
FREEFORM: A TOOL FOR SKETCHING FORM DESIGNS

 Beryl Plimmer
 Department of Computer Science

 University of Auckland
 Private Bag 92019, Auckland

New Zealand
b.plimmer@auckland.ac.nz

Mark Apperley
Department of Computer Science

University of Waikato
Private Bag 3105, Hamilton

New Zealand
m.apperley@waikato.ac.nz

ABSTRACT
This demonstration shows the tool we have developed for
hand-sketching user interfaces. Our motivation for
developing this tool is to provide an environment where
novice programmers can move freely along the design
continuum from informal low-fidelity prototypes to
completed formal designs. A low-cost digital whiteboard is
used to provide a shared work space for Freeform. The tool
is integrated into a programming IDE and provides pen-
based sketching and editing, a storyboard, run mode,
recognition of shapes and words and conversion into a
formal design in the programming IDE.

Keywords
Sketching, Interface Design Tools, Informal Design

1. INTRODUCTION
Hand-drawn designs have long been the preferred first
rendering method for designers yet there are few computer
applications that support hand-drawing. This paper
provides a review of computer-based sketch tools and
describes the current version of our own sketch tool.
Freeform has been developed specifically for novice
programmers, it runs as a Visual Basic 6© (VB6) add-in so
as to provide an integrated environment for students to
design their program interfaces. Section 2 describes our
motivation for this project and reviews a number of other
sketch tools. Section 3 describes Freeform. The evaluations
we have done are described in Section 4 and Section 5
discusses possible future developments in this area.

2. BACKGROUND
Designers from a wide range of disciplines choose to use
pen and paper or whiteboard for there first rendering of

designs [7]. Such informal tools have a distinct advantage
during the early stages of design as they require minimal
cognitive effort and do not constrain design decisions to a
prescribed set of widgets. Computer based design tools
have been shown to overly constrained designers [7].
A number of computer-based informal drawing tools have
been developed. Southerland [14] propose pen input in
1963, his work was based on cathode-ray displays. In the
early 1990’s Xerox Parc explored physically separated
shared design spaces [3]. Xerox Parc have also developed
liveboard [6] a digitised whiteboard and explored its use
with meeting support software [11], [10].
Landay and his associates have developed two sketch
based design tools. Silk [8] is a form design tool that takes
input from Wacom tablets. There is a design space where a
number of widgets are recognised using Rubine’s
algorithm [13] for stroke recognition and rules are used to
combine ink strokes. On the storyboard navigation links
can be drawn between forms that can then be used in run
mode. The run mode also animates a number of widgets for
example scroll bars can be dragged. The sketches can be
exported into VB5 and Garner User Interface Development
Environment formats.
Landay’s team have also developed Denim [9] for Web site
design. It expands the storyboard of Silk to have five levels
of zoom to provide better overview of a site hierarchy and
navigation. HTML code can be generated from Denim.
Knight is a UML CASE design tool developed by Damm et
al. [4, 5] that uses Smartboard, a commercially available
electronic whiteboard. This tool also uses Rubine’s
algorithm [13] for basic shape recognition and designs can
be converted into WithCase diagrams. Damm et al. support
different levels of formality and informality within the one
diagram. This tool also includes a radar window to aid
navigation around large design spaces.
Bailey and Konstan’s [2] Demais is for designing
multimedia applications. It supports basic sketching and a
storyboard and also allows the user to include media such
as pictures, video and sound clips. They have placed a
greater emphasis on providing support for behaviour in run
mode; the designer can attach behaviours to a widget so
that a click or double click invokes actions such as playing
media clips. The evaluation studies of Demais showed that

it was on a par with traditional tools for creating designs
and better at demonstrating behaviour.

3. FREEFORM
Freeform tool has been developed as a VB6 add-in so that
users can move freely along the continuum from informal
to formal design. Two prototypes have been completed,
each has been usability tested and the second was also
evaluated for its usefulness as a design tool for students.
Here the second prototype is described under the following
sub sections; physical interface, sketch space drawing and
editing, the storyboard, run mode, recognition, and
transformation to a formal diagram.

3.1 Physical Interface
We have constructed a low-cost interactive digital
whiteboard to provide a shared work space [1]. A standard
data projector is used to project a computer screen image
on to the back of an opaque glass screen that has a Mimio©
digitiser bar attached. The Mimio pens are used in mouse
emulation mode to supply the program with ink input.
Although it is possible to emulate right-mouse actions by
pressing a button on the digitiser bar, usability testing
suggested this is difficult, therefore all the interaction is via
the pen.

3.2 Sketch Space
The sketch space (Figure 1) endeavours to honour the
whiteboard paradigm, although users need to be aware of
the requirements for recognition. There are two inking
modes, drawing and writing, that are differentiated by
colour. Each drawing pen stroke is held as a separate
glyph, writing strokes are joined together by proximity into
words.

Figure 1 Sketch Space

In edit mode users can select one or a group of glyphs and
then copy, move or resize the selection. Selected ink can
also be changed from drawing to writing or visa versa.
Editing is a multi-step process as usability testing showed
that this worked best. First the user must change to edit
mode then select the stroke or strokes to be changed. The
selection is then highlighted with larger than normal

handles on the perimeter because of pen accuracy and
parallax errors cause by the glass screen. Once selected
users can grab a handle to move or resize the selection or
click the appropriate button for deleting, copying or
changing ink modes.
Two editing functions are included as part of the basic
drawing/writing gestures; a delete gesture that deletes
underlying ink and if a new drawing stroke lies
approximately over an old stroke the old stroke is replaced
with the new. There is an infinite undo stack so that all user
actions can be progressively reversed. A grid can be shown
on the drawing space; the software uses this grid during the
transformation process to align controls. We found many
users preferred to have the grid visible while sketching as
they found it easier to write and draw with guidelines. Ink
colours and grid size are configurable by the user.

3.3 Storyboard
Users can create multiple forms; miniatures of these forms
are shown in the storyboard view (Figure 2). In this view
the user can move a form around the storyboard by
dragging it to a spare slot or delete a form by dragging it to
the trash can. The user can also add navigation links
between forms by placing the pen down on the source spot
on one form and dragging to the destination form.
Navigation links can be moved or trashed and these actions
can be reversed using the undo.

Figure 2 Storyboard

3.4 Run mode
In run mode the sketch is shown as a background layer
with the navigation links activated. The user can write on
the form (in a different colour) imagining that they are
running the program thus checking the design and
navigation between forms.

3.5 Recognition
Most sketch systems disclose recognition to users
progressively; we have chosen not to do this so as to not
distract the user from the design task. Our philosophy is
that recognition is unimportant until the user wants to
either add functionality to glyphs or convert the form into a
formal design. Three recognition techniques are employed.

Two libraries of pen strokes are maintained; drawing
shapes and letters. These libraries are fully exposed to the
user so that they can add their own examples of specified
strokes or add new classes of strokes. All pen strokes are
immediately recognised using a modified Rubine’s
algorithm [13] against either the drawing shape or letter
library. Only delete strokes result in any immediate action.
There is also a rule base for combining different drawing
strokes to make VB controls. A control can be defined as a
single stroke, two strokes or a container; there can be
multiple definitions of a control. For single stroke controls
the user simply selects the stroke from the list provided.
For two stroke controls or containers the user specifies the
primary stroke and secondary strokes with the relationship
between the two. The second stroke maybe required or
optional and there maybe more than one type of secondary
stroke. If more than one secondary stroke is included they
are treated as logical ors. For example a dropdown list is
defined as a textbox (medium sized rectangle) that contains
a small circle or square (most people draw a small triangle
that is classified as either a radio button or check box).
Word recognition is lowercase characters only, it is
achieved by using Rubine’s algorithm to recognise strokes
and then combining strokes for letters that are naturally
formed with two strokes such as ‘t’ and ‘i'. At this point
each letter is represented as a list of possible letters with a
probability weighting. These lists of letters are then
matched against a vocabulary and the most likely word
selected. If the most likely word has an average letter
probability of greater than 3rd place the software considers
it has not matched the word.

3.6 Translation
When the user is ready to translate their sketch into a VB
form they click the ‘map’ button on the sketch interface.
The recognition algorithms described above are run and the
sketch is tidied by placing each glyph onto a grid
intersection point. Recognition is revealed by
superimposing the type of each glyph and words, as labels
onto the sketch. The user can correct any recognition errors
by clicking on the label and changing the glyph type or
selecting a new word from the vocabulary list.
As part of the rule base for combining strokes described
above the user can also define how the VB control
attributes are generated from the sketch. The program
dynamically creates a list of all the attributes of the
specified control and shows a list of the ink attributes. A
control attribute can be created directly from a sketch
attribute, for example the sketch left position can be use as
the control left position. Attributes can also have fixed,
minimum, maximum, or unit values, these are useful to
standardise sizes and make the form look tidy.

Figure 3 Translated form

Once the user has mapped the sketches and corrected any
recognition errors they can generate the VB form by
clicking another button (Figure 3). The user can return to
the sketches at any time, alter it, and regenerate the VB
form.

4. EVALUATION
The usability study conducted on the first prototype
suggested that some people found the pen too large and
difficult to use. We were concerned that the requirement to
draw shapes in a single stroke would be difficult for users
and would interrupt their design process, however they
adapted to this extremely quickly and none felt that it
caused them any problems.
Two alterations to editing were made between prototypes,
adding an undo and changing the delete gesture. The first
prototype used a horizontal zigzag as both a text holder and
a delete. This confused both the users and the software.
The second prototype retained the zigzag as a text holder
but used continuously overlaid circles as the delete gesture.
Our first prototype did not include any character
recognition and the general attitude of the students is if
there is no recognition then there isn’t any point writing.
Attempts to interface to commercial character recognition
components were unsuccessful. The word recognition in
the current version is limited and unreliable; however
students are surprisingly happy to work with it knowing
that they can choose the correct word from a list.
The transformation process was also improved from the
first to second prototype. Originally the sketch glyph raw
attributes were used to generate the VB controls however
this resulted in each of the controls being a different size
and nothing lining up. By fixing everything to a grid and
applying fixed or unit values to heights and widths of
controls the VB form is much more as one would expect a
formal design to be.
The second prototype is much improved however there are
a number of outstanding issues to be addressed. The pen
could be refined substantially and it would be useful to
have a button on the pen to generate right-mouse events.

Integrating better character recognition is also an
outstanding objective. When the form is tidied in
preparation for translation sketch ink is moved onto the
grid intersection points. In the most recent study it was
clear that this was a mistake, if the software moves the ink
it disrupts the users picture which we now believe it is
important to maintained unaltered
We also ran a comparative evaluation study to ascertain the
usefulness of this tool to novice programmers. Details of
this study are reported elsewhere [12]. In summary the
students enjoyed using the tool, developed a more positive
attitude to sketching and created more appropriate designs
for the sample problems.

5. DISCUSSION
The continued use of low-fidelity tools by designers in
preference to current computer design environments
suggests that they have significant advantages in the early
stages of design work. A number of sketch tools have now
been developed to support low-fidelity design. Reliable
recognition is important for functional gestures and
transformation to formal environments and there are still
improvements to be made in this area. However we believe
that recognition should not interrupt the design process and
only be disclosed on request.
Freeform is implemented as a VB add-in; however it has
been designed so that the drawing space is independent of
VB and the recognition is configurable. It is possible to use
these building blocks to implement a sketch interface into
other programming IDEs and diagramming tools such as
CASE tools.
Working with a pen directly in a public space, places quite
different requirements on the software to mouse and
keyboard or private space pen input. Also each domain has
its own particular requirements that are becoming evident
as researchers explore different domains. For example in
CASE diagrams connectors between sketch elements are
important and the diagrams are usually large so different
navigation techniques are required.
Tablet PCs provide a new platform for pen-based design
tools that we would like to explore and are also likely to
increase access to programming components such as
character recognition. Informal interfaces have clear
advantages for early design work while current computer-
based tools are better for editing and emulating
functionality, sketch tools show potential to combine the
best of both environments.

6. REFERENCES
[1]. Apperley, M., et al. 2001, Lightweight capture of

presentations for review. in IHM-HCI. Lille:
ACM.

[2]. Bailey, B.P. and J.A. Konstan. 2003, Are Informal
Tools Better? Comparing DEMAIS, Pencil and
Paper, and Authorware for Early Multimedia
Design. in CHI 2003. Ft Lauradale: ACM.

[3]. Bly, S.A. and S.L. Minneman. 1990, Commune:
A shared drawing surface. in Conference on
Office Information Systems.

[4]. Damm, C.H., K.M. Hansen, and M. Thomsen.
2000, Tools support for cooperative object-
oriented design: Gesture based modelling on and
electronic whiteboard. in Chi 2000: ACM.

[5]. Damm, C.H., et al. 2000, Supporting Several
Levels of Restriction in the UML. in UML 2000.
York, UK.

[6]. Elrod, S., et al., (1992), Liveboard: A large
interactive display supporting group meetings,
presentations and remote collaboration. CHI '92,
1992: p. 599-607.

[7]. Goel, V., (1995) Sketches of thought. Cambridge,
Massachusetts: The MIT Press.

[8]. Landay, J. and B. Myers, (2001), Sketching
Interfaces: Toward more human interface design.
Computer, 2001. 34(3): p. 56-64.

[9]. Lin, J., et al. 2000, Denim: Finding a tighter fit
between tools and practice for web design. in Chi
2000: ACM.

[10]. Moran, T.P., P. Chiu, and W. van Melle. 1997,
Pen-Based interaction techniques for organizing
material on an electronic whiteboard. in 10th
Annual Symposium on User Interface Software
and Technology. Banff, Canada: ACM SIGSOFT.

[11]. Pedersen, E.R., et al. 1993, Tivoli: An electronic
whiteboard for informal workgroup meetings. in
Interchi '93: ACM.

[12]. Plimmer, B.E. and M. Apperley. 2003, Evaluating
a Sketch Environment for Novice Programmers.
in SIGCHI. Ft Lauradale: ACM.

[13]. Rubine, D. 1991, Specifying gestures by example.
in Proceedings of Siggraph '91: ACM.

[14]. Sutherland, I.E. 1963, Sketchpad: A man-machine
graphical communication system. in Spring joint
computer conference: American Federation
Information Processing Societies. Montvale, New
Jersey.

