interfaces may not have, 

such as the bottleneck caused by locating non-visible components.  It follows then, that we 

should attempt to limit use of viewports when possible.  In other words, we should limit 

occlusion. 

In summarising Sections 4.3 and 5.1 we noted a level of occlusion for each of the 

applications we reviewed—see Table 4.3 and Table 5.1.  The level of occlusion an 

application exhibits refers to the likelihood that there are portions of content that are not 

visible at a given time.  This value estimated by examining the application, inferring (from 
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publications covering the application) the intended style of use of the application, and 

assuming that this style of use was applied by a user when interacting with an information 

space sufficiently large to cause occlusion to occur in the application.  When comparing the 

level of occlusion in multiple applications, we take care to use information spaces of similar 

size, whilst ensuring that occlusion is occurring in all applications being compared.  

Analysis of General Purpose Spatial Hypermedia Occlusion.  Consider the level of occlusion 

in VIKI/VKB.  There are three opportunities for occlusion to occur and each can be balanced 

against the rest. 

1. The scrollbars present on Collections/Objects allow authors to position/type more 

content than can be visually displayed given their dimensions, thus creating 

occluded content.  However, the author is also able to increase the size of the 

Collection/Object in question, therefore removing occlusion.  

2. The scrollbars present on the Canvas behave in the same fashion.  Authors are able 

to position Collections and Objects such that scrolling must be used to see occluded 

information.  In order to remove this occlusion, authors are able to either decrease 

the size of existing Collections and Objects or re-evaluate the hierarchical 

containment present in the information space. 

3. Authors are able to maximise a given collection such that it fills the screen.  This 

occludes any information that is not in the given collection or any of its sub-

collections.  The information inside the given collection is subject to points 1 and 2.   

The fact that VIKI/VKB provides multiple ways of avoiding occlusion—or at least allowing 

you to choose which type of occlusion is occurring—combined with the large size of the 

Canvas suggests that whilst occlusion is likely to occur, it will do so in a controlled manner to 

a moderate degree. 

Consider the level of occlusion in Expeditee.  There is only one opportunity for occlusion in 

Expeditee, and that is through its use of surrogates.  Just as the Canvas in VIKI and VKB fills 

the entire screen, so too does Expeditee’s Frame.  However, differing from the VIKI and VKB, 

Expeditee’s Frame does not have scrollbar.  This provides a hard limit of the information 

that can be placed on a single Frame.  Individual pieces of information may be turned into 

links which in turn can then be used as a surrogates to navigate to other Frames.  Any 

content not on the currently active Frame is occluded.  The expected quantity of content on 
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a specific Frame is likely to be roughly the same amount as found in a well populated 

VIKI/VKB Object. Therefore, when compared to VIKI/VKB, Expeditee is likely to have more 

occluded content. 

Occlusion Techniques for Program Code.  When designing a Spatial Hypermedia IDE we 

must pay attention to the style of occlusion our design encourages.  We can examine 

program code in order to help decide what form of occlusion technique (scrolling, 

surrogates for example) we should include.  The hierarchical structure of programming code 

produces boundaries between fragments of code.  For example, whilst editing a function, 

content within the scope of that function is of high importance.  However, once built, that 

function is ideally treated as a ‘black box’.  A similar abstraction occurs when dealing with 

objects.  These boundaries are suggestive places for occlusion mechanics to occur.  This 

analysis does not disqualify any occlusion technique from consideration.  It does however 

suggest that the higher levels of occlusion caused by surrogates is manageable.   

This rationalisation ignores the fact that programmers wish to, on occasion, view the high-

level connections between fragments of program code—as evidenced by the frequent use 

of diagrams in software development [55].  Notably, Code Canvas achieves this high-level 

view through the use of a zoom function [51].  While zoomed out, the programmer is able 

to use spatial positioning to communicate connections between code fragments.  However, 

they are also unable to read the content inside of functions.  A similar concession is made in 

Code Thumbnails [12].  While Code Bubbles [53] and Debugger Canvas [56] do not make this 

concession, they also do not attempt to provide this high-level view.  This suggests that the 

prevailing assumption is that an overview is sufficient for this task. 

 Collaboration 

VKB, as a successor to VIKI, attempted to address a potential negative with Spatial 

Hypermedia.  The downside of providing authors with the freedom to spatially arrange 

content, building their own structures to communicate meaning, is that other individuals 

viewing the information space may not intuitively understand these structures.  Shipman et 

al. describe this challenge as arising when the “authors and readers are not the same set of 

people” [38].   As we will explain, this is a concern for programming. 
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Programming is frequently a collaborative effort.  While a team of programmers is a team of 

authors working in the same information space, steps are frequently taken to help them 

work together.  Evidence exists showing that even a well-established team of programmers, 

who have worked together for an extended period of time, find it necessary to adopt 

practices that allow them to collaborate [60].  To reiterate, these practices are undertaken 

even when all authors and readers are from the same group of people—an exaggeration of 

the stated issue in [38].   

More in line with the issue as Shipman et al. states it, is what happens when a new member 

joins an existing programming team.  Brook’s law is a frequently used software 

development philosophy outlined in The Mythical Man-Month [61] that states that adding 

additional team members to a late software project will likely make it later.  This is justified 

by discussing the necessity for new members to be ‘brought up to speed’.  Regardless of 

whether the software project is late or not, this same introductory period will be present 

and should ideally be minimised.  

These issues occur without introducing the ability to spatially lay code out.  While the ability 

for individuals to leverage Spatial Memory in a Spatial Hypermedia-based IDE should be 

beneficial, the addition of this functionality will also cause the above issue concerning teams 

to be more pronounced.  For example, if a team agrees to use a certain spatially based 

pattern to communicate what code has been tested, then any new member must learn of 

the pattern and then learn how to apply it. 

The Solution in VKB.  VKB provides a solution to this issue in the form of a new tool.  

Authors in VKB are not only able to navigate an information space as it currently stands, but 

are able to navigate back and forwards along a timeline.  This allows authors to familiarise 

themselves with the evolution of the information space.  This means, that should a new 

author join in on creating a collaborative VKB workspace, they are able to watch the 

decision-making process of the authors prior to them, hopefully understanding their intent 

better and therefore reducing the introductory period. 

A theoretical Spatial IDE with the ability to navigate throughout time can be applied to our 

earlier example where, a team of programmers has used a specific spatial pattern to 

communicate what code has been tested.  When a new programmer is assigned to this 

team, they are able to look through the development of code from the start.  They will be 
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able to see the first instance of the spatial pattern being produced, any refinements that are 

made at a later date and have access to a pool of previous examples. 

Design and Evaluation of Spatially Laid out Code.  Regardless of whether we include the 

ability to manipulate time in our Spatial IDE, we acknowledge that issues exist around 

collaborative work when using Spatial Memory [38, 51, 55].  Therefore, it is important that 

care is taken designing how code can be spatially arranged in a Spatial IDE.  We address this 

issue with some evaluation in Chapter 8. 

5.3 Development Direction 

Having reviewed and discussed several Spatial Hypermedia systems and their features 

relevant to the development of a Spatial Hypermedia-based IDE we now explain our course 

of action for the design and development of SpIDER.  We begin by presenting two broad 

paths for potential development—either adding Spatial Hypermedia functionality to an 

existing IDE or vice versa.  We then explain the advantages and disadvantages of each 

option, reaching the conclusion that the most pertinent approach, given the aims of the 

thesis, is to add IDE functionality to a Spatial Hypermedia framework.   

The first part of this section addresses our primary goal of creating an IDE that maximises 

the use of Spatial Memory.  Subsequently we address our secondary development goal of 

minimising the rigidity that the produced environment provides.  Each of these parts uses 

our review of existing Spatial Hypermedia systems and our discussion from Section 5.2 to 

identify which of the reviewed applications provides the best framework for our needs.  In 

the final part of this section, we conclude by providing a summary of the chapter. 

 IDE into Spatial Hypermedia 

Through our analysis in this chapter we have identified distinguishing features of various 

Spatial Hypermedia applications.  Some of these distinguishing features are novel; others 

represent a design decision between multiple alternatives.  For each, a judgement has to be 

made about their utility to programming and the scope of this research.  When considering 

alternatives and our goal of building a Spatial Hypermedia IDE, one question that stands out 

is: Should we work to integrate Spatial Hypermedia functionality into existing IDEs?  Or, 

should we work to integrate IDE functionality into existing a Spatial Hypermedia 

framework? 
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From a technical standpoint, both of these options are feasible.  Ideally, and with limitless 

time, this decision would not affect the finished product from the user’s perspective.  

However, realistically, this decision will have repercussions throughout the entire 

development of the Spatial Hypermedia IDE.  All of the applications we reviewed in Section 

5.1 opted to include Spatial Hypermedia functionality into an existing IDE.  This was 

achieved by building extensions to existing IDEs: Code Thumbnails, Code Canvas and 

Debugger Canvas extended Microsoft Visual Studio, and Code Bubbles extended Eclipse.  

The degree of integration varied, from Code Thumbnails that added new views, to Code 

Bubbles that heavily modified how code interaction was implemented.  A clear advantage of 

this approach is that the developers of the research application do not need to reinvent 

various IDE functionality.  In other words, functionality such as compile and run, content 

assist and syntax highlighting are already provided. 

When we consider our goal to maximise the flexibility of a programming environment 

however, this option starts to look less promising.  Much of rigidity we identified in Chapter 

3 is present in those applications reviewed in Section 0.  These applications have not only 

made use of the provided IDE functionality but also the applicable interfaces, which leads to 

the rigidity being maintained.  For example, because Code Canvas, Code Bubbles and 

Debugger Canvas make use of the editor provided by the underlying IDE, they are provided 

with syntax highlighting.  However, they are also unable to adjust the font size or style of 

individual tokens—a consequence of using that specific editor.  It may be possible to 

remove, on a case by case basis, the rigidity from the interfaces provided by the underlying 

IDE, however this removes the benefit of choosing this option.  This is not to say that the 

approach of introducing Spatial Hypermedia functionality is not able to reduce the rigidity: 

the concept of the Bubble in Code Bubbles and Debugger Canvas have allowed for the 

spatial arrangement of functions.  However, these benefits are also available when using a 

Spatial Hypermedia application as the base system. 

We now consider the other approach—adding IDE functionality to a Spatial Hypermedia 

System.  This can be achieved by augmenting a general purpose Spatial Hypermedia system 

with the libraries provided by IDE plugin systems, such as the Eclipse Java Development 

Tools (Eclipse JDT).  This option allows us to programmatically obtain the results of calls to 

IDE functionality without using the user interface components provided by the IDE.  
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Unfortunately this means that we will have to design and build these graphical user 

elements ourselves; but in doing so, we can make a conscious effort to build flexible 

spatially aware interfaces.   

We decided to add IDE functionality to an existing Spatial Hypermedia framework.  

Specifically, we decided to develop a Spatial Hypermedia IDE whose Spatial Memory 

considerations and Citizenship would be similar to one of the applications reviewed in 

Section 0.  This allowed us to design a system with the goals of maximising flexibility and the 

use of Spatial Memory.  Further decisions were based around choosing a particular 

framework from these applications and whether we would have to build an entirely new 

Spatial Hypermedia application (based on that framework) or extend an existing application. 

 Maximising the use of Spatial Memory 

The learning curve associated with traditional editing applications is assisted by the 

similarities each has with others.  For example, a relative editing environment featuring a 

scrollbar is ubiquitous across multiple word processing applications; Microsoft Office and 

Libre Office to name two.  Furthermore, the functional behaviours associated with these 

features are minimally different.  The aforementioned scrollbar for example is present for all 

but the most trivial documents.   

Spatial Hypermedia functionality is more subtle.  Whilst some mainstream applications can 

be classified as Spatial Hypermedia, they tend to include fewer spatial solutions in their 

design, particularly for control mechanisms.  The use of tabs in Microsoft OneNote is an 

example of such a decision.  The four applications reviewed in Section 4.3 also follow this 

path—though perhaps coincidentally.  The result of using traditional style components 

when feasible is that ‘computer literate’ individuals are able to transition to your application 

with only moderate cognitive effort.  However, the downside is that opportunities for 

leveraging Spatial Memory are being missed. 

We do not intend miss opportunities when designing SpIDER.  This means that we are 

prepared for SpIDER to be difficult for people to pick up, but for this cost we are able to 

explore the potential of an environment that makes the most out of Spatial Hypermedia and 

Spatial Memory.  This is not to say, however, that we do not intend to focus on making 

SpIDER accessible.   
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SpIDER Accessibility and Collaboration.  In Section 5.2.2 we argued for the importance of 

including the ability to insert non-textual content into a software development 

environment.  We stated that we wished to achieve integration between code and 

multimedia, and gave the example of GUI code being spatially positioned on-top of a design 

sketch.  In order to achieve this we need to provide programmers with the ability to spatially 

lay out individual statements.  In Section 5.2.1 we evaluated both styles of Spatial 

Hypermedia framework against the goal of maximising spatial stability and we concluded 

that both Expeditee Items and VKB Objects have the potential to limit spatial instability.  

However, the Text Items provided by Expeditee have the benefit of a minimalist design, 

making them more suitable for small quantities of content, which in turn makes them the 

better choice for designing a technique for non-linear spatially laid out code.   

In Section 5.2.5 we discussed the challenges associated with collaboration in Spatial 

Hypermedia.  We reviewed the solution provided by Shipman et al. in the design of VKB [38, 

40].  While we acknowledge that there are questions that need to be asked concerning 

collaboration in Spatial Hypermedia, we do not intend to address this issue directly in this 

thesis.  Instead, we conjecture that by providing programmers the ability to spatially layout 

code, they will develop spatial development patterns that can be used to communicate 

between members of a team, thereby assisting with collaboration indirectly.  Additional 

evaluation will be needed to support this claim. 

Maximising Flexibility.  In Section 5.2.3 we discussed the issue of rigidity and how we 

evaluated various Spatial Hypermedia applications throughout Sections 4.3 and 5.1.  We 

came to the conclusion that the prevalence of First Class Citizens in Expeditee and their 

reflective nature provide a suitable framework for limiting rigidity.  In Section 5.3.1 we then 

outlined our reasoning for integrating IDE functionality into a Spatial Hypermedia system—

so as to not retain the rigidity present in traditional IDEs.  This leaves us with the task of re-

implementing the user interface functionality that we would have retained if we had used 

the other approach.  This includes: syntax highlighting, content assist, executing and 

debugging.  In order to maximise flexibility we will implement this functionality with 

Expeditee citizens. 
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Looking Forward.  In the order they are mentioned in this section, we:  

 Cover the design of our system for spatially laying out code in Section 7.1. 

 Evaluate this system in Chapter 8.   

 Engage in a thought experiment in Chapter 9 were we explore a variety of possible 

spatial development patterns.  

 Detail the design of IDE functionality in Sections 7.2 before its implementation 

details in Sections 7.4 and 7.5. 

 Summary 

This chapter reviewed four instances of IDEs utilising Spatial Hypermedia.  We found further 

evidence that programmers are able to utilise Spatial Memory to help them while 

programming.  We also identified an emerging trend of incorporating multimedia into the 

IDE due to the desire of programmers to easily see relationships over entire software 

projects.   

In Section 5.2 we brought together several points of discussion so that we could explain our 

decision on how to move forward on designing and building a Spatial IDE.  Having 

completed this discussion, we then explained our choice in development direction—using 

Expeditee as the framework for building our Spatial Hypermedia IDE.  Our explanation was 

divided into two parts.  We first explained the merits of beginning with a Spatial 

Hypermedia environment and adding IDE functionality.  This was followed by evaluating 

which general purpose Spatial Hypermedia framework allowed us to maximise the use of 

Spatial Memory whilst limiting rigidity—we found that Expeditee’s citizens and framework 

best suited our goals. 

Expeditee is an open source application under the GNU General Public Licence.  This makes 

it easier to directly extend Expeditee rather than design and build a new application 

mimicking its functionality.  Furthermore, as Expeditee was developed (and is the subject of 

work by other researchers) at the University of Waikato, the potential to query colleagues 

on its design decisions was an additional boon. 
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Chapter 6  

Expeditee In-Depth 

This point marks a transition in the thesis.  Prior discussion has been focused on the 

theoretical concepts that should be considered when designing a Spatial Hypermedia IDE.  

We now move on to more practical matters.  In this chapter we expand on the review of 

Expeditee that began in Section 4.3.3.  Subsequently, Chapter 7 documents the 

development of our Spatial IDE (SpIDER) and how it expands on the existing Expeditee 

support for authoring code [62] by providing an environment rich it its utilisation of Spatial 

Hypermedia to allow for novel spatial code layouts and Spatial Hypermedia appropriate 

implementations of traditional IDE functionality.  Notably, Chapter 7 includes a description 

of the design and implementation of an algorithm dubbed the flow walker, which is used to 

interpret the novel spatial code layouts produced by programmers and transform them into 

a serialised string suitable for compilation.  The flow walker algorithm is then evaluated in 

Chapter 8. 

In Chapter 5 we explained our choice to use Expeditee as the framework for developing our 

Spatial IDE.  Previous discussion of Expeditee (Section 4.3.3) was limited to pertinent 

information useful for making this decision.  This limitation resulted in a significant amount 

of detail, especially detail concerning authoring, being omitted.  We now present this detail.  

Whilst we do explain a significant portion of Expeditee in this chapter, this explanation is not 

intended to be used as a complete reference guide.  The content presented is instead 

intended to help the reader understand specific Expeditee functionality that will be used in 

the development of SpIDER. 

We begin by explaining what the developers of Expeditee aimed to achieve by building the 

system (Section 6.1).  These goals provide perspective and help understand the design 
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decisions that were made in building Expeditee.  Of particular important to the design of 

SpIDER is Expeditee’s innovative form of direct manipulation, which is described next.  

Following this we cover the structure of Expeditee’s user interface (Section 6.2).  We then 

expand on the explanation of the surrogate system Expeditee uses (Section 6.3).  Three 

subsequent topics are then covered over two sections (Sections 6.4 and 6.5) and each 

explain a different aspect of frame authoring.  They are: 

 Textual Content. How authors create and manipulate text on Frames. 

 Annotations.  How textual content can be tagged to interact with the information 

space.  Including the creation of non-textual content. 

 Polylines and Polygons.  How authors can create shapes and boundaries.   

6.1 The Goal of Expeditee 

Expeditee directly follows from the development of another Spatial Hypermedia system 

called Knowledge Management System (KMS) [41], which in turn built on an early hypertext 

system named ZOG [63].  Following his involvement with ZOG and KMS, Akscyn used his 

experience to design and develop Expeditee as a modern and open source 

reimplementation of KMS. 

Developed at the University of Waikato in New Zealand, the goal of Expeditee was to be an 

environment that allowed authors to quickly and logically organise information [41, 47].  In 

order to achieve this goal, the development subscribed to the following principles: 

1. Users shall be able to enter and modify content into the system quickly.  

Functionality for organisation and theming of entered content shall be easily 

accessible; thus allowing users to enter content in an unrestrained fashion, and 

subsequently reorganising. 

2. A minimalist environment along with tools to customise and extend it will be 

provided to the user.  Such tools thus allow the environment to be moulded to each 

task the user undertakes rather than having to mould the content to the 

environment.  

3. All content should be treated as uniformly as possible so as to allow the same 

interaction methods to be applied to different types of content.  For example, 
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having learned how to alter the size of text, a user should be able to alter the size of 

images with the same method. 

4. Multiple ways may be provided to achieve a variety of actions so that users can 

interact with the system as is fit for the task.  For example, some tasks require 

speed to be primary over organisation—such as note taking—and for other tasks—

such as restricting existing content—the opposite is true.  Providing multiple ways 

to position content leaves the decision to the author. 

5. The system shall support the manipulation of large quantities of information.  Users 

shall be able to build hierarchical structure to work with information at multiple 

levels of aggregation. 

As shown in the remainder of this chapter, must thought was given to the style of 

interaction in order to achieve the above principles.  Notably, this results in Expeditee’s 

efficient style of direct manipulation. 

Direct Manipulation Style.  Expeditee’s manipulation of Items differs in four key ways from 

the direct manipulation common in other applications: immediate text entry, accelerated 

access to commonly used interactions through the promotion of mouse buttons and 

function keys, the ability to pick up and put down content as opposed to the more 

conventional drag and drop interaction which is implemented by attaching content to the 

user’s cursor.  Expeditee makes use of a 3-button mouse.  

Expeditee does not require the user to create a text area prior to adding text content to a 

Frame.  Instead, Text Items and their bounding boxes are automatically generated and 

maintained as the user types.  Characters typed appear at the position of the mouse cursor 

on the screen.  The generated bounding box expands as a user adds content to the Text 

Item.  When the cursor is over an existing Text Item, newly typed content appears in that 

Text Item rather than causing a new Text Item to be created.   

This implementation of text entry follows the first principle by allowing authors to produce 

content first, and organise it as is appropriate.  Parnin et al. note that programmers often 

suffer from disrupted workflow as they attempt to work with two areas of source code at 

once [64].  We believe that this ability to enter content in an unrestrained fashion will help 

alleviate this issue. 
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As will be further explained in Section 6.2.2, the interaction caused by a mouse click 

depends on the Item the cursor is pointing at.  The developers of Expeditee made explicit 

effort to logically pair related interactions using the same button.  For instance, navigating 

between Frames is a common action.  Left clicking on a linked Item follows the link, 

changing the currently active Frame; similar to the navigation action seen in web browsers.  

Left clicking in blank space is logically paired, causing a ‘back’ action to execute, taking the 

user back to their prior Frame.  Additional to this pairing is the effect of left clicking on an 

Item that, at the time of clicking, is not linked to another Frame.  Doing so will still perform a 

navigation action, creating a new blank Frame and taking the user to it.  If the user adds any 

content to the new Frame, then the Item used to gain access to it is altered to link to the 

new Frame.  Assigning the most easily used gesture (left mouse clicking with one’s index 

finger) to these actions demonstrates the importance Akscyn places on navigation and 

Frame creation. 

The design goal of uniform interaction across object types can also be seen to pervade the 

utilisation of function keys in Expeditee.  For example, the F1 key can be used to increase 

the size of Items.  When the cursor is over a Text Item and F1 is pressed, the font size of that 

Item is increased.  When the cursor is over a line, the thickness of the line increases.  Other 

Expeditee Item types also respond to the instruction to increase their size.  Similarly, the F2 

key can be used to decrease the size of Items.  The colour of Items can be adjusted with the 

F3 key which cycles though a colour wheel specified by the user.   

Commonly seen in many applications is the ability to move elements through drag and drop 

style operations.  In contrast to this approach, Expeditee instead provides operations to pick 

up and put down Items.  When an Item is ‘picked up’, it is attached to the user’s cursor 

rather than the Frame.  The user is now able to move their cursor, thus moving the attached 

Item (or set of Items), subsequently putting the Item down in its new location.  Performing 

operations (other than putting content down) while content is attached to the cursor does 

not cause the content to be put down.  A notable usage of this is performing navigation 

operations while content is attached to the cursor, allowing the user to pick up content 

from any one Frame, travel with it, and easily put it down on another.  In a more 

conventional authoring environment, a user would instead use clipboard functionality to 

move a non-trivial amount of content a non-trivial distance; this demonstrates that 
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Expeditee’s pick up and put down operations fill the roles of both drag and drop and cut and 

paste operations prevalent elsewhere.  

Like navigation actions, the ability to pick up and put down Items is a commonly used 

operation.  Clicking the middle mouse button while over an Item, without any Items 

attached to the cursor, will pick the Item up.  Clicking the middle mouse button with an Item 

attached to the cursor will put the Item back down.  If a group of Items enclosed in a shape 

(such as a rectangle), then picking up that shape will also pick up all the Items within it.   

Whereas the middle mouse button picks an Item up, and is therefore similar in function to a 

cut operation, the right mouse button instead attaches a copy of the Item it is activated 

over, making it similar to a copy operation in other systems.  Having attached a copy of an 

Item (or set of Items) to the cursor, the user is then able to use the middle mouse button to 

put the copy down.  Alternatively, right clicking with content attached to the cursor will put 

a copy of the content attached to the cursor down, retaining the content on the cursor. 

Two other commonly seen interface features in other applications are reserved areas for 

specific content—such as error message components—and tooltips.  These features provide 

the application with methods to communicate information to the user in an unobtrusive 

way.  While Expeditee does contain a reserved area for messages to the user (MessageBay, 

Section 6.2.2), it also is able to utilise its ability to attach content to the cursor—a concept 

that works due to Expeditee’s functionality allowing Items to be picked up and put down.  

For example, when an Expeditee user performs a search operation (an Expeditee Action, see 

Section 6.4.3), the executed script may place the results of the completed search on the 

user’s cursor so that they can immediately be used or placed in a convenient place on the 

Frame for further consideration. Regardless of which method is used to provide the 

Expeditee user with feedback—MessageBay or content attached to cursor—they are 

provided with First Class Citizens, suitable for manipulation as the user sees fit. 

6.2 User Interface Structure 

Expeditee’s user interface is built out of two Frames as seen in Figure 6.1.  One of these 

Frames is the primary editing area of Expeditee and as such takes up the majority of the 

screen real estate.  The Frame title, Frame name and any other authored content is spatially 
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positioned in this area.  The other Frame is docked beneath the primary editing area.  It is 

called the Message Bay and is used as an output console for Expeditee. 

 

Figure 6.1: A screenshot of a newly created Frame in Expeditee. 

 Frame Title and Name 

With default settings, when a new Frame is created in Expeditee, users are provided with a 

minimally populated space.  Figure 6.1 is an example of a typical newly created Frame.  Two 

text Items are created for the author: a title and a Frame name.  The title is positioned in the 

top left-hand corner and is provided with some initial user-determined content.  Other than 

the fact that Expeditee generates the title, it is functionally identical to a normal Text Item.  

This means that the author is free to edit, reposition, resize, manipulate or even delete the 

title to fit their needs. 

The Frame name is positioned in the top right-hand corner of the Frame.  Like the title, it is 

also a Text Item.  Unlike the title however, the content of the Frame name is designated by 

the system; calculated sequentially.  It has its mutability significantly restricted and can 

therefore not be altered.  The restrictions ensure that the Frame name Item cannot be 

repositioned, resized, manipulated or deleted.  This allows code within Expeditee to reliably 

access it.  A copy of the Frame name can be made and is subject to the full range of 

manipulation normal Text Items are.  These restrictions are enforced by a permissions 

model implemented into Expeditee.  Whilst this same permissions model can be used by 
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authors to restrict their own content, documenting how it works is unnecessary for this 

thesis. 

 Message Bay 

A reserved area at the bottom of the application window contains the Message Bay.  Figure 

6.2 shows a magnified screenshot of the Message Bay.  One message is present in the 

screenshot: it notifies the user that no proxy settings are detected and will therefore 

assume a direct connection to the Internet if Expeditee needs access to online content for 

one reason or another. 

The Message Bay is one of the ways Expeditee can communicate with the user without 

using specially designed widgets such as dialog boxes and is itself a Frame.  Text content 

that appears in the Message Bay is set to have the same limited mutability that the Frame 

name does.  The Message Bay is attached to the application window; meaning that 

messages that appear in the Message Bay are consistent across Frames.   

 

Figure 6.2: A screenshot of the Expeditee Message Bay. 

A final feature can be seen at the very bottom of Figure 6.2—some context-sensitive help 

text.  As Expeditee makes heavy use of the mouse for interacting with Items on a Frame, this 

help text serves to remind a novice user of what each mouse button.  This help text updates 

based on the position of the cursor.  The same mouse button will do different actions 

depending on the type of Item that it is positioned over.  For example, in Figure 6.2, the 

mouse cursor can be seen hovering in blank space.  The help text informs us that—while in 

blank space:  

 Left clicking with cause a back navigation to happen.  A back navigation in Expeditee 

is synonymous with a back navigation in a web browser.   

 Middle clicking will begin to draw a line. 

 Right clicking will begin to draw a rectangle. 

 Left and right clicking at the same time will perform a vertical alignment action.  This 

is a pre-defined algorithm that will cause a selected group of Text Items to 
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reposition themselves slightly so that the vertical distance between them it 

consistent. 

 Middle and right clicking at the same time will restore the last Item that was 

deleted.  

If the mouse was instead hovering over a linked Item, then what each mouse button does 

would change and the help text would update to reflect this.  For example, left clicking 

would follow the link on the Item, changing which Frame is visible.   

The mouse button(s) assigned to do a specific action provide insight into the importance 

that the developers have placed on that action.  For example, the action vertical format 

requires two mouse buttons to execute.  This suggests that the developers see this action as 

being used less frequently than actions requiring only one mouse button.  The action Undo 

also requires two mouse buttons.  In this case however, the same mouse button 

combination, when over an Item performs a Delete.  As these actions are counterpoints to 

each other, they share a mouse button combination.  As accidental deletion is a hindrance, 

it is assigned a 2-mouse button combination to increase the chance that deletions are a 

result of direct intent by the user. 

6.3 Creating and Manipulating the Frame and Linking System 

Expeditee’s surrogate system allows a specific piece of content—from the collection of all 

content on the Frame—to link to a specific Frame, thus allowing for a many-to-one 

relationship for Frames.  Clicking on an Item that contains a link adjusts the viewport so that 

the target Frame is being shown, thereby allowing access to previously occluded 

information. 

In Section 6.3.1 we will document the basic method for creating links to existing Frames 

before moving on to show how new Frames can be created in Section 6.3.2.  We detail the 

creation of links to existing Frames first because it demonstrates that the surrogate system 

is able to create cross-cutting links.  In contrast to link creation, creating new Frames is done 

sequentially, where the new Frame (destination Frame) is automatically given a unique 

identifier based on the unique identifier on the origin Frame.  Frames created using this 

method are conceptually stored in the same collection.  This collection is referred to as a 
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FrameSet—a mechanic covered in Section 6.3.3.  Finally, Section 6.3.4 looks at two methods 

for navigating between Frames. 

 Linking to Existing Frames 

In order to create a link to a specific Frame, the name of the target Frame must be known.  

The screenshot shown in Figure 6.3 shows a frame with the name home1—this is the initial 

Frame that the user is shown when Expeditee is started.   

 

Figure 6.3: A screenshot of the initial Frame that Expeditee presents to the user on startup. 

By taking a copy of this name—or manually typing the Frame name—and using property 

injection (Section 4.3.3), a user is able to have any Item link to the Frame with that name.  

For example, a user may want to create a ‘Home Button’—an image that when clicked, 

navigated to home1.  This can be constructed in two steps.  First the user is required to 

import the image into Expeditee.  This can be achieved by dragging the image they want 

from their computers file system.  The second step is to have the newly created image link 

to the appropriate Frame.  The user can inject the following property into that image: Link: 

home1.  As mentioned earlier, an Item that links to another Frame features a small circle to 

the left of the Item.  In this example—creating a home button—it is reasonable that the user 

might not want this circle.  Another property can be altered to make this circle invisible: the 

link mark.  Injecting the following name-value pair into the image will achieve this: 
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LinkMark: false.  LinkMark: true can be used to bring the circle back.  This same process can 

be used to create links from other types of content such as Text Items. 

 Creating New Frames 

Before an Item can be linked to a Frame, it must exist.  If a user wishes to create a new 

Frame, rather than link to an existing one, they simply need to left click on the Item they 

wish to be the link.  As long as that Item is not already linked to a Frame, a new Frame will 

be created.  Figure 6.1 shows what a Frame looks like when initially created.  A Text Item is 

generated to act as the title for the new frame, the content of the title is the same as the 

content of the link used to create the Frame.  Other than the title and the Frame name, the 

Frame is left blank so that the user can customise it to suit their task. 

 FrameSets  

Users are able to create collections of Frames under a specific name.  These collections are 

called FrameSets.  Pressing F6 while the cursor is over a Text Item creates a new FrameSet 

that is named after the content in that Text Item.  The screenshot from Figure 6.3 shows a 

Frame from the home FrameSet.  When a new FrameSet is created it begins by creating the 

first frame in that FrameSet.  For example, pressing F6 on a Text Item with the content 

“thesisnotes” will create the FrameSet thesisnotes, with the first Frame being thesisnotes1.  

Beyond the ability for users to categorise their work, this also provides other benefits.  One 

such benefit is the shorthand this provides when using property injection to create links.  If a 

user wishes to transform an existing Item on a Frame to a link to another Frame in the same 

FrameSet then the name of the FrameSet does not need to be specified in the name-value 

pair.  For example, under those circumstances just stated, Link: thesisnotes2 and Link: 2 are 

equivalent.  Links between frames in different FrameSets require the frameset name prefix 

to be present. 

There are two methods that allow users to pre-populate newly created Frames.  One of 

these is the Zero-Frame system.  The other makes use of annotations and will be described 

in Section 6.4.2.  Every FrameSet has a special Frame called the zeroth Frame that can be 

used to provide content to new Frames created in that FrameSet.  Navigating to the zeroth 

Frame in a FrameSet, the user is able to set up a template for new Frames created in that 

FrameSet.  Extending our example from earlier, the home button that the user created 

could be spatially positioned in the bottom-left corner of the zeroth Frame.  Once this is 
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done, any new Frames that are created in that FrameSet will feature this home button at 

the specified position. 

 Frame Navigation 

Navigation actions between Frames can be split into two styles, random access and ordered 

pagination.  Each style can be achieved in multiple ways.  We will document one from each 

style.  Random access Frame navigation is achieved using a surrogate system.  If an Item is 

linked to another Frame then left clicking on it will follow that link.  Once on that Frame, left 

clicking in white space (where no Items are present) will navigate back to the prior Frame.  

This provides similar functionality to that seen in internet and file system browsers.  

Alternatively, ordered pagination is based on the Frame name—specifically the suffix of the 

Frame name, the Frame number—and is similar to the style of navigation seen in 

application such as Microsoft PowerPoint.  By using the left and right directional keys on the 

keyboard users are able to look through the Frames in a FrameSet in order.  For example, if 

the user was on thesisnotes5 and pressed the left directional arrow then they would be on 

thesisnotes4.  This technique allows authors to view pages in the order they were created, 

and can also be used to access the zeroth Frame. 

6.4 Text Entry in Expeditee 

As with most other authoring applications, Text is the primary type of content for 

communicating information.  The four guiding principles detailed in Section 6.1 significantly 

influence how Text is authored, modified and used in Expeditee.  Section 6.4.1 documents 

how textual content can be easily added and efficiently arranged on an Expeditee Frame.  

Section 6.4.2 and 6.4.3 shows how special Text Items (annotations) can be used to both 

customise the information space and help provide uniformity for non-textual content. 

 Adding and Modifying Text Content 

Users are able to create text by positioning their mouse cursor where they want content to 

appear and begin typing.  Unlike in most other authoring applications, clicking the mouse to 

gain focus is not required.  As the user is typing a Text Item is created.  Moving the mouse 

cursor to another position will cause that Text Item to stop being edited.  Moving the mouse 

cursor back to a Text Item will re-enable the editing of that Text Item.  As with Object in 

VIKI/VKB and Text Nodes in HTML, a Text Item can be considered a ‘mini-world’ traditional 

text editor.   
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As text is frequently the primary way of communicating information, several hotkeys have 

been assigned to help manipulate text.  All of these hotkeys adjust a property that could 

alternatively be adjusted using property injection.  Furthermore, many perform similar 

functions on non-textual content. 

 F1 and F2 increase and decrease the font size of a Text Item respectively.  

 F3 alters the font colour of a Text Item by cycling through a colour wheel that is 

customizable by the author. 

 F4 cycles between three bullet point options on a Text Item: no bullet point, 

annotation Item (discussed shortly) and asterisk. 

 F7 alters the font style of a Text Item by cycling through a font style wheel.  Options 

are: normal, bold, italic, bold italic. 

 F8 alters the font family of a Text Item by cycling through a font wheel that is 

customizable by the author. 

Some of the properties that Text Items contain do not make sense in other Items—such as 

font style for example.  However, the majority of properties that text supports are also 

supported by other items.   

 Annotations 

By prepending a ‘@’ to the beginning of a Text Item, an author tags it as an annotation.  This 

communicates to the Expeditee system, and other users, that it is not to be considered a 

normal Text Item but instead indicates it is for the system to use, or piece of 

documentation—such as a note.  The system is able to use annotation to alter the 

information space.  For example, the annotation ‘@LogDir’ is used to control where on the 

file system log files will be written.  There are two categories of annotations: system 

reserved and user-defined.  In this section we will document three prominent system 

reserved annotations: templates, overlays and images.  Section 6.4.3 will document user-

defined annotations. 

Templates.  In Section 6.3.3 we discussed the Zero-Frame technique and discussed how it 

could be used to create a template for Frames in a FrameSet.  We used this language for the 

purpose of explanation.  However, Expeditee also uses the word template to describe a 

different set of functionality.  We wish to distinguish between Frame templates, like the 
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Zero-Frame technique, and content templates.  Content templates provide a method for 

authors to provide default properties to certain content.  One prominent content template 

is the item template (@ItemTemplate). 

By placing a @ItemTemplate annotation on a Frame, the author is able to set the initial font 

properties for all newly created Text Items on that Frame.  When a new Text Item is being 

created, the system checks for the presence of @ItemTemplate on the Frame and sets the 

properties of the new Text Item to match those of the template.  The font style, size, colour 

etc. of the provided template are examined and used to populate the properties of the new 

Text Item.   

When multiple templates are provided, Expeditee will use the top-left-most positioned one.  

This provides authors with the ability to have multiple templates set up and to switch them 

in and out as desired.  A variety of content templates exist, each with a provided default 

which can be altered on a settings Frame.  One example is the annotation template 

(@AnnotationTemplate) which allows the author to set the default font properties of Text 

Items that are created by typing ‘@’. 

Overlays.  Earlier in Section 6.3.3 we stated that there are at least two ways of pre-

populating newly created Frames and went on to explain the Zero-Frame system.  Figures 

6.4 and 6.5 demonstrates another method for achieving pre-population.  In Figure 6.4, some 

useful links are provided through the use of an active overlay.  When the active overlay 

annotation is (@ao) deleted, as it is in the latter, these links are removed with it. 

 

Figure 6.4: Screenshot snippet of Expeditee documentation home Frame with useful links present along the top. 

 

Figure 6.5: Screenshot snippet of Expeditee documentation home Frame without useful links present along the 
top. 

An overlay is an annotation—and another form of Frame template—that causes the content 

of one Frame to be overlaid on another, the primary of which is the active overlay, created 
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with the annotation @ao.  When the Expeditee system encounters an active overlay 

annotation, it checks if it has a link property.  If it does, it dereferences this link and overlays 

the content found on the destination Frame over the Frame that the annotation is on. 

Both of the Frame template methods we have covered have some potential shortfalls.  As 

stated in Section 6.3.3, the contents of the zeroth Frame will be used to populate newly 

created Frames.  However, any existing Frames in the FrameSet will not have the effect 

applied.  This can make it tedious to make updates to the Frame template of the FrameSet; 

requiring manual updates to existing Frames.  Overlays however only apply to the Frame 

that their annotation is placed on, therefore requiring the overlay link to be inserted on 

each new Frame.   

Combining the two methods can be an effective way of overcoming the shortcomings of 

each.  Using the home button example from earlier we can devise a way to get the flexibility 

of @ao with the reliability of the Zero-Frame system.  Instead of placing the home button 

directly on the zeroth Frame of the FrameSet, follow these instructions.   

1. Create a FrameSet especially for Frame templates, say: FrameTemplates.   

2. Place the home button control on the first available Frame in the FrameSet, say: 

FrameTemplates1. 

3. Create a @ao and link it to FrameTemplates1. 

4. Place the created @ao on the zeroth Frame of the Frameset you wish to contain the 

home button. 

This technique works by ensuring that the @ao will be present on all new Frames in the 

FrameSet and allows modifying the Frame template by modifying FrameTemplates1.  

Adding the template to existing Frames simply requires adding the @ao.  Two other benefits 

of this technique are, the reusability—other FrameSets are able to use the Frame Template, 

and scaling—multiple Frame templates can be created in this fashion and be used together 

when appropriate.   

Non-textual Content.  Expeditee provides authors with the ability to insert non-textual 

content such as images.  Perhaps surprisingly, it achieves this by representing images as 

specially formatted text.  When we introduced the worked example of creating a home 

button in Section 6.3.1 we stated the first step was to import a desired image into 
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Expeditee.  We achieved this by using drag and drop functionality on an image file from the 

file system.  However, behind the scenes, Expeditee is simply referencing this image on the 

file system rather than truly importing it, this is similar to the way in which images are 

handled in HTML.   

When the function key F10 is pressed, Expeditee enters a special state that is referred to as 

‘X-Ray Mode’.  Pressing F10 again returns Expeditee to normal functioning.  By entering X-

Ray Mode, the author is asking the system to stop interpreting certain annotations, and 

instead show the underlying Text Item.  Figure 6.6 repeats the screenshot of the home 

Frame of Expeditee previously featured in Figure 6.3, but this time with X-Ray Mode 

enabled.  In place of the image of the goddess Expeditee, an annotation is present, this 

annotation directs the system—when outside of X-Ray Mode—to visually replace the 

annotation with the referenced image. 

 

Figure 6.6: A Screenshot of the Expeditee home screen with X-Ray Mode enabled. 

Authors are able to manually construct these annotations as an alternative method for 

adding images to an Expeditee Frame.  They may want to use this method in order to have 

more fine-grained control over the resulting image.  We can divide the annotation in Figure 

6.6 into three parts in order to help understand how it functions.  The first part is the 

annotation tag, in this case ‘@i:’.  The lowercase I informs an algorithm running over 

Expeditee Frames that it has encountered an image and the colon acts as a separator 



 
 

146 
 

between the tag and the remaining content (the following space is optional).  The second 

part is the file name of the image: “expediteeicon128.png”.  Normally an author would be 

required to provide a full path to the appropriate image, however, a ‘images’ folder is 

created on installation of Expeditee and the system knows to check there for resources.  

Finally, the third part of the annotation is the set of properties to assign to the image.  In 

this case, the number 200 specifies the desired width of the image.  The inclusion of the 

optional third part will cause the imported image to scale.  As a height is not provided, the 

width to height ratio is maintained.  Other non-textual content also uses the same 

annotation system, each with its own annotation tag and set of properties.  

 User Scripting and Actions 

Running Actions.  Action is the name given to an Expeditee script that runs at the demand 

of the user.  In contrast to the algorithms that interpret system reserved annotations such 

as those described in Section 6.4.2, actions are able to react to user-defined annotations.  

Consider a theoretical Action called ‘SlideShow’.  When the user executes this action it will 

produce a series of image files, each a screenshot of a Frame in a specified FrameSet.  The 

user may wish to omit some Frames from the finished product; perhaps they are note 

pages.  This Action is then able to monitor Frames for the ‘@notes’ annotation and skip any 

Frames it finds with this annotation.  Furthermore, the ‘Slide Show’ Action could omit any 

annotations from the produced images, thereby removing any minor notes made on pages 

that should otherwise be in the finished product. 

An Action can be created by injecting a property into an existing Item.  Extending our 

‘SlideShow’ example, creating an Item to run this Action is a two-step process.  The first step 

is for the author to create a Text Item to act as the control, ideally with an appropriate label 

such as “Export Slide Show”.  The second step uses property injection.  Injecting a Text Item 

with the content  

“a: SlideShow”—we will call this the Action string—into the created control sets it to run the 

‘SlideShow’ action when left clicked.  In the same way as linked Items gain a hollow circle, 

Items with actions gain a filled in black circle.  Figure 6.6 has an example of a Text Item with 

an associated action: the Text Item with content “Settings”. 

Creating Actions.  Expeditee has two ways for a user to create their own Actions.  The first is 

a combination of the fact that the code is open source and uses a plugin system, thus 
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allowing programmers to write their own Actions in Java.  These Actions are then compiled 

and executed through Java Reflection by the Expeditee runtime.  The second method allows 

programmers to write scripts inside of Expeditee using Text Items on Frames.  Multiple 

languages are available for this: SIMPLE, JavaScript and Python.  These scripts have access to 

library functions that allow for reading and manipulation of Frame content.  Tutorials are 

provided in the form of Expeditee Frames in the standard download of Expeditee.  With 

either of these methods, the programmer is free to specify new annotations (acting as 

reserved keywords) that are specific to the algorithm they are creating. 

Providing Input.  There are two ways that Actions can be programmed to accept input 

parameters.  The first is that parameters can follow the name of the action in a space-

separated list.  For example, if our ‘SlideShow’ example was extended to accept the desired 

dimensions for its generated images, the Action string could look like this: “a: SlideShow 

1024 1080”.  This technique requires the parameters to be set prior to the Action string 

being injected into the control.  The second option allows parameters to be decided upon 

running the action.  This is achieved by creating a Text Item with the content of the space-

separated parameter list and injecting it into the control.  Injecting the Text Item with 

content “1024 1080” would achieve the same result as our example from the first method, 

but would require the property injection each time the action was executed. 

6.5 Creating Polylines and Polygons 

Most of the functionality concerning Polylines and Polygons was explained earlier in Section 

4.3.  As an amendment to this prior discussion the spot wielding operation should be 

mentioned.  Spot wielding is a process that visually connects two Polylines or Polygons 

together and creates an additional Dot Item if necessary.  Figure 6.7 shows the starting 

point for two examples of spot wielding.  A rectangle and polyline are present and separate 

from each other.  Spot wielding can be used to merge them together—either completely, 

resulting in a single Item or visually, retaining each Item as a separate entity. 
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Figure 6.7: A Polygon and Polyline that are not spot-wielded. 

A user is able to pick up one of the Dot Items that make up either the rectangle or Polyline 

and spot wield it to another Dot.  This will connect the two Items and results in something 

similar to the screenshot in Figure 6.8.  The resulting Item is a Polyline as opposed to a 

Polygon as not all the Dot Items form a single enclosure. 

Alternatively, once the user has picked up one of the Dot Items they are able to spot-wield 

to any place on a line produced by two Dot Items.  When the user does is, Expeditee will 

insert a new Dot Item into the Polyline.  Figure 6.9 shows a screenshot of what this might 

look like when using our example from Figure 6.7.  When spot wielding between two Dot 

Items, Expeditee does not merge the two Items.  As a result, any Polygon remains filled in.  

This gives authors the ability to use split alternations in the position of wield points to 

produce different effects. 

 

Figure 6.8: Spot-wielding to an existing Dot Item. 

 

Figure 6.9: Spot-wielding between existing Dot 
Items. 

6.6 Summary: Expeditee In-Depth 

In Section 4.3.3 performed a cursory review of Expeditee functionality and history, focusing 

on the aspects that contributed to our decision to use it as the base from which to develop 
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SpIDER.  In Chapter 6 we have performed a more in-depth analysis of Expeditee.  This 

involved discussing its interface, expanding on the Frame and Linking system, and 

documenting some advanced features such as annotations, user scripting and spot-wielding.  

The terms we have introduced in the process of performing this analysis will be used 

throughout the remainder of the thesis. 
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Chapter 7  

Usage and Implementation of SpIDER 

In this chapter we document how programs are expressed using SpIDER along with novel 

aspects of its implementation.  Integrating IDE functionality into a Spatial Hypermedia 

system, rather than modifying an existing IDE to include Spatial Hypermedia functionality, 

provides us with the best opportunity to design flexible interactivity that promotes the use 

of Spatial Memory.  As explained in Chapter 5, Expeditee was chosen because of its 

reflective first class citizens, multimedia integration and fixed size spatial interface offered 

the best potential for maximising flexibility and use of Spatial Memory.  The chapter also 

explains the rationale behind key design decisions, especially those consequent on the 

decision to use Expeditee as the base. 

The usage of SpIDER is presented over the first three sections.  Section 7.1 documents the 

way in which code is expressed in SpIDER.  Section 7.2 then addresses how IDE functionality 

such as content assist is presented to the user.  Section 7.3 documents how SpIDER provides 

support for running and debugging Java programs.  Each of these sections explain how the 

aspect of SpIDER documented contributes to the final product.  The chapter then transitions 

into documenting two important aspects of the implementation of SpIDER.  Section 7.4 

documents the implementation details of the flow walker algorithm.  Section 7.5 details a 

collection of properties and functions referred to as the magnet system whose purpose is 

used to support a programmer in editing code.  We conclude the chapter in Section 7.6 with 

broad details of the overall architecture of the SpIDER implementation.    

7.1 Conveying Meaning in SpIDER 

This section documents the aspects of SpIDER that allow programmers to lay their code out 

in two-dimensional space.  Section 7.1.1 explains SpIDER’s concept of lines as they exist in a 
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freely laid out two-dimensional space.  Following this, Sections 7.1.2-7.1.4 each introduce a 

different technique that can be used to spatially lay out code.  Section 7.1.5 presents an 

example demonstrating that these techniques—lines, boxes and arrows—can be used in a 

variety of ways to achieve the same result, thus providing the author with the freedom of 

expression required to customise their code layout to suit a wide range of intentions.  

Section 7.1.6 introduces a third dimension by documenting the Frame and Linking system.  

SpIDER expands Expeditee’s Frame and Linking system by augmenting the design of Frames 

to be suitable for authoring code; specific sections of the Frame are reserved for standard 

Expeditee Items that are not interpreted as code.  Each section uses an example to explain 

its point.  The ordering of the sections is such that examples begin simply then progress to 

include more sophisticated functionality.    

Behind the scenes, the flow walker algorithm provides the functionality to support two-

dimensional expression of code.  The algorithm produces a one-dimensional text stream, 

suitable for presentation to the compiler, i.e., it serialises the code.  The implementation of 

this algorithm is covered in Section 7.4. 

 Inferring Lines 

To deliver on the envisioned way of writing code in a free-form 2D layout, two aspects of 

Expeditee’s core functionality needed to be carefully considered: Expeditee’s ability to 

theme Text Items and the standard spatial ordering provided by Expeditee.  

 Theming.  Syntax highlighting and error reporting require that specific tokens in a 

Text Item be coloured.  While an Expeditee Text Item can be themed by adjusting 

its properties, it is not possible to theme a specific set of characters within a Text 

Item.  In other words, if a Text Item contained a token that needs to be highlighted 

as a reserved keyword, then the entire Text Item must have its colour specified; not 

just the characters relating specifically to the keyword token. 
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 Spatial Ordering.  Standard to Expeditee, when content is serialised through an 

action—such as when exporting to PDF or a text file—Text Items are ordered first 

by their y-coordinate, and then, when a conflict occurs, by their x-coordinate.  This 

technique results in an issue that is infrequently a problem in standard Expeditee: 

two Text Items can appear to have the same y-coordinate, when in reality one is a 

single pixel higher, potentially resulting in unexpected ordering. 

Additional to these considerations, the requirements for interacting with Eclipse JDT (the 

library providing IDE Functionality) needs to be considered: IDE functionality such as content 

assist must be able to relate a Text Item on screen with the tokens it represents in the 

serialised Java file.  If each Text Item can contain multiple tokens, then additional 

computation would be required to resolve this relation. 

Another way of looking at this issue is by comparing the Fundamental Elements of Expeditee 

and code.  As specified in Section 4.3.3, Expeditee’s Fundamental Element is the Text Item.  

The Fundamental Element of code is the token.  Text Items are a collection of characters, 

including whitespace characters, whereas a token is a collection of non-whitespace 

characters (with the exception of string literals).  The theming and interactions with Eclipse 

JDT can be simplified by limiting the use of Expeditee Text Items in SpIDER, to a collection of 

non-whitespace characters.  We get the best match by always using one Expeditee Text 

Item to represent each token. 

Adopting the solution of using one Text Item per token helps deliver on the envisioned 

spatial freedom desired for SpIDER.  Figure 7.1 shows an example of spatial freedom gained 

by limiting Text Items to one token each; not only are some tokens coloured, but one token 

is raised above the others in its line.  Out of context it is impossible to say why the author 

has chosen to do this—it is possible that it was a mistake—but it does demonstrate utility 

not possible if all tokens on the  first line were contained within a single Text Item.  Instead 

of raising the position of a token, the programmer could have chosen to adjust the tokens 

size or font.   



 
 

154 
 

 

Figure 7.1: Two lines of Java code whose serialisation requires additional processing. 

While the issue of spatial ordering in standard Expeditee was an infrequent issue, by limiting 

the size of Text Items to an individual token, the number of Text Items has been 

substantially increased, thus increasing the chance that standard spatial ordering causing a 

problem has also increased.  Notably, the ordering of the tokens in Figure 7.1, under 

standard Expeditee ordering, would place the Integer token prior to the tokens of the 

statement it belongs to.  An algorithm—named the flow walker—has been developed to 

serialise spatially laid out code under the limitation of one token per Text Item.  The 

implementation of this algorithm is documented in Section 7.4.  Prior to this, the remaining 

content of this section documents additional spatial layout that the flow walker provides. 

 Boxing 

Boxes can be drawn around code to separate one set of statements from another.  SpIDER 

will interpret content within a box to be on a separate logical group from the content 

outside of the box.  A programmer may use boxes to help visually communicate something 

about the content within.  For example, consider Figure 7.2.  The programmer has chosen to 

enclose two loops in a box.  This has been done to show that they are functionally important 

compared to other statements in the function.   

This example, and subsequent examples from the following sections, contains linked Text 

Items and annotations.  Section 7.1.6 will explain how SpIDER uses these. 
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Figure 7.2: Boxing used to emphasise a set of statements. 

A programmer can also use boxes to cause SpIDER to interpret code in a specific way; an 

example of this can be seen in Figure 7.3.  Two functions: getRelativeX and getRelativeY are 

displayed on the same Frame, side-by-side to highlight their similarity.  Boxes have been 

used to separate them, forcing the SpIDER to process each separately.  If the boxes were not 

present then SpIDER would form lines spanning the screen.  This would interweave the 

functions together, producing an incorrect serialisation.   

 

Figure 7.3: Boxing used to separate one function from the other. 

Boxes can be placed within other boxes.  Figure 7.4 shows a class and function definition.  

Inside the start function, several pieces of code are hidden behind linked Text Items.  Each 

of these linked Text Items is placed in its own green box, each positioned within a blue box.  
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By placing boxes within boxes, the programmer has been able to communicate that there 

exists three distinct but related code fragments.  Section 7.1.6 covers linking in more detail. 

 

Figure 7.4: Boxes contained within boxes. 



 
 

157 
 

 Out of Flow 

By combining arrows and boxes a programmer is able to position code out of flow.  This 

introduces a new form of abstraction to the code and allows for more horizontal space to be 

used.  Figure 7.5 shows an example of using arrows and boxes to reposition some code out 

of the general flow.  In this example, this repositioning has had the effect of emphasising 

the base case and recursive call from the rest of the content in the sort function.  When 

SpIDER encounters an arrow, it finds the box that the arrowhead is in, processes it, and 

includes the result back at the tail end of the arrow. 

 

Figure 7.5: Base and recursive case of a function taken out of flow. 

Precise positioning of the tail of an arrow can be used to improve the visibility or ease of 

modification of specific tokens.  Figure 7.6 shows a toy example with two functions to 

illustrate the point.  The addPrint function which adds and prints the integer parameters it 

receives, and the main function that call the addPrint function.  The parameters passed to 

the addPrint function have been placed out of flow.  This results in the parameter values 

being emphasised and easily editable.  
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Figure 7.6: Demonstrating the positioning of arrow tails. 

 Out of Flow Chaining 

The tail of an arrow can be placed inside a box.  This allows the programmer to create a 

series of arrows and boxes that produce a chain.  A programmer may use this to show the 

order a process executes in, or alternatively, visualise the structure of a code fragment.  

Figure 7.7 shows an example of using chaining to express an anonymous Java class.  This has 

had the effect of separating the code fragment into several pieces; exaggerating the content 

in the red box which the programmer deems more important than the other code on the 

Frame.   

 

Figure 7.7: Deconstructing an anonymous class with Chaining. 

In the example of chaining shown in Figure 7.8 we see a way of using annotations (@) to 

control the output the flow walker produces.  The Java class Random (located at 

java.util.Random) optionally takes a parameter to its constructor; when provided it is used 

as a seed for generating random numbers.  By moving the end point of the arrow backwards 
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and forwards between the red and blue box, and toggling the annotation on the box (an 

annotated box is ignored when producing serialised code) we can optionally include the 

parameter.  This can be used by the programmer for testing purposes. 

 

Figure 7.8: Optional Chaining. 

 A Multitude of Ways 

Having seen a way that a programmer might use chained arrows and boxes in combination 

with annotations to optionally include a parameter to the constructor of Random we will 

now demonstrate that there are many other ways to achieve the same thing.  The first to 

notice is that the red box is optional; the programmer has included it to reinforce the visual 

of not including a parameter.  Figure 7.9 shows you the red box can be removed: while the 

annotation on the blue box is present it is treated as an empty box, and therefore no 

parameter is present.  Toggling the annotation controls whether or not SpIDER includes the 

1000 in the serialisation.   
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Figure 7.9: Optional Chaining; no red box. 

Figure 7.10 shows that the annotation can be on the 1000 rather than the box.  When 

applied to a specific item, annotations will hide only that item from the serialisation process.  

In this example, the position of the annotation, whether it be on the box or the Text Item 

directly has no effect on the serialisation.  However, if the programmer were to include a 

more complex statement in the blue box, then the positioning of their annotation gives the 

programmer fine grained control over the compiled product. 

 

Figure 7.10: Optional Chaining; no red box; annotation on item. 
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In this hypothetical situation the programmer was wanting to have an optional parameter 

for testing purposes.  This allowed them to have the same set of random numbers being 

generated each time they run their application.  Instead of removing the red box there is 

another option.  Figure 7.11 once again includes the red box, however now there to some 

code in there for the serialisation process to find.  By optionally including the code: 

System.nanoTime() the programmer can produce behaviour similar to using the empty 

constructor. 

 

Figure 7.11: Optional Chaining; System.nanoTime(). 

We have demonstrated four different ways of achieving the same hypothetical task, and 

programmers are likely to find more.  The example we have given is simple; showing that 

there is wide flexibility even in small cases. 

 Frames and Linking 

Section 6.3 detailed how Expeditee’s Frame and Linking system functions.  To illustrate its 

use in SpIDER, Figure 7.12 repeats a previously featured application; a simple calculator 

program.  The package declaration, class declaration, a single field and the skeleton of the 

main and start functions are directly visible on screen.  The menu area spanning the top of 

the screen is now visible, we refer to this as the non-code area.  Implementation detail is 

hidden behind linked Text Items.  An annotation is used to communicate some 

supplementary detail about a set of code fragments.   
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Figure 7.12: The skeleton of a simple calculator program, complete with linked Text Items, the non-code area and 
annotations. 

Linked Text Items.  When the SpIDER serialisation process encounters a linked Item it 

follows that link, processes the content on the resulting Frame and then inserts the result 

into the serialised file in place of the linked Item.  This process is recursive, if a Frame 

reached by following a link, also contains a link, then that link is also followed.  Prior to 

serialisation, SpIDER performs a sanity check, ensuring that no series of linked Items and 

Frames produce a loop.  If a loop is detected, serialisation will not occur and the 

programmer will be notified. 

The content of a linked Item is not included in the resulting serialisation.  This allows a 

programmer to use the linked Item as a form of documentation.  

Non-code Area.  Every code Frame has a dividing line that separates the coding area below 

from a non-code area above.  Controls for creating and running Java projects are placed in 

the non-code area.  Any authored content positioned above the dividing line is not 

considered code.  This means that it is not subject to syntax highlighting, tokenization, 

inclusion in the serialised Java file or any other IDE functionality.  Essentially, it is treated as 
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a set of Expeditee Items rather than a set of SpIDER Items.  Furthermore, any Item in the 

non-code area that is converted to a link leads to a non-code Frame. 

Annotations.  Annotated Items are treated as non-code Items regardless of their position on 

the screen.  This means that: they can be used to provide supplementary documentation 

that does not appear in the serialised Java file; converting one to a link will cause the system 

to treat the destination as a non-code Frame.  As seen in Section 7.1.5, an annotation can 

also be applied to a box, causing all Items inside the box to be treated as non-code Items. 

Non-code Frames.  A non-code Frame is created when a non-code Item, or Item in a non-

code area, is used to create a link.  A non-code Frame is simply a normal Expeditee Frame.  

Links created on non-code Frames lead to non-code Frames.  This allows a programmer to 

create a set of Frames specifically for documentation. 

7.2 Authoring IDE Functionality 

This section documents the design of the SpIDER’s IDE functionality.  Section 7.2.1 discusses 

syntax highlighting and provides a code example showing both keyword highlighting and 

string highlighting.  Section 7.2.2 then documents SpIDER’s warning and error system.  

Section 7.2.3 shows SpIDER’s version of content assist.  In contrast to traditional IDEs where 

content assist is ephemeral, SpIDER provides the user with a set of Text Items.  These Text 

Items are placed in a box that is marked as an annotation (@) so that the flow walker does 

attempt to include them in the serialised output.  We refer to such Text Items as non-code 

Text Items.  Section 7.2.4 documents the process of creating Java projects and the 

supporting state system that is used to display an appropriate set of controls based on the 

Frame the programmer is currently viewing. 

 Syntax Highlighting 

It is natural to consider syntax highlighting a tool for reducing the intellectual effort of 

understanding code [23, 28].  Figure 7.13 reproduces a screenshot featured earlier when 

discussing out of flow chaining, which also demonstrates syntax highlighting.  SpIDER 

highlights content in the same fashion as Eclipse; strings are coloured blue, keywords are 

coloured red. 

SpIDER has an additional challenge in supporting syntax highlighting as compared to 

traditional IDEs, other content on the screen can be coloured.  Consider the colour of the 
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boxes in Figure 7.13.  Both keywords and the bottom box are coloured red.  Furthermore, 

both strings and the top two boxes are coloured blue.  Whilst the shades differ between box 

colour and token colour, the programmer has chosen to use a red box to contain the code 

that includes a string and a blue box to contain code with several keywords.  If the 

programmer wished, they could adjust the boxes to be a wide range of other colours.  The 

F3 key can be used to cycle through a selection of colours on a colour wheel.  Using SpIDER’s 

settings Frameset, the programmer is able to adjust what colours appear on the colour 

wheel.  Furthermore, property injection can be used to set the colour of the box to any valid 

RGB mix.  Choice of colour for boxes is left to the whim and discretion of the programmer; 

avoiding colours that make Text difficult to see due to contrast is assisted by the default set 

of colours accessed through the F3 key. 

 

Figure 7.13: Showing keyword and string syntax highlighting. 

 Warnings and Errors 

Another form of content highlighting comes in the form of a warning and error system.  

Constant compilation allows for timely user feedback concerning the state of the code being 

developed.  Figure 7.14 shows an example of a simple syntax error in SpIDER.  In this case, 

the error is caused by the incorrect capitalisation of the type String.   
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Figure 7.14: Syntax error cause by incorrect capitalisation. 

Figure 7.15 shows the declaration of the string Name.  Note that the declaration capitalises 

the first letter.  Figure 7.16 shows the Frame reached by following the linked Text Item with 

content ‘Say Hi’.  It is on this Frame that the variable Name is meant to be used.  

Unfortunately, the programmer has written the variable entirely in lower case.  This is an 

error.  This example demonstrates an additional challenge SpIDER must overcome.  Whilst 

the two statements are logically next to each other, they are placed on separate Frames.  

Each Frame is not self-contained.  As with a traditional IDE, the logic and correctness of a 

specific fragment of code is reliant on any code that uses it.  However, compared to a 

traditional IDE, less context is likely to be visible at any given time. 

 

Figure 7.15: Declaring a variable to be used on a child Frame. 

 

Figure 7.16: Erroneous attempt at referencing the declared variable. 
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SpIDER solves this problem in two parts.  The first part of the solution is a button provided in 

the non-code area that when pressed will list all the problems that the current project has.  

Figure 7.17 shows an example of this button being used.  Clicking on the warning or error 

message in the Message Bay navigates the programmer to the Frame that the error occurs 

on.   

 

Figure 7.17: Displaying problems in the current project. 

The second part of the solution is to highlight linked Text Items either yellow or red if 

following them will lead to a warning or error respectively.  This would allow a programmer 

to begin at a high-point in a hierarchy of Frames that contain a warning or error and follow a 

trail or highlighted links to narrow down the cause of the problem.  The second part of the 

solution is not currently implemented (as of 2018), however, Figure 7.18 shows a mock-up 

of how this might look if implemented using a modified version of Figure 7.15. 



 
 

167 
 

 

Figure 7.18: A mock-up of link highlighting. 

 Content Assist 

In traditional IDEs such as Eclipse and Visual Studio, content assist is ephemeral and always 

reflects the latest actions taken by the programmer.  For example, having typed ‘this.’ will 

show the programmer all members from the current class.  Typing another letter refines the 

content assist results—‘this.a’ will limit the results to those starting with the letter ‘a’.  This 

refinement is consistently happening as the user types, without the need for the user to 

request an update.  When the programmer selects an option from the currently open 

content assist, their selection is inserted and the results from their request for content assist 

disappears.   

In contrast, content assist in SpIDER produces a set of first class citizens and is tied to a 

specific instance of the request for assistance.  A content assist request where the 

programmer has typed ‘this.’ produces one set of results, constructed out of Expeditee 

Items that have the full range of manipulation of any other Expeditee Item.  If the user 

refines the text to be ‘this.a’ then a new request for content assist must be made.  A 

content assist request is made by using the keyboard command CTRL + Space with the 

results initially appearing attached to the programmer’s cursor. 

Figure 7.19 shows the results of a request for content assist in SpIDER.  The programmer has 

specified a function starting with ‘next’ on the object ‘rand’ which is of type 

java.util.Random.  An annotated box has been created and populated.  This means that, the 

content within the box is not considered code until it is moved outside of the box.  The 

content is a set of Text Items arranged into lines.  Each line represents a valid completion 



 
 

168 
 

suggestion.  When a suggestion is overloaded, such as nextInt, an additional linked Text 

Item, leading to the alternatives, is created.  As the result of the content assist being created 

out of Expeditee Items, the programmer is able to manipulate them as to suit their current 

task.  They may: 

 Decide to place the suggestions on the far right of the page (or place them on 

another page and keep a link to them) so that they are out of the way but can be 

reused. 

 Manually delete or filter options as they decide. 

 Spatially rearrange and layout the options as they would code. 

 Simply delete the whole box. 

 

Figure 7.19: Example of Content Assist. 

 Java Projects and SpIDER State 

SpIDER arranges projects into a hierarchy of Frames.  When starting SpIDER, after selecting 

the workspace the programmer wishes to work with, the programmer is presented with a 

Frame listing all the existing Java projects in that workspace.  This Frame also features two 

buttons that execute actions to create new or import existing Java projects.  We refer to this 

Frame as the Project List Frame.  Figure 7.20 shows a Project List Frame in SpIDER for the 

workspace Ch8Projects. 
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Figure 7.20: List of Java projects shown on SpIDER’s initial Frame. 

In order to demonstrate how Java projects are created, we will show the step-by-step 

process that results in the creation of a subset of the project artefacts in the application: 

ZooAccounting.  The process begins with the programmer creating a Text Item to represent 

the name of the project.  This Text Item is then picked up.  With the Text Item attached to 

the cursor, the programmer then clicks on the Java Project button.  This results in the Text 

Item becoming linked to the generated Frame.  Following this link takes the programmer 

inside the project. 

Figure 7.21 shows the first Frame inside the ZooAccounting project.  This Frame is referred 

to as a Project Frame.  On the Project Frame a list of top level packages and classes are 

listed.  In this example, the programmer has arranged packages and classes in separate 

boxes.  The buttons supplied to the programmer have changed.  Now that we are inside a 

project, the programmer is supplied with buttons to create packages and classes.     

 

Figure 7.21: List of packages and classes in the ZooAccounting Project.  An example of a Project Frame. 
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Using the same button activation technique as was used to create the project, the 

programmer has created two packages and a class.  When the programmer clicks on the 

data package, they are taken inside the package to the Frame seen in Figure 7.22, we refer 

to this as a Package Frame.  When on a Package Frame the programmer retains the controls 

allowing them to create packages—now sub-packages—and classes.   

 

Figure 7.22: List of classes inside the data package.  An example of a Package Frame. 

If the programmer instead clicks on the AnimalsByCountryOfOrigin class, they are taken 

inside the class to the Frame seen in Figure 7.23, we refer to this as a Class Frame.  When on 

a Class Frame, the controls change to a set of buttons useful for writing and executing code. 

 

Figure 7.23: The top Frame of the AnimalsByCountryOfOrigin class.  An example of a Class Frame. 
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A state machine is used to determine which set of buttons should be shown to the 

programmer at any given time.  As the programmer moved from a Project List Frame, to a 

Project Frame, Package Frame and Class Frame, the state machine caused the controls seen 

by the programmer to update.  As a programmer is developing their project, the state 

machine will continue to update the controls that the programmer can see.   

 When Editing Code.  The controls available, shown in Figure 7.24, give the 

programmer the ability to: execute the program; insert a breakpoint; print the 

current warnings and errors associated with the project to the Message Bay; insert a 

main method or request the current project be processed by SpIDER.   

 When Running Code.  The controls available, shown in Figure 7.25, give the 

programmer the ability to: jump to the Class Frame of the class responsible for 

executing the currently running project; halt the currently running project and 

provide ‘standard input’. 

 When Debugging Code.  The controls available, shown in Figure 7.26, give the 

programmer the ability to: either jump to the appropriate Class Frame or the 

current breakpoint that the project has halted on; resume the debug session; halt 

the debug session; provide ‘standard input’; request a report of the current state of 

the debug session; perform a step in the debugger. 

 

Figure 7.24: Controls available while editing. 

 

Figure 7.25: Controls available while running. 

 

Figure 7.26: Controls available while debugging. 
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7.3 Running Java Programs 

This section documents the design of SpIDER’s project execution functionality.  A single 

example program, modified at each stage, is used to explain this functionality.  The code for 

the program that we will be using for the example can be seen in Figure 7.27.  Section 7.3.1 

will explain how code can be executed without breakpoints while Section 7.3.2 separately 

handles executing with breakpoints.  While discussing the process of debugging in SpIDER, 

we will cover the way in which programmers can request information on the state of the 

application while it is suspended.  As for content assist, the results from a request for 

assistance is constructed out of first class citizens. 

 

Figure 7.27: An application that uses program arguments and standard input to execute. 

 Executing without Breakpoints 

The left most button seen in Figure 7.27 can be used to run the program without 

breakpoints.  When clicked, SpIDER will locate the main method associated with the project 

being edited on the current Frame and execute it.  In our example above, doing so will cause 

an ArrayOutOfBoundsException to be thrown.  This is expected as the first statement to be 

executed attempts to use a program argument. 



 
 

173 
 

Program Arguments.  In order to successfully start executing the application, the 

programmer must supply program arguments.  Notice that, in Figure 7.27, the programmer 

has created three Text Items with content ‘10’, ‘100’ and ‘1000’.  These have been created 

in the non-code area so that they are not considered code.  These Text Items can be used as 

program arguments.  In order to execute the application whilst providing some user input, 

the programmer picks up one of these Text Items and clicks on the run button with it 

attached to the cursor.   

Figure 7.28 shows the application being run after the programmer has supplied ‘1000’ as an 

argument.  The Message Bay at the bottom of the screen is displaying the output of the 

program so far.  The program argument has been used to construct the string for the first 

print statement and the second print statement has executed in order to prompt the user to 

provide some data on ‘standard in’. 

 

Figure 7.28: An application waiting for user input. 

Standard Input.  When the application started to run, the state machine caused the controls 

to change to those seen in Figure 7.25.  The third and fourth buttons can be used to send 

data to standard in.  Using the same technique that was used to send arguments to the 

program, the programmer is able to send content to standard in.  The third button will echo 
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the exact content that the programmer provides, whereas the fourth appends a new line 

character to the end. 

Figure 7.29 shows the state of SpIDER’s Message Bay after the application has successfully 

executed.  The final print statement has executed showing that the programmer used the 

Text Item with content ‘100’ to send to standard in.  A red message has appeared in the 

Message Bay signalling that the program has terminated.  The controls have reverted back 

to the standard controls for editing code. 

 

Figure 7.29: An application successfully executed. 

 Executing with Breakpoints 

The second button from the left in Figure 7.30 can be used to run the program with 

breakpoints enabled.  Arguments to the program can be provided using the technique 

previously explained when using the button to run the program without breakpoints.  Two 

breakpoints have been set. 
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Figure 7.30: An application with two breakpoints set. 

Breakpoints.  Clicking the third button from the left (controls in Figure 7.24) will attach a 

breakpoint to the cursor.  SpIDER represents a breakpoint as an annotation with content 

‘@BP’ using a red font.  Placing the breakpoint annotation at the beginning of a statement 

will attach a breakpoint to that statement.  When the program is executed with breakpoints 

enabled, SpIDER will suspend the application at the breakpoint and provide a different set of 

controls.  Figure 7.31 shows SpIDER in this suspended state, waiting for the programmer to 

issue an instruction. 
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Figure 7.31: An application suspended at the breakpoint, awaiting instructions. 

Debug Stepping.  While suspended, the programmer is able to issue resume or step 

instructions.  Two dashed lines show the next statement to be executed if the program was 

to proceed.  Clicking the resume button will cause the application to continue execution 

until the next breakpoint.  Figure 7.32 shows the state of the application after pressing the 

resume button.  Because this application requires standard input, the second breakpoint 

has not yet been hit.   
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Figure 7.32: An application waiting for standard input between two breakpoints. 

Once the programmer has supplied input, the second breakpoint is hit.  This can be seen in 

Figure 7.33.  The red dashed lines have been removed from the line associated with the first 

breakpoint and have been placed around the line associated with the second breakpoint. 

 

Figure 7.33: An application, once again, suspended at the breakpoint, awaiting instructions. 
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In Figure 7.34 the programmer has caused the debugger to step, in this case by pressing the 

jump over button.  The dashed red lines have moved to the final statement in the program, 

but have not yet executed it—as evident from the content in the Message Bay. 

 

Figure 7.34: An application suspended at a statement without a breakpoint due to the programmer having 
instructed the debugger to perform a step operation. 

Debug Variables.  When stopped at a breakpoint, the programmer may wish to inspect the 

state of the variables.  Pressing the sixth button from the left, labelled ‘Variables’, generates 

this information and presents it, initially attached to the cursor, as a set of Text Items in an 

annotation box.  The result of this action can be seen in Figure 7.35.  At this point, the 

annotated box containing results of the request for variables has been placed on the Frame.  

This confirms the values of the variables size and max to be 10 and 100 respectively.   
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Figure 7.35: A suspended application with the results of a request for state displayed in an annotated box. 

The variables args and in are references to complex types.  The Text Item with content 

‘Down a level’ and a black dot to its left denotes that the programmer is able to request 

more information.  As can be seen in Figure 7.36, clicking on this Text Item reveals this 

information in an additional annotated box.  Doing so has confirmed that args[0] and size 

have identical information. 

 

Figure 7.36: A suspended application with the expanded results of a request for state displayed in annotated 
boxes. 

7.4 The Flow Walker Algorithm 

In Section 7.1 we looked at how SpIDER allows a programmer to express code.  Behind the 

scenes the flow walker algorithm traverses a set of Frames in order to produce Java source 

code files.  In this section we explain the algorithm in detail. 

There are two major components to the flow walker: the within Frame component and the 

director component.  The director component coordinates the within Frame component.  
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The director component begins the process by instructing the within Frame component to 

process a top level Frame.  When a link is encountered, the director component follows that 

link, instructs the within Frame component to process it and then substitutes the result of 

that process for the linked Item that was encountered.  This is a recursive process. 

In order to process a Frame, the within Frame component infers lines and resolves out of 

flow content.  The director component uses the result of the within Frame component to 

construct a Java code file which is subsequently compiled.  When instructing the within 

Frame component to process a Frame, the director component, rather than passing the 

entire Frame, provides the within Frame component with a filtered list of Items from the 

Frame.  This filtered list excludes any non-code Items: annotations, linked Items and Item in 

the non-code area.   

 Within Frame Component 

When talking about the within Frame component, there are four classes that we will refer 

to: 

 XRawItem.  An XRawItem encapsulates an Expeditee Item—which for the purpose 

of this thesis is a SpIDER code Item—and provides functionality to query 

information on that Item’s bounding box. 

 XGroupItem.  An XGroupItem is a collection of XRawItem objects.  A single 

bounding box surrounds all XRawItem objects in the collection.  At the 

programmer’s request, the XGroupItem object provides a sorted collection of the 

XRawItems that it contains.  How the XRawItems are sorted is detailed below.  Both 

XRawItem and XGroupItem are subclasses of a base class called XItem.  This allows 

for heterogeneous collections of XRawItems and XGroupItems. 

 YOverlappingItemsTopEdge (top edge).  A YOverlappingItemsTopEdge acts as a 

signal to record the minimum y-position of a set of XItem objects.  XItem objects 

that share the same YOverlappingItemsTopEdge are on the same line. 

 YOverlappingItemsShadow (shadow).  Multiple YOverlappingItemsShadow objects 

follow a single top edge.  They are used to determine whether or not a newly 

considered XItem belongs to the same line as another XItem.  Each shadow holds a 

reference to the top edge that they belong to.  Both YOverlappingItemsTopEdge 

and YOverlappingItemsShadow are subtypes of YOverlappingItemsSpan. 
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Inferring Lines.  Consider Figure 7.37 which shows how the statement ‘int i = 5’, formatted 

as four separate Text Items (tokens), is processed by SpIDER.  The position and size of the 

text is exaggerated to help the exposition of the data structure formed.  The figure shows 

how the flow walker algorithm processes these tokens to build up a data structure that 

allows it to deduce that they form a line even though their positions are not pixel perfect in 

alignment.  The array shown slightly left of the centre in each step is an array of 

YOverlappingItemsSpan objects.  

1. The XRawItem containing the int token is processed by inspecting its bounding box.  

A top edge is inserted into the array at the location corresponding to the top of the 

XRawItems bounding box.  The size of the array is the same as the height of the 

screen in pixels.  Therefore, for example, if the top-left corner of the int token was 

positioned at (150,100), then a top edge will be placed at index 100 of the array. 

 

Multiple shadow objects are then placed in the array; beginning at one entry 

beneath the top edge and continuing until the entry relating to the bottom of the 

XRawItems bounding box.  Continuing the previous example, if the height of the 

XRawItems bounding box was 20, then shadow objects will be placed in indexes 101 

to 120 inclusive. 

 

2. The XRawItem containing the i token is then processed by inspecting its bounding 

box.  The algorithm is able to detect that this and a previously processed token 

belong to the same line.  This is achieved because the bounding box on this 

XRawItem would cause shadow objects to be inserted into the array at locations 

that they already exist. 

 

The bounding box in question actually completely envelops the recorded positions 

of the previously entered top edge and shadows.  The flow walker algorithm 

amends the array structure by moving the top edge to the position corresponding to 

the top of the new tokens bounding box and adding new shadow entries until the 

entry corresponding to the bottom of the bounding box is filled. 

 

The top edge records all the XRawItems that are assigned to it and orders them 
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based on their x-position. 

 

3. The XRawItem containing the = token is then processed by inspecting its bounding 

box.  This token does not produce any new shadows or require the top edge to be 

moved.  The top edge is updated to include this new token in its internal list. 

 

4. The final XRawItem contains the token 5.  Its y-position is higher than previously 

seen tokens but its shadow means that it is a part of the same line.  This results in 

the top edge being moved up in the array.   

 

When the flow walker algorithm processes this XGroupItem, the top edge and 

subsequent shadows will cause a line to be inferred: int i = 5. 

Note: the shadowing behaviour means that it does not matter which order the flow walker 

processes tokens in; the result will remain consistent regardless of the order tokens are 

processed.  This is necessary as, the order that Items appear in a Frames data structure are 

not stable. 
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Figure 7.37: Constructing a line using shadows. 

Boxing.  Boxes provide additional context to the flow walker algorithm, limiting the scope of 

Text Items to influence how lines are inferred.  Each box on a Frame is processed as a 

separate XGroupItem.   

If the intention of a programmer was for the resulting code file to contain six print 

statements ordered in the following way:  

System.out.println(“1”); 

System.out.println(“2”); 

System.out.println(“3”); 

System.out.println(“4”); 

System.out.println(“5”); 

System.out.println(“6”); 
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Then they might be tempted to layout their code in three columns as can be seen in Figure 

7.38. 

 

Figure 7.38: No boxing. 

However, despite the horizontal gap being bigger than the vertical gap, the process of 

inferring lines without boxes will cause the flow walker to detect two lines of statements.  

This results in a code file with the six statements in this undesirable order: 

System.out.println(“1”); 

System.out.println(“3”); 

System.out.println(“5”); 

System.out.println(“2”); 

System.out.println(“4”); 

System.out.println(“6”); 

Figure 7.39 shows a solution to this problem.  Explicitly placing boxes around pairs of print 

statements causes the flow walker algorithm to process each as an XGroupItem.   

 

Figure 7.39: Explicit boxing to show grouping. 

Whilst there are three boxes present in this figure, there are actually four XGroupItem 

objects: one for each box, and one for the entire Frame.  The XGroupItem that represents 

the entire Frame contains three XItem objects, all of which happen to be, in this particular 

example, other XGroupItem objects.  As a result of the XItem base class, it is worth 

reiterating that, in practise, an XGroupItem can contain a mix of XRawItems and 

XGroupItems.  Corollary to this, the inferring line process previously discussed is agnostic as 
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to what XItem objects are used to form a line—both XRawItem and XGroupItem (boxed) 

objects cast a shadow into the YOverlappingItemsSpan array. 

Figure 7.40 replicates Figure 7.39 but removes the middle box and repositions the first 

unboxed print statement.  This demonstrates a non-intuitive aspect to the line-forming 

processes as explained so far.  The XGroupItem that represents the entire Frame now 

contains, in order: an XGroupItem, several XRawItems, and a second XGroupItem. 

 

Figure 7.40: No middle box causing a problem. 

However, as presented, the line forming algorithm has a flaw.  As touched on earlier, when 

multiple XItem objects are in an XGroupItem, they are ordered by their x-position.  Once 

again, all of the content in Figure 7.40 is contained in an XGroupItem that encapsulates the 

entire Frame.  That is, when the un-boxed print statements are being processed, they are 

both separately entered into the line that is formed.  The first box (XGroupItem) is the first 

XItem to be added to the line being constructed.  As a consequence of the shadow cast by 

this box, the tokens belonging to the two un-boxed print statements are added to the line 

based only on their x-position!  This causes the resulting code file to contain the following 

undesirable fragment of code: 

System. out. println ( “1” ) ; 

System .out. println ( “2” ) ; 

System. System. out . out. println println ( ( “4” ”3” ) ) ; ; 

System. out. println ( “5” ) ; 

System. out. println ( “6” ) ; 

To better match the reasonable expectations of users, the flow walker performs implicit 

boxing as part of the formation of lines.  Implicit boxes are not visible to the programmer.  

In the event a line is formed with a mixture of XGroupItem and XRawItem objects, then the 

line is reprocessed so that any XRawItems occurring between XGroupItems (or before/after 
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the first/last XGroupItem) are grouped into their own XGroupItem.  Figure 7.41 reproduces 

Figure 7.40 but places an overlay showing where the flow walker will place the implicit box. 

 

Figure 7.41: Example of Implicit boxing. 

Now that the third and fourth print statements are inside an XGroupItem, the shadow cast 

by the XGroupItem containing all the content on the Frame does not affect their ordering.  

This implicit box now ensures that the sequence of code produced is as the programmer 

intended.  

System.out.println(“1”); 

System.out.println(“2”); 

System.out.println(“3”); 

System.out.println(“4”); 

System.out.println(“5”); 

System.out.println(“6”); 

Out of Flow.  When an arrow is pointing into a box, that box is treated as out of flow and an 

out of flow calculation is performed by the within frame component.  The out of flow 

calculation is a two-step process.  First, the boxed content is processed as normal; as an 

XGroupItem object.  Secondly, the result of that processing is treated as if it was spatially 

positioned at the start of the arrow instead of where it is actually positioned. 

Consider Figure 7.42.  Without the presence of the arrow the resulting code file would 

produce code that, when executed, prints “Hello World”, followed by “i=5”.  However, 

because the arrow is present, executing the code would instead print “i=5” followed by 

“Hello World”. 
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Figure 7.42: Simple Out of Flow example 

Chaining.  When several boxes are chained together with arrows, the algorithm must work 

backwards from the last box in the chain.  The process, as described in Figure 7.43, begins 

by recursively following the arrows to find the last box in the chain.  If a loop is detected, the 

process fails and provides an error message.  Assuming the last box in the chain was located, 

the out of flow calculation is performed until all boxes have been resolved. 

 

Figure 7.43: The process used to resolve chaining. 

While processing a chain, the within frame component must check for loops.  It achieves 

this by performing a depth-first walk over chain and keeping track of the boxes that it has 

visited.  If it finds a box which it has visited before it does not travel down it.  This is 

necessary because a loop in the chain would otherwise cause the within frame walker to 

continuously go in circles and never terminate. 

Recursively find the last 
box in the chain. 

Did you find a loop? 
Provide error 

message. 

Y Perform out of 

flow calculation. 

N

Did the result of the last out of flow 

calculation leave us in a box? 

Y

es 

Complete.  Process 

XGroupItem as normal. 

N

o 
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 Director Component 

Filtering Content.  When asked to produce a Java source file the director component is 

provided with the frame containing the beginning of the class declaration.  This is the home 

frame of the class.  The algorithm begins by collecting all items on the page and performing 

a series of filters to determine which items are to be considered code.   

The following filters determine if an item is considered code: 

 Is the item a link?  If so, it is not code.  It does however require following, which is 

explained below. 

 Is the item in the non-code area?  If so, it is not code.   

 Is the item an annotation or inside an annotated box?  If so, it is not code.   

 Is the item attached to the cursor rather than the page?  If so, it is not code.   

 Has the user requested a debug session?  If so SpIDER deals with annotations 

slightly differently.  Breakpoint items are a special type of annotation (represented 

as @BP).  If debugging, SpIDER will pick up on breakpoint items and include them as 

code for the purposes of determining where to break but not including them in the 

Java source code.  All other annotations are treated as normal. 

Figure 7.44 show a Frame containing a mix of code and non-code Items.  Figure 7.45 shows 

this same Frame again, but with an overlay hiding the non-code Items that the director 

component filters away before providing the within Frame component with the Frame’s 

content. 
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Figure 7.44: A Frame with a large mixture of code and non-code Items. 

 

Figure 7.45: Example of frame with non-code items greyed out. 
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Resulting File.  The director component produces three types of files.  For each class 

processed by the flow walker two files are produced: 

 A Java source code file that is used for compilation. 

 A SpIDER linker file which contain information for linking each Item that appears on 

screen with the Java token it represents. 

For each Java project that gets processed the flow walker produces a .spiderlinks file.  This 

file contains XML that describes how to find the home Frame of each package and class 

within the project it relates to. 

The Java source code files are not designed to be edited or read directly.  In order to allow 

SpIDER to index the file as a list of tokens, each token is given its own line.  The ability to 

index tokens is useful for interacting with the Eclipse Java Development Tools (Eclipse JDT).  

Figure 7.46 shows a screenshot of a Java source file produced by the flow walker algorithm. 

 

Figure 7.46: A look inside a Java Source file produced by SpIDER. 

SpIDER linker flies are arranged to mirror a specific Java source file.  Figure 7.46 shows the 

first 11 lines of the Figure class and Figure 7.47 shows us the first 11 lines of the 

corresponding linker file.  SpIDER uses these files together to map from either a specific Java 

token to its representation on screen or vice versa. 
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Figure 7.47: A look inside a SpIDER linkers File. 

Figure 7.48 shows a screenshot of a .spiderlinks file for a Java project named Tetris.  SpIDER 

uses this file to find entry points to each class.  From parsing this file SpIDER knows that 

there are five classes to walk and for each class, find its home frame.  For example, consider 

the first class listed in the file.  The name of this class is Game.  It can be found by following 

a linked Item on the Frame Tetris1.  The ID of the linked Item is 21. 

 

Figure 7.48: A SpIDER linkers file for a project named Tetris. 

7.5 The Magnet System 

When authoring in a relative text editor, the addition or removal of a character has an 

immediate effect on the surrounding characters, such as causing subsequent characters to 

shuffle forward when a new character is added.  For the purpose of this section, let us refer 

to these effects as flow effects.  Wide adoption of relative text editors has led authors to 

become accustomed to flow effects.  (Section 4.2 discussed the differences between relative 

and absolute editing environments in more detail.) 

We consider it good usability if a programmer using SpIDER is able to author code without 

having to significantly adjust the expectations that they obtained from using a relative 
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authoring environment.  Unfortunately, the absolute positioning of content in Spatial 

Hypermedia applications means that flow effects do not occur as a matter of course.  The 

absence of flow effects is in conflict with good usability as it requires expectations to be 

significantly adjusted. 

Explicit functionality must be created to support flow effects.  Expeditee does allow flow 

within a Text Item.  Typical interaction with Expeditee results in sentence sized Text Items, 

thus easing the transition between a traditional text editor and Expeditee’s spatial editing.  

However as SpIDER tokenizes programming statements so that each token is its own Text 

Item, this advantage is lost.  In order to make SpIDER’s spatial editing more similar to editing 

in a traditional text editor, some specific flow capabilities have been added. 

SpIDER’s magnet system maintains a data structure that records the relationships between 

Items.  These relationships are used to provide programmers with the flow effect 

functionality that they are accustomed to from their use of relative text editors.  Figure 7.49 

shows a screenshot of SpIDER with its magnet debug display active.  This debug tool assisted 

in the development of the magnet system and is not normally available to the programmer.  

Coloured lines show the relationships that each Item has with another: 

 A red and green line between two Items shows that the magnet system considers 

them to be on the same line.  The red lines show a left neighbour relationship—

connecting an Item to the Item directly preceding it on the same line, whereas the 

green lines show a right neighbour relationship—connecting an Item to the Item 

directly following it on the same line.  This distinction allows any Item on a line to be 

used to collect all the Items on the line. 

 

The concept of a line in the magnet system is different from the concept of a line in 

the flow walker.  Whereas the flow walker will consider two Items whose shadows 

conflict to be on the same line regardless of their horizontal distance from each 

other, the magnet system will only consider two Items to have left and right 

neighbour relationships if they are close enough to each other that one may have to 

move if the other is altered.  In other words, if more than a character length is 

between two Text Items, they are not considered neighbours.  For example, in 

Figure 7.49, if only a small amount of content was added after the opening bracket 
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of the parameters used to construct the Scanner object, then the System.in 

parameter need not move. 

 A blue and yellow line between two Items shows that the magnet system considers 

them to be the end of one line and start of the next.  The yellow line shows a 

bottom neighbour relationship—connecting an Item to the first Item on the 

following line, whereas the blue line shows a top neighbour relationship—

connecting an Item to the last Item on the preceding line. 

 

Figure 7.49: Debug display for SpIDER’s magnet system. 

Every time an edit is made, the magnet system recalculates all the neighbourhood 

relationships on the currently open Frame.  When the programmer presses a key, such as 

backspace or the left arrow, the magnet system is used to reposition the surrounding text.  

The following keys utilise the magnet system: 

 Arrow Keys.  Base Expeditee functionality allows arrow keys to be used to navigate 

through the characters in a Text Item in order.  Because SpIDER tokenization 

produces a separate Text Item for each token, the magnet system extends this 

functionality to allow for navigation between Text Items.  For example, if the cursor 

is currently sitting between the last and second to last character in a Text Item, then 

pressing the right arrow once will move the cursor to the end of the Text Item.  

Pressing the right arrow an additional time will move the cursor to the beginning of 
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the Text Item on the right; accessed by way of right neighbour reference. 

 

 Backspace/Delete.  When the programmer presses the backspace or delete key, the 

magnet system must first determine whether the cursor is the start, the end, or 

somewhere in the middle of a line.  If the cursor is placed somewhere in the middle 

of the line, then a character from a Text Item will be removed, shrinking the Text 

Item.  Right neighbour references are used collect the Text Items following the 

shrunken Text Item so that they can be shuffled an appropriate distance to the left. 

 

If the cursor is placed at the end of a line and the delete key has been pressed, then 

the bottom neighbour reference and subsequently right neighbour references are 

used to collect the Items from the line beneath the altered line and move it up to 

become part of the altered line.  A similar operation occurs if the backspace key is 

used at the start of a line. 

 

When merging lines the magnet system ensures that the resulting line is not too 

long.  For example, this operation cannot cause a line to intrude over the edge of a 

box.  When the operation would cause lines to be inappropriately long, it instead 

moves up part of the line from beneath and moves the remaining lower line left a 

distance equal to the length of the tokens moved up. 

 

 Enter.  When the programmer presses the enter key, the magnet system moves all 

Text Items following the selected Text Item down.  This does not cause two lines to 

merge.  Instead, neighbourhood references are used to also move all following lines 

down as well.  If the cursor is positioned right at the start of a Text Item, that Text 

Item is moved with the Text Items to its right, otherwise, it is excluded from the 

operation.  

 

 Insert a character.  When a character is inserted, Text Items to the right of the 

modified Text Item are moved an appropriate distance to the right. 

SpIDER does not completely emulate the flow effects present in a traditional text editor.  

For example, if a vertical gap greater than the height of a line is present between two sets of 
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lines, then the magnet system will not connect the last Item in the first set with the first 

Item in the second set.  Therefore, flow effects on one of the lines in the top set will have no 

effect on the bottom set of lines.  This is a purposeful design decision, aimed at limiting the 

effect of the magnet system on spatial stability (see Section 2.3 for information on spatial 

stability). 

7.6 Integration with the Eclipse Java Development Tools 

The development of SpIDER has been achieved by extending Expeditee and the Eclipse JDT.  

This relationship is pictorially represented in Figure 7.50, identifying the primary JDT 

extensions points and aspects of Expeditee that SpIDER utilises. 

 

Use of Existing Expeditee Functionality.  Expeditee’s First Class Citizens are sufficient for 

building the new user interface elements required in SpIDER.  For example the user 

interface element that displays ‘content assist’ results is built out of linked Text Items, boxes 

and annotations.  This has the advantage of allowing a user to interact with the new user 

interface element just as other First Class Citizens.  The Frame System has been utilised to 

allow programmers to arrange Java projects and their associated code.  New Expeditee 

Figure 7.50: The structure of SpIDER represented in a venn diagram. 
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Actions have been developed to expedite a programmer’s work—such as the ability to 

create new packages or attach a main method template to the cursor. 

Expeditee Extensions.  Implementation details of the flow walker algorithm and the magnet 

system were detailed in Sections 7.5 and 7.4 respectively.  The development of this 

algorithm was necessary to allow for the spatial layout of code.  Previous serialisation 

techniques included in Expeditee were not suitable for the task. 

SpIDER wrapped the Flow Walker algorithm adding additional functionality so that it could 

operate over a tree of Frames and interact with details provided by Eclipse JDT.  This was 

detailed in Section 7.4.   

Eclipse JDT.  The Eclipse JDT provides a number of extension points.  These were used in the 

development of SpIDER.  The following are the most notable: 

 Creation and Management of Java Projects.  The packages 

org.eclipse.core.resources and org.eclipse.ui were used to access and manipulate 

the Eclipse workspace, which itself provided access to manipulate and create Java 

projects.  Of particular importance for this task was the class PlatformUI with the 

static function getWorkbench(). 

 Accessing IDE Functionality.  The org.eclipse.jdt.core package provided the 

interfaces necessary for building and interrogating Java code.  For example, this 

allowed SpIDER to request content assist information and receive alerts for 

problems with the Java code.  In each case, having obtained this information, 

SpIDER was able to build and display appropriate feedback to the user. 

 Launching and Debugging Java Projects.  The packages org.eclipse.debug.core, 

org.eclipse.jdt.launching and org.eclipse.jdt.debug.core provided the access points 

for running and debugging code. 

Java programs in SpIDER are represented by first class citizens, each located at an absolute 

position on a specific Frame.  The Eclipse JDT however, represents the same programs as 

serial text files and syntax trees.  SpIDER maps between these different representations as 

described in Section 7.4 and as shown in Sections 7.1–7.3.  Operationally this occurs when: 

SpIDER is launched; content is edited; the programmer requests content assist; inserting 
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breakpoints; setting breakpoints; stepping through code; requesting variable information 

during a debug session and reporting warning and errors.  

Obtaining SpIDER and Expeditee.  If you would like to try out SpIDER, you can obtain the 

executable at https://sourceforge.net/projects/spatial-ide-research-spider.  SpIDER’s source 

code can also be found at that location.  If you would like to run SpIDER directly from source 

code you will need to obtain the Expeditee Jar file.  This can be obtained at 

https://expeditee.org.  A video demonstrating SpIDER’s functionality can be viewed on the 

YouTube channel: https://www.youtube.com/channel/UCY_7pELIfjrxUaVN_R7j63Q.  The 

video is titled SpIDER Showcase. 

https://expeditee.org/
https://www.youtube.com/channel/UCY_7pELIfjrxUaVN_R7j63Q
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Chapter 8  

Evaluating SpIDER Spatial Layout 

The flow walker algorithm is what allows programmers to spatially layout code in SpIDER.  In 

order to achieve this, programmers are expected to draw arrows and boxes in-line with 

what the flow walker expects.  Ideally a programmer should be able to lay code out in 

SpIDER’s spatial style with minimal instruction.  Reviewing how the flow walker interprets 

code as described in Chapter 7: 

 It scans the page left-to-right and top-to-bottom and allows for slight variations in 

the Y coordinate when forming lines.  It does not however decide where columns 

would be formed. 

 It uses boxes to encapsulate content.  Boxes can contain other boxes.  This allows 

programmers to explicitly form columns, even nested columns. 

 It uses arrows combined with boxes to allow for out of flow content, as explained in 

Chapter 7. 

 Multiple arrows and boxes can be strung together to produce chains. 

An initial study was designed and executed to answer the following question: how well does 

the output of the flow walker algorithm match what participants expect?  The design of this 

study, along with justifications for that design, as well as listed demographics are provided 

prior to the study results.  Following analysis and summary of this initial study a follow-up 

study is documented. 

8.1 Initial Study 

In order to establish how well the rules that govern the flow walker algorithm match what 

humans expect to happen, a multi-choice questionnaire was devised.  Broken into six 

logically grouped parts, the quiz questions each contained screenshots of very simple 
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pseudocode paired with a multi-choice question about what the code would do.   

Participants would have to choose one of the options for each question before moving onto 

the next part.  Each time a participant selected an answer it would be recorded, so that in 

analysis it could be detected when participants changed their minds partway through a 

section.  The quiz was built as a website.  Analysis of each part of the quiz is provided in 

Section 8.1.2.  Whenever a question from this quiz is listed in this thesis, it will be arranged 

for presentation rather than how participants saw it.  Figure 8.1 is a screenshot from part 

way through the quiz, showing how participants had the questions presented to them. 

 

Figure 8.1: Screenshot from initial quiz. 

Design Justification.  As the goal was to establish if SpIDER’s spatial layout of code matched 

user expectations, simple pseudocode was used.  This simple pseudocode did not contain 

suggestive syntax such as brackets, so that the ability to use existing programming 

knowledge did not help in deciding on the answer.  The first four parts contained four 

questions each and tested a different aspect of the flow walker:   

 Part 1: The first set of questions sought to test participants’ expectations on the 

simple ordering of elements, testing specifically how people would form lines out of 

and order the elements on the page without any additional spatial elements such as 

arrows and boxes. 
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 Part 2: The second set of questions introduced boxes, to test how participants 

would react to items being enclosed in rectangles. 

 Part 3: The third set of questions introduced arrows and boxes, allowing for out of 

flow content.  Of particular interest here was how participants would treat the start 

and end of the arrows. 

 Part 4: The fourth set of questions dealt with chaining.  Questions for chaining were 

similar to those given when testing out of flow. 

A full list of questions can be found in Appendix A, ethical approval is found in Appendix C. 

Rounding out the questionnaire, parts 5 and 6 each contained two questions using 

pseudocode closer to realistic code snippets.  They also included other spatial hypermedia 

elements, such as diagrams. 

 The fifth set of questions expressed pseudocode that modelled a ball bouncing 

between two walls.  The code was expressed with a diagram to provide context to 

the code.   

 The sixth set of questions expressed pseudocode that modelled some hitbox testing.   

Representative examples from each part of the quiz are shown in the relevant sections that 

follow, where analysis of the questionnaire is given.   

As we are looking to establish how close the flow walker algorithms output matches human 

intuition, it is desirable that participants answer each question quickly without much 

thought.  To this end, each individual question within a category shares only the same range 

of functionality (for example, part two has boxes but not yet out of flow), and do not build 

on top of those previous.  This combined with the short duration of the entire questionnaire 

should heavily limit the opportunity for participants to ‘learn’ over time.     

Demographics.  The study used 18 high school students as participants.  The students were 

in the process of taking an IT course at high school.  This ensured a minimum level of 

computer literacy.  While demographics such as programming experience were recorded 

the study was concerned with how people would follow spatially laid out code and not if 

they would understand it, therefore, limited programming experience present among the 

participants was not seen as a limiting factor.  Demographics collected: 
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 All participants were male. 

 Programming experience ranged from less than a year to four years, with a mean of 

2.2 years and a mode of 2 years. 

 The most popular programming language was Visual Basic with 12 participants 

noting it as their preferred programming language.  Three participants preferred C#, 

one preferred HTML and the remaining participants did not have a preference. 

 Study Results 

Below we provide a sample of questions asked in the survey along with their results.  To 

make the connection between the multiple choice answers and the pie-charts depicting 

how participants answered, we have coloured the answers to match the respective pie 

segment.  Furthermore the answer among the provided options that the flow walker would 

produce is emphasised in bold and italics.  This colouring and formatting was not present in 

the quiz presented to participants. 

Part 1, Question 1. 

Question: What would this pseudocode print? 

 

 

 

Provided Options: 

 

A. A E D C B F 

B. A D B E C F 

C. A B C D E F 

D. B A D E C F 

E. A D E B C F 

 

Figure 8.2: Question and results from Question 1, Part 1 of the initial quiz. 

  

1 Person

15 People

2 People
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Part 2, Question 1. 

Question: What would this pseudocode print? 

 

 

 

Provided Options: 

A. F A D B E C 

B. D E F A B C 

C. F A B C D E 

D. A B C D E F 

E. A D B E C F 

F. A B C D F E 
 

 

Figure 8.3: Question and results from Question 2, Part 2 of the initial quiz. 

 Analysis of Initial Study Results 

Part 1: Forming Lines.  Averaged over four questions, the first part of this study had 72% of 

respondents agree with the flow walker.  For the first three questions respondents 

respectively agreed with the algorithm 83%, 78% and 78% of the time, however the fourth 

question had only 50% agreement with the algorithm.  Inspection of the answers for this 

question (detailed in Figure 8.4) showed that 39% of people had picked the answer that 

assumed the print statements were treated as two separate columns, processing the left-

hand column before moving onto the right-hand column.  

  

2 People

15 People

1 Person
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Question: What would this pseudocode print? 

 

 

 

Provided Options: 

A. A E D C B F 

B. A D B E C F 

C. A B C D E F 

D. B A D E C F 

E. A D E B C F 
 

 

Figure 8.4: Question and results from Question 4, Part 1 of the initial quiz. 

This result is interesting, as it suggests that participants are willing to spatially sort content 

into columns in their mind even though in traditional flat file IDEs the white space between 

content on a single line would be ignored.  It also shows that the ability to express columns 

in a spatial system is more important than in a flat file system.  Overall it appears that the 

majority of participants’ answers tend to agree with what the flow walker produces, as seen 

in Figure 8.5. 

 

2 People

9 People

7 People
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Figure 8.5: Overall agreement with algorithm, Part 1 of the initial Quiz. 

Part 2: Boxing.  The second set of questions has similar results to the first, with a slight 

increase to 78% of people agreeing with what the flow walker would produce.  For the first 

three questions participants agreed with the algorithm 83%, 78% and 89% of the time 

respectively with the final question bringing the average down with 61% agreement, see 

Figure 8.6.  Unlike with the previous section, those disagreeing with the algorithm on the 

final question had quite varied answers with 17% of participants being the second biggest 

group.   

 

Figure 8.6: Overall agreement with algorithm, Part 2 of the initial quiz. 

72%

28%
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Disagree

78%

22%
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Analysing the final question further we see that it is the only question in this section that 

contains content outside of a box.  This appears to have been the cause of confusion for this 

question.  Whilst the majority of participants agreed with the flow walker algorithm we can 

see that the most common disagreeing answer was: F A B C D E.  It seems a reasonable 

answer to conclude that participants decided that items outside of boxes are processed 

prior to items inside boxes. 

Question: What would this pseudocode print? 

 

 

 

Provided Options: 

A. F A D B E C 

B. D E F A B C 

C. F A B C D E 

D. A B C D E F 

E. A D B E C F 

F. A B C D F E 
 

 

Figure 8.7: Question and results from Question 4, Part 2 of the initial quiz. 

Part 3: Out of Flow.  The third set of questions shows a significant drop in agreement with 

the flow walker, see Figure 8.8.  Overall 47% of answers participants gave agreed with the 

algorithm.  Participant answers agreed with the flow walker 50%, 67%, 17% and 55% of the 

time respectively.  Those disagreeing with the algorithm had varied answers with two of the 

four questions having participants selecting five out of six available answers. 

2 People

3 People

11 People

1 Person

1 Person



 
 

207 
 

 

Figure 8.8: Overall agreement with algorithm, Part 3 of the initial quiz. 

Question 3 of Part 3 showed particularly divided opinion.  Only three of the 18 participants 

chose the answer that matched what the algorithm would do.  The most popular opinion 

was answer D with eight people (44% of participants).  Here we can guess that participants 

processed the left box before moving onto the right; moreover, we cannot even be sure that 

they are paying any attention to the arrow at all.  The other option more popular than what 

the algorithm would do was answer C (A D E F B C) with four people (22% of participants), 

for this answer we can guess that participants saw the arrow as attached to the first print 

statement, processing it first and then following the arrow to the second box before 

returning.  This question can be seen in detail in Figure 8.9. 

  

47%
53%

Agree

Disagree
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Question: What would this pseudocode print? 

 

 

 

Provided Options: 

A. D A B C E F 

B. A E F B C D E F 

C. A D E F B C 

D. A B C D E F  

E. D E F A B C 

F. A B C D E F A B C 
 

 

Figure 8.9: Question and results from Question 4, Part 2 of the initial quiz. 

Most of the answers provided that do not match the algorithm suggest uncertainty about 

how to treat arrows, particularly the start.  A conjecture was formed: if the starting position 

of the arrow is positioned more carefully in the centre of a box and is given sufficient space 

as to appear on its own line then people are more likely to correctly interpret how arrows 

are dealt with by the flow walker algorithm.  We take this, along with other insights from 

this initial study to a follow-up study that is described in Section 8.2. 

Part 4: Out of Flow Chaining.  The fourth set of questions continues the pattern of declining 

agreement with only 33% of participant’s answers agreeing with the algorithm, as seen in 

Figure 8.10.  All questions received varied answers with at least four different options being 

chosen for each question and one question (question 2) getting only one person agreeing 

with what the algorithm would do. 
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Figure 8.10: Overall agreement with Algorithm, Part 4 of the initial quiz. 

The pattern of answers given for Question 2 (seen in detail in Figure 8.11) reinforced the 

founding of the conjecture through the analysis of Part 3.  Over half of the respondents 

(56%, 10 participants) favoured similar behaviour to what was seen in Question 3 of Part 3, 

processing one complete box before moving onto the next. 
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Question: What would this pseudocode print? 

 

 

 

Provided Options: 

A. C A B D E F 

B. A B D E A B C F 

C. C D A B E F 

D. A D E C F B  

E. A B D E C F 

F. D E C F A B 

G. A C F D E B 

H. A B D E C F C F 
 

 

Figure 8.11: Question and results from Question 2, Part 4 of the initial quiz. 

Question 4 of Part 4 is interesting because of the varied answers it received with 28% of 

participants agreeing with the algorithm, and the most popular answer being selected by 

only 39% of people, these results can be viewed in Figure 8.12.  More testing was needed in 

order to understand what was happening with the answers to this question.  A second 

conjecture was formed: People expect boxes to be used to form columns, consequently 

arranging one box on top of another causes confusion.  If so, then would giving each box its 

own column produce answers more in line with the algorithm?  This conjecture was tested 

in the follow-up study that is described in Section 8.2. 
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Question: What would this pseudocode print? 

 

 

 

Provided Options: 

A. C A B D E F 

B. A B D E A B C F 

C. C D A B E F 

D. A D E C F B  

E. A B D E C F 

F. D E C F A B 

G. A C F D E B 

H. A B D E C F C F 
 

 

Figure 8.12: Question and results from Question 4, Part 4 of the initial quiz. 

Part 5 & Part 6: More Realistic Pseudocode.  Parts 5 and 6 featured more realistic pseudo 

code and as such we expected participants to be able to interpret the order the code 

appeared in more easily.  Beyond more realistic pseudocode the questions also showcased 

how diagrams can be integrated into the code.  Figure 8.13 shows Question 2 of Part 5 and 

Figure 8.14 shows the overall agreement with the flow walker in Part 5.  Figure 8.15 shows 

Question 2 of Part 6 and Figure 8.16 shows the overall agreement with the flow walker in 

Part 6. 
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Question: Here is the complete snippet.  At the end of the 3rd iteration through the loop, 

which walls have been hit? 

 

 

 

Provided Options: 

A. Left Wall Only 

B. Right Wall Only 

C. Neither Wall 

D. Both Walls  
 

 

Figure 8.13: Question and results from Question 2, Part 5 of the initial quiz. 
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Figure 8.14: Overall agreement with Algorithm, Part 5 of the initial quiz. 
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Question: Here is the same code again.  If hit Square(3, 7,10) is executed, what will print? 

 

 

 

Provided Options: 

A. l 

B. l l 

C. r t 

D. r b  
 

 

Figure 8.15: Question and results from Question 2, Part 6 of the initial quiz. 
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Figure 8.16: Overall agreement with algorithm, Part 6 of the initial quiz. 

The overall agreement with the algorithm in each of these sections was 58%.  As each Part 

had only two questions, potential insights are more limited.  Boxing and out of flow was 

used but chaining was not.  Three out of the four questions asked in these two Parts showed 

agreement exceeding the overall agreement of 47% found when examining Out of Flow.  

This demonstrates that changing the task from using print statement pseudocode to more 

complex pseudocode also changes the task from understanding the flow of the code to 

interpreting the code.  

 Summary of Initial Study 

The initial study showed promising results.  In the first two parts, that tested Forming Lines 

and Boxing, people agree with the flow walker algorithm roughly three-quarters of the time.  

It is likely that pseudocode (or Java code) denoting more complex tasks, and repeated use of 

SpIDER leading to familiarity, would increase this value further.  However examination of 

the Out of Flow section shows a drastic decrease in agreement with the algorithm, often 

with results showing two or three popular interpretations.  The section on Chaining 

continues this decline.  A confidence level can be calculated to determine how frequently 

participants agree with the flow walker algorithm: 57.5% += 17.39% of the time.  A copy of 

the math used to calculate this figure can be found in Appendix B. 

58%

42%Agree

Disagree



 
 

216 
 

8.2 Follow up Study 

To refine the results found in Part 3 and Part 4 of the initial study two conjectures were 

formed and a study designed to test them: 

1. The positioning of the arrow when performing out of flow would have a large effect 

on a participant’s intuition of how it functions.   

The flow walker algorithm does not pay attention to the exact positioning of the 

head of the arrow, only which box it lands in.  However the origin of the arrow can 

be used to pinpoint more precisely where the out of flow operation occurs at.  

Consequently providing space around and positioning the origin of the arrow in the 

centre of the surrounding lines would visually communicate its function more 

accurately. 

 

2. When creating a chain, people will treat separate boxes that are roughly aligned 

vertically as belonging to the same column.   

This suggested to us that avoiding this type of layout, by giving each box its own 

column, would be remove this confusion. 

 Study Design 

As we had narrower goals with this follow up study we took the opportunity to redesign 

how the conjectures would be tested.  Students from two Waikato University Computer 

Science classes were chosen as test subjects, one was a second-year programming course 

and the other a third year HCI course.  At the end of a lecture students who wanted to 

participate were shown a single problem similar to those in the initial study and asked to 

write their single letter answer on a piece of paper and hand it in as they left.  One class was 

used as a control group and given a question strongly resembling one from the initial test 

and the other the same question but modified in some way as to test one of the 

conjectures.  The results from each class were compared.  Participant pools varied in size 

between 21 and 54 as they were determined by how many people were showing up to the 

lecture and how many of those participated. 

Design Justification.  This format was less time consuming for the participants and allowed 

for rapid data collection and analysis; leading to iterative question design.  Participation was 

more informal: no demographics were recorded and all that was asked was a single letter 
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answer on provided paper.  Participants all completed the task within a couple minutes.  

The following section contains all questions and results from this follow up study. 

 Questions and Analysis 

Iteration 1—Testing Conjecture 1.  In order to test the conjecture concerning the 

positioning of the arrows the following question from the initial study (Section 3, Question 

2) was given to one of the classes as a control.  This question was chosen because it 

contained an arrow going from right to left, this removes the possibility that participants are 

ignoring the arrow completely. 

Question: What would this pseudocode print? 

 

 

 

Provided Options: 

A. A B C D E F 

B. D A B C E F 

C. A D E F B C 

D. A B C D E F A B C  

E. A D B E C F 

F. D E F A B C 

G. A B C D A B C E F 
 

 

Figure 8.17: Question and results from control case in Iteration 1 of the follow-up study. 

There were 47 participants for this question, one of whom answered “F or B” and is 

therefore not represented in the results.  No participants choose options E, F or G.  As can 

be seen the majority of opinion is equally split between two answers:  

“D E F A B C” and “D A B C E F” with the latter being what the flow walker algorithm would 

1 Person

22 People

1 Person

22 People
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produce and the former ignoring the starting position of the arrow and processing the right-

hand box completely before moving onto the left-hand box. 

The following question was used to test our conjecture that arrow positioning was 

important.  The origin of the arrows has been centred with respect to the surrounding lines 

and padding between those lines and the content has been increased. 

 

Question: What would this pseudocode print? 

 

 

 

Provided Options: 

A. A B C D E F 

B. D A B C E F 

C. A D E F B C 

D. A B C D E F A B C  

E. A D B E C F 

F. D E F A B C 

G. A B C D A B C E F 
 

 

Figure 8.18: Question and results from test conjecture in iteration 1 of the follow-up study. 

Shown to the other subject group—that had less than half the participants—we see a 

notable improvement in agreement with the algorithm.  With 18 out of the 21 participants 

selecting answer B, agreement with the flow walker has risen from about 48% to 86%.  

Using a two-tailed Chi-Square statistical test we find this result to be statistically significant 

with a p-value of 0.0036017. 
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Iteration 2—Testing Conjecture 2.  Conjecture 2 is concerned with the idea that people 

treat multiple boxes that are roughly aligned horizontally as being a part of the same 

column.  The conjecture is that confusion is created when chaining conflicts with this 

perception.  In order to test this the control question (see Figure 8.19) for this iteration is a 

duplicate from the initial study: Part 4, Question 4. 

Question: What would this pseudocode print? 

 

 

 

Provided Options: 

A. C A B D E F 

B. A B D E A B C F 

C. C D A B E F  

D. A D E C F B  

E. A B D E C F 

F. D E C F A B 

G. A C F D E B 

H. A B D E C F C F 
 

 

Figure 8.19: Question and results from control case in iteration 2 of the follow-up study. 

There were 54 participants for this question and the result was quite surprising.  In the 

initial study this question had 28% of respondents agree with what the flow walker would 

produce and in this follow up study that value went up to 69% which is much more in line 
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with the other results from Part 4 of the initial study, suggesting that the original results 

from this question were an anomaly.  However it is still possible to build a similar question 

to test our conjecture; Figure 8.20 shows this question and the results obtained from it. 

Question: What would this pseudocode print? 

 

 

 

Provided Options: 

A. C A B D E F 

B. A B D E A B C F 

C. C D A B E F  

D. A D E C F B  

E. A B D E C F 

F. D E C F A B 

G. A C F D E B 

H. A B D E C F C F 
 

 

Figure 8.20: Question and results from test conjecture in Iteration 2 of the follow-up study. 

In this version—which still produces the same answer as before—the boxes have been 

spread out in order to remove the possibility that participants will form columns out of 

multiple boxes.  With 23 participants we received another surprising result, only 10 

participants (43%) chose the option that agreed with the flow walker, still significantly 

better than the unmodified version of this question did in the Initial Study but also 

significantly worse than in the control case of this study. 
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Iteration 2—Refinement.  The mixed results relating to Conjecture 2 received from the 

initial and follow up studies provided little reason to accept or dismiss the conjecture.  A 

closer examination of the Initial Study shows that Question 4 of Part 4 is the only question 

that tests for understanding of reuse—having a box referenced by two (or more) arrows, 

causing the content of that box to be used again.  In order to test if this is producing a 

confounding factor a new question was designed to test reuse without chaining.  This 

question is seen in Figure 8.21. 

Question: What would this pseudocode print? 

 

 

 

Provided Options: 

A. A B C D E F 

B. A B E C D F F 

C. A B E C D F  

D. A E B F C F D  

E. A E B C F D 

F. A E B C F F D 

G. A B E F C F D 
  

Figure 8.21: New question designed to test reuse. 

This question had 50 respondents with 35 of those (70%) selecting the option that the 

algorithm would produce.  This shows that a large majority of participants agree with the 
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flow walker on a basic case of reuse.  While this does not definitively remove the possibility 

that reuse was causing confusion in the more complex example of chaining documented 

earlier, it does suggest that it cannot be the only aspect causing confusion. 

8.3 Summary of Studies Evaluating SpIDER Spatial Layout 

Overall the two studies discussed in this chapter produce positive results with respect to the 

understandability of SpIDER’s flow walker algorithm.  The initial study suggests that people’s 

expectations roughly match (3/4 of the time) how SpIDER interprets code ordering when 

forming lines or using boxes.  Taking the overall agreement of the first four parts of the 

initial quiz a confidence level can be calculated: 57.5% += 17.9% agreement with the 

algorithm, working with a 95% confidence level.  It should be noted that initial reactions are 

being measured and simplified pseudocode is being used.   Experience with the system and 

use of realistic code should help further.  Parts 5 and 6 used more realistic pseudocode and 

included out of flow content; the result was higher agreement with the algorithm than seen 

when testing out of flow content with simpler pseudocode. 

Once Out of Flow content was introduced, we saw a drop in agreement with the algorithm 

that only further continued when Chaining was tested.  Evidence was present that 

suggested similar problems occurring in both sections.  Two conjectures were formed and 

tested in a follow-up study.  We found: 

 Careful positioning of the arrow ends is important.  A comparison between an out of 

flow example from the initial test and a modified version of the same example 

showed that, when the arrow was positioned carefully, agreement with the 

algorithm went from 48% to 86%.  A statistical significance test shows this result to 

be significant with a p-value of 0.0036. 

 We could not confirm that careful avoidance of confounding implied columns would 

increase agreement with the algorithm, or even that participants saw implied 

columns.  The control case for the comparison test received 69% agreement with 

the algorithm, where the same question received only 28% agreement in the initial 

study. 

Given the result about positioning arrows we are left having to decide how SpIDER can be 

adapted to encourage this behaviour.  The ability to leverage Spatial Memory in a Spatial 
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Hypermedia system like SpIDER is assisted by the fact that content has been specifically 

positioned by the user (as discussed in Chapter 2).  Therefore enforcing well-placed arrows 

via a snap-to system may be overall detrimental.  Another option would be to provide 

people with a format function reached by a shortcut key that would reposition arrows in a 

local area (for example, inside the box that arrow is positioned inside when command is 

executed) so that they are centred between surrounding lines.  As this method would only 

move arrows at user request it would hopefully lessen the damage to Spatial Memory.  

Finally a third option might be to consider well-placed arrows to be a ‘Best Practise’ when 

using SpIDER; we expand on this idea in Section 10.2. 
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Chapter 9  

Spatial Development Patterns 

The benefit of well-produced code is manyfold.  Program code is written not only for the 

compiler to process, or for the programmer writing it at the time, it is also written for other 

programmers and even the original programmer at a later date, to be read, understood and 

maintained.  In order to promote code clarity and quality, various Design Patterns [65, 66], 

Programming Methodologies [67, 68, 69] and Coding Conventions [70, 71] have been 

developed.  Each of these tools in a programmer’s metaphorical tool belt addresses a 

different facet of programming.  Design Patterns establish a set of learnable and 

recognisable patterns for producing code, accelerating the code understanding process; 

Programming Methodologies provide guidelines (or strict rules) for the software 

development process to follow, keeping teams of programmers functioning as a well-oiled 

machine; and Coding Conventions provide a style guide for produced code, keeping it 

readable and more easily maintained.  

Throughout this thesis, we have expressed a desire to allow programmers to use space to 

communicate information about their code.  An overarching goal of this work is to explore 

how this might be harnessed to further promote code clarity and quality—another potential 

tool for the tool belt.  In Chapter 7 (specifically Sections 7.1 and 7.4) we presented the flow 

walker, an algorithm that achieves the necessary step of converting spatially laid out code 

into a serialised form.  Moreover, in Chapter 7, we established that there was a good level 

of agreement between the results of the flow walker algorithm and a person’s intuition 

when interpreting spatially laid out code—a good sign in terms of code understandability.  

With the development of this algorithm, it has become possible to lay code out in more 

varied ways, providing new possibilities for communicating information about algorithms to 
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other programmers or the author’s future self.  More specifically, through SpIDER, 

programmers are able to spatially position and graphically enhance code with the intent of 

communicating additional information in ways not previously possible.  When a 

programmer, or a team of programmers, using spatial layout establishes a specific 

configuration that they then repeatedly use, they gain a new vocabulary that exploits their 

Spatial Memory.  We coin the term ‘Spatial Development Pattern’ to represent this 

phenomena. 

We define a Spatial Development Pattern as: 

 Purposefully positioning software development artefacts (code, diagrams etc.) in 

space— either within the bounds of a Frame or virtually over the hyperspace 

created between multiple  Frames—so as to enhance the code, providing 

supplementary information concerning its structure, history or programmer’s 

motivation.   

We chose the name Spatial Development Pattern to elicit thoughts of Software Design 

Patterns, Programming Methodologies and Coding Conventions.  Using the phrase ‘Spatial 

Programming Pattern’ was considered, however, this fails to capture the fact that the 

flexibility and multimedia options provided by SpIDER mean that aspects of the entire 

development process can also be spatially captured, not just the act of writing code.  For 

example, a requirements document can be embedded in situ with the code, or a history of 

debugging results may be included alongside the members it relates to. 

While each of Software Design Patterns, Programming Methodologies and Coding 

Conventions assist by formalising a different facet of programming, they are only able to 

work due to consensus.  Whether it be academic institutions spreading knowledge of the 

Factory Pattern [66], company management insisting on a specific documentation style or a 

group of programmers working out of a garage deciding to use Scrum [68], the usefulness of 

these tools is determined by their adoption.  We continue this trend by presenting examples 

of Spatial Development Patterns driven by the capabilities of SpIDER, which we further 

categorise as either Expressive Patterns or Process Patters.  On this point, we not that we do 

not presume to describe a complete list of Spatial Development Patterns in this chapter.  

Instead, we take the reader on a journey, showcasing the potential of Spatial Development 
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Patterns and hopefully evoking the reader’s own imagination.  We document a set of broad 

ideas that have resulted from brainstorming and use of the SpIDER prototype.   

We begin in Section 9.1 with a review of programming capabilities in traditional IDEs aimed 

at embodying the sentiment ‘First, do no harm’.  As SpIDER is unlike any previously 

developed IDE, we wish to establish that conventional IDE behaviour and functionality is 

either retained or can be closely approximated.  Having established that no expressiveness 

has been lost, we then transition to examining the added potential that spatial layout 

provides. In Section 9.2 we present a series of ‘Expressive Patterns’.   Expressive Patterns 

use spatial layout to enhance the presentation of software in ways that illustrate the 

programmer’s view of the structure.  Section 9.3 presents a series of Process Patterns.  Also 

utilising spatial layout, Process Patterns allow a programmer to capture the steps taken to 

achieve a goal, such as documenting debug history or otherwise communicate the 

motivation behind the sequence of steps taken.  

9.1 Maintaining Existing Functionality  

The transition from a traditional IDE to SpIDER adds numerous possibilities for improving 

the software development process.  However, just as exploring these opportunities is 

important, so too is establishing that existing forms of expression have not been lost.  We 

show this through a series of examples, comparing screenshots from Eclipse—our 

representative traditional IDE—with those from SpIDER.  Each example is intended to show 

the equivalent/minimal transformation required to transition from a traditional IDE to a 

Spatial Hypermedia IDE.  In other words, rather than making full use of the novel 

functionality provided by SpIDER (a task undertaken later in the chapter), we first establish 

that functionality from traditional IDEs has been retained. 

Traditional IDEs such as Eclipse not only provide programmers with the ability to browse 

and navigate around their code, they also support programmers with integrated processes 

to help them produce code more efficiently.  Examples of such functionality include syntax 

highlighting, problem notification, content assist, step by step debugging and GUI building.  

In designing and building SpIDER, we have used Eclipse JDT.  This allows us to access the 

core functionality provided by Eclipse.  In effect, we are able to acquire the underlying data 

structures—for example, the results of a content assist request stored in a data structure, as 

opposed to a visually displayed GUI panel—and make it accessible in SpIDER.  Therefore, the 
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task of preserving traditional IDE functionality in SpIDER is a straightforward two-step 

process.  First, a ‘communication layer’ is established for SpIDER to query Eclipse JDT.  

Secondly, a set of appropriate transformations for a variety of Eclipse GUI panels must be 

implemented in SpIDER.  To fit into SpIDER’s worldview, these transformations need to use 

absolute positioning and will be more malleable for future use if they are built out of 

existing Expeditee components.  To this end, we have ported functionality such as content 

assist, debugging and more to SpIDER.   

Instead of documenting each piece of implemented functionality, we document how 

specific ‘building blocks’ are translated from a traditional IDE to SpIDER.  This approach has 

the added benefit of providing insight into how functionality not currently in the SpIDER 

prototype may be translated.  We will begin in Section 9.1.1 by demonstrating how the 

relative authoring panel/area for editing code featured in traditional IDEs can be translated 

to absolute authoring in SpIDER—see Sections 4.1 and 4.2 for the distinction between 

relative and absolute authoring.  Section 9.1.2 addresses hierarchical content layout, a 

technique frequently used by traditional IDEs to represent tree structures, and how it can be 

translated to SpIDER through the use of the linking system.  Section 9.1.3 then shows how 

the effect of scrollable content can be approximated with pagination in SpIDER.  Both 

Sections 9.1.2 and 9.1.3 both use the panels from Eclipse that surround the text area to 

make their point, however, in SpIDER, the concepts expressed also apply to authored code.  

Section 9.1.4 then moves on to looking at translations for these panels by documenting how 

buttons and hyperlinked labels can be represented in SpIDER.  Finally, Section 9.1.5 

documents how overlaid feedback, typically expressed as tooltips in traditional IDEs, can be 

implemented in SpIDER.   

 Authoring 

In comparison to a relative authoring environment, the introduction of the flow walker in 

SpIDER provides more degrees of freedom to the programmer when producing code.  We 

will demonstrate some of these new possibilities in subsequent sections of this chapter.  

However, in keeping with our goal of establishing that no functionality has been lost, we 

first must establish that one of these degrees of freedom matches the code authoring that 

traditional IDE environments provide. 
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Figures 9.1 and 9.2 respectively show a comparison of authoring in the relative IDE Eclipse 

with the absolute IDE SpIDER.  Identical Java code is produced in each environment.  When 

coding in a relative authoring environment, programmers make use of whitespace 

characters to organise their content.  Indentation is used to communicate containment and 

frequently matches the programming language’s notion of scope.  Blank lines can be used to 

provide logical boundaries between multiple steps within the same function.  As we have 

seen in Section 3.2, programmers frequently make use of blank lines to visually separate 

code within a single function.  Our analysis of 14,239 Java projects showed that 35% of 

functions have at least one blank line, and that, given a function with at least one blank 

lines, multiple blank lines were present (an average of 4.5 blank lines per function, over all 

functions).   

In SpIDER and other absolute position authoring applications, it is not necessary to explicitly 

represent white space through keyboard entry, as it can always be emulated.  The absolute 

positioning of text allows the author to visually place tokens as though their position had 

been determined by whitespace.  For example, Line 6 of the code shown in Figure 9.1 is 

indented one level.  In the translation to SpIDER, shown in Figure 9.2, this line is simply 

spatially positioned further to the right.  This achieves the same visual distinction.  A similar 

translation can occur to emulate a blank line by spatially positioning text vertically.   

Acknowledging the inconvenience of switching between keyboard typing and mouse 

positioning to achieve appropriate layout, SpIDER has been programmed to react to TAB 

and ENTER keys to respectively emulate indentation and line-breaks.  If the cursor is 

hovering over a Text Item (program language token) and the TAB key is pressed, then 

SpIDER will use the magnet system (described in Section 7.5) to collect all Text Items 

belonging to the specified line and move them a set distance to the right.  If the ENTER key 

is pressed, then SpIDER will use the magnet system to reposition the cursor as if it is starting 

a new line below the line containing the selected item.   
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Figure 9.1: Translating between relative and absolute positioning for authored code—Relative. 

 

Figure 9.2: Translating between relative and absolute positioning for authored code—Absolute. 

 Hierarchical Content 

In order to visually represent the hierarchical structure of software projects and aspects 

within them, traditional IDEs such as Eclipse make frequent use of tree widgets.  One of the 

more complex and prominent panels in Eclipse is the Package Explorer.  The Package 

Explorer provides a list of all the software projects in the current workspace.  Each of these 

projects contains a hierarchically organised collection of labels associated with files in that 

project.  The Package Explorer can be used to browse and navigate to and between these 

files. 

Figure 9.3 shows a screenshot of the Eclipse Package Explorer with a single project and its 

content listed.  This project contains a single Java package named ‘javacodeanalysis’ which 
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in turn contains five Java source files.  Several additional files and folders—containing 

information used by Eclipse to build the projects—are also contained within the project.  A 

simple translation of this setup into SpIDER uses its hyperlinking system and can be seen in 

Figures 9.4 and 9.5.   

 

Figure 9.3: Translating the file system of a small project from a traditional IDE to SpIDER—Traditional. 

Figure 9.4 shows a screenshot of the Project Frame as it relates to our example.  The title of 

the Frame is set to emphasise its role in the hierarchy.  Beneath the controls, a list of Text 

Items represents the top level view of the project.  At the head of the list is a Text Item 

linking to the package ‘javacodeanalysis’.  Clicking on this Text Item will navigate the 

programmer into the package, shown in Figure 9.5.  On this resulting Frame, the 

programmer is presented with the list of classes contained within the package.  Clicking on 

any of the Text Items making up this list of classes will navigate the programmer inside the 

appropriate class so that they may resume programming.  
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Figure 9.4: Translating the file system of a small project from a traditional IDE to SpIDER—SpIDER Project Frame. 

 

Figure 9.5: Translating the file system of a small project from a  
traditional IDE to SpIDER—SpIDER Package Frame. 

 Pagination 

The example translation given in the previous section was modest in size and not 

representative of a more significant software project.  In Figure 9.6 we present a screenshot 

of the Package Explorer with the Expeditee source code loaded into Eclipse.  Eclipse handles 

a large number of packages by using a scrollable panel.  Matching this in SpIDER by adding a 

scrollable panel would be in conflict with our decision to use a fixed sized spatial interface 

(see Section 5.3), so seeking another solution is preferable.  Ultimately, if we were to 
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attempt to fully utilise the spatial layout capabilities of SpIDER, we might choose to arrange 

packages in some spatially significant way—for example, as a diagram showing the structure 

of the project (as seen in Section 9.2.1).  However, sticking with the theme of the section, 

we are looking for the minimum required change to translate from a relative IDE such as 

Eclipse to an absolute IDE such as SpIDER.  The most straightforward automatable layout 

approach is to use pagination.     

 

Figure 9.6: Adapting a large amount of information from a traditional IDE to SpIDER—Traditional. 

The result of the translation from Eclipse to SpIDER is split over multiple Frames.  The first 

Frame is shown in Figure 9.7 and the second in Figure 9.8.  Starting with Figure 9.7, as with 

our previous example that used a smaller Java project, the packages are represented by a 
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list Text Items, each of which has a hyperlink leading to a Frame representing the inside of 

the appropriate package.  Below the final Text Item in the list of packages is an additional 

Text Item with content “//Next”, linking to the Frame seen in Figure 9.8. 

 

Figure 9.7: Adapting a large amount of information from a traditional IDE to SpIDER —SpIDER Project Frame. 

Notice the title and controls present on the Frame in Figure 9.8.  We can see that instead of 

being a package frame, it is still a project frame—an important distinction to be made as any 

packages created here are not sub-packages of an existing package.  At the end of the list of 

packages, links exist to the next and previous Frame.  This pagination process is repeated 

until all packages have been listed.  In order to list all 102 Expeditee packages in this fashion, 

seven Frames are required. 
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Figure 9.8: Adapting a large amount of information from a traditional IDE to SpIDER —SpIDER Project Frame 
cont. 

 Controls 

Traditional IDEs such as Eclipse create and logically position controls for performing 

common actions.  Frequently used buttons—such as those for running the current 

application—are prominently positioned.  Furthermore, the state of Eclipse at any given 

time determines what controls are visible and where they are placed.  These controls are 

arranged into several purpose-built panels flanking the main authoring area.   

SpIDER ships with a pre-bundled set of controls that operate in an equivalent manner.  

These controls provide access to a selection of imported JDT functionality.  Figures 9.9 and 

9.10 compare some of the controls in Eclipse and SpIDER respectively.  Both applications are 
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in the middle of a debugging session—halted at a breakpoint—and as such are displaying a 

specific set of controls.  When activated, these buttons (and interactive labels) adjust the 

state of their environment.  For example, both environments contain buttons for stepping 

through code and activating these buttons will execute some number of instructions.   

These controls in SpIDER are produced by associating a Text Item or image (as they are in 

Figure 9.10) with a link or action—see Section 6.4.3 for information on actions.  In a similar 

fashion to Eclipse, the controls visible at any given time are determined by the current state 

of SpIDER.  

 

Figure 9.9: Controls in Eclipse. 

 

Figure 9.10: Controls in SpIDER. 

 Overlaid Feedback 

Some user actions require the IDE to respond by doing more than updating the state of the 

environment.  To this end, Eclipse (and other traditional IDEs) often use tooltips to provide 

feedback.  One such example is Content Assist.  In Eclipse, as the author is typing, a list of 

‘completion suggestions’ may appear—overlaid on top of the authoring area.  Tokens prior 

to the cursor position are used as context for filtering the completion suggestions.  The 

programmer is then able to use these suggestions to complete the token they are typing.  

Figure 9.11 shows the source code of the ListGenerator class, produced in Eclipse.  The 

programmer is currently part way through a content assist request on Line 10.  Having so far 

typed “rand.next”, the list of completion suggestions is populated by public members from 

the Java library class ‘Random’ that start with “next”.     
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Figure 9.11: Translating Content Assist (a form of overlaid feedback) from a traditional IDE to SpIDER—
Traditional. 

In Figure 9.12, the same code and Content Assist request have been reproduced in SpIDER.  

In order to make a Content Assist request in SpIDER, the programmer has used the key 

combination CTRL + SPACE.  Unlike the results of a content assist request produced by 

Eclipse, which is ephemeral, SpIDER builds the results out of Text Items and places them in 

an annotated box.  This annotated box is then attached to the cursor as if the programmer 

had picked it up.  This allows the programmer to spatially position the results of the content 

assist request and subsequently manipulate them just as any other set of Text Items.  

Alternatively, the programmer may decide to dismiss the content assist by pressing the 

middle and right mouse buttons together (the operation for delete).   
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Figure 9.12: Translating Content Assist (a form of overlaid feedback) from a traditional IDE to SpIDER—SpIDER. 

9.2 Expressive Patterns 

A programmer who arranges content using space—either within a Frame or across the 

hyperspace between Frames—with the intent of communicating auxiliary information about 

that content is building an Expressive Pattern.  In the wider context, an Expressive Pattern is 

a form of Spatial Metaphor.  We start this section by detailing this broader connection, 

before going on to document multiple categories of Expressive Patterns.  More specifically, 

in Section 9.2.1 we will show how documentation can be embedded in situ with program 

artefacts.  Section 9.2.2 will then explore the idea of using hyperspace to escape the 

hierarchical structure traditionally used to organise software projects.  Sections 9.2.3 and 

9.2.4 will provide examples of using spatial positioning to emphasise and logically group 

code fragments respectively.  Finally, Sections 9.2.5 and 9.2.6 will examine how the flow 

walkers ‘out of flow’ behaviour can be used to segregate part of a code fragment. 
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Spatial Metaphor.  A Spatial Metaphor is a mechanism that, when employed, allows a 

person to gain knowledge concerning a non-spatial element through its spatiality [54].  An 

example from everyday life can be seen during a trip to the supermarket.  The juxtaposition 

of a price tag and loaf of bread on a shelf can be used to imply the price of that bread.  

Computer user interfaces also make use of Spatial Metaphors.  For instance, in Microsoft 

Word, the close proximity and grouping of controls for creating bullet points and numbered 

lists show that they are functionally related—both are used to create different forms of lists.   

Sometimes in HCI, a more specific name is used to communicate the use of a Spatial 

Metaphor, such as in [72] where Greenburg and Roseman use the phrase Room Metaphor 

in place of Spatial Metaphor to clarify that their work on collaboration attempts to treat a 

user interface as a specific space—a room.  Our use of the term Expressive Pattern can also 

be viewed in this way.   

User interfaces presented earlier in the thesis, for the purpose of explaining aspects of 

Spatial Memory and Spatial Layout (Chapters 2, 4 and 5), can also be framed in terms of 

their Spatial Metaphor.  Moreover, we can distinguish between two different types of 

Spatial Metaphors used in such user interfaces as follows. 

 Tailored Spatial Metaphor.  When developing a user interface, the designer may 

wish to promote a specific type of Spatial Metaphor.  Implied in this case is that the 

goal is to produce a high-quality Spatial Metaphor.  Because a specific Spatial 

Metaphor is being developed, interactions with it can be tailored to lead the user 

towards the end goal. 
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 Unconstrained Spatial Metaphor.  Alternatively, the user interface designer may 

wish to provide users with the ability to create their own Spatial Metaphors.  The 

goal, in this case, is not to produce a specific high-quality Spatial Metaphor, but 

rather to provide the users with a framework and appropriate tools with which to 

create their own.  This can be achieved by developing and subsequently providing 

users with the tools needed to build Spatial Metaphors.  It is worth noting that this 

case is only suitable for authoring applications, such as programming in an IDE.  A 

corollary of this is that the end user is unlikely to be interested in creating a high-

quality Spatial Metaphor, instead, they will be trying to create an acceptable and 

suitable Spatial Metaphor in as little time as possible, without distracting from their 

primary task. 

CommandMaps [15], Space Filling Thumbnails [17], Code Thumbnails [12], Code Canvas [51] 

and Code Bubbles [52, 53] are all examples of applications using Tailored Spatial Metaphors.  

All of these applications are either not authoring applications—CommandMaps, Space 

Filling Thumbnails and Code Thumbnails—or specifically prescribe what authored content 

can be contained within a spatially positionable container.  For example, a container in Code 

Canvas can contain any content that would otherwise be presented in a Microsoft Visual 

Studio tab: this includes, code files or images but not a combination of these or code 

snippets.   

 

Of the previously reviewed applications, VIKI [36, 37, 42], VKB [38, 39, 40] and Expeditee 

[41, 50, 46, 47] all belong in the Unconstrained Spatial Metaphor category.  They have all 

provided tools for users to create Spatial Metaphors.  For example, the Collections, 

Composites and Objects in VKB support a variety of media and do not impose restrictions on 

the content placed within them. 

 

Boxer [73], developed by diSessa and Abelson, is another example of an application utilising 

unconstrained Spatial Metaphors.  Seeking to develop an accessible programming language 

they produce Boxer, an application that we would classify as Spatial Hypermedia, and that 

intertwines visual and spatial properties with a programming language to allow 

programmers to express containment, scope and cross-cutting access as well as visually 
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inspect the results of functions.  The spatially positionable container in Boxer is the Box, 

which is very similar to Objects from VIKI and VKB. 

 

While developed independently, in retrospect, we can classify an Expressive Pattern as an 

Unconstrained Spatial Metaphor.  An Expressive Pattern in SpIDER is an instance of a Spatial 

Metaphor, designed to communicate additional information about the produced code and 

made possible by SpIDER’s flow walker.  The tools provided by SpIDER for users to produce 

Expressive Patterns differ from those provided by VIKI, VKB and Boxer by focusing on 

representing the flow of content rather than its position and containment in the information 

space.  Also, differentiating SpIDER from Expeditee is the fact that Expeditee, as a general 

authoring environment, is not required to serialise produced content.  SpIDER is required to 

do this so that authored program code can be compiled, ran and debugged. 

 In Situ Documentation    

It is not difficult to conceptualise scenarios where more integration between documentation 

and code would be useful.  Programmers often produce documents—as a result of 

planning—that describe the structure of their software projects.  To use a Spatial Metaphor, 

functionality to lessen the distance between these planning documents and code in a 

traditional IDE is limited.  A typical solution may be to position a comment containing a link 

to the planning documents in a relevant place in the code.  Applications such as Code 

Canvas [51] allow images to be included, in their own container, side-by-side with relevant 

containers of code.  This functionality could be used as a step in the right direction, 

lessening that distance by including the documentation as an image.  SpIDER’s multimedia 

support also makes this possible, but it can go further, integrating documentation with 

code.   

Figure 9.13 one way in which Expeditee’s source code could be arranged in SpIDER.  The 

Frame seen in this figure is the top-level Frame for the Expeditee code base in SpIDER.  

Spatial layout, colour and images are used to communicate information about the structure 

of the project, similar to a UML Component Diagram: 
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 There are two primary packages in Expeditee: org.expeditee, containing the base 

Expeditee source files and org.apollo, containing the code for an extension to 

Expeditee that adds hypermedia tools for authoring and editing music.  These 

packages are each represented by a large red box.  Within these red boxes are Text 

Items, each linking to either a class or sub-package.   

 

At a glance, it can be seen that the red box surrounding the Apollo code is smaller 

than that surrounding the Expeditee code.  The proportions of the boxes have been 

deliberately chosen by the programmer to indicate where the majority of the code 

lies. 

 

 Images are used to provide redundancy and reinforce which red box is associated 

with each of the previously mentioned packages.  Rather than force a programmer 

to read the label associated with the red box, the pictures can be used to achieve 

the same association.  The image in the left box is the icon for Expeditee whereas 

the image in the right box is the icon for Apollo.  These images, due to their 

prominence and proximity to related content are suitable candidates for landmarks.  

 

 As previously stated, within the red box there are several Text Items which lead to 

further content, most of which are surrounded by additional boxes. 

o Text Items without an additional surrounding box represent classes.  When 

clicked, the programmer is navigated inside the class and is able to view, 

author or edit code. 

o Text Items with an additional surrounding box represent sub-packages.  

When clicked, the programmer is navigated into that package. 

 

  Colour is used to group packages together by related function.   

o Packages with a blue surrounding rectangle contain functionality concerned 

with authoring and running user scripts.   

o Packages with a green surrounding rectangle contain functionality 

concerning with IO, both local file system IO and network IO. 
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o Packages with a yellow surrounding rectangle contain functionality that 

effects visual aspects of the GUI. 

o Packages with a pink surrounding rectangle contain resources that 

Expeditee and Apollo require—such as icons. 

o Packages with a white surrounding rectangle and black outline contain 

packages concerned with user settings and auxiliary functionality.  

o Packages with a blue surrounding rectangle and red outline are only 

featured in the Apollo section of the project layout and contain functionality 

concerned with providing audio authoring.  

This solution has allowed the programmer to fully integrate code artefacts—in this case 

packages and classes—with some high-level aspects of documentation.  This has allowed 

these program artefacts to provide a dual purpose, functionally supporting the authoring of 

the expeditee-svn software project while at the same time providing future programmers 

with information on its structure. 

 

Figure 9.13: Spatially arranging the package structure of Expeditee in SpIDER  
so as to document additional information. 

 Escaping Hierarchical Structure 

The Frame and Linking system in SpIDER provides programmers with the ability to segment 

code across multiple Frames.  To review, as can be seen in Figure 9.14, a single function may 

be broken into component parts, spread across multiple Frames, each part represented by a 

Text Item linking to one of these Frames.  This creates a hierarchical structure.  However, 
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links can also be used to express cross-cutting relationships—escaping hierarchical 

structures.   

 

Figure 9.14: A function split into component parts in SpIDER, expressed with hierarchical structure. 

Consider a scenario where a programmer has produced the above code to validate a specific 

chess move.  They now wish to produce a test function to help ensure their code functions 

as expected.  To achieve this, the programmer first creates a new top-level package to hold 

test classes and a GameStateTest class for holding tests concerning the current game state.  

This is followed by writing the code for generating a wide range of possible moves and 

testing them.  If the programmer now wished to navigate between the isValidMove function 

and the isValidMoveTest function they would currently have to navigate up the hierarchy to 

the top level, causing navigation over at least three Frames, followed by navigation down a 

Project: Chess

3

Package: chess 

2

GameState

1

isValidMove

0

(other classes)

Package: tests

4

GameStateTest

5

isValidMoveTest

6

(other test 
classes)

Figure 9.15: Hierarchical representation of navigation actions  
between two functions of different classes. 
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different branch, causing navigation over at least another three Frames.  This navigation is 

represented pictorially in Figure 9.15.  If it becomes apparent that isValidMove is a 

particularly problematic function, then the programmer may find themselves making this 

trip multiple times. 

In order to circumvent this process, the programmer is able to create some controls with 

cross-cutting links.  Figure 9.16 shows the Frame with the isValidMove function.  Figure 9.17 

shows the Frame with the isValidMoveTest function.  Prominently positioned on each of 

these Frames, at the top, is a link to the other.   These links allow the programmer to quickly 

navigate between these two Frames, making it unnecessary to perform the previously 

mentioned, comparatively expensive, navigation operation.  It is worth noting that the 

programmer is free to use cross-cutting links to communicate association and accelerate 

navigation between any two Frames as they see fit.  

 

Figure 9.16: The isValidMove function with a cross cutting link to isValidMoveTest. 

 

Figure 9.17: The isValidMoveTest function with a cross-cutting link to IsValidMove. 
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 Emphasis  

Figure 9.18 shows a fragment of a personal contacts application that has been produced in 

SpIDER.  The particular function we have chosen to focus on searches through a data 

structure of contacts, looking for those whose hometown is the specified location.  The 

upper half of the function performs some argument checking and pre-processing—a 

necessary but mundane step—the lower half of the function performs of search and 

produces output. 

 

Figure 9.18: A function to search a list of contacts and subsequently print those living in a specified area—no 
emphasis present. 

In maintaining this function, a programmer may decide to emphasise the important aspects 

of the code: the search, output and documentation.  Figure 9.19 shows the same content 

seen in Figure 9.18 but with emphasising applied to the code deemed important.  The for-

loop and its subordinate code that is used to search through the contacts data structure is 

now contained within in a large red box; that is in turn further enclosed by a yellow box to 

exaggerate the loops prominence on the Frame.  Documentation, in the upper-right 

corner—that has been left as a note for other programmers—has also been placed in a box.  

In contrast, the code responsible for performing the required checks and pre-processing has 

been left unchanged.  An additional step may be to move the code responsible for this 

checking onto another Frame, substituting a single link, further de-emphasizing the 

mundane portions of the code.  This is a process we refer to as Lightweight Abstraction and 

is expanded upon in Section 9.2.5.  
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Figure 9.19: A function to search a list of contacts and subsequently print those living in a specified area—
emphasis used. 

 Logical Grouping 

When a programmer purposefully groups one code fragment with another, they are 

communicating that a logical connection between them exists.  This is done to improve code 

readability and reduce the time spent understanding the code.     

An example of logical grouping can be seen when boxes are used purely as a visual aid, to 

categorise code fragments that a programmer would naturally place on the same Frame.  

Consider the list of fields, shown in Figure 9.20, taken from the same chess program 

featured in Section 9.2.2.  Boxes are used to visually distinguish three groups from each 

other. 

 Top Group.  This group contains three fields, two of which form a subcategory.  The 

subcategory is represented using a green box within the surrounding blue box.  The 

field canvas is used to execute the commands to draw the chess board.  The fields 

width and height are used to specify the size of the window, and therefore the size 

of the squares on the chess board. 

 Middle Group.  This group contains two fields, each relating to the current state of 

the chess program.  The first field in this group is a reference to a class the 

programmer has created to keep track of the current state of the board.  The 

second is another class the programmer has created to alert the player of specific 

changes to the state of the game—such as the win condition being satisfied. 
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 Bottom Group.  This group contains only a single field, a reference to an inner class 

GamePiece.Creator.  When instantiated, this object acts as a factory for producing 

game pieces. 

 

Figure 9.20: A list of categorised fields from the chess program implemented in SpIDER. 

Another example of logical grouping can be seen in Figure 7.3 on page 155.  In this case, two 

code fragments—functions—that, should the author not be trying to make a point, would 

normally remain separate, are being deliberately placed side-by-side on a single Frame.  

Boxes are used to semantically separate them from each other so that the flow walker may 

function correctly.  Both of these functions execute similar code on different, but related, 

variables.  Whereas the example in Figure 9.20 uses grouping to distinguish subgroups in a 

list of code fragments that naturally go together, the example in Figure 7.3 uses grouping to 

pair two normally separate code fragments together. 

 Alternative Forms of Abstraction 

Consider a scenario where the length and complexity of a function is growing.  Readability 

begins to deteriorate.  Opportunities to label and reuse fragments of code may be being 

missed.  At this point the programmer may decide to refactor the code, making use of 

abstraction to break up the code, thereby regaining readability.  In this scenario, the 

programmer is faced with a decision: what form of abstraction is most suitable for the given 

situation?   

Abstraction in General.  We consider the creation of an abstraction to be any 

transformation that allows for a fragment of code—regardless of size—to be seen to have 

greater independence than prior to the transformation being undertaken.  An abstraction 
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can be used to improve readability or provide opportunities for reuse.  We can define an 

abstraction in terms of three properties: a label, the code’s context and blocking, the latter 

being a term we coin, and expand upon shortly.  We make use of two running examples 

from traditional programming to illustrate these properties: the creation of a new function 

and use of blank lines for separation. 

 Label.  The presence or absence of a label (such as an identifier) determines how 

and if the abstraction can be referenced.  For example, when extracting code into a 

new function, a name must be specified.  This name has formal meaning in the 

underlying programming language and allows for code reuse.   

 

When separating the steps of a function with blank lines, documentation may 

optionally be used to explain what each step does.  Such comments also perform 

the task of labelling.  They assist with code understanding, however they do not 

allow for code reuse.  

 

 Context.  When an abstraction is created, the context surrounding the fragment of 

code being abstracted may change.  For example, when extracting code into a new 

function, variables in the block of code that now forms the body of the new function 

may no longer be in scope; this requires a set of parameters to be specified.  These 

parameters have formal meaning in the programming language.   

 

Using blank lines to separate steps in a function does not involve formal changes to 

context.  However, documentation may be used to create artificial context to 

improve readability.  For example, a programmer may wish to list the names of the 

variables used in the code that follows.  

 

 Blocking.  We define blocking to refer to the degree that the abstracted excerpt of 

code is removed where it is used (its origin).  In general, the blocking of an 

abstraction is best viewed in relation to the blocking of another abstraction.  That is, 

when comparing two abstractions, one will be more removed from its origin than 

the other.  For the purpose of our explanation we will begin by documenting the 

two extremes of blocking. 
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o In Situ.  This is when an abstraction does not syntactically move the code 

being abstracted from its origin.  For example, using blank lines to separate 

steps in a function produces a visual distinction but does not cause any 

syntactic changes. 

o Removed.  This is when an abstraction produces a distinct visual separation 

between the abstracted code and its origin.  For example, extracting a 

fragment of code to become a new function produces both a visual and 

syntactic change to the code: content from the abstraction is replaced with 

a call to the newly created function and the abstracted fragment of code is 

quite possibly no longer visible at the same time as the function it was 

extracted from. 

Table 9.1 summarises the structure of a general abstraction.  Specific abstractions will use 

one of the two forms of Blocking listed.  The form of blocking used determines the 

requirements for labelling and context.  For example, a specific abstraction that uses 

Removed Blocking must have a label and must create a new context.  Throughout this 

section, as we document further examples of abstractions, we will specify which form of 

Blocking they use. 

BLOCKING LABEL CONTEXT 

In Situ 
Optional.  No formal 

meaning. 

Optional.  No formal 

meaning. 

Removed Required. Creates new context. 
Table 9.1: The two general forms of Blocking used to in abstractions and their rules for labelling and context.  

Abstraction in Traditional IDEs.  In a traditional (relative) programming environment the 

programmer’s options for abstraction are more limited compared to those available in 

SpIDER.  One of the options is to use a form of abstraction we will refer to as White Space 

Partitioning.  This uses minimal editing to visually bring out logical boundaries between 

fragments of code through white space or documentation.  An option that requires more 

editing is to use an abstraction we refer to as Extracting as Function.  This is accomplished 

by converting a logical block of code into its own function, potentially with no scope in 

common.  If the programming language used supports closures, then an intermediate 
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transformation would be to define an anonymous function, requiring less change to context 

than a fully extracted function.  This abstraction is called a Lambda Abstraction.  

Table 9.2 lists these three forms of abstraction.  Each entry specifies the form of Blocking 

used and how it is constructed in terms of label and context.  We list these in order from 

least removed to most removed. 

 White Space Partitioning (row 1) uses In Situ Blocking.  The presence or absence of a 

label or change in context is, as with In Situ Blocking in general, optional. 

 Extracting as Function (row 3) uses Removed Blocking.  Whereas the general 

definition of Removed Blocking tells us that a label is required and that new context 

is created, the entry for Extracting Code provides more detail.  Not only must the 

label be present, but it must be unique as programming languages require functions 

to have unique names.  The new context that is created is determined by a list of 

parameters and the destination of the new function. 

ABSTRACTION BLOCKING LABEL CONTEXT 

White Space 

Partitioning 
In Situ 

Optional.  No formal 

meaning. 

Optional.  No formal 

meaning. 

Lambda 

Abstraction 
In Situ 

Typically no label but 

can be stored in 

variable for reuse. 

Parameters.  Scope 

depends on where it 

is declared. 

Extracting as 

Function 
Removed 

Required.  Must be 

unique. 

Parameters.  Scope 

depends on 

destination of new 

function. 
Table 9.2: The structure of three specific abstractions in traditional programming—White Space Partitioning, 

Lambda Abstraction and Extracting as Function. 

Lambda Abstractions use In Situ Blocking.  A Lambda Expression is not created with a visible 

label.  The programmer can choose to apply a label by assigning it to a variable—necessary 

if it is to be used multiple times.  As a function, a Lambda Expression has a new context in 

the form of parameters.  There is an important distinction between the context created by a 

Lambda Abstraction and Extraction as Function abstraction.  Whereas the scope in a new 

function—created by the Extracting as Function abstraction—can be completely detached 
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from the scope it originated from, the scope in a Lambda Expression is tied to the location it 

was declared. 

The inclusion of Lambda Abstractions provides a compromise between White Space 

Partitioning and Extracting Code.  It now begins to become beneficial to start thinking of 

specific abstractions as sitting somewhere on a continuum.  We will use Blocking as our 

primary axis.  Towards the left of the continuum, abstractions with In Situ Blocking are 

placed.  Towards the right of the continuum, abstractions with Removed Blocked are placed.  

When comparing two abstractions with the same blocking, those with fewer restrictions 

concerning their label and context are placed to the left of those with more.  For example, 

both White Space Partitioning and Lambda Abstractions use In Situ Blocking, however White 

Space Partitioning does not require new context to be created, whereas a Lambda 

Abstraction does.  This places White Space Partitioning further left than Lambda Abstraction 

on our continuum.   

Abstraction in SpIDER.  Just as the inclusion of Lambda Abstractions did, SpIDER’s flow 

walker provides the programmer with additional options when creating an abstraction—

more points along the continuum.  The primary method by which this is achieved is by 

refining our definition of Removed Blocking.   

Figure 9.21 presents a diagrammatic refinement of the structure of an abstraction—

presented without refinement in bullet point form earlier in the section when describing 

abstraction in general.  Two new forms of Blocking have been introduced, Out of Flow and 

Off Frame.  Previously, a graphical representation would have shown two forms of blocking: 

In Situ and Removed.  Refinement of the later has allowed it to be considered a category.  It 

is within this category that the new forms of blocking we are introducing are placed—along 

with the existing Removed Blocking.  We use the phrase Lightweight Abstraction to refer to 

specific abstractions that use Out of Flow or Off Frame blocking. 
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Figure 9.21: The general structure of an abstraction in SpIDER. 

Examples of code being placed off frame or out of flow can be seen throughout the thesis, 

most notably in Sections 7.1.6 and 7.1.3 respectively.  Out of Flow Blocking uses flow walker 

functionality to remove an abstracted fragment of code from the general flow.  Off Frame 

Blocking uses the Frame and Linking System to position the abstracted block of code on its 

own Frame.  Both visually displace code more than White Space Partitioning does, with Off 

Frame Blocking producing more separation that Out of Flow Blocking.   

Table 9.3 shows the forms of blocking present in SpIDER.  When defining a specific 

abstraction in SpIDER, we use this table over Table 9.1 to determine the resulting contracts.  

Labelling and Context on Out of Flow Blocking is identical to Inline Blocking, the difference is 

the degree to which the abstracted block of code is removed.  While abstractions using Off 

Frame Blocking do not create syntactically meaningful context as those using Removed 

Blocking do; a label is required.  This label comes in the form of the content associated with 

the link leading to the Frame with the abstracted code.  The content of this label has no 

effect on the serialised structure of the code produced in SpIDER and can therefore be 

anything; in practice however, a descriptive phrase of the code behind the link would be 

more useful than a nonsensical phrase such as an ellipsis (“…”).  Additional labels such as 

annotations, comments or hypermedia may also be used to support the required label. 
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Abstraction in SpIDER

Label

...

Blocking

In Situ
Removed 
(category)

Out of 
Flow

Off Frame

Lightweight 
Abstraction

Removed

Context

...
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BLOCKING LABEL CONTEXT 

In Situ 
Optional.  No formal 

meaning. 

Optional.  No formal 

meaning. 

Out of Flow 
Optional.  No formal 

meaning. 

Optional.  No formal 

meaning. 

Off Frame 
Required.  No formal 

meaning. 

Optional.  No formal 

meaning. 

Removed Required. Creates new context. 
Table 9.3: The four general forms of Blocking used to in SpIDER abstractions  

and their rules for labelling and context. 

Additional options for labelling and providing context are also available.  When creating 

abstractions in traditional IDEs, programmers are limited to using text-only documentation 

for markup.  SpIDER’s hypermedia support allows programmers to label and provide context 

with images, annotations, sound files, diagrams etcetera.  For example, in the case of 

abstractions using Off Frame Blocking, the link leading to the Frame with the abstraction on 

it can be used to provide context. 

Table 9.4 summarily documents the existing three specific forms of abstraction in traditional 

IDEs in addition to three Lightweight Abstractions made possible by SpIDER’s flow walker 

algorithm—as was the case in Table 9.2, entries are ordered as they would appear in the 

continuum we have been constructing.  The three Lightweight Abstractions are: Anonymous 

Indirection, Flow Chart (newly introduced to demonstrate how new forms of abstraction can 

be given consideration) and Extracting as Frame.  An example of Anonymous Indirection can 

be seen below.  A Flow Chart abstraction is suitable for distinguishing the steps of an 

algorithm when each step is of comparable size, chaining (Section 7.1.4) is used to represent 

each step.  Extracting as Frame moves abstracted content onto a new Frame, substituting a 

Text Item linking to the newly created Frame.  This is visually similar to the results achieved 

by Extracting as Function.  As with Extracting as Function, a label is required.  However, in 

keeping with the requirements of its Off Frame Blocking, Extracting as Frame does not 

require this label to be unique. 
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ABSTRACTION BLOCKING LABEL CONTEXT 

White Space 

Partitioning 
In Situ 

Optional.  No formal 

meaning. 

Optional.  No formal 

meaning. 

Lambda 

Abstraction 
In Situ 

Typically no formal 

meaning.  Must be 

stored in variable for 

reuse. 

Creates parameters.  

Scope depends on 

where it is declared. 

Anonymous 

Indirection 
Out of Flow 

Typically not, never 

with formal meaning.  

Accessed via arrow.  

Can be accessed 

multiple times per 

Frame. 

Optional.  No formal 

meaning. 

Flow Chart Out of Flow 

Typically not, never 

with formal meaning.  

Accessed via arrow.  

Can be accessed 

multiple times per 

Frame from any step 

in the chain. 

Optional.  No formal 

meaning. 

Extracting as 

Frame 
Off Frame 

Required.  No formal 

meaning. 

Optional.  No Formal 

Meaning. 

Extracting as 

Function 
Removed 

Required.  Must be 

unique. 

Creates parameters.  

Scope depends on 

destination of new 

function. 
Table 9.4: The structure of six specific abstractions in SpIDER, three of which are Lightweight Abstractions. 

Figure 9.22 shows an example of an Anonymous Indirection abstraction.  The code in the 

figure shows a recursive sort function—part of a merge sort application implemented in 

SpIDER—that is split into three parts.  Anonymous Indirection is used to visually separate 

the three parts from each other.  The first part is the base case for the recursive function.  

The second part creates and manipulates arrays to further the sorting process.  The third 

part executes the recursive call.  In keeping with the specifications of an Anonymous 

Indirection abstraction, no formally meaningful label is provided; an arrow is used to access 

the abstracted code.  In order to assist with readability, an informal label is provided in the 

form of an annotation.  No new context is created—formally meaningful or otherwise. 
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Figure 9.22: Anonymous Indirection used to express multiple steps in a function. 

Consider the continuum we have been building and the specific abstractions placed along it 

(Table 9.4).  As a thought experiment we can argue that Anonymous Indirection is the most 

suitable abstraction to use to delineate the steps in the sort function from Figure 9.22.  

Firstly, Extracting as Function and Lambda Abstractions can be eliminated from 

consideration because the code we are looking to abstract contains return statements.  

Furthermore, the length of the code fragment to abstract in each case is sufficiently short 

that moving them onto their own Frame seems like an over-engineered solution.    Similar 

reasoning can be used to eliminate a Flow Chart Abstraction.  This leaves us with White 

Space Partitioning, Anonymous Indirection and any other specific abstractions we have not 

documented.  For the purpose of our thought experiment we can eliminate those not 

documented.  It therefore comes down to the degree of visual removal we desire.  As both 

fragments of code we wish to extracted are flanked by either the middle step of the 

function or boilerplate code, it seems logical that more removal is better; therefore, an 

Anonymous Indirection abstraction seems like the most logical choice.    

 Alternative Handling of Containment 

Consider the task of creating an action listener in Java.  There are multiple approaches to 

producing code that satisfies this task.  Figure 9.23 shows one of these approaches—

creating an anonymous class instance.  In producing this code, no spatial behaviour beyond 

that which is described in Section 9.1.1 has been utilised; providing a baseline from which to 

demonstrate an alternative way to express containment in code.  This fragment of code is 
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from a calculator program implemented in SpIDER.  Specifically, this code specifies a set of 

actions to execute when the user activates the ‘Add’ button. 

 

Figure 9.23: Creating an anonymous action listener—without using deconstruction. 

We introduce the term ‘Deconstruction’ to describe an Expressive Pattern where the 

programmer utilises chaining and spatial positioning to improve the readability of code.  

Readability is improved by extending the expression of containment from using bracket 

pairs and indentation to using arrows and boxes.  Code is split into parts, where each part is 

syntactically contained within a surrounding part.  Chaining is used to direct the flow of the 

code between parts.  Arrows are positioned between opening and closing brackets.  

Brackets are visually positioned directly next to each other.  The positioning of brackets as 

well as the presence of boxes and arrows visually communicates which part encloses any 

given part. 

Figure 9.24 shows the same code as seen in Figure 9.23.  In this case however, 

Deconstruction has been used to spatially lay out the anonymous class and its association 

with the ‘btnAdd’ variable.  In this example, the code has been split into four component 

parts.  The deconstructed layout helps promote the important elements of the code by 

minimising the visual impact of less significant parts of the code.  In particular:   

1. The positioning of the instigating statement makes it easier to identify ‘btnAdd’ as 

the control we are adding an event handler too.   Three aspects of its positioning 

contribute to this: its seclusion, there is no nearby boilerplate; its logical positioning, 
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it is positioned in the top left corner of the Frame; and the careful positioning of 

brackets that allow the statement to be seen in full. 

2. The outer layers of the anonymous class—the constructor call and ‘handle’ method 

signature—are each positioned in their own boxes and are positioned to the right of 

the screen.  This separates them from the executed actions.  These boxes each 

contain only a single line of code.  This combined with their positioning—especially 

when compared to the executed actions—deemphasise them. 

3. The final component part contains the core statements to be executed when 

‘btnAdd’ is activated—the executed actions.  A large red box, spanning the width of 

the screen is used to contain this code.  By applying deconstruction, several sets of 

brackets, and the resulting indentation, has been visually withdrawn; removing the 

necessity of keeping track on them.  This allows a programmer to more easily 

analyse and manipulate this part of the code; beneficial as this is the part of the 

code likely to require maintenance in the future. 

 

Figure 9.24: Creating an anonymous action listener—using deconstruction to improve readability. 

The visual changes that Deconstruction makes to improve readability address aspects of 

code identified by Buse and Weimer [29] as problematic.  Buse and Weimer developed an 

application to automatically assess the readability of code.  In developing their application 

they conducted a study to find what aspects of code can be interpreted to decide upon a 

level of readability.  Some of their strongest findings show that brackets, line length and 

deep indentation hinder readability whereas blank lines help.  These are all aspects that 

deconstruction addresses.  We conjecture that blank lines help the readability of code by 
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visually separating code fragments, an effect also achieved by the blocking and out of flow 

behaviour resulting from Deconstruction.   

9.3 Process Patterns 

A programmer who uses the Spatial Hypermedia functionality provided by SpIDER to 

represent progress or change over time, with the intent of improving the efficiency of either 

themselves or other programmers, is using a ‘Process Pattern’.  In this section, we will 

present four scenarios that utilise Process Patterns.  Each scenario will begin by providing 

some motivation.  Following this, the application of the Process Pattern will be split into 

multiple steps and documented.  Each step may be viewed in terms of an Expressive Pattern 

or—more generally—a Spatial Metaphor; overall, however, it is the set of steps taken as a 

whole that improves programming productivity. 

Section 9.3.1 is a scenario concerning a single programmer.  In this scenario, the 

programmer reduces the cognitive load involved in calling and understanding constructors.  

Section 9.3.2 then establishes a scenario where a programmer wishes to document their 

progress towards finishing a task.  They know they will not be able to complete it in a single 

sitting and therefore wish to be able to easily resume work another day.  In Section 9.3.3 a 

programmer designs a function to allow their program to run correctly regardless of their 

internet connection status.  Finally, in Section 9.3.4 a group of programmers create a 

collaborative space to help keep on task. 

 Construction by means of Notes 

Donald works for a construction company that is looking to place a tender on a deal to build 

a bridge between a residential and commercial area, situated on opposite sides of a river—

thus alleviating a long commute.  As it is a government contract, it is a potential windfall for 

the company.  Standard to government procedures the company awarded the contract is 

liable for maintenance for the first 10 years—this has been done to ensure that quality 

materials are used for construction.     

The company Donald works for knows that there will be a lot of tenders for this job, they 

put a call out to employees for ideas on how to make their tender competitive.  Donald puts 

forward the idea of designing the bridge to support the types of vehicles currently using the 

longer commute, rather than designing to match what the bylaws of the area stipulate as 
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possible.  The company likes his idea and instructs him to create a simulation program that 

will safely service the traffic likely to use the bridge whilst minimising upfront and 

maintenance costs.  Donald is provided with traffic data covering commute traffic between 

the residential and commercial areas. 

With some experience in programming, Donald decides to build a small utility application to 

help him produce this simulation.  His end goal is to be able to easily alter variables so that 

he can try different models.  For example, his application should be able to tell him whether 

it is a good idea to provide a designated lane for buses.   

The first step he takes is to create a hierarchy of classes representing the types of vehicles 

that will be using the bridge.  Figure 9.25 shows the abstract Vehicle class that Donald will 

extend when creating Factory classes for the different types of vehicles.  The constructor to 

Vehicle takes four variables describing the shape of a vehicle followed by an array of 

integers listing the lanes that this vehicle will be able to use in the simulation. 

 

Figure 9.25: The base class Vehicle used in construction company scenario. 

Having created the abstract Vehicle class, Donald creates concrete classes extending Vehicle 

to represent the different forms of vehicles that will use the bridge: Car, Truck, TruckTrailer, 

Bike, MotorBike, Trike, Bus etc.  Each of these classes adds new parameters to their 

constructor.  For example, as can be seen in Figure 9.26, when constructing a car the 

number of doors must be specified. 
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Figure 9.26: An example of a concrete type of vehicle that would use the bridge. 

Donald has reached the point where he can run some simulations on some fixed data and 

decides that doing so will be a useful test for the code he has written so far.  In writing these 

tests Donald is able to use SpIDER’s Spatial Hypermedia functionality to mark up his code, 

assisting in its construction and shortening the code understanding process.  Figure 9.27 

captures a moment in time where Donald is part way through creating a test case.  This 

particular test case limits the types of acceptable vehicles to buses, cars and motorcycles 

and specifies that the outer-most lanes of the bridge be used only by buses.  Each piece of 

Spatial Hypermedia mark-up present contributes to visually explaining Donald’s code.   

 

Figure 9.27: A test case for Donald’s bridge simulator where Spatial Hypermedia features assist  
with construction and understanding of code. 

The red annotated box contains a copy of the parameter list for the constructor in the 

abstract Vehicle class.  Each blue annotated box documents the parameter list for the 

constructor of a specific type of vehicle in terms of the parameter list to Vehicle and any 

additions needed.  Combined, the red and blue boxes act as an aide, reminding Donald—or 

any other programmer looking at the code—how each parameter is used.  For example, 
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when analysing the second vehicle to be constructed, by using the second blue box, Donald 

is able to identify the last parameter, as specifying that the car being constructed has three 

doors.     

As previously mentioned, the parameter lanes lists which lanes the constructed vehicle is 

allowed to use.  Lanes are indexed from zero.  In this example, the bridge is six lanes wide, 

three going in each direction.  Therefore, in order to specify that buses only use the outer 

most lanes when travelling each direction, the lanes parameter should be declared as ‘new 

int[] { 0, 5 }’.  Donald realises that, instead of simply declaring these arrays of integers in this 

non-informative way, he has the opportunity to visually reinforce how traffic will use the 

bridge in this test.  He achieves this by inserting a series of visually separated boxes and 

arrows.  Each arrow points to a box, containing a number (0 to 5), which numbers a lane.  

Between sets of arrows, images are positioned.  These images serve a dual purpose.  They 

visually communicate the type of vehicle being constructed and the lanes they use.  Behind 

the scenes, these images are linked to a Frame containing a comma; thereby causing the 

flow walker to produce a syntactically valid serialisation.  The yellow annotated box is used 

as a toolbox for Donald to easily acquire an appropriate image.  Donald constructs one 

vehicle at a time: 

Producing Bus.  When constructing the bus and writing the lanes 

parameter: Donald produces two arrows, one pointing to the box with ‘0’ in 

it and the other pointing to the box with ‘5’ in it.  The first bus image he 

inserts is linked, leading to a Frame with a comma.  The second bus image is 

not linked to a Frame.  He then specifies that the bus is wheelchair 

accessible, closes off the declaration.  SpIDER’s flow walker will serialise the 

array declaration by following the linked Image Item, producing ‘new int[] { 

0, 5 }’ as desired.  Donald stores the two variants of the bus image in his 

toolbox. 

Producing Three and Four Door Cars.  Donald wishes to limit cars to using 

the inside lanes only.  Therefore, the lanes parameter should be ‘new int[] { 

1, 2, 3, 4 }’.  Following the same process he used to specify the lanes that 

buses could use, he draws a series of arrows and positions a series of images 

that, when serialised by the flow walker, will produce this result.  
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When writing the constructor for the three door car, Donald has yet to 

create his car images.  As he did when writing the constructor for the bus, 

Donald creates two variants, one that links to a Frame with a comma and 

one that does not.  Donald stores these images in his toolbox and is able to 

reuse them when creating the four door car.  

Producing Motorcycle.  Not pictured in Figure 9.27 is the step Donald takes 

to create a motorcycle.  This requires that he create motorcycle images to 

be used in his diagrammatic layout of the lanes parameter. 

Donald has followed a process to visually communicate how the lanes are set up in this test 

case.  At this point, he has all the tools he will need to continue to populate the test case 

with more vehicles.  While following this process he has created multiple artefacts: the 

constructor parameter lists in the red and blue annotated boxes, the toolbox in the yellow 

annotated box and the two image variants for each vehicle.  When moving on, to create a 

new test, he will be able to take copies of some these with him, removing the need to 

recreate them each test.  For example, should Donald wish to create a test that specifies the 

outside lanes are push bike only lanes instead of bus lanes, he will have to create a blue 

annotated box for bikes, but will be able to reuse the annotated boxes for Vehicle, Car and 

Motorcycle.   

 Documenting History 

Grace has been working as the sole developer at an accounting firm with a particularly odd 

set of clientele for the previous 10 years.  Frequently a client will make a request that 

cannot be accomplished with the commercial accounting software her associates use.  

When this occurs, it falls to Grace to create a piece of one-off software that an accountant 

can use to satisfy the client’s request.  She has recently been working on a piece of software 

to produce reports for a local zoo.  A liaison from the zoo has stipulated that their statement 

of financial position should note each animal’s country of origin.  Supposedly the zoo hopes 

to use this information for tax purposes. 

Grace is due to head overseas for a holiday at the end of the working day.  As such, she had 

hoped to have completed her current project for the zoo before days’ end.  Unfortunately, a 
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particularly annoying bug, in her code to catalogue the zoo’s insect exhibits, has been 

causing her problems for several days now.  Grace has made progress with the bug.  She has 

a reproducible instance of the bug and knows how to get the debugger to a point shortly 

before the error occurs.  The accounting firm has hired Alan from a temporary work agency 

to cover for Grace while she is away.  Unfortunately this means that Alan is going to have to 

take over from Grace at a problematic time.  Unable to delay her flight, Grace decides to 

document her debug history—at least this way Alan will know what she has already checked 

and will be able to more easily pick up from where she left off.   

In order to document her debug history she resolves to revisit each previous debugging step 

from the start of her process and make notes as she goes.  Figure 9.28 shows the entry point 

into her program as it stands before she began debugging.  The application begins by 

specifying a file to print its results to.  It then reports on each category of animal—a non-

trivial task requiring the search of a database.  Each of these categories requires a different 

type of enclosure for storing animals, roughly represents a different area in the zoo, and 

contains multiple exhibits.  For example, the land mammal category contains a safari exhibit 

with elephants and giraffes; it also contains a jungle exhibit with various types of monkeys.  

The application finishes by gracefully closing the connection to the output file. 

 

Figure 9.28: The entry point into Grace’s project for the zoo, prior to any debugging occurring. 
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When running her application Grace receives the following output (truncated to relevant 

parts): 

… 

BEGIN INSECT CATALOG 

BEGIN BUTTERFLY CATALOG 

Species Tag: MonarchButterfly, Country of Origin: Various, Last Count: 146 

Species Tag: BluesButterfly, Country of Origin: Japan, Last Count: 23 

Species Tag: MetalMarksButterfly, Country of Origin: South Africa, Last Count: 28 

END BUTTERFLY CATALOG 

BEGIN MOTH CATALOG 

Species Tag: LymantriaDisparMoth, Country of Origin: Sweden, Last Count: 0 

Species Tag: IndianMealMoth, Country of Origin: India, Last Count: 0 

Species Tag: LunaMoth, Country of Origin: North America, Last Count: 0 

Species Tag: GardenTigerMoth, Country of Origin: Various, Last Count: 0 

END MOTH CATALOG 

… 

The bug is that the report is incorrectly claiming that the zoo does not have any moths in 

their moth exhibit.  The first step Grace took when debugging was to use SpIDER annotation 

marks to effectively ‘comment out’ code that had to be executed prior to the insect code.  

With the bug still occurring once this is done, Grace can be confident that the cause of the 

bug is not earlier in the program.  Further, it accelerates debugging by allowing Grace to add 

breakpoints to pieces of shared code that all categories would normally use.  The second 

step is to alter the program to output to standard-out rather than a file, making feedback 

more instant.  Grace makes note of these steps in an annotated box that is left on the 

Frame.  Figure 9.29 shows an updated version of the main method to Grace’s program; 

reflecting the progress she has made debugging. 



 
 

266 
 

 

Figure 9.29: Grace’s first steps in debugging sitting alongside her notes. 

Following the link with content ‘report on insects’ reveals that the function addToReport is 

called for each exhibit.  When the moths are to be processed, for example, the line of code 

Moths.addToReport() is executed.  Investigating this function is the next step for Grace.   

Figure 9.30 shows the result of Grace’s use of the debugger to further pinpoint the location 

of the bug.  Grace has set a breakpoint to stop the program on the first line of code in the 

green box.  This is achieved by adding the annotation @BP prior to starting the debugger.  

Once the program has stopped at this point she requests that the debugger give her a list of 

variables.  Grace receives the variables from the IDE as a set of first class citizens attached to 

her cursor and places them down, positioned in the left-bottom corner of the screen.  They 

show that the only variable in scope at this point is the BufferedWriter object.  She then 

proceeds to step over the current line, executing the code that does the database lookup 

and subsequent organisation into Entry objects.  Having done so, she then re-requests the 

list of variables so that she may inspect the results of the call to Database.getEntries(...).  

This second set of variables is subsequently positioned to the right of the previous request 

for variables.  Grace expands the results from her request for variables and finds that, at this 

point, the values for ‘expectedCount’ are already zero.  This further narrows down the 

location of the bug.  Grace can now be confident that the bug is somewhere inside the 

Database.getEntries(…) function. 
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Figure 9.30: The results of Grace’s use of the debugger to pinpoint the location of the bug. 

Grace has now finished running through the steps she has taken to debug her code.  She 

takes a copy of the results—as shown in Figure 9.30—obtained from running the debugger 

on the Moths.addToReport(…) function and places it on a non-code Frame.  She then 

updates the notes for Alan to include the step she took running the debugger—this included 

adding a link to the non-code Frame she had just created.  She also adds some detail to the 

non-code Frame explaining the lines of code the debugger was run over along with some 

suggestions on what to check next.  An updated version of the entry point to Grace’s 

program, with the above changes, can be seen in Figure 9.31.    



 
 

268 
 

 

Figure 9.31: The final copy of notes that Grace leaves for Alan, including the  
link to the results from her run of the debugger. 

 Altering Flow 

Ada works as a freelance programmer.  She is currently working on a project for a taxi firm 

to help monitor their drivers.  The company is based in a different city to where she lives.  

They have requested that she build a piece of software to sit between a large display screen 

in their depot and a live feed of information concerning their drivers.  The software Ada has 

written interprets data from the company’s live feed and displays a formatted version of it 

on the large display screen so that the dispatchers of the taxi company can keep track of the 

locations of drivers. 

In order to allow Ada to work from home, the taxi company has provided her with an 

internet address from which to read the live data.  The taxi company requires fortnightly in-

person meetings to gauge progress.  To allow for this, Ada is flown to the company’s 

headquarters, arrives to present her progress and then flies back home on the same day.  

Ada likes to use her time in the air to double check the functionality that she will be 

presenting.  Unfortunately, the airline that the taxi company uses to transport her does not 

provide an in-flight internet connection, making it impossible for Ada to use the live data 

feed while she is flying.  In order to address this, Ada has produced text files whose content 

mimics the protocol used by the live feed.  Ada has designed her own subclass of 



 
 

269 
 

BufferedReader: TimedBufferedReader which allows her to simulate the delay between 

entries inside the text files she has created. 

Figure 9.32 shows the Connection class that Ada has built to connect to the taxi company’s 

live data feed.  In order to get a connection to the data, Ada calls the function 

getConnection.  She has designed it so that she can easily switch to using the data from one 

of her text files while she is mid-flight.  Chaining within this function determines what code 

is executed.  Ada is able to adjust the chaining to produce three different results—one result 

creates a socket connection to the live data stream whereas the others provides access to 

one of two text files.  As shown in Figure 9.32, the chaining causes a socket connection to be 

used. 

 

Figure 9.32: Ada’s Connection class.  Currently connecting to the taxi company’s live data feed. 

In Figure 9.33 Ada has switched her code to ‘Flight Mode’.  She has achieved this by 

switching the annotation from one box to another and repositioning the arrow.  Both boxes 

contain code to produce a BufferedReader, thus allowing the final statement in the 

originating yellow box to construct a Connection object, regardless of which box is active.   
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Figure 9.33: Ada’s Connection class.  Currently connecting to the taxi.txt file Ada has created. 

 Communication Techniques 

Tim, Edsger and Charles are a small team of programmers working for a software 

development company currently tasked with the design and production of software to assist 

with crop tracking and rotation in a recently built vertical farm.  As a team, they have short 

daily stand-up meetings.  Additionally, every month they meet with Ken, a liaison from the 

vertical farm, to discuss their progress and get feedback.  It was during their most recent 

daily meeting that Charles communicated his concern that some tasks had not been 

completed because they had been forgotten.    

Standard practice at the company is for a secretary to sit in on meetings, take notes and 

then provide a copy of the notes to each member of the team later in the day.  

Unfortunately, as Charles points out, this system that has contributed to the situation they 

are in at the moment—having forgotten to work on some tasks.  The current system has 

multiple issues: as a non-programmer, the secretary has, on multiple occasions, made errors 

relating to technical matters in the notes, contributing to the team’s reluctance to rely on 

them; the delay in receiving the notes, combined with the PDF format—and the hindrance 

this causes to editability—makes utilising them in a timely and useful manner more difficult.  

The disconnection between the file produced by the secretary and other artefacts relating 

to the code makes it more tedious to reference.     

Tim, Edsger and Charles put their heads together and came up with a solution.  Tim puts 

aside a set of non-code Frames, one of which will be used to record minutes during their 
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next meeting with Ken.  Their solution addresses all of the shortfalls in the previous system: 

Tim nominates himself to be in charge of recording relevant information during the 

meeting.  As a programmer himself, this minimises the chance of a technical error being 

recorded; the notes are instantly available for the team to use following the meeting; the 

fact that the minutes are being recorded in SpIDER provides the programmers with the full 

suite of Spatial Hypermedia authoring and editing functionality; the minutes are recorded 

alongside the other software artefacts, making referencing easier to accomplish.  Following 

the meeting, Tim is able to export the Frame containing the minutes to a PDF, which can 

then be provided to the secretary for record keeping purposes.  Other Frames in the 

reserved set of non-code Frames are used as a bulletin board to facilitate communication 

between the team members, allowing notes to be left, discussion to be documented and 

references to relevant information to be kept.  

Figure 9.34 shows the Frame that Tim sets up to store the minutes from the team’s meeting 

with Ken.  Experience from previous meetings with Ken gives Tim an idea of how the 

meeting will proceed.  He is able to use this to reserve space for three agenda topics that 

are likely to come up.  The meeting typically starts with a demonstration of the program and 

its functionality.  Having received feedback on their progress, the team then discuss the 

overall timeline for the remainder of the project with Ken.  If Ken is happy with the 

implementation work done in the last month then this is unlikely to take much time.  If Ken 

requires some changes to be made or wishes to adjust the project requirements, they must 

discuss and have Ken approve a new timeline and completion date.  With the timeline for 

completion established, the meeting usually ends with Tim, Charles and Edsger proposing a 

set of tasks to be completed by next month that are then once again subject to approval 

from Ken. 

Unfortunately, sometime between 8am and 9am, Edsger calls in sick, so was unable to 

attend the July meeting.  This, the start time of the meeting and a list of those in attendance 

are listed in the red box.  As this content has been placed on a non-code Frame, SpIDER 

does not require that boxes be marked as annotations. 
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Figure 9.34: Initial setup of non-code Frame for meeting with Ken. 

As predicted, Ken began the meeting by requesting that new functionality be shown.  

Charles loaded up the application: VertFarm.exe and began showing Ken the changes to the 

end user experience since the last monthly meeting.  Ken immediately noted that the load 

file dialog still had the incorrect file type filters listed—an issue that he had pointed out in 

the last meeting.  Tim and Charles explained the situation and the note taking solution they 

had come up with to avoid this happening again.  Tim made a note under the current topic 

to ensure this issue would be fixed as soon as possible. 

Charles then brought up a newly implemented GUI panel designed to allow end users to 

view specifics on various crops.  As it turns out, Ken had miss-communicated what he 

wanted: some of the values should have been editable.  In the June meeting, Ken had 

provided the programmers with a sketch of what he imagined the panel would look like, but 

no-one had thought to question if any of the values where to be stored in textboxes rather 

than labels.  While this is being discussed, Tim scans the sketch provided by Ken on to the 

computer and inserts it as an image into SpIDER.  Text Items are then used to specify which 

containers are to be textboxes instead of labels.   

Having sorted out the confusion, the meeting moved on to a discussion as to how this 

setback would affect the overall timeline of the project.  Charles and Tim discuss the 

changes amongst themselves and decide to ask for an additional week.  This will provide 

them with the opportunity to perform fixes and hopefully give them some slack to make up 
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for the fact that Edsger is sick.  Ken agrees without much hesitation.  The discussion then 

quickly moves onto deliverables for the next month.  Based on the overall timeline for the 

project, Ken puts forward the idea that it may be time to begin working on the reminder 

sub-system for their vertical farm application.  This system should be able to communicate 

with physical devices such as sirens to alert workers that it is time to begin a crop rotation.  

Charles and Tim agree and the meeting is concluded.  Figure 9.35 shows the updated 

meeting notes Frame at the conclusion of the meeting as well as the sketch provided by Tim 

with textual mark-up applied. 

 

Figure 9.35: State of meeting minutes at the end of meeting with Ken. 

The following morning Edsger is unable to get out of bed.  Using his laptop, he obtains the 

latest version of Frames for the VertFarm project and discovers the notes from the meeting.  

Coincidentally, as he was stuck in bed all day, he had spent a significant amount of time 

thinking about how he would approach the reminder sub-system when it came around to 

working on it.  Almost a year ago, when he was working with a different team, he had 
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worked on a project with a similar requirement.  He navigated to the FrameSet containing 

this project and examined the code.  Satisfied that he had found a way to be helpful, he 

amended the notes page with a link to the relevant part of this project and included a note 

to Tim and Charles.   

The note left by Edsger, along with changes made by Tim and Charles following the previous 

days meeting with Ken, can be seen in Figure 9.36.  Tim and Charles have added linked Text 

Items referencing code Frames belonging to the VertFarm project.  For example, the linked 

Text Item with content “GUI Code” leads to a Frame containing the code responsible for 

creating the GUI that Ken has identified as requiring adjustments.  Colour coding has been 

applied to keep track of the current state of the notes.  A link with a red background 

indicates that it is new and still needs to be followed up by one of Tim, Charles or Edsger; a 

yellow background indicates that the team believes the task to be completed but has yet to 

be approved by Ken.   

 

Figure 9.36: Meeting minutes with note left by Edsger the following day. 

9.4 Summary: Applying Spatial Development Patterns 

Chapter 6 examined Expeditee—the platform SpIDER was built on.  Chapter 7 discussed the 

specifics of SpIDER’s design and how that design was implemented.  Chapter 8 then 

evaluated the flow walker algorithm that SpIDER implemented to allow programmers to 

spatially position code.  Together these chapters represent the process undertaken to 

develop SpIDER.  Chapter 9 has taken the next step by showing how all these previously 
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discussed aspects of SpIDER fit together, providing the opportunity to improve code quality.  

Using examples, we show the reader that the Spatial Hypermedia functionality present in 

SpIDER, combined with the flow walker algorithm, provides programmers with a 

development environment capable of an extremely wide variety of expression.   

Section 9.1 established that existing forms of expression from traditional IDEs are either 

present or could be approximated in SpIDER.  This was achieved by dividing the section into 

parts, each dealing with a separate building block provides authors with an avenue for 

interaction and, through an example, showing how SpIDER approaches the concept 

embodied in the building block.   

Section 9.2 examined Expressive Patterns.  A programmer that uses space or Hypermedia 

functionality to visually communicate structure or relationships amongst code and other 

program artefacts is using an Expressive Pattern.  Examples covered a range of development 

activities, from the integration of documentation to the exaggeration of specific facets of 

code.  Each of these examples used visual communication such as colour or nesting to 

improve the quality of the code.  Some provided functionality to the application, such as the 

integration of documentation as seen in Section 9.2.1. 

Section 9.3 examined Process Patterns.  A programmer using space or Hypermedia 

functionality to visually communicate changes over time is using a Process Pattern.  As with 

Expressive Patterns, the examples used to showcase Process Patterns cover a range of 

activities from the development process.  Section 9.3.1 showed how Spatial Hypermedia 

functionality can be interwoven with code, producing a Frame that was both functional and 

explanatory.  Section 9.3.2 used the non-transient nature of content in SpIDER to assist with 

documenting the history of a debug session.  Section 9.3.3 showed how arrows and boxes 

could be used to alter the flow of code to suit multiple scenarios.  Finally, Section 9.3.4 

showed that traditionally separate parts of the software development cycle can be brought 

into SpIDER, further integrating the entire process. 

In this chapter, we have only touched on the strength of SpIDER’s spatiality and 

expressiveness.  The wide freedom of code expression provided by the Spatial Hypermedia 

environment and the flow walker algorithm make it impossible to produce a compressive 

list of ideas for expressing code and code processes.  This is the reasoning that lead us to 

approach this chapter as a series of examples.  It is our hope that, as someone reads 
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through this chapter, that they are able to use these examples as a catalyst for forming their 

own ideas of how spatial layout can be used to improve the quality of code.  A cautious 

reader however, may be concerned that the freedom of SpIDER’s spatiality may be used in 

less than ideal ways.  These concerns are discussed in the next chapter. 



 
 

277 
 

Chapter 10  

Recommendations for the  

use of Spatial Layout 

In Chapter 9 we presented a series of examples aimed at conveying the wide range of 

expression that SpIDER provides for programming.  We ended Chapter 9 on a cautionary 

note, stating that the freedom provided by SpIDER’s spatiality can be abused and mistakenly 

used in such a way as to hinder readability.  Expanding on this thought: in much the same 

way a programmer may layout code poorly in a traditional IDE, so too can a programmer 

make comparable mistakes in SpIDER.  However, in this case, the Spatial Hypermedia 

functionality combined with the flexibility of the flow walker, amplifies this issue by 

providing the programmer with many more opportunities for expression—some of which 

can be perverse!  We now address these concerns. 

Three avenues for less than ideal spatiality are presented.  For each, we explain the issue 

and document a set of best practices to minimise the issue.  The best practices stated have 

been formed by the author as a result of working with the SpIDER prototype during its 

development, and lessons learned from the usability experiment detailed in Chapter 8.  

Section 10.1 examines the forgiving approach of the flow walker and the possibility that this 

may lead to ambiguous layout.  Section 10.2 then addresses the issue concerning the 

positioning of arrows and the effect this can have on people’s perception of the flow walker.  

Section 10.3 identifies a potential issue concerning the abstraction of content onto a linked 

Frame.  
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10.1 Ambiguous Code Layout 

Consider Figure 10.1 and ask yourself: will the flow walker assemble code in which x or y is 

to be printed before the other?  The answer depends on whether the bounding boxes of the 

two central print statements overlap on the y-axis.  If they do overlap then a line will be 

constructed (as explained in Section 7.4.1), causing the print statement that outputs x to 

precede the other.  Alternatively, if they do not overlap on the y-axis, then the print 

statement that outputs y will be seen as occurring on the line above the print statement 

printing x, causing the print statement that outputs y to occur first.  As laid out by the 

programmer in Figure 10.1, it is visually ambiguous as to if the statements overlap on the y-

axis.  For the record, the statements do overlap, causing the ‘x’ to print before the ‘y’. 

 

Figure 10.1: An example of visually ambiguous code layout.  Will the flow walker cause x or y to be printed first? 

Best Practices.  Since the possibility of ambiguity in the flow walker was first considered, a 

conscious effort, in our own programming with SpIDER, has been made to avoid ambiguous 

layout.  We have found that good practice is to carefully position and use space generously 

to separate individual statements.  A good ‘rule of thumb’ is: if a statement is being 

positioned a distance along the x-axis from surrounding statements, then some distance on 

the y-axis should also be given to separate it from those statements.  Explicit boxing can be 

used to further reduce the possibility of ambiguity; this has the additional advantage of 

making it easier to reposition a set of tokens or statements. 

Figures 10.2 and 10.3 show variations of Figure 10.1 with the ambiguity removed.  Each 

solution is suitable for a different scenario.  Figure 10.2 causes y to print before x by 

spatially repositioning the print statements and containing them in an explicit box.  Figure 

10.3 causes x to print before y by repositioning the print statements so that it is clear that a 

line is being formed. 
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As an aside, it was not a specific code example produced in SpIDER that caused us to 

consider the possibility of ambiguity.  Instead, it was the result of an exploratory question 

posed during a discussion of the flow walker.  Upon this question being posed, previously 

produced code examples in SpIDER were inspected and found to be lacking any code that 

might be considered ambiguous.  This leads us to believe that programmers are likely to 

instinctively avoid ambiguous layouts. 

 

Figure 10.2: Ambiguity removed: y prints before x. 

 

Figure 10.3: Ambiguity removed: x prints before y. 

10.2 Positioning of Arrows 

The initial evaluation of the flow walker algorithm, documented in Section 8.1, lead us to 

believe that careful positioning of arrows increases programmer-flow walker agreement, 

with haphazard arrow positioning having the opposite effect.  The follow up study, 

documented in Section 8.2, where this conjecture was tested, indicated that this was the 

case.   

An example of less than ideal arrow positioning can be seen in Figure 10.4.  The flow walker 

will produce code causing “A D E F B C” to print.  This relies on a programmer both 

understanding and noticing that the origin of the blue arrow causes the green box to be 
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included between the System.out.println(“A”) and System.out.println(“B”) statements.  

Furthermore, the programmer must also understand that the position of the arrowhead 

does not affect the ordering of the lines in the green box.  SpIDER allows a programmer to 

produce code like that seen in Figure 10.4. 

 

Figure 10.4: An example of out of flow Java code with bad arrow positioning. 

Mitigating Factors.  At the end of Section 8.3 an idea for mitigating this issue was 

mentioned.  This idea was to implement a snap to spot system for arrow positioning.  Such a 

system would function in a similar way to a snap-to-grid system with the difference of 

providing a set of pre-approved positions for arrow placement.  This would force 

programmers to position their arrows in such a way as to minimise confusion.  However, 

this solution has downsides.  It may harm the programmer’s production of Spatial Memory 

and limit the flexibility provided by the flow walker.  For example, a programmer wishing to 

ensure the stem of an arrow does not intersect with a token for may wish to position the 

arrow head outside of the pre-approved snap-spots.  A refinement on this idea would be to 

only cause arrows to snap when the programmer has depressed a modifier key on their 

keyboard.  Such a refinement may lessen the negative impact on Spatial Memory whilst 

retaining the flexibility provided by the flow walker by making snapping optional. 

Best Practises.  We have developed a set of general guidelines that we consider to be best 

practise.  These are generally applicable, minor variations for communicative or preferential 

reasons are acceptable.  In Section 11.1.5 we apply these guidelines to produce a prototype 

for the previously mentioned snap to spot system. 

1. The head of an arrow entering a box from the left/right should be positioned slightly 

inside the top-left/top-right corner of the box as is reasonable.  If the corner is not 

suitable, the position of the arrowhead may be moved along the y-axis. 
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2. The head of an arrow entering a box from the top/bottom should be positioned 

slightly inside the top-left/bottom-left border of the box.  If the corner is not 

suitable, the position of the arrowhead may be moved along the x-axis. 

3. The origin of the arrow should be positioned centrally on an imagined text line.  The 

programmer may want to space out the lines in the originating box to make space 

for this line.  Care should be taken when a programmer wishes to place the arrow 

between one set of tokens and another (for example between two lines), the 

surrounding tokens should be aligned with each other. 

Figure 10.5 shows an improved version of Figure 10.4.  Following the first guideline, the 

arrow head has been positioned in the top-left corner of the destination box.   Following the 

third guideline, the origin of the arrow is positioned centrally between the surrounding 

statements, which have had an increase in spacing between them.  

 

Figure 10.5: An example of Java code with improved arrow positioning. 

10.3 Abstraction by way of Frame 

A comparison can be drawn between SpIDER’s Frame and Linking system and the 

characteristics of the harmful ‘goto’ programming statement.  Whereas a ‘goto’ statement is 

used to perform an uncontrolled jump in the logic of the program, a linked Text Item is used 

to perform a jump and return in the flow (and subsequent serialisation) of code.  However, 

both have the potential to—when abused—obfuscate the structure of the program.  

It should be noted that the jump and return behaviour of the Frame and Linking system 

suggests that the analogy between it and the ‘goto’ statement might be better expressed as 

an analogy between it and the ‘gosub’ statement.  As the serialisation process returns to the 

Frame it branched from after having processed Frames reached by following a link, 

programmers are unable to cause the serialisation to loop back on itself—a frequent pattern 
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of use for ‘goto’ statements prior to structural programming.  However, it is the shared 

property of allowing for obfuscation of structure that we base our analogy on. 

Through the lens of history we are able to view the controversy surrounding ‘goto’ 

statements and rise of structured programming as beginning with Dijkstra’s famous letter to 

the editor [74].  In this letter, Dijkstra argues that the use of ‘goto’ statements makes it 

difficult to prove software correctness.  The ensuring debate saw a call for civilised 

discussion on the subject, resulting in numerous writers attempting to establish the 

strength, weaknesses and appropriate use-cases for ‘goto’ statements [75, 76].  Amidst this 

discussion, the discipline of structured programming was being developed [77, 78, 79].  

Focusing on clearly presenting the structure of code, structured programming produced 

more readable, and hopefully easier to prove, code.   

In this section we seek to document our thoughts on how to best counter the potential 

misuse of SpIDER’s Frame and Linking system.  We examine two examples that demonstrate 

how the existing system, if not used carefully, can obscure structure and lead to reduced 

code readability.  We then establish a set of best practises designed to avoid such cases. 

Separated Structure.  Figures 10.6 and 10.7 show the two Frames containing a function 

called getConnection.  Instead of arranging the content with a hierarchical setup, the 

programmer has opted to paginate the content.  This has caused the structure of the 

function to be distributed over multiple pages.  There are three levels of structure—

represented by indentation—in the function: the declaration, the error handling and the 

inner content.  Whilst the latter is completely represented on a single Frame, it is contained 

within the other levels of structure, each of which is split between two Frames.  The result is 

that, in order to ensure that a programmer understands the structure of the function, they 

must consider both Frames at once. 
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Figure 10.6: Page 1 of the getConnection function. 

 

Figure 10.7: Page 2 of the getConnection function. 

Multi-parent Reliance.  Figure 10.8 is a diagram representing a portion of the Frame 

hierarchy for a project named Tetris.  Each box represents a Frame, with the content within 

each box being the name of that Frame.  The Frame tetris18 contains links to tetris19 and 

tetris22; tetris19 contains links to tetris20 and tetris21; tetris22 contains a single link to 

tetris23.  For the purpose of serialisation, each Frame has only a single parent. 
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Now consider Figure 10.9.  A new Frame, tetris34, has been added to the representation 

with a link connecting it to the Frame tetris19.  When the Frame and Linking system 

serialises the code, the content of tetris19 will now contribute to code authored on both 

tetris18 and tetris34.  Furthermore, the code on tetris20 and tetris21 now indirectly 

contribute to the code on both of these Frames as well. 

 

Figure 10.9: Alteration to Frame hierarchy hindering maintainability. 

The addition of the Frame tetris34 has complicated the dependencies of all Frames beneath 

it.  When maintaining this program, a programmer must now keep all these dependencies in 

mind, thus increasing the chances of a fault being introduced into the program. 

Best Practises.  The issue of separated structure is best addressed by avoiding it.  When 

abstracting code onto another Frame, we suggest that the division is made along structural 

lines.  Figures 10.10 and 10.11 show the redesign of the getConnection function, previously 

seen in Figures 10.6 and 10.7.  We are unable to imagine a circumstance where a structure 

would be better split over two Frames, rather than hierarchical abstraction being used to 

keep the entire structure on a single Frame. 

tetris18

tetris19
tetris20

tetris21

tetris22 tetris23

Figure 10.8: Frame hierarchy for Tetris application. 
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Figure 10.10: The getConnection function with the declaration and  
error handling (first two levels of structure in function) on a single Frame. 

 

Figure 10.11: The inner content of the getConnection function. 

The issue of multi-parent reliance is more nuanced.  The ability to reference one Frame from 

multiple places is potentially very useful.  Consider Figure 10.12 which shows the code 

present on the Frame tetris19, previously featured in Figure 10.9 as the Frame referenced 

by two parent Frames.  Two linked Text Items, with content formatContent and 

splitIntoLines lead to frames tetris20 and tetris21 respectively. 

No function declaration is present, the content of the page simply contains a code snippet 

that will function correctly as long as its parent Frame provides the necessary variables—in 

this case: a string variable named filename and any variables used on frames tetris20 and 

tetris21.  If this code was, for example, used to assist in debugging the application being 

written, then the programmer is able to create a temporary linked Text Item that leads to 

tetris19 whenever they wish to send some information to the log file.  No function 

declaration necessary.  
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Figure 10.12: The content on Frame tetris19 

This scenario is an example of Extracting as Frame, previously discussed in Section 9.2.5.  As 

previously documented, there are trade-offs to consider when using this form of 

abstraction—while simpler to create, there is no formally defined label or context.  A 

programmer should carefully consider their application before using multi-parent reliance: 

 Is it necessary to provide context?  If yes, you are not benefiting from the 

convenience of not having to provide context that an Extracting as Frame 

abstraction provides.  In our example from Figure 10.12, the programmer is having 

to ensure that specific variables are declared on a parent Frame; minimal effort 

would be required to transition to providing a list of variables for a formally 

declared function. 

 How transient are references to the multi-parent reliance structure?  The longer a 

linked Text Item that points to a Frame exists, the more likely it becomes that it 

should be a more concrete and easier to maintain aspect of the program.  In other 

words, if a multi-parent reliance structure is treated as a permanent fixture, it is 

likely worth creating a function. 

 How complicated is the content?  The content on a Frame being referenced by 

multiple parent Frames should be as simple as possible so as to minimise the chance 

of introducing an error into the application.  In our example from Figure 10.12, the 

Frame being referenced by multiple parents contained linked Text Items itself—a 

red flag. 
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10.4 Summary: Recommendations for the use of Spatial Layout  

Throughout the development of SpIDER we have been able to identify several problems 

relating to user-interface experience.  For some of these problems, we have been able to 

refine the system to better handle the issue, for example: implicit boxing causes the flow 

walker to produce results that are closer to a user’s expectations.  Others, we have 

discussed in this section; attempting to resolve or minimise the issue. 

We have identified three categories of problems that we are unable to resolve by refining 

the system—primarily due to our goals of maximising the use of Spatial Memory and 

providing flexibility in the environment.  In place of a software solution, we analysed each 

problem and documented mitigating factors along with a set of best practises.   

Personal experience gained from using the SpIDER prototype has lead us to believe that 

following these best practises will minimise the likelihood of these problems occurring.  At 

the same time, we realise that each of these problems is a further avenue of research.  For 

example, if we were able to improve the flow walker to identify ambiguous code layout, 

then we could notify the programmer of the potential issue and have them address it. 
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Chapter 11  

Conclusion 

Where does it say that the environments in which we edit and develop programs must be 

regimented and formally controlled?  There is little evidence in the literature to show this 

has been seriously questioned.  Yet the consequences of this rigidity pervade contemporary 

IDE design particularly in the interface components used and options provided for 

expression of content.  This thesis has challenged the status-quo by exploring what happens 

when flexibility is designated as a core design requirement for an IDE.  This has been 

achieved by using the Spatial Hypermedia application Expeditee as the base for a Spatial 

Hypermedia based IDE we have developed: SpIDER.   

Featuring uniform treatment of elements (First Class Citizens), multimedia support, a Frame 

and Linking system and an algorithm that allows code to be spatially laid out on a canvas 

with absolute positioning, the development and evaluation of SpIDER as an IDE for the Java 

language and its novel functionality has been presented in this thesis.  SpIDER includes the 

following IDE functionality: the creation of Java projects, packages and classes; syntax 

highlighting; a warnings and error system; compilation and debugging (including inspection 

of variables); context assist. 

Central to SpIDER’s design is the development and integration of the flow walker algorithm 

and magnet system which has produced an authoring environment where programmers can 

express functionality in a unique, interesting and most importantly, useful way.  Throughout 

the thesis, most notably Chapter 8, examples have shown how programmers can use spatial 

behaviour to give emphasis to aspects of code in ways not possible in conventional IDEs.  

Furthermore, the approach followed allows for the integration of traditionally separate 

functionality. 



 
 

290 
 

11.1 Summary and Discussion 

In this thesis we have identified, scrutinized and discussed weaknesses of conventional IDEs.  

The identified weaknesses are:  

 Limited ways for representing the structure and relationship of source code 

artefacts, thus constraining a programmer’s ability to express their intent as clearly 

as they might like. 

 Inflexibility in the support provided by IDE functionality, limiting the actions of 

programmers to a pre-programmed set.  

 Limited multimedia integration, disrupting the development process, resulting in 

discontinuity for programmers by forcing them to use external tools. 

 Lack of expressiveness in authored code, caused by adherence to a relative 

authoring environment and resulting limitations on the programmer when they 

wish to communicate the intent or functionality of authored code.  

 Literature Summary   

Chapters 2–4 discussed literature relating to Spatial Memory, Traditional Programming and 

Spatial Hypermedia respectively.  The topics were discussed with the goal of applying the 

lessons gleaned from the literature to inform the design of SpIDER.  Chapter 2 covered 

several aspects of Spatial Memory.  In particular it notes that people have both long and 

short term Spatial Memory which they use for navigation and object location.  Software 

interfaces can make use of Spatial Memory by providing overviews and landmarks, fixing the 

size of the window and ensuring content is spatially stable.   

After exploring some ways in which programmers currently utilise their Spatial Memory to 

assist in programming—enabled by aspects of traditional IDE design—we then expanded on 

the literature by discussing specific considerations that are important for methodically 

designing an IDE that purposefully encourages the use of Spatial Memory.  The concepts of 

single view and viewport spatial interfaces from the literature were applied to authoring 

applications, leading to the terms Fixed Sized and Variable Sized Spatial Interfaces being 

introduced.  SpIDER is a Fixed Sized Spatial Interface.   

Chapter 3 examined traditional programming, using the insights gained to identify issues 

with the current state of IDEs.  Section 3.1 discussed traditional IDEs, initially through an 
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historical lens.  Early hints as to what the traditional IDEs would become could be seen when 

academic factors, such as the desire to simplify the compile-link-go process for students, led 

to the creation of tools that began to integrate parts of the software development process 

together.  The 1970’s saw the first commercially successful IDE: The Maestro I.  It featured a 

screen and keyboard and in many ways resembled a modern personal computer.   

Having established an historical view of IDEs, we then listed and discussed the core 

functionalities of an IDE: the creation and management of projects, packages and classes; 

syntax highlighting; a warnings and error system; compilation; breakpoints; stepping; 

examination of variables; and context assist. 

Abstractions used by programmers throughout the software development processes, both 

in planning and authoring code were discussed in Section 3.2.  We were able to differentiate 

abstractions as either rigorously defined or informal.  Rigorously defined abstractions 

followed a protocol, allowing them to be exploited by applications but presented to the 

programmer as inflexible.  Conversely, informal abstractions are flexible but rely on the 

judgement of the programmer to use them in a practical way.   

An informal abstraction commonly used in programming, the use of whitespace, is also 

discussed.  Evaluation carried out as part of this research, on the topic of whitespace use in 

code, shows the prevalence of blank lines in the middle of functions.  Inspection of 

examples support the premise that they are predominately used to differentiate one code 

fragment from another in a function—we conjecture that this demonstrates that 

programmers find it useful to visually express information about the functionality of their 

code.  The use of blank lines, an informal abstraction, results from the use of a relative 

authoring environment, not as a result of support provided by an IDE, and is therefore an 

informal abstraction of a relative authoring environment, not of the IDE. 

Having noticed the lack of informal abstractions in traditional IDEs, Section 3.3 discussed the 

rigidity in IDE functionality this causes.  Increasing the opportunity for programmers to 

make use of informal abstractions is a secondary goal of the thesis.  The primary being, to 

allow programmers to spatially lay out code. 

Chapter 4 covered a variety of information concerning Spatial Hypermedia.  The chapter 

started by defining Spatial Hypermedia—we adopt a definition drawn from the literature.  



 
 

292 
 

Following this we defined the terms: Fundamental Element, System Representation and 

First Class Citizen.  A Fundamental Element of an authoring application is the primary 

building block that is used to create content.  An authoring application’s System 

Representation describes how the elements in the application can be manipulated.  An 

element of an authoring application that has a similar amount of flexibility to the 

Fundamental Element is referred to as a First Class Citizen.  Using these terms, we analysed 

a series of authoring systems.  To begin with we discussed traditional authoring systems.  

We explained how traditional text editors and pixel image editors functioned.  We then 

examined more complicated authoring systems such as multimedia-editors and HTML 

authoring.  Continuing the progression, we were then able to expand on our earlier 

definition of Spatial Hypermedia by constructing a System Representation of a theoretical 

Spatial Hypermedia application with minimal functionality.   

Following our analysis of traditional authoring applications, and a theoretical Spatial 

Hypermedia application, we then analysed several different specific Spatial Hypermedia 

applications in Chapters 4 and 5.  Three general purpose Spatial Hypermedia applications 

were reviewed: VIKI, VKB and Expeditee.  Four Spatial Hypermedia systems crafted 

specifically for software development were also reviewed: Code Thumbnails, Code Canvas, 

Code Bubbles and Debugger Canvas.  By comparing these systems, taking note of details we 

had determined as pertinent such as: whether the system allowed nesting of elements, 

whether the interface was a Variable or Fixed Spatial Interface, the prominence of First Class 

Citizens and support for multimedia elements, we were able ‘tease out’ the strengths and 

weaknesses of each. 

Section 5.2 then brought together several topics of interest that had been previously 

mentioned throughout the thesis.  From this discussion, Expeditee was identified as our 

Spatial Hypermedia application of choice to use as a base for developing SpIDER.  As we had 

identified limited flexibility as a key issue in traditional IDEs, we wished to build an IDE with 

a flexible Fundamental Element that also heavily utilises First Class Citizens—of all the 

systems reviewed, Expeditee provided us with the best starting point. 

 Future Work: Chunking 

Drawing again upon a field of cognitive psychology—as we have done with Spatial 

Memory—an intriguing area of research for future work is investigating the concept of 
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Chunking and its connection to programming.  In particular, how it relates to source code 

arranged on a set of fixed sized canvases, each reached by following a links.   

The term chunking was coined in the now famous paper “The Magical Number Seven, Plus 

or Minus Two” by Miller [80].  To summarise, Miller demonstrated that a several studies 

showed that humans can recall between five and nine units of information depending on 

the complexity of the units and the category they belong to.  For example, if a subject was 

asked to remember and reproduce the ordering of a series of red and blue blocks, they 

would have more success than if there was red, blue, yellow, orange and black blocks. 

Miller went onto discuss the positive measurable effect on recall that could be achieved by 

grouping information into more complex chunks. 

The measurable effect that the amount of information able to be recalled is increased by 

forming groups.  Extending our previous example, if a subject was given the given the task of 

remembering the order of a set of red and blue blocks, but was able to pick out certain 

meaningful patterns such as RED-BLUE-RED, and treat each instance of that pattern as a 

chunk, they would be able to recall a longer series before encountering problems.  The 

concept of chunking has since been the topic of many papers that have demonstrated that it 

can help with both short and long-term memory [81, 82, 83]. 

It seems logical that, when a programmer creates a link to a new Frame in SpIDER, they are 

grouping the information on that Frame into a chunk.  Consider the class declaration seen in 

Figure 11.1.  Each member of the class, the fields, constructor and functions, have been 

abstracted onto their own Frame, represented only by the in situ link that remains.   
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Figure 11.1: Class declaration with chunked content hidden behind links 

This example demonstrates the possible connection between SpIDER’s Frame and Linking 

system and the concept of chunking, with each linked Text Item representing a chunk.  

Investigation, in the form of further literature review and user evaluation of SpIDER, is 

required to establish whether the phenomenon of Chunking occurs in programming and if 

SpIDER’s Frame and Linking system helps.   

 Design, Usage and Development of SpIDER 

Chapter 6 bridged the discussion of literature with the discussion of the design and 

development of SpIDER by performing an analysis of the system Expeditee.  This analysis 

extended the previous review of Expeditee from 4.3.3 whilst introducing aspects of 

Expeditee and the terms used to describe them later in the thesis.   

The usage and implementation of SpIDER itself was presented in Chapter 7, along with the 

rationale behind the major design decisions made.  Section 7.1 discussed how programmers 

are able to use spatial layout to convey additional meaning to their code by positioning 

tokens in absolute space, using boxes to separate or categorise fragments of code, and 

attaching arrows to boxes to create code that exists visually out of flow from other code on 
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the same Frame.  We also discuss the structure of a Frame in SpIDER and how links can be 

used to provide an abstraction for code positioned on another Frame. 

Section 7.2 documented how a programmer could interact with the authoring IDE 

functionality provided by SpIDER.  Through a series of examples, we demonstrated how 

SpIDER handles syntax highlighting, warnings and errors, content assist and top level Java 

project artefacts such as packages and classes.  Section 7.3 documented how a programmer 

can use SpIDER to run and debug a Java Project.  Providing program arguments, providing 

content to ‘standard in’, inserting breakpoints, stepping through code and analysing the 

current state of a running program were all explored.  Of particular note is the fact that, 

when making a request for content assist or inspecting the current state of a running 

program, the programmer is provided with results constructed entirely out of First Class 

Citizens. 

Sections 7.4 and 7.5 explained the implementation details of novel algorithms present in 

SpIDER.  The flow walker (Section 7.4) is the algorithm that extracts a linear version of code 

suitable for compilation from the spatially laid out code produced by a programmer using 

the techniques documented in Section 7.1.  The flow walker algorithm is explained as being 

built out of two components: the within Frame component: responsible for inferring lines, 

dealing with boxes and out of flow code; and the director component: responsible for 

directing and stitching together the results from multiple invocations of the within Frame 

component. 

Section 7.5 documented and discussed the implementation of a system designed to re-

introduce certain behaviours that programmers are familiar with from traditional IDEs—the 

magnet system—without limiting the spatial freedom provided by SpIDER.  The magnet 

system provides programmers with the ability to utilise what we have termed flow effects.  

Flow effects are the mechanisms that trivially occur in traditional IDEs as a result of their use 

of relative authoring.  For example, the ability to insert a blank line and have the 

surrounding content respond by shuffling down is a flow effect. 

 Evaluation 

Chapters 8–10 each contributed to our evaluation of SpIDER, and provided evidence 

towards demonstrating that an IDE can be designed and built to allow for Spatial Layout of 
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code whilst providing a flexible environment for a programmer to work in.  In Chapter 8 we 

detailed an evaluation of the flow walker algorithm.  Utilising a quiz format, 18 computer 

literature high school students were shown snapshots of examples of spatially laid out print 

statements and were then asked to choose from a set of answers based on what they 

thought the code would output.  Participants were computer literate high school students.  

The format of the quiz that participants undertook, some examples of the questions posed 

and the results of the evaluation are documented.  Questions in the quiz were modelled as 

simplified examples of spatial layout that are possible in SpIDER.  This initial study showed 

that participants’ opinions of the meaning of spatially laid out code matched the flow 

walker’s implementation more often than not.  

Notably, participant agreement with the algorithm declined when presented with questions 

that contained out of flow code.  In order to better understand the nuances surrounding 

participant agreement with the flow walker algorithm when out of flow was being used, a 

follow up study was conducted.  By examining the results of the initial study, two 

conjectures (Section 8.2) were formed and evaluated: 

3. The positioning of the arrow when performing out of flow would have a large effect 

on a participant’s intuition of how it functions.   

The flow walker algorithm does not pay attention to the exact positioning of the 

head of the arrow, only which box it lands in.  However the origin of the arrow can 

be used to pinpoint more precisely where the out of flow operation occurs at.  

Consequently providing space around and positioning the origin of the arrow in the 

centre of the surrounding lines would visually communicate its function more 

accurately. 

 

4. When creating a chain, people will treat separate boxes that are roughly aligned 

vertically as belonging to the same column.   

This suggested to us that avoiding this type of layout, by giving each box its own 

column, would be remove this confusion. 

Pairs of questions using out of flow were designed to test these hypotheses.  We were able 

to find evidence supporting the Hypothesis 1 and as a result, established some guidelines 
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for best practise when authoring out of flow code.  These guidelines are documented in 

Chapter 10. 

Chapter 9 used a series of realistic use cases to demonstrate how SpIDER’s flow walker 

algorithm, First Class Citizens, multimedia support and Frame and Linking system can be 

used to integrate various parts of the development process on a canvas with absolute 

positioning.  Each example purposefully and thoughtfully positioned software development 

artefacts (code, diagrams etc.) in space so as to communicate information not provided 

when authoring code in a traditional IDE—a technique we refer to as a Spatial Development 

Pattern. 

Prior to providing examples of Spatial Development Patterns, Section 9.1, under the slogan 

of ‘First, do no harm’, used various examples to show how functionality provided by 

traditional IDEs can be replicated (or at the very least closely approximated) in SpIDER.  Each 

example showed how a high-level concept used in traditional IDEs—hierarchical 

organisation for example—could be emulated in SpIDER.  The design of each transformation 

used to transition a concept into Spatial Hypermedia was not intended to present as the 

ideal of SpIDER style, but rather to show the minimal amount of change necessary for a 

programmer to begin working within SpIDER.    

Over sections 9.2 and 9.3 we documented several code examples that utilise Spatial 

Development Patterns.  We organised these into two categories, Expressive Patterns and 

Process Patterns.  An Expressive Pattern arranges content using spatial layout and the 

Frame and Linking system in order to communicate auxiliary information about the content 

being represented through a Spatial Metaphor.  A Process Pattern is used to communicate 

progress or change over time, with the goal of improving efficiency.  Six Expressive and Four 

Process Patterns are documented. 

Chapter 10 presented a critical discussion of issues pertaining to the design of SpIDER that 

had become evident during its production and evaluation.  These issues were: the potential 

for ambiguous code layout as a side effect of the flexibility provided by the flow walker; the 

necessity of careful arrow positioning when performing out of flow that had become 

evident from prior evaluation; and the unfortunate similarities between the goto 

programming statement and SpIDER’s Frame and Linking system.  We addressed each of 
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these issues, proposing software solutions—such as the snap to spot feature—where 

appropriate, and a combination of best practices and mitigating factors otherwise. 

 Future Work: Snap to Spot Feature 

To expand upon the snap to spot idea, in the studies documented in Chapter 8 we found 

that participant agreement with the algorithm rose from 48% to 86% when arrows were 

carefully positioned following the guidelines we provided in Section 10.2.  While the benefit 

of carefully positioned arrows is clear, enforcing specific positioning will limit the flexibility 

of the authoring environment.  In doing so, we would risk negatively limiting the expressive 

options currently available to the user. 

We propose an opt-in snap to spot feature as a solution.  While creating an arrow, if the 

user is holding down a modifier key, they would be visually shown a set of recommended 

arrow head positions.   

As a start to prototyping a solution, we have sketched Figures 11.2 and 11.3.  Thatching has 

been used to show where the suggested snap to spot positions would be if the best 

practices outlined in Section 10.2 were used.  The heavily thatched areas are the ideal 

suggested positions for arrow heads, the lightly thatched areas show fall-back positions if 

the ideal positions are not suitable. 

 

Figure 11.2: Suggested positioning of arrows head when arrows are being created from the left or right of the 
box. 
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Figure 11.3: Suggested positioning of arrows when arrows are being created from the top or bottom of the box. 

11.2 Hypotheses Revisited  

Utilising our review and analysis of pertinent literature, we were able to design and build a 

Spatial Hypermedia environment capable of supporting the software development process.  

SpIDER features uniform treatment of elements, wide multimedia support, support for a set 

of linked Frames and spatial layout of code on each Frame.  SpIDER’s spatial layout has been 

evaluated and shown to be understandable and useful.  We believe that SpIDER—as a first 

generation Spatial Hypermedia IDE—and the research surrounding it, is promising and 

worth pursuing further. 

In the thesis introduction two hypotheses were posited: 

1. A process can be established that allows for spatially arranged code to be 

unambiguously understood by programmers and compilers.  This process should 

allow code layout practice to range from serial (as seen in conventional IDEs such as 

Visual Studio), through hierarchical, to diagrammatic.  

 

2. A Spatial Hypermedia-based IDE can be used to integrate many stages of the 

software development process.  The uniform treatment of elements within a Spatial 

Hypermedia system will allow programmers to intertwine forms of documentation 

that are traditionally kept separate from the code (test results, variable dumps etc.) 

and allow programmers to better customise their environment for each project. 
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Hypothesis 1 was validated through the development of the flow walker algorithm.  

Examples through the thesis have shown spatially arranged code ranging from close to 

serial, right through to diagrammatic.  Examples of code closer to the serial layout can be 

seen in Chapter 6, whereas examples closer to the diagrammatic cluster around Chapter 8.  

Hierarchically laid out code is demonstrated through the use of SpIDER’s Frame and Linking 

system. 

The analysis of the flow walker algorithm presented in Chapter 7 has demonstrated that 

spatially laid out code produced utilising the flow walker can be clearly understood—

although with minimal briefing of participants, not 100% unambiguously.  The results of this 

analysis showed confusion, not only between the algorithm and participants, but between 

participants.  Regardless of this, given the purposefully limited complexity of the 

questions—limited so as to avoid testing code understanding of the programming language 

syntax—the results gathered are promising; showing that refinement and further pursuit of 

the spatial code layout is worthwhile. 

The ability to integrate many stages of software development, presented in Hypothesis 2, 

has been demonstrated in Chapter 8—markedly in Section 8.3 where process patterns are 

examined.  Examples have shown SpIDER’s use of Expeditee’s First Class Citizens being 

intermixed to visually communicate information about the code while the functionality of 

that code is retained.  Environment customisation has been shown, for example, through 

the creation of linked Items, enabling navigation directly between code and test code and 

the ability to create ‘toolboxes’ for storing frequently used artefacts. 

The significance of the research presented in this thesis lies in:  

 Its review and subsequently drawn connections between three distinct areas of 

literature—Spatial Memory, Traditional Programming and Spatial Hypermedia. 

 A review of the Spatial Hypermedia system Expeditee. 

 The development of SpIDER by extending Expeditee. 

 The evaluation of SpIDER’s flow walker algorithm. 

 An exploration into the possibilities provided by an IDE such as SpIDER. 
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11.3 Next Steps  

We look to the possibility of expanding SpIDER to support other languages.  In the following 

sections we look at aspects for providing this support.  Section 11.3.1 examines the Python 

programming language.  In particular, its use of whitespace to represent scope is discussed.  

Section 11.3.2 then looks at the possibility of using SpIDER’s Frame and Linking system as a 

substitute for programming language functionality.  We use an example to demonstrate 

how SpIDER’s Frame and Linking system can be used to ‘fake’ some aspects of Java-like 

inheritance in the C programming language.  We flesh out these two examples as samplers 

of what is possible if we push the envelope.   

 Python 

Consider the Python programming language.  Python delineates scope by using whitespace 

characters rather than the curly braces and semi-colons prevalent in many other languages.  

This reliance on whitespace characters conflicts with SpIDER’s absolute positioning; which in 

effect, does away with whitespace characters. 

Prior to the development of SpIDER, Expeditee implemented some support for the Python 

programming language.  This support provides the ability to run Python scripts and give 

error feedback, but does not include any other IDE functionality.  Figure 11.4 shows a 

Python script that loops through an array and prints its content.  In a traditional text editor, 

the content of the loop would be indented with whitespace.  In Expeditee, a box is used to 

communicate scope.  A user runs the runPythonFrame action to execute the code.  Prior to 

executing the code, Expeditee serialises the Python content, substituting whitespace 

wherever boxes are present.  Boxes can be used within boxes to represent multiple levels of 

scope. 
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Figure 11.4: Python code in Expeditee using boxes in place of whitespace 

This is one possible solution to the conflict between Python’s reliance on whitespace and 

SpIDER’s lack of whitespace.  However, it is a solution that limits the utility of boxes.  As 

boxes currently function in SpIDER, the left and right sides of a Java assignment statement 

can be placed in separate boxes.  If SpIDER’s support for Python was to adopt Expeditee’s 

solution, this possibility would not be maintained when authoring Python code.   

We expect that other languages, when adding support for them to SpIDER, will each pose 

their own interesting challenges.  How do the ideas expressed in this thesis play out when 

writing code using a scripting language?  What forms of abstraction can be developed that 

enhance each of these languages?  What about a functional language like Haskell?  Are 

language features such as pattern matching suitable for spatial layout?  Are there specific 

Expressive Patterns that are suitable in a functional but not imperative language?  These 

questions are all logical next steps for further research. 

 Inheritance 

Language features, such as inheritance, can be simulated using SpIDER’s Frame and Linking 

system.  Figure 11.5 shows a mock-up of how this might look if SpIDER supported the C 

programming language.  Three Frames are visible in the image, each containing some C 

code.  The top Frame contains several linked Text Items that each lead to a Frame 

containing a function definition.  The other two Frames each contain only a single link: to 

the Frame at the top of the picture.  This gives the bottom two Frames access to the 
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functions declared in the top Frame.  Taken together, these three C code files can be used to 

produce ASCII triangles and boxes. 

 

 

Figure 11.5: Two C code Frame referencing the same Frame which contains a set of ‘inherited’ functions. 

This examples shows only one aspect of inheritance: shared content.  Further thought is 

required to determine if other aspects, such as polymorphic referencing, are also possible 

using SpIDER’s Frame and Linking system.  What about other programming language 

functionality?  Can pattern matching be added to Java? 

 Spatial Programming Languages  

Now that we have demonstrated that we can use a Spatial IDE to enhance the presentation 

of code in conventional programming languages, a natural next step is to consider the 
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concept of a truly spatial programming language.  In the educational sphere, for example, 

we could go beyond how visual programming languages, such as Scratch [84], are used to 

teach programming by allowing instructors to show diagrams, taken from textbooks, that 

also run as active code. 

As a more specific example, consider a language where spatial behaviour is syntactically 

meaningful and multimedia artefacts are treated as First Class citizens.  Figure 11.6 shows 

code written in such a theoretical programming language.  Two Frames are shown.  In the 

left Frame we have fairly standard code logging the state of a traffic light before it changes.  

Notice however, that the variable name lights is assigned to a multimedia object—an image 

of traffic lights in this case.   

The functional behaviour of the traffic light image, as a First Class Citizen of the 

programming language rather than simply an image, becomes apparent when the Frame on 

the right is examined.  A set of arrows and boxes, also with functional behaviour as First 

Class Citizens, implements the functionality provided by the traffic lights image.  They 

describe a cyclical enumeration, where the active light cycles from red, to green, to orange 

before arriving back at red.  An arrow with a square on its tail is used to specify the initial 

state of the traffic light enumeration. 

 

Figure 11.6: Example from theoretical spatial programming language. 
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Appendix A  

Evaluating SpIDER Spatial Layout: Questions 

A.1 Questions from Initial Study 

A.1.1 Part 1 

For each question in part 1 participants were asked:  

 If this pseudocode executed, what would the output look like?   

They were provided with five options: 

 1. a e d c b f 

 2. a d b e c f 

 3. a b c d e f 

 4. b a d e c f 

 5. a d e b c f 

Question 1: 

 

Question 2: 
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Question 3: 

 

Question 4: 

 

 

A.1.2 Part 2 

For each question in part 2 participants were asked:  

 If this pseudocode executed, what would the output look like?   

They were provided with six options: 

 1. f a d b e c 

 2. d e f a b c 

 3. f a b c d e 

 4. a b c d e f 

 5. a d b e c f 

 6. a b c d f e 
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Question 1: 

 

Question 2: 

 

Question 3: 
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Question 4: 

 

 

A.1.3 Part 3 

For each question in part 3 participants were asked:  

 If this pseudocode executed, what would the output look like?   

They were provided with six options: 

 1. d a b c e f 

 2. a e f b c d e f 

 3. a d e f b c 

 4. a b c d e f 

 5. d e f a b c 

 6. a b c d e f a b c 

Question 1: 
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Question 2: 

 

Question 3: 

 

Question 4: 

 

 

A.1.4 Part 4 

For each question in part 4 participants were asked:  

 If this pseudocode executed, what would the output look like?   
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They were provided with eight options: 

 1. c a b d e f 

 2. a b d e a b c f 

 3. c d a b e f 

 4. a d e c f b 

 5. a b d e c f 

 6. d e c f a b 

 7. a c f d e b 

 8. a b d e c f c f 

Question 1: 

 

Question 2: 

 

Question 3: 
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Question 4: 

 

 

A.1.5 Part 5 

Question 1: 

Participants were asked: 

 Below is the first part of a program snippet that models a ball bouncing between 

two  walls.  What is the x-position of the right-hand wall? 

They were provided with five options: 

 1. 4 

 2. 14 

 3. 10 

 4. Vx 

 5. 17 
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Question 2: 

Participants were asked: 

 Here is the complete snippet. At the end of the 3rd iteration through the loop, 

which walls  have been hit? 

They were provided with four options: 

 1. Left wall only 

 2. Right wall only 

 3. Neither wall 

 4. Both walls 
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A.1.6 Part 6 

Question 1: 

Participants were asked: 

Here is a function for doing some hit testing on a square. We are interested if it is 

the left or the right side of the square has been hit, and if it is the right-hand side, 

whether it is towards the top or the bottom. If hitSquare(8,3,10) is executed, what 

will print? 

They were provided with four options: 

 1. l 

 2. l l 

 3. r t 

 4. r b 
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Question 2: 

Participants were asked: 

 Here is the same code again. If hitSquare(3, 7,10) is executed, what will print? 

They were provided with four options: 

 1. l 

 2. l l 

 3. r t 

 4. r b 

 



 
 

 
 

Appendix B  

Evaluating Spatial Layout: Confidence Level 

B.1 Initial Study Confidence Level 

The following concerns the first four parts of the initial study.  The average (mean) 

agreement for each section, respectively, is: 72%, 78%, 47% and 33%.  We state that overall 

agreement with the algorithm is: 57.5% += 17.39%.  This is calculated as follows: 

 The overall average of 57.5% is calculated with the following formula: 

Σ(𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑠) ÷ N, where N is 4 (the number of individual means).  

 The standard deviation is used to calculate the margin of error.  It is calculated using 

the following formula: √Σ((x −  μ)2 ÷ (N − 1).  Figure B.1 shows this equation 

being applied to the individual means listed above. 

 The margin of error of 17.39% is calculated with the following formula: 𝑧 ∗

(𝜎 ÷ √𝑁), where z is 1.645 so as to attain a confidence level of 90% and 𝜎 is the 

previously calculated standard deviation (restored to a percent). 

 

Figure B.1: Calculating the standard deviation of the individual means. 
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Appendix C  

Ethics Application and Approval 

C.1 Ethics Application 

Project Title 

Understanding SpIDER Spatial Layout 

What is this research project about? 

SpIDER (Spatial Integrated Development Environment Research) is an IDE developed with 

the goal of improving the programming experience. It aims to do this by allowing the 

programmer to lay code out spatially; using both the height and width of the page; to 

communicate meaning. 

Programming languages are ridged and precise. Traditional IDEs retain this rigidness 

through the use of a flat file text editor in combination with specially built widgets (such as the 

Package Explorer in Eclipse). SpIDER attempts to shake off this rigidness in various ways, 

one of which is through the use of its 'out of flow' walker.  The programmer is able to use 

spatial positioning, boxing and arrows in order to communicate meaning. For example, the 

programmer may want to emphasize the base and recursive cases in a recursive function. 

The 'out of flow' walker works as a middle man, decoupling the code the programmer writes 

from what the compiler is given. 

Purpose 

The 'out of flow' walker has been designed with the aim of being mostly invisible to the 

programmer. The programmer should be able to quickly understand how SpIDER allows 

code to be laid out.  A quiz has been designed to show some code laid out in a SpIDER style 

for participants to look at and understand. 

What will you have to do and how long will it take? 

You will be given a survey to complete online, it will take no more than 30 minutes. 
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What will happen to the information collected? 

The information collected will be used by the researcher to craft a specific section of their 

Doctoral thesis.  Only the researcher and supervisors will be privy to any notes and raw data 

collected.  After analysis is complete any notes and raw data collected will be 

destroyed/erased.  Participants can request their own results and receive them once analysis 

is complete.  No participants will be named in the publications and every effort will be made 

to disguise their identity. 

Declaration to participants 

If you take part in the study, you have the right to: 

 Refuse to answer any particular question, and to withdraw from the study before 
analysis has commenced on the data. 

 Ask any further questions about the study that occurs to you during your 
participation. 

 Be given access to your own answers once analysis is complete.  

 Be given access to a summary of findings from the study once analysis is complete. 
 

Who’s responsible? 

If you have any questions or concerns about the project, either now or in the future, please 

feel free to contact either: 

Researcher: Bryce 

bnemhauser@gmail.com 

Supervisor: David Bainbridge 

davidb@waikato.ac.nz 

Supervisor: Bill Rogers 

coms0108@cs.waikato.ac.nz 

mailto:davidb@waikato.ac.nz
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Understanding SpIDER Spatial Layout 
 

Consent Form for Participants 
 

I have read the Participant Information Sheet for this study and have had the details of the 
study explained to me. My questions about the study have been answered to my satisfaction, 
and I understand that I may ask further questions at any time.  
 
I also understand that I am free to withdraw from the study before the end of the day.  I 
understand I can withdraw any information I have provided up until the researcher has 
commenced analysis on my data. I agree to provide information to the researchers under the 
conditions of confidentiality set out on the Participant Information Sheet.  
 
I agree to participate in this study under the conditions set out in the Participant Information 
Sheet. 
 
Signed:  _____________________________________________ 
 
Name:  _____________________________________________ 
 
Date:  _____________________________________________ 
 

Additional Consent as Required 
 
I agree / do not agree to my responses being recorded. 
 
Signed:  _____________________________________________ 
 
Name:  _____________________________________________ 
 
Date:  _____________________________________________ 
 
Researcher’s Name and contact information:  
Researcher: Bryce 
bnemhauser@gmail.com 
 
Supervisor’s Name and contact information:  
Supervisor: David Bainbridge 

davidb@waikato.ac.nz 

Supervisor: Bill Rogers 

coms0108@cs.waikato.ac.nz 

 

Research Consent Form 
 

 

Ethics Committee, Faculty of Computing and Mathematical Sciences 



 
 

328 
 

C.2 Ethics Approval 

 

 


