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Abstract

This working paper presents an algorithm that combines modular synthesis for extended
finite-state machines (EFSM) with abstraction of variables by symbolic manipulation, in
order to compute least restrictive controllable supervisors. Given a modular EFSM system
consisting of several components, the proposed algorithm synthesises a separate supervisor for
each specification component. To synthesise each supervisor, the algorithm iteratively selects
components (plants and variables) from a synchronous composition until a least restrictive
controllable solution is obtained. This improves on previous results of the authors where
abstraction is only performed by the selection of components and not variables. The working
paper explains the theory of EFSM synthesis and abstraction and includes formal proofs
of all results. An example of a flexible manufacturing system illustrates how the proposed
algorithm works to compute a modular supervisor.
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1 Introduction

Supervisory Control Theory [3, 17] provides a general framework for the synthesis of reactive
control functions. Given a model of the system, the plant, to be controlled, and a specification
of the desired behaviour, it is possible to automatically compute, i.e. synthesise, a supervisor
that restricts the plant behaviour while satisfying the specification. Originally, the theory is
grounded on the Finite-state Machines formalism and several approaches have been developed
to make synthesis more efficient [1, 12, 22, 24].

In recent years, Supervisory Control Theory has been generalised for Extended Finite-state
Machines (EFSM) [4, 14, 23], which include variables and improve modelling capabilities for
systems with data dependency or software. Variables are more general than approaches
with similar purpose [7, 16], including event distinguishers [5, 18, 22], and can simplify the
modelling task for various discrete event systems. However, they require more sophisticated
tools and methods for synthesis. Several synthesis algorithms for EFSMs have been proposed
[8, 11, 15, 23], which explore the full system state space, including all possible combinations
of variable values. The resulting complexity can be avoided to some extent using symbolic
representation [11] or abstraction [19, 23].

Recently, a modular approach for the synthesis of least restrictive and controllable super-
visors from plants modelled with EFSMs has been proposed [10], which generalises earlier
work on modular synthesis without variables [1,2]. The approach considers only prefix-closed
behaviours, and the system model consists of several interacting plant and specification com-
ponents. In this case, synthesis can be performed separately for each specification EFSM,
and the results can be combined to form a modular supervisor. For each specification, the
algorithm [10] iteratively selects plant components to be included in synthesis until a least
restrictive controllable solution is found. The obtained modular supervisors, in combination,
achieve the least restrictive controllable behaviour for the entire system.

This working paper extends the approach of [10] by including the idea of existential ab-
straction [23] of variables. The algorithm of [10] performs abstraction only by selecting EFSM
components and always includes all variables of the selected components. Existential abstrac-
tion improves on this, because it allows for abstractions to be formed by selecting components
and some of their variables. Other variables are quantified out and do not contribute to the
state space when synthesis is performed.

In the following, Section 2 introduces the background of extended finite-state machines,
and the following sections describe the proposed abstraction method and prove its correctness.
Section 3 considers the abstraction of variables from plant components, Section 4 considers the
abstraction of variables from specification components, and Section 5 combines these results
with other previous work to present an algorithm for synthesis for EFSM systems consisting
of multiple plant and specification components. This algorithm is illustrated by an example
in Section 6, and afterwards Section 7 adds concluding remarks.
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2 Preliminaries

A finite-state machine (FSM) consists of a finite set of states linked by transitions, which
are labelled by discrete events [3]. This working paper considers extended finite-state ma-
chines (EFSM), which add to FSMs variables and the ability to read and update these
variables on the occurrence of transitions [4, 13].

2.1 Variables and Updates

An update is a first-order logic formula [6] constructed from variables, integer constants,
Boolean literals, the existential and universal quantifiers (∃ and ∀), and the usual arithmetic
and logic connectives. Variables can be bound to quantifiers or occur free in an update. For
example, in the update ∃y x > y + 2, the variable y is bound to the existential quantifier,
while x is a free variable. The set of all update formulas is denoted by Π.

In this working paper, formulas are interpreted over finite domains. Every variable z is
associated with a finite discrete domain dom(z) and an initial value ẑ◦ ∈ dom(z). Let V =
{v0, . . . , vn} be the set of variables with combined domain dom(V ) = dom(v0)×· · ·×dom(vn).
An element v̂ of dom(V ) is also considered as a valuation that assigns to each variable z ∈ V
a value v̂(z) ∈ dom(z), and by extension a truth value to each update. The initial valuation
is V ◦ ∈ dom(V ) with V ◦(z) = ẑ◦ for each z ∈ V .

A second set of variables, called next-state variables and denoted V ′ = { z′ | z ∈ V } is
used to describe the values of the variables after a transition. Variables in V are also referred
to as current-state variables to differentiate them from the next-state variables in V ′. The
next-state variable z′ has the same domain as its current-state variable z. Given v̂ ∈ dom(V ),
the valuation v̂′ ∈ dom(V ′) is defined by v̂′(z′) = v̂(z) for all z ∈ V . For an update p ∈ Π, the
term vars(p) denotes the set of all variables with a free occurrence as current-state or next-
state variable in p, and vars′(p) denotes the set of all variables whose corresponding next-state
variables have a free occurrence in p. For example, if p ≡ ∃z x′ = y+z+1, then vars(p) = {x, y}
and vars′(p) = {x}. Here and in the following, the relation ≡ denotes syntactic identity of
updates to avoid ambiguity when an update contains the equality symbol =.

An update p ∈ Π is satisfiable if it is true for at least one valuation of its variables, i.e.,
if there is a valuation v̂ ∈ dom(vars(p)) such that v̂(p) = true. Otherwise the update p
is unsatisfiable. An update p is valid if it is true for all valuations of its variables, i.e., if
v̂(p) = true for every valuation v̂. The restriction of a valuation v̂ ∈ dom(V ) to W ⊆ V
is v̂|W ∈ dom(W ) with v̂|W (z) = v̂(z) for all z ∈ W . Two valuations v̂ ∈ dom(V ) and
ŵ ∈ dom(W ) can be combined to give v̂ ⊕ ŵ ∈ dom(V ∪W ) where (v̂ ⊕ ŵ)(z) = v̂(z) for
z ∈ V and (v̂ ⊕ ŵ)(z) = ŵ(z) for z ∈W \ V .
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α : x = 1

α : x = 2

β : x′ = x+ 1

α : x′ = 2

Figure 1: Example of an EFSM.

2.2 Extended Finite-State Machines

Definition 1 An Extended finite-state machine (EFSM) is a tuple F = 〈Σ, Q,Q◦,→〉, where
Σ is a finite set of events, Q is a finite set of locations, Q◦ ⊆ Q is the set of initial locations,
and → ⊆ Q × Σ×Π×Q is the extended transition relation.

A transition between locations x, y ∈ Q with event σ ∈ Σ and update p ∈ Π is written
x

σ:p
→ y. It can occur if F is in location x and the update p evaluates to true, and when

it occurs, F changes its location to y while updating the variables in vars′(p) in accordance
with p; variables not in vars′(p) remain unchanged. The transition relation is extended for

events not in the event set of the EFSM, σ /∈ Σ, by defining x
σ:true
−−−−→ x for all locations x ∈ Q.

Example 1 Consider the EFSM F in Figure 1, which has only one variable x with domain
dom(x) = {0, . . . , 5}. The update x′ = x + 1 of the β-transition changes the variable x by
adding 1 to its current value, if it currently is less than 5. Otherwise (if x = 5) the transition
is disabled. The update x = 2 disables its transition unless x = 2 in the current state, and
the value of x in the next state is unchanged if the transition is taken. Differently, the update
x′ = 2 always enables its transition, and the value of x in the next state is forced to be 2.

Given an EFSM F and event σ ∈ Σ, the referenced variable set is vars(F, σ) =
⋃

{ vars(p) |

x
σ:p
→ y }, and vars(F ) =

⋃

σ∈Σ vars(F, σ). Furthermore, for a set F of EFSMs, vars(F , σ) =
⋃

F ′∈F vars(F ′, σ) and vars(F ) =
⋃

F ′∈F vars(F ′). Analogous notation is defined for vars′.

Definition 2 [10] Let F = 〈Σ, Q,Q◦,→〉 be an EFSM.

(i) F is normalised, if for any two transitions x1
σ:p1
−−→ y1 and x2

σ:p2
−−→ y2 with the same

event σ ∈ Σ, it holds that vars′(p1) = vars′(p2).

(ii) F is pure if vars′(F ) = ∅.

(iii) F is state-deterministic if |Q◦| ≤ 1, and for all transitions x
σ:p1
−−→ y1 and x

σ:p2
−−→ y2 such

that p1 ∧ p2 is satisfiable, it holds that y1 = y2.

A set F = {F1, . . . , Fn} of EFSMs is normalised, pure, or state-deterministic if every EFSM
Fi ∈ F has this property.
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In a normalised EFSM, the set of variables changed by an event is the same on all transi-
tions. This assumption helps to recognise the implicitly unchanged variables after synchronous
composition. Every EFSM can be transformed into a normalised EFSM by a process of re-
naming similar to normalisation [13]. As a stronger condition, a pure EFSM cannot assign
any variables, it only restricts events. State-determinism ensures that the target locations are
uniquely determined from the source location, event, and variable assignment. It is needed
for supervisors to track the location of the plant by the observation of events and variable
values.

Example 2 Consider again the EFSM F in Figure 1. This EFSM is not normalised, because
it has α-transitions with updates x = 1 and x′ = 2, and vars′(x = 1) = ∅ 6= {x} = vars′(x′ =
2). That is, some α-transitions explicitly change x while others leave x implicitly unchanged.
The EFSM F is also not pure, for example vars′(x′ = 2) 6= ∅.

On the other hand, F is state-deterministic: although there are two α-transitions with
different targets originating from the initial location, the dependence of the guards on the
value of x ensures that these transitions cannot be enabled at the same time. The conjunction
x = 1 ∧ x = 2 is unsatisfiable as x can never have both the values 1 and 2.

In this working paper, plants are modelled by normalised state-deterministic EFSMs,
while specifications are pure state-deterministic EFSMs. The synthesised supervisor is also
normalised and state-deterministic, but unlike the specification not necessarily pure so that
it can restrict variable assignments.

An EFSM F = 〈Σ, Q,Q◦,→〉 can be unfolded [13, 23] and interpreted as an FSM with
state set Q × dom(vars(F )). The states (x, v̂) consist of a location x ∈ Q and a valuation
v̂ ∈ dom(vars(F )). More specifically, the unfolded transition relation is defined as follows.

Definition 3 Let F = 〈Σ, Q,Q◦,→〉 be an EFSM, and let V ⊇ vars(E). The unfolded
transition relation → ⊆ (Q×dom(V ))×Σ×(Q×dom(V )) is defined such that (x, v̂)

σ
→ (y, ŵ)

if and only if there exists a transition x
σ:p
→ y in F such that (v̂⊕ŵ′)(p) is true and v̂(z) = ŵ(z)

for all variables z ∈ V \ vars′(p).

Thus, an unfolded transition between two states (x, v̂)
σ
→ (y, ŵ) exists if F contains a

transition x
σ:p
→ y such that the update p is true, if the current-state variables are interpreted

according to v̂ and the next-state variables according to ŵ, and all variables that do not appear
as next-state variables in the update p are unchanged between v̂ and ŵ. This transition
relation is extended to events not in the EFSM’s event set Σ, which are always enabled
without changing the EFSM’s location or any variables. That is, (x, v̂)

σ
→ (x, v̂), for all

x ∈ Q, v̂ ∈ dom(V ), and σ /∈ Σ.
The → notation is extended to traces, state sets, and state machines in the same way as

for FSMs. For example, a transition sequence

(x0, v̂0)
σ1→ (x1, v̂1)

σ2→ · · ·
σn→ (xn, v̂n) (2.1)
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is written (x0, v̂0)
s
→ (xn, v̂n) for s = σ1 · · ·σn. This transition sequence is a path in F if

it starts in an initial state of F , i.e., if x0 ∈ Q◦ and v̂0 = V ◦, which is also written as
F

s
→ (xn, v̂n). Based on this, the set of accessible states of an EFSM F is

Qacc(F ) = { (x, v̂) ∈ Q × dom(vars(F )) | F
s
→ (x, v̂) for some s ∈ Σ∗ } . (2.2)

With the following definition, an EFSM can be restricted to a set of unfolded states,
symbolically, by rewriting updates to impose new constraints on the variables.

Definition 4 Let F = 〈Σ, Q,Q◦,→〉 be an EFSM with V = vars(F ), and let X ⊆ Q ×
dom(V ). The symbolic restriction of F to X is an EFSM F ↾ X = 〈Σ, Q|X , Q◦

|X ,→|X〉, where

Q|X = {x ∈ Q | (x, v̂) ∈ X for some v̂ ∈ dom(V ) } ; (2.3)

Q◦
|X = {x◦ ∈ Q◦ | (x◦, V ◦) ∈ X } ; (2.4)

and x
σ:p∧RX [p,y]
−−−−−−−→|X y, if x, y ∈ Q|X , and x

σ:p
→ y, and RX [p, y] ∈ Π is an update with

vars(RX [p, y]) ⊆ V and vars′(RX [p, y]) ⊆ vars′(p) such that, for all valuations v̂, ŵ ∈ dom(V )
it holds that (y, v̂↾V \vars′(p) ⊕ ŵ) ∈ X if and only if (v̂ ⊕ ŵ′)(RX [p, y]) = true.

The symbolic restriction formula RX [p, y] constrains the updates of the EFSM F to ensure
that only states in X can be entered without changing any variables that are unchanged in F .
When constraining a transition with update p, the formula RX [p, y] only uses next-state
variables that also appear as next-state variables in p; other variables are referenced through
their current-state name as they remain unchanged. Therefore, the valuation v̂↾V \vars′(p) ⊕ ŵ
after the transition includes the values of unassigned variables z /∈ vars′(p) from v̂ before the
transition and the values of other variables according to ŵ′ satisfying the update formula. It
is always possible to construct a formula RX [p, y] as required in the definition, although it is
not unique. In the following it is assumed that the formula is obtained deterministically by
an appropriate algorithm.

The following lemma confirms that symbolically restricting an EFSM to some set X ⊆
Q× dom(V ) ensures that the unfolded state space is confined within that set X.

Lemma 1 Let F = 〈Σ, Q,Q◦,→〉 be an EFSM, and let X ⊆ Q × dom(vars(F )). Then
Qacc(F ↾ X) ⊆ X.

Proof. Let V = vars(V ), and assume (x, û) ∈ Qacc(F ↾ X) for v̂ ∈ dom(V ). Then there is a
path

(x0, û0)
σ1→ (x1, û1)

σ2→ · · ·
σn→ (xn, ûn) = (x, û) (2.5)

in F ↾ X. Consider two cases.
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If n = 0, then note that x0 ∈ Q◦
|X , which by (2.4) means (x, û) = (x0, û0) = (x0, V ◦) ∈ X

as û0 = V ◦ is the initial valuation.
If n > 0, then there is a transition xn−1

σ:p∧R
−−−−→|X xn in F ↾ X with R ≡ RX [p, xn] such that

(ûn−1⊕ (ûn)′)(p∧R) = true and ûn−1(z) = ûn(z) for all z ∈ V \vars′(p∧R). By Definition 4,
the update R is such that vars′(R) ⊆ vars′(p) and for all valuations v̂, ŵ ∈ dom(V ) it holds
that (xn, v̂↾V \vars′(p) ⊕ ŵ) ∈ X if and only if (v̂ ⊕ ŵ′)(R) = true. From vars′(R) ⊆ vars′(p)
it follows that ûn−1(z) = ûn(z) for all z ∈ V \ vars′(p ∧ R) = V \ vars′(p). Then note that
ûn = ûn↾V \vars′(p) ⊕ ûn = ûn−1↾V \vars′(p) ⊕ ûn. It follows from (ûn−1 ⊕ (ûn)′)(p ∧ R) = true
that (ûn−1⊕ (ûn)′)(R) = true and thus (x, û) = (xn, ûn) = (xn, ûn−1↾V \vars′(p)⊕ ûn) ∈ X. ✷

2.3 Synchronous Composition

EFSMs are composed using lock-step synchronisation on shared events, like ordinary FSMs,
but in addition the updates are combined by conjunction.

Definition 5 The synchronous composition of two EFSMs F1 = 〈Σ1, Q1, Q
◦
1,→1〉 and F2 =

〈Σ2, Q2, Q
◦
2,→2〉 is

F1 ‖ F2 = 〈Σ1 ∪ Σ2, Q1 ×Q2, Q
◦
1 ×Q◦

2,→〉 , (2.6)

where (x1, x2)
σ:p1∧p2
−−−−−→ (y1, y2) if x1

σ:p1
−−→1 y1 and x2

σ:p2
−−→2 y2.

This definition captures EFSMs with different event sets through the extended definition
of the transition relation. For example, if x1

σ:p
→1 y1 in F1 and F2 does not synchronise on

this event, σ /∈ Σ2, then the extended transition relation of F2 includes x2
σ:true
−−−−→2 x2 for

every location x2 ∈ Q2. This results in synchronised transitions (x1, x2)
σ:p∧true
−−−−−→ (y1, x2), or

equivalently (x1, x2)
σ:p
→ (y1, x2), in F1 ‖ F2.

As a result of the conjunctive combination of updates, they may cancel each other out. For

example, if x1
σ:z′=0
−−−−→1 y1 in F1 and x2

σ:z′=1
−−−−→2 y2 in F2, then the conjunction z′ = 0∧z′ = 1 is

unsatisfiable, or equivalently there is no such transition in F1 ‖F2. Synchronous composition

can override the assumption of implicitly unchanged variables in an EFSM. If x1
σ:z=0
−−−−→1 y1

and x2
σ:z′=z+1
−−−−−−→2 y2, e.g., then (x1, x2)

σ:z=0∧z′=z+1
−−−−−−−−−→ (y1, y2). So the value of z changes from

0 to 1 in F1 ‖ F2 although implicitly unchanged in F1.
EFSM synchronous composition is associative and commutative, apart from the renaming

of locations and rewriting of updates into equivalent formulas. Synchronous composition is
not idempotent as F ‖ F = F does not generally hold for non-deterministic state machines.
If F is a state-deterministic EFSM, then F ‖ F = F holds up to isomorphism, after deletion
of transitions with unsatisfiable updates and inaccessible locations.

This working paper considers systems modelled as the synchronous composition of several
EFSMs. Then the model consists of a set of EFSMs, F = {F1, . . . , Fn}, and the notation
∥

∥(F) = F1 ‖ · · · ‖ Fn denotes their synchronous composition. As a special case,
∥

∥(∅) =
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〈∅, {x◦}, {x◦}, ∅〉 is the neutral element of synchronous composition. This is a one-location
EFSM without events, which by definition accepts all events without changing its location or
assigning its variables.

The following lemma describes a criterion to determine the presence of a transition in the
unfolded transition relation of a synchronous composition. Such a transition exists if each of
the composed EFSMs has a transition whose update evaluates is true, and the variables that
do not appear as next-state variables in any of these updates are unchanged.

Lemma 2 Let F1, . . . , Fn be EFSMs, V ⊇ vars(F1) ∪ · · · ∪ vars(Fn), and v̂, ŵ ∈ dom(V ).
Then

(x1, . . . , xn, v̂)
σ
→ (y1, . . . , yn, ŵ) in F1 ‖ · · · ‖ Fn (2.7)

if and only if each Fi has a transition xi
σ:pi−−→ yi with (v̂ ⊕ ŵ′)(pi) = true, and v̂↾U = ŵ↾U

where U = V \ (vars′(p1) ∪ · · · ∪ vars′(pn)).

The proof of this lemma is immediate from Definitions 3 and 5 as the EFSM F1 ‖ · · · ‖Fn

must contain a transition (x1, . . . , xn, v̂)
σ:p1∧···∧pn
−−−−−−−→ (y1, . . . , yn, ŵ), with the variables not ap-

pearing primed in the updates remaining unchanged. Under the assumption of normalisation,
the set U of unchanged variables can also be written as U = V \(vars′(F1, σ)∪· · ·∪vars

′(Fn, σ)).

Note that if the event σ is not in the alphabet of some Fi, then by definition xi
σ:true
−−−−→ xi.

For ordinary FSMs, it is known that any path in synchronous composition corresponds
to a path in each of the composed FSMs. This is not guaranteed form EFSMs, as variable
changes performed by one component may affect the path in the other components. Such
a path in one component can only be reconstructed if the other components do not change
variables. As a first application of Lemma 2, the following Lemma 3 shows this property
under the assumption that synchronous composition is performed with a pure EFSM.

Lemma 3 Let A and B be EFSMs, where B is pure, and let

(x0A, x
0
B, v̂

0)
σ1→ (x1A, x

1
B, v̂

1)
σ2→ · · ·

σn→ (xnA, x
n
B, v̂

n) (2.8)

be a path in A ‖B where v̂i ∈ dom(V ) for some V ⊇ vars(A) ∪ vars(B). Then

(x0A, v̂
0)

σ1→ (x1A, v̂
1)

σ2→ · · ·
σn→ (xnA, v̂

n) (2.9)

is a path in A.

Proof. It is clear that x0A and v̂0 are initial locations and variable values from (2.8). Consid-
ering the i-th transition on the path (2.8), it follows by Lemma 2 that there are transitions

xi−1
A

σi:pA−−−→ yiA in A with (v̂i−1 ⊕ (v̂i)′)(pA) = true ; (2.10)

xi−1
B

σi:pB−−−→ yiB in B with (v̂i−1 ⊕ (v̂i)′)(pB) = true ; (2.11)
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such that

v̂i−1(z) = v̂i(z) for all z ∈ V \ (vars′(pA) ∪ vars′(pB)) = V \ vars′(pA) . (2.12)

The last equality holds since vars′(pB) = ∅ as B is pure. By Definition 3, combining (2.10)

and (2.12) gives a transition (xi−1
A , v̂i−1)

σi→ (xiA, v̂
i) in A, and the path (2.9) is obtained by

repeating this argument for all transitions on the path (2.8). ✷

Another important property of EFSM synchronous composition is that state-determinism
ensures that the sequence of locations visited by an EFSM for a given sequence of events and
variable values is uniquely defined, even in synchronous composition with other EFSMs.

Lemma 4 Let A, B, and C be EFSMs, where A is state-deterministic, and let

(x0A, x
0
B, v̂

0)
σ1→ (x1A, x

1
B, v̂

1)
σ2→ · · ·

σn→ (xnA, x
n
B, v̂

n) ; (2.13)

(y0A, y
0
C , v̂

0)
σ1→ (y1A, y

1
C , v̂

1)
σ2→ · · ·

σn→ (ynA, y
n
C , v̂

n) (2.14)

be paths in A ‖B and A ‖ C, respectively. Then xiA = yiA for i = 0, . . . , n.

Proof. The claim is shown by induction on i. For the base case, i = 0, note that x0A and y0A
are initial locations of A, and thus x0A = y0A by Definition 2 (iii) as A is state-deterministic.
Now assume xiA = yiA for some i ≥ 0, and consider the next transitions

(xiA, x
i
B, v̂

i)
σi+1
−−−→ (xi+1

A , xi+1
B , v̂i+1) ; (2.15)

(yiA, y
i
C , v̂

i)
σi+1
−−−→ (yi+1

A , yi+1
C , v̂i+1) (2.16)

on the paths (2.13) and (2.14). This means by Lemma 2 that there are transitions in A,

xiA
σi+1:pA
−−−−−→ xi+1

A with (v̂i ⊕ (v̂i+1)′)(pA) = true ; (2.17)

yiA
σi+1:qA
−−−−−→ yi+1

A with (v̂i ⊕ (v̂i+1)′)(qA) = true . (2.18)

Then pA∧qA is satisfiable, and noting that xiA = yiA by inductive assumption, it follows by the
state-determinism of A from Definition 2 (iii) and from (2.17) and (2.18) that xi+1

A = yi+1
A . ✷

2.4 Behavioural Inclusion

When comparing EFSMs, variables must be considered in addition to events, so the following
notion of behavioural inclusion replaces language inclusion as used for FSMs.

10



Definition 6 An EFSM F1 is behaviourally included in another EFSM F2, written F1 ⊆v F2,
if for every path

(x0, v̂0)
σ1→ (x1, v̂1)

σ2→ · · ·
σn→ (xn, v̂n) in F1 (2.19)

with v̂i ∈ dom(vars(F1) ∪ vars(F2)), there exists a path

(y0, v̂0)
σ1→ (y1, v̂1)

σ2→ · · ·
σn→ (yn, v̂n) in F2 . (2.20)

If F1 is behaviourally included in F2 then every path in F1 corresponds to a path in F2

with the same events and variable assignments. Variables not present in F1 remain unchanged
by F1 according to Definition 3, and as a consequence must also be unchanged in F2. This
semantics of implicitly unchanged variables makes behavioural inclusion of EFSMs different
from language inclusion of FSMs, and several intuitively expected properties do not hold.
Therefore, the following lemmas investigate the relation more closely.

First, Lemma 5 shows that behavioural inclusion as defined above is reflexive and transi-
tive. Another desirable property is themonotonicity with respect to synchronous composition,
i.e., A ⊆v B implies A ‖ C ⊆v B ‖ C. Lemma 6 shows this under the additional assumption
that C is pure. Lastly, Lemma 7 shows that symbolic restriction results in an EFSM that is
behaviourally included in the original EFSM.

Lemma 5 Let A, B, and C be EFSMs. Then the following properties hold.

(i) A ⊆v A.

(ii) If A ⊆v B and B ⊆v C then A ⊆v C.

Proof.

(i) The reflexivity claim follows immediately from Definition 6.

(ii) Write VAB = vars(A)∪vars(B), VAC = vars(A)∪vars(C), and VBC = vars(B)∪vars(C).
Assume that A ⊆v B and B ⊆v C, and consider a path

(a0, v̂0)
σ1→ (a1, v̂1)

σ2→ · · ·
σn→ (an, v̂n) (2.21)

in A with v̂i ∈ dom(VAC). Define valuations ŵi ∈ dom(VAB) for i = 0, . . . , n such that
ŵi = v̂i↾VAB∩VAC

⊕ (VAB \ VAC)
◦. Thus, ŵi is equal to v̂i for variables that appear in

A or C and uses the initial values for variables that appear only in B. Then it can be
shown that

(a0, ŵ0)
σ1→ (a1, ŵ1)

σ2→ · · ·
σn→ (an, ŵn) (2.22)

also is a path in A: clearly, a0 and v̂0 are initial locations and variable values from (2.21),
and then ŵ0 also only has initial variable values by construction. Also, for each transition
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of (2.21) there exists a transition ai
σi+1:pi+1
−−−−−−→ ai+1 in A such that (v̂i⊕v̂

′
i+1)(pi+1) = true

and v̂i(z) = v̂i+1(z) for all variables z ∈ VAC \ vars
′(pi+1). Note that vars(pi+1) ⊆

vars(A) ⊆ VAB ∩ VAC and thus

(ŵi ⊕ ŵ′
i+1)(pi+1) = (ŵi↾VAB∩VAC

⊕ (ŵi+1↾VAB∩VAC
)′)(pi+1)

= (v̂i↾VAB∩VAC
⊕ (v̂i+1↾VAB∩VAC

)′)(pi+1)

= (v̂i ⊕ v̂′i+1)(pi+1)

= true .

Also, consider a variable z ∈ VAB \ vars
′(pi+1). If z ∈ VAC then z ∈ VAB ∩ VAC and

z ∈ VAC \ vars
′(pi+1), i.e, ŵi(z) = v̂i(z) = v̂i+1(z) = ŵi+1(z) from above. Otherwise

z /∈ VAC and thus z ∈ VAB \VAC , i.e., ŵi(z) = z◦ = ŵi+1(z) by construction of ŵi. This
shows that (2.22) is a path in A. Then, as A ⊆v B, there exists a path in B,

(b0, ŵ0)
σ1→ (b1, ŵ1)

σ2→ · · ·
σn→ (bn, ŵn) . (2.23)

Define valuations ûi ∈ dom(VBC) for i = 0, . . . , n such that ûi = ŵi↾VAB∩VBC
⊕ (VBC \

VAB)
◦. Then it can be shown that

(b0, û0)
σ1→ (b1, û1)

σ2→ · · ·
σn→ (bn, ûn) (2.24)

also is a path in B: clearly, b0 and ŵ0 are initial locations and variable values from (2.23),
and then û0 also only has initial variable values by construction. Also, for each transition

of (2.23) there exists a transition bi
σi+1:qi+1
−−−−−−→ bi+1 in B such that (ŵi⊕ŵ

′
i+1)(qi+1) = true

and ŵi(z) = ŵi+1(z) for all variables z ∈ VAB \ vars
′(qi+1). Note that vars(qi+1) ⊆

vars(B) ⊆ VAB ∩ VBC and thus

(ûi ⊕ û′i+1)(qi+1) = (ûi↾VAB∩VBC
⊕ (ûi+1↾VAB∩VBC

)′)(qi+1)

= (ŵi↾VAB∩VBC
⊕ (ŵi+1↾VAB∩VBC

)′)(qi+1)

= (ŵi ⊕ ŵ′
i+1)(qi+1)

= true .

Also, consider a variable z ∈ VBC \ vars
′(qi+1). If z ∈ VAB then z ∈ VAB ∩ VBC and

z ∈ VAB \ vars
′(qi+1), i.e, ûi(z) = ŵi(z) = ŵi+1(z) = ûi+1(z) from above. Otherwise

z /∈ VAB and thus z ∈ VBC \ VAB, i.e., ûi(z) = z◦ = ûi+1(z) by construction of ûi. This
shows that (2.24) is a path in B. Then, as B ⊆v C, there exists a path in C,

(c0, û0)
σ1→ (c1, û1)

σ2→ · · ·
σn→ (cn, ûn) . (2.25)

It remains to be shown that then

(c0, v̂0)
σ1→ (c1, v̂1)

σ2→ · · ·
σn→ (cn, v̂n) . (2.26)
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also is a path in C, where v̂i ∈ dom(VAC) are the valuations from (2.21).

Clearly, c0 is an initial location from (2.25) and v̂0 consists of initial variable values

from (2.21). Also, for each transition of (2.25) there exists a transition ci
σi+1:ri+1
−−−−−−→ ci+1

in C such that (ûi ⊕ û′i+1)(ri+1) = true and ûi(z) = ûi+1(z) for all variables z ∈
VBC \ vars

′(ri+1).

Next, to show that (v̂i ⊕ v̂′i+1)(ri+1) = true, consider two cases for z ∈ vars(C) ⊆
VAC ∩ VBC . If z ∈ VAB then v̂i(z) = v̂i↾VAB∩VBC

(z) = ŵi↾VAB∩VBC
(z) = ŵi(z) =

ŵi↾VAB∩VAC
(z) = ûi↾VAB∩VAC

(z) = ûi(z) by construction of ŵi and ûi. If z /∈ VAB ⊇
vars(A) then v̂i(z) = z◦ for all i as (2.21) is a path in A, and z ∈ VBC \ VAB so that
ûi(z) = ûi↾VBC\VAB

(z) = z◦ by construction of ûi. This shows v̂i↾vars(C) = ûi↾vars(C).
Noting vars(ri+1) ⊆ vars(C), it follows that (v̂i⊕ v̂′i+1)(ri+1) = (ûi⊕ û′i+1)(ri+1) = true.

Lastly, to show v̂i(z) = v̂i+1(z) for z ∈ VAC \ vars
′(ri+1), consider z ∈ VAC \ vars

′(ri+1).
If z ∈ vars(C) then v̂i(z) = ûi(z) for i = 0, . . . , n as just seen, and z ∈ vars(C) \
vars′(ri+1) ⊆ VBC \ vars

′(ri+1), and thus v̂i(z) = ûi(z) = ûi+1(z) = v̂i+1(z). Otherwise
z ∈ vars(A) \ vars(C) ⊆ vars(A), which implies z ∈ VAB ∩ VAC and thus v̂i(z) =
v̂i↾VAB∩VAC

(z) = ŵi↾VAB∩VAC
(z) = ŵi(z) by construction of ŵi. If also z ∈ vars(B), then

z ∈ VAB ∩ VBC which implies v̂i(z) = ŵi(z) = ŵi↾VAB∩VBC
(z) = ûi↾VAB∩VBC

(z) = ûi(z)
by construction of ûi and thus v̂i(z) = ûi(z) = ûi+1(z) = v̂i+1(z) as z /∈ vars(C)
and (2.25) is a path in C. If on the other hand z /∈ vars(B) then ŵi(z) = z◦ for all i as
(2.23) is a path in B, and thus v̂i(z) = ŵi(z) = z◦ = ŵi+1(z) = v̂i+1(z).

This completes the proof that (2.26) is a path in C in all cases. ✷

Lemma 6 Let A, B, C, and E be EFSMs such that E is pure. Then the following properties
hold.

(i) A ‖ E ⊆v A.

(ii) If A ⊆v B then A ‖ E ⊆v B ‖ E.

(iii) If A ‖B ⊆v A ‖ C then A ‖B ⊆v A ‖B ‖ C.

Proof.

(i) Let V = vars(A) ∪ vars(E), and assume a path

(a0, e0, v̂0)
σ1→ (a1, e1, v̂1)

σ2→ · · ·
σn→ (an, en, v̂n) (2.27)

in A ‖ E where v̂i ∈ dom(V ) for i = 0, . . . , n. By Lemma 3,

(a0, v̂0)
σ1→ (a1, v̂1)

σ2→ · · ·
σn→ (an, v̂n) (2.28)

is a path in A, which is enough to show the claim.
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(ii) Let V = vars(A) ∪ vars(B) ∪ vars(E), and assume a path

(a0, e0, v̂0)
σ1→ (a1, e1, v̂1)

σ2→ · · ·
σn→ (an, en, v̂n) (2.29)

in A ‖ E where v̂i ∈ dom(V ) for i = 0, . . . , n. By Lemma 3,

(a0, v̂0)
σ1→ (a1, v̂1)

σ2→ · · ·
σn→ (an, v̂n) (2.30)

is a path in A. Let VAB = vars(A) ∪ vars(B). Then

(a0, v̂0↾VAB
)

σ1→ (a1, v̂1↾VAB
)

σ2→ · · ·
σn→ (an, v̂n↾VAB

) (2.31)

also is a path in A. As A ⊆v B, by Definition 6 there exists a path

(b0, v̂0↾VAB
)

σ1→ (b1v̂1↾VAB
)

σ2→ · · ·
σn→ (bn, v̂n↾VAB

) (2.32)

in B. Now consider i such that 0 ≤ i < n. From (2.32), it follows that bi
σi+1:pB
−−−−−→ bi+1

in B with (v̂i↾VAB
⊕ (v̂i+1↾VAB

)′)(pB) = true and

v̂i↾VAB
(z) = v̂i+1↾VAB

(z) for all z ∈ VAB \ vars
′(pB) . (2.33)

From (2.29) it follows that ei
σi+1:pE
−−−−−→ ei+1 in E with (v̂n ⊕ (v̂i+1)

′)(pE) = true. Now
consider z ∈ V \(vars′(pB)∪vars

′(pE)) = (VAB∪vars(E))\vars′(pB) as E is pure. Then
either z ∈ VAB or z /∈ VAB. If z ∈ VAB, then z ∈ VAB\vars

′(pB) and v̂i(z) = v̂i↾VAB
(z) =

v̂i+1↾VAB
(z) = v̂i+1(z) by (2.33). If z /∈ VAB then z ∈ vars(E) and z /∈ VAB ⊇ vars(A) ⊇

vars′(A)∪vars′(E) as E is pure, so that z ∈ V \(vars′(A)∪vars′(E)), and v̂i(z) = v̂i+1(z)
follows as variables that do not appear primed in A or E must remain unchanged on
the path (2.29) in A ‖ E. Thus, v̂i(z) = v̂i+1(z) for all z ∈ V \ (vars′(pB) ∪ vars′(pE)),
and noting that b0, e0, and v̂0 are initial locations and variable values, it follows that

(b0, e0, v̂0)
σ1→ (b1, e1v̂1)

σ2→ · · ·
σn→ (bn, en, v̂n) (2.34)

is a path in B ‖ E.

(iii) Let V = vars(A) ∪ vars(B) ∪ vars(C), and assume a path

(a0, b0, v̂0)
σ1→ (a1, b1, v̂1)

σ2→ · · ·
σn→ (an, bn, v̂n) (2.35)

in A ‖B where v̂i ∈ dom(V ) for i = 0, . . . , n. As A ‖B ⊆v A ‖ C, by Definition 6 there
is a path

(ã0, c0, v̂0)
σ1→ (ã1, c1v̂1)

σ2→ · · ·
σn→ (ãn, cn, v̂n) (2.36)

in A ‖ C. It will be shown that

(a0, b0, c0, v̂0)
σ1→ (a1, b1, c1, v̂1)

σ2→ · · ·
σn→ (an, bn, cn, v̂n) (2.37)
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is a path in A‖B ‖C. Clearly, a0, b0, c0, and v̂0 are initial locations and variable values
from (2.35) and (2.36). Considering the i-th transition on the path (2.35), by Lemma 2
there are transitions

ai−1
σi:pA−−−→ ai in A with (v̂i−1 ⊕ (v̂i)

′)(pA) = true ; (2.38)

bi−1
σi:pB−−−→ bi in B with (v̂i−1 ⊕ (v̂i)

′)(pB) = true ; (2.39)

such that
v̂i−1(z) = v̂i(z) for all z ∈ V \ (vars′(pA) ∪ vars′(pB)) . (2.40)

Considering the i-th transition on the path (2.36), by Lemma 2 there is a transition

ci−1
σi:pC−−−→ ci in C with (v̂i−1 ⊕ (v̂i)

′)(pC) = true . (2.41)

For a variable z ∈ V \ (vars′(pA) ∪ vars′(pB) ∪ vars′(pC)) ⊆ V \ (vars′(pA) ∪ vars′(pB))
it follows from (2.40) that v̂i−1(z) = v̂i(z). Then it follows by Lemma 2 using (2.38),

(2.39), and (2.41) that (ai−1, bi−1, ci−1, v̂i−1)
σi→ (ai, bi, ci, v̂i) in A ‖ B ‖ C, and the

path (2.37) is obtained by repeating this argument for all i. ✷

Lemma 7 Let F = 〈Σ, Q,Q◦,→〉 be an EFSM, and let X ⊆ Q × dom(vars(F )). Then
F ↾ X ⊆v F .

Proof. Write V = vars(F ) = vars(F ↾ X). Assume that

(x0, v̂0)
σ1→ (x1, v̂1)

σ2→ · · ·
σn→ (xn, v̂n) (2.42)

is a path in F ↾ X, where v̂i ∈ dom(V ). Then x0 is an initial location of F ↾ X and also of F
by Definition 4, and v̂0 are initial variable values. Furthermore, for each i = 0, . . . , n−1, there

exists a transition xi
σi+1:pi+1
−−−−−−→ xi+1 in F ↾ X such that (v̂i ⊕ v̂′i+1)(pi+1) = true and v̂i(z) =

v̂i+1(z) for all variables z ∈ V \ vars′(pi+1). By Definition 4, the update of this transition can

be written as pi+1 ≡ qi+1 ∧ Ri+1 where xi
σi+1:qi+1
−−−−−−→ xi+1 in F and vars′(Ri+1) ⊆ vars′(qi+1).

Then clearly (v̂i⊕ v̂
′
i+1)(qi+1) = true, and vars′(pi+1) = vars′(qi+1)∪vars

′(Ri+1) = vars′(qi+1),
which implies for z ∈ V \ vars′(qi+1) = V \ vars′(pi+1) that v̂i(z) = v̂i+1(z) from above. This

shows (xi, v̂i)
σi+1
−−−→ (xi+1, v̂i+1) in F , and repeating the argument for all transitions shows

that (2.42) is a path in F . ✷

2.5 Controllability and Synthesis

For the supervisory control of EFSM systems, this working paper assumes that all variables
are controlled by the plant [10]. The plant is modelled by a set of normalised EFSMs that
represent the possible system behaviour including all possible variable changes. The specifi-
cation is modelled by one or more pure EFSMs, which only restrict the occurrence of events.
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The supervisor can also restrict variable changes associated with controllable events. The
following definition of controllability covers specifications and supervisors.

Definition 7 [10] Let G = 〈ΣG, QG, Q
◦
G,→G〉 and E = 〈ΣE , QE , Q

◦
E ,→E〉 be two EFSMs,

and let Σu be a set of events. E is Σu-controllable with respect to G, if for all valuations v̂, ŵ ∈
dom(vars(G) ∪ vars(E)), all states (xG, xE , v̂) ∈ Qacc(G ‖ E), and all transitions (xG, v̂)

µ
→

(yG, ŵ) in G such that µ ∈ Σu, there exists a location yE of E such that (xG, xE , v̂)
µ
→

(yG, yE , ŵ) in G ‖ E.

Σu-controllability means that, from any accessible state in the synchronous composition of
the plant G and specification E, if an uncontrollable event µ ∈ Σu is eligible in the plant, then
it is also eligible in the specification. In addition, the specification must allow any assignment
to next-state variables prescribed by the plant. The condition (xG, xE , v̂)

µ
→ (yG, yE , ŵ) is

applied to the synchronous composition G ‖ E, so it requires the plant and specification to
be able to take the transition together. This allows a pure specification to follow the plant’s
assignments to next-state variables.

In the case that an uncontrollable event is not mentioned in the plant, µ /∈ ΣG, based
on the extended definition of the transition relation, the transition is always possible in the
plant and does not change variables. In order to be controllable, the specification must always
enable µ without changing any variables on its occurrence.

Remark 1 Given a plant G and pure specification E, it can be assumed without loss of gen-
erality that vars(E) ⊆ vars(G). This is because any variable z that appears only in E and not
in G, cannot appear as next-state variable in G or E as vars′(E) = ∅. This variable z remains
unchanged on all transitions of the synchronous composition G ‖E, so all its occurrences can
be replaced by a constant representing its initial value ẑ◦, resulting in an EFSM system with
equivalent behaviour.

If a specification is not controllable, synthesis is used to find a supervisor. Unlike the
specification, the supervisor may include next-state variables on its updates. Thus, the su-
pervisor can disable (controllable) events completely or under certain circumstances, and it
can remove some of the plant’s variable assignments from a controllable transition.

Definition 8 Let G and E be two EFSMs, and let Σu be a set of events. A supremal
supervisor for E with respect to G and Σu is an EFSM S such that

(i) G ‖ S ⊆v G ‖ E;

(ii) S is Σu-controllable with respect to G;

(iii) For any EFSM S′ that satisfies (i) and (ii), it holds that G ‖ S′ ⊆v G ‖ S.
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Definition 8 characterises the possible synthesis results for a plant G and specification E.
A correct supervisor must satisfy the specification through behavioural inclusion after com-
position with the plant (i), and it must be controllable (ii). It also must be least restrictive
or supremal, i.e., any other supervisor that controllably satisfies the specification has less
possible behaviour, again in composition with the plant (iii).

A supervisor satisfying these three conditions can be computed by means of a standard
fixpoint iteration on the unfolded state set of G ‖ E, using the following operator.

Definition 9 [9] Let G = 〈ΣG, QG, Q
◦
G,→G〉 and E = 〈ΣE , QE , Q

◦
E ,→E〉 be two EFSMs,

let V = vars(G)∪vars(E), and let Σu be a set of events. The extended synthesis step operator
ΘG,E,Σu : 2

QG×QE×dom(V ) → 2QG×QE×dom(V ) with respect to G, E, and Σu is defined as

ΘG,E,Σu(X) = { (xG, xE , v̂) ∈ QG × QE × dom(V ) | if (xG, v̂)
µ
→ (yG, ŵ) for some

µ ∈ Σu and ŵ ∈ dom(V ), then there exists yE ∈ QE such that

(xG, xE , v̂)
µ
→ (yG, yE , ŵ) ∈ X } .

(2.43)

For a set X of combinations of locations and variable assignments, the operator ΘG,E,Σu

removes from X any uncontrollable states, i.e., states where the plant enables some uncontrol-
lable transition not enabled by the specification, and any states from where the system could
uncontrollably reach some combination of location and valuation not contained in X. The
operator ΘG,E,Σu is monotonic and has a greatest fixpoint Θ̂G,E,Σu [21]. In the finite-state
case, this fixpoint is calculated as the limit of the iteration

X0 = QQ ×QE × dom(V ) ; (2.44)

Xj+1 = ΘG,E,Σu(X
j) . (2.45)

The result of EFSM synthesis is then obtained by restricting the system to this fixpoint.

Definition 10 [9] Let G and E be two EFSMs, and let Σu be a set of events. The supremal
Σu-controllable sub-EFSM of G and E is

supC(G,E,Σu) = (G ‖ E) ↾ Θ̂G,E,Σu , (2.46)

where Θ̂G,E,Σu is the greatest fixpoint of the operator ΘG,E,Σu from Definition 9.

It remains to be shown that this fixpoint indeed gives a correct synthesis result accord-
ing to Definition 8. Care must be taken, as the definition compares the supervisors after
composition with the plant, and this requires state-determinism and normalisation to ensure
synchrony of the states. The following three lemmas establish preliminary results about state
synchrony between plant and supervisor under these assumptions. Based on that, Proposi-
tion 11 confirms that the supC operation gives a correct synthesis result.
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Lemma 8 Let G and E be two EFSMs, such that G is state-deterministic, and let Σu be
a set of events. For every state (xG, (yG, xE), v̂) ∈ Qacc(G ‖ supC(G,E,Σu)), it holds that
xG = yG.

Proof. Write S = supC(G,E,Σu), and let (xG, (yG, xE), v̂) ∈ Qacc(G ‖ S). Then there exists
a path

(x0G, (y
0
G, x

0
E), v̂

0)
σ1→ (x1G, (y

1
G, x

1
E), v̂

1)
σ2→ · · ·

σn→ (xnG, (y
n
G, x

n
E), v̂

n) = (xG, (yG, xE), v̂) (2.47)

in G ‖ S. It is shown by induction on n that xnG = ynG.
For the base case, n = 0, note that x0G and y0G are initial locations of G, and thus x0G = y0G

by Definition 2 (iii). Now assume xnG = ynG for some n ≥ 0, and consider the next transition

(xnG, (y
n
G, x

n
E), v̂

n)
σn+1
−−−→ (xn+1

G , (yn+1
G , xn+1

E ), v̂n+1) (2.48)

on the path (2.47). This means by Lemma 2 that there are transitions

xnG
σn+1:pG
−−−−−→ xn+1

G in G with (v̂n ⊕ (v̂n+1)′)(pG) = true ; (2.49)

(ynG, x
n
E)

σn+1:pS
−−−−−→ (yn+1

G , xn+1
E ) in S with (v̂n ⊕ (v̂n+1)′)(pS) = true . (2.50)

Recalling that S = supC(G,E,Σu), by Definitions 4 and 10 and by Lemma 5 the update
in (2.65) has the form pS ≡ qG ∧ qE ∧R, and there is a transition

ynG
σn+1:qG
−−−−−→ yn+1

G in G with (v̂n ⊕ (v̂n+1)′)(qG) = true . (2.51)

Then pG∧qG is satisfiable, and noting that xnG = ynG by inductive assumption, it follows by the
state-determinism of G from Definition 2 (iii) and from (2.49) and (2.51) that xn+1

G = yn+1
G .

✷

Lemma 9 Let G and E be two EFSMs such that G is normalised, and let Σu be a set
of events. For every state (xG, xS , v̂) ∈ Qacc(G ‖ supC(G,E,Σu)), it holds that (xS , v̂) ∈
Qacc(supC(G,E,Σu)).

Proof. Write S = supC(G,E,Σu) and V = vars(S) = vars(G)∪vars(S), and let (xG, xS , v̂) ∈
Qacc(G ‖ S). Then v̂ ∈ dom(V ) and there exists a path

(x0G, x
0
S , v̂

0)
σ1→ (x1G, x

1
S , v̂

1)
σ2→ · · ·

σn→ (xnG, x
n
S , v̂

n) = (xG, xS , v̂) (2.52)

in G ‖ S. It is shown by induction on n that (xnS , v̂
n) ∈ Qacc(S).

For the base case, n = 0, note that x0S is an initial location of S and v̂0 are initial variable
values, and thus (x0S , v̂

0) ∈ Qacc(S).
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Now assume (xnS , v̂
n) ∈ Qacc(S) for some n ≥ 0, and consider the next transition of (2.52),

(xnG, x
n
S , v̂

n)
σn+1
−−−→ (xn+1

G , xn+1
S , v̂n+1) . (2.53)

By Lemma 5, this means that there are transitions

xnG
σn+1:pG
−−−−−→ xn+1

G in G with (v̂n ⊕ (v̂n+1)′)(pG) = true ; (2.54)

xnS
σn+1:pS
−−−−−→ xn+1

S in S with (v̂n ⊕ (v̂n+1)′)(pS) = true ; (2.55)

and furthermore

v̂n(z) = v̂n+1(z) for all z ∈ V \ (vars′(pG) ∪ vars′(pS)) . (2.56)

Noting that S = supC(G,E,Σu), by Definitions 4 and 5, the update in (2.55) takes the

form pS ≡ qG ∧ qE ∧ R for some transition ynG
σn+1:qG
−−−−−→ yn+1

G of G. Note that vars′(qG) =
vars′(G, σn+1) = vars′(pG) as G is normalised. It follows for z ∈ V \vars′(pS) = V \(vars′(qG)∪
vars′(qE) ∪ vars′(R)) = V \ (vars′(pG) ∪ vars′(qG) ∪ vars′(qE) ∪ vars′(R)) = V \ (vars′(pG) ∪

vars′(pS)) that v̂
n(z) = v̂n+1(z) by (2.56). Using (2.55), this shows (xnS , v̂

n)
σn+1
−−−→ (xn+1

S , v̂n+1)
in S, and the claim (xn+1

S , v̂n+1) ∈ Qacc(S) follows by inductive assumption. ✷

Lemma 10 LetG and E be two EFSMs, and let Σu be a set of events. Then supC(G,E,Σu) ⊆v

G ‖ supC(G,E,Σu).

Proof. Write S = supC(G,E,Σu) and V = vars(S) = vars(G) ∪ vars(E). Consider a path

(x0G, x
0
E , v̂

0)
σ1→ (x1G, x

1
E , v̂

1)
σ2→ · · ·

σn→ (xnG, x
n
E , v̂

n) (2.57)

in S, where v̂i ∈ dom(V ) for i = 0, . . . , n. It will be shown by induction on n that

(x0G, (x
0
G, x

0
E), v̂

0)
σ1→ (x1G, (x

1
G, x

1
E), v̂

1)
σ2→ · · ·

σn→ (xnG, (x
n
G, x

n
E), v̂

n) (2.58)

is a path in G ‖ S.
For the base case, n = 0, note that (x0G, x

0
E) and thus also x0G are initial locations, and v̂0

are initial variable values from (2.57).
Now assume the path (2.58) in G ‖S has been constructed up to n, and consider the next

transition of (2.57),

(xnG, x
n
E , v̂

n)
σn+1
−−−→ (xn+1

G , xn+1
E , v̂n+1) . (2.59)

This means that there is a transition (xnG, x
n
E)

σn+1:pS
−−−−−→ (xn+1

G , xn+1
E ) in S such that (v̂n ⊕

(v̂n+1)′)(pS) = true and

v̂n(z) = v̂n+1(z) for all variables z ∈ V \ vars′(pS) . (2.60)
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As S = supC(G,E,Σu) = (G ‖ E) ↾ Θ̂G,E,Σu , by Definition 4 the update pS takes the form

pS ≡ qG∧qE∧R, and there is a transition xnG
σn+1:qG
−−−−−→ xn+1

G inG with (v̂n⊕(v̂n+1)′)(qG) = true.
For variables z ∈ V \ vars′(qG ∧ pS) = V \ (vars′(qG) ∪ vars′(qG) ∪ vars′(qE) ∪ vars′(R)) =
V \ vars′(pS) it holds by (2.60) that v̂n(z) = v̂n+1(z). It follows from Lemma 2 that

(xnG, (x
n
G, x

n
E), v̂

n)
σn+1
−−−→ (xn+1

G , (xn+1
G , xn+1

E ), v̂n+1) (2.61)

in G ‖ S, and the existence of the path (2.58) follows by inductive assumption. ✷

Proposition 11 Let G and E be state-deterministic EFSMs such that G is normalised, and
let Σu be a set of events. Then supC(G,E,Σu) is a supremal supervisor for E with respect
to G and Σu.

Proof. Write S = supC(G,E,Σu) and V = vars(S) = vars(G) ∪ vars(E). It is to be shown
that S satisfies conditions (i)–(iii) in Definition 8.

(i) Let

(x0G, (y
0
G, x

0
E), v̂

0)
σ1→ (x1G, (y

1
G, x

1
E), v̂

1)
σ2→ · · ·

σn→ (xnG, (y
n
G, x

n
E), v̂

n) (2.62)

be a path in G ‖ S = G ‖ supC(G,E,Σu) with v̂i ∈ dom(vars(G ‖ S)) = dom(V ) for
i = 0, . . . , n. Clearly x0G, y0G, x0E , and v̂0 are initial locations and variable values.
Consider the i-th transition on the path (2.62),

(xiG, (y
i
G, x

i
E), v̂

i)
σi+1
−−−→ (xi+1

G , (yi+1
G , xi+1

E ), v̂i+1) . (2.63)

By Lemma 2, this means that there are transitions

xiG
σi+1:pG
−−−−−→ xi+1

G in G with (v̂i ⊕ (v̂i+1)′)(pG) = true ; (2.64)

(yiG, x
i
E)

σi+1:pS
−−−−−→ (yi+1

G , xi+1
E ) in S with (v̂i ⊕ (v̂i+1)′)(pS) = true ; (2.65)

and furthermore

v̂i(z) = v̂i+1(z) for all z ∈ V \ (vars′(pG) ∪ vars′(pS)) . (2.66)

Recalling that S = supC(G,E,Σu), by Definitions 4 and 10 and by Lemma 2 the update
in (2.65) has the form pS ≡ qG ∧ qE ∧ R with vars′(R) ⊆ vars′(qG ∧ qE), and there are
transitions

yiG
σi+1:qG
−−−−−→ yi+1

G in G with (v̂i ⊕ (v̂i+1)′)(qG) = true ; (2.67)

xiE
σi+1:qE
−−−−−→ xi+1

E in E with (v̂i ⊕ (v̂i+1)′)(qE) = true . (2.68)
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Consider z ∈ V \ (vars′(qG) ∪ vars′(qE)) = V \ vars′(qG ∧ qE) = V \ vars′(pS). Noting
that z /∈ vars′(qG) = vars′(G, σi+1) = vars′(pG) as G is normalised, it follows that

z ∈ V \(vars′(pG)∪vars
′(pS)) and thus v̂i(z) = v̂i+1(z) by (2.66). Thus (yiG, x

i
E , v̂

i)
σ1+1
−−−→

(yi+1
G , xi+1

E , v̂i+1) in G ‖ E by Lemma 2. Repeating this argument for all transitions on
the path (2.62), it follows that

(y0G, x
0
E , v̂

0)
σ1→ (y1G, x

1
E , v̂

1)
σ2→ · · ·

σn→ (ynG, x
n
E , v̂

n) (2.69)

is a path in G ‖ E. This shows G ‖ S ⊆v G ‖ E according to Definition 6.

(ii) Let v̂, ŵ ∈ dom(V ), let (xG, (x̃G, xE), v̂) ∈ Qacc(G ‖ S), let µ ∈ Σu, and let (xG, v̂)
µ
→

(yG, ŵ) in G. Following Definition 7, it is to be shown that there exists a location yS
of S such that (xG, (x̃G, xE), v̂)

µ
→ (yG, yS , ŵ) in G ‖ S.

Note that xG = x̃G by Lemma 8 and (x̃G, xE , v̂) ∈ Qacc(S) by Lemma 9. Using
Definition 10, Lemma 1, and the fact that Θ̂G,E,Σu is a fixpoint of ΘG,E,Σu , it follows

that (xG, xE , v̂) = (x̃G, xE , v̂) ∈ Qacc(S) = Qacc((G ‖ E) ↾ Θ̂G,E,Σu) ⊆ Θ̂G,E,Σu =

ΘG,E,Σu(Θ̂G,E,Σu). Then by Definition 9 there exists a location yE of E such that

(xG, xE , v̂)
µ
→ (yG, yE , ŵ) in G ‖ E and (yG, yE , ŵ) ∈ Θ̂G,E,Σu .

This means (xG, xE)
µ:pS−−−→ (yG, yE) in G ‖ E such that (v̂ ⊕ ŵ′)(pS) = true and

v̂(z) = ŵ(z) for all z ∈ V \ vars′(pS) . (2.70)

By Definition 5, the update pS has the form pS ≡ pG ∧ pE with xG
µ:pG−−−→ yG in G and

xE
µ:pE−−−→ yE in E. Then also (v̂⊕ ŵ′)(pG) = true as (v̂⊕ ŵ′)(pG ∧ pE) = (v̂⊕ ŵ′)(pS) =

true. That is,
xG

µ:pG−−−→ yG in G with (v̂ ⊕ ŵ′)(pG) = true . (2.71)

Furthermore, it follows according to Definitions 4 and 10 that (xG, xE)
µ:pS∧R−−−−−→ (yG, yE)

in S = supC(G,E) = (G ‖ E) ↾ Θ̂G,E,Σu where R ≡ RΘ̂G,E,Σu
[pS , (yG, yE)] is such

that vars′(R) ⊆ vars′(pS) and for all valuations ṽ, w̃ ∈ dom(V ) it holds that (yG, yE ,
ṽ↾V \vars′(pS) ⊕ w̃) ∈ Θ̂G,E,Σu if and only if (ṽ ⊕ w̃′)(R) = true. Note that v̂↾V \vars′(pS) =

ŵ↾V \vars′(pS) by (2.70), so that (yG, yE , v̂↾V \vars′(pS) ⊕ ŵ) = (yG, yE , ŵ) ∈ Θ̂G,E,Σu and
thus (v̂ ⊕ ŵ′)(R) = true. Recalling that also (v̂ ⊕ ŵ′)(pS) = true, it follows that

(xG, xE)
µ:pS∧R−−−−−→ (yG, yE) in S with (v̂ ⊕ ŵ′)(pS ∧R) = true . (2.72)

Lastly, for a variable z ∈ V \ (vars′(pG) ∪ vars′(pS ∧ R)) = V \ (vars′(pG) ∪ vars′(pG) ∪
vars′(pE)∪ vars

′(R)) = V \ (vars′(pS)∪ vars
′(R)) = V \ vars′(pS), it is clear that v̂(z) =

ŵ(z) from (2.70). Then it follows from (2.71) and (2.72) by Lemma 2 that (xG, (x̃G, xE),

v̂) = (xG, (xG, xE), v̂)
µ
→ (yG, (yG, yE), ŵ) in G ‖ S, which implies the claim with yS =

(yG, yE).
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(iii) Let S′ be an EFSM that satisfies (i) and (ii). It is to be shown that G ‖ S′ ⊆v G ‖ S.
As S′ satisfies G ‖ S′ ⊆v G ‖ E (i), by Definition 6 for every path

(y0G, x
0
S , ŵ

0)
σ1→ (y1G, x

1
S , ŵ

1)
σ2→ · · ·

σn→ (ynG, x
n
S , ŵ

n) (2.73)

in G ‖ S′, with ŵi ∈ dom(W ) and W = vars(G) ∪ vars(S′) ∪ vars(E) = V ∪ vars(S′),
there exists a path

(x0G, x
0
E , ŵ

0)
σ1→ (x1G, x

1
E , ŵ

1)
σ2→ · · ·

σn→ (xnG, x
n
E , ŵ

n) (2.74)

in G ‖ E. Note that xiG = yiG for i = 0, . . . , n by Lemma 4 as G is state-deterministic.

Let X ′ ⊆ QG ×QE × dom(W ) be the set of all end states (xnG, x
n
E , ŵ

n) of paths (2.74)
in G ‖ E obtained from a corresponding path (2.73) in G ‖ S′. Further, let X ⊆
QG ×QE × dom(V ) be the restriction of this set to variables in V ,

X = { (xG, xE , ŵ↾V ) | (xG, xE , ŵ) ∈ X ′ } . (2.75)

It is next shown that X ⊆ ΘG,E,Σu(X), i.e., X is a post-fixpoint of ΘG,E,Σu . Let

(xnG, x
n
E , v̂

n) ∈ X and (xnG, v̂
n)

µ
→ (xn+1

G , v̂n+1) in G for some µ ∈ Σu, x
n+1
G ∈ QG, and

v̂n+1 ∈ dom(V ). As (xnG, x
n
E , v̂

n) ∈ X, there exists ŵn ∈ dom(W ) with v̂n = ŵn↾V and
corresponding paths (2.74) in G ‖ E with end state (xnG, x

n
E , v̂

n) and (2.73) in G ‖ S′

with end state (xnG, x
n
S , ŵ

n) = (ynG, x
n
S , ŵ

n). It follows that (xnG, x
n
S , ŵ

n) ∈ Qacc(G ‖ S′).
Let ŵn+1 = v̂n+1 ⊕ ŵn.

From (xnG, v̂
n)

µ
→ (xn+1

G , v̂n+1) it follows that there exists a transition xnG
µ:pG−−−→ xn+1

G in G
with (v̂n⊕(v̂n+1)′)(pG) = true, thus also (ŵn⊕(ŵn+1)′)(pG) = true, and v̂n(z) = v̂n+1(z)
for all variables z ∈ V \ vars′(pG). For z ∈ W \ V note that ŵn(z) = (v̂n+1 ⊕ ŵn)(z) =
ŵn+1(z), and thus ŵn(z) = ŵn+1(z) for all variables z ∈ W \ vars′(pG). It follows that

(xnG, ŵ
n)

µ
→ (xn+1

G , ŵn+1) in G, and this implies by the Σu-controllability of S′ with

respect to G (ii) that (xnG, x
n
S , ŵ

n)
µ
→ (xn+1

G , xn+1
S , ŵn+1) in G ‖ S′ for some location

xn+1
S of S′.

As xnG = ynG, this transition extends the path (2.73), so there exists a corresponding
path (2.74) in G ‖ E,

(x̃0G, x̃
0
E , ŵ

0)
σ1→ (x̃1G, x̃

1
E , ŵ

1)
σ2→ · · ·

σn→ (x̃nG, x̃
n
E , ŵ

n)
µ
→ (x̃n+1

G , x̃n+1
E , ŵn+1) , (2.76)

where x̃iG = xiG for i = 0, . . . , n+1 and x̃iE = xiE for i = 0, . . . , n by Lemma 4. Therefore
(xn+1

G , x̃n+1
E , v̂n+1) = (x̃n+1

G , x̃n+1
E , ŵn+1↾V ) ∈ X, and also

(xnG, x
n
E , v̂

n) = (x̃nG, x̃
n
E , ŵ

n↾V )
µ
→ (x̃n+1

G , x̃n+1
E , ŵn+1↾V ) = (xn+1

G , x̃n+1
E , v̂n+1) (2.77)
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in G‖E. It follows that (xnG, x
n
E , v̂

n) ∈ ΘG,E,Σu(X) by Definition 9. As (xnG, x
n
E , v̂

n) ∈ X
was chosen arbitrarily, this shows that X ⊆ ΘG,E,Σu(X). It follows from the Knaster-

Tarski theorem [21] that X ⊆ Θ̂G,E,Σu .

Now consider an arbitrary path (2.73) in G ‖ S′. As shown above, there exists a corre-
sponding path (2.74) in G ‖E such that (xiG, x

i
E , ŵ

i↾V ) ∈ X ⊆ Θ̂G,E,Σu for i = 0, . . . , n.
Next, it will be shown by induction on n that (2.74) also is a path in S.

For the base case, n = 0, note that x0G, x
0
E , and ŵ0 are initial locations and variable

values, and as (x0G, x
0
E , ŵ

0↾V ) ∈ Θ̂G,E,Σu , it follows that (x0G, x
0
E) is an initial location

of (G ‖ E) ↾ Θ̂G,E,Σu = S.

Now assume the path (2.74) exists in S up to n, and consider the next transition of (2.74)
in G ‖ E,

(xnG, x
n
E , ŵ

n)
σn+1
−−−→ (xn+1

G , xn+1
E , ŵn+1) . (2.78)

This means that there is a transition

(xnG, x
n
E)

σn+1:pS
−−−−−→ (xn+1

G , xn+1
E ) (2.79)

in G ‖ E such that

ŵn(z) = ŵn+1(z) for all variables z ∈W \ vars′(pS) . (2.80)

By Definition 4, in S = (G ‖ E) ↾ Θ̂G,E,Σu there exists a transition

(xnG, x
n
E)

σn+1:pS∧R
−−−−−−−→ (xn+1

G , xn+1
E ) (2.81)

where R ≡ RΘ̂G,E,Σu
[pS , (x

n+1
G , xn+1

E )] is such that vars′(R) ⊆ vars′(pS), and for all

valuations v̂, ŵ ∈ dom(V ) it holds that (xn+1
G , xn+1

E , v̂↾V \vars′(pS) ⊕ ŵ) ∈ Θ̂G,E,Σu if and
only if (v̂⊕ ŵ′)(R) = true. Note ŵn+1↾V = (ŵn↾W\vars′(pS)⊕ ŵn+1)↾V = ŵn↾V \vars′(pS)⊕

ŵn+1↾V by (2.80). Then (xn+1
G , xn+1

E , ŵn↾V \vars′(pS)⊕ŵ
n+1↾V ) = (xn+1

G , xn+1
E , ŵn+1↾V ) ∈

Θ̂G,E,Σu and thus (ŵn⊕ (ŵn+1)′)(R) = true. Also for variables z ∈W \ vars′(pS ∧R) =
W \ vars′(pS), it holds that ŵ

n(z) = ŵn+1(z) by (2.80). This shows

(xnG, x
n
E , ŵ

n)
σn+1
−−−→ (xn+1

G , xn+1
E , ŵn+1) (2.82)

in S. Thus, the path (2.74) can be constructed in S for an arbitrary path (2.73) in
G ‖ S′, which shows G ‖ S′ ⊆v S.

Thus, G ‖ S′ ⊆v S ⊆v G ‖ S by Lemma 10, and the claim G ‖ S′ ⊆v G ‖ S follows from
Lemma 5 (ii). ✷
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c σ : z′ = ∗

Figure 2: The EFSM chaos(σ, z).

2.6 Chaos Abstraction

This working paper is concerned with methods to modify or rewrite EFSMs or systems of
composed EFSMs to simplify them and make synthesis procedures more efficient. Ordinary
FSMs have useful modularity properties, according to which synchronous composition of a
state machine with another only ever restricts the behaviour [2]. This makes it possible to
remove components from a synchronous composition while preserving safety properties such as
controllability, i.e., the controllability with respect to a part of the plant implies controllability
with respect to the entire plant. EFSMs do not have this property, and therefore this and
the following section introduce alternatives for the simplification of EFSM systems.

When EFSMs are combined in synchronous composition, new next-state variables can be
added to transitions, possibly changing variables that were implicitly unchanged. To obtain
modularity properties similar to those known for FSMs, one solution [10] is to replace the
parts of the system not considered in a synthesis attempt by an abstraction that includes all
possible variable changes. This abstraction is called chaos EFSM.

Definition 11 [10] Given an event σ and a variable z, the chaos EFSM for σ and z is

chaos(σ, z) = 〈{σ}, {c}, {c}, {(c, σ, z′ = ∗, c)}〉 . (2.83)

The EFSM chaos(σ, z) is shown in Figure 2. The update z′ = ∗ means that the variable z
can assume any value from its domain in the next state. Formally, this update is true for
all valuations, but it includes the next-state variable z′ so that z is no longer implicitly
unchanged.

In the synchronous composition F1 ‖ F2 of two EFSMs, some variables in F1 may be
changed by transitions in F2. A variable z can be changed after composition of a transition
in F1 that does not mention z′ with a transition in F2 that mentions z′; or by a transition with
an event that only appears in F2. By inspection of the next-state variables on the transitions
of F2, it can be determined that certain variables are not changed in F2, or are only changed
on the occurrence of certain events. The following Lemma 12 shows how to identify the
specific chaos EFSMs to capture possible variable changes in another EFSM.

Lemma 12 [10] Let F1 and F2 be two EFSMs, and let

C =
∥

∥({ chaos(σ, z) | z ∈ vars(F1) ∩ vars′(F2, σ) }) . (2.84)

If (x1, x2, v̂)
σ
→ (y1, y2, ŵ) in F1 ‖F2 then (x1, c, v̂↾vars(F1))

σ
→ (y1, c, ŵ↾vars(F1)) in F1 ‖C, where

c is the single location of C.
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Proof. Let Σ1, Σ2, and ΣC denote the event sets of F1, F2, and C, respectively, and write
V1 = vars(F1). Note that vars(C) ⊆ V1 and thus V1 = vars(F1 ‖ C), and also vars′(F2, σ) = ∅
for σ /∈ Σ2 and thus ΣC ⊆ Σ2. Assume

(x1, x2, v̂)
σ
→ (y1, y2, ŵ) (2.85)

in F1 ‖ F2 with v̂, ŵ ∈ dom(W ) for some W ⊇ vars(F1) ∪ vars(F2).
If σ /∈ Σ1 ∪ Σ2 then x1 = y1 and x2 = y2 and v̂ = ŵ, and from ΣC ⊆ Σ2 it follows that

σ /∈ Σ1 ∪ ΣC . Then it is clear that (x1, c, v̂)
σ
→ (x1, c, v̂) = (y1, c, ŵ) in F1 ‖ C.

Otherwise F1 ‖ F2 contains a transition

(x1, x2)
σ:p
→ (y1, y2) (2.86)

such that (v̂ ⊕ ŵ′)(p) = true and v̂(z) = ŵ(z) for all variables z ∈ W \ vars′(p). C contains

a single σ-transition c
σ:pC−−−→ c, where pC is the conjunction of z′ = ∗ statements over its

variables vars′(pC) = V1 ∩ vars′(F2, σ). (If V1 ∩ vars′(F2, σ) = ∅ then σ /∈ Σ2 and c
σ:pC−−−→ c

still holds for the empty conjunction, pC ≡ true.) The update pC is true for all valuations,

only its next-state variables are important. From (2.86) it follows that x1
σ:p1
−−→ y1 in F1 and

x2
σ:p2
−−→ y2 in F2 such that p ≡ p1 ∧ p2. Then F1 ‖ C has a transition

(x1, c)
σ:p1∧pC−−−−−→ (y1, c) . (2.87)

As (v̂ ⊕ ŵ′)(p) = (v̂ ⊕ ŵ′)(p1 ∧ p2) = true, it follows that (v̂ ⊕ ŵ′)(p1) = true, and therefore
also (v̂ ⊕ ŵ′)(p1 ∧ pC) = true.

Now consider z ∈ V1 \ vars
′(p1 ∧ pC). Then z ∈ V1 ⊆ W and z /∈ vars′(p1) and z /∈

vars′(pC) = V1 ∩ vars′(F2, σ), and given z ∈ V1 also z /∈ vars′(F2, σ) ⊇ vars′(p2). This means
z /∈ vars′(p1 ∧ p2) = vars′(p) and therefore v̂(z) = ŵ(z) from above. This shows the claim
(x1, c, v̂|V1

)
σ
→ (y1, c, ŵ|V1

) in F1 ‖ C. ✷

In a synchronous composition F1 ‖ F2, the chaos abstraction of F2 as defined by (2.84)
is the composition of chaos EFSMs for variables in F1 and events with transitions assigning
to these variables in F2. The condition z ∈ vars(F1) ∩ vars′(F2, σ) in (2.84) can only hold
for variables shared between F1 and F2 and for events of F2, so that the construction can be
restricted to σ ∈ Σ2 and z ∈ vars(F1) ∩ vars(F2). The composition C of these chaos EFSMs
is a one-state EFSM with selfloop transitions σ : z′ = ∗ for all events σ ∈ Σ2 and variables
z ∈ vars(F1) ∩ vars′(F2, σ). Lemma 12 allows F2 to be replaced by this chaos EFSM C, such
that all transitions in the composition F1 ‖ F2 are also possible in the abstraction F1 ‖ C.

2.7 Existential Abstraction

An important feature of the results in this working paper is the ability to simplify EFSMs
through variable abstraction [23] using the existential quantifier. If p ∈ Π is an update and z
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is a variable, then ∃z p is an update that is true if and only if p can be made true by choosing
some value for the variable z from its domain [6].

In this working paper, quantification is generalised to sets of variables as follows. For
W = {z0, z1, . . . , zn}, it is defined that

∃W p ≡ ∃z0∃z
′
0∃z1∃z

′
1 · · · ∃zn∃z

′
n p ; (2.88)

∃W ′ p ≡ ∃z′0∃z
′
1 · · · ∃z

′
n p . (2.89)

That is, an update is quantified over variable set W by quantifying over both the current-state
and next-state variables of W . Differently, quantification over W ′ means to quantify over the
next-state variables only. The same notation is introduced for the universal quantifier, so
∀W p is true if and only if p is true for all possible values of the current and next-state
variables of W .

An EFSM is abstracted by existentially quantifying the updates on all the transitions.

Definition 12 [23] Let F = 〈Σ, Q,Q◦,→〉 be an EFSM, and let W be a set of variables.
The existential abstraction of F with respect to W is the EFSM ∃W F = 〈Σ, Q,Q◦,→∃〉

where x
σ:∃W p
−−−−→∃ y in ∃W F if and only if x

σ:p
→ y in F .

The existential abstraction of a set F = {F1, . . . , Fn} of EFSMs is the set ∃W F =
{∃W F1, . . . , ∃W Fn} of the abstractions of the individual EFSMs.

Existential abstraction results in an EFSM that is independent of the quantified variables,
i.e., vars(∃W F ) ∩W = ∅. A transition in the abstraction is possible if there exist values for
the quantified variables to make the update in the original EFSM F true. It is clear that
existential abstraction preserves the EFSM properties of normalisation and purity. State-
determinism is not preserved, however, so it has to be required explicitly that an abstraction
is state-deterministic in order for it to be used in synthesis.

Lemma 13 Let F be an EFSM, and let W be a set of variables.

(i) If F is normalised, then ∃W F is normalised.

(ii) If F is pure, then ∃W F is pure.

Proof. Note that vars(p) denotes the set of free variables in an update p, and therefore
vars′(∃W p) = vars′(p) \W ′. Then both claims follow directly from Definition 2. ✷

Another concept related to existential quantification is that of always enabled events. An
event in an ordinary FSM is always enabled if it has a transition from every state. With
EFSMs, it may additionally be of interest that the event is enabled for all values of variables.
The following definition requires an event that is enabled for all current-state values and some
next-state values of the variables, while the next-state values for other variables only need to
exist.
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σ : x = 0σ : x = 1

σ : x′ = 1 ∧ y′ = xσ : x′ = 0 ∧ y′ = x

Figure 3: Example of always enabled and unconstrained events.

Definition 13 [10] Let F = 〈Σ, Q,Q◦,→〉 be an EFSM, and let W ⊆ vars(F ). An event
σ ∈ Σ is always enabled in F with respect to W if for all locations x ∈ Q with σ-transitions

x
σ:p1
−−→ y1 · · · x

σ:pn
−−−→ yn (2.90)

the formula
∃W ′ (p1 ∨ · · · ∨ pn) (2.91)

is valid. An event set Σ′ ⊆ Σ is always enabled in F with respect to W if every event σ ∈ Σ′

has this property.

Example 3 Consider the EFSM F in Figure 3 with dom(x) = dom(y) = {0, 1}. Event σ
is always enabled in F with respect to W1 = {x, y}, because independently of the current
value of the variables x and y, it is always possible to choose values for x and y such that
some other location can be reached. But σ is not always enabled with respect to W2 = {x},
because the update x′ = 0 ∧ y′ = x is not possible when the next value of y is pre-selected to
be different from the current value of x. Formally, ∃x′ (x′ = 0 ∧ y′ = x) is not valid because,
if x = 1 and y′ = 0 then it can never be that y′ = x.

The following definition introduces the related but slightly different condition of uncon-
strained events, whose enablement does not depend on certain variables.

Definition 14 Let F = 〈Σ, Q,Q◦,→〉 be an EFSM, and let W ⊆ vars(F ). An event σ ∈ Σ

is unconstrained in F with respect to W if, for all transitions x
σ:p
→ y in F the formula

∃Wp⇒ ∀W∃W ′p (2.92)

is valid. An event set Σ′ ⊆ Σ is unconstrained in F with respect to W if every event σ ∈ Σ′

has this property.

The symbol ⇒ in (2.92) denotes logical implication [6]. By convention (2.88) the quan-
tification ∃W and ∀W is over both current-state and next-state variables, but in ∀W∃W ′ the
universal quantification of the next-state variables is immediately overridden by ∃W ′.

An update is unconstrained by a variable z if, in all cases where the update formula is
true for some value of z, then it is also true for all other values of z in the current state,

27



but possibly with different values of z′ in the next state. While an always enabled event is
enabled in every location, an unconstrained event, if it is enabled, is enabled independently
of given variables.

Example 4 Consider again the EFSM F in Figure 3. The event σ is not unconstrained
with respect to W1 = {x}, because the update x = 1 is possible when x = 1, so ∃x∃x′ x = 1
or equivalently ∃x x = 1 is true, but not for all other values of x, namely ∀x∃x′ x = 1 or
equivalently ∀x x = 1 is not true. But σ is unconstrained with respect to W2 = {y}, because
all the transitions are enabled independently of the current value of y. That is, if a transition
is enabled for some current-state value of y, then the transition can also be taken for all other
values of y, possibly with different values for y′ in the next state.

3 Abstracting the Plant

This and the following sections propose modular synthesis algorithms for systems composed
of several EFSM components. This section considers the possibilities of abstraction of the
plant. It is assumed that the plant is defined as the synchronous composition of a set G =
{G1, . . . , Gm} of normalised state-deterministic EFSMs, and the specification is given by a
single pure state-deterministic EFSM E. More general specifications and their abstraction
are considered in the following sections.

3.1 Algorithm

The idea of modular synthesis [1,2] is to simplify the plant G = {G1, . . . , Gm} by selecting some
of its components, and discarding the others, in such a way that the result is equivalent to that
of synthesis with respect to the complete plant. In the EFSM setting, this is now generalised
to the selection of plant components and variables. Algorithm 1 is further developed from
modular FSM synthesis algorithms [1,10] and the modular EFSM synthesis algorithm [10], in
that it considers existential abstraction of variables in addition to component selection and
chaos abstraction.

The idea is to gradually increase the sets of plants Gi, variables V i until it is guaranteed
that the optimal result has been found. At each iteration, the algorithm considers sets of
plants Gi ⊆ G and variables V i ⊆ vars(G) ∪ vars(E), and also uncontrollable events Σi

u ⊆ Σu.
Throughout the algorithm, Ḡi and V̄ i are always the complements of Gi and V i.

Initially, synthesis is performed using only the specification E and its variables, as G0 = ∅
(line 3) and V 0 = vars(E) (line 3). Following Lemma 12, the plants Ḡ0 = G are replaced by
chaos EFSMs C0 for the included variables (line 7). The set of uncontrollable events Σ0

u is
initially empty (line 2), i.e., synthesis is first performed under the pretence that all events are
controllable. In this case, the synthesis result S0 is equal to the specification E (line 8).
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Algorithm 1: Modular abstracting EFSM synthesis for a single specification

Input: normalised state-deterministic plants G = {G1, . . . , Gm};
pure state-deterministic specification E; uncontrollable events Σu.

Output: supremal supervisor Sk for
∥

∥(G) with respect to E and Σu.
1 V ← vars(G) ∪ vars(E);
2 Σ0

u ← ∅;
3 G0 ← ∅;
4 Ḡ0 ← G ;
5 V 0 ← vars(E);
6 V̄ 0 ← V \ V 0;
7 C0 ← { chaos(σ, v) | v ∈ V 0 ∩ vars′(Ḡ0, σ) };
8 S0 ← E;
9 i← 0;

10 while Si is not Σu-controllable with respect to
∥

∥(∃V̄ i Gi) ‖
∥

∥(Ci) do

11 Σi+1
u ← Σi

u ∪ uncont(
∥

∥(∃V̄ i Gi) ‖
∥

∥(‖Ci), Si,Σu);
12 Choose Gi+1 ⊆ G and V i+1 ⊆ V and Ḡi+1 = G \ Gi+1 and V̄ i+1 = V \ V i+1

such that vars(E) ⊆ V i+1 ⊆ vars(Gi+1) ∪ vars(E)
and Σi+1

u is always enabled in Ḡi+1 with respect to V̄ i+1

and Σi+1
u is unconstrained in Gi+1 with respect to V̄ i+1

and vars′(Gi+1, µ) ∩ vars′(Ḡi+1, µ) ∩ V̄ i+1 = ∅ for each µ ∈ Σi+1
u

and ∃V̄ i+1 Gi+1 is state-deterministic;
13 Ci+1 ← { chaos(σ, z) | z ∈ V i+1 ∩ vars′(Ḡi+1, σ) };
14 Si+1 ← supC

(
∥

∥(∃V̄ i+1 Gi+1) ‖
∥

∥(Ci+1), E,Σi+1
u

)

;
15 i← i+ 1;

16 end

17 return Si
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Therefore, on entering the loop for the first time, the loop entry condition in line 10 checks
whether the specification S0 = E is controllable with respect to only the chaos EFSM C0

(recall that G0 = ∅), based on the full set Σu of uncontrollable events. This may succeed if,
for example, the specification has only controllable events, in which case S0 = E is returned
as the least restrictive solution. Otherwise the loop is entered and synthesis is performed
with respect to increased subsets of plants, variables, and uncontrollable events, which are
computed as follows.

First, line 11 calculates a new set Σi+1
u of uncontrollable events. As the current super-

visor Si is not controllable by the loop entry condition, there must be some uncontrollable
event that is possible in the plant but not in the specification. These events are called the
causes of uncontrollability, as per the following definition.

Definition 15 Let G and E be two EFSMs, and let Σu be a set of events. The set of causes
of Σu-uncontrollability of E with respect to G is the set of events

uncont(G,E,Σu) = {µ ∈ Σu | there exist (xG, xE , v̂) ∈ Qacc(G ‖E) and (xG, v̂)
µ
→

(xG, ŵ) in G, and there is no location yE in E such that

(xG, xE , v̂)
µ
→ (yG, yE , ŵ) } .

(3.1)

It is clear that the set of causes of uncontrollability is empty, uncont(G,E,Σu) = ∅, if
and only if G is Σu-controllable with respect to E . As the loop entry condition has found
the supervisor Si to be not Σi

u-controllable with respect to the plant abstraction
∥

∥(∃V̄ i Gi) ‖
∥

∥(Ci), there exist some causes of uncontrollability, which are included in the next set Σi+1
u

of uncontrollable events on line 11. This ensures that they are treated as uncontrollable for
the next synthesis attempt. For other uncontrollable events, the algorithm will continue to
pretend that they are controllable.

Next, line 12 chooses new plants Gi+1 and variables V i+1 to form an improved approxi-
mation. First, all variables used in the specification are retained,

vars(E) ⊆ V i+1 . (3.2)

In this section, variables that appear in the specification are not abstracted. Later, in Sec-
tion 4, it is shown how the amount of variables in the specification can be reduced by speci-
fication abstraction before Algorithm 1 is invoked.

The main part of the logic in Algorithm 1 is the selection of plant components and variables
from them. To ensure a least restrictive synthesis result, all plant components that can disable
some uncontrollable event are included [1,10]. Therefore it is required that the uncontrollable
events must be always enabled by the plants Ḡi+1 and variables V̄ i+1 not included in synthesis
according to Definition 13,

Σi+1
u is always enabled in Ḡi+1 with respect to V̄ i+1. (3.3)
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This condition ensures that any plant components that could cause disablement of some
uncontrollable event from Σi+1

u are included in the abstraction. Furthermore, all variables
that can constrain these uncontrollable events in the selected plant components Gi+1 must
also be included. This can be ensured by including all variables that appear in the selected
plants on transitions with the selected uncontrollable events, or as weaker condition it is
enough that the uncontrollable events are unconstrained by the other variables according to
Definition 14,

Σi+1
u is unconstrained in Gi+1 with respect to V̄ i+1. (3.4)

In order to consider the conditions (3.3) and (3.4) separately for Gi+1 and Ḡi+1, it is fur-
thermore necessary that there are no conflicting assignments to the same abstracted variable.
Therefore it is required that Gi+1 and Ḡi+1 do not share these variables in their primed form,

vars′(Gi+1, µ) ∩ vars′(Ḡi+1, µ) ∩ V̄ i+1 = ∅ for each µ ∈ Σi+1
u . (3.5)

This condition can be checked separately for each event µ considered as uncontrollable in the
current iteration.

To summarise, in addition to including all variables from the specification (3.2), the se-
lected uncontrollable events must be always enabled (3.3) in the plants Ḡi+1 that are not
included in the approximation and unconstrained (3.4) in the plants Gi+1 that are included,
and the two parts Gi+1 and Ḡi+1 of the plant must not use any of the abstracted variables in
their primed form with the same uncontrollable event (3.5).

The variables not included in V i+1, i.e., those in V̄ i+1, are removed by existential abstrac-
tion. In order for synthesis to be well-defined, the abstraction must remain state-deterministic.
This is ensured by the last condition,

∃V̄ i+1 Gi+1 is state-deterministic . (3.6)

After the plants and variables for the next step have been chosen, line 13 introduces chaos
EFSMs Ci+1 to replace the plants Ḡi+1 that are not included, such that any possible changes
to the included variables V i+1 are reflected in the abstraction [10].

Then line 14 performs synthesis for the plant abstraction
∥

∥(∃V̄ i+1 Gi+1) ‖
∥

∥(Ci+1) and the
chosen set Σi+1

u of uncontrollable events. If the resulting supervisor is controllable with respect
to the full set Σu of uncontrollable events (line 10), then it is returned as the result. Otherwise
more uncontrollable events need to be included, resulting in a new plant abstraction. The
loop continues until a Σu-controllable solution is found.

Line 12 of Algorithm 1 may be difficult to implement as it is not specified how the plant
components Gi+1 and variables V i+1 can be chosen such that conditions (3.2)–(3.6) are satis-
fied at the same time. A simple approach is to start with the variables of the specification (3.2)
and the plants that disable an uncontrollable event from Σi

u in some location (3.3), and then
gradually add more plants and variables until all conditions are satisfied. The search may be
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simpler for well-designed EFSM models in practice, such as the flexible manufacturing system
presented in Section 6 where not all conditions need to be considered.

The following subsections contain a correctness proof of Algorithm 1. Clearly, termination
is guaranteed because the set Σi

u of uncontrollable events increases with every iteration, and
it is bounded by the finite set Σu of all uncontrollable events. It remains to be shown that the
algorithm returns a correct result, i.e., that the supervisor Si returned from line 17 is indeed
a supremal supervisor for E with respect to G and Σu.

It is clear from line 14 that

Si = supC
( ∥

∥(∃V̄ i Gi) ‖
∥

∥(Ci), E,Σi
u

)

(3.7)

is a supremal supervisor for E with respect to
∥

∥(∃V̄ i Gi) ‖
∥

∥(Ci) and Σi
u. To prove the

correctness claim, it will first be shown that, for all i,

Si is a supremal supervisor for E with respect to G and Σi
u . (3.8)

This is shown by Proposition 20 in Section 3.5 below. Then the only difference between Si and
the desired result is the uncontrollable event set: Si is synthesised with respect to Σi

u ⊆ Σu.
As Si uses fewer uncontrollable events, it can secondly be shown that it over-approximates
the synthesis result with respect to the full uncontrollable event set Σu,

supC(
∥

∥(G), E,Σu) ⊆v Si . (3.9)

On termination of the loop, Si is not only Σi
u-controllable but also Σu-controllable. At this

point, it follows from (3.8) and (3.9) that Si is a supremal supervisor for E with respect to
G and Σu.

3.2 Proof of Behavioural Inclusion

As a first step towards the proof of (3.8), the following Proposition 14 shows that a supervisor
computed from any configuration of variable abstraction satisfies the specification. It is well-
known for ordinary FSMs that any supervisor synthesised for some specification E results
in a behaviour more restrictive than E. In the case of EFSMs there is a complication,
because the supervisor could theoretically increase behaviour by the addition of variables
in the synthesised updates. This possibility can be ruled out through the assumption of
normalisation.

The following proposition shows that the supervisor obtained after every iteration of
Algorithm 1 satisfies the given specification. In this and the following propositions, G is the
part of the plant included in the current approximation, while H is the part not included
and replaced by chaos EFSMs C. The variables included in the current approximation are
denoted W , and W̄ is their complement. That is, G =

∥

∥(Gi+1), H =
∥

∥(Ḡi+1), C =
∥

∥(Ci+1),
and W = V i+1 in the notation of Algorithm 1.
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Proposition 14 Let G, H, and E be EFSMs, where G and H are normalised, let V =
vars(G)∪ vars(H)∪ vars(E) and Σu ⊆ Σ. Let W ⊆ V and W̄ = V \W , C =

∥

∥({ chaos(σ, z) |
z ∈W ∩ vars′(H,σ) }), and S = supC((∃W̄G) ‖ C,E,Σu). Then

G ‖H ‖ S ⊆v G ‖H ‖ E . (3.10)

Proof. Note that vars(S) = vars(supC((∃W̄G) ‖ C,E,Σu)) ⊆ V and therefore vars(G ‖H ‖
S) = vars(G ‖H ‖ E) = V . Then by Definition 6 it is enough to show for any path

(x0G, x
0
H , (x̃0G, c, x

0
E), v̂

0)
σ1→ · · ·

σn→ (xnG, x
n
H , (x̃nG, c, x

n
E), v̂

n) (3.11)

in G ‖H ‖ S, with v̂i ∈ dom(V ) for i = 0, . . . , n, that

(x0G, x
0
H , x0E , v̂

0)
σ1→ · · ·

σn→ (xnG, x
n
H , xnE , v̂

n) (3.12)

is a path in G ‖H ‖ E. Clearly x0G, x
0
H , x0E , and v̂0 are initial locations and variable values

from (3.11). Now consider a transition on the path (3.11)

(xjG, x
j
H , (x̃jG, c, x

j
E), v̂

j)
σ1+1
−−−→ (xj+1

G , xj+1
H , (x̃j+1

G , c, xj+1
E ), v̂j+1) . (3.13)

in G ‖H ‖ S. By Lemma 2, there exist transitions

xjG
σj :pG
−−−→ xj+1

G with (v̂j ⊕ (v̂j+1)′)(pG) = true in G ; (3.14)

xjH
σj :pH
−−−→ xj+1

H with (v̂j ⊕ (v̂j+1)′)(pH) = true in H ; (3.15)

(x̃jG, c, x
j
E)

σj :pS
−−−→ (x̃j+1

G , c, xj+1
E ) with (v̂j ⊕ (v̂j+1)′)(pS) = true in S ; (3.16)

such that

v̂j(z) = v̂j+1(z) for all z ∈ V \ (vars′(pG) ∪ vars′(pH) ∪ vars′(pS)) . (3.17)

The update of the transition (3.16) in S takes the form pS ≡ qG∧qC ∧qE ∧R with vars′(R) ⊆

vars′(qG ∧ qC ∧ qE), for some transitions xjG
σj :qG
−−−→ xj+1

G in ∃W̄G, c
σj :qC
−−−→ c in C, and

xjE
σj :qE
−−−→ xj+1

E with (v̂j ⊕ (v̂j+1)′)(qE) = true in E . (3.18)

Now consider a variable z ∈ V \ (vars′(pG) ∪ vars′(pH) ∪ vars′(qE)). Then since G and H are
normalised, z /∈ vars′(pG) = vars′(G, σj) ⊇ vars′(∃W̄G, σj) = vars′(qG) and z /∈ vars′(pH) =
vars′(H,σj) ⊇ vars′(C, σj) = vars′(qC), and then also z /∈ vars′(qG) ∪ vars′(qC) ∪ vars′(qE) ⊇
vars′(R). Then also z /∈ vars′(qG)∪vars

′(qC)∪vars
′(qE)∪vars

′(R) = vars′(pS). It follows that
v̂j(z) = v̂j+1(z) by (3.17). Combining this with (3.14), (3.15), and (3.18), it follows using
Lemma 2 that

(xjG, x
j
H , xjE , v̂

j)
σj
→ (xj+1

G , xj+1
H , xj+1

E , v̂j+1) (3.19)

in G‖H ‖E. The path (3.12) is obtained by repeating this argument for all the steps in (3.11).
✷
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3.3 Proof of Controllability

The second step towards the proof of (3.8) is to show that the supervisor obtained after every
iteration of Algorithm 1 is controllable with respect to the original plant. As each supervisor
is synthesised for a plant abstraction, it must be controllable with respect to that abstraction.
For ordinary FSMs it is known [2] that a supervisor controllable with respect to a part of a
composed plant is also controllable with respect to the complete plant. For EFSMs, this result
has been generalised [10] for the inclusion of chaos abstractions, and in Proposition 16 in this
section, it is further generalised to cover the existential abstraction performed by Algorithm 1.

The proposition depends on the following lemma about the reachability of states. Every
state reachable in the original plant corresponds to a reachable state in the plant abstraction
used by Algorithm 1. This means that the abstraction allows more behaviour than the original
plant.

Lemma 15 Let G, H, and S be EFSMs with V = vars(G)∪ vars(H)∪ vars(S). Let W ⊆ V
and W̄ = V \W and C =

∥

∥({ chaos(σ, z) | z ∈ W ∩ vars′(H,σ) }) such that vars(S) ⊆ W . If
(xG, xH , xS , v̂) ∈ Qacc(G ‖H ‖S), then (xG, c, xS , v̂↾W ) ∈ Qacc((∃W̄G) ‖C ‖S) where c is the
single location of C.

Proof. Note that vars((∃W̄G) ‖ C) ⊆ W , which given vars(S) ⊆ W implies vars((∃W̄G) ‖
C ‖ S) ⊆ W . Let (xG, xH , xS , v̂) ∈ Qacc(G ‖H ‖ S) for some v̂ ∈ dom(V ). Then there exists
a path

(x0G, x
0
H , x0S , v̂

0)
σ1→ (x1G, x

1
H , x1S , v̂

1)
σ2→ · · ·

σn→ (xnG, x
n
H , xnS , v̂

n) = (xG, xH , xS , v̂) (3.20)

in G ‖H ‖ S. It will be shown that

(x0G, c, x
0
S , v̂

0↾W )
σ1→ (x1G, c, x

1
S , v̂

1↾W )
σ2→ · · ·

σn→ (xnG, c, x
n
S , v̂

n↾W ) = (xG, c, xS , v̂↾W ) (3.21)

is a path in (∃W̄G) ‖ C ‖ S.
Clearly, x0G, c, x

0
S , and v̂0↾W are initial locations and variable values. Now consider a step

(xjG, x
j
H , xjS , v̂

j)
σj
→ (xj+1

G , xj+1
H , xj+1

S , v̂j+1) (3.22)

on the path (3.20). By Lemma 2, there are transitions xjG
σj :pG
−−−→ xj+1

G with (v̂j⊕(v̂j+1)′)(pG) =

true in G, xjH
σj :pH
−−−→ xj+1

H with (v̂j ⊕ (v̂j+1)′)(pH) = true in H, and xjS
σj :pS
−−−→ xj+1

S with
(v̂j ⊕ (v̂j+1)′)(pS) = true in S, such that

v̂j(z) = v̂j+1(z) for all z ∈ V \ (vars′(pG) ∪ vars′(pH) ∪ vars′(pS)) . (3.23)

From xjG
σj :pG
−−−→ xj+1

G in G it follows that

xjG
σj :∃W̄pG
−−−−−−→ xj+1

G with (v̂j ⊕ (v̂j+1)′)(∃W̄pG) = true in ∃W̄G . (3.24)
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By construction of the chaos EFSMs, it is clear that c
σj :pC
−−−→ c with (v̂j ⊕ (v̂j+1)′)(pC) = true

in C.
Now consider z ∈ W \ (vars′(∃W̄pG) ∪ vars′(pC) ∪ vars′(pS)). Then z ∈ W ⊆ V and z /∈

vars′(∃W̄pG) and z /∈ vars′(pC) and z /∈ vars′(pS). From z /∈ vars′(∃W̄pG) = vars′(pG) \ W̄ =
vars′(pG)∩W and z ∈W it is clear that z /∈ vars′(pG), and z /∈ vars′(pC) = vars′(C, σj) means
that C cannot include chaos(σj , z), which given z ∈W implies z /∈ vars′(H,σj) by construction
of C. Thus, z ∈ V \(vars′(pG)∪vars

′(pH)∪vars′(pS)), which implies v̂j(z) = v̂j+1(z) by (3.23).
By Lemma 2, it follows that

(xjG, c, x
j
S , v̂

j↾W )
σj
→ (xj+1

G , c, xj+1
S , v̂j+1↾W ) (3.25)

in (∃W̄G) ‖ C ‖ S. The path (3.21) is obtained by repeating this argument for all the steps
in (3.20). ✷

Using the above lemma, it is now possible to prove this section’s result about controlla-
bility with respect to a plant abstraction. If a supervisor is controllable with respect to an
abstraction in Algorithm 1, it is also controllable with respect to the original plant. This
means that the supervisor obtained after every iteration of Algorithm 1 is controllable with
respect to the original plant.

Proposition 16 Let G, H, and S be EFSMs with V = vars(G) ∪ vars(H) ∪ vars(S) and
Σu ⊆ Σ. Let W ⊆ V and W̄ = V \W and C =

∥

∥({ chaos(σ, z) | z ∈ W ∩ vars′(H,σ) }) such
that vars(S) ⊆W . If S is Σu-controllable with respect to (∃W̄G)‖C, then S is Σu-controllable
with respect to G ‖H.

Proof. Note that vars((∃W̄G) ‖C) ⊆W . Let (xG, xH , xS , v̂) ∈ Qacc(G ‖H ‖S), µ ∈ Σu, and

(xG, xH , v̂)
µ
→ (yG, yH , ŵ) in G ‖H , (3.26)

where v̂, ŵ ∈ dom(V ). Following Definition 7, it is to be shown that there exists a location
yS of S such that

(xG, xH , xS , v̂)
µ
→ (yG, yH , yS , ŵ) in G ‖H ‖ S . (3.27)

First, it will be shown that

(xG, c, v̂↾W )
µ
→ (yG, c, ŵ↾W ) in (∃W̄G) ‖ C , (3.28)

where c is the single location of C. The assumption (3.26) means by Lemma 2 that there are

transitions xG
µ:pG−−−→ yG with (v̂ ⊕ ŵ′)(pG) = true in G and xH

µ:pH−−−→ yH with (v̂ ⊕ ŵ′)(pH) =
true in H, such that

v̂(z) = ŵ(z) for all z ∈ V \ (vars′(pG) ∪ vars′(pH)) . (3.29)
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From xG
µ:pG−−−→ yG in G it follows that xG

µ:∃W̄pG−−−−−→ yG in ∃W̄G with (v̂ ⊕ ŵ′)(∃W̄pG) = true.

By construction of the chaos EFSMs, it is clear that c
µ:pC−−−→ c with (v̂ ⊕ ŵ′)(pC) = true in C.

Now consider z ∈ W \ (vars′(∃W̄pG) ∪ vars′(pC)). Then z ∈ W ⊆ V and z /∈ vars′(∃W̄pG)
and z /∈ vars′(pC). From z /∈ vars′(∃W̄pG) = vars′(pG) \ W̄ = vars′(pG) ∩W and z ∈ W it
is clear that z /∈ vars′(pG), and from z /∈ vars′(pC) = vars′(C, µ), it follows that C cannot
include chaos(µ, z), which given z ∈ W means z /∈ vars′(H,µ) ⊇ vars′(pH) by construction
of C. Thus, z ∈ V \ (vars′(pG) ∪ vars′(pH)), which implies v̂(z) = ŵ(z) by (3.29), and the
claim (3.28) follows by Lemma 2.

Second, it follows from Lemma 15 that (xG, c, xS , v̂↾W ) ∈ Qacc((∃W̄G) ‖ C ‖ S).
Then, given (3.28) and vars(S) ⊆ W and because S is Σu-controllable with respect to

(∃W̄G) ‖ C, by Definition 7 there exists a location yS of S such that

(xG, c, xS , v̂↾W )
µ
→ (yG, c, yS , ŵ↾W ) in (∃W̄G) ‖ C ‖ S . (3.30)

By Lemma 2, this implies xS
µ:pS−−−→ yS with (v̂↾W ⊕ (ŵ↾W )′)(pS) = true in S. Furthermore,

for any variable z ∈ V \ (vars′(pG) ∪ vars′(pH) ∪ vars′(pS)) ⊆ V \ (vars′(pG) ∪ vars′(pH)), it
holds that v̂(z) = ŵ(z) by (3.29). Then the claim (3.27) follows by combining this with the
above observations about transitions in G, H, and S, using Lemma 2. ✷

3.4 Proof of Least Restrictiveness

The third and last step towards of proof of (3.8) is to show that every iteration of Algo-
rithm 1 produces a least restrictive supervisor with respect to the original plant. This is the
most difficult part of the proof, which depends on the precise conditions (3.2)–(3.5) how the
variables are selected and the plant abstraction is formed.

When synthesising for ordinary FSMs, least restrictiveness can be ensured by including
all plant components that may disable an uncontrollable event [1,10]. This is generalised for
EFSMs by requiring that the uncontrollable events are always enabled by the plant EFSMs
not included in the abstraction (3.3), and that the uncontrollable events are unconstrained
by the variables not included in the abstraction (3.4).

The least restrictiveness result is shown in Proposition 18 below, and depends on the
following Lemma 17 about the existence of states in the synthesis result for an abstraction.
The lemma shows under the assumptions (3.2)–(3.5) that every state encountered during
synthesis of the original system, corresponds to a state encountered during synthesis for the
plant abstraction.

Lemma 17 Let G, H, and E be normalised EFSMs with V = vars(G) ∪ vars(H) ∪ vars(E)
and Σu ⊆ Σ. Let W ⊆ V and W̄ = V \W such that vars(E) ⊆ W ⊆ vars(G) ∪ vars(E),
and Σu is unconstrained in G with respect to W̄ , and Σu is always enabled in H with respect
to W̄ , and vars′(G,µ) ∩ vars′(H,µ) ∩ W̄ = ∅ for each µ ∈ Σu, and let C =

∥

∥({ chaos(σ, z) |
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z ∈ W ∩ vars′(H,σ) }). If (xG, xH , xE , v̂) ∈ Θ̂G‖H,E,Σu
then (xG, c, xE , v̂↾W ) ∈ Θ̂(∃V̄ G)‖C,E,Σu

where c is the single location of C.

Proof. Write Q = QG × {c} × QE × dom(W ), and assume (xG, xH , xE , v̂) ∈ Θ̂G‖H,E,Σu
for

some v̂ ∈ dom(V ). It is shown by induction on j that

(xG, c, xE , v̂↾W ) ∈ Θj

(∃W̄G)‖C,E,Σu
(Q) (3.31)

for all j ≥ 0.
For the base case, j = 0, note that (xG, c, xE , v̂↾W ) ∈ Q = Θ0

(∃W̄G)‖C,E,Σu
(Q).

To show the claim (3.31) for j+1, assume that there is some j ≥ 0 such that (3.31) holds
for all (xG, xH , xE , v̂) ∈ Θ̂G‖H,E,Σu

. Note that

Θj+1
(∃W̄G)‖C,E,Σu

(Q) = Θ
(∃W̄G)‖C,E,Σu

(Θj

(∃W̄G)‖C,E,Σu
(Q)) . (3.32)

Following Definition 9, to show that (xG, c, xE , v̂↾W ) is contained in this set, assume

(xG, c, v̂↾W )
µ
→ (yG, c, w̃) in (∃W̄G) ‖ C (3.33)

for some µ ∈ Σu and w̃ ∈ dom(W ). This means by Lemma 2 that xG
µ:p̃G−−−→ yG in ∃W̄G with

(v̂↾W ⊕ w̃′)(p̃G) = true, and c
µ:pC−−−→ c in C with (v̂↾W ⊕ w̃′)(pC) = true, and

v̂↾W (z) = w̃(z) for all variables z ∈W \ (vars′(p̃G) ∪ vars′(pC)) . (3.34)

Here, xG
µ:p̃G−−−→ yG in ∃W̄G means that xG

µ:pG−−−→ yG in G where p̃G ≡ ∃W̄pG. Thus, (v̂↾W ⊕
w̃′)(∃W̄pG) = (v̂↾W ⊕ w̃′)(p̃G) = true. Since µ ∈ Σu is unconstrained in G with respect to W̄ ,
the formula ∃W̄pG ⇒ ∀W̄∃W̄

′pG is valid. Then (v̂↾W ⊕ w̃′)(∀W̄∃W̄ ′pG) = true and thus
(v̂⊕ w̃′)(∃W̄ ′pG) = true, and also (v̂⊕ w̃′)(∃W̄ ′

G pG) = true where W̄G = vars′(pG)∩ W̄ . Then
there exists ũG ∈ dom(W̄G) such that (v̂ ⊕ (ũG ⊕ w̃)′)(pG) = true.

As µ ∈ Σu is always enabled in H with respect to W̄ , by Definition 13 there are transitions

xH
µ:p1H−−−→ y1H · · · xH

µ:pnH−−−→ ynH in H (3.35)

such that the formula ∃W̄ ′(p1H ∨ · · · ∨ pnH) is valid. Then, (v̂ ⊕ (ũG ⊕ w̃)′)(∃W̄ ′ p1H ∨ · · · ∨
∃W̄ ′ pnH)) = (v̂⊕(ũG⊕w̃)

′)(∃W̄ ′(p1H∨· · ·∨p
n
H)) = true, which means (v̂⊕(ũG⊕w̃)

′)(∃W̄ ′ piH) =
true for some i. Let pH ≡ piH and yH = yiH and W̄H = vars′(pH) ∩ W̄ . Then (v̂ ⊕ (ũG ⊕
w̃)′)(∃W̄ ′

H pH) = true, and there exists a valuation ũH ∈ dom(W̄H) such that (v̂⊕ (ũH ⊕ ũG⊕
w̃)′)(pH) = true.

Note that W̄G ∩ W̄H = vars′(pG)∩ W̄ ∩ vars
′(pH)∩ W̄ ⊆ vars′(G,µ)∩ vars′(H,µ)∩ W̄ = ∅

by assumption. As also w̃ ∈ dom(W ), with W ∩ W̄ = ∅, the valuations w̃, ũG, and ũH do not
share any variables, so that ũH ⊕ ũG ⊕ w̃ ≥ ũG ⊕ w̃ ≥ w̃.
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Let
ŵ = ũH ⊕ ũG ⊕ w̃ ⊕ v̂↾U where U = V \ (W ∪ W̄G ∪ W̄H). (3.36)

Then xG
µ:pG−−−→ yG with (v̂⊕ ŵ′)(pG) = (v̂⊕ (ũG⊕ w̃)′)(pG) = true and xH

µ:pH−−−→ yH with (v̂⊕
ŵ′)(pH) = (v̂⊕(ũH⊕ũG⊕w̃)

′)(pH) = true. Now consider z ∈ V \(vars′(pG)∪vars
′(pH)). Then

z ∈ V , and z /∈ vars′(pG) ⊇ vars′(∃W̄pG) and z /∈ vars′(pH) = vars′(H,µ) ⊇ vars′(C, µ) =
vars′(pC) because H is normalised. If z ∈W , then z ∈W \(vars′(∃W̄pG)∪vars

′(pC)) and thus
v̂(z) = v̂↾W (z) = w̃(z) = ŵ(z) by (3.34). If z /∈W , then z ∈ V \ (W ∪vars′(pG)∪vars

′(pH)) ⊆
V \ (W ∪ (vars′(pG) ∩ W̄ ) ∪ (vars′(pH) ∩ W̄ )) = V \ (W ∪ W̄G ∪ W̄H) = U and thus v̂(z) =
v̂↾U (z) = ŵ(z) by (3.36). This shows

v̂(z) = ŵ(z) for all z ∈ V \ (vars′(pG) ∪ vars′(pH)). (3.37)

It follows by Lemma 2 that

(xG, xH , v̂)
µ
→ (yG, yH , ŵ) in G ‖H. (3.38)

As (xG, xH , xE , v̂) ∈ Θ̂G‖H,E,Σu
= ΘG‖H,E,Σu

(Θ̂G‖H,E,Σu
) it follows from Definition 9 that

there exists a location yE of E such that (xG, xH , xE , v̂)
µ
→ (yG, yH , yE , ŵ) in G ‖H ‖ E and

(yG, yH , yE , ŵ) ∈ Θ̂G‖H,E,Σu
. This also means xE

µ:pE−−−→ yE in E with (v̂ ⊕ ŵ′)(pE) = true.

Then xG
µ:p̃G−−−→ yG in ∃W̄G with (v̂↾W ⊕ w̃′)(p̃G) = true, and c

µ:pC−−−→ c in C with (v̂↾W ⊕

w̃′)(pC) = true because vars(pC) ⊆ vars(C) ⊆W , and xE
µ:pE−−−→ yE in E with (v̂↾W⊕w̃

′)(p̃E) =
(v̂ ⊕ ŵ′)(pE) = true because vars(pE) ⊆ vars(E) ⊆W and ŵ ≥ w̃.

Consider z ∈ W \ (vars′(p̃G) ∪ vars′(pC) ∪ vars′(pE)). Then z ∈ W ⊆ V , and z /∈
vars′(p̃G) = vars′(∃W̄pG) = vars′(pG) \ W̄ = vars′(pG) ∩W so that z /∈ vars′(pG) as z ∈ W ,
and z /∈ vars′(pC) = vars′(C, µ) = W ∩ vars′(H,µ) so that z /∈ vars′(H,µ) = vars′(pH) as
z ∈ W and H is normalised. So z ∈ V \ (vars′(pG) ∪ vars′(pH)) and it follows by (3.37) that
v̂↾W (z) = v̂(z) = ŵ(z) = w̃(z).

It follows from Lemma 2 that (xG, c, xE , v̂↾W )
µ
→ (yG, c, yE , w̃) in G ‖ H ‖ E where

(yG, c, yE , w̃) = (yG, c, yE , ŵ↾W ) ∈ Θj

∃W̄G‖C,E,Σu
(Q) by inductive assumption as (yG, yH , yE ,

ŵ) ∈ Θ̂G‖H,E,Σu
. The claim (xG, c, xE , v̂↾W ) ∈ Θj+1

∃W̄G‖C,E,Σu
(Q) follows from Definition 9. ✷

According to Lemma 17, the synthesis fixpoint for the original system is somehow con-
tained in the synthesis fixpoint computed using an abstraction. This observation forms the
base for the proof of least restrictiveness in the following Proposition 18, which depends on
the same assumptions (3.2)–(3.5) as Lemma 17. The proof lifts the result about the inclu-
sion of the synthesis fixpoints to show that any controllable supervisor for the original plant
and specification results in behaviour that is included in that of a system controlled by the
supervisor computed using an abstraction.
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Proposition 18 Let G, H, and E be normalised EFSMs, E pure, with V = vars(G) ∪
vars(H) ∪ vars(E), and Σu ⊆ Σ. Let W ⊆ V and W̄ = V \W such that vars(E) ⊆ W ⊆
vars(G)∪vars(E), and Σu is unconstrained in G with respect to W̄ , and Σu is always enabled
in H with respect to W̄ , and vars′(G,µ) ∩ vars′(H,µ) ∩ W̄ = ∅ for each µ ∈ Σu, and let C =
∥

∥({ chaos(σ, z) | z ∈W ∩vars′(H,σ) }). Let S′ be an EFSM such that G‖H ‖S′ ⊆v G‖H ‖E
and S′ is Σu-controllable with respect to G ‖H. Then

G ‖H ‖ S′ ⊆v G ‖H ‖ supC((∃W̄G) ‖ C,E,Σu) . (3.39)

Proof. Write S = supC(G ‖H,E,Σu) and S∃ = supC((∃W̄G) ‖ C,E,Σu). Consider a path

(ẍ0G, ẍ
0
H , ẍ0S , v̂

0)
σ0→ · · ·

σn→ (ẍnG, ẍ
n
H , ẍnS , v̂

n). (3.40)

in G ‖ H ‖ S′ with v̂j ∈ dom(V̈ ) and V̈ = V ∪ vars(S′). Since G ‖ H ‖ S′ ⊆v G ‖ H ‖ S by
Proposition 11, there exists a path

(x0G, x
0
H , (x̃0G, x̃

0
H , x0E), v̂

0)
σ0→ · · ·

σn→ (xnG, x
n
H , (x̃nG, x̃

n
H , xnE), v̂

n) (3.41)

in G ‖H ‖ S. It is shown by induction on n that, for all n ≥ 0,

(x̃nG, x̃
n
H , xnE , v̂

n↾V ) ∈ Qacc(S) (3.42)

and
(x0G, c, (x̃

0
G, c, x

0
E), v̂

0)
σ0→ · · ·

σn→ (xnG, c, (x̃
n
G, c, x

n
E), v̂

n). (3.43)

is a path in G ‖H ‖ S∃ where c is the single location of C.
For the base case, n = 0, it is clear that (x̃0G, x̃

0
H , x0E , v̂

0↾V ) is initial in S by (3.41), which

already shows (3.42). It follows by Lemma 1 that (x̃0G, x̃
0
H , x0E , v̂

0↾V ) ∈ Qacc(S) ⊆ Θ̂G‖H,E,Σu
,

which implies by Lemma 17 that (x̃0G, c, x
0
E , v̂

0↾W ) ∈ Θ̂(∃V̄ G)‖C,E,Σu
. Note that x0G, x

0
H , x̃0G,

x0E , and v̂0 are initial locations and variable values from (3.41), so (x̃0G, c, x
0
E) is initial in S∃

by Definition 4, and then
(x0G, x

0
H , (x̃0G, c, x

0
E), v̂

0) (3.44)

is a path in G ‖H ‖ S∃.
Assume that (3.42) and (3.43) have been shown for some n, and consider the (n + 1)-th

transition of the path (3.41) in G ‖H ‖ S,

(xnG, x
n
H , (x̃nG, x̃

n
H , xnE), v̂

n)
σn+1
−−−→ (xn+1

G , xn+1
H , (x̃n+1

G , x̃n+1
H , xn+1

E ), v̂n+1) (3.45)

This means by Lemma 2 that there are transitions

xnG
σn+1:pG
−−−−−→ xn+1

G in G with (v̂n ⊕ (v̂n+1)′)(pG) = true ; (3.46)

xnH
σn+1:pH
−−−−−→ xn+1

H in H with (v̂n ⊕ (v̂n+1)′)(pH) = true ; (3.47)

(x̃nG, x̃
n
H , xnE)

σn+1:pS
−−−−−→ (x̃n+1

G , x̃n+1
H , xn+1

E ) in S with (v̂n ⊕ (v̂n+1)′)(pS) = true ; (3.48)
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and furthermore

v̂n(z) = v̂n+1(z) for all z ∈ V̈ \ (vars′(pG) ∪ vars′(pH) ∪ vars′(pS)) . (3.49)

The update of the transition (3.48) takes the form pS ≡ qG ∧ qH ∧ pE ∧R with vars′(R) ⊆

vars′(qG ∧ qH ∧ pE), for some transitions x̃nG
σn+1:qG
−−−−−→ x̃n+1

G in G and x̃nH
σn+1:qH
−−−−−→ x̃n+1

H in H

and xnE
σn+1:pE
−−−−−→ xn+1

E in E. Since G and H are normalised and E is pure, it follows that

vars′(pS) = vars′(qG ∧ qH ∧ pE) ∪ vars′(pR) = vars′(qG ∧ qH ∧ pE)

= vars′(qG) ∪ vars′(qH) ∪ vars′(pE) = vars′(qG) ∪ vars′(qH)

= vars′(G, σn+1) ∪ vars′(H,σn+1) = vars′(pG) ∪ vars′(pH) . (3.50)

Then (3.49) means v̂n(z) = v̂n+1(z) for all variables z ∈ V̈ \ vars′(pS). Then it can be

said because of (3.48) that (x̃nG, x̃
n
H , xnE , v̂

n↾V )
σn+1
−−−→ (x̃n+1

G , x̃n+1
H , xn+1

E , v̂n+1↾V ) in S. As
(x̃nG, x̃

n
H , xnE , v̂

n↾V ) ∈ Qacc(S) by inductive assumption (3.42), it follows that (x̃n+1
G , x̃n+1

H ,
xn+1
E , v̂n+1↾V ) ∈ Qacc(S), showing the inductive claim (3.42) for n + 1. Also (x̃n+1

G , x̃n+1
H ,

xn+1
E , v̂n+1↾V ) ∈ Qacc(S) ⊆ Θ̂G‖H,E,Σu

by Lemma 1, which implies by Lemma 17 that

(x̃n+1
G , c, xn+1

E , v̂n+1↾W ) ∈ Θ̂(∃V̄ G)‖C,E,Σu
. (3.51)

Further, it follows from (v̂n⊕ (v̂n+1)′)(qG ∧ qH ∧ pE ∧R) = (v̂n⊕ (v̂n+1)′)(pS) = true that

(v̂n⊕(v̂n+1)′)(∃W̄ qG) = true and (v̂n⊕(v̂n+1)′)(pE) = true. As x̃nG
σn+1:qG
−−−−−→ x̃n+1

G in G, there is

a transition x̃nG
σn+1:∃W̄ qG
−−−−−−−→ x̃n+1

G in ∃W̄G. Clearly c
σn+1:pC
−−−−−→ c in C with (v̂n⊕ (v̂n+1)′)(pC) =

true by construction of C. Let p ≡ (∃W̄ qG) ∧ pC ∧ pE , so that (v̂n ⊕ (v̂n+1)′)(p) = true. By
Definition 4, the following transition exists in S∃ = supC((∃W̄G) ‖ C,E,Σu),

(x̃nG, c, x
n
E)

σn+1:p∧R∃
−−−−−−−→ (x̃n+1

G , c, xn+1
E ) (3.52)

where R∃ ≡ RΘ̂(∃V̄ G)‖C,E,Σu
[p, (x̃n+1

G , c, xn+1
E )] is such that vars′(R∃) ⊆ vars′(p) and for all

valuations v̂, ŵ ∈ dom(W ) it holds that (x̃n+1
G , c, xn+1

E , v̂↾W\vars′(p) ⊕ ŵ) ∈ Θ̂(∃V̄ G)‖C,E,Σu
if

and only if (v̂ ⊕ ŵ′)(R∃) = true.
Now consider a variable

z ∈W \ vars′(p) = W \ (vars′(∃W̄ qG) ∪ vars′(pC) ∪ vars′(pE)) . (3.53)

Then z ∈W ⊆ V̈ and z /∈ vars′(∃W̄ qG) = vars′(qG)∩W , i.e., z /∈ vars′(qG) = vars′(G, σn+1) =
vars′(pG), and z /∈ vars′(pC) = vars′(C, σn+1) ⊇ vars′(H,σn+1) = vars′(pH). Thus, z ∈
V̈ \ (vars′(pG) ∪ vars′(pH)) = V̈ \ (vars′(pG) ∪ vars′(pH) ∪ vars′(pS)), and it follows that
v̂n(z) = v̂n+1(z) by (3.49). This means v̂n+1↾W = v̂n↾W\vars′(p) ⊕ v̂n+1↾W , so that (x̃n+1

G , c,
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xn+1
E , v̂n↾W\vars′(p) ⊕ v̂n+1↾W ) = (x̃n+1

G , c, xn+1
E , v̂n+1↾W ) ∈ Θ̂(∃V̄ G)‖C,E,Σu

by (3.51). Then it

follows from the construction of R∃ that (v̂n ⊕ (v̂n+1)′)(R∃) = true.
Combining this with (3.46), (3.47), and (3.52), there is a transition

(xnG, x
n
H , (x̃nG, c, x

n
E))

σn+1:pG∧pH∧p∧R∃
−−−−−−−−−−−−→ (xn+1

G , xn+1
H , (x̃n+1

G , c, xn+1
E )) in G ‖H ‖ S∃ (3.54)

such that (v̂n ⊕ (v̂n+1)′)(pG ∧ pH ∧ p ∧ R∃) = true. Lastly, consider a variable z ∈ V̈ \
(vars′(pG∧pH ∧p∧R∃)) ⊆ V̈ \ (vars′(pG)∪vars

′(pH)) = V̈ \ (vars′(pG)∪vars
′(pH)∪vars′(pS))

using (3.50). It follows that v̂n(z) = v̂n+1(z) by (3.49) and

(xnG, x
n
H , (x̃n1 , c, x

n
E), v̂

n)
σn+1
−−−→ (xn+1

G , xn+1
H (x̃n+1

1 , c, xn+1
E ), v̂n+1) in G ‖H ‖ S∃ . (3.55)

This adds the (n+1)-th step to the path (3.43) and completes the induction. The claim (3.39)
follows by Definition 6 from (3.43). ✷

3.5 Correctness Proof of Algorithm 1

This section combines the preceding results from Propositions 14, 16, and 18 to show that
Algorithm 1 correctly computes a supremal supervisor for an input specification E and a set
of plants G . It can be shown that the algorithm’s main loop maintains the following invariant:
before and after each iteration,

Si is a supremal supervisor for E with respect to
∥

∥(G) and Σi
u (3.56)

and
∥

∥(G) ‖ supC(
∥

∥(G), E,Σu) ⊆v

∥

∥(G) ‖ Si . (3.57)

That is, each iteration results in a correct solution Si based on the full plant G and the
reduced uncontrollable event set Σi

u (3.56), which also is an over-approximation of the supre-
mal supervisor based on the full event set Σu (3.57). As on exit of the loop, the computed
supervisor Si is also Σu-controllable with respect to all uncontrollable events, it can then be
shown to be the desired result.

Next, Proposition 19 shows that the loop invariant holds initially for S0 = E and Σ0
u = ∅.

Afterwards, Proposition 20 shows that (3.56) holds after each iteration, and Proposition 21
shows that (3.57) holds after each iteration, both of which are consequences of Propositions
14, 16, and 18.

Proposition 19 Let G and E be state-deterministic EFSMs such that G is normalised, and
let Σu be a set of events.

(i) E is a supremal supervisor for E with respect to G and ∅.

(ii) G ‖ supC(G,E,Σu) ⊆v G ‖ E.
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Proof.

(i) It is to be shown that E satisfies conditions (i)–(iii) of Definition 8. Obviously, G‖E ⊆v

G ‖ E, showing (i). Also, it follows from Definition 7 that E is trivially ∅-controllable,
showing (ii). Lastly, let S′ be an EFSM such that G ‖ S′ ⊆v G ‖ E. Then S′ already
satisfies (iii).

(ii) As supC(G,E,Σu) is a supremal supervisor for E with respect to G by Proposition 11,
it is clear by Definition 8 (i) that G ‖ supC(G,E,Σu) ⊆v G ‖ E. ✷

Proposition 20 After each iteration of the loop in Algorithm 1, it holds that Si is a supremal
supervisor for E with respect to

∥

∥(G) and Σi
u.

Proof. It is clear from lines 14 and 13 that

Si = supC
(
∥

∥(∃V̄ iGi) ‖
∥

∥(Ci), E,Σi
u

)

; (3.58)
∥

∥(Ci) =
∥

∥({ chaos(σ, z) | z ∈ V i ∩ vars′(Ḡi, σ) }) . (3.59)

It is to be shown that Si satisfies the conditions for a supremal supervisor according to
Definition 8.

(i) The preconditions of Proposition 14 are satisfied for G =
∥

∥(Gi), H =
∥

∥(Ḡi), Σu = Σi
u,

W = V i, W̄ = V̄ i, C =
∥

∥(Ci), and S = Si. Then Proposition 14 gives
∥

∥(G) ‖ Si =
G ‖H ‖ S ⊆v G ‖H ‖ E =

∥

∥(G) ‖ E.

(ii) The preconditions of Proposition 16 are satisfied for G =
∥

∥(Gi), H =
∥

∥(Ḡi), S = Si,
Σu = Σi

u, W = V i, W̄ = V̄ i, and C =
∥

∥(Ci). Note that vars(S) = vars(Si) ⊆
vars(∃V̄ iGi) ∪ vars(Ci) ∪ vars(E) = (vars(Gi) ∩ V i) ∪ vars(Ci) ∪ vars(E) ⊆ V i = W
by (3.58) and (3.59) and because vars(E) ⊆ V i from line 14 of Algorithm 1. Also
S = Si is Σi

u-controllable with respect to
∥

∥(∃V̄ iGi) ‖
∥

∥(Ci) = (∃W̄G) ‖ C by (3.58) and
Definition 8 (ii), so by Proposition 16 it follows that Si = S is Σi

u-controllable with
respect to G ‖H =

∥

∥(G).

(iii) Let S′ be an EFSM that satisfies (i) and (ii). i.e., G ‖ H ‖ S′ ⊆v G ‖ H ‖ E and
S′ is Σu-controllable with respect to G ‖ H. Line 14 of Algorithm 1 ensures that the
preconditions of Proposition 18 are satisfied for G =

∥

∥(Gi), H =
∥

∥(Ḡi), Σu = Σi
u,

W = V i, W̄ = V̄ i, and C =
∥

∥(Ci). Then Proposition 18 gives
∥

∥(G) ‖S′ = G ‖H ‖S′ ⊆v

G ‖H ‖ supC(∃W̄G ‖C,E,Σi
u) =

∥

∥(G) ‖ supC
( ∥

∥(∃V̄ iGi) ‖
∥

∥(Ci), E,Σi
u

)

=
∥

∥(G) ‖ Si. ✷

Proposition 21 After each iteration of the loop in Algorithm 1, it holds that

∥

∥(G) ‖ supC(
∥

∥(G), E,Σu) ⊆v

∥

∥(G) ‖ Si . (3.60)
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Proof. Write S = supC(
∥

∥(G), E,Σu). S is a supremal supervisor for E with respect to
∥

∥(G) and Σu by Proposition 11, i.e., by Definition 8 (i)
∥

∥(G) ‖ S ⊆v

∥

∥(G) ‖ E and (ii) S is
Σu-controllable with respect to

∥

∥(G). Noting that Σi
u ⊆ Σu, it follows from Definition 7 that

S is also Σi
u-controllable with respect to

∥

∥(G). As Si is a supremal supervisor for E with
respect to

∥

∥(G) and Σi
u by Proposition 20, the claim (3.60) follows from Definition 8 (iii). ✷

Propositions 19–21 confirm that the loop invariant consisting of (3.56) and (3.57) holds
before and after each iteration of the main loop of Algorithm 1. When the loop terminates,
the loop-entry condition on line 10 no longer holds, i.e., the computed supervisor Si is Σu-
controllable with respect to the current plant abstraction, using the full set of uncontrollable
events. This is now enough to show that this result is also a supremal solution with respect
to the entire plant and entire set of uncontrollable events.

Theorem 22 Upon termination of Algorithm 1, the result Si is a supremal supervisor for E
with respect to

∥

∥(G) and Σu.

Proof. It is to be shown that Si satisfies the conditions for a supremal supervisor according
to Definition 8.

(i) As each Si is a supremal supervisor for E with respect to
∥

∥(G) and Σi
u by Propositions

19 and 20, it is clear from Definition 8 (i) that
∥

∥(G) ‖ Si ⊆v

∥

∥(G) ‖ E.

(ii) From line 10 of Algorithm 1, it is clear that Si is Σu-controllable with respect to
∥

∥(∃V̄ Gi) ‖
∥

∥(Ci) upon termination of the loop. Note that vars(Si) ⊆ vars(∃V̄ iGi) ∪
vars(Ci) ∪ vars(E) = (vars(Gi) ∩ V i) ∪ vars(Ci) ∪ vars(E) ⊆ V i as seen in the proof of
Proposition 20 (ii). Then Si is Σu-controllable with respect to

∥

∥(G) by Proposition 16.

(iii) Let S′ be an EFSM that satisfies (i) and (ii). i.e., G ‖H ‖ S′ ⊆v G ‖H ‖ E and S′ is
Σu-controllable with respect to G ‖ H. As supC(

∥

∥(G), E,Σu) is a supremal supremal
for E with respect to

∥

∥(G) and Σu by Proposition 11, it follows from Definition 8 (iii)
and Proposition 21 that

∥

∥(G) ‖ S′ ⊆v

∥

∥(G) ‖ supC(
∥

∥(G), E,Σu) ⊆v

∥

∥(G) ‖ Si. It follows
by Lemma 5 (ii) that

∥

∥(G) ‖ S′ ⊆v

∥

∥(G) ‖ Si. ✷

It is also clear that Algorithm 1 terminates, because the set Σi
u of uncontrollable events

increases with each iteration. This is because, if the loop is entered again, then Si is not
Σu-controllable by line 10 but Σi

u-controllable by line 14, which means that there must exist
µ ∈ uncont(

∥

∥(∃V̄ i Gi)‖
∥

∥(‖Ci), Si,Σu)\Σ
i
u on line 11. Yet, Σi

u cannot increase forever, because
it is bounded by the finite set Σu of all uncontrollable events. This is enough to complete
the total correctness proof, i.e., Algorithm 1 terminates and returns the correct supremal
supervisor for all inputs.
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4 Abstracting the Specification

This section considers the case of a single specification EFSM E, assumed to be state-
deterministic and pure, and a single normalised and state-deterministic plant EFSM G. If
the plant is more structured than that, it can be abstracted using the methods in Section 3
above. The concern here is whether any variables can be existentially abstracted from the
specification E.

As noted in Remark 1 on page 16, variables that appear only in the pure specification
and not in the plant, can be removed by replacing them with a constant representing their
initial value. This trivial case is not considered further. The question then is whether any
variables shared between the plant and specification can be existentially abstracted from the
specification.

By closely inspecting the synthesis process, it can be observed that only the updates of
the uncontrollable events are relevant for the removal of states. This suggests the existential
quantification of variables that are only used controllably in the specification. That is, if a
set of variables V̄ ⊆ vars(E) does not contain any variables used uncontrollably in E,

V̄ ∩ vars(E,Σu) = ∅ , (4.1)

then it is enough to synthesise for the abstracted specification ∃V̄ E instead of E. Such
synthesis only makes sense for a state-deterministic abstraction, so a second assumption is
made that

∃V̄ E is state-deterministic . (4.2)

Then synthesis will ensure that all constraints associated with uncontrollable events in E are
satisfied controllably. However, the constraints associated with controllable events are not
properly included in the abstraction ∃V̄ E and may not be carried forward in the synthesis
result. Fortunately, controllable constraints can easily be enforced in a supervisor without the
need for synthesis—it is enough to use the updates on the controllable transitions in E on the
corresponding transitions in the synthesis result. Under the assumption of state-determinism,
this can be achieved by composing the synthesis result for the abstracted specification with
the original specification.

Therefore, to compute a supervisor for a specification E, it is possible to first find an ab-
straction ∃V̄ E subject to (4.1) and (4.2), and then compute a supervisor S∃ = supC(G, ∃V̄ E,
Σu) for the abstraction, e.g., using Algorithm 1. Then a supervisor for the original specifica-
tion is obtained by composing the result S∃ obtained with the abstraction with the original
specification E, i.e., S∃ ‖ E. As the main result for specification abstraction, Theorem 28 at
the end of this section shows under the assumptions (4.1) and (4.2) that

S∃ ‖ E is a supremal supervisor for E with respect to G and Σu (4.3)

for every supremal supervisor S∃ for ∃V̄ E with respect to G and Σu.
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To use this result for synthesis, one has to find a set V̄ of variables satisfying (4.1) and (4.2)
and compute the abstraction ∃V̄ E. While the variables are easily found by removing the vari-
ables used uncontrollably from the set of all variables in the specification, the requirement (4.2)
of state-determinism is more difficult to ensure algorithmically. A simple solution is to start
with all variables used only controllably in the specification, V̄ = vars(E) \ vars(E,Σu), and
gradually remove variables that cause failure of ∃V̄ E being state-deterministic, until (4.2) is
satisfied. Once an appropriate set V̄ of variables for abstraction is found, Algorithm 1 can be
used to compute a synthesis result for supC(G, ∃V̄ E,Σu), which then can be combined with
the specification E to obtain a correct supervisor for the original synthesis problem.

The proof of (4.3) requires to establish the three conditions for a supremal supervisor
from Definition 8, namely behavioural inclusion in the specification, controllability, and least
restrictiveness. These conditions are established in the following Sections 4.1–4.3, and then
combined in Section 4.4 to give the final result.

4.1 Proof of Behavioural Inclusion

The first step of the proof of (4.3) requires to show that the combined supervisor S∃ ‖ E is
behaviourally included in the original specification E. This easily follows from the properties
of EFSM synchronous composition because the specification E is pure and already part of
the combined supervisor S∃ ‖ E.

Proposition 23 Let G and E be two EFSMs such that E is pure, let V̄ ⊆ vars(E), and let
Σu be a set of events. If S∃ is a supremal supervisor for ∃V̄ E with respect to G and Σu, then
G ‖ S∃ ‖ E ⊆v G ‖ E.

Proof. As S∃ is a supremal supervisor for ∃V̄ E with respect to G, it holds by Definition 8 (i)
that G ‖ S∃ ⊆v G ‖ ∃V̄ E. As E and thus also ∃V̄ E is pure, it holds by Lemma 6 (i) that
G ‖ ∃V̄ E ⊆v G. Then it follows by Lemma 5 (ii) that G ‖ S∃ ⊆v G. Finally, since E is pure,
it follows by Lemma 6 (ii) that G ‖ S∃ ‖ E ⊆v G ‖ E. ✷

4.2 Proof of Controllability

The second step towards the proof of (4.3) is to show that the supervisor synthesised from
the abstraction combined with the specification, S∃ ‖ E, is controllable. It is clear that S∃ is
controllable as it is a supremal supervisor, but the crucial issue is that it remains controllable
when composed with the original specification E.

Here, assumption (4.1) is important, because it ensures that the updates associated with
uncontrollable events are the same in the specification E and its abstraction ∃V̄ E. As S∃ is
synthesised for the abstracted specification, its behaviour must be included in that of ∃V̄ E.
Then assumption (4.1) ensures that its uncontrollable transitions are also possible in E.
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Proving this requires to link the locations of the specification E and its abstraction ∃V̄ E in
paths with the same variable assignments. The following Lemma 24 uses the assumption (4.2)
of the state-determinism of the abstraction to show that E and ∃V̄ E are always in the same
locations.

Lemma 24 LetA, B, and E be EFSMs, let V̄ ⊆ vars(E) such that ∃V̄ E is state-deterministic,
and assume there are paths

(x0A, x
0
E , v̂

0)
σ1→ (x1A, x

1
E , v̂

1)
σ2→ · · ·

σn→ (xnA, x
n
E , v̂

n) in A ‖ E ; (4.4)

(y0B, y
0
E , v̂

0)
σ1→ (y1B, y

1
E , v̂

1)
σ2→ · · ·

σn→ (ynB, y
n
E , v̂

n) in B ‖ ∃V̄ E ; (4.5)

where v̂i ∈ dom(V ) for some V ⊇ vars(A)∪vars(B)∪vars(E). Then xiE = yiE for i = 0, . . . , n.

Proof. The claim is shown by induction on i.
For the base case, i = 0, note that x0E is an initial location of E and thus also of ∃V̄ E

by Definition 12. As y0E also is an initial location of ∃V̄ E, it follows that x0E = y0E by
Definition 2 (iii) as ∃V̄ E is state-deterministic.

Now assume xiE = yiE for some i ≥ 0. Considering the (i + 1)-th transition on the
path (4.4), by Lemma 2 there is a transition

xiE
σi+1:p
−−−−→ xi+1

E in E with (v̂i ⊕ (v̂i+1)′)(p) = true . (4.6)

Then by Definition 12 there is a transition

xiE
σi+1:∃V̄ p
−−−−−−→ xi+1

E in ∃V̄ E with (v̂i ⊕ (v̂i+1)′)(∃V̄ p) = true . (4.7)

Considering the (i+ 1)-th transition on the path (4.5), by Lemma 2 there is a transition

yiE
σi+1:q
−−−−→ yi+1

E in ∃V̄ E with (v̂i ⊕ (v̂i+1)′)(q) = true . (4.8)

Then ∃V̄ p∧q is satisfiable, and noting that xiE = yiE by inductive assumption, it follows by the
state-determinism of ∃V̄ E from Definition 2 (iii) and from (4.7) and (4.8) that xi+1

E = yi+1
E .

✷

Given the consistency of the reachable locations between the abstraction ∃V̄ E and the
original specification E from Lemma 24, the following Proposition 25 establishes controllabil-
ity of the combined supervisor S∃ ‖ E, under the assumptions (4.1) and (4.2).

Proposition 25 Let G and E be two EFSMs, where E is pure, let Σu be a set of events
and V̄ ⊆ vars(E) be a set of variables such that V̄ ∩ vars(E,Σu) = ∅ and ∃V̄ E is state-
deterministic, and let S∃ be a supremal supervisor for ∃V̄ E with respect to G and Σu. Then
S∃ ‖ E is Σu-controllable with respect to G.
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Proof. Write V = vars(G) ∪ vars(S∃) ∪ vars(E). Following Definition 7, let

(xG, xS , xE , v̂) ∈ Qacc(G ‖ S∃ ‖ E) , (4.9)

where v̂ ∈ dom(V ), and let µ ∈ Σu and ŵ ∈ dom(V ) such that

(xG, v̂)
µ
→ (yG, ŵ) in G . (4.10)

It is enough to show that there exist locations yS of S∃ and yE of E such that the following
transition exists in G ‖ S∃ ‖ E:

(xG, xS , xE , v̂)
µ
→ (yG, yS , yE , ŵ) . (4.11)

It follows from (4.9) that there is a path

(x0G, x
0
S , x

0
E , v̂

0)
σ1→ · · ·

σn→ (xnG, x
n
S , x

n
E , v̂

n) = (xG, xS , xE , v̂) in G ‖ S∃ ‖ E . (4.12)

Since E is pure, by Lemma 3

(x0G, x
0
S , v̂

0)
σ1→ · · ·

σn→ (xnG, x
n
S , v̂

n) = (xG, xS , v̂) (4.13)

is a path in G ‖ S∃. Then (xG, xS , v̂↾W ) ∈ Qacc(G ‖ S∃) where W = vars(G) ∪ vars(S∃), and

(xG, v̂↾W )
µ
→ (yG, ŵ↾W ) in G by (4.10). Then, since S∃ is Σu-controllable with respect to G,

there exists a location yS of S∃ such that

(xG, xS , v̂↾W )
µ
→ (yG, yS , ŵ↾W ) in G ‖ S∃ . (4.14)

This means by Lemma 2 that there are transitions

xG
µ:pG−−−→ yG in G with (v̂ ⊕ ŵ′)(pG) = (v̂↾W ⊕ (ŵ↾W )′)(pG) = true ; (4.15)

xS
µ:pS−−−→ yS in S∃ with (v̂ ⊕ ŵ′)(pS) = (v̂↾W ⊕ (ŵ↾W )′)(pS) = true ; (4.16)

and furthermore v̂(z) = ŵ(z) for all z ∈ W \ (vars′(pG) ∪ vars′(pS)). Note for z ∈ V \W =
V \(vars′(G)∪vars′(S∃)) = V \(vars′(G)∪vars′(S∃)∪vars

′(E)) as E is pure, that v̂(z) = ŵ(z)
by (4.11). Thus,

v̂(z) = ŵ(z) for all z ∈ V \ (vars′(pG) ∪ vars′(pS)) , (4.17)

and it also holds that
(xG, xS , v̂)

µ
→ (yG, yS , ŵ) in G ‖ S∃ . (4.18)

Combining (4.13) and (4.18), it follows that

(x0G, x
0
S , v̂

0)
σ1→ · · ·

σn→ (xnG, x
n
S , v̂

n) = (xG, xS , v̂)
µ
→ (yG, yS , ŵ) in G ‖ S∃ . (4.19)
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As S∃ is a supremal supervisor for ∃V̄ E with respect to G, it holds by Definition 8 (i) that
G ‖ S∃ ⊆v G ‖ ∃V̄ E, so by Definition 6 there is a path

(y0G, y
0
E , v̂

0)
σ1→ · · ·

σn→ (ynG, y
n
E , v̂

n) = (ynG, y
n
E , v̂)

µ
→ (yn+1

G , yn+1
E , ŵ) in G ‖ ∃V̄ E . (4.20)

As ∃V̄ E is state-deterministic, it follows by Lemma 24 from (4.12) and (4.20) that ynE = xnE =
xE . Let yE = yn+1

E . From the last step of (4.20) it follows by Lemma 2 that

xE = ynE
µ:qE−−−→ yn+1

E = yE in ∃V̄ E with (v̂ ⊕ ŵ′)(qE) = true . (4.21)

By Definition 12, the update qE has the form qE ≡ ∃V̄ pE for some transition xE
µ:pE−−−→ yE

in E. But vars(pE)∩ V̄ ⊆ vars(E, µ)∩ V̄ ⊆ vars(E,Σu)∩ V̄ = ∅ by assumption, so qE ≡ ∃V̄ pE
and pE are logically equivalent and thus

xE
µ:pE−−−→ yE in E with (v̂ ⊕ ŵ′)(pE) = true . (4.22)

Lastly, note that vars′(pE) = ∅ as E is pure, so that v̂(z) = ŵ(z) for all variables z ∈
V \ (vars′(pG) ∪ vars′(pS) ∪ vars′(pE)) = V \ (vars′(pG) ∪ vars′(pS)) by (4.17). Then the
existence of the transition (4.11) follows by Lemma 2 using (4.15), (4.16), and (4.22). ✷

4.3 Proof of Least Restrictiveness

The third and last step towards of proof of (4.3) is to show that synthesis with the abstracted
specification results in a least restrictive result with respect to the original specification. This
is easier to show than the above controllability result, because the abstracted specification
is weaker than the original specification, and therefore gives a less restrictive result. The
assumptions (4.1) and (4.2) are not needed here.

As a first step, the following Lemma 26 shows that the original specification E is be-
haviourally contained in its abstraction ∃V̄ E, in composition with every plant G.

Lemma 26 Let G and E be EFSMs such that E is pure, and let V̄ ⊆ vars(E). Then
G ‖ E ⊆v G ‖ ∃V̄ E.

Proof. Write V = vars(G) ∪ vars(E), and consider a path

(x0G, x
0
E , v̂

0)
σ1→ · · ·

σn→ (xnG, x
n
E , v̂

n) in G ‖ E (4.23)

where v̂0, . . . , v̂n ∈ dom(V ). It will be shown that (4.23) also is a path in G ‖ ∃V̄ E. Clearly,
x0G and v̂0 are initial locations and variable values from (4.23), and x0E is an initial location
of E and by Definition 12 also of ∃V̄ E. Considering the i-th transition of the path (4.23), by
Lemma 2 there are transitions

xi−1
G

σi:pG−−−→ xiG in G with (v̂i−1 ⊕ (v̂i)′)(pG) = true ; (4.24)

xi−1
E

σi:pE−−−→ xiE in E with (v̂i−1 ⊕ (v̂i)′)(pE) = true ; (4.25)
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such that
v̂i−1(z) = v̂i(z) for all z ∈ V \ (vars′(pG) ∪ vars′(pE)) . (4.26)

From (4.25), it follows by Definition 12 that there is a transition

xi−1
E

σi:∃V̄ pE−−−−−→ xiE in ∃V̄ E with (v̂i−1 ⊕ (v̂i)′)(∃V̄ pE) = true . (4.27)

Note that vars′(pE) = ∅ as E is pure, and then also vars′(∃V̄ pE) = ∅. Then for a variable
z ∈ V \ (vars′(pG)∪vars

′(∃V̄ pE)) = V \ (vars′(pG)∪vars
′(pE)), it follows that v̂

i−1(z) = v̂i(z)

by (4.26). It follows by Lemma 2 that (xi−1
G , xi−1

E , v̂i−1)
σi→ (xiG, x

i
E , v̂

i) in G ‖ ∃V̄ E, and by
repeating this argument for all i it is shown that the path (4.23) exists in G ‖ ∃V̄ E. ✷

The containment result from Lemma 26 is enough to prove least the least restrictiveness
result for a specification abstraction. The following Proposition 27 shows that, if S∃ is a
supremal supervisor for the abstraction ∃V̄ E and S′ is a controllable supervisor that satisfies
the full specification E, then S′ is more restrictive than the combined supervisor S∃ ‖ E
computed using the abstraction.

Proposition 27 Let G and E be EFSMs such that E is pure, let Σu be a set of events,
and let V̄ ⊆ vars(E). Further, let S′ be an EFSM such that G ‖ S′ ⊆v G ‖ E and S′ is
Σu-controllable with respect to G and Σu, and let S∃ be a supremal supervisor for ∃V̄ E with
respect to G and Σu. Then G ‖ S′ ⊆v G ‖ S∃ ‖ E.

Proof. As G ‖ S′ ⊆v G ‖ E by assumption and G ‖ E ⊆v G ‖ ∃V̄ E by Lemma 26, it follows
by Lemma 5 (ii) that G ‖ S′ ⊆v G ‖ ∃V̄ E. As S′ is also Σu-controllable with respect to G
and Σu by assumption, and S∃ be a supremal supervisor for ∃V̄ E with respect to G and Σu,
it follows by Definition 8 (iii) that G ‖ S′ ⊆v G ‖ S∃. This implies

G ‖ S′ ‖ E ⊆v G ‖ S∃ ‖ E (4.28)

by Lemma 6 (ii) since E is pure. Furthermore, it follows from the assumption G‖S′ ⊆v G‖E
by Lemma 6 (iii) that G‖S′ ⊆v G‖S′ ‖E. Then also G‖S′ ⊆v G‖S∃ ‖E by Lemma 5 (ii) ✷

4.4 Proof of Main Result for Specification Abstraction

The following Theorem 28 combines the preceding results from Sections 4.1, 4.2, and 4.3.
If the abstracted variables are chosen according to the assumptions (4.1) and (4.2), it is
possible to synthesise a supervisor for an existentially abstracted specification. The result,
when composed with the original specification, can serve as least restrictive supervisor.

Theorem 28 Let G and E be EFSMs such that E is pure, let Σu be a set of events, and
let V̄ ⊆ vars(G) ∩ vars(E) such that V̄ ∩ vars(E,Σu) = ∅ and ∃V̄ E is state-deterministic. If
S∃ is a supremal supervisor for ∃V̄ E with respect to G and Σu, then S∃ ‖ E is a supremal
supervisor for E with respect to G and Σu.
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Algorithm 2: Abstraction-based modular synthesis with multiple specifications

Input: normalised state-deterministic plants G = {G1, . . . , Gm}; pure specifications
E = {E1, . . . , Ek}; uncontrollable events Σu.

Output: collection S of supervisors such that
∥

∥(S) is a supremal supervisor for
∥

∥(E)
with respect to

∥

∥(G) and Σu.
1 S ← ∅;
2 foreach Ej ∈ E do

3 Choose V̄j ⊆ vars(Ej) \ vars(Ej ,Σu) such that ∃V̄j Ej is state-deterministic;
4 Calculate Sj using Algorithm 1 with E = ∃V̄j Ej ;
5 S ← S ∪ {Sj , Ej};

6 end

7 return S

Proof. It is to be shown that S∃ ‖ E satisfies the conditions (i)–(iii) from Definition 8 for
a supremal supervisor. Condition (i) follows from Proposition 23, condition (ii) follows from
Proposition 25, and condition (iii) follows from Proposition 27. ✷

5 Synthesis with Multiple Specifications

The results presented in the previous Sections 3 and 4 show how abstractions can be used to
compute a supervisor for a single specification. In general, the specification is given in modular
form, as a synchronous composition E1‖· · ·‖Ek of several EFSMs. In this case, it is known [2]
for ordinary FSMs that synthesis can be performed separately for each specification, and the
resulting supervisors can be combined to form a least restrictive controllable supervisor for
the combined specification. Under the assumption of pure specifications, these results can be
generalised directly for EFSMs [9, 10].

Algorithm 2 uses this idea to synthesise a modular supervisor for an EFSM system com-
posed of several plants G1 ‖ · · · ‖Gm and specifications E1 ‖ · · · ‖Ek, while incorporating the
results from Sections 3 and 4. The loop on line 2 processes each specification Ej , by first ab-
stracting it according to Section 4 and then computing a supervisor using plant abstractions
according to Section 3. On line 3, the variables V̄j for abstraction of the specification Ej are
chosen to satisfy assumptions (4.1) and (4.2), and then line 4 invokes Algorithm 1 to compute
a supremal supervisor Sj for the specification abstraction ∃V̄j Ej . In this case, Theorem 28
states that the composition Sj ‖ Ej of the supervisor computed using the specification ab-
straction and the original specification is a supremal supervisor, and therefore both EFSMs
Sj and Ej are added to the modular supervisor S on line 5.

The remainder of this section is devoted to the correctness proof of Algorithm 2. The
main argument is based on the observation that synthesis for a modular specification can
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be performed separately for each specification. It is first shown for a modular specification
E1 ‖ E2 consisting of two EFSMs that the composition S1 ‖ S2 of some least restrictive
supervisors for E1 and E2 is a least restrictive supervisor for the combined specification. This
requires to establish the three conditions for a supremal supervisor from Definition 8, namely
behavioural inclusion in the combined specification, controllability, and least restrictiveness,
which are shown separately in Sections 5.1–5.3. These proofs appear in similar form in [9],
and are adapted here to the revised definition of behavioural inclusion.

Afterwards, Section 5.4 combines and generalises the results for any number of specifi-
cations. In conjunction with the results from Sections 3 and 4, it proves the correctness of
Algorithm 2.

5.1 Proof of Behavioural Inclusion

In this and the following subsections, it is assumed that there is a single normalised plant
EFSM G and two pure specification EFSMs E1 and E2, and supremal supervisors S1 and S2

have been synthesised separately for these two specifications. It is to be shown that the
composition S1 ‖ S2 of the supervisors is a supremal supervisor for the composition E1 ‖ E2

of the specifications.
As a first step, Proposition 30 in this subsection shows that the composition of the su-

pervisors is behaviourally included in the combined specification. This is clear for ordinary
FSMs because, if the behaviour of each supervisor is included in one specification, then their
combined behaviour must be included in both. For EFSMs, Lemma 29 first ensures that the
composition of the supervisors is possible without any conflict in variable updates. That is,
any path in the composition of the two supervisors also is a path in each of the supervisors.
This is true because both supervisors are synthesised with respect to the same normalised
plant, so they both must follow the plant’s variable updates.

Lemma 29 Let G be a normalised EFSM, let Σu be a set of events, and let S1 and S2

be supremal supervisors for some pure EFSMs E1 and E2, respectively, with respect to G
and Σu. If for some V ⊇ vars(G) ∪ vars(S1) ∪ vars(S2) and v̂0, . . . , v̂n ∈ dom(V ),

(x0G, x
0
S1, x

0
S2, v̂

0)
σ1→ · · ·

σn→ (xnG, x
n
S1, x

n
S2, v̂

n) (5.1)

is a path in G ‖ S1 ‖ S2, then

(x0G, x
0
S1, v̂

0)
σ1→ · · ·

σn→ (xnG, x
n
S1, v̂

n) (5.2)

(x0G, x
0
S2, v̂

0)
σ1→ · · ·

σn→ (xnG, x
n
S2, v̂

n) (5.3)

are paths in G ‖ S1 and G ‖ S2, respectively.

Proof. The claim is shown by induction on n.
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Clearly, x0G, x
0
S1, x

0
S2, and v̂0 are all initial locations and variable values, which shows the

claim for n = 0.
Now assume the paths (5.2) and (5.3) have been constructed up to length n, and consider

the next transition

(xnG, x
n
S1, x

n
S2, v̂

n)
σn+1
−−−→ (xn+1

G , xn+1
S1 , xn+1

S2 , v̂n+1) (5.4)

on the path (5.1). This means by Lemma 2 that there are transitions

xnG
σn+1:pG
−−−−−→ xn+1

G in G with (v̂n ⊕ (v̂n+1))(pG) = true ; (5.5)

xnS1
σn+1:pS1
−−−−−−→ xn+1

S1 in S1 with (v̂n ⊕ (v̂n+1))(pS1) = true ; (5.6)

xnS2
σn+1:pS2
−−−−−−→ xn+1

S2 in S2 with (v̂n ⊕ (v̂n+1))(pS2) = true ; (5.7)

such that

v̂n(z) = v̂n+1(z) for all z ∈ V \ (vars′(pG) ∪ vars′(pS1) ∪ vars′(pS2)) . (5.8)

Construct ŵn+1
1 = v̂n+1↾vars′(pG)∪vars′(pS1)⊕ v̂

n. That is, ŵn+1
1 is the same as v̂n+1 for variables

that appear primed in pG or pS1 and keeps the values from v̂n for other variables. Then
(v̂n ⊕ (ŵn+1

1 )′)(pG) = true and (v̂n ⊕ (ŵn+1
1 )′)(pS1) = true and v̂n(z) = ŵn+1

1 (z) for z ∈
V \ (vars′(pG) ∪ vars′(pS1)). By inductive assumption (5.2) and Lemma 2, there is a path

(x0G, x
0
S1, v̂

0)
σ1→ · · ·

σn→ (xnG, x
n
S1, v̂

n)
σn+1
−−−→ (xn+1

G , xn+1
S1 , ŵn+1

1 ) (5.9)

in G‖S1. Since S1 is a supremal supervisor for E1 with respect to G, it holds by Definition 8 (i)
that G ‖ S1 ⊆v G ‖ E1, so there exists a path

(y0G, y
0
E1, v̂

0)
σ1→ · · ·

σn→ (ynG, y
n
E1, v̂

n)
σn+1
−−−→ (yn+1

G , yn+1
E1 , ŵn+1

1 ) (5.10)

in G ‖ E1. Now for the last transition on this path, by Lemma 2 there are transitions

ynG
σn+1:qG
−−−−−→ yn+1

G in G and ynE1

σn+1:qE1
−−−−−−→ yn+1

E1 in E1 such that v̂n(z) = ŵn+1
1 (z) for all

z ∈ V \ (vars′(qG) ∪ vars′(qE1)) = V \ vars′(qG) = V \ vars′(G, σn+1) = V \ vars′(pG) (5.11)

because E1 is pure and G is normalised. Now consider an arbitrary variable z ∈ vars′(pS1) \
vars′(pG) ⊆ V \ vars′(pG). Then v̂n(z) = ŵn+1

1 (z) = v̂n+1↾vars′(pG)∪vars′(pS1)(z) = v̂n+1(z) by

construction of ŵn+1
1 .

By analogous argumentation, it is shown that v̂n(z) = v̂n+1(z) for an arbitrary variable
z ∈ vars′(pS2) \ vars

′(pG). Combining these observations with (5.8) gives v̂n(z) = v̂n+1(z) for
all variables z ∈ V \ vars′(pG). Then given (5.5)–(5.7), by Lemma 2 there are transitions

(xnG, x
n
S1, v̂

n)
σn+1
−−−→ (xn+1

G , xn+1
S1 , v̂n+1) in G ‖ S1 ; (5.12)

(xnG, x
n
S2, v̂

n)
σn+1
−−−→ (xn+1

G , xn+1
S2 , v̂n+1) in G ‖ S2 ; (5.13)

which together with the inductive assumption extend the paths (5.2) and (5.3) up to n+1. ✷
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Given the result from Lemma 29 about the composition of two supervisors, it can now be
shown that together they ensure behavioural inclusion in the combined specification. This
follows from the fact that each supervisor ensures inclusion in its specification, under the
assumption of purity.

Proposition 30 Let G be a normalised EFSM, let E1 and E2 be pure EFSMs, and let Σu

be a set of events. Let S1 and S2 be supremal supervisors for E1 and E2, respectively, with
respect to G and Σu. Then G ‖ S1 ‖ S2 ⊆v G ‖ E1 ‖ E2.

Proof. Write V = vars(G) ∪ vars(E1) ∪ vars(E2) ∪ vars(S1) ∪ vars(S2). Let

(x0G, x
0
S1, x

0
S2, v̂

0)
σ1→ · · ·

σn→ (xnG, x
n
S1, x

n
S2, v̂

n) (5.14)

be a path in G ‖ S1 ‖ S2 where v̂i ∈ dom(V ) for i = 0, . . . , n. By Lemma 29 there are paths

(x0G, x
0
S1, v̂

0)
σ1→ · · ·

σn→ (xnG, x
n
S1, v̂

n) in G ‖ S1 ; (5.15)

(x0G, x
0
S2, v̂

0)
σ1→ · · ·

σn→ (xnG, x
n
S2, v̂

n) in G ‖ S2 . (5.16)

Since S1 and S2 are supremal supervisors for E1 and E2 with respect to G, it holds by
Definition 8 (i) that G ‖ S1 ⊆v G ‖ E1 and G ‖ S2 ⊆v G ‖ E2, so there are paths

(y0G1, y
0
E1, v̂

0)
σ1→ · · ·

σn→ (ynG1, y
n
E1, v̂

n) in G ‖ E1 ; (5.17)

(y0G2, y
0
E2, v̂

0)
σ1→ · · ·

σn→ (ynG2, y
n
E2, v̂

n) in G ‖ E2 . (5.18)

It will be shown that

(y0G1, y
0
E1, y

0
E2, v̂

0)
σ1→ · · ·

σn→ (ynG1, y
n
E1, y

n
E2, v̂

n) (5.19)

is a path in G‖E1‖E2. Clearly, y
0
G1, y

0
E1, y

0
E2, and v̂0 are initial locations and variable values.

Now fix i = 0, . . . , n− 1. By Lemma 2 and (5.17) there are transitions yiG1

σi+1:pG1
−−−−−→ yi+1

G1 in G

with (v̂i⊕(v̂i+1)′)(pG1) = true and yiE1

σi+1:pE1
−−−−−→ yi+1

E1 in E1 with (v̂i⊕(v̂i+1)′)(pE1) = true such
that v̂i(z) = v̂i+1(z) for all variables z ∈ V \(vars′(pG1)∪vars

′(pE1)). Likewise by (5.18) there

is a transition yiE2

σi+1:pE2
−−−−−→ yi+1

E2 in E2 with (v̂i⊕(v̂i+1)′)(pE2) = true. Note that vars′(pE2) = ∅
as E2 is pure, so for an arbitrary variable z ∈ V \ (vars′(pG1) ∪ vars′(pE1) ∪ vars′(pE2)) =
V \ (vars′(pG1) ∪ vars′(pE1)) it also holds that v̂i(z) = v̂i+1(z). Then by Lemma 2,

(yiG1, y
i
E1, y

i
E2, v̂

0)
σ1+1
−−−→ (yi+1

G1 , yi+1
E1 , yi+1

E2 , v̂i+1) (5.20)

in G ‖ E1 ‖ E2, and the path (5.19) is constructed by repeating this argument for all i. ✷
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5.2 Proof of Controllability

As a second step towards the proof for two separate supervisors, the following Proposition 31
shows that the combination of two supremal supervisors for the same plant remains control-
lable. This is known [2] for ordinary FSMs, and is easily generalised for EFSMs using the
result from Lemma 29 about the paths in the composition of supervisors.

Proposition 31 Let G be a normalised EFSM, let E1 and E2 be pure EFSMs, and let Σu

be a set of events. Let S1 and S2 be supremal supervisors for E1 and E2, respectively, with
respect to G and Σu. Then S1 ‖ S2 is Σu-controllable with respect to G.

Proof. Write V1 = vars(G) ∪ vars(S1), V2 = vars(G) ∪ vars(S2), and V = V1 ∪ V2 =
vars(G) ∪ vars(S1) ∪ vars(S2). Assume v̂, ŵ ∈ dom(V ) and (xG, x1, x2, v̂) ∈ Qacc(G ‖ S1 ‖ S2)

and µ ∈ Σu and (xG, v̂)
µ
→ (yG, ŵ) in G. Following Definition 7, it is to be shown that there

exists a location (y1, y2) of S1 ‖ S2 such that

(xG, x1, x2, v̂)
µ
→ (yG, y1, y2, ŵ) in G ‖ S1 ‖ S2 . (5.21)

By Lemma 29 it follows from (xG, x1, x2, v̂) ∈ Qacc(G ‖S1 ‖S2) that (xG, x1, v̂↾V1) ∈ Qacc(G ‖
S1). Since S1 is a supremal supervisor for E1 with respect to G and Σu, it holds by Defi-
nition 8 (ii) that S1 is Σu-controllable with respect to G, so by Definition 7 there exists a

location y1 of S1 such that (xG, x1, v̂↾V1)
µ
→ (yG, y1, ŵ↾V1) in G ‖S1. This means by Lemma 2

that there are transitions xG
µ:pG−−−→ yG in G with (v̂↾V1 ⊕ (ŵ↾V1)

′)(pG) = true and x1
µ:p1
−−→ y1

in S1 with (v̂↾V1 ⊕ (ŵ↾V1)
′)(p1) = true such that

v̂↾V1(z) = ŵ↾V1(z) for all z ∈ V1 \ (vars
′(pG) ∪ vars′(p1)) . (5.22)

Likewise (xG, x2, v̂↾V1) ∈ Qacc(G ‖ S2), and there are transitions xG
µ:qG−−−→ yG in G and

x2
µ:q2
−−→ y2 in S2 with (v̂↾V2 ⊕ (ŵ↾V2)

′)(q2) = true such that

v̂↾V2(z) = ŵ↾V2(z) for all z ∈ V2 \ (vars
′(qG) ∪ vars′(q2)) . (5.23)

Consider a variable z ∈ V \ (vars′(pG) ∪ vars′(p1) ∪ vars′(q2)). Then z ∈ V1 or z ∈ V2. If
z ∈ V1 then z ∈ V1 \ (vars

′(pG)∪vars
′(p1)∪vars

′(q2)) ⊆ V1 \ (vars
′(pG)∪vars

′(p1)) and v̂(z) =
v̂↾V1(z) = ŵ↾V1(z) = ŵ(z) by (5.22). If z ∈ V2 then z ∈ V2\(vars

′(pG)∪vars
′(p1)∪vars

′(q2)) ⊆
V2 \ (vars

′(pG) ∪ vars′(q2)) = V2 \ (vars
′(G,µ) ∪ vars′(q2)) = V2 \ (vars

′(qG) ∪ vars′(q2)) as G
is normalised, and v̂(z) = v̂↾V2(z) = ŵ↾V2(z) = ŵ(z) by (5.23). The claim (5.21) follows by
Lemma 2. ✷

54



5.3 Proof of Least Restrictiveness

The last step of the proof for two separate supervisors is to show the least restrictiveness
of the combined supervisor. For ordinary EFSMs, if S1 is least restrictive for E1 and S2 is
least restrictive for E2, then any alternative supervisor for E1 ‖ E2 must be behaviourally
included in each of E1 and E2, and still be controllable with respect to the same plant, so it
is more restrictive than both the least restrictive supervisors S1 and S2, and then also their
combination. The proof of the following Proposition 32 performs these arguments for EFSMs.

Proposition 32 Let G be a normalised EFSM, let E1 and E2 be pure EFSMs, and let Σu

be a set of events. Further let S1 and S2 be supremal supervisors for E1 and E2, respectively,
with respect to G and Σu, and let S′ be an EFSM such that G ‖ S′ ⊆v G ‖E1 ‖E2 and S′ is
Σu-controllable with respect to G. Then G ‖ S′ ⊆v G ‖ S1 ‖ S2.

Proof. Note that G‖S′ ⊆v G‖E1 by Lemmas 6 (i) and 5 (ii) as G‖S′ ⊆v G‖E1‖E2 ⊆v G‖E1.
As S′ is also Σu-controllable with respect to G and S1 is a supremal supervisor for E1 with
respect to G and Σu, it holds by Definition 8 (iii) that G ‖ S′ ⊆v G ‖ S1. Likewise it can be
shown that G ‖ S′ ⊆v G ‖ S2.

Let V1 = vars(G) ∪ vars(S′) ∪ vars(S1) and V2 = vars(G) ∪ vars(S′) ∪ vars(S2) and V =
V1 ∪ V2 = vars(G) ∪ vars(S′) ∪ vars(S1) ∪ vars(S2), and consider a path

(x0G, x
0
S , v̂

0)
σ1→ · · ·

σn→ (xnG, x
n
S , v̂

n) in G ‖ S′ (5.24)

where v̂i ∈ dom(V ). As G ‖ S′ ⊆v G ‖ S1 and G ‖ S′ ⊆v G ‖ S2, by Definition 6 there exist
paths

(x0G1, x
0
S1, v̂

0↾V1)
σ1→ · · ·

σn→ (xnG1, x
n
S1, v̂

n↾V1) in G ‖ S1 ; (5.25)

(x0G2, x
0
S2, v̂

0↾V2)
σ1→ · · ·

σn→ (xnG2, x
n
S2, v̂

n↾V2) in G ‖ S2 . (5.26)

It will be shown that

(x0G1, x
0
S1, x

0
S2, v̂

0)
σ1→ · · ·

σn→ (xnG1, x
n
S1, x

n
S2, v̂

n) in G ‖ S1 ‖ S2 . (5.27)

Clearly, x0G1, x
0
S1, x

0
S2, and v̂0 are initial locations and variable values from (5.24)–(5.26).

Now fix i = 0, . . . , n − 1. By (5.25) there are transitions xiG1

σi+1:pG1
−−−−−→ xi+1

G1 in G with

(v̂i↾V1 ⊕ (v̂i+1↾V1)
′)(pG1) = true and xiS1

σi+1:pS1
−−−−−→ xi+1

S1 in S1 with (v̂i↾V1 ⊕ (v̂i+1↾V1)
′)(pS1) =

true such that

v̂i↾V1(z) = v̂i+1↾V1(z) for all z ∈ V1 \ (vars
′(pG1) ∪ vars′(pS1)) . (5.28)

By (5.26) there are transitions xiG2

σi+1:pG2
−−−−−→ xi+1

G2 in G and xiS2
σi+1:pS2
−−−−−→ xi+1

S2 in S2 with
(v̂i↾V2 ⊕ (v̂i+1↾V2)

′)(pS2) = true such that

v̂i↾V2(z) = v̂i+1↾V2(z) for all z ∈ V2 \ (vars
′(pG2) ∪ vars′(pS2)) . (5.29)
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Then clearly (v̂i⊕(v̂i+1)′)(pG1) = true and (v̂i⊕(v̂i+1)′)(pS1) = true and (v̂i⊕(v̂i+1)′)(pS2) =
true. Consider z ∈ V \ (vars′(pG1) ∪ vars′(pS1) ∪ vars′(pS2)). Then z ∈ V1 or z ∈ V2. If
z ∈ V1 then z ∈ V1 \ (vars

′(pG1) ∪ vars′(pS1) ∪ vars′(pS2)) ⊆ V1 \ (vars
′(pG1) ∪ vars′(pS1)) and

v̂i(z) = v̂i+1(z) by (5.28). If z ∈ V2 then z ∈ V2 \ (vars
′(pG1) ∪ vars′(pS1) ∪ vars′(pS2)) ⊆ V2 \

(vars′(pG1)∪vars
′(pS2)) = V2\(vars

′(G, σi+1)∪vars
′(pS2)) = V2\(vars

′(pG2)∪vars
′(pS2)) asG is

normalised, and v̂i(z) = v̂i+1(z) by (5.29). It follows by Lemma 2 that (xiG1, x
i
S1, x

i
S2, v̂

i)
σi+1
−−−→

(xi+1
G1 , x

i+1
S1 , xi+1

S2 , v̂i+1) in G‖S1‖S2, and the path (5.27) is obtained by repeating this argument
for all i. ✷

5.4 Correctness Proof of Algorithm 2

This section combines and extends the results from the preceding Sections 5.1–5.3 to show the
correctness of Algorithm 2. First, Proposition 33 shows that the composition of two supervi-
sors synthesised for two different specifications is a supremal supervisor for the composition
of these specifications, and then Proposition 34 generalises this result for an arbitrary number
of specifications using induction.

Proposition 33 Let G be a normalised EFSM, let E1 and E2 be pure EFSMs, and let Σu

be a set of events. Let S1 and S2 be supremal supervisors for E1 and E2, respectively, with
respect to G and Σu. Then S1 ‖ S2 is a supremal supervisor for E1 ‖ E2 with respect to G
and Σu.

Proof. It is to be shown that S1 ‖ S2 satisfies the conditions (i)–(iii) from Definition 8 for
a supremal supervisor. Condition (i) follows from Proposition 30, condition (ii) follows from
Proposition 31, and condition (iii) follows from Proposition 32. ✷

Proposition 34 Let G be a normalised EFSM, let E1, . . . , Ek be pure EFSMs for some
k ≥ 0, let Σu be a set of events, and let Sj be a supremal supervisor for Ej with respect to
G and Σu for j = 1, . . . , k. Then S1 ‖ · · · ‖ Sk is a supremal supervisor for E1 ‖ · · · ‖ Ek with
respect to G and Σu.

Proof. Write E = E1 ‖ · · · ‖Ek and S = S1 ‖ · · · ‖Sk. The claim is shown by induction on k.
For the base case, k = 0, let U =

∥

∥(∅) denote the neutral element of synchronous com-
position which satisfies F ‖ U = F for every EFSM F , and note that E = E1 ‖ · · · ‖ Ek = U
and S = S1 ‖ · · · ‖ Sk = U for k = 0. Then it is to be shown that S = U satisfies the
conditions (i)–(iii) from Definition 8 for a supremal supervisor. For condition (i), note that
G ‖ S = G ‖ U ⊆v G ‖ U = G ‖ E by Lemma 5 (i). For condition (ii), note that U is triv-
ially controllable with respect to any plant and uncontrollable event set by Definition 7. For
condition (iii), assume an alternative supervisor S′ such that G ‖ S′ ⊆v G ‖ E. Then clearly
G ‖ S′ ⊆v G ‖ E = G ‖ U = G ‖ S.
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Now assume the claim has been shown for some k ≥ 0, and consider E = E1‖· · ·‖Ek+1 and
S = S1‖· · ·‖Sk+1. By inductive assumption S1‖· · ·‖Sk is a supremal supervisor for E1‖· · ·‖Ek

with respect to G and Σu, and by assumption Sk+1 is a supremal supervisor for Ek+1 with
respect to G and Σu. Then it follows by Proposition 33 that S = (S1 ‖ · · · ‖ Sk) ‖ Sk+1 is a
supremal supervisor for E = (E1 ‖ · · · ‖ Ek) ‖ Ek+1 with respect to G and Σu. ✷

Finally, the result about separate synthesis is used to prove the correctness of Algorithm 2.
Each iteration in the loop gives a supremal supervisor by Theorems 22 and 28, and then their
combination also is a supremal supervisor by Proposition 34.

Theorem 35 Upon termination of Algorithm 2, the composition
∥

∥(S) of the results is
a supremal supervisor for the composed specification

∥

∥(E) with respect to the composed
plant

∥

∥(G) and uncontrollable event set Σu.

Proof. Write
∥

∥(G) = G1‖· · ·‖Gm and
∥

∥(E) = E1‖· · ·‖Ek. The loop on line 2 of Algorithm 2
calculates Sj for each j = 1, . . . , k and on line 5 adds both Sj and Ej to the result S, making

∥

∥(S) = (S1 ‖ E1) ‖ · · · ‖ (Sk ‖ Ek) . (5.30)

Line 4 calculates Sj using Algorithm 1 with E = ∃V̄j Ej , so it follows from Theorem 22 that
Sj is a supremal supervisor for ∃V̄j Ej with respect to

∥

∥(G) and Σu. On line 3, the variables
are chosen such that V̄j ⊆ vars(Ej) \ vars(Ej ,Σu), which implies V̄j ∩ vars(Ej ,Σu) = ∅, and
∃V̄j Ej is state-deterministic, so it follows from Theorem 28 that each Sj ‖ Ej is a supremal
supervisor for Ej with respect to

∥

∥(G) and Σu. Then it follows by Proposition 34 from (5.30)
that

∥

∥(S) is a supremal supervisor for
∥

∥(E) = E1 ‖ · · · ‖ Ek with respect to
∥

∥(G) and Σu. ✷

It is also clear that Algorithm 2 terminates because the loop performs exactly one iteration
for each specification E1, . . . , Ek. Therefore, it is concluded that the algorithm is totally
correct and can be used to compute a least restrictive supervisor for any combination of
normalised state-deterministic plant and pure state-deterministic specification EFSMs.

6 Flexible Manufacturing System Example

This section applies the proposed synthesis procedure from Algorithm 2 to compute a modular
least restrictive controllable supervisor for an EFSM model of a flexible manufacturing system.
Figure 4 shows the layout of this example.

Workpieces enter the system through one of two feeders (F1 or F2) and are placed on the
first conveyor (C1), which delivers them to the first production line (L1). In L1, the workpieces
may be processed by the first machine (M1) and then put on the second conveyor (C2), or they
may be put on C2 immediately without processing. After passing conveyor C2 the workpieces
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F1

F2

M1 M2

C1 C2 C3

L1 L2

Figure 4: Flexible Manufacturing System Layout.

F1: C1: L1: C2: L2: C3:

sf1

!ff1: c′1=1

sc1

!fc1: l′1=c1∧c′1=0

sl1 !wl1

el1!fl1

sc2: c′2=l1∧l′1=0

!fc2: l′2=c2∧c′2=0

sl2 !wl2

el2!fl2

sc3: c′3=l2∧l′2=0

!fc3: c′3=0

F2: M1: M2:sf2

!ff2: c′1=2

sm1

!fm1: l′1=1†

sm2

!fm2: l′2=2†

Figure 5: Flexible Manufacturing System Plants.

may be processed by a similar production line (L2) and machine (M2), and after that they
are put on the last conveyor (C3) before exiting the system.

The two feeders F1 and F2 provide two different types of workpieces: F1 delivers type 1
workpieces, and F2 delivers type 2 workpieces. The decision which feeder is used is outside
of the scope of the model. The objective is to control the system in such a way that type 1
workpieces are only processed by machine M1 and do not enter production line L2, and
likewise type 2 workpieces are only processed by M2.

The modelling of the different workpiece types is facilitated by the use of EFSM variables,
as demonstrated in the plant model in Figure 5. The variables c1, c2, c3, l1, and l2 represent
the contents of the conveyors and production lines. Their domain is {0, 1, 2, 1†, 2†}, where a
value of 0 means that the corresponding conveyor or production line is empty, a value of 1 or 2
indicates the presence of a raw workpiece of type 1 or 2, and a value of 1† or 2† indicates the
presence of a workpiece of type 1 or 2 that has been processed by its corresponding machine
M1 or M2.

In the model, uncontrollable events are prefixed with an exclamation mark (!) to dis-
tinguish them from the controllable events. The plant EFSM F1 shows that feeder F1 can
be started controllably with event sf1, then finishes uncontrollably with event !ff1 and upon
finishing puts a type 1 workpiece on conveyor C1 as indicated by the update c′1 = 1. Plant F2

describes the analogous behaviour of feeder F2. Similarly, conveyor C1 is started with sc1,
and upon finishing with !fc1 its workpiece is put into the first production line, l′1 = c1, and
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EC1: EL1a: EM1a: EC2: EL2a: EM2a: EC3:
!ff1
!ff2

!fc1: c1 6=0

sc1 !fc1:
l1=0 !wl1

sm1

!fl1

sc2

sc2: l1=2

!fc2:
l2=0 !wl2

sm2

!fl2

sc3

sc3: l2=1†

EL1b: EM1b: EL2b: EM2b:
sl1:
l1=1 !fm1

el1

sl2:
l2=2 !fm2

el2

Figure 6: Flexible Manufacturing System Specifications.

removed from the conveyor, c′1 = 0. Conveyors C2 and C3 are similar, but in addition remove
a workpiece from the production line in front of them when starting. Production line L1

is requested to pick up a workpiece with controllable event sl1, and the completion of the
pick-up is indicated by uncontrollable event !wl1 after which the workpiece is available for
machine M1. Then the production line can be requested to eject the workpiece (el1) and
upon completion (!fl1) the workpiece again becomes available for conveyor C2. Machine M1

can be requested to start processing (sm1), and when it finishes (!fm1) it changes the work-
piece in the production line, l′1 = 1†, to indicate a processed workpiece of type 1. Production
line L2 and machine M2 work in the same way.

Figure 6 shows specification EFSMs that capture several control requirements for the
flexible manufacturing system. Specification EC1 describes the requirement that conveyor C1

can only start (sc1) after having been loaded with a workpiece, i.e., after one of the feeders
has completed (!ff1 or !ff2), and through the guard c1 6= 0 also requires that there must
be a workpiece on the conveyor when it finishes. Specification EL1a rules out overflow of
production line L1, because conveyor C1 is only allowed to deliver a workpiece (!fc1) when
the line is empty, l1 = 0. Specification EL1b requires that only unprocessed type 1 workpiece
may enter production line L1. Specifications EM1a and EM1b require that machine M1 only
starts (sm1) when there is a workpiece for it to process (!wl1), and the workpiece is only
ejected (el1) after being processed by the machine (!fm1). Specification EC2 constrains the
starting (sc2) of conveyor C2: conveyor C2 may start when production line L1 contains a
type 2 workpiece, l1 = 2, as these workpieces should bypass L1, or after production line L1

has returned a processed workpiece (!fl1). Specifications EL2a, EL2b, EM2a, EM2b, and EC3

constrain the behaviour of production line L2 and conveyor C3 in a similar way.
It is clear that the EFSM model satisfies the structural requirements outlined for Algo-

rithms 1 and 2. All the plants are normalised and all the specifications are pure. Also, all the
EFSMs are state-deterministic, and so are all possible abstractions as no location has more
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than one outgoing transition for any given event. Moreover, it can be seen in Figure 5 that for
any given event, no next-state variable appears in more than one EFSM on transitions with
that event, so that condition (3.5) will be trivially satisfied for any abstraction considered. It
is quite typical for well-designed EFSM models to have such properties, particularly in the
manufacturing context.

To synthesise a least restrictive supervisor, Algorithm 2 processes each of the specifications
in Figure 6. The order in which the specifications are processed is not important, so the
following explanation starts with the easiest cases. The supervisors computed by Algorithm 1
are shown in Figure 7.

• Specification EL1b has only one controllable event, sl1, so its variable l1 is only used
controllably and can be abstracted. Algorithm 2 forms the abstraction ∃l1EL1b, and as
∃l1 l1 = 1 is true, this simplifies to a one-state FSM with a controllable selfloop, which
is trivially controllable and returned unchanged by Algorithm 1.

Then the abstraction ∃l1EL1b becomes the first supervisor collected by Algorithm 2.
It appears in Figure 7 as SL1b. It performs no control as a supervisor. Therefore
Algorithm 2 also includes the original specification EL1b as a supervisor, which ensures
through the update l1 = 1 that production line L1 only starts (sl1) when a workpiece of
type 1 is available.

• Specification EM1a has no variables, so Algorithm 2 passes it to Algorithm 1 unchanged.
As EM1a disables the uncontrollable event !wl1, it is found not controllable at the be-
ginning of Algorithm 1, so the algorithm assigns Σ1

u = {!wl1} and searches for plants
that disable this cause of uncontrollability. This yields L1, which also has no variables.
Therefore Algorithm 1 chooses G1 = {L1}, V

1 = ∅, and C1 = ∅. Synthesis results in the
supervisor S1 = supC(L1, EM1a, {!wl1}), which is also !fl1-controllable.

This supervisor is shown as SM1a in Figure 7. It is returned from Algorithm 1 and
collected by Algorithm 2. The supervisor SM1a ensures that machine M1 is only
started (sm1) when a workpiece is available, i.e., after !wl1 has occurred.

• Specification EM1b has no variables, so Algorithm 2 passes it to Algorithm 1 unchanged.
As EM1b disables the uncontrollable event !fm1, it is found not controllable at the be-
ginning of Algorithm 1, so the algorithm assigns Σ1

u = {!fm1} and searches for plants
that disable this cause of uncontrollability. This yields M1, which includes the vari-
able l1. Yet on closer inspection !fm1 is unconstrained in M1 with respect to l1 (note
that ∀l1∃l

′
1 l′1 = 1 is true, which is enough to establish the validity of (2.92) in Def-

inition 14). Therefore Algorithm 1 chooses the plant abstraction G1 = {∃l1M1}, no
variables, V 1 = ∅, and no chaos EFSMs, C1 = ∅. Then synthesis results in the super-
visor S1 = supC(∃l1M1, EM1b, {!fm1}), which is controllable as no other uncontrollable
events are involved.
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Figure 7: Synthesised supervisors for flexible manufacturing system.
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This supervisor, shown as SM1b in Figure 7, is returned from Algorithm 1 and collected
by Algorithm 2. It ensures that production line L1 only starts the ejection (el1) of a
workpiece after it has been processed (!fm1) by machine M1.

• Specification EC1 includes the variable c1, which is used uncontrollably with event !fc1
and cannot be abstracted by Algorithm 2, so EC1 is passed to Algorithm 1 unchanged.
This specification is not controllable by itself as it disables uncontrollable events !ff1,
!ff2, and !fc1. In its first iteration, Algorithm 1 selects Σ1

u = {!ff1, !ff2, !fc1}, which leads
it to identify the plants F1, F2, and C1 and the variable c1 that appears in EC1. Plant C1

also includes the variable l1, but Σ
1
u is unconstrained in C1 with respect to l1, because

for the !fc1-transition in C1 the condition (2.92) in Definition 14 becomes

∃l1∃l
′
1(l

′
1 = c1 ∧ c′1 = 0)⇒ ∀l1∃l

′
1(l

′
1 = c1 ∧ c′1 = 0) , (6.1)

which can be simplified by removing the unused variable l1 from quantification to give

∃l′1(l
′
1 = c1 ∧ c′1 = 0)⇒ ∃l′1(l

′
1 = c1 ∧ c′1 = 0) , (6.2)

and the latter is clearly valid. This shows that the transition is possible independently
of the current value of l1. Therefore Algorithm 1 replaces C1 by the abstraction ∃l1C1,
which amounts to changing the update of the !fc1-transition to c′1 = 0. No chaos EFSMs
are needed as c1 does not appear in any other plant, so that G1 = {F1, F2, ∃l1C1}, V

1 =
{c1}, and C

1 = ∅. Synthesis results in S1 = supC(F1 ‖ F2 ‖ ∃l1C1, EC1, {!ff1, !ff2, !fc1}),
which is controllable as no other uncontrollable events are involved.

This supervisor, shown as SC1 in Figure 7, is returned and collected by Algorithm 2.
It ensures that conveyor C1 is only started after delivery of a workpiece from a feeder,
and the feeders only start when the conveyor is empty.

• Specification EC2 includes the variable l1, but it is only used with the controllable
event sc2. Then Algorithm 2 passes ∃l1EC2 to Algorithm 1, which amounts to deletion
of the update from EC2. In Algorithm 1, the specification is not controllable by itself
as it disables the uncontrollable event !fl1. So the algorithm sets Σ1

u = {!fl1} and finds
that !fl1 is only disabled by plant L1, which has no variables. Then G1 = {L1}, V

1 = ∅,
C1 = ∅, and synthesis gives S1 = supC(L1, ∃l1EC2, {!fl1}), which is also found to be
!wl1-controllable

This supervisor, shown as SC2 in Figure 7, is returned and collected by Algorithm 2.
Together with the original specification EC2, which also is collected by Algorithm 2, it
ensures that conveyor C2 only removes type 2 workpieces that should not be processed
by production line L1 or type 1 workpieces processed by L1.

• Specification EL1a includes variable l1, which is used with the uncontrollable event !fc1
and therefore cannot be abstracted. Thus Algorithm 2 passes EL1a unchanged to Al-
gorithm 1. At the beginning of Algorithm 1, chaos EFSMs are constructed for all
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events that can change the variable l1 in some plant, resulting in C0 = {chaos(!fc1, l1),
chaos(!fm1, l1), chaos(sc2, l1)}. Then EL1 is not controllable with respect to

∥

∥(C0) be-
cause l1 can uncontrollably change from its initial value 0 by chaos(!fc1, l1), and after-
wards !fc1 is possible with the specification’s guard l1 = 0 being false.

The only uncontrollable event in the specification and cause of uncontrollability is !fc1,
so Σ1

u = {!fc1}. This uncontrollable event is disabled by plant C1, which therefore
is included in the plant abstraction. C1 also includes the variable c1, which is not
unconstrained, so that G1 = {C1} and V 1 = {c1, l1}. Apart from the selected plant C1,
the variable l1 is still assigned on event !fm1 in M1 and on event sc2 in C2, and the
variable c1 is assigned on event !ff1 in F1 and on event !ff2 in F2. Therefore the chaos
EFSMs C1 = {chaos(!ff1, c1), chaos(!ff2, c2), chaos(!fm1, l1), chaos(sc2, l1)} are included.
Synthesis gives a supervisor

S1 = supC(C1 ‖ chaos(!ff1, c1) ‖ chaos(!ff2, c1) ‖ chaos(!fm1, l1) ‖ chaos(sc2, l1),
EL1a, {!fc1}) ,

(6.3)

but it is not !fm1-controllable. This is because S
1 is synthesised under the pretence that

!fm1 is controllable, and then S1 can constrain !fm1 to prevent the system from entering
states with l1 6= 0 where !fc1 is enabled. For example, S1 allows sc1 when initially l1 = 0
and then disables !fm1 to prevent it from changing l1 to a non-zero value before !fc1
occurs. But this is not acceptable since !fm1 really is uncontrollable.

Therefore Algorithm 1 enters another iteration with Σ2
u = {!fc1, !fm1}. Now plant M1

must also be included as it disables !fm1. There are no additional variables in M1 so
that G2 = {C1,M1} and V 2 = {c1, l1}. Outside of the selected plants C1 and M1, the
variable l1 is only assigned on sc2 in C2, so that C2 = {chaos(!ff1, c1), chaos(!ff2, c2),
chaos(sc2, l1)}. Then another supervisor is synthesised,

S2 = supC(C1 ‖M1 ‖ chaos(!ff1, c1) ‖ chaos(!ff2, c1) ‖ chaos(sc2, l1),
EL1a, {!fc1, !fm1}) ,

(6.4)

and this supervisor is also found to be controllable with respect to the remaining un-
controllable events !ff1 and !ff2.

The supervisor, shown as SL1a in Figure 7, is returned and collected by Algorithm 2.
It avoids overflow of production line L1, because it only allows the conveyor C1 to start
delivery of a new workpiece (sc1) when the production line is empty, l1 = 0.

• The remaining specifications EL2b, EM2a, EM2b, EC3, and EL2a are processed in a
similar way as those above, resulting in further supervisors SL2b, SM2a, SM2b, SC3,
and SL2a.
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On completion, Algorithm 2 returns the supervisors shown in Figure 7 plus the original
specifications in Figure 6, which together control the flexible manufacturing system in the
least restrictive controllable way. The largest supervisor EFSMs have seven locations, and the
largest state spaces encountered are 100 unfolded states during synthesis of SL1a and SL2a. In
comparison, a full monolithic synthesis for all the plants and specifications together, explores a
state space of 14580 unfolded states and results in a single supervisor EFSM with 464 locations
and 1551 unfolded states.

7 Conclusions

This working paper presents an algorithm that combines modular and abstraction-based
synthesis for extended finite-state machines (EFSM). The approach allows to calculate super-
visors that control a system in the least restrictive controllable way. Through a combination
of component selection and symbolic manipulation by means of existential quantification, the
method avoids the exploration of the full state space as normally required in synthesis. The
resulting supervisors are modular and can be presented as the composition of several small
EFSMs, which also facilitates human readability.

These results improve the authors’ previous work [10,23] in that they allow abstraction by
both component and variable selection. In future research, the authors would like to consider
the modular synthesis of nonblocking supervisors for EFSMs using abstractions. It is also
of interest whether supervisor reduction techniques [20] can be used to remove redundant
transitions and simplify guards in the synthesised supervisor EFSMs.

References
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