
c© 2013 by Albert Sidelnik. All rights reserved.

COMPILATION TECHNIQUES AND LANGUAGE SUPPORT TO FACILITATE
DEPENDENCE-DRIVEN COMPUTATION

BY

ALBERT SIDELNIK

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2013

Urbana, Illinois

Doctoral Committee:

Professor David A. Padua, Chair, Co-Director of Research
Research Assistant Professor Maŕıa J. Garzarán, Co-Director of Research
Doctor Bradford L. Chamberlain, Cray Inc.
Professor Wen-mei W. Hwu
Professor Sanjay J. Patel
Professor Keshav Pingali, University of Texas, Austin

Abstract

As the demand increases for high performance and power efficiency in modern computer

runtime systems and architectures, programmers are left with the daunting challenge of

fully exploiting these systems for efficiency, high-level expressibility, and portability across

different computing architectures. Emerging programming models such as the task-based

runtime StarPU and many-core architectures such as GPUs force programmers into choosing

either low-level programming languages or putting complete faith in the compiler. As has

been previously studied in extensive detail, both development approaches have their own

respective trade-offs.

The goal of this thesis is to help make parallel programming easier. It addresses these

challenges by providing new compilation techniques for high-level programming languages

that conform to commonly-accepted paradigms in order to leverage these emerging runtime

systems and architectures. In particular, this dissertation makes several contributions to

these challenges by leveraging the high-level programming language Chapel in order to ef-

ficiently map computation and data onto both the task-based runtime system StarPU and

onto GPU-based accelerators. Different loop-based parallel programs and experiments are

evaluated in order to measure the effectiveness of the proposed compiler algorithms and their

optimizations, while also providing programmability metrics when leveraging high-level lan-

guages. In order to exploit additional performance when mapping onto shared memory

systems, this thesis proposes a set of compiler and runtime-based heuristics that determine

the profitable processor tile shapes and sizes when mapping multiply-nested parallel loops.

ii

Finally, a new benchmark-suite named P-Ray is presented. This is used to provide machine

characteristics in a portable manner that can be used by either a compiler, an auto-tuning

framework, or the programmer when optimizing their applications.

iii

For the two best companions, Yuki and Bandita.

iv

Acknowledgements

For the most part, graduate school is a roller coaster of emotions. There are moments where

nothing works as you go down the rabbit hole of pursuing a research topic, and then there

are other moments where everything just “clicks”. The work in this thesis is a culmination

of lots of sweat, plenty of expletives thrown at compilers and operating systems, unwanted

gray hairs, and many late nights spent in the lab and at various coffee shops. At the end of

the day, I am glad to have gone through this journey.

I would like to first start by thanking my advisors David Padua and Maŕıa Garzarán. If

it were not for their support, guidance, and patience, this work would not exist.

I would also like to acknowledge and thank my thesis committee members Brad Cham-

berlain, Wen-mei Hwu, Sanjay Patel, and Keshav Pingali for their valuable comments. In

particular, I would like to give a special thanks to Brad Chamberlain. His feedback during

the different stages of my graduate school experience has been extremely helpful.

I am fortunate to have the experience of working and collaborating with some of the

sharpest researchers in the field, including Gheorghe Almasi, Bryan Catanzaro, Michael

Garland, and Jose Moreira. I have learned an immense amount from them.

It is also important that I give a special thanks to Mary Beth Kelly, Megan Osfar, and

Sherry Unkraut. If it were not for them, I would be even more confused than I typically am.

Lastly, I want to thank my friends and family, especially my parents for supporting me

in all of my various adventures.

v

Table of Contents

List of Figures . x

List of Tables . xiii

List of Algorithms . xiv

Chapter 1 Introduction . 1
1.1 Overview . 1
1.2 Contributions . 4
1.3 Thesis Organization . 6

Chapter 2 Background . 8
2.1 General Compiler Preliminaries . 8

2.1.1 Control Flow Analysis . 9
2.1.2 Dependences: Data and Control . 12
2.1.3 Data-Parallelism . 14

2.2 Dependence-Driven Execution Models . 16
2.2.1 StarPU Runtime System . 18

2.3 Chapel Language Overview . 20
2.3.1 Domains and Distributed Arrays . 21
2.3.2 Data Parallelism in Chapel . 22
2.3.3 Task Parallelism in Chapel . 22
2.3.4 Distributions (Built-in and User-defined) 22

Chapter 3 Compilation for Dependence-Driven Models 24
3.1 Introduction . 24
3.2 Motivation . 28
3.3 Generating Task-Dependence Graphs From Data-Parallel Loops 38

3.3.1 Prerequisites . 38
3.3.2 Loop Partitioning . 38
3.3.3 Agglomerated Flow Graph . 40
3.3.4 Interval Analysis . 43
3.3.5 Interval Containment Tree . 45
3.3.6 Data Placement and Communication 48

vi

3.3.7 Code Generation . 52
3.4 Evaluation . 58

3.4.1 Environmental Setup . 60
3.4.2 Experimental Methodology . 60
3.4.3 Experiments . 62
3.4.4 Results . 65

3.5 Supporting Non-Loop Based Parallel Constructs 75
3.6 Language Support for Arbitrary Execution Order 78

3.6.1 Language Extensions . 82
3.6.2 Examples . 85

3.7 Current Limitations . 91
3.8 Related Work . 92

3.8.1 Macro-Dataflow Compilation . 92
3.8.2 Language Extensions to Express Dependences 94

3.9 Discussions . 96

Chapter 4 Loop Optimizations for Dependence-Driven Models 97
4.1 Introduction . 97
4.2 Multi-Dimensional Blocked-Coalesced Form 103
4.3 Heuristics for Tile Sizes . 107

4.3.1 Off-Line Timing Benchmarks . 107
4.3.2 Cost Model . 111
4.3.3 Memory Footprint . 113
4.3.4 Heuristic . 115

4.4 Evaluation . 117
4.4.1 Environmental Setup . 117
4.4.2 Experiments . 119
4.4.3 Experimental Methodology . 121
4.4.4 Results . 123

4.5 Limitations . 134
4.6 Related Work . 135

4.6.1 Loop Coalescing . 135
4.6.2 Tile Size and Shape Selection . 136

4.7 Discussion . 136

Chapter 5 Compilation for Heterogeneous Architectures 137
5.1 Introduction . 137
5.2 Motivation . 139
5.3 Generating Code for GPU Accelerators . 141

5.3.1 GPU User-Defined Distribution . 142
5.3.2 GPU Domains and Distributed Arrays 143
5.3.3 Data Movement . 143
5.3.4 Parallel Execution on the GPU . 145

vii

5.3.5 Code Generation for the GPU . 146
5.3.6 Targeting Specialized GPU Memory Spaces 147
5.3.7 Synchronization . 149
5.3.8 GPU Low-Level Extensions . 149

5.4 Generating Code for Multi-core . 150
5.5 Compiler Transformations and Optimizations 151

5.5.1 Implicit Data Transfers Between Host and Device 153
5.5.2 Scalar Replacement of Aggregates and Dead Argument Elimination . 154
5.5.3 Kernel Argument Spilling to Constant Memory 155

5.6 Example Codes . 156
5.6.1 2D Jacobi . 157
5.6.2 Coulombic Potential . 158

5.7 Evaluation . 159
5.7.1 Parboil Benchmarks . 160
5.7.2 Environmental Setup . 160
5.7.3 Experimental Results . 161

5.8 Limitations . 165
5.9 Related Work . 165
5.10 Conclusion . 167

Chapter 6 Multi-core Micro-benchmark Suite 168
6.1 Introduction . 168
6.2 Motivation . 169
6.3 Targeted Characteristics . 170

6.3.1 Cache Coherence Protocol Block Size 171
6.3.2 Cache Mapping . 172
6.3.3 Processor Mapping . 173
6.3.4 Effective Bandwidth . 174

6.4 Implementation . 176
6.4.1 Requirements . 176
6.4.2 Implementation Details . 176

6.5 Evaluation . 179
6.5.1 Experimental Environment . 179
6.5.2 Experimental Results . 179

6.6 Related Work . 188
6.7 Conclusion . 188

Chapter 7 Future Work . 190

Chapter 8 Conclusions . 193

Bibliography . 195

viii

Appendix A Sparse Matrices Representation 212

ix

List of Figures

2.1 Interval Analysis Applied to a CFG . 9
2.2 Interval Analysis [1, 2] . 11
2.3 StarPU Task-Dependence Graph . 19
2.4 Example Demonstrating Chapel’s Support for Domains 21

3.1 2-D Jacobi Method Implemented in Chapel 29
3.2 Traditional Flow Graph (a) and Agglomerated Flow Graph (b) 30
3.3 Sequence of Derived Interval Graphs . 32
3.4 Interval Containment Tree . 33
3.5 Generated Task-Dependence Graph for 2-D Jacobi 35
3.6 Low-Level Generated Code for 2-D Jacobi 36
3.7 Synthetic Parallel Loop Example . 39
3.8 Traditional Flow Graph and Agglomerated Flow Graph 44
3.9 Generated Interval Analysis Graphs: Passes 1 and 2 46
3.10 Generated Interval Analysis Graphs: Passes 3 and 4 47
3.11 Interval Containment Tree . 49
3.12 Optimized Interval Containment Tree . 49
3.13 Data Placement Example . 50
3.14 Traditional Flow Graph and Agglomerated Flow Graph 51
3.15 Interval Containment Tree . 52
3.16 Task Graph for a Program Containing Multiply-Nested Parallel Loops (from

Figure 3.7) . 59
3.17 Speedup of OpenMP (over Native Chapel) Using 32 Threads 62
3.18 3–D Jacobi Method Scalability for Nested-Parallelism : 1→ 32 Processors . 67
3.19 Sparse-Matrix Vector Multiplication Scalability for Nested-Parallelism with

Multiple Vectors (v = 16, 384) . 69
3.20 Coulombic Potential (CP) Scalability for Nested- and Outer-Parallelism : 1→

32 Processors . 70
3.21 MRI-FHd Scalability With Single-Level Parallelism : 1→ 32 Processors . . . 72
3.22 MRI-Q Scalability With Single-Level Parallelism : 1→ 32 Processors 73
3.23 2–D Image Histogram Computation Scalability : 1→ 32 Processors 74
3.24 Synthetic.Trig Scalability for Nested-Parallelism : 1→ 32 Processors 76
3.25 Translating a Task-Parallel cobegin into an Interval Graph 77
3.26 Tiled Cholesky Factorization . 79

x

3.27 Sequential Tiled Cholesky Factorization . 80
3.28 Implicit versus Explicit Parallel Model . 82
3.29 Loop Nest: Before and After Language Extension 83
3.30 Using a when Statement Across a Block . 84
3.31 Using a when Statement Across a domain . 85
3.32 Asynchronous Cholesky Factorization . 87
3.33 Tiled QR Factorization . 88
3.34 Asynchronous QR Factorization . 89
3.35 Optimized QR Factorization With Fewer Dependences 90

4.1 Nested Parallel Loops With Static Loop Bounds 98
4.2 Loop Coalescing Example . 100
4.3 Single Level Parallelism Compared with Multi-Dimensional Parallelism . . . 101
4.4 Multiply-Nested Parallel Loop . 104
4.5 Loop Coalescing vs Tiled Comparison of Iteration Spaces Partitioned Among

8 Threads . 105
4.6 Loop Body Timing Micro-benchmark . 108
4.7 Task Creation Micro-benchmark . 109
4.8 Barrier Overhead Micro-benchmark . 109
4.9 Data Copying Overhead Micro-Benchmark 110
4.10 Heuristic to Determine Blocking Dimensions 118
4.11 3–D Jacobi Iteration : [1 : 16]× [1 : 16]× 128 126
4.12 3–D Jacobi Iteration : [1 : 16]× [1 : 16]× 256 127
4.13 3–D Jacobi Iteration : [1 : 16]× [1 : 16]× 512 128
4.14 Sparse Matrix-Vector Multiplication With Multiple Vectors 130
4.15 Coulombic Potential . 132
4.16 2–D Image Histogram . 132
4.17 Synth.Trig . 133

5.1 Comparison of STREAM Triad Implementations 140
5.2 Results for the STREAM Triad Benchmark Comparing a 32-node Cray XT4

2.1 GHz Quad-Core AMD Opteron and NVIDIA GTX280 GPU 142
5.3 Implicit Data Movement Example . 144
5.4 Explicit Data Movement Example . 145
5.5 Mapping a Chapel 1D Domain Onto CUDA’s Thread Blocks 146
5.6 Overview of Chapel Compilation Process . 147
5.7 Constant Cache Example . 149
5.8 Translation of a GPU forall into Multi-core forall 152
5.9 Chapel Implementation of Jacobi 2D . 157
5.10 Performance of Jacobi 2D . 158
5.11 Coulombic Potential in Chapel . 159
5.12 GPU Performance of the Parboil Benchmarks Comparing Chapel to CUDA . 162
5.13 Multi-core Performance of the Parboil Benchmarks 164

xi

6.1 Data Locality Depending on Thread to Core Affinity 170
6.2 Coherence Block Size Benchmark . 171
6.3 Pointer Chaining: General Case . 178
6.4 Coherence Block Size Results . 180
6.5 Coherence Block Size and Communication Latency 181
6.6 Cache Mapping . 182
6.7 Processor Mapping . 184
6.8 Effective Bandwidth to L2 Results . 185
6.9 Effective Bandwidth to Memory Results . 187

A.1 Matrix: Meszaros/ex3sta1 . 212
A.2 Matrix: Meszaros/stat96v5 . 213
A.3 Matrix: LPnetlib/lp osa 14 . 213
A.4 Matrix: Andrianov/ex3sta1 . 214
A.5 Matrix: Rommes/bips07 2476 . 214

xii

List of Tables

3.1 Architecture Tested . 60
3.2 Sparse Matrices Evaluated . 63

4.1 Timing Benchmarks . 107
4.2 Architecture Tested . 119
4.3 Evaluated Benchmarks and Their Parallel Loop Depths 119
4.4 Tile-Dimensions (ROWS x COLS) for Jacobi 3–D : Heuristic (top) vs Exhaus-

tive Search (bottom) . 129
4.5 Tile-Dimensions (ROWS x COLS) for SpMV : Heuristic (top) vs Exhaustive

Search (bottom) . 131
4.6 Tile-Dimensions (ROWS x COLS) for Coulombic Potential : Heuristic (top)

vs Exhaustive Search (bottom) . 131
4.7 Tile-Dimensions (ROWS x COLS) for 2–D Image Histogram Computation :

Heuristic (top) vs Exhaustive Search (bottom) 132
4.8 Tile-Dimensions (ROWS x COLS) for Synth.Trig : Heuristic (top) vs Exhaus-

tive Search (bottom) . 134

5.1 Parboil Source Code Comparison (Chapel vs CUDA) 163

6.1 Architectures Tested . 179
6.2 Effective Bandwidth to L2 . 186
6.3 Effective Bandwidth to Memory . 186

xiii

List of Algorithms

1 Interval Node Construction . 11
2 Interval Graph Partitioning . 11

3 General Algorithm For Task Partitioning . 40
4 AgglomerateFG(STMT, ABB) . 41
5 Data Placement Algorithm . 52

6 Heuristic to Determine Blocking Dimensions 118

7 Loop Transformation for Multi-core . 153
8 LoopDist() Function . 154
9 Implicit Data Transfer . 155
10 Spill Scalar Args Into Constant Mem . 156

11 Calculate Block Size . 171
12 Calculate Cache Mapping . 173
13 Calculate Processor Mapping . 174
14 Calculate Bandwidth . 174
15 Pointer Chaining . 177

xiv

Chapter 1

Introduction

1.1 Overview

The ability to fully leverage parallelism, both explicitly with low-level programming lan-

guages, and implicitly through compilers or libraries, has always been a complex and mul-

tifaceted challenge. Even with the valiant efforts of researchers over the past five decades,

there is still much to learn. Until the beginning of the 2000s, computer architects were able

to dodge this problem by focusing their efforts on single-core performance. This meant in-

creased clock speeds, larger memory hierarchies, and deeper pipeline architectures that are

able to extract more instruction level parallelism. This has allowed users to get their free

performance lunch [3]. However, this has led to its own set of challenges due to the physical

demands of increased CPU power, more heat dissipation, and the bandwidth limiting dis-

parity between processor and memory speeds known as the memory wall [4]. While these

problems are still hurdles today, architects have been able to temporarily alleviate their im-

pact by increasing the number of processor cores on the same die, developing even deeper

memory hierarchies, and providing larger vector units and other specialized functional units.

As a result of this, users are now forced to deal with an ever-increasing amount of parallelism.

1

Additionally, homogeneous multicomputers are no longer the only form of machine archi-

tecture used. Heterogeneous parallelism is pervasive in our culture, from consumer devices

containing multiple cores and GPUs such as modern smartphones and automotive electronics

to traditional large-scale supercomputers. It is now common to see large-scale heterogeneous

architectures consisting of GPU accelerators and multiprocessors with large core counts and

vector units [5]. For example, as of November 2012, the number one computer on the Top500

list is Oak Ridge National Laboratory’s Titan [6]. This machine is configured with 299,008

AMD Opteron cores and 18,688 NVIDIA Tesla GPUs.

As mentioned earlier, the problems of increased demand in power, heat dissipation, and

the memory wall still exist in current architectures. Even beyond the idea of performance

portability, there is now a loss of functional portability when compiling and executing the

same program across different classes of architectures. For example, having an application

that has been hand-tuned for a NVIDIA-based GPU and retargeting it to execute on a

multi-core system is not trivial [7, 8, 9]. With these new dimensions of complexity, one ma-

jor software challenge is having the ability to efficiently exploit all of the hardware parallelism

without sacrificing programmer productivity and, at the same time, striving to be portable.

One approach that some have taken to address these challenges is to introduce new runtime

systems and execution models that are dependence-based [10, 11, 12, 13] (sometimes called

codelets [14, 15]), new declarative programming languages [16, 17, 18], and libraries [19].

While these systems have shown great promise in terms of application performance, relying

on new programming models would force applications written in commonly used imperative

programming languages to be rewritten into a declarative programming paradigm. This

might not be economical for applications with a large existing code base or when the appli-

cation is no longer actively maintained.

In addition to increasing processing power and memory sizes, the length of a program’s

source code and the amount of data it occupies is also increasing. In many cases, this is

2

making applications more complex, typically requiring domain experts to develop them. In

order for these domain experts to have a remote chance of leveraging such complex systems,

high-level programming languages (with the help of more intelligent compilers) need to bridge

this gap. Moreover, if the HPC community plans to tackle the challenge of reaching exascale

levels by the 2020 time frame [20], these complexities need to be addressed with urgency.

This thesis presents methods and ideas to help address the challenges of making parallel

programming easier. This will be addressed at four levels: at the programming language

level, in the compiler, dynamically in the runtime, and offline during compilation using micro-

benchmarks. As a foundation, this work will start with Chapel [21], a high-level language

designed from the ground up to deal with parallelism. Using Chapel and leveraging its

support for first-class user-defined distributions [22], new compiler techniques are developed

to support the mapping of multiply-nested parallel loops onto dependence-driven execution

models, such as StarPU or ETI Swarm. In addition to these dependence-based execution

models, it will be shown how the same set of data-parallel loops can now also be retargeted

onto GPU architectures without any modifications to the loops. The reverse of this will also

be shown, where code that has been hand-tuned for a specific platform (such as a GPU) can

be mapped back onto a traditional multi-core platform.

To deal with the problem of exploiting the available parallelism, machine cost models

will be used to drive new heuristics that will determine the correct amount of parallelism

necessary to maximize performance. This is important because there are situations where

using all of the parallelism can be detrimental to the performance of an algorithm due to an

excess of overhead from the runtime or other libraries. Part of the heuristics will be based

on a cost model of the execution model and the underlying memory architecture.

To aid programmers in extracting additional performance for parallel programs, a new

micro-benchmark suite will be presented. This benchmark suite is based on simple and

portable micro-benchmarks that determine machine characteristics specific to multi-cores

3

and the memory hierarchy that can be used as parameters to optimize parallel programs by

a compiler, an expert programmer, or an auto-tuner.

1.2 Contributions

In order to tackle the challenges described in Section 1.1, this thesis makes the following

contributions:

• Generation of Task Graphs from Explicitly Parallel Loops

With the introduction of agglomerated flow graphs, and by using interval analysis [1] as

a basis, new compilation techniques are developed to hierarchically partition programs

around explicitly single and multiply-nested data-parallel loops and other control-

dependent statements. This partitioning forms a new intermediate representation

based on task-dependence graphs which are composed of executable nodes connected

by dependence constraints. The task graphs can then be mapped and scheduled onto

a dependence-driven runtime system. This work also presents new algorithms to deal

with data placement and communication between the tasks in a task-dependence graph.

Once the task-graph form is fully instantiated, code generation is performed to gen-

erate the necessary instructions for correct execution. Experimental results will show

that only a minimal amount of overhead has been added, with little to no impact on

performance scalability.

• Language Extensions to Express Arbitrary Task Execution Order

New language extensions are developed that express the explicit order of execution

among different program components (e.g. statements, loops, blocks, procedures). By

leveraging the loop partitioning transformations being produced, these language ex-

tensions can now provide enough information that a task-dependence graph can be

4

formed and, thus, mapped onto any given parallel architecture. Additionally, the com-

piler can leverage these language extensions as a complement (or replacement) for

traditional data-dependence analysis to help it determine the legality of loop-based

transformations.

• Methods to Determine Tile Dimensions for Coarse-grain Parallelism

A set of compiler and runtime-based heuristics are presented that will be used to

determine the appropriate number of processors to use and what the processor multi-

dimensional shapes need to be. These heuristics are based on a cost model that is

derived from offline micro-benchmark measurements to find certain machine charac-

teristics and overheads in driving the correct processor configurations. Rather than

just selecting the maximum amount of parallelism supported on the system, the algo-

rithm chooses the processor configuration that minimizes both the impact of a static

load-imbalance and the memory footprint of data used in the loops. The effectiveness

of this approach is then compared against other commonly-applied compiler optimiza-

tions. Part of this work will also introduce a new loop-transformation that combines

tiling with traditional loop-coalescing in order to decrease the synchronization overhead

from parallel loops.

• A Portable Mapping of Data and Computations Between GPU and Tradi-

tional Multi-core Architectures

New compiler transformations that increase programmer productivity are presented.

By leveraging the programming language Chapel, a single source code implementation

can be used to target not only conventional multiprocessors, but also GPU architec-

tures. Rather than resorting to different parallel libraries or annotations for a given

parallel platform, this contribution will only need to leverage Chapel’s support for

user-defined distributions and its support for data-parallel loops. Experimental results

5

from the Parboil benchmark suite are presented and demonstrate that codes written in

Chapel achieve performance that are comparable to the original versions implemented

in CUDA on both GPUs and multi-core platforms.

• Portable Micro-benchmark Suite to Determine Machine Characteristics for

Parallelism and Locality

A suite of micro-benchmarks named P-Ray is presented. These micro-benchmarks

provide a way of introspecting hardware characteristics specific to multi-core archi-

tectures. Such characteristics include the number of cores that share the L2 cache,

the different processors interconnection topologies, and the bandwidth to memory for

multi-cores. The presented experiments show that, for several different architectures

tested, both desktop and server, P-Ray generates accurate results. By utilizing some

of the machine characteristics that were discovered with these micro-benchmarks, a

more accurate cost model can be constructed.

1.3 Thesis Organization

For each core contribution of this thesis, the problem will be introduced, along with any

necessary background that has not been described yet. In some cases, a set of examples will

be provided. Next, the main contribution and all of its necessary algorithms are presented.

From there, different experiments will be evaluated, followed by a discussion of the current

limitations and relevant future work to that section.

The remainder of the dissertation is structured into chapters as follows:

• Chapter 2 : Presents a high-level background and overview of concepts necessary to

understand the remainder of the dissertation. Specifically, it will give a short overview

of components from compiler theory and parallel programming, the Chapel program-

ming language, and dependence-driven execution models.

6

• Chapter 3 : Describes the compilation techniques used to translate explicitly-parallel

loops into a suitable form so that they can be mapped onto dependence-driven execu-

tion models.

• Chapter 4 : Presents a new heuristic that will be used in determining the ideal

processor configuration when targeting different runtime systems. Additionally, a new

loop transformation that combines loop tiling and loop coalescing will be provided.

• Chapter 5 : Discusses the techniques and optimizations used to map data-parallel

codes onto heterogeneous architectures. This will also cover the algorithms used to “go

backwards” and map GPU-centric code back onto a traditional multi-core platform.

• Chapter 6 : Present the portable micro-benchmark suite named P-Ray and associated

examples.

• Chapter 7 : Propose future work.

• Chapter 8 : Final thoughts and conclusions.

7

Chapter 2

Background

This chapter discusses topics that are important in understanding the remainder of the

dissertation. First, this chapter presents an overview and defines some of the concepts in

this thesis from the compiler and parallel computing literature. Second, a brief overview of

the Chapel programming language will be presented. The material presented will be enough

for the reader to understand the main concepts of the language related to data-parallelism.

Finally, an overview of dependence-driven execution models will be discussed, which includes

an overview of the StarPU runtime system.

2.1 General Compiler Preliminaries

This section describes the necessary high-level ideas relevant to compilers used in this thesis.

Most of the topics discussed in this section assume the use of an imperative programming

language, primarily because the input language assumed in this is imperative.

8

2.1.1 Control Flow Analysis

Basic Block (BB)

A basic block is set of instructions in a linear sequence, where the only entry point is the first

statement in the sequence, and the only exit point being the last statement in the sequence.

Aho et al. present a simple algorithm to partition a program into a set of basic blocks [23].

Control Flow Graph(CFG)

A control flow graph is a program representation where each node in the graph is a ba-

sic block, and the edges connecting the nodes represent a possible execution order (e.g.

conditional-branch). More specifically, a CFG is the triple G = (V,E, s), where (V,E) make

up a directed graph, V is the set of all basic blocks, E is the set of edges connecting all

nodes in V , and s ∈ V is the entry point of the program. In Figure 2.1, the leftmost graph

represents a control flow graph, where each numbered node represents a basic block.

3

4

5 6

7 8

9

10

2

11

1

2,3,4,5,6,7,8,9,10,11

1

4,5,6,7,8,9

10,11

2,3

1

1,2,3,4,5,6,7,8,9,10,11

G1 G2 G3 G4

Figure 2.1: Interval Analysis Applied to a CFG

9

Interval Analysis

One way of finding structure in a control flow graph is to identify “hierarchies” of loops

by applying interval analysis [1]. Intervals analysis is the technique used to partition a

reducible [24] flow graph into disjoint regions named intervals. Informally, an interval is a

natural loop [23] with a set of nodes forming an acyclic subgraph between the header node

and a back edge that completes the loop. Let a flow graph G = (V,E, s), and IG(h) be

an interval of G with entry node h. Given an entry node h, an interval has the following

properties [2]:

• Entry node h is in IG(h).

• Every edge that connects to IG(h) connects only through the entry node h.

• Entry node h dominates [25] all other nodes inside of IG(h).

• Every cycle inside of IG(h) includes the entry node h.

• Every node whose predecessors are in IG(h) is added to IG(h) until there are no such

nodes.

Well-known algorithms [1, 2] for constructing an interval node and partitioning a control flow

graph into an interval graph are presented in Algorithms 1 and 2. Algorithm 1 constructs

a single interval node, while Algorithm 2 partitions the CFG into an interval graph.

To find the nested loop structure (and determine the reducibility) of the flow graph G,

interval analysis can be applied successively to create a sequence of derived graphs. Start-

ing with G1 (the original flow graph), each successive pass of Algorithms 1 and 2 creates

{G2, G3, . . . , Gd}, where Gd is the limit flow graph. The limit flow graph is the last possible

application of interval partitioning where only a single node remains. Starting with a node

in Gi+1 represents an interval in Gi. Once a limit flow graph is encountered, if it contains

10

Algorithm 1: Interval Node Construction

Input: h : node of graph G
Output: I(h) : interval node with header h
I(h)← h;
while ∃ a node m such that m /∈ I(h) ∧m 6= s∧ all predecessors of m are in I(h) do

I(h)← I(h) ∪m;

Algorithm 2: Interval Graph Partitioning

Input: Control flow graph G = (V, E, s)
Output: H : set of potential header nodes
Output: L : set of intervals
H ← {s};
L← ∅;
while H 6= ∅ do

select and delete a node h from H;
I(h)← computed using Algorithm 1;
L← L ∪ I(h);
H ← H ∪ {n | n has a predecessor in I(h) ∧ n 6∈ L};

Figure 2.2: Interval Analysis [1, 2]

a single node, it can be said that the graph G is reducible. Conceptually, by consecutively

applying interval analysis, a loop nesting structure forms. This nesting structure starts to

form from the innermost loop to the outermost per each successive step of the algorithm.

This is a feature that will soon be exploited when partitioning nested parallel loops into

separate tasks for the dependence-driven runtime.

Consider the graphs shown in Figure 2.1. The leftmost graph represents a control flow

graph. Each numbered node in this graph is a basic block. After applying interval analysis

to the CFG, an interval graph is formed as demonstrated by the second graph from the

left. Applying interval analysis again forms the third graph from the left. Applying interval

analysis one final time results in the limit flow graph as shown on the rightmost graph.

It has been shown that the likelihood of a graph being irreducible is rare [26, 27]. In

cases where the graph is irreducible, node splitting [2] can be used to transform the graph

into one that is reducible. For the remainder of this dissertation, it can be assumed that all

11

programs will be reducible, as Chapel is a structured programming language that does not

support unstructured control idioms (e.g. GOTO, setjmp(), longjmp(), etc.). In the case of

Chapel’s intermediate representation: it does generate GOTOs internally, but none of these

internal GOTOs cause a branch into a loop.

Interval analysis traditionally has had numerous uses, such as being an alternative for

iterative dataflow analysis [28]. The work in Chapter 3 leverages interval analysis by par-

titioning an explicitly-parallel program into a hierarchical set of interval graphs (up to the

limit flow graph) that consist of nested-parallel loops with control statements joining them

together.

2.1.2 Dependences: Data and Control

Data Dependence

The ability to reason about what dependences exist between data has many uses in compilers.

This includes the ability to determine the correctness of compiler transformations when the

order of execution between statements has changed, to detect parallelism automatically, and

to perform loop vectorization.

A data dependence is simply the relation between two statements in a program that have

a partial execution order between them. Given two statements S1 and S2, there is a data

dependence between S1 and S2 if all of the following conditions are true:

1. Both S1 and S2 access memory location M

2. Either S1 or S2 performs a write to memory location M

3. There is a path of execution from S1 to S2 or from S2 to S1

A data-dependence can be further classified into one of the following types:

12

1. Flow Dependence (or True Dependence)

A statement S2 has a flow dependence on statement S1 (denoted as S1δS2) when there

is a path from S1 to S2, and S1 stores a value at location M and S2 reads from location

M .

2. Anti-dependence

A statement S2 has an anti-dependence on statement S1 (denoted as S1δ
−1S2) when

there is a path from S1 to S2, and S1 reads a value at location M and S2 writes a value

at M .

3. Output Dependence

A statement S2 has an output dependence on statement S1 (denoted as 1δ
OS2) when

S1 writes a value at location M and then S2 will write a value at M .

An important observation from these definitions is that if there are no dependences

between the statements S1 and S2, both can be executed in parallel with respect to each

other.

Dependences in Loops

The notion of data dependences can also applied in the presence of loops. Similar to how a

data dependence was defined earlier, a statement S1 can have a dependence on a statement

S2 even across different loop iterations. As a result of this, there are two classifications of

dependences when related to loops: loop-carried and loop-independent.

1. Loop-Carried Dependence

A loop-carried dependence exists when there is a dependence between two statements

S1 and S2 across different iterations of a loop. This form of dependence limits the

amount of parallelism that exists in the loop unless further transformations are ap-

plied [29].

13

2. Loop-Independent Dependence

A loop-independent dependence exists when there is a dependence between two state-

ments S1 and S2 only on the same iteration of a loop. Assuming that all dependences

between the statements in a loop are independent, then the iterations of the loop are

independent, thus each iteration of the loop can now be fully parallelized.

Control Dependence

Similar to data dependences specifying an ordering between statements, control dependences

specify whether a statement has executed. A statement S is said to be control dependent on

a conditional branch B1, if by taking branch B1 will always cause S to execute. If another

branch B2 of that conditional statement executes, then S does not need to execute.

Computing the control dependences for a graph has led to many advances such as new

compiler optimizations [30], the automatic detection of parallelism [31], and computing SSA

form [32].

2.1.3 Data-Parallelism

A major component of the work from this thesis depends on data-parallelism. Simply,

data-parallelism is a form of parallelism where the same instructions or operation is applied

to different sections of data in parallel, either on different processors or different devices

within a processor. There are numerous advantages to choosing data-parallelism, including

determinacy, and high-level expressiveness. Data-parallelism is fundamental to numerous

programming models and languages, including OpenMP [33], NESL [34], ZPL [35], and

CUDA [36]. While there are different high-level, data-parallel primitives, including parallel

prefix [37], the main focus of this work will be on data-parallel loops.

14

Data-Parallel Loops

For the remainder of this dissertation, the reader can assume that a data-parallel loop is de-

fined as a loop where the only dependences that occur inside of the loop are loop-independent

(i.e. no loop-carried dependences). Each iteration of the loop can now execute independently

of the other iterations, as if the loop were executed sequentially. Additionally, the iteration

space of the loop is fixed upon entering the loop, and there is no way to prematurely exit

the loop. The parallel for from OpenMP and the forall from Chapel are examples of

this. However, in the case of Fortran 95’s forall loop, it is different from the one defined

here, because Fortran 95’s forall loop can only contain assignments to arrays, as opposed

to containing other forms of statements, even including other parallel loops nested inside of

it.

In order to ensure correctness after a data-parallel loop has completed, an implicit barrier

synchronization in the form of an implicit join is commonly placed between the end of the

loop and the start of the next statement in the program. A join is a synchronization construct

that forces the worker threads in a group to stop at the barrier point until all of the worker

threads of this group reach the synchronization point. Once all of the threads reach the

join, execution for the master thread can resume. When dealing with more dynamic forms

of parallelism, there have been improvements to the concept of barriers, including support

for clocks [38] or phasers [39].

The doacross [40, 41] is a special form of a parallel loop where the parallelism is con-

strained due to forward loop-carried dependences across iterations of the loop. In this case,

a doacross loop’s iterations are scheduled onto threads and executed in a pipelined order,

which allow portions of the loop body to be overlapped in execution. In order to ensure

program correctness, synchronization primitives (e.g. signal() and wait()) are commonly

used to enforce the correct execution order.

A situation can also exist where data-parallel loops are nested inside of data-parallel

15

loops. Nested parallelism occurs in numerous situations. For example, when operating on

a multi-dimensional array where the operations are parallel along all dimensions. There

can also be a noticeable amount of overhead as a result of inner parallelism, including

overheads from task and barrier creation and task destruction. If the nested-parallel loop

bounds are statically known, and if the parallel loops are perfectly-nested, techniques such as

loop coalescing [42] can be performed. Given a multi-dimensional loop L that is perfectly-

nested and data-parallel, and L = (Nm, Nm−1, . . . , N1), where Nm, Nm−1, . . . , N1 denote

the normalized loop limits, loop coalescing is a compiler optimization that combines the

multi-dimensional iteration space of L into a single-dimensional loop L′ with
m∏
i=1

Ni total

iterations. Loop coalescing has the benefit of decreasing a substantial amount of overhead in

task management in addition to improving loop schedules. This benefit remains as long as

the amount of time spent computing the new single-dimensional indices is not greater than

the overhead of dynamically spawning the threads for the inner parallel loops. Otherwise,

there is no benefit to this transformation. The downside to loop-coalescing is that this

transformation is oblivious to locality, and in some cases could decrease it. Part of the work

in Chapter 4 introduces a method that combines loop coalescing with tiling for perfectly-

nested parallel loops. In the situation where the loops are not perfectly-nested, techniques

such as loop distribution [43] may be applied in order to force the loops to become perfectly-

nested.

2.2 Dependence-Driven Execution Models

The goal of this section is to provide the reader with an intuition for what dependence-driven

execution models are, including the description of an example dependence-driven runtime

system named StarPU. While there are differences in terminology, implementation, and

overall design between dependence-driven execution models, they all share the core idea that

16

a computation can begin as soon as all of its dependence constraints (task, data, or control)

have been resolved. The root of this is derived from the classic dataflow-architecture based

approach [44] where the instructions of a program are executed in a partial ordering that has

been defined by its dependences. Unlike the von Neumann architecture, the dataflow model

has no program counter and the execution of code can only be performed once all of its input

arguments are available to it. The dataflow model has no global state since data (sometimes

referred to as a token) is communicated along the edges connecting dependent nodes. Due to

its stateless nature, the dataflow model is well suited to declarative programming paradigms

including functional languages [45, 46, 47].

In a dependence-driven execution model, a program is represented by a directed graph

DFG = (V,E, s) where V represents computation nodes (also called actors), E are the

directed arcs that represent dependences between the nodes, and s is the starting point of

the program. A node n ∈ V can execute (fire) as soon as all of its incoming dependences are

resolved. The type of dependence and the granularity of a node differs based on the specific

programming model. In the early days of dataflow, nodes were fine-grain (at the single

instruction level), and as soon as the operands for the instruction were available (i.e. tokens

on all of its input edges), the instruction could then execute atomically. While this exposes a

high-degree of parallelism, the overheads from scheduling and communication were extremely

high. Additionally, exploiting locality was difficult [48]. To alleviate scheduling overheads,

the nodes had to be coarsened, effectively making this into macro-dataflow. In the macro-

dataflow approach, the granularity of the nodes are typically at the task-level (i.e. more

than one instruction). This reduces scheduling overhead, and locality can now be exploited

within the node. The downside is that this still requires an explicit communication of tokens

between the nodes in order to enforce the stateless design of the programming model. For

example, in StarPU [11], a node is always a task (sometimes referred to as a codelet [14]).

As the number of processing units increases, so does the degree of parallelism available.

17

In an attempt to leverage this new-found parallelism, there has been a resurgence of exe-

cution models that are dependence-driven. Examples include StarPU [11], Intel Concurrent

Collections (CnC) [16], SWARM by ET International [14], and PLASMA [49], among others.

This new breed of dependence-driven execution models is fundamentally designed for shared

memory multi-core and many-core systems along with some support for distributed memory

machines.

2.2.1 StarPU Runtime System

This section will give a brief overview of the StarPU dependence-driven runtime system. For

the implementation work that is part of this thesis, StarPU was chosen as the targeted run-

time due to its maturity, well-studied performance, and support for data coherence between

tasks.

StarPU is a dependence-driven execution runtime system that allows for the parallel

execution of code on heterogeneous architectures including multi-core processors and many-

core architectures such as GPU accelerators. Using a dynamic task-dependence graph as its

input, the StarPU runtime system is able to efficiently schedule tasks onto the heterogeneous

components of the machine. The runtime system also supports a software-based distributed

shared memory (DSM) with relaxed consistency and data replication onto the components.

In addition to automatically selecting a task scheduling policy based on different criteria,

there is support for user-provided scheduling policies and performance analysis tools. The

remainder of this section will describe the essential components necessary to understand the

execution model used.

StarPU Task-Dependence Graph Construction

The simplest method of creating a program for StarPU is to declaratively describe the

program in terms of task nodes. These tasks are C-style functions that can be executed

18

1 declare_deps(tagB , 1, tagA);

2 declare_deps(tagC , 1, tagA);

3 declare_deps(tagD , 1, tagA);

4 declare_deps(tagE , 1, tagB);

5 declare_deps(tagF , 1, tagB);

6 declare_deps(tagG , 2, tagE , tagF);

7 declare_deps(tagH , 3, tagG , tagC , tagD);

9 taskA ->tag_id = tagA;

10 taskB ->tag_id = tagB;

11 ...

12 taskH ->tag_id = tagH;

14 task_submit(taskA);

15 task_submit(taskB);

16 ...

17 task_submit(taskH);

19 tag_wait(tagH);

A

B C D

E F

G

H

Figure 2.3: StarPU Task-Dependence Graph

independently of the other tasks. These task node are then asynchronously inserted to a

task-dependence graph. Since StarPU has support for heterogeneous architectures, the task

can be specified to execute either on a traditional CPU or take the form of a data-parallel

kernel as used in CUDA [36] or OpenCL [50]. In order to start expressing dependences

between the tasks, a tag (a task identifier) needs to be associated with the task. Once a task

with an associated tag has completed its computation, any tasks that were dependent on

that tag (assuming that was their only dependence) can start execution on the device. The

creation of tasks and tags are decoupled. This was done in order for dependences between

tags to be specified without having had created the task data structures.

Consider the example in Figure 2.3. The directed graph on the right represents a task-

dependence graph where the nodes are the tasks, and the edges are their dependences. As

shown on the left side of the figure, lines 1-7 construct the tag dependences and lines 9-12

associate a tag with a particular task. Once the graph is constructed, and the the individual

tasks are submitted to the runtime, execution can begin. Since node A does not have any

incoming edges, it can start immediately. Finally, line 19 blocks any subsequent execution

19

until the task with tagH completes.

StarPU Data Management

In order for the programmer to not deal with the explicit data management across different

heterogeneous components, StarPU provides facilities to handle data management automat-

ically through its distributed shared memory based on the modified-shared-invalid (MSI)

coherence protocol. In order for the MSI protocol to keep the system coherent, data is able

to be replicated across the different memory nodes (e.g. the CPU and GPU memory spaces).

In order to use the DSM, data is first registered with the runtime; then proceeds to

perform the memory allocation on the respective devices and return a data handle back to

the main application. This handle is then associated with a task. When a data lookup using

the handle occurs inside of the tasks, the runtime performs the correct memory lookup.

2.3 Chapel Language Overview

This section presents a short overview of the Chapel programming language [21] and its

support for data parallelism. The remainder of this thesis is based on the Chapel 1.4.0

release [51].

Chapel is an object-oriented parallel programming language designed from first principles,

rather than as an extension to an existing language. The base language supports iterator

functions, generic programming, and it also takes advantage of type inference to determine

data types automatically. Chapel was designed to facilitate programming of next-generation

parallel machines well, and make using current-generation machines more productive. Along

with X10 [38] and Fortress [52], Chapel grew out of the DARPA High Productivity Com-

puting Systems (HPCS) program. Chapel support for data parallelism, index sets, and

distributed arrays are derived from ZPL [53] and High Performance Fortran (HPF) [54].

20

Chapel’s concepts of task parallelism and lightweight synchronization are derived from the

Cray MTA/XMT’s extensions to C and Fortran [55]. Lastly, Chapel supports interoperabil-

ity with C and CUDA through C-style extern mechanisms. For interoperability with other

languages such as C++, Fortran, or Python, the Babel interoperability tool [56] can be used.

The reference implementation of the Chapel compiler is a source-to-source based compiler

that generates C source code. There is also an option to use LLVM [57] as the compiler

backend, but the work in this thesis does not leverage that.

2.3.1 Domains and Distributed Arrays

The core component for data parallelism in Chapel is the concept of a domain, which is an

extension to regions first described in ZPL [58]. A domain is a first-class language construct

that describes an index space [51]. In addition to supporting iterations by loops, domains are

used to describe the size and shapes of arrays. Consider the following example in Figure 2.4.

var D: domain (2) = [1..n, 1..n];

var A: [D] real;

for xy in D {

A(xy) = (1, 2);

}

Figure 2.4: Example Demonstrating Chapel’s Support for Domains

Here, D is a 2D domain and is initialized to contain the set of indices (i,j) with i ∈

{1, 2, .., n} and j ∈ {1, 2, .., n}. The array A has its index set defined by the domain, resulting

in an n × n array. The loop performs an iteration over the 2D iteration space defined by

domain D where each each iteration index xy is a two–element tuple.

21

2.3.2 Data Parallelism in Chapel

Chapel has rich support for data parallel computation, making it ideal for SIMD-like ar-

chitectures such as the GPU [7]. The main construct for data parallelism in Chapel is the

forall loop which iterates over the indices in a domain’s index set or over a subset of the

elements in an array. There is also built-in support for the reduction and scan operators.

Chapel also allows users to define their own reduction and scan operations [59].

2.3.3 Task Parallelism in Chapel

Chapel’s support for task parallelism includes begin, cobegin, and coforall statements.

The unstructured begin statement will asynchronously spawn a task containing the contents

of the begin block and possibly return at a later synchronization point specified by the

programmer. The structured cobegin will spawn a separate task for each program statement

inside of the cobegin block. The parent task that invoked cobegin will resume execution as

soon as all cobegin inner tasks have completed. The structured loop statement coforall

creates a separate task for each iteration of the loop. Similar to the cobegin, the parent

task will wait for all coforall iteration tasks to complete before proceeding.

2.3.4 Distributions (Built-in and User-defined)

Data distributions in Chapel are essentially a recipe that the compiler uses to map a compu-

tation and its associated data to the nodes where the program executes. Languages such as

HPF and ZPL have support for distributed arrays, but the semantics of the distributions are

hard-wired into the compiler and runtime, leaving the programmer without enough flexibility

to manipulate many forms of distributed data (such as sparse arrays). Similar to domains,

distributions are first-class objects: they can be named, manipulated, and passed through

functions.

22

Chapel provides a set of commonly-used distributions such as Block and Cyclic. Addi-

tionally, user-defined distributions [60, 22] enable the creation of a wide range of distributions

that are application- or target-specific. User-defined distributions are developed directly in

Chapel, typically using built-in features (e.g. classes, task parallelism, locales). This has the

benefit that distribution developers can directly leverage the high-level facilities offered by

the language rather than having to program in a lower-level language.

In order for users to write their own distributions, they must implement routines to fulfill

the required interface. Interface components include the ability to create domains and arrays,

wholesale assignment of index sets, iterators supporting sequential and parallel iteration over

a domain, random access to elements of an array, and support for slicing and reindexing. If

the user does not explicitly declare a distribution, Chapel will implicitly use a distribution

that targets shared memory parallelism.

Chapel uses the dmapped keyword in order to map the domain’s indices to the target

architecture using the specified distribution. This approach is useful because Chapel distri-

butions are designed so that they can be swapped in order to modify the implementation of

a domain and its arrays without changing the code. The advantage to this is that the code

is cleaner and more portable: users do not need to maintain a separate code base for each

target architecture. The concept of user-defined Chapel distributions will be applied later

in Chapter 5 for targeting GPU architectures.

23

Chapter 3

Compilation for Dependence-Driven

Models

The chapter presents compiler algorithms that are used to map entire loop-based parallel

imperative programs for efficient execution onto a dependence-driven execution model.

3.1 Introduction

There has been an active push in both industrial and academic labs to build exascale machine

architectures with the goal of sharply decreasing energy consumption in order to achieve

exascale levels of computing performance. For this to work, it would require new circuit

topologies and machine architectures. There is also a fresh look needed at different paral-

lel programming models as alternatives to the traditional approaches such as OpenMP [33]

or OpenCL [50]. One of the major problems with the traditional loop-based parallel pro-

gramming models is that parallelism is constrained by the use of barrier synchronization in

fork-join styles of parallelism [61, 11, 13]. Any limitation on a program’s parallelism could be

detrimental since this is a vastly needed commodity for driving exascale levels of performance.

24

Instead, in the dependence-driven (e.g. dataflow) approaches, the only things limiting paral-

lelism are the natural dependences that exist. For example, as part of the DARPA-sponsored

Intel UHPC (Ubiquitous High-Performance Computing) project, Intel and its partners have

been developing a novel architecture that is power efficient and scalable to exascale levels.

An execution model chosen for this type of architecture is the dependence-driven system

named SWARM (SWift Adaptive Runtime Machine) [14]. Since the vast majority of exist-

ing HPC applications are imperative and loop-based, the application programmers would

need to rewrite their code to suit these dependence-driven models. A downside to this is

the difficulty in porting the application to another language, which is not always practical

or economical.

For this work, Chapel was chosen as the input language for reasons including:

• Chapel provides an extensible and easy to learn compiler infrastructure with an AST

internal representation (IR). This makes adding new compiler passes straightforward

and simple.

• The language has first-class support for different parallel constructs such as data-

parallelism and task-parallelism.

• Chapel’s user-defined domain maps [22] help in writing portable applications. The

same loops can be used across a different class of parallel machines just by changing

the domain map.

In determining a dependence-driven execution model, StarPU was chosen over other existing

implementations for the following reasons:

• Support for data-coherence across tasks. This alleviates some of the complexity of

coherent data management from the compiler, and pushes it into the runtime system.

25

• Support for execution on heterogeneous architectures. While not actively pursued as

part of this thesis, this allows for the work presented here to be extended in order to

leverage StarPU’s support for heterogeneous systems.

• StarPU is a stable and production-worthy system that other research projects are

currently leveraging [62, 63].

This chapter tries to address the question of whether it is possible (and worthwhile)

to compile traditional (i.e. imperative and explicitly parallel) applications to execute on

dependence-driven execution models. More concretely, this work will look at the compilation

techniques that are necessary to map Chapel applications using multiply-nested parallel loops

and execute them using the StarPU dependence-driven runtime system, while still requiring

barriers for program correctness. Even though StarPU supports heterogeneous architectures

including GPUs, the focus in this chapter will only be multi-core architectures. While the

implementation of the concepts discussed in this chapter use both Chapel and StarPU, they

would be similarly applicable to other similar languages and runtime systems.

A limitation of compiling data-parallel loops is that in order to ensure correctness, an

implicit barrier synchronization (i.e. join) needs to occur after the loop, thus limiting po-

tential parallelism [64]. As will be shown later in this chapter, the performance limitation

of an implicit barrier synchronization will be further exacerbated when nested-parallelism

is involved. To address this, a new language extension is defined to allow the user to ex-

plicitly express the dependences between different statements of a program, thus allowing

other statements to execute concurrently if their dependences have been met. Additionally,

Chapter 4 will describe an optimization that can reduce barrier synchronizations and find

the ideal number of processor resources to utilize for a computation.

Contributions

The contributions of this chapter are as follows:

26

• The development of new compiler algorithms based on interval analysis that map

multiply-nested parallel loops onto dependence-driven runtime systems.

• The introduction of agglomerated flow graphs and agglomerated basic blocks which

represent a coarsened flow graph with disjoint parallel and sequential blocks of code.

• A method of propagating and mapping data declarations, their uses, and their defi-

nitions from a scoped imperative program across a set of distributed tasks in a task-

dependence graph.

• New language extensions that allow the user to explicitly express ordering constraints

between different statements of a program. These extensions effectively convey to the

compiler what the required partial ordering is, so that the compiler can now enable

loop optimizations that it might not have before.

The remainder of this chapter is organized as follows: Section 3.2 will provide a simple

motivating example based on a 2-dimensional Jacobi Iteration. Next, Section 3.3 will present

the compiler algorithms used to perform multiply-nested parallel loop partitioning onto the

StarPU runtime system. This will also discuss a low-level intermediate language generated

by the compiler. Afterwards, a performance evaluation is performed in Section 3.4. Next,

Section 3.5 will briefly describe how to map non-loop based parallel constructs (e.g. cobegin,

begin) onto the dependence-driven runtime systems. Section 3.6 will describe language

extensions that can be used to express dependences explicitly in the code instead of having

the compiler try to infer them. Afterwards, Sections 3.7 and 3.8 will discuss related work and

any limitations from the proposed techniques. Conclusions will be presented in Section 3.9.

27

3.2 Motivation

As a simple motivation, consider the Chapel program in Figure 3.1. This is a 4-point

stencil computation based on the Jacobi method used to solve the Laplace equation in

two dimensions. Line 1 specifies to the compiler that a user-defined domain map is to

be used. The domain map CodeletDist() informs the compiler to generate code for any

declared arrays, domains, and their respective traversals via forall loops targeting the

StarPU runtime infrastructure. The parallel loop in lines 19–22 performs the 4-point stencil

computation. Line 24 is a parallel reduction that returns the maximum difference between

the two arrays XNew and X. Finally, line 26 assigns the contents of XNew to X. Since lines 24

and 26 are data parallel statements in the form of array operations, the compiler will expand

these statements into a loop-based form, and in the case of the reduction, multiple loops will

be generated. This will be evident shortly in the generated flow graph.

In order to generate the task-dependence graph that will be used by StarPU, the following

set of compiler analyses and transformations need to be performed:

1. Agglomerated Flow Graph

Any block of code that does not have a parallel construct inside of it will have its

basic blocks combined together in order to form an agglomerated flow graph (AFG).

This step will partition the program into disjoint sequential and parallel components

with their respective control statements connecting them. Additionally, this step will

simplify the control flow analysis that will be used next. Figure 3.2a is the traditional

generated flow graph from the given source code in Figure 3.1. In the flow graph, each

color coded section represents a line (or set of lines) from the program source code.

From the program in Figure 3.1, lines 1–11 represents different variable declarations

and definitions. This section of source code corresponds to basic block number 0. The

for loop (along with its header) from lines 13–15 corresponds to basic block numbers

28

1 const cdist = new CodeletDist ();

2 const cPSpace = [1..n, 1..n] dmapped cdist;

3 const cDomain = [0..n+1, 0..n+1] dmapped cdist;

4 var X, XNew : [cDomain] real = 0.0;

6 const epsilon = ...;

7 const delta = ...;

8 const north = (-1,0),

9 south = (1,0),

10 east = (0,1),

11 west = (0,-1);

13 for i in 1..n {

14 X(n+1, i) = 1.0;

15 }

17 while (delta > epsilon) {

19 forall ij in cPSpace {

20 XNew(ij) = (X(ij+north) + X(ij+south) +

21 X(ij+east) + X(ij+west)) / 4.0;

22 }

24 delta = max reduce abs(XNew(cPSpace) - X(cPSpace));

26 X(cPSpace) = XNew(cPSpace);

27 }

Figure 3.1: 2-D Jacobi Method Implemented in Chapel

29

0

1

2

3

24

23

4

7

6

5

8

15

14

9

13

10

12

11

16

19

18

17

22

20

21

Lines1 - 17

Lines 19-22

Line 24

Line 26

Line 27

(a) CFG

0-2

3

24

23

4-6

7

8-14

15-19

20-22

(b) Agglomerated CFG

Figure 3.2: Traditional Flow Graph (a) and Agglomerated Flow Graph (b)

30

0–2. The loop header from the while loop is represented by basic block number 2.

The forall loop and its stencil computation are represented by basic blocks 3–6. In

this case, there are two loops that are formed. The outer loop is the parallel loop that

spawns a set number of tasks (typically the same as the number of processors). The

inner (sequential) loop will iterate through a subset of the total iteration space that was

assigned to that task. The reduction operation from line 24 corresponds to basic blocks

7–19. During compilation, a reduction operation will expand into two disjoint loops.

The first loop will perform a localized reduction per each task, and store its result

into a per task element. The second loop will then perform a sequential accumulation

across each localized result. The array assignment from line 26 corresponds to basic

blocks 20-22, and this will also expand into a parallel loop. The backedge from the

while loop and the remainder of the program is represented by basic blocks 23–24.

The AFG form of this same program is provided in Figure 3.2b. A circle node in

the agglomerated flow graph represents an agglomerated basic block, and the edges

represent the change in control or a change from a sequential to parallel block of

execution. It should be evident that in the case of the AFG, there are fewer nodes

and edges compared to the traditional CFG. For example, from the source code in

Figure 3.1, lines 1–15 will map to the first (top-most) block in the AFG. They are not

separated out into separate basic blocks since there is no explicit parallelism between

them. This agglomeration will also occur for the sections of source code in lines 24

and 26. At this point during the construction of the AFG, forall loops are initially

treated as sequential for loops (i.e. backedges exist for those loops). Section 3.3.3

provides a more formal definition of an AFG and algorithm of how it is constructed.

2. Interval Analysis

Instead of the customary case of using a control flow graph as input into the interval

31

0-2

3

24

23

4-6

7

8-14

15-19

20-22

0

1

2

3

4

5

6

7

8

(a) Interval Analysis Pass 1

0-2

3

24

23

4-6

7

8-14

15-19

20-22

9

10

11

(b) Interval Analysis Pass 2

0-2

3

24

23

4-6

7

8-14

15-19

20-22

12

(c) Interval Analysis Pass 3

Figure 3.3: Sequence of Derived Interval Graphs

32

12

9 10
11

0 1 2 3 4 5 6 7 8

Figure 3.4: Interval Containment Tree

analysis compilation stage, an agglomerated flow graph will be used instead. By using

the same example from Figures 3.1-3.2, applying interval analysis successively until the

limit flow graph has been reached is shown in Figure 3.3. In this interval graph, square

nodes represent intervals, where the interval can contain either a set of agglomerated

basic blocks, or intervals from previous passes. Each unique number outside of every

interval node represents its interval id. The edges between the intervals are the same

as before from the flow graph. For this example, it took three passes of the algorithm

to form the limit flow graph.

3. Interval Containment Tree

An alternative representation of the interval graph from Figure 3.3 is the interval con-

tainment tree (ICT) [65] as shown in Figure 3.4. An ICT is a tree data structure

used to represent the parallel loop hierarchy based on the sequence of derived inter-

val graphs. Every node in the ICT corresponds to a node from the derived interval

graph. Additionally, each level in the tree represents a pass of interval analysis. In

33

this figure, all non-leaf nodes represent meta-tasks. A meta-task has the responsibility

of dynamically submitting tasks (one for each of its child nodes) and assigning the

control dependences that were computed during interval analysis. In the situation

where a meta-task represents the outer parallel loop of a multiply-nested parallel loop,

the meta-task will spawn a number of parallel iterations corresponding to the loop’s

domain.

The leaves of the ICT represent the actual program code. To decrease task creation/de-

struction overhead, a meta-task node is replaced by its child node in cases where there

are no sibling nodes for that child. As shown in Figure 3.4, this occurs with the leaf

nodes 0 and 8 replacing their parents 9 and 11, respectively. As will be shown in

Section 3.3, the ICT is used in conjunction with the computed edges of the interval

graph in order to perform code generation of the static and dynamic portions of the

task-dependence graph. This will be useful in cases where there are multiply-nested

parallel loops that are dynamically spawned.

4. Data Placement and Communication

With the requirement that the input program be imperative, and the output be effec-

tively a distributed task-dependence graph that has the potential of executing tasks

on different address spaces (e.g. GPUs, cluster, etc.), the compiler needs to perform

an analysis to determine on what task nodes to declare data, and to what other task

nodes it needs to explicitly communicate the assignments and uses of that data. This

analysis attempts to map a program (with scoping rules) to one that that has been

decomposed into disjoint tasks. An algorithm that uses the generated interval graphs

and the ICT will be provided in Section 3.3.6.

5. Code Generation

Continuing with the previous example from Figures 3.1-3.4, a task-dependence graph

34

S

T0

T10

T2

T22T21 ... T2N

BT2

T3

T4

T42T41 ... T4N

BT4

T5

T6

T62T61 ... T6N

BT6

T7

T8

F

T1

Figure 3.5: Generated Task-Dependence Graph for 2-D Jacobi

35

int main()

{

/* initialize data structures */

....

seq_task(fn0 , 0, 10, 8, handles);

seq_task(fn10 , 10, 11, handles);

seq_task(fn8 , 8, FIN , handles);

signal_task (0);

wait_forall_tasks ();

}

void fn0(void *buffers[], void *params)

{

/* Generated code from BB 0-2 */

...

if (delta > epsilon) {

signal_task (10);

else

signal_task (8);

}

void fn10(void *buffers[], void *params)

{

...

seq_task(fn1 , 1, 2, 3, handles);

par_task(fn2 , 2, 3, 1, n, handles);

seq_task(fn3 , 3, 4, 5, handles);

par_task(fn4 , 4, 5, 1, n, handles);

seq_task(fn5 , 5, 6, 7, handles);

par_task(fn6 , 6, 7, 1, n, handles);

seq_task(fn7 , 7, 10, 11, handles);

signal_task (1);

}

void fn8(void *buffers[], void *params)

{

/* Generated code from BB 24 */

....

/* No need to signal

* since no successor nodes */

}

void fn1(void *buffers[], void *params)

{

/* Generated code from BB 3 */

...

if (takeForall)

signal_task (2);

else

signal_task (3);

}

void fn2(void *buffers[], void *params)

{

/* Generate body of forall loop:

* BB 4-6 */

...

signal_task_barrier ();

}

void fn3(void *buffers[], void *params)

{

/* Generated code from BB 7 */

...

if (takeForall)

signal_task (4);

else

signal_task (5);

}

void fn4(void *buffers[], void *params)

{

/* Generate body of forall loop:

* BB 8-14 */

...

signal_task_barrier ();

}

void fn5(void *buffers[], void *params)

{

/* Generated code from BB 15 -19 */

...

if (takeForall)

signal_task (6);

else

signal_task (7);

}

void fn6(void *buffers[], void *params)

{

/* Generate body of forall loop:

* BB 20 -22 */

...

signal_task_barrier ();

}

void fn7(void *buffers[], void *params)

{

/* Generated code from BB 23 */

...

if (delta > epsilon) {

signal_task (10);

else

signal_task (8);

}

Figure 3.6: Low-Level Generated Code for 2-D Jacobi

36

can now be represented as shown in Figure 3.5. For the task-dependence graph, each

rectangular block and an ID represent a unique task. This task and its matching ID

correspond to the nodes from the interval graph and the interval containment tree from

Figures 3.3 and 3.4.

In addition to the start (S) and end (F) nodes, the task-dependence graph now in-

cludes additional nodes related to the number of parallel instances of a loop (e.g.

T21, T22, . . . , T2N) and their implicit barriers (e.g. BT1). By performing a top-down

breadth-first traversal of the ICT from Figure 3.4, code can be generated. The corre-

sponding generated code for this graph is presented in Figure 3.6. As will be described

in Section 3.3.7, the seq task and par task calls are part of the low-level interface

between the Chapel runtime system and StarPU. These routines create the necessary

StarPU data structures, link dependences between the tasks, and submit the tasks to

the StarPU scheduler. Additionally, par task will asynchronously spawn the specified

number of parallel iteration tasks with their respective barrier task (i.e. the implicit

barrier). The signal task(id) routine is used to notify a successor task that it can

start executing. In the case of a parallel loop, each parallel iteration will notify the bar-

rier task it has completed execution through a call to signal task barrier(). Once

all of the worker tasks have completed and notified their barrier task, the successor of

the parallel loop is notified that it can start execution.

Lastly, since nodes 9 and 11 in Figure 3.4 have only a single child, they can be replaced

with leaf nodes 0 and 8, respectively.

37

3.3 Generating Task-Dependence Graphs From Data-

Parallel Loops

The main goal in this section is to describe an intermediate representation, based on interval

analysis [2], in order to represent a partitioning of explicitly data-parallel loops into a task-

dependence graph. By constructing this intermediate representation, an imperative-based

parallel program can be efficiently mapped onto the StarPU runtime system.

Consider the synthetic loop example in Figure 3.7. This is a program that has different

control statements in the form of conditional statements and nested loops that are both

sequential and parallel. It has a more complex set of control statements than the Jacobi

iteration example from Figure 3.1. For the remainder of this section, this will be the ongoing

example that the compiler transformations will be applied to.

3.3.1 Prerequisites

The requirements regarding the types of supported loops are the following: All sequential

loops in a program are supported. Parallel loops, single and multiply-nested, must be ex-

plicitly marked (i.e. forall) and they can only contain loop-independent data dependences

within their bodies. Since all parallel loops are explicitly marked, there is no need for the

compiler to perform data dependence analysis.

3.3.2 Loop Partitioning

Algorithm 3 describes the overall approach to partition a program P into the task-dependence

graph G = (T,D, s), where T is a set of all decomposed tasks, D are the directed edges (i.e.

dependences) between the tasks, and s is the initial starting task. The internal representation

of the program P is an abstract syntax tree (AST). The inputs into the algorithm are the AST

38

1 /* initialize data */

2 x = ...

3 M = ...;

4 N = ...;

5 ...

6 while work_to_do {

7 if do_sequential then {

8 for i in 1..M {

9 for j in 1..N {

10 x(i,j) = ...;

11 }

12 }

13 }

14 else if do_parallel then {

15 if do_single_level then {

16 forall i in 1..M {

17 for j in 1..N {

18 x(i,j) = ...;

19 }

20 }

21 }

22 else if do_nested then {

23 forall i in 1..M {

24 forall j in 1..N {

25 x(i,j) = ...;

26 }

27 }

28 }

29 }

30 work_to_do = ...;

31 }

Figure 3.7: Synthetic Parallel Loop Example

function nodes, and the output is a code generated representation of the task-dependence

graph. Each step of of this algorithm will be described in more detail in the subsequent

sections, however the high-level approach is to do the following: the first step is to construct

an agglomerated flow graph (AFG) for every function of the program. This partitions the

function into the sections that are sequential and those that are parallel. The second step

is to construct a sequence of interval graphs for the resulting AFG. These interval graphs

provide the necessary loop hierarchy in the presence of control flow. The next step is to

create an interval containment tree (ICT), where each interval node in the ICT represents a

task in the generated task graph. Additionally, the ICT is generated since it will allow for

data to be properly declared and communicated among the different tasks. The final step of

39

this algorithm is to perform the actual code generation for each task.

Algorithm 3: General Algorithm For Task Partitioning

Input: List pList containing all of program P ’s AST nodes where
ast.type=function

Output: Generated task-dependence graph
INTERV ALS ← ∅;
TASKS ← ∅;
foreach F ∈ pList do

AFGF ←Construct agglomerated flow graph(F.body);
INTERV ALSF ← Sequence of derived interval graphs(AFGF);
ICTF ← Construct ICT(INTERV ALSF);
foreach I ∈ ICTF in BFS order do

TASKSI ← Create task(I);
Construct data(TASKSI);

foreach T ∈ TASKS do
Code generation(T);

3.3.3 Agglomerated Flow Graph

Starting with an AST representation of each function, an agglomerated flow graph (AFG)

can be created. An AFG is defined as a graph G = (V,E), where the nodes V are made up

of agglomerated basic blocks, and E are the edges represented by a change of parallel control

between the agglomerated basic blocks. An agglomerated basic block is defined as the maxi-

mal set of connected basic blocks that do not contain any parallel construct. Anytime a new

parallel construct is encountered, a new agglomerated basic block is constructed. Examples

of an agglomerated block can be a basic block, branch of an if-then-else statement, the

body of a loop, or an entire function. Instead of constructing a traditional CFG, the point of

an AFG is to partition the program into disjoint sequential and parallel components, while

still retaining the control constructs between these components. By agglomerating the basic

blocks together, the number of nodes in the flow graph decreases. This has the advantage of

making future analysis that is dependent on a flow graph simpler. Additionally, overhead of

40

Algorithm 4: AgglomerateFG(STMT, ABB)

Input: STMT : AST node
Input: ABBi : Agglomerated Basic Block
Output: AFG : Agglomerated Flow Graph
if ABBi = ∅ then

ABBi ← create a new empty agglomerated basic block;

switch STMT.type do /* What is STMT’s ast node type? */

case BLOCK STATEMENT /* Compound set of statements? */

if STMT.body = LOOP then /* Is entire body of STMT a loop? */

/* A loop nest with no parallelism inside */

if STMT 6=forall ∧ 6 ∃ loop L ∈ STMT where L =forall then
ABBi ← ABBi ∪ STMT ;

/* An outer parallel loop with no inner parallel loops */

else if STMT =forall ∧ 6 ∃ loop L ∈ STMT where L =forall then
ABBi+1 ← create a new empty agglomerated basic block;
ABBi+1 ← ABBi+1 ∪ STMT ;
ABBi+2 ← create a new empty agglomerated basic block;
Create edge from ABBi → ABBi+1, ABBi+1 → ABBi+2, ABBi → ABBi+2;

else /* A nested parallel loop */

ABBi+1 ← create a new empty agglomerated basic block;
foreach s ∈ STMT do

AgglomerateFG(s,ABBi+1);

ABBi+2 ← create a new empty agglomerated basic block;
Create edge from ABBi → ABBi+1, ABBi+1 → ABBi+2, ABBi → ABBi+2;

else if STMT.body 6= LOOP then
foreach s ∈ STMT do

AgglomerateFG(s,ABBi);

case CONDITIONAL STATEMENT
/* If no parallelism in both branches of the conditional */

if 6 ∃ loop L ∈ (STMT.then branch ∧ STMT.else branch) where L =forall then
ABBi ← ABBi ∪ STMT ;

else
ABBi ← ABBi ∪ STMT.header;
ABBi+1 ← create a new empty agglomerated basic block;
foreach s ∈ STMT.then branch do

AgglomerateFG(s,ABBi+1);

ABBi+2 ← create a new empty agglomerated basic block;
foreach s ∈ STMT.else branch do

AgglomerateFG(s,ABBi+2);

Create edge from ABBi → ABBi+1, ABBi → ABBi+2;
ABBi+3 ← create a new empty agglomerated basic block;
Create edge from ABBi+1 → ABBi+3, ABBi+2 → ABBi+3;

otherwise /* Any other statement type */

ABBi ← ABBi ∪ STMT ;

41

task management will be minimized since there would be fewer tasks.

Algorithm 4 provides a high-level algorithm describing the construction of an AFG. The

initial input into the algorithm is an AST node STMT . A STMT node can represent one

of the following types:

BLOCK STATEMENT

A statement that contains one or more statements inside the scope of a code block.

For example, this can include the body of a basic block, body of a loop, or a branch

of a conditional statement.

CONDITIONAL STATEMENT

Represents an if-then-else conditional statement. This includes the respective

BLOCK STATEMENT for each then and else branch.

STATEMENT

Any other valid program statement.

If STMT is the body of a sequential loop, and if it does not contain any embedded parallel

loops inside of it, then the contents of STMT are appended to an existing agglomerated

block. On the other hand, if STMT is the body of single-level parallel loop (i.e. no nested

parallelism), then a new AFG block is created, and the contents of STMT are added to it.

Otherwise, if STMT is a nested parallel loop, then the algorithm is recursively called with

the body of the parallel loop as its input. Finally, with all of the new AFG blocks, their

respective edges need to be created.

If the STMT happens to represent a conditional statement (and its associated then-else

branches), and there are no parallel constructs inside either of the branches, then the con-

ditional statement is added to the existing AFG block. Otherwise, the algorithm will need

to be called recursively on both then-else branches. Just as before, the edges between the

42

new AFG blocks need to be created. If STMT is anything else, it is added to the existing

AFG block.

Using the earlier example from Figure 3.7, a traditional flow graph construction algorithm

would generate the CFG shown in Figure 3.8a. In this graph, the number for each basic

block is displayed in the node. After applying Algorithm 4 to this program, the resulting

AFG is shown in Figure 3.8b. It should be evident that there are now fewer (i.e. more dense)

nodes in the graph. In the original flow graph, nodes 2–6 and 10–12 represent sequential for

loops, but in the AFG, they have been combined into a single node. It is also important to

stress that when tasks are generated, there will be fewer of them since the sequential basic

blocks have been combined together. This will have the impact of a decreased amount of

task creation overhead without any loss in parallelism.

3.3.4 Interval Analysis

Recall from Chapter 2.1.1 that interval analysis is a method of identifying the hierarchical

structure of multiply-nested loops. Along with other elimination methods [28], partitioning

flow graphs into interval graphs has historically been used as an alternative to iterative

dataflow methods.

For the purposes of this thesis, interval analysis is used to find the structure of nested-

parallel loops, and partition them into a derived sequence of interval graphs. Conceptually

this is done in order to separate the sequential and parallel portions of the program so that the

agglomerated basic blocks can be combined even further to minimize the task management

resources. Mapping the nodes of each derived graph into a task-dependence graph that is

suitable for StarPU now becomes trivial due to the direct correlation between the derived

interval and task-dependence graphs. Interval nodes correspond directly to the tasks of

task-dependence graph, and the edges correspond directly to the order of execution in the

presence of control. One caveat is that interval analysis does not work in cases where a flow

43

0

1

7

8

14

15

16

17

18

19

20

21

22

23

24

2

3

4

5

6

9

10

13

11

12

(a) Traditional Flow Graph

0

1

2-6 7

8

9

14

10-
12

15

13

16

17

18

19

20

21

22

23

24

(b) Agglomerated Flow Graph

Figure 3.8: Traditional Flow Graph and Agglomerated Flow Graph

44

graph is irreducible. However, since Chapel does not support unstructured statements (e.g.

goto, setjmp, longjmp), Chapel programs will always reduce to a single node. In cases

where the input language does support unstructured statements, node splitting [2] can be

used to make the graph reducible.

Using an agglomerated flow graph as input, finding intervals and performing the interval

partitioning to construct G = {G1, G2, . . . , Gd} is described in Algorithms 1 and 2. Given

an edge e → f between the two basic blocks e and f , if after applying interval analysis, e

and f are in different intervals E and F , e→ f will now be replaced with the interval edge

E → F .

Other techniques such as strongly connected components, detecting cycles, or finding

natural loops [23] can be used to identify loops; unfortunately they have their associated

downsides to them. Strongly connected components provide a too-coarse representation of

the loops and do not capture any form of nesting information inside of the loop. Cycles are

too fine-grain in that loops are not disjoint or properly nested. Finding natural loops can

be used to find nested loops, but they do not actually partition the graph as intervals do.

Using the example program from Figure 3.7, the four derived interval graphs are shown in

Figures 3.9 and 3.10. Each successive pass of interval analysis is applied, and the respective

graph is derived until the limit flow graph is reached. In the generated interval graphs, the

circles represent the agglomerated basic blocks with their numbers representing the basic

block number. The colored rectangles represent the intervals, with the numbers outside of

them representing their interval number. By observing these interval graphs, one can start

to see the loop hierarchy that forms between each interval graph.

3.3.5 Interval Containment Tree

In order to represent the hierarchy from the derived sequence of interval graphs, an interval

containment tree (ICT) [65], sometimes referred to as a control tree, will be used. An ICT

45

0

1

2-6 7

8

9

14

10-
12

15

13

16

17

18

19

20

21

22

23

24

0

1

2

3

4

5

6

7

8

9

10

11

12

(a) Interval Analysis Pass 1

0

1

2-6 7

8

9

14

10-
12

15

13

16

17

18

19

20

21

22

23

24

13

14

16

17

18

19

20

21

15

(b) Interval Analysis Pass 2

Figure 3.9: Generated Interval Analysis Graphs: Passes 1 and 2

46

0

1

2-6 7

8

9

14

10-
12

15

13

16

17

18

19

20

21

22

23

24

22

23

24

(a) Interval Analysis Pass 3

0

1

2-6 7

8

9

14

10-
12

15

13

16

17

18

19

20

21

22

23

24

25

(b) Interval Analysis Pass 4

Figure 3.10: Generated Interval Analysis Graphs: Passes 3 and 4

47

is defined as T = (N,E,Gd), where N is the set of all interval nodes that appear in every

derived interval graph. Given an edge (a→ b) ∈ E, interval node a ∈ Gi+1 is the node that

has embedded inside of it the interval node b ∈ Gi. Gd is the root of T , where T has the

following properties:

• The leaves of the ICT T , nodes in G1, represent the agglomerated basic blocks.

• Non-leaf nodes G2, G3, . . . , Gd are containers of interval nodes G1, G2, . . . , Gd−1.

• The height h of the ICT T is d, the number of steps in order to reduce G1 into the

limit flow graph Gd.

• The root of T given by the single interval node in Gd, represents the entire flow graph.

• If the flow graph has no parallel constructs, then T contains just a single node G1.

Using the derived interval graphs from Figures 3.9–3.10, the computed ICT is given in

Figure 3.11. Each number in the ICT corresponds to the computed interval number. Since

G4 is the limit flow graph, the ICT height h is 4.

In the situation where a leaf node does not have any siblings, there is an inefficiency of

unnecessarily spawning as a task the parent of that leaf node. Redundant non-leaf nodes

can be optimized away if the non-leaf node contains only a single child. In this example,

nodes 13, 16–22, and 24 contain only just a single child node. If the non-leaf node contains

only a single child, the child can then replace its parent. An optimized ICT for this example

is provided in Figure 3.12.

3.3.6 Data Placement and Communication

After the ICT has been constructed, the next step is to perform the data placement and

communication. By effectively partitioning a loop-based imperative program into a task-

dependence graph, data will now need to be communicated from one task node to the

48

25

22 23 24

13 14 15 16 17 18 19 20 21

0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 3.11: Interval Containment Tree

25

23

14 15

0

1 2 3 4 5 6

7 8 9 10 11

12

Figure 3.12: Optimized Interval Containment Tree

49

other. If a piece of data (e.g. an integer variable) is declared within scope in the imperative

programming style, but due to interval partitioning, the data is defined and used by other

tasks, there needs to be a way to communicate updates to the data.

Consider the loop in Figure 3.13. After performing interval analysis and generating an

ICT, the declaration, definition, and use of val all occur in separate interval nodes as shown

in Figures 3.14 and 3.15. The declaration of the variable val occurs in interval 0. Interval 1

performs a store operation into val, with intervals 2–4 performing reads on val. Since the

interval nodes will all be mapped into separate tasks, the usage of val needs to be explicitly

communicated with the tasks where val will be read and written.

var val : int;

for i in 1..M do {

val = i;

forall j in 1..N do {

writeln(val);

}

... = val;

}

... = val;

Figure 3.13: Data Placement Example

The general intuition of solving this problem of data placement and communication

between the tasks is to first find the lowest common ancestor node P in the ICT where the

data in question spans that parent’s leaf nodes. In the case of this example, the root of the

ICT is chosen since val spans all of its leaves. If for example, val was declared inside of

the outer for loop, then the chosen parent node P would be Interval 6. Once the common

ancestor P is located, a handle (i.e. remote reference) to the data in question needs to be

declared at P , and then propagated down to all of its descendants. In the case of a leaf-node,

the handle will be used to do a lookup on the data in order to retrieve its pointer and then

perform any memory operation against that pointer. Non-leaf nodes that are descendants

of P will only propagate the identification of the declared handle down to their children

50

var val;
...

...
val = i;

...

...
… = val;

...

...
… = val;

...

...
… = val;

...

0

1

2

3

4

(a) Interval Analysis Pass 1

var val;
...

...
val = i;

...

...
… = val;

...

...
… = val;

...

...
… = val;

...

5

6

7

(b) Interval Analysis Pass 2

var val;
...

...
val = i;

...

...
… = val;

...

...
… = val;

...

...
… = val;

...

8

(c) Interval Analysis Pass 2

Figure 3.14: Traditional Flow Graph and Agglomerated Flow Graph

nodes. Since StarPU guarantees data coherence across all of the tasks, any memory writes

that occur in one task will be visible in other tasks (using StarPU’s data handles).

Algorithm 5 formally describes the data placement algorithm. First, all of the variable

declarations in every leaf node need to be located. For every declaration, var decl, its

lowest common ancestor P in the ICT needs to be found. Once P has been located, the

original declaration will be moved to location P . Next, the variable declaration needs to be

registered with the StarPU DSM, and a data handle is to be returned. Afterwards, a search

is performed on all occurrences of the variable that is associated with var decl. This includes

both assignments and uses. The last step is to then proceed through all occurrences, and

replace the original var decl with the handle that was returned by StarPU.

51

8

5 6 7

0
var val;

...

1
val = i;

...

2
… = val;

...

3
… = val;

...

4
… = val;

...

Figure 3.15: Interval Containment Tree

3.3.7 Code Generation

The final step is to perform the actual code generation of the StarPU task-dependence graph.

The generated code will consist of an intermediate-level language interface that declares both

the sequential and parallel tasks, and their respective control dependences.

Algorithm 5: Data Placement Algorithm

Input: IT : Interval Containment Tree
Input: FN : AST Node representing function
foreach LEAF ∈ IT do

foreach var decl ∈ LEAF do
P ← find lowest common ancestor of all nodes containing var decl;
Place var decl at P ;
handlevar decl ← register StarPU data handle with var decl;
S ← find all occurrences of var decl.var ∈ FN ;
foreach s ∈ S do

replace s with handlevar decl;

52

Intermediate-Language Interface

Before describing the code generation process, it is important to first define the intermediate-

level language that will be generated by the compiler and used to interface with the StarPU

runtime. The following interfaces were developed to act as an insulation between between

the compiler-generated code and the StarPU runtime, so that in the future, it could be

possible for an alternate runtime to be used. As shown previously in Figure 2.3, a StarPU

program consists of dependence declarations, task definitions, and the links connecting the

dependences to the tasks.

1. Task Definitions

A task in StarPU is the unit of execution that is scheduled by the runtime. It is

declared as the following C function prototype:

void (*task fn)(void* buffers[], void *params)

• void* buffers[]

Pointer to an array of handles that are maintained by the StarPU’s coherency

mechanism.

• void *params

Pointer to a buffer that is not managed by StarPU’s coherency mechanism. In

this thesis, the params field is not used. Instead, buffers[] will be used for all

data communication between tasks.

2. Task-Dependence Declarations

Using the following set of routines, either a sequential or parallel task can be submitted

to the StarPU scheduler. The intuition for separating the tasks into sequential and

parallel types, is so that the runtime does not need to dedicate cycles (i.e. overhead)

related to SPMD parallelism that occurs in the parallel tasks.

53

(a) seq task(task fn,self id,dst id1,[dst id2,...,dst idn],handles[])

• void (*task fn)()

A StarPU task function.

• int64 t self id

A int64 t used to self identify the task.

• int64 t dst id1,[dst id2,...,dst idn]

Used to designate the successor task. A destination value of −1 represents

the final node. If there are more than one destination tasks, they are listed

from dst id2,...,dst idn

• task data handle t handles[]

An array of type task data handle that contains handles to variables that

have been registered with StarPU’s coherency mechanism.

A seq task routine registers with StarPU all of the data in handles[] and a

single instance of task fn to execute as soon as its input dependence (a prede-

cessor in the interval graph) has been resolved. Once task fn completes, one of

the following outgoing edges {dst id1,dst id2,...,dst idn} will be signaled to

execute.

(b) par task(task fn,self id,dst id,start idx,end idx,stride,handles[])

• void (*task fn)()

The task function that was defined just previously.

• int64 t self id

A int64 t used to self identify the task.

• int64 t dst id

A int64 t used to designate the destination task. Unlike the seq task()

case, there is only one outgoing task since parallel tasks (i.e. forall loops)

54

do not have a back edge.

• task data handle t handles[]

An array of type task data handle that contains handles to variables that

have been registered with StarPU’s coherency mechanism. Each handle of

handles[] is associated with the task.

• int64 t start idx

The starting index for the given parallel 1–D iteration space.

• int64 t end idx

The ending index for the given parallel 1–D iteration space.

• int64 t stride

A stride value specifying the amount the index value of the parallel loop is

incremented.

The par task represents parallel nodes from the interval graph, which in this case,

is a Chapel forall loop. The routine differs from seq task in that par task will

dynamically spawn i =
⌈
|end idx−start idx|+1

stride

⌉
parallel instances of task fn, and a

barrier task named barrier task. When each task fn[0..i] completes, it will send

a signal notification to barrier task. After all of the inputs to barrier task

are available, the successor of the parallel task will be signaled by barrier task

to execute.

3. Task Notification

There are two approaches in specifying the completion of a task to any of its outgoing

tasks: pull and push. The pull scenario specifies that any task that is dependent on

another task can start executing as soon as its predecessor has completed. This occurs

with the runtime routinely performing a test to see if all of the required dependences

for a task have been resolved. As soon as all of these dependences have been met,

55

the runtime will start executing the outgoing task. The push scenario specifies that

upon completion of a task, the outgoing task is notified explicitly (through a signal

mechanism) that its predecessor has completed execution. As soon as the outgoing

task has been notified by all of its required predecessors, the outgoing task can start

execution. For example, after every worker thread in a parallel loop has completed its

set of iterations, the worker thread will send an explicit notification to the barrier task.

As soon as all of required worker threads have notified the barrier task, the barrier

task can then start execution and signal its successor to start execution.

The approach taken in this thesis is to use the push mechanism in order to notify

the specific successor that its predecessor has completed. This was done in order to

handle control flow from loops. For example, in a do-while loop, based on the loop

condition, either a backedge to the header, or the successor edge will be taken. In the

push scenario, it is easy to determine at runtime which task to notify based on the

value of the boolean condition. On the other hand, in the pull scenario it is not clear

whether a header or successor is to start execution since the flow of control can go to

either depending on the outcome of the condition.

The following two instructions are used to notify an outgoing edge:

(a) signal task(int 64 t dest id))

Send an explicit signal to the task with the id dest id.

(b) signal task barrier(void)

Invoked at the end of each par task in order to notify barrier task that the

instance of par taski has completed execution.

4. Data Registration

In order for data to be coherent across different tasks that could exist across different

address spaces, a handle to the data in question needs to be registered with the runtime

56

system’s distributed shared memory (DSM) mechanism. The following two routines

describe how to register data with the DSM and how to extract a pointer to the

coherent data in order to use it within the task.

(a) task register data(handle, var, size)

• task data handle t *handle

A pointer to an already allocated task data handle.

• void *var

A pointer to an already allocated variable that needs to be registered with

the runtime system’s DSM.

• size t size

The size of var in bytes.

This routine registers the data pointed to by var with a size of size. The regis-

tration can now be referenced by handle.

Example:

int a = 0, b = 1, c = 1;

task_data_handle_t *handle = malloc(sizeof(task_data_handle_t *) * 3);

...

task_register_data(handle [0], &a, sizeof(int));

task_register_data(handle [1], &b, sizeof(int));

task_register_data(handle [2], &c, sizeof(int));

(b) void * task get data(buffer)

• void *buffer

An index into the buffers[] parameter from the task function.

Returns a pointer to the data that is pointed to by buffer. The returned pointer

could point to either the original copy of the data, or a coherent copy.

Example:

57

void task_func(void *buffers[], void *params)

{

int *a, *b, *c;

a = task_get_data(buffers [0]);

b = task_get_data(buffers [1]);

c = task_get_data(buffers [2]);

*a = *b + *c;

}

Code Generation Implementation

The general approach taken for code generation is to perform a level-order (breadth-first)

traversal of the ICT and generate a unique task fn() procedure for each interval node. The

non-leaf nodes (G2, . . . , Gd) of the ICT, generated using the low-level language constructs,

are simply meta-tasks that dynamically spawn their children nodes as tasks. The leaf nodes

(G1 of the interval graph) represent that actual agglomerated basic blocks. If the interval

node contains more than one successor, the compiler will generate the branch statement

at the end of the interval. The body of the then-else will only contain the notifier (i.e.

task signal()), in order to signal the successor task that needs to be taken. Figure 3.16

presents the overall task graph for the earlier example from Figure 3.7.

3.4 Evaluation

By mapping a program consisting of data-parallel loops onto a dependence-driven runtime

system, several overheads have been introduced that are not typically present in other im-

perative parallel programming models. This includes separate tasks to deal with program

control and parallel loop barriers. The goal of this section is to measure the effectiveness

of the proposed compiler transformations and understand the overall impact on program

scalability that these additional overheads introduce. The scalability figures presented here

58

S

T0

T23

T1

T22T21 ... T2M

BT2

T12

F

T14

T10

T4M

T2

T4...T42

T3

T152T151 ... T15M

T15

T41

T512T511 ... T51N T522T521 ... T52N T5..2T5..1 ... T5..N T5M2T51M ... T5MN

BT51 BT52 BT5.. BT5M

T61 T62 T6.. T6M

BT151 BT152 BT15.. BT15N

T7

T8

T9

T11

Figure 3.16: Task Graph for a Program Containing Multiply-Nested Parallel Loops (from
Figure 3.7)

59

will also be compared to that of the native Chapel compiler where its default runtime system

leverages POSIX Threads for shared memory support.

Section 3.4.1 describes the environment used for the experiments. Section 3.4.2 presents

the methodology used to perform the evaluation. Section 3.4.3 describes each of the bench-

marks. Finally, Section 3.4.4 presents the overall results.

3.4.1 Environmental Setup

Table 3.1 describes the environment that was used to perform the experiments.

CPU Architecture X86-64 Intel Xeon E7-4860

Num cores (threads per core) 40 (2)
Total threads 80

Clock Rate (GHz) 2.26
Total Memory (GB) 128
L3 Cache size (MB) 24

OS (Kernel) Scientific Linux 6.3 (2.6.32)
Compiler GCC 4.4.6

Chapel Compiler 1.4.0
StarPU Runtime 1.0.3

Table 3.1: Architecture Tested

3.4.2 Experimental Methodology

The experiments in this section will be used to measure processor scalability (1→ 32 proces-

sors logarithmically). This evaluation will provide a way of understanding what overhead has

been incurred when comparing the dependence-driven work presented in this chapter, to a

native Chapel implementation, where the only difference between the two sets of benchmark

implementations is the target distribution. The baseline for the scalability measurements is

the native Chapel implementation using one processor.

60

The methodology used to evaluate each of the benchmarks will be to do the following

experiment comparisons:

1. Outer Loop Parallelization

Only the outer loop is to be parallelized with the remainder of the loop nest being

sequential.

2. Nested Parallelization

A similar approach to the outer loop parallel test, except that in addition to the

outer loop being parallelized, each of the inner loops will be marked as parallel. This

is done in order to understand what the incurred impact on scalability is from the

additional overhead of using nested parallel loops when compared to just a single level

of parallelism.

An experiment that was also considered was to compare the performance difference be-

tween the compilation approach proposed in this thesis and directly in StarPU. However,

this evaluation was not done because the Chapel compiler does not yet support many of the

scalar optimizations that are currently applied by other compilers. Since comparing with

StarPU requires a C-based backend compiler, it will be difficult to assess whether the differ-

ence in performance between the approach proposed in this thesis and StarPU is due to the

Chapel compiler or due to overheads from the proposed approach.

As an example, Figure 3.17 shows the difference in performance for a 3–D Jacobi Method

written in both Chapel and OpenMP. The OpenMP code was compiled using GCC 4.4.6 with

the -O3 -fopenmp compiler flags, and run on the same environment described in Table 3.1.

This program was executed using different input sizes and run with a total of 32 threads.

The Chapel implementation is based on the native compiler with none of the modifications

presented earlier. Based on the size of the input, the OpenMP implementation of the same

algorithm leads to a speedup from 38% to 210%. In addition to the comparison shown here,

61

1	

1.2	

1.4	

1.6	

1.8	

2	

2.2	

128x128x128	 256x256x256	 512x512x512	

Sp
ee
du

p	
of
	 O
pe

nM
P	

Input	 Size	

3-‐D	 Jacobi	 Method	 :	 OpenMP	 vs	 Na=ve	 Chapel	

OpenMP	

Figure 3.17: Speedup of OpenMP (over Native Chapel) Using 32 Threads

there have been other evaluations showing similar performance trends [66, 67, 68]. As a result

of this, this makes any comparison of the techniques presented in this thesis with that of a

tuned implementation, difficult. However, as the scalar performance of the Chapel compiler

improves over time, these differences in overall performance will become closer, thus making

the comparison more fair.

3.4.3 Experiments

In all of the selected applications in this section, the input sizes will vary in order to show

what effect on overhead that particular input size has.

The following applications have been used as part of the evaluation process:

1. 3–D Jacobi Method

27–point stencil computation based on the Jacobi method that is used to solve Laplace’s

equation in 3–D. Experiments will be performed on the 3–D grid sizes {128×128×128},

{256× 256× 256}, and {512× 512× 512}. In these experiments, either the outer loop

will be parallelized (in the outer loop parallelization scenario), or the outer two loops

62

will be parallelized (in the nested parallel scenario). However, in both experiments, the

inner-most loop will be left sequential. In addition to the main stencil computation,

the benchmark has two other parallel loops: a reduction to find the minimum, and

a parallel swap operation between the two arrays. Using an inner dimension size of

{128, 256, 512}, it is expected that there will be an impact on scalability as the problem

size increases. This implementation is similar to the previous example from Figure 3.1.

2. Sparse Matrix-Vector Multiplication (SpMV)

A standard sparse matrix-vector multiplication kernel based on a compressed sparse

row (CSR) data storage format. The parallelization will occur at two levels: horizontal

slices down the matrix, and across a set number of vectors (16,384) that are multiplied

against the sparse matrix. The iterations across a row will not be parallelized in this

evaluation since that would require synchronization. In the outer level parallelization

test, the outer level loop containing the multiple vectors will be parallelized, whereas in

the nested parallelization test, both the loop that iterates across vectors, and the loop

that iterates across the rows of the matrix will be parallelized. Multiple vectors were

used in this evaluation in order to understand the effects on load-balancing and locality.

Table 3.2 lists the sparse matrices and their associated properties. The graphical

representation of each sparse matrix is provided in Appendix A. They all have been

imported from the University of Florida Sparse Matrix Collection [69].

Matrix Dimensions Non-Zeros Graph Figures (Appx.)

Meszaros/ex3sta1 17,443 x 17,516 68,789 Figure A.1
Meszaros/stat96v5 2,307 x 75,779 233,921 Figure A.2
LPnetlib/lp osa 14 2,337 x 54,797 317,097 Figure A.3
Andrianov/ex3sta1 16,782 x 16,782 347,890 Figure A.4

Rommes/bips07 2476 16,861 x 16,864 66,498 Figure A.5

Table 3.2: Sparse Matrices Evaluated

63

3. Coulombic Potential (CP)

Coulombic potential grid calculation over a plane on a 3–D grid. This benchmark is

based on the time consuming portions of the “cionize” ion placement tool in VMD [70].

CP was ported over from the Parboil Benchmark Suite [71]. Four different grid sizes

were evaluated: {64× 64× 1}, {128× 128× 1}, {256× 256× 1}, and {512× 512× 1}.

4. Magnetic Resonance Imaging FHd (MRI-FHd)

Computation of an image-specific matrix FHd, used in a 3D magnetic resonance image

reconstruction algorithm in non-Cartesian space [72]. MRI-FHd has been ported to

Chapel from the Parboil Benchmark Suite. Unlike the other benchmarks evaluated in

this section, MRI-FHd has only a single level of parallelism in its main computation

kernel. Two sizes will be evaluated: {32× 32× 32} and {64× 64× 64}.

5. Magnetic Resonance Imaging Q (MRI-Q)

Computation of a matrix Q, representing the scanner configuration, used in a 3D

magnetic resonance image reconstruction algorithm in non-Cartesian space [72]. MRI-

Q has been ported to Chapel from the Parboil Benchmark Suite. Similar to MRI-FHd,

MRI-Q has only a single level of parallelism in its main kernel. Two sizes will be

evaluated: {32× 32× 32} and {64× 64× 64}.

6. 2–D Image Histogram Computation

A histogram is a statistical representation of different image pixel frequencies inside

an image. For this benchmark, a 2–D histogram will be used to represent the number

of pixels that have different light levels. A 1–D integer array will be used to store his-

togram values. To implement this without any explicit synchronization, a private (per

task) histogram computation is performed, and then a final parallel reduction combines

results together. Three different 2–D image sizes will be evaluated: {4, 096× 4, 096},

{8, 192× 8, 192}, and {16, 384× 16, 384}. The number of bins in the histogram will

64

be set to 256.

7. Synthetic.Trig

The kernel for this program contains a multiply-nested parallel loop that performs

a trigonometric function repeatedly for a set number of iterations (1, 024 → 32, 768

logarithmically). This kernel is purely computation bound, as there is no access to

data in the main loop. The main goal here is to see what effect there is on processor

scalability when the kernel is compute-bound. This kernel is similar to the one that

will be shown later in Figure 4.1.

3.4.4 Results

This section will first present a summary of the results, followed by a more in depth analysis

of each of the benchmarks measured.

Results Summary

The common trend in all of the following results (Figures 3.18-3.24) show that when outer

loop parallelization is applied to the benchmarks, the dependence-driven and native Chapel

implementations scale similarly, except near the end where the dependence-driven approach

typically scales higher. The main reason for this is that since both implementations generate

the same kernel (i.e. compute) code, their only major difference is the underlying runtime

system used. One possibly scenario to this is that the dependence-driven approach scales

better due it having a more efficient tasking system over the tasking support in the native

Chapel’s runtime system.

In the case of nested parallelism, it is evident from the majority of results that nested-

parallelism in the dependence-driven approach introduces too much overhead compared to

the native Chapel implementation. In a few cases such as the 2–D Image Histogram bench-

65

mark, the overhead introduced by nested parallelism will actually cause a slowdown, as

shown in Figure 3.23. Part of the work in Chapter 4 will be to look at an alternative loop

transformation that is similar to nested parallelism, but without all of associated overheads.

3–D Jacobi Method

Figure 3.18 shows the effect on processor scalability as the problem size increases for the

3–D Jacobi Method. For this result, it is obvious that scalability is limited, especially when

the problem size is small (e.g. 128× 128× 128). There are three important limiting factors

that cause this performance degradation. First, since the outer loop of this kernel is a time

step, naively, this loop will not be parallelized due to loop-carried dependences. A second

reason for the performance degradation is due to the implicit barriers at the end of the

parallel loops. Section 3.6 and Chapter 4 will look at new ways of decreasing the number

of barriers, or removing them completely. In addition to the stencil, there are two other

parallel operations inside of this kernel: a parallel reduction to find the minimum value (line

24 in Figure 3.1), and an array swap performed in parallel (line 26 in Figure 3.1). Just as

before, these loops also include implicit barriers at the end of them. The third limiting factor

is due to the overhead of spawning additional tasks and the associated data management

between them. This occurs because a new task is spawned on every outer loop iteration,

and an inner barrier task in the case of nested parallelism. Also, any data that is used inside

of the newly spawned tasks needs to be copied through the coherence mechanism. This last

limiting factor does not occur in the native Chapel implementation.

When comparing the outer loop parallel scalability between the dependence-driven imple-

mentation and that of the native Chapel implementation, both scale similarly. On the other

hand, in the case of nested parallelism, the dependence-driven approach does worse than the

native Chapel implementation on smaller input sizes. This difference in performance is due

to the overheads of spawning additional tasks and performing data management, which is

66

1	

2	

4	

8	

16	

1	 2	 4	 8	 16	 32	

Sp
ee
du

p	
(v
s	 1

P)
	

Processors	

Outer	 Parallel	 (Dep-‐Driven)	 Outer	 Parallel	 (Na9ve	 Chapel)	

Nested	 Parallel	 (Dep-‐Driven)	 Nested	 Parallel	 (Na9ve	 Chapel)	

(a) 128× 128× 128

1	

2	

4	

8	

16	

32	

1	 2	 4	 8	 16	 32	

Sp
ee
du

p	
(v
s	 1

P)
	

Processors	

Outer	 Parallel	 (Dep-‐Driven)	 Outer	 Parallel	 (Na9ve	 Chapel)	

Nested	 Parallel	 (Dep-‐Driven)	 Nested	 Parallel	 (Na9ve	 Chapel)	

(b) 256× 256× 256

1	

2	

4	

8	

16	

32	

1	 2	 4	 8	 16	 32	

Sp
ee
du

p	
(v
s	 1

P)
	

Processors	

Outer	 Parallel	 (Dep-‐Driven)	 Outer	 Parallel	 (Na9ve	 Chapel)	

Nested	 Parallel	 (Dep-‐Driven)	 Nested	 Parallel	 (Na9ve	 Chapel)	

(c) 512× 512× 512

Figure 3.18: 3–D Jacobi Method Scalability for Nested-Parallelism : 1→ 32 Processors

67

not prevalent in the native Chapel implementation. However, as the input size increases, as

shown in Figure 3.18c, the difference between both implementations is minimal.

As the maximum number of processors are used, there is a divergence between the two

implementations. The reason that this occurs is that it is primarily a result of the underlying

runtime system. Since the vast majority of the compiler generated code is the same between

both implementations, the only major difference is the runtime systems used.

Sparse Matrix-Vector Multiplication (SpMV)

The graph in Figure 3.19 presents the scalability for a SpMV kernel applied onto a set

number of vectors, which in this case is 16,384. Depending on which sparse matrix is used,

the impact on scalability varies, with Andrianov/ex3sta1 having the highest scalability,

Meszaros/ex3sta1 having the lowest, and the remainder of matrices in between.

When comparing the dependence-driven approach to that of the native Chapel imple-

mentation, both follow a similar scaling trend, with the exception of the dependence-driven

nested-parallelism approach. Also, similar to before, the outer loop dependence-driven ap-

proach tends to scale at the higher spectrum compared to native Chapel.

Coulombic Potential (CP)

The scalability results for Coulombic Potential (CP) are presented in Figure 3.20. The

highest amount of scalability (∼30x speedup at 32 processors) occurs when the problem size

is at its largest, which in this case is {512× 512× 512}. When the problem size is smaller,

such as {64× 64× 64}, the amount of scaling diminishes (∼14x speedup at 32 processors).

This is due to amount of overhead compared to the amount of useful work in the kernel for

the given data size.

Comparing the dependence-driven approach to that of the native Chapel implementation,

there is a drop off in scalability going from 16→ 32 processors in the case of the native Chapel

68

1	

2	

4	

8	

16	

32	

64	

1	 2	 4	 8	 16	 32	

Sp
ee
du

p	
(v
s	 1

P)
	

Processors	

Outer	 Parallel	 (Dep-‐Driven)	 Outer	 Parallel	 (Na9ve	 Chapel)	

Nested	 Parallel	 (Dep-‐Driven)	 Nested	 Parallel	 (Na9ve	 Chapel)	

(a) Meszaros/stat96v5

1	

2	

4	

8	

16	

32	

1	 2	 4	 8	 16	 32	

Sp
ee
du

p	
(v
s	 1

P)
	

Processors	

Outer	 Parallel	 (Dep-‐Driven)	 Outer	 Parallel	 (Na9ve	 Chapel)	

Nested	 Parallel	 (Dep-‐Driven)	 Nested	 Parallel	 (Na9ve	 Chapel)	

(b) Meszaros/ex3sta1

1	

2	

4	

8	

16	

32	

1	 2	 4	 8	 16	 32	

Sp
ee
du

p	
(v
s	 1

P)
	

Processors	

Outer	 Parallel	 (Dep-‐Driven)	 Outer	 Parallel	 (Na9ve	 Chapel)	

Nested	 Parallel	 (Dep-‐Driven)	 Nested	 Parallel	 (Na9ve	 Chapel)	

(c) Rommes/bips07 2476

1	

2	

4	

8	

16	

32	

64	

1	 2	 4	 8	 16	 32	

Sp
ee
du

p	
(v
s	 1

P)
	

Processors	

Outer	 Parallel	 (Dep-‐Driven)	 Outer	 Parallel	 (Na9ve	 Chapel)	

Nested	 Parallel	 (Dep-‐Driven)	 Nested	 Parallel	 (Na9ve	 Chapel)	

(d) Andrianov/ex3sta1

1	

2	

4	

8	

16	

32	

64	

1	 2	 4	 8	 16	 32	

Sp
ee
du

p	
(v
s	 1

P)
	

Processors	

Outer	 Parallel	 (Dep-‐Driven)	 Outer	 Parallel	 (Na9ve	 Chapel)	

Nested	 Parallel	 (Dep-‐Driven)	 Nested	 Parallel	 (Na9ve	 Chapel)	

(e) LPnetlib/lp osa 14

Figure 3.19: Sparse-Matrix Vector Multiplication Scalability for Nested-Parallelism with
Multiple Vectors (v = 16, 384)

69

1	

2	

4	

8	

16	

32	

1	 2	 4	 8	 16	 32	

Sp
ee
du

p	
(v
s	 1

P)
	

Processors	

Outer	 Parallel	 (Dep-‐Driven)	 Outer	 Parallel	 (Na9ve	 Chapel)	

Nested	 Parallel	 (Dep-‐Driven)	 Nested	 Parallel	 (Na9ve	 Chapel)	

(a) 64× 64

1	

2	

4	

8	

16	

32	

1	 2	 4	 8	 16	 32	

Sp
ee
du

p	
(v
s	 1

P)
	

Processors	

Outer	 Parallel	 (Dep-‐Driven)	 Outer	 Parallel	 (Na9ve	 Chapel)	

Nested	 Parallel	 (Dep-‐Driven)	 Nested	 Parallel	 (Na9ve	 Chapel)	

(b) 128× 128

1	

2	

4	

8	

16	

32	

1	 2	 4	 8	 16	 32	

Sp
ee
du

p	
(v
s	 1

P)
	

Processors	

Outer	 Parallel	 (Dep-‐Driven)	 Outer	 Parallel	 (Na9ve	 Chapel)	

Nested	 Parallel	 (Dep-‐Driven)	 Nested	 Parallel	 (Na9ve	 Chapel)	

(c) 256× 256

1	

2	

4	

8	

16	

32	

1	 2	 4	 8	 16	 32	

Sp
ee
du

p	
(v
s	 1

P)
	

Processors	

Outer	 Parallel	 (Dep-‐Driven)	 Outer	 Parallel	 (Na9ve	 Chapel)	

Nested	 Parallel	 (Dep-‐Driven)	 Nested	 Parallel	 (Na9ve	 Chapel)	

(d) 512× 512

Figure 3.20: Coulombic Potential (CP) Scalability for Nested- and Outer-Parallelism : 1→
32 Processors

70

implementation. This does not occur when targeting the StarPU runtime system.

Magnetic Resonance Imaging FHd (MRI-FHd)

Another benchmark from the Parboil is the MRI-FHd application. Figure 3.21 presents

the overall scalability when using this benchmark. In this application, two input sizes were

tested, where the larger input size {64× 64× 64} scales slightly better (∼24x speedup at 32

processors) compared to the smaller input size (∼22x speedup at 32 processors).

Both the dependence-driven and the native Chapel approaches perform similar with a

slight advantage to the dependence-driven technique as throughout the processor range for

the larger input size.

Magnetic Resonance Imaging Q (MRI-Q)

The results for MRI-Q are provided in Figure 3.22. The results are very similar to those pre-

viously seen from MRI-FHd. The application scales, and with with the exception at the high

end, both the dependence-driven and native Chapel approaches are similar in performance.

2–D Image Histogram Computation

Histogram scalability results are provided in Figure 3.23. In this benchmark, scalability was

limited (∼14x speedup at 32 processors) when the size of the image is small {4, 096× 4, 096},

and the program scales slightly better (∼23x speedup at 32 processors) as the image size

increases {16, 384× 16, 384}. Similar to the ongoing trend from the previous results, the

outer loop parallel scenario performs better than the nested case.

When comparing the dependence-driven approach to that of native Chapel, their perfor-

mance is comparable to each other, except in the case of nested parallelism. When dealing

with nested parallelism for the dependence-driven runtime, the major performance degrada-

tion occurs due to the amount of additional overhead introduced compared to the amount of

71

1	

2	

4	

8	

16	

32	

1	 2	 4	 8	 16	 32	

Sp
ee
du

p	
(v
s	 1

P)
	

Processors	

Dependence	 Driven	 Na3ve	 Chapel	
(a) 32× 32× 32

1	

2	

4	

8	

16	

32	

1	 2	 4	 8	 16	 32	

Sp
ee
du

p	
(v
s	 1

P)
	

Processors	

Dependence	 Driven	 Na3ve	 Chapel	
(b) 64× 64× 64

Figure 3.21: MRI-FHd Scalability With Single-Level Parallelism : 1→ 32 Processors

72

1	

2	

4	

8	

16	

32	

1	 2	 4	 8	 16	 32	

Sp
ee
du

p	
(v
s	 1

P)
	

Processors	

Dependence	 Driven	 Na3ve	 Chapel	
(a) 32× 32× 32

1	

2	

4	

8	

16	

32	

1	 2	 4	 8	 16	 32	

Sp
ee
du

p	
(v
s	 1

P)
	

Processors	

Dependence	 Driven	 Na3ve	 Chapel	
(b) 64× 64× 64

Figure 3.22: MRI-Q Scalability With Single-Level Parallelism : 1→ 32 Processors

73

0.0625	
0.125	
0.25	
0.5	
1	
2	
4	
8	
16	

1	 2	 4	 8	 16	 32	
Sp
ee
du

p	
(v
s	 1

P)
	

Processors	

Outer	 Parallel	 (Dep-‐Driven)	 Outer	 Parallel	 (Na<ve	 Chapel)	

Nested	 Parallel	 (Dep-‐Driven)	 Nested	 Parallel	 (Na<ve	 Chapel)	

(a) 4, 096× 4, 096

0.125	
0.25	
0.5	
1	
2	
4	
8	
16	
32	

1	 2	 4	 8	 16	 32	 Sp
ee
du

p	
(v
s	 1

P)
	

Processors	

Outer	 Parallel	 (Dep-‐Driven)	 Outer	 Parallel	 (Na<ve	 Chapel)	

Nested	 Parallel	 (Dep-‐Driven)	 Nested	 Parallel	 (Na<ve	 Chapel)	

(b) 8, 192× 8, 192

0.25	

0.5	

1	

2	

4	

8	

16	

32	

1	 2	 4	 8	 16	 32	

Sp
ee
du

p	
(v
s	 1

P)
	

Processors	

Outer	 Parallel	 (Dep-‐Driven)	 Outer	 Parallel	 (Na<ve	 Chapel)	

Nested	 Parallel	 (Dep-‐Driven)	 Nested	 Parallel	 (Na<ve	 Chapel)	

(c) 16, 384× 16, 384

Figure 3.23: 2–D Image Histogram Computation Scalability : 1→ 32 Processors

74

actual computation that occurs inside of the main parallel loop. The computation happens

to be simply an integer increment. Because the overhead of nested parallelism in Chapel is

not as high, the overall impact on performance in the native Chapel version does not suffer

as much as the dependence-driven approach. Chapter 4 will discuss optimizations that can

help alleviate some of the overhead.

Synthetic.Trig

The last benchmark that is evaluated is the Synthetic.Trig application. This is a purely

compute-bound multiply-nested parallel kernel. As the results show in Figure 3.24, the

program scales very well. For example, at a larger input size of 32K inner-iterations, there

is a speedup of ∼31x at 32 processors, and a speedup of ∼21x at 32 processors when the

input is set to a smaller size of 1K inner-iterations.

Similar to before, the dependence-driven approach scales slightly better than the native

Chapel implementation mostly due to the StarPU’s task scheduler being more efficient.

3.5 Supporting Non-Loop Based Parallel Constructs

This section deals with supporting more than just the compilation of data-parallel loops

into the task-dependence graph model. In particular, this proposes a way of supporting the

task-parallel constructs of Chapel to also use the dependence-driven compilation techniques

described earlier, including partitioning the flow graph into an interval graph and its ICT so

that generated tasks can be scheduled asynchronously by the runtime.

Consider the parallel construct cobegin. In a cobegin block, every statement is spawned

as a separate task. The end of the cobegin represents an implicit join that waits for all the

concurrent statements to complete execution before the master thread proceeds.

The general approach to translating a cobegin into the dependence-driven model is

75

1	

2	

4	

8	

16	

32	

1	 2	 4	 8	 16	 32	

Sp
ee
du

p	
(v
s	 1

P)
	

Processors	

Outer	 Parallel	 (Dep-‐Driven)	 Outer	 Parallel	 (Na9ve	 Chapel)	

Nested	 Parallel	 (Dep-‐Driven)	 Nested	 Parallel	 (Na9ve	 Chapel)	

(a) 1,024 Iterations

1	

2	

4	

8	

16	

32	

1	 2	 4	 8	 16	 32	

Sp
ee
du

p	
(v
s	 1

P)
	

Processors	

Outer	 Parallel	 (Dep-‐Driven)	 Outer	 Parallel	 (Na9ve	 Chapel)	

Nested	 Parallel	 (Dep-‐Driven)	 Nested	 Parallel	 (Na9ve	 Chapel)	

(b) 2,048 Iterations

1	

2	

4	

8	

16	

32	

1	 2	 4	 8	 16	 32	

Sp
ee
du

p	
(v
s	 1

P)
	

Processors	

Outer	 Parallel	 (Dep-‐Driven)	 Outer	 Parallel	 (Na9ve	 Chapel)	

Nested	 Parallel	 (Dep-‐Driven)	 Nested	 Parallel	 (Na9ve	 Chapel)	

(c) 4,096 Iterations

1	

2	

4	

8	

16	

32	

1	 2	 4	 8	 16	 32	

Sp
ee
du

p	
(v
s	 1

P)
	

Processors	

Outer	 Parallel	 (Dep-‐Driven)	 Outer	 Parallel	 (Na9ve	 Chapel)	

Nested	 Parallel	 (Dep-‐Driven)	 Nested	 Parallel	 (Na9ve	 Chapel)	

(d) 8,192 Iterations

1	

2	

4	

8	

16	

32	

1	 2	 4	 8	 16	 32	

Sp
ee
du

p	
(v
s	 1

P)
	

Processors	

Outer	 Parallel	 (Dep-‐Driven)	 Outer	 Parallel	 (Na9ve	 Chapel)	

Nested	 Parallel	 (Dep-‐Driven)	 Nested	 Parallel	 (Na9ve	 Chapel)	

(e) 16,384 Iterations

1	

2	

4	

8	

16	

32	

1	 2	 4	 8	 16	 32	

Sp
ee
du

p	
(v
s	 1

P)
	

Processors	

Outer	 Parallel	 (Dep-‐Driven)	 Outer	 Parallel	 (Na9ve	 Chapel)	

Nested	 Parallel	 (Dep-‐Driven)	 Nested	 Parallel	 (Na9ve	 Chapel)	

(f) 32,768 Iterations

Figure 3.24: Synthetic.Trig Scalability for Nested-Parallelism : 1→ 32 Processors

76

1 code1;

2 cobegin {

3 producer1 ();

4 producer2 ();

5 }

6 Consumer ();

AFG AFG + dummy edges

Code1

Producer1 Producer2

Consumer

Interval Graph

NULL NULL
Code1

Producer1 Producer2

Consumer

NULL NULL
Code1

Producer1 Producer2

Consumer

Figure 3.25: Translating a Task-Parallel cobegin into an Interval Graph

similar to the techniques of computing the agglomerated flow graph and then performing

interval analysis on the AFG. Since every statement represents a task, the statement will

be its own agglomerated basic block with an incoming edge from the header of the cobegin

block, and an outgoing edge to the implicit join at the end of the cobegin. The subtle

difference is that since there is only a single predecessor edge to each of the statements

in the cobegin, this would complicate interval analysis due to the algorithm incorporating

the newly created nodes into the existing interval. Thus, the entire cobegin block would

collapse into a single interval which would prevent any expected parallelism. In order to keep

the cobegin statements in separate interval nodes, a temporary artificial edge or dummy

edge to each cobegin statement is inserted. Now that each node will have more than one

predecessor, the nodes will not be collapsed together as a result of interval analysis. After

interval analysis has been performed and the interval nodes have been generated, the dummy

edges are removed. As an example, consider the producer-consumer program in Figure 3.25.

This shows the graphical intuition for the approach of preventing cobegin statements from

being collapsed together. After the interval graph has been generated, and the dummy

edges have been removed, the remainder of the compilation process is the same as before in

Section 3.3.

77

3.6 Language Support for Arbitrary Execution Order

The work presented earlier in this chapter assumes that parallelism is invoked explicitly

through means such as forall loops. The downside to this approach is that it introduces

barriers which are too coarse-grain. These barriers fail to express point-to-point dependences

(both data and control) between program statements, which will then limit program per-

formance. As an alternative to this, there are programming languages and runtime systems

provided where one can declaratively express tasks and their point-to-point dependences,

thus in effect, explicitly constructing a task-dependence graph. Examples of this include

Intel Concurrent Collections (CnC) [16] or the StarPU runtime system described earlier.

However, the problem with these programming models are that the vast majority of pro-

grams are written in an imperative style which differs from the declarative programming

models used by CnC or StarPU. Judging by the existing programming languages available,

programmers have historically preferred imperative languages. This will then limit overall

programmer acceptance of these declarative-based programming models.

In order for program correctness to be maintained, a compiler has to be conservative in

the optimizations that it applies. As a result of this, a program’s data dependences can then

have a limiting effect on which of these optimizations are applied. This includes potentially

limiting loop transformations that change the order of execution in order to increase a

program’s locality or parallelism. The problem is that, in many cases, the compiler might

not have enough information to correctly determine the program’s dependences, possibly

because dependences could be a function of the input, there is a lack of alias information

due to pointers, or no compile-time information about external third-party libraries. Rather

than the compiler trying to automatically compute these dependences and possibly failing to

find a legal transformation, if it were provided dependence information explicitly in the form

of loop ordering constraints, it would have the freedom and flexibility to do any optimization

78

that was legal within these imposed constraints.

for k in 0..TILES–1 {
 A(k,k) = DPOTF(A(k,k))

 for i in k+1..TILES-1 {
 A(i,k) = DTRSM(A(k,k),A(i,k))
 }
 for j in k+1..TILES-1 {
 A(j,j) = DSYRK(A(j,k),A(j,j))
 for i in j+1..TILES-1 {
 A(i,j) = DGEMM(A(i,k),A(j,k),A(i,j))
 }
 }
}

Figure 3.26: Tiled Cholesky Factorization

For example, consider the Tiled Cholesky Factorization (A = LLT) program in Fig-

ure 3.26. Cholesky factorization is a method of decomposing a symmetric positive-definite

n × n matrix A into a lower triangular n × n matrix L and its transpose LT , such that

A = LLT . Cholesky factorization can be used to solve systems of linear equations, and is

known to be more efficient than LU factorization. The tiled implementation of Cholesky

consists of the following four kernel operations: DPOTF, DTSRM, DSYRK, and DGEMM. DPOTF

performs a Cholesky factorization of the diagonal tile A(k, k). DTSRM performs a triangular

system solve down a column of tiles using the diagonal component computed in DPOTF. DSYRK

performs a symmetric rank-k update onto the diagonal tile. DGEMM performs a matrix-matrix

multiplication on the off-diagonal components.

The three main steps of the algorithm are given in Figures 3.27a–3.27c. The first step of

the algorithm is to do a block-level Cholesky factorization on the A(0,0) tile. Next, using the

newly computed A(0,0) tile, a triangular system solve down the column is performed on tiles

A(1,0)–A(3,0). Finally, a symmetric rank-k update is performed across the rows 1–4. On

the next iteration of k, the process starts all over again using the adjacent column of tiles to

the right. Since more than likely the compiler does not have a priori knowledge of what data

79

1 for k in 0..TILES–1 do {
2 A(k,k) = DPOTF(A(k,k));
3
4 for i in k+1..TILES-1 do
5 A(i,k) = DTRSM(A(k,k), A(i,k));
6
7 for j in k+1..TILES-1 do {
8 A(j,j) = DSYRK(A(j,k), A(j,j))
9
10 for i in j+1..TILES-1 do
11 A(i,j) = DGEMM(A(i,k),A(j,k),A(i,j));
12 }
13 }

A(0,0)

A(1,0) A(1,1)

A(2,0) A(2,1)

A(3,0) A(3,1)

A(2,2)

A(3,2) A(3,3)

(a) Block Factorization of A(0,0)

1 for k in 0..TILES–1 do {
2 A(k,k) = DPOTF(A(k,k));
3
4 for i in k+1..TILES-1 do
5 A(i,k) = DTRSM(A(k,k), A(i,k));
6
7 for j in k+1..TILES-1 do {
8 A(j,j) = DSYRK(A(j,k), A(j,j))
9
10 for i in j+1..TILES-1 do
11 A(i,j) = DGEMM(A(i,k),A(j,k),A(i,j));
12 }
13 }

A(0,0)

A(1,0) A(1,1)

A(2,0) A(2,1)

A(3,0) A(3,1)

A(2,2)

A(3,2) A(3,3)

(b) Triangular Solve of A(1:3,0) using A(0,0)

1 for k in 0..TILES–1 do {
2 A(k,k) = DPOTF(A(k,k));
3
4 for i in k+1..TILES-1 do
5 A(i,k) = DTRSM(A(k,k), A(i,k));
6
7 for j in k+1..TILES-1 do {
8 A(j,j) = DSYRK(A(j,k), A(j,j))
9
10 for i in j+1..TILES-1 do
11 A(i,j) = DGEMM(A(i,k),A(j,k),A(i,j));
12 }
13 }

A(0,0)

A(1,0) A(1,1)

A(2,0) A(2,1)

A(3,0) A(3,1)

A(2,2)

A(3,2) A(3,3)

(c) Symmetric Rank-K update using A(1:3, 0)

Figure 3.27: Sequential Tiled Cholesky Factorization

80

is modified within the different LAPACK and BLAS routines, it has to be conservative on

the loop transformations that it can apply. If the compiler had this knowledge, it could, for

example, start pipelining computation across different iterations of k. If k = 1, then DPOTF

can start execution concurrently as soon as DSYRK has completed execution in iteration

k = 0, j = 1.

Main Goal The work in this section defines a language extension to the Chapel program-

ming language in order to explicitly specify the legal ordering constraints that can occur

between program statements. The specified ordering of execution is user-provided, rather

than relying on the compiler to try and determine this automatically by computing control-

and data-dependences. This is done so that programmers can still write applications in a

loop-based imperative style, rather than relying on a declarative form as required by existing

dependence-driven systems. There are two main venues of research that the work in this

section will lead to. First, this would permit the compiler to perform loop transformations

that would have been prevented earlier due to the possibility of a data dependence. This

includes the large assortment of loop transformations [43] that require dependence analysis

to have been performed. Second, loop constructs (both sequential and parallel) can now be

generalized where a single notation can express different forms of parallelism, including data

parallelism, pipeline parallelism, and task parallelism.

Besides the optimization potential from the compiler, these extensions allow programmers

to incrementally parallelize their applications, similar to the popularity of directives as used

in OpenMP. It should be noted that this technique is fully complimentary to the existing

compilers used today that rely on dependence analysis. If the compiler is not able to precisely

compute dependences for various reasons, it can fall back onto the proposed method in order

to still perform its transformations.

81

3.6.1 Language Extensions

This section describes the proposed language extensions which can be used to specify the

ordering constraints between statements. One point of this exercise is to maintain high pro-

ductivity by finding a minimal set of necessary extensions to support the ability of providing

the compiler enough dependence information.

Prerequisite

The semantics of the statements in the language remain the same. That is, the execution

of loops and statements stay the same by executing sequentially. Parallelism is induced

explicitly through the existing mechanisms of [co]begin and [co]forall.

1 if (...) then {

2 statement1;

3 statement2;

4 statement3;

5 } else {

6 statement4;

7 statement5;

8 statement6;

9 }

1 if (...) then {

2 begin statement1;

3 begin statement2;

4 begin statement3;

5 } else {

6 begin statement4;

7 begin statement5;

8 begin statement6;

9 }

Figure 3.28: Implicit versus Explicit Parallel Model

An alternative to this approach would be to have every statement implicitly parallel.

That is, the only method to enforce a particular ordering would be through the proposed

extension or by marking a block of code as serial. Consider the simple example in the

leftmost block of Chapel code in Figure 3.28. If the assumption is that every statement in a

compound statement sequence can execute in parallel with the others, then the equivalent

in the non-implicitly parallel scenario is the rightmost block of Chapel code where every

statement is spawned as a separate task with the asynchronous Chapel begin construct.

Here, every statement would be fully parallel with no particular constraint on their order-

ing. While this alternative approach could result in less cluttered code, it is not pursued

82

1 for i1 in 1..M1 {

2 L1 : stmt1;

3 for i2 in 1..M2 {

4 L2 : stmt2;

5 ...

6 for in in 1..Mn {

7 Ln : stmtn;

8 }

9 }

10 }

1 for i1 in 1..M1 {

2 L1 : begin stmt1 when Ln(i1 − 1,M2,Mn);
3 for i2 in 1..M2 {

4 L2 : begin stmt2 when L1(i1), Ln(i1, i2 − 1,Mn);
5 ...

6 for in in 1..Mn {

7 Ln : begin stmtn when L2(i1, i2), Ln(i1, i2, in − 1);
8 }

9 }

10 }

Figure 3.29: Loop Nest: Before and After Language Extension

since it would effectively alter the semantics of the language, rather than compliment the

existing programming model. One could also argue that programmers are worse at implicit

parallelism relative to explicit.

The when Language Statement

Consider the loop nest on the left in Figure 3.29. The loop has an iteration vector ~i that

represents a particular loop instance (i1, i2, . . . , in). The iteration vector~i makes up the total

iteration space ~I as follows:

~i ∈ ~I = {(i1, . . . , in)|1 ≤ i1 ≤M1, . . . , 1 ≤ in ≤Mn; i1, . . . , in ∈ Z} (3.1)

The main language extension comes from keyword when :

L : S when L1(i1), [L2(i1, i2), . . . , Ln(i1, i2, . . . , in)] (3.2)

The when extension specifies that in order to execute a given statement S at label L, it must

wait for all of the statements specified by labels L1[, L2, . . . , LN] at a particular instance in

the loop iteration vector ~i to have completed. Any statement using the when annotation

that is prepended with a begin, will be asynchronously pushed onto a queue of tasks. It is

83

then the job of the task-scheduler to start execution of tasks once their ordering constraints

have been resolved. In the case where the begin instruction is not used, statement S will

block until its dependences have been resolved. If a statement is performing a when on a

particular ordering constraint that has not been encountered yet, that ordering constraint

will be ignored for this instance. This approach was taken so that initial statements can start

and make progress without cluttering the program with numerous constraint conditionals.

In the example on the right of Figure 3.29, there are three when statements. The state-

ment at L1 in instance i1 can start execution as soon as all Ln have completed from the

previous iteration (i.e. Ln has completed iteration (in − 1,M2,Mn)). The statement at L2

can start execution as soon as L1 finishes in the current iteration of i1, and both L2 and Ln

from the previous iteration of i1 have completed. Lastly, statement Ln can start execution

as soon as L2 in the current (i1, i2) iteration completes, and Ln from the previous iteration

of (i1, i2, in − 1) has fully finished.

1 for i1 in M1..M2 {

2 L1 : begin stmt1 when L1(i1 − 1), L2(i1 − 1);
3 L2 : for i2 in 1..M2 when L1(i1) {

4 begin stmt2;

5 }

6 ...

7 for in in 1..Mn {

8 Ln : begin stmtn when L1(i1), L2(i1 − 2);
9 }

10 }

Figure 3.30: Using a when Statement Across a Block

The granularity of the statement(s) can be of variable size. In addition to S being a

single statement, it can also be a loop or an arbitrary block of code. For example, as shown

in Figure 3.30 the loop at L2 can start execution as soon as the previous statement at L1

has completed execution. Additionally, if the statement is dependent on the completion of

an entire loop (as in Ln), the provided extensions are flexible enough to allow this. In this

example, the statement Ln can start execution as soon as statement L1 in the same iteration

84

i1 and statement L2 two iterations ago (i.e. i1 − 2) have completed.

1 for i1 in 100..200 {

2 L1 : begin stmt1 when L1(i1 − 1);
3 for in in 1..Mn {

4 L2 : begin stmtn when L1(100..150);
5 }

6 }

Figure 3.31: Using a when Statement Across a domain

A named subset of indexes, known as a domain in Chapel, can also be used in place of

the scalar loop index in order to specify the ordering constraint on a set of instances. Rather

than wait for a single instance of a statement to complete, a set of loop instances can be

used. In Figure 3.31, the statement at L2 will not start execution until L1 has completed

execution for iterations 100–150.

3.6.2 Examples

This section provides two short examples written in Chapel that utilize the when language

extension. In addition to the example source code, the respective task-dependence graph that

is generated will be presented.

Tiled Cholesky Factorization: A = LLT

Figure 3.32a shows an asynchronous implementation of a tiled Cholesky factorization kernel

and Figure 3.32b is the associated unrolled task-graph using a 4×4 tiled grid. This algorithm

is asynchronous due to each statement being asynchronously spawned as a task using the

begin instruction. The red portions of the example represent the new language extensions

necessary to express the ordering constraints between statements. As the task-dependence

graph shows, once the first instance of DPOTF completes, three instances of DTRSM can execute

in parallel. Dependent on which DTRSM completes, the next set of calls can be made to

85

either DSYRK or DGEMM. The next instance of DPOTF can be invoked as soon as the first

instance (based on i,j) of DSRK completes. This pattern proceeds until the program eventually

completes.

It is important to note that similar to the progressive flexibility of introducing/removing

parallelism offered by OpenMP, if these language extensions (and the respective begin) were

to be removed, the program would still be functionally correct.

Tiled QR Factorization: A = QR

QR factorization is a stable method of decomposing an m × n matrix A into the product

QR, where Q is a m × m orthogonal matrix, and R is a m × n upper triangular matrix.

QR factorization is commonly used to solve linear least squares and also can be used in

computing eigenvalues.

Figure 3.33 shows a tiled QR factorization implementation using the following kernel

operations: DGEQRT, DTSQRT, DORMQR, and DSSMQR. DGEQRT performs a QR factorization on a

diagonal tile. The output consists of A and T . A is made up of the upper triangular matrix

R, and the lower triangular matrix V which contains the Householder reflectors. T is made

up of the upper triangular block reflectors which are stored in compact form [73]. DTSQRT

performs a QR factorization using the R matrix computed in DGEQRT or from a previous

call to DTSQRT, and a tile below the matrix diagonal. This subroutine produces an updated

R matrix, a square matrix V containing the Householder reflectors, and T . DORMQR uses

the transformations computed in DGEQRT to apply to the tile on the right of the diagonal.

DSSMQR applies the reflectors V and matrix T that were both computed in DGEQRT to the

two tiles that were factorized by DGEQRT.

The respective unrolled task-dependence graph for 4×4 tiled QR factorization is provided

in Figure 3.34b. If the user (or compiler) were to compute the dependences for this purely

based on the loop indices, a task-graph can be formed as shown in Figure 3.34a.

86

for k in 0..TILES–1 {
 S1: begin A(k,k) = DPOTF(A(k,k)) when S3(k-1,k)

 for i in k+1..TILES-1 {
 S2: begin A(i,k) = DTRSM(A(k,k),A(i,k))
 when S1(k),S4(k-1,k,i)
 }
 for j in k+1..TILES-1 {
 S3: begin A(j,j) = DSYRK(A(j,k),A(j,j))
 when S2(k,j),S3(k-1,j)
 for i in j+1..TILES-1 {
 S4: begin A(i,j) = DGEMM(A(i,k),A(j,k),A(i,j))
 when S2(k,i),S2(k,j),S4(k-1,j,i)
 }
 }
}
// barrier

(a) Cholesky Factorization With when Ordering Constraints

DPOTF

DTRSM DTRSM DTRSM

DSYRK DGEMM DGEMM DSYRK DGEMM DSYRK

DPOTF

DTRSM DTRSM

DGEMM DSYRKDSYRK

DPOTF

DTRSM

DSYRK DPOTF

(b) Task-Dependence Graph for Cholesky Factorization

Figure 3.32: Asynchronous Cholesky Factorization

87

for k in 0..TILES–1 {
 (A(k,k),T(k,k)) = DGEQRT(A(k,k))
 for i in k+1..TILES-1 {
 (A(k,k),A(i,k),T(i,k)) = DTSQRT(A(k,k),A(i,k),T(i,k))
 }
 for j in k+1..TILES-1 {
 A(k,j) = DORMQR(A(k,k),T(k,k),A(k,j))
 for i in k+1..TILES-1 {
 (A(k,j),A(i,j)) = DSSMQR(A(i,k),T(i,k),A(k,j),A(i,j))
 }
 }
}

Figure 3.33: Tiled QR Factorization

Optimized Tiled QR Factorization

As mentioned earlier, in many cases a compiler can have trouble extracting all the possi-

ble dependences statically, either due to input dependences, non-affine indices, aliasing, or

linked-in libraries. In the QR factorization example shown earlier, calls are made to various

BLAS subroutines. More often than not, the compiler would not be aware of what data

structures are modified internally as part of the linked-in third party BLAS routines. Func-

tionally, DORMQR only uses the lower triangular portion of A(k, k) (i.e. (V (k, k)), whereas

DTSQRT will only output to the upper triangular portion of A(k, k) (i.e. R(k, k)). Thus, there

is no overlap between the two that could cause a dependence violation. Naively, the compiler

would determine there was a dependence between the two even though there is no overlap

in the portions of the array being read and written to.

Since the programmer now has a way of expressing the ordering constraints explicitly

to the compiler, they can safely remove any constraint between these two statements. Fig-

ure 3.35 shows an implementation of QR factorization with the dependence between DORMQR

and DTSQRT explicitly ignored. By removing (or relaxing) this edge between the two, the calls

to DORMQR can start immediately as soon as DGEQRT (in the current iteration) has completed,

thus increasing parallelism.

88

for k in 0..TILES–1 {
 S1: begin (A(k,k),T(k,k)) = DGEQRT(A(k,k)) when S5(k-1,k,k)

 S2: for i in k+1..TILES-1 {
 S3: begin (A(k,k),A(i,k),T(i,k)) = DTSQRT(A(k,k),A(i,k),T(i,k))
 when S1(k),S3(k,i-1),S5(k-1,k,i)
 }
 for j in k+1..TILES-1 {
 S4: begin A(k,j) = DORMQR(A(k,k),T(k,k),A(k,j))
 when S1(k),S2(k),S5(k-1,j,k)
 for i in k+1..TILES-1 {
 S5: begin (A(k,j),A(i,j)) = DSSMQR(A(i,k),T(i,k),A(k,j),A(i,j))
 when S3(k,i),S4(k,j),S5(k-1,j,i),S5(k,j,i-1)
 }
 }
}
// barrier

(a) QR Factorization With when Ordering Constraints

DGEQRT DTSQRT DTSQRT

DORMQR

DSSMQR

DTSQRT

DSSMQR DSSMQR

DORMQR

DSSMQR DSSMQR DSSMQR

DORMQR

DSSMQR DSSMQR DSSMQR

DGEQRT

DTSQRT DTSQRT

DSSMQR DSSMQR
DORMQR

DSSMQR DSSMQR
DORMQR

DGEQRT DTSQRT

DORMQR DSSMQR DGEQRT

(b) Task-Dependence Graph for QR Factorization

Figure 3.34: Asynchronous QR Factorization

89

for k in 0..TILES–1 {
 S1: begin (A(k,k),T(k,k)) = DGEQRT(A(k,k)) when S4(k-1,k,k)

 for i in k+1..TILES-1 {
 S2: begin (A(k,k),A(i,k),T(i,k)) = DTSQRT(A(k,k),A(i,k),T(i,k))
 when S1(k),S2(k,i-1),S4(k-1,k,i)
 }
 for j in k+1..TILES-1 {
 S3: begin A(k,j) = DORMQR(A(k,k),T(k,k),A(k,j))
 when S1(k),S4(k-1,j,k)
 for i in k+1..TILES-1 {
 S4: begin (A(k,j),A(i,j)) = DSSMQR(A(i,k),T(i,k),A(k,j),A(i,j))
 when S2(k,i),S3(k,j),S4(k-1,j,i),S4(k,j,i-1)
 }
 }
}
// barrier

(a) QR Factorization With when Ordering Constraints

DGEQRT DTSQRT DTSQRT

DORMQR

DSSMQR

DTSQRT

DSSMQR DSSMQR

DORMQR

DSSMQR DSSMQR DSSMQR

DORMQR

DSSMQR DSSMQR DSSMQR

DGEQRT

DTSQRT DTSQRT

DSSMQR DSSMQR
DORMQR

DSSMQR DSSMQR
DORMQR

DGEQRT DTSQRT

DORMQR DSSMQR DGEQRT

(b) Task-Dependence Graph for QR Factorization

Figure 3.35: Optimized QR Factorization With Fewer Dependences

90

3.7 Current Limitations

The main limitation from the proposed techniques on compiling data-parallel loops for

demand-driven runtime systems is that it does not fully exploit the maximum asynchrony

these runtime systems offer. This is due to the imposed implicit join at the end of all forall

loops. While one could prefix such forall loops with a begin to avoid the implicit join, it

is still not general enough to handle all possible situations (e.g. pipeline-parallelism). The

proposed language extension when is one method to address this, but this requires explicit

input from the programmer. One could try to automatically construct the asynchronous

task-dependence graph, but this still leads to problems related to the conservative nature of

the compiler in preserving correctness.

While Chapter 5 addresses compilation of loops to execute on data-parallel many-core

architectures, the work presented here is primarily concerned with targeting dependence-

driven runtime systems that could map the tasks onto numerous architecture backgrounds.

While the techniques proposed in this chapter are agnostic to the back-end architecture,

the implementation is focused primarily on multi-core architectures. One area of future

work would be to map these tasks onto other back end architectures. This would effectively

combine the techniques presented here and those in Chapter 5.

One last limitation in the implementation is that it currently does not leverage Chapel’s

recent support for the LLVM compiler infrastructure. Utilizing LLVM would allow the

generated code to have richer compiler optimization support than what it currently provided

by Chapel right now.

91

3.8 Related Work

3.8.1 Macro-Dataflow Compilation

There has been previous research that has looked into compiling imperative programs into

macro-dataflow form [74, 75, 31, 76]. For the vast majority of related work in this section, the

overall goal has focused on extracting parallelism automatically from sequential applications

and then generating task-graphs, whereas the goal of this thesis is to efficiently partition

an existing parallel program into a task-dependence graph. This simplifies the job of the

compiler by not requiring it to perform dependence-analysis, since the programmer has

explicitly stated what is parallel versus what is not. In cases where asynchrony needs to be

exploited, the programmer will describe the dependence constraints.

The work of Kasahara et al. [75, 77] has looked at the compilation of Fortran programs

to the macro-dataflow based compiler and architecture named Oscar. They are able to

decompose the program into a set of macrotasks into a macroflow graph, which is then

converted into a macrotask graph. The techniques discussed in this thesis differ since the focus

is only on partitioning explicitly parallel loops, whereas the work in Oscar looks to extract

parallelism automatically from serial code by analyzing both control and data dependences.

The work in this thesis does not need to perform any data dependence analysis to determine

where parallelism exists. Additionally, in the task-dependence graph that is generated, the

edges of the graph only specify the order of execution. In Oscar’s macroflow graph, there

are two forms of edges to represent data and control dependences between the macrotasks.

Lastly, the nodes in the macroflow graph can be classified as either basic blocks, loops, or

subroutines. Since the goal of this section is to explicitly partition parallel loops from the

rest of the program, the nodes are partitioned into intervals that are more coarse than what

is provided in Oscar’s macroflow graph. In particular, the interval nodes are not restricted

to the node type classification as used in Oscar. This coarsening of interval nodes could lead

92

to less overhead of the fine-grain tasks generated by the Oscar compiler.

Girkar and Polychronopoulos have presented work [74, 78, 79] on the automatic extraction

of task-level parallelism from serial programs into a hierarchical task graph (HTG) interme-

diate representation. While there is a strong similarity between their hierarchical task graph

IR [78] and the interval graph and associated ICT from this work, the technique to construct

these graphs differ. Strongly connected regions [80] are used to construct the HTG, while

interval analysis is used to construct the task graph. Their claim for not using interval

analysis is that it does not support reducible loops. In real world applications, unstructured

programs that lead to an irreducible program are extremely rare [26, 27]. Additionally the

granularity of tasks from the HTG are much finer since they are trying to automatically

parallelize serial code, while the work presented here does this on already explicitly parallel

loops.

There has been work done by Sarkar [81] on a compile-time partitioning algorithm of

the functional language Sisal for macro-dataflow architectures. Unlike the work presented in

this thesis, the major component used in the partitioning is strictly based on an analytical

performance model that takes into consideration both computation and communication costs.

Beck and Pingali [76] present a technique of compiling sequential Fortran programs into

dataflow form. When the CFG has cycles in it, they use an interval decomposition of the

CFG. An important difference between their work and the one from this thesis, is that they

use a traditional fine-grain dataflow architecture that works on memory operands, as opposed

to the coarser task-dependence model which works on larger and more coarse executable

chunks. Additionally, as with the other approaches already discussed, this scheme does not

deal with explicitly parallel programs.

Leveraging both control and data dependence, Cytron [31, 82] presents a method that

automatically generates DAG parallelism from sequential programs. Similar to the approach

used in this thesis, they construct an interval hierarchy. The two major differences between

93

the work presented here and theirs, is that first, they do not target a dependence-driven

execution model, which is done in this thesis. However, their proposed techniques could

potentially be applicable to dependence-driven systems. The second difference is that since

they are trying to automatically parallelize serial programs, they honor data dependences in

order to determine an ordering between the statements and iterations of loops in a program.

In the approach presented here, this is not necessary as it is only focused on translating

explicitly parallel loops where computing data dependences is not necessary.

3.8.2 Language Extensions to Express Dependences

There has been some work in providing language annotations to describe dependences. In

Duran et al. [17], the OpenMP 3.0 task construct is extended with additional clauses that

specify data dependence relationships between different tasks. In particular, these clauses

specify whether a task has an input and/or output dependence on a particular variable. On

the other hand, the clauses do not specify the order of execution. In the approach described

in this thesis, specific data dependences are not required in order for task-dependence edges

to be resolved. Instead, the user specifies the exact ordering constraints on a statement,

basic block, or loop. Forward progress is made as soon as an ordering constraint has been

resolved.

Cytron [31] presents a method to construct a DAG of constraints among processes at

the same nesting level within a cobegin...coend pair. The work described in this thesis

is more general purpose, since in addition to being able to place ordering constraints on

cobegin..coend pairs, they can be placed on individual loop iterations, entire loops, or

statements.

The DAGuE [12] project is a system focused on dense linear algebra. DAGuE consists

of a runtime engine and a set of tools to compile a compact representation of a DAG. They

have both a low-level and high-level language that one can program in. In the low-level

94

language, the programmer needs to provide the implementation of all of the low-level BLAS

routines, along with the dependences associated with those routines. If the user programs in

their high-level language, the dependences are not specified. The difference to this thesis is

that in their high-level language, they leave it to the compiler to compute data dependences,

which severely limits the types of applications that one can run on their system.

Padua [40] and Cytron [41] have introduced the concepts of the doacross loop. The

doacross is a special form of a parallel loop where the parallelism is constrained due to

forward loop-carried dependences. In order to enforce correct execution order, one would

use post(id) and wait(id). The language extension proposed in this thesis is similar, except

that it is much more unstructured since the programmer can place ordering constraints onto

any statement in the program, as opposed to the loop as used in doacross.

Work was done in ZPL on exploring methods of providing array language support for

pipelining wavefront computations [83]. This is different than the language extensions pro-

posed here, since the extensions work on more than just whole-array statements. Another

difference is that in this case ZPL primarily focused on wavefront computations, whereas the

work presented here tries to generalize ordering constraints for all computations.

The concept of a language future [84] or promise [85] provides a way of asynchronously

binding the result of a computation with its caller. An important distinction between the

techniques proposed here, is that using the language extension techniques, the ordering

between a statement and its result is asynchronously bound to a statement at some specific

point in the iteration space, whereas in the future, a statement will just wait for the result

to occur before it can proceed.

Lastly, Ke et al. propose a method of doing safe parallel programming using dynamic

dependence hints that specify possible dependences between tasks [86]. A major difference

between the proposed solution here is that they rely on software speculation to synchronize

between tasks [86], whereas the proposed work does not.

95

3.9 Discussions

This chapter presented new methods of partitioning an already existing imperative paral-

lel program into a task-dependence graph using compiler techniques such as agglomerated

flow graphs, interval analysis, and interval containment trees. These techniques work for

both single and multi-nested data-parallel loops. Since this work is effectively translating a

program with global state to one that is stateless, a new algorithm was developed to effi-

ciently place data and communicate it an interval containment tree. In addition to parallel

loops, a method was developed to support non-loop parallel constructs. Lastly, in order to

deal with the limitations that implicit barriers have on performance and to fully extract the

asynchrony offered by demand-driven runtime systems, a new language extension was devel-

oped that allows a programmer to explicitly provide to a compiler the ordering constraints

between different statements. This allows the compiler to either use this in conjunction with

or replace its own dependence analysis, to perform different transformations.

96

Chapter 4

Loop Optimizations for

Dependence-Driven Models

This chapter extends and optimizes the loop compilation techniques for dependence-driven

systems that was presented in Chapter 3. Specifically, this chapter presents a new algorithm

that combines multi-dimensional tiling and loop coalescing for multiply-nested parallel loops,

and determines heuristically through a dependence-driven specific cost model (built on micro-

benchmarks), a processor configuration to best match the set of tiled loops.

4.1 Introduction

A major goal of Chapter 3 was to partition imperative parallel programs (with and without

complex control flow graphs) in order to map the computation onto dependence-driven exe-

cution models. The challenge is that in compiling data-parallel loops, implicit barriers at the

end of the loops can have a serious impact on the performance of the program. In the case

when nested or inner loop parallelism is leveraged, overhead from the inner barriers become

an even bigger detriment. In a majority of loops that leverage parallelism, a single level of

97

parallelism (commonly the outer-loop) is typically sufficient if the number of loop iterations

are large enough and the amount of work per iteration justifies the need for parallelism.

However, there are situations when nested parallelism can also provide benefit over using a

single level [87, 88].

1 forall i in 1..Ui {

2 forall j in 1..Uj {

3 forall k in 1..Uk {

4 for w in 1..Uw {

5 W(i, j, k, w) = . . .;
6 }

7 }

8 }

9 }

Figure 4.1: Nested Parallel Loops With Static Loop Bounds

Consider the triply nested parallel loop in Figure 4.1. For the three parallel loops in

this figure, assume static loop scheduling and execution on a multi-core architecture with a

maximum number of processors Pmax, with the constraint that Pmax = UiUjUk, and Ui > 1,

Uj > 1, Uk > 1. The loop body W represents the workload and is a function of the loop

indices (i, j, k, w). Also, assume that Uw is a large value, so that there is a substantial (and

uniform) workload per parallel iteration. If the programmer were to only parallelize a single

loop in this program, not all of Pmax would effectively be utilized. The only way to utilize

all of Pmax would be for all of the loops to be parallelized, as shown in the example. How-

ever, since parallelization occurs with forall loops, the following limitations to execution

performance will occur:

• A decrease in parallelism as a result of the unnecessary implicit join synchronization

from forall loops, even though the loop iterations are fully independent from one

another. The decrease in parallelism could result in multiple scenarios. In the Cholesky

factorization example shown previously in Figure 3.27, if any of the inner loops were to

be parallelized, the outer-most k loop would be prevented from overlapping with the

98

rest of the computation. Due to this, the language extensions introduced in Chapter 3.6

were one way of increasing asynchronous parallelism from an imperative language.

• An increase in overhead from the dynamic creation and destruction of inner-parallel

tasks as opposed to creating and killing the tasks once. Depending on the runtime

implementation, this overhead could be either large or small. If the runtime needs to

spawn heavyweight threads on each encounter, this could result in more overhead. The

more likely scenario is that the tasks already exist in a thread-pool. However, even in

this scenario, cycles will need to be spent on activating and releasing those tasks.

• Increased communication costs between tasks in order to provide data coherency be-

tween them. Since each parallel loop will result in a separate task, any data that is

shared between the loops will need to be propagated by the DSM.

Loop coalescing is one method that can be used in order to reduce the overhead associated

with nested-parallel loops. Assuming normalized loops with invariant loop-bounds and no

loop-carried data dependences, loop coalescing is a transformation that translates a multiply-

nested loop into a single loop and updates the loop bounds of the single-dimensional loop

to the product of the dimensions of the inner loops. Start with an original loop nest of

the form L = (Nm, Nm−1, . . . , N1) where (Nm, Nm−1, . . . , N1) represents the trip counts of

each loop in the loop nest. Also let L have the loop indices I = (im, im−1, . . . , i1) and array

indices of the form A(im, im−1, . . . , i1). Applying loop coalescing will form the single loop

nest L′ = (NmNm−1 . . . N1), which now has a single loop index J and array indices of the

form A(fm(J), fm−1(J), . . . , f1(J)). The following formula [42] is used to compute the new

array indices:

fk(J) =

⌈
J∏k−1

i=1 Ni

⌉
−Nk

⌊
J − 1∏k
i=1Ni

⌋
, k = m,m− 1, . . . , 1 (4.1)

99

When loop coalescing is applied to the previous example, the loop is transformed into

the one shown in Figure 4.2. As this example clearly shows, all tasks are now created

initially, and the amount of inner loop barrier synchronization is removed at the expense of

an additional computation from computing the new indices. Additionally, scheduling has

now been simplified.

1 forall ijk in 1..UiUjUk {

2 var i =
⌈

ijk
UjUk

⌉
3 var j =

⌈
ijk
Uk

⌉
− Uj

⌊
ijk−1
UjUk

⌋
4 var k = ijk − Uk

⌊
ijk−1
Uk

⌋
5 for w in 1..Uw {

6 W(i, j, k, w) = . . .;
7 }

8 }

Figure 4.2: Loop Coalescing Example

In cases where the multiply-nested parallel loop is non-perfectly nested, loop coalescing

can still be performed either by inserting conditional code that ensures the correct section

of code is to be executed [89], or by performing other loop transformations such as loop

distribution [43]. In this thesis, the assumption will be that all multiply-nested parallel

loops are to be perfectly nested, and if they are not, loop distribution is performed by the

compiler earlier in the compilation process. If loop distribution cannot be performed, a last

measure taken by the compiler is to still perform loop coalescing, but now the compiler must

insert a conditional statement into the non-perfectly nested loop so that the correct portion

of code is executed in the different loop nest levels [89].

The different figures in Figure 4.3 present an evaluation where a single level of loop

parallelism (both inner and outer) is insufficient compared to other loop parallelization tech-

niques such as loop coalescing and nested parallelism, thus, demonstrating a need for multi-

dimensional parallelism. The point of this experiment is to show the scenario where some

form of nested parallelism is advantageous compared to utilizing only single level loop par-

100

0	
2	
4	
6	
8	
10	
12	
14	
16	
18	

2	 4	 6	 8	 10	 12	 14	 16	

Sp
ee
du

p	
(v
s	 S

er
ia
l)	

#	 of	 Rows	 (Outer	 Loop	 Dimension)	

outer-‐parallel	 inner-‐parallel	 nested-‐parallel	 loop	 coalesced	

(a) work = 32,768 : Inner Iterations = 16

0	

1	

2	

3	

4	

5	

6	

7	

2	 4	 6	 8	 10	 12	 14	 16	

Sp
ee
du

p	
(v
s	 S

er
ia
l)	

#	 of	 Rows	 (Outer	 Loop	 Dimension)	

outer-‐parallel	 inner-‐parallel	 nested-‐parallel	 loop	 coalesced	

(b) work = 64 : Inner Iterations = 16

0	
2	
4	
6	
8	
10	
12	
14	
16	
18	

2	 4	 6	 8	 10	 12	 14	 16	

Sp
ee
du

p	
(v
s	 S

er
ia
l)	

#	 of	 Columns	 (Inner	 Loop	 Dimension)	

outer-‐parallel	 inner-‐parallel	 nested-‐parallel	 loop	 coalesced	

(c) work = 32,768 : Outer Iterations = 16

0	
1	
2	
3	
4	
5	
6	
7	
8	

2	 4	 6	 8	 10	 12	 14	 16	

Sp
ee
du

p	
(v
s	 S

er
ia
l)	

#	 of	 Columns	 (Inner	 Loop	 Dimension)	

outer-‐parallel	 inner-‐parallel	 nested-‐parallel	 loop	 coalesced	

(d) work = 64 : Outer Iterations = 16

Figure 4.3: Single Level Parallelism Compared with Multi-Dimensional Parallelism

allelism when the amount of work per iteration is both small and large.

The benchmark used in this experiment is similar in structure to that of the code snippet

in Figure 4.1. Also, the machine platform used in this evaluation is the same that was

used earlier from Table 3.1 in Chapter 3. For this experiment, up to 16 hardware threads

will be used. In this program, two sets of 2–D grid sizes are evaluated: {16 × [1 : 16]}

and {[1 : 16]× 16}. This implies that the number of outer loop iterations are fixed to 16

iterations, and the inner loop iterations vary from 1 to 16, or vice versa, with the outer loop

iterations varying from 1 to 16 and the inner loop iterations fixed to 16. Additionally, these

2–D grid sizes represent the maximum number of processors per loop dimension. This was

done in order to show that by parallelizing only a single dimension of the loop nest, not all

of the resources will be leveraged. However, by using a technique such as loop coalescing or

101

nested parallelism, those resources will be utilized. This evaluation is performed using large

and small problem sizes in order to understand what task-specific overheads are introduced.

The x-axis in this evaluation represents a varying number of iterations for the outer (or inner)

loop dimension. The y-axis represents performance scalability over a serial implementation

of the program.

Starting with Figure 4.3a, for outer-level parallelism to perform as well as the other loop

techniques, the number of rows (the outer dimension) needs to increase. Once the number

of rows matches the number of hardware threads (16 in this case), outer-level parallelism

performs similarly to the other approaches. When the problem size is small, as shown

in Figure 4.3b, the different loop parallelization approaches perform differently. In this

case, the overheads associated with nested-parallelism have a negative impact on the overall

performance. The major slowdown associated with inner-level parallelism is due to the

overhead of dynamically spawning and joining inner parallel loops. The remainder of the

parallel loops all perform comparably.

Instead of increasing the number of rows, Figures 4.3c and 4.3d show what happens when

the number of columns (the inner dimension) increases. For the majority of the loops, the

performance is the same as before, except now, the performance of the inner-parallel loops

has been reversed with that of the outer-parallel loops from Figures 4.3a and 4.3b.

Applying the loop compilation techniques from Chapter 3 introduces additional overhead

from different sources, such as time spent by the runtime in performing data communication

between tasks or from time spent on task creation and destruction for inner parallel loops

and their barriers. Additionally, the loop itself might not have a sufficient amount of work to

justify full parallelization when the overheads are taken into consideration. Instead, there can

be a situation where some amount of parallelization can still increase program performance

without leveraging all of the available processors in the system. Part of the work in this

chapter will be to develop a heuristic that finds a suitable amount of parallelization for the

102

given multiply-nested parallel loop, runtime, and associated overheads.

Contributions The contributions of this chapter include:

• The introduction of a new loop transformation that combines loop-coalescing and

blocking in order to map multiply-nested parallel loops onto dependence-driven run-

time systems without having to introduce an implicit join synchronization for the inner

parallel loop.

• The automatic selection of tile size and shapes based on a heuristic that evaluates

overheads related to the hardware and the runtime system. In many cases, the selected

tile configuration will end up using fewer resources than what the machine can offer.

• Experimental results that compare the approach of using a tiled-coalesced loop trans-

formation to other forms of parallel loops including loops that have had loop coalescing

applied to then, and multiply-nested parallel loops.

This chapter is organized as follows: Section 4.2 describes a new transformation that

combines tiling with loop coalescing. Section 4.3 will present a heuristic that can determine

tile sizes and shapes to use when performing tiled-coalescing. Afterwards, Section 4.4 will

present experimental results for these optimizations. Finally, Sections 4.5-4.7 will discuss

current limitations, related work, and then final discussions.

4.2 Multi-Dimensional Blocked-Coalesced Form

This section describes a technique that will combine loop coalescing with tiling for multiply-

nested parallel loops in order to decrease the overhead of barrier synchronization, potentially

increase locality, and provide evenly load-balanced tasks to the runtime scheduler.

103

forall im in 1..Um

forall im−1 in 1..Um−1

. . .
forall i1 in 1..U1

W(im, im−1, . . . , i1)

Figure 4.4: Multiply-Nested Parallel Loop

Loop Coalesced Form

The 1–D loop coalesced form for loop nest L is L′coalesced = (UmUm−1 . . . U1), with the sin-

gle loop index J , and array indices of the form A(fm(J), fm−1(J), . . . , f1(J)). The 1-D

iteration space of L′coalesced is J and it is defined as follows:

J =

{
j|1 ≤ j ≤

m∏
i=1

Ui; j ∈ Z

}
(4.2)

There are trade-offs to be made when comparing traditional nested parallelism with loop

coalescing. First, in the case of loop coalescing, by combining the total loop nest L into a

single level L′, the overhead of dynamically spawning and joining the inner tasks has been

removed. However, there are two potential downsides to using loop coalescing. The first is

that it introduces additional overhead in the computation of loop indices. Fortunately, in

most situations this source of overhead is negligible because the computing of indices does

not occur in the innermost loop. The second downside is that loop coalescing does not take

multi-dimensional locality into consideration; by itself, loop coalescing does not perform n-

D blocking (where n > 1). For example, in many numerical algorithms, tiling for locality

and parallelism is a classic and well-known optimization. In this case, it is advantageous to

decompose the matrices into square or rectangular shapes rather than along just a single

dimension. On the other hand, when using nested parallel loops (e.g. forall), they are

commonly strip-mined [43] among a number of processors. The strip-mining of each parallel

loop forms a natural blocked access pattern for each processor. This scenario will be made

104

(a) Loop Coalesced Iteration Space (b) Tiled Iteration Space

Figure 4.5: Loop Coalescing vs Tiled Comparison of Iteration Spaces Partitioned Among 8
Threads

evident in the following example.

Continuing with the earlier example from Figure 4.2, assume that Pmax = 8, and that

the original nested parallel loop L has loop limits (8, 8, 8), where each parallel loop has

been blocked by a factor of 2. This blocking factor implies that each loop in loop-nest L,

will have 2 threads dedicated to it. Also in this example, assume that the loop has been

statically scheduled across Pmax with at most
⌈
UiUjUk

Pmax

⌉
=
⌈
512
8

⌉
= 64 iterations per processor.

Figure 4.5a shows the effect on the access pattern that loop coalescing has when compared

to a 3-D blocking of the iteration space as shown in Figure 4.5b. Assume a row-major order

for accessing data. If the length of the row was very large for Figure 4.5a, an increase in

the number of cache misses will likely result (ignoring any possible hardware prefetching).

On the other hand, in Figure 4.5b, each thread’s access pattern represents a cube, where

no dimension is as large compared to the non-tiled scenario. This will likely increase the

possibility of reuse, thus leading to higher performance.

Due to the trade-offs between loop coalescing and nested parallelism, the major contri-

bution of this chapter is to develop a transformation that leverages the main benefit of loop

105

coalescing for its removal of dynamically spawning and joining of inner-level parallel threads,

and leverage the main benefit of nested parallelism’s support for blocking the iteration space

to potentially increase locality.

Tiled-Coalesced Form

In the tiled-coalesced form, the original loop-nest L has been transformed into the loop-nest

L′tile−coalesced, where the loop n ∈ L has been blocked by a factor of Bn. The blocking of

each loop n ∈ L produces the chunk Cn =
⌈
Un

Bn

⌉
. Now that L has been transformed into

L′tile−coalesced, the associated array indices need to be updated from A(im, im−1, . . . , i1) to

A(fm(J), fm−1(J), . . . , f1(J)). Assuming that J starts at 1, Equation 4.5 which is made

up of Equations 4.3 and 4.4, is used to convert the array indices into a tiled-coalesced form.

The portion of the equation that iterates across the tiles is provided in Equation 4.3, and

the portion that iterates through the elements inside of the tile is given in Equation 4.4.

fk block idx(J) =

 J − 1(

k−1∏
i=1

Ui

)(
m∏
i=k

Ci

)
 mod

Uk

Ck

Ck, k = m,m− 1, . . . , 1 (4.3)

fk insideblock idx(J) =

J − 1
k−1∏
i=1

Ci

 mod Ck, k = m,m− 1, . . . , 1 (4.4)

fk(J) = fk block idx(J) + fk insideblock idx(J) + 1, k = m,m− 1, . . . , 1 (4.5)

106

By applying Equation 4.5 to a loop that has already been transformed into a coalesced

form, Figure 4.5b would be an example of what the tiled iteration space would look like.

Note that the work in this section does not automatically generate tiled loops. It only maps

the indices from a multi-dimensional loop nest to the tiled-coalesced form. It would be up

to the compiler to actually generate the loops.

4.3 Heuristics for Tile Sizes

This section describes the steps necessary to construct a heuristic based on a machine and

software cost model that determines multi-dimensional block shape dimensions.

4.3.1 Off-Line Timing Benchmarks

In order to construct a heuristic based on a cost model of the machine and software char-

acteristics, a set of micro-benchmarks are to be developed. When used together, they will

help in providing an estimated execution time for the parallel loop. In this case, the parallel

loop used here is the one that has been formed by applying the tiled-coalesced transforma-

tion from the previous section. The particular characteristics that are measured are given

in Table 4.1 followed by a description of each micro-benchmark for the remainder of this

section.

Measurement Description

Tserial Execution time of loop body for one iteration
Tcreate Execution time for creation of a single task
Tbarrier Execution time for overhead associated with barriers
Tdata Time spent performing data communication

Table 4.1: Timing Benchmarks

107

timer(start);

for im in 1..Um

for im−1 in 1..Um−1

...

for i1 in 1..U1

W(im, imm− 1, . . . , i1);
timer(stop);

Tserial =
stop−start

UmUm−1...U1

Figure 4.6: Loop Body Timing Micro-benchmark

Tserial : Loop body execution time for one iteration

This micro-benchmark measures the execution time for only a single instance of the loop

body in the sequential nested inner loops. Tserial is computed using the formula:

Tserial =
timer(stop)− timer(start)∏m

i=1 Ui

(4.6)

As the micro-benchmark shows in Figure 4.6, the timer routine timer(start) is placed

directly before the start of the nested loop, and timer(stop) is placed directly at the end of

the loop. In the case that loop workload is not uniform per parallel iteration, Tserial ends

up giving the average time for the body of the loop. For sparse or irregular computations

such as sparse matrix-vector multiplication, this could lead to execution times with a wide

variance, and for dense and regular computations this measurement would be a reasonable

approximation. One improvement to this would be to use a runtime sampling measurement in

order to dynamically adjust in situations dealing with irregular computations. However, this

approach is not taken here, and is left for future work. Another alternative approach would

be construct a purely analytical model to estimate the execution time of the program [90, 91]

without having to rely on micro-benchmarks as was done here.

108

timer(start);

forall i in 1..1 {

timer(stop);

}

Tcreate = stop− start;

Figure 4.7: Task Creation Micro-benchmark

Tcreate : Execution time for creation of a single task

The benchmark measures the amount of time needed to spawn a single task. Tcreate is

trivially computed using the following:

Tcreate = timer(stop)− timer(start) (4.7)

As Figure 4.7 shows, the routine timer(start) is placed directly outside of a one-dimensional

parallel loop that has only a single iteration and no work inside of it. The routine timer(stop)

is the only instruction in the body of the parallel loop. Since there is only a single iteration

of the parallel loop, there is no concern for any race conditions when writing to Tcreate.

Tbarrier : Barrier overheads

forall i in 1..1 {

timer(start);

}

timer(stop);

Tcreate = stop− start;

Figure 4.8: Barrier Overhead Micro-benchmark

The benchmark in Figure 4.8 measures the total overhead associated with the implicit

(compiler-generated) barrier task at the end of each parallel loop for a single task. This

includes the time to spawn the barrier task, and the time to wait at the barrier for a single

109

task. Later, this metric will be used to extrapolate the total implicit barrier synchronization

overhead for Pmax tasks. Just like computing Tcreate, the trivial formula used to compute

Tbarrier is the following:

Tbarrier = timer(stop)− timer(start) (4.8)

Recall from Section 3.3.7, that the compiler generates a separate barrier task that is used

to notify its successor when all iterations of the parallel loop have been completed. In this

case, timer(start) occurs as the only statement in the body of the parallel loop. The routine

timer(stop) is placed directly outside of the parallel loop.

Tdata : Data communication

var x1, x2, . . ., xn;

timer(start);

forall idx in 1..1 {

x1 = ...;

x2 = ...;

...

xn = ...;

W(x1, x2, . . . , xn, idx);
}

timer(stop);

Tdata = stop− start− Tserial − Tbarrier − Tcreate;

Figure 4.9: Data Copying Overhead Micro-Benchmark

The last micro-benchmark is used to measure Tdata, the total time spent by the dependence-

driven runtime in copying data between the tasks in order to guarantee coherency. In order to

compute Tdata, it is dependent on the earlier micro-benchmark measurements. The formula

for Tdata is as follows:

Tdata = timer(stop)− timer(start)− Tserial − Tbarrier − Tcreate (4.9)

110

As Figure 4.9 shows, Tdata is computed by measuring the execution time for the parallel

loop with only a single task, and then removing the time spent from the previous micro-

benchmark results. By subtracting away the previous micro-benchmark results, the only

thing that remains is the time spent by the runtime in copying data into the tasks. While this

technique provides a good estimation of the data communication overhead, a more precise

alternative would be to perform a dataflow analysis and determine what data is coherent or

not, and then extrapolate the communication time for each piece of data that is to be kept

coherent. Even though this alternative technique would lead to a more precise estimate of

data communication costs, this approach was not taken in order to simplify the cost model.

Additionally, as the results will show, the time spent performing data communication is a

small fraction of the overall execution time. Finally, one can also make Tdata a function of

P due to a likely increase in coherence traffic. However, this approach was not taken for

similar reasons just mentioned.

4.3.2 Cost Model

Using the micro-benchmark measurements described in Section 4.3.1, the overall goal here

is to determine the ideal number of processors that will be used to parallelize the set of

tile-coalesced parallel loops. If the number of iterations are large enough, the amount of

processors to use should be Pmax. However, in reality, the ideal number of processors is not

always Pmax since the amount work per task (i.e. Tserial) and the other overheads might not

justify using all available processors. In this case, if Pmax number of processors were to be

used, a slow down in performance could result.

Consider the function in Equation 4.10 that estimates the total execution time of the

coalesced loop.

f(P) = Tparallel = Tserial

∏m
i=1 Ui

P
+ TcreateP + Tbarrier + Tdata (4.10)

111

This function combines the following: the serial amount of time it takes to compute a block

(for all of the blocks), the time it takes to create and spawn P tasks, and the overheads of

creating a barrier and performing the data copy. This equation is simplified in two areas:

first, the cost model assumes that the total time spent waiting inside of a barrier by each task

is fully overlapped with the others and does not account for imbalance. As a result of this,

the Tbarrier is constant and not a function of the number of processors P . This also applies

to Tdata, where the total time spent copying data between tasks is overlapped making Tdata

a constant value. Second, as an approximation, TcreateP is a function of P since it assumes

that there will be no other coalesced loops inside of the already transformed coalesced loop.

One method of validating this cost model is to understand how well it performs when used

with the heuristic that is presented in Section 4.3.4. If the heuristic and its associated cost

model provide a similar output to that of an exhaustive search, this would be one measure

of validation.

The goal here is to find a Poptimal that minimizes execution time such that:

1 ≤ Poptimal ≤ Pmax (4.11)

The global minimum Poptimal (i.e. P) is computed as follows:

d

dp
f(P) = Tcreate − Tserial

∏m
i=1 Ui

P 2
(4.12)

Tcreate − Tserial
∏m

i=1 Ui

P 2
= 0

Tcreate = Tserial

∏m
i=1 Ui

P 2

Poptimal = P =

√
Tserial

∏m
i=1 Ui

Tcreate
(4.13)

Equation 4.13 returns the number of processors that minimizes execution time. The only

112

aspect of this equation that is unique to the program (and its input dependences) is the serial

execution time, and knowledge of the loop bounds from the given loop nest. The Tcreate value

is constant for the machine, and can be computed once off-line. The value Tserial is unique

to the program, and could either be computed online through sampling, or off-line as was

done in the implementation. The downside to the off-line approach for computing Tserial is

that it needs to be computed once per program, or every time if the program’s inputs affect

its execution (e.g. unique sparse matrices from SpMV).

While Equation 4.13 returns the whole number of processors Poptimal, part of the job of

the heuristic in Section 4.3.4 will be to determine the integer factors of Poptimal. Each integer

factor is what will be used as a blocking factor to the original parallel loop nest.

4.3.3 Memory Footprint

In the situation where multiple candidate blocking factors of Poptimal are found that result

in the same estimated execution time, one potential optimization would be to select the

blocking factors that lead to an overall minimal memory footprint [92] of the array accesses

in the parallel loop nest. The memory footprint is the total amount of cache or memory that

is used by an array reference. This will be the tactic used by the heuristic in Section 4.3.4.

In order to simplify the approximation, it is assumed that cache is fully associative.

If the data being requested is not already in cache, the memory footprint of a variable

or array reference d, as shown in Equation 4.14 is simply the cache line size CLS that is

brought in on a cache miss:

C(d) = CLS (4.14)

In order to determine the cache line size CLS, the size can either be looked up in vendor

specific documentation, or determined programmatically through micro-benchmarks. Chap-

113

ter 6 presents the P-Ray multi-core benchmark suite [93], whose main goal is to determine

machine characteristics including the cache line size CLS for multi-core architectures.

Starting with the simple case of no memory reuse, Equation 4.15 provides the memory

footprint for an array reference d inside of a loop at depth k. This is simply the product of

the cache line size and the number of loop iterations (the trip count for Nk).

C(d)k = CLS ·Nk, k = m,m− 1, . . . , 1 (4.15)

Equation 4.16 provides the total memory footprint for the array reference d in the entire

loop nest. This now becomes the product of the trip counts for all loops in the loop nest

and the memory footprint for d at loop depth k (computed in Equation 4.15).

C(d)total =
m∏
i=k

(CLS ·Nk) , k = m,m− 1, . . . , 1 (4.16)

Equation 4.16 implies that every array reference d that occurs per iteration of the loop nest

will result in a cache miss, thus, bringing in a new cache line per memory access. This cost

is then propagated across the entire loop nest in order to form C(d)total.

Memory reuse (locality) can help decrease the overall memory footprint. A reuse factor

(denoted as Rk) represents the number of times the same array element (or cache line) is

referenced inside of a loop at depth k [94, 92, 95]. Reuse occurs when an array’s footprint size

is smaller than the iteration space of a particular loop at depth k. With this measurement

available, the heuristic can then choose block dimensions that not only minimize execution

time based on the number of processors to use, but also by the block dimensions which

minimize the memory footprint. Presently, the Chapel compiler implementation does not

provide any means of computing Rk automatically, so for this thesis, each unique variable’s

Rk is computed by hand.

An approximation for the memory footprint of an array reference d at a given loop depth

114

k is the following equation:

C(d)reuse =
m∏
i=k

(
CLS · Nk

Rk

)
, k = m,m− 1, . . . , 1 (4.17)

The previous Equation 4.17 computed the memory footprint for only a single array ref-

erence. However, it is important to compute the footprint for all of the array references in

the loop nest. Equation 4.18 computes the total memory footprint for the set of all array

references D:

Total Cost =
D∑
j=1

C(j)reuse, k = m,m− 1, . . . , 1 (4.18)

While the approach taken in this thesis is to use a simplified estimation in computing

the total memory footprint Total Cost, other techniques exist that could be used in place of

Equation 4.18 in order to provide a more accurate estimation of what locality exists in the

loop nest [96, 97].

4.3.4 Heuristic

The heuristic, shown as Algorithm 6 in Figure 4.10 combines the previously discussed timing

measurements computed by different micro-benchmarks used to measure the dependence-

driven task characteristics, and the memory footprint for each array used in the nested loop

that was discussed in Section 4.3.3. The overall goal of this heuristic is to determine an

optimal number of processors to use, Poptimal, which will then be decomposed into a set of

factors. These are the factors that will be used to perform the actual blocking on the original

parallel loop nest. The heuristic will then search through all the possible integer factors of

Poptimal in order to find the blocking factors that lead to a minimal execution time. In cases

where multiple factors are found that lead to the same execution time, a refinement process

115

occurs needs to occur. Of the found blocking factors that lead to the same execution time,

the blocking factor that results in a minimal memory footprint will be the chosen set of

factors to be used.

The first step of the heuristic in line 1 is to create and initialize the candidate lists that will

eventually contain different tile sizes and the number of tiles per dimension. For the second

step in lines 2–3, the algorithm initializes the tuples {BestNTilesm, . . . , BestNTiles1} and

{BestT ileDimm, . . . , BestT ileDim1} with the number of tiles and tile size per loop. In this

case, the initial number of tiles per loop is set to 1, and the tile size is set to the entire loop

width. The third step of the heuristic in line 4, is to compute the estimated serial execution

time for the loop nest, and use that as an interim best case execution time. In line 5, the

heuristic determines an approximate number of processors, Poptimal, using Equation 4.13. In

line 6, the computed value Poptimal will then be decomposed into the best blocking factors

for each loop in the given loop-nest, where each of these blocking factors will then be used

by the tiled-coalescing loop transformation. Any integer decomposition algorithm can be

used to decompose Poptimal into a set of factors {qmqm−1 . . . q1}. For the implementation

used as part of this thesis, trial division [98] was the integer factorization algorithm used

due to its simplicity of implementation. An alternative to this would be to do a brute

force search through all possible processor configurations (1 ≤ P ≤ Pmax), but this comes

at the expense of performing a brute force search. In order to take into account for small

variations in running time from the previous micro-benchmarks and other errors, not only

are the factors of Poptimal considered, but so are the additional factors for Poptimal±σ. This is

done in order to increase the precision in finding the correct blocking factors to use. As the

algorithm proceeds in lines 7–16, the heuristic tries to search for the block size combination

that results in the lowest estimated parallel execution time (given by Tparallel). For each

pass of this loop, every time a lower estimated parallel execution time has been found, the

running time and associated block numbers and dimensions are added to a list of candidates.

116

Afterwards in line 17, the top 10% of lowest execution times are saved, with the remainder

being discarded. A 10% cutoff point was chosen as an estimation, due to any possible errors

or inaccuracies of the previous micro-benchmarks. Next, an upper limit on the memory

footprint size (for an unblocked loop nest) is computed in line 18. Afterwards, using the

top 10% of the blocks and their dimensions that were saved in line 17, the total memory

footprint for the blocked loop nest is computed in line 20. Finally, just as before when finding

the minimum parallel execution time, lines 20–24 determine the block sizes that lead to a

minimal memory footprint. With these newly found dimensions and the number of tiles, the

tiled-coalesced loop transformation will be applied.

4.4 Evaluation

There are two main goals for this evaluation:

1. Measure and evaluate the effectiveness of the tiled-coalesced loop transformation on

codes that are to be executed on a dependence-driven runtime system.

2. Determine how well the heuristic from Section 4.3 can match an exhaustive scheme in

finding the correct number of processor resources to utilize for the given parallel loops.

The outline for the remainder of this chapter is: Section 4.4.1 will describe the environment

used to perform the experiments. Section 4.4.2 will describe each of the benchmarks that

will be measured. Section 4.4.3 will discuss the experimental methodology that is applied.

Finally, Section 4.4.4 will present the evaluation of these experiments.

4.4.1 Environmental Setup

Table 4.2 describes the environment that was used to perform the experiments. The exper-

iments in this section will use between 1 and 16 processor cores. Even though the given

117

Algorithm 6: Heuristic to Determine Blocking Dimensions

Input: {Um, . . . , U1} : Loop limits for each loop level m:1
Input: Pmax : Maximum number of processors
Input: Tserial : Execution time for loop body
Input: Tcreate : Time to create and spawn a single task
Input: Tdata : Time to copy/communicate all data for the given loop
Input: Tbarrier : Overhead associated with task barrier
Output: {NTilesm, NTilesm−1,. . . ,NTiles1} : Optimal number of tiles for loop levels m:1
Output: {TileDimm, TileDimm−1,. . . ,TileDim1} : Blocking factors for loop levels m:1

1 {TopNTiles, TopT ileDim} ← {∅, ∅};
2 {BestNTilesm, . . . , BestNTiles1} ← {1, . . . , 1};
3 {BestT ileDimm, . . . , BestT ileDim1} ← {Um, . . . , U1};
4 BestT ime← Tserial

∏m
i=1 Ui;

5 Poptimal ←
√

Tserial

∏m
i=1 Ui

Tcreate
;

6 foreach (qmqm−1 . . . q1 == Poptimal ± σ) ≤ Pmax do

7 {TileDimm, . . . , T ileDim1} ←
{⌈

m
qm

⌉
, . . . ,

⌈
m
q1

⌉}
;

8 {NTilesm, . . . , NT iles1} ←
{⌈

m
TileDimm

⌉
, . . . ,

⌈
m

TileDim1

⌉}
;

9 Tparallel ← Tserial
∏m

i=1 TileDimi + Tcreate
∏m

i=1NTilesi + Tbarrier + Tdata;
10 if BestT ime > Tparallel then
11 BestT ime← Tparallel;
12 {BestNTilesm, . . . , BestNTiles1} ← {NTilesm, . . . , NT iles1};
13 {BestT ileDimm, . . . , BestT ileDim1} ← {TileDimm, . . . , T ileDim1};
14 TopBestT imes← TopBestT imes ∪BestT ime;
15 TopNTiles← TopNTiles ∪ {BestNTilesm, . . . , BestNTiles1};
16 TopT ileDim← TopT ileDim ∪ {BestT ileDimm, . . . , BestT ileDim1};

17 Keep 10% of {TopBestT imes, TopT ileDim, TopNTiles} with lowest times and discard the rest;
18 FootPrintminimum ← compute footprint({Um, . . . , U1} , {1, . . . , 1});
19 foreach {{TileDimm, . . . , T ileDim1} , {NTilesm, . . . , NT iles1}} ∈ {TopT ileDim, TopNTiles} do
20 FootPrint← compute footprint({TileDimm, . . . , T ileDim1} , {NTilesm, . . . , NT iles1});
21 if FootPrintminimum > FootPrint then
22 FootPrintminimum ← FootPrint;
23 {BestNTilesm, . . . , BestNTiles1} ← {NTilesm, . . . , NT iles1};
24 {BestT ileDimm, . . . , BestT ileDim1} ← {TileDimm, . . . , T ileDim1};

25 return {{BestNTilesm, . . . , BestNTiles1} , {BestT ileDimm, . . . , BestT ileDim1}};

Figure 4.10: Heuristic to Determine Blocking Dimensions

118

CPU Architecture X86-64 Intel Xeon L7555

Num cores (threads per core) 32 (2)
Total threads 64

Clock Rate (GHz) 1.866
Total Memory (GB) 128
L3 Cache size (MB) 24

OS (Kernel) Scientific Linux 6.3 (2.6.32)
Compiler GCC 4.4.6

Chapel Compiler 1.4.0
StarPU Runtime 1.0.3

Table 4.2: Architecture Tested

machine has more processor resources, part of the goal is to find an ideal processor config-

uration using both the heuristic from Figure 4.10 and through an exhaustive search. By

limiting the processor size to 16, the time to perform the exhaustive search is minimized,

yet still provides the computation with enough parallelism.

4.4.2 Experiments

Benchmark Nested Parallel Loop(s) Depth

3–D Jacobi Method 2, 2, 2
Sparse Matrix-Vector Multiplication (SpMV) 2

Coulombic Potential 2
Synthetic.Trig 2

2–D Image Histogram 2,2

Table 4.3: Evaluated Benchmarks and Their Parallel Loop Depths

The following applications (provided in Table 4.3) have been used as part of the evaluation

process:

1. 3–D Jacobi Method

This is the same 27–point stencil computation as used in Chapter 3.4. The experiments

here will be performed on 3–D grid sizes (a triply-nested loop), where the outer loop

119

represents a varying number of rows that from 1 to 16 parallel iterations, the middle

loop represents a varying number of columns from 1 to 16 parallel iterations, and

the innermost loop representing the depth and fixed to one of {128, 256, 512} serial

iterations. This was done in order to keep the two outer dimensions small, and the

innermost dimension of variable size so that the heuristic could potentially choose

processor P configurations {1 ≤ P ≤ Pmax} instead of always choosing Pmax as the

default configuration. Using inner dimension sizes of {128, 256, 512}, we expect to see

a transition where initially it is better to use fewer processors, and as the problem size

increases, there is a transition to requiring more resources.

2. Sparse Matrix-Vector Multiplication (SpMV)

The SpMV kernel used here is the same one as used in Chapter 3.4. The main difference

is that multiple vector sizes (1 → 256 logarithmically) will be used instead of just a

single vector size as before.

3. Coulombic Potential (CP)

The CP benchmark used here is based on the same benchmark from Chapter 3.4.

The difference is that the input sizes used now are smaller because the goal of this

chapter is to find a transition point between using one and Pmax processors. In this

case, the following five different input sizes were evaluated: {4× 4× 1}, {8× 8× 1},

{16× 16× 1}, {32× 32× 1}, {64× 64× 1}.

4. Synthetic.Trig

This is the same benchmark from Chapter 3.4 with the main difference being the

number of inner iterations being tested now will be smaller than before. The number

of inner loop iterations to be tested are {4, 16, 64, 256, 1024}.

5. 2–D Image Histogram Computation

The same benchmark from Chapter 3.4, except with six different smaller image in-

120

put sizes being {128× 128}, {256× 256}, {512× 512}, {1024× 1024}, {2048× 2048},

{4096× 4096}.

4.4.3 Experimental Methodology

The methodology used to evaluate each of the benchmarks described in the previous section

is to do the following experimental comparisons. In all of these experiments, unless specified,

the benchmark was run numerous times using different processor or tile configurations in

order to empirically determine the configuration that leads to a minimal execution time.

1. Outer Loop Parallelization

Only the outer loop is to be parallelized with the remainder of the loop nest being

sequential. The amount of parallelism to be used is the configuration that returns the

fastest execution time by doing an exhaustive search of 1–D processor configurations.

2. Nested Parallelization

Nested parallelization will be applied to all of the data-parallel loops that are used in

the benchmarks. The amount of parallelism applied to each loop is the configuration

that returns the fastest execution time by doing an exhaustive search of 2–D processor

configurations.

3. Loop Coalesced

Apply loop coalescing to the loop nest and then statically schedule the parallel loop onto

the selected number of processors. In this experiment, other than the 1–D partitioning

from parallelism, no explicit tiling is performed. The amount of parallelism to be used

is the configuration that returns the fastest execution time by doing an exhaustive

search of 1–D processor configurations.

4. Heuristic

121

Use the heuristic from Section 4.10 to determine ideal processor configuration, and then

apply the tiled-coalesced loop transformation using the computed blocking factors.

5. Maximum Parallelism

Use the maximum number of processors applied to the tiled-coalesced loop transfor-

mation.

6. Fastest Exhaustive (baseline)

Performs an exhaustive search for tile dimensions that result in a minimal (fastest)

execution time which is then applied to the tiled-coalesced loop transformation. This

benchmark will be set to the baseline measurement in the experiment evaluation.

7. Tile-Coalesced (exhaustive - slowest)

Performs an exhaustive search for tile dimensions that result in a maximum (slowest)

execution time, and then apply the tiled-coalesced loop transformation.

For all of the subsequent evaluations, the base metric that is used is the overall slowdown

compared to the fastest execution time when using a tiled-coalesced exhaustive search:

slowdown =
experiment

tiled coalescedexhaustive fastest

Thus, when slowdown < 1, the particular experiment executed faster than the baseline

“Fastest Exhaustive” experiment.

An additional metric that is provided for each benchmark is a table comparing the tile

sizes computed by the heuristic versus an exhaustive search using the tiled-coalesced tech-

nique. This will show how close the dimension sizes and areas are between the two techniques.

122

4.4.4 Results

This section will first present a summary of the results, followed by a more in depth analysis

of each of the benchmarks measured.

Results Summary

Figures 4.11-4.17 present the performance results for the different benchmarks described

earlier in this section. The general trend that is evident in these results show that in the

vast majority of cases the heuristic is able to find tile sizes (i.e. multi-dimensional processor

configuration) that are similar to tile sizes found through an exhaustive search of all possible

sizes. This then implies that the heuristic works.

In many cases, the exact same tile size is found between the heuristic and an exhaustive

search, and in other cases, tile sizes are found to have an area that is similar between

both techniques. Only in certain scenarios, such as in SpMV, does the heuristic sometimes

have trouble finding an ideal tile size compared to the exhaustive search. For example, in

Figure 4.14d, selecting an incorrect tile size by the heuristic leads a to a slowdown of 38%

when the vector size is set at 2. The reason for this primarily due to the irregular workload

associated with SpMV that does occur in the other benchmarks.

Another conclusion is that outer-level parallelism does not perform as well compared to

the loop techniques when there is little to parallelize at the outer-level. This is evident in

the results from SpMV in Figures 4.14. As the number of outer-level vectors increase, does

the performance of outer-level parallelism start to converge with the other approaches.

In many cases, loop coalescing performs on par with the heuristic and the exhaustive

search. This implies that in many of these benchmarks, the tiling of the iteration space

is not effectively being leveraged to its full capability. However, in some scenarios such as

Figures 4.14 and 4.16 does loop coalescing perform significantly worse than the heuristic, in

some cases close to a 4x slowdown.

123

The nested parallelism experiment performs noticeably worse compared to many of the

other loop techniques, and is never close to the heuristic. The major reason for this is due to

the vast amount of associated overheads such as the dynamic spawning of inner loop tasks

and their barriers, compared to the actual amount of useful computation for the loop.

3–D Jacobi Iteration

Figures 4.11-4.13 present the evaluation of different loop strategies that are compiled onto a

dependence-driven runtime system for a 3–D Jacobi Method computation. This evaluation

occurs on a set of 3-D grids, where for each chart, the x and z component of the 3-D grid

space remain fixed, and the y component increases from 1→ 16.

In all of these results, it is clear that the heuristic matches the exhaustive search, thus

demonstrating that not using all available parallelism can be beneficial depending on the

workload. This result is backed up by Table 4.4, which provides the computed tile dimensions

of both the heuristic (top value) and that of an exhaustive search using the tiled-coalesced

loop transformation (bottom value). As shown in this table, in the vast majority of cases,

the heuristic either matches that of the exhaustive search, or is very close to it in terms of

the tile area.

Initially when the x and z dimensions are small, the overhead is high enough that there

is no benefit to any parallelism. As the problem dimension sizes (all x, y, z) increase, the

performance of the maximum parallelism experiment will start to converge with that from

the heuristic and exhaustive scenarios, while the slowest exhaustive test will diverge from

the rest, thus showing the parallelism in this case starts to make a positive impact on the

overall performance of the loops.

In the case of nested parallelism, the overhead associated with the barriers and the

dynamic spawning of tasks in the inner loops causes a performance degradation. In many

cases, as the number of columns continues to grow, the performance starts to decrease even

124

more, even surpassing the slowest exhaustive search.

For this benchmark, loop coalescing performs similarly to the tiled-coalesced form, thus

in this case, there is no clear benefit to tiling (for parallelism).

It is interesting to note that when comparing the outer loop parallel scenario, it performs

similar to the other experiments. This occurs due to the relatively small input sizes that are

being used. However, as Figure 4.13a demonstrates, when the problem size starts to become

larger (k = 512), and there is no parallelism on the outer loop, then logically performance

will start to suffer.

Sparse Matrix-Vector Multiplication (SpMV)

Figure 4.14 presents performance results for the SpMV computation across five different

matrices.

Compared to the other loop techniques, the heuristic closely follows the exhaustive search

in many cases, even matching the exact tile shape and sizes. In the worst case, as shown in

Figure 4.14d, there is a slowdown of 38% when the vector size is 2. Looking at Table 4.5,

the heuristic finds a tile dimension of 1 × 11, and the exhaustive search found the fastest

dimension to be 1× 13.

The nested parallelism approach typically has the worst performance, sometimes up to

350% slowdown as shown in Figure 4.14a.

In the case of using outer level parallelism when the number of vectors is small, the

performance is limited. This is primarily due to the impact from a load imbalance, and not

enough resources to parallelize at the outer loop level. As the number of vectors increases,

the performance of outer loop parallelism will start to converge with the other techniques.

Traditional loop coalescing is also a detriment on performance in this scenario. For

example, in Figure 4.14a, there is an 88% slowdown when a vector size of 1 is used. In some

cases, loop coalescing performs just as well, or even slightly surpasses that of the base metric.

125

0.9	

1.1	

1.3	

1.5	

1.7	

1.9	

2.1	

1	 3	 5	 7	 9	 11	 13	 15	

Sl
ow

do
w
n	
(v
s	 F

as
te
st
)	

#	 of	 Columns	

Heuris0c	

Nested	 Parallelism	

Outer	 Loop	 Parallelism	

Loop	 Coalesced	

Slowest	 Exhaus0ve	

Maximum	 Parallelism	

Fastest	 Exhaus0ve	

(a) 2× [1 : 16]× 128

0.9	

1.1	

1.3	

1.5	

1.7	

1.9	

2.1	

1	 3	 5	 7	 9	 11	 13	 15	

Sl
ow

do
w
n	
(v
s	 F

as
te
st
)	

#	 of	 Columns	

Heuris0c	

Nested	 Parallelism	

Outer	 Loop	 Parallelism	

Loop	 Coalesced	

Slowest	 Exhaus0ve	

Maximum	 Parallelism	

Fastest	 Exhaus0ve	

(b) 4× [1 : 16]× 128

0.9	
1	

1.1	
1.2	
1.3	
1.4	
1.5	
1.6	
1.7	
1.8	
1.9	

1	 3	 5	 7	 9	 11	 13	 15	

Sl
ow

do
w
n	
(v
s	 F

as
te
st
)	

#	 of	 Columns	

Heuris3c	

Nested	 Parallelism	

Outer	 Loop	 Parallelism	

Loop	 Coalesced	

Slowest	 Exhaus3ve	

Maximum	 Parallelism	

Fastest	 Exhaus3ve	

(c) 6× [1 : 16]× 128

0.9	

1.1	

1.3	

1.5	

1.7	

1.9	

2.1	

1	 3	 5	 7	 9	 11	 13	 15	

Sl
ow

do
w
n	
(v
s	 F

as
te
st
)	

#	 of	 Columns	

Heuris0c	

Nested	 Parallelism	

Outer	 Loop	 Parallelism	

Loop	 Coalesced	

Slowest	 Exhaus0ve	

Maximum	 Parallelism	

Fastest	 Exhaus0ve	

(d) 8× [1 : 16]× 128

0.9	
1	

1.1	
1.2	
1.3	
1.4	
1.5	
1.6	
1.7	
1.8	

1	 3	 5	 7	 9	 11	 13	 15	

Sl
ow

do
w
n	
(v
s	 F

as
te
st
)	

#	 of	 Columns	

Heuris3c	

Nested	 Parallelism	

Outer	 Loop	 Parallelism	

Loop	 Coalesced	

Slowest	 Exhaus3ve	

Maximum	 Parallelism	

Fastest	 Exhaus3ve	

(e) 10× [1 : 16]× 128

0.9	

1.1	

1.3	

1.5	

1.7	

1.9	

2.1	

1	 3	 5	 7	 9	 11	 13	 15	

Sl
ow

do
w
n	
(v
s	 F

as
te
st
)	

#	 of	 Columns	

Heuris0c	

Nested	 Parallelism	

Outer	 Loop	 Parallelism	

Loop	 Coalesced	

Slowest	 Exhaus0ve	

Maximum	 Parallelism	

Fastest	 Exhaus0ve	

(f) 12× [1 : 16]× 128

0.9	
1	

1.1	
1.2	
1.3	
1.4	
1.5	
1.6	
1.7	
1.8	
1.9	

1	 3	 5	 7	 9	 11	 13	 15	

Sl
ow

do
w
n	
(v
s	 F

as
te
st
)	

#	 of	 Columns	

Heuris3c	

Nested	 Parallelism	

Outer	 Loop	 Parallelism	

Loop	 Coalesced	

Slowest	 Exhaus3ve	

Maximum	 Parallelism	

Fastest	 Exhaus3ve	

(g) 14× [1 : 16]× 128

0.9	

1.1	

1.3	

1.5	

1.7	

1.9	

2.1	

1	 3	 5	 7	 9	 11	 13	 15	

Sl
ow

do
w
n	
(v
s	 F

as
te
st
)	

#	 of	 Columns	

Heuris0c	

Nested	 Parallelism	

Outer	 Loop	 Parallelism	

Loop	 Coalesced	

Slowest	 Exhaus0ve	

Maximum	 Parallelism	

Fastest	 Exhaus0ve	

(h) 16× [1 : 16]× 128

Figure 4.11: 3–D Jacobi Iteration : [1 : 16]× [1 : 16]× 128

126

0.9	
1	

1.1	
1.2	
1.3	
1.4	
1.5	
1.6	
1.7	
1.8	
1.9	

1	 3	 5	 7	 9	 11	 13	 15	

Sl
ow

do
w
n	
(v
s	 F

as
te
st
)	

#	 of	 Columns	

Heuris3c	

Nested	 Parallelism	

Outer	 Loop	 Parallelism	

Loop	 Coalesced	

Slowest	 Exhaus3ve	

Maximum	 Parallelism	

Fastest	 Exhaus3ve	

(a) 2× [1 : 16]× 256

0.9	
1	

1.1	
1.2	
1.3	
1.4	
1.5	
1.6	
1.7	
1.8	

1	 3	 5	 7	 9	 11	 13	 15	

Sl
ow

do
w
n	
(v
s	 F

as
te
st
)	

#	 of	 Columns	

Heuris3c	

Nested	 Parallelism	

Outer	 Loop	 Parallelism	

Loop	 Coalesced	

Slowest	 Exhaus3ve	

Maximum	 Parallelism	

Fastest	 Exhaus3ve	

(b) 4× [1 : 16]× 256

0.9	
1	

1.1	
1.2	
1.3	
1.4	
1.5	
1.6	
1.7	
1.8	

1	 3	 5	 7	 9	 11	 13	 15	

Sl
ow

do
w
n	
(v
s	 F

as
te
st
)	

#	 of	 Columns	

Heuris3c	

Nested	 Parallelism	

Outer	 Loop	 Parallelism	

Loop	 Coalesced	

Slowest	 Exhaus3ve	

Maximum	 Parallelism	

Fastest	 Exhaus3ve	

(c) 6× [1 : 16]× 256

0.9	

1.1	

1.3	

1.5	

1.7	

1.9	

2.1	

1	 3	 5	 7	 9	 11	 13	 15	

Sl
ow

do
w
n	
(v
s	 F

as
te
st
)	

#	 of	 Columns	

Heuris0c	

Nested	 Parallelism	

Outer	 Loop	 Parallelism	

Loop	 Coalesced	

Slowest	 Exhaus0ve	

Maximum	 Parallelism	

Fastest	 Exhaus0ve	

(d) 8× [1 : 16]× 256

0.9	

1.1	

1.3	

1.5	

1.7	

1.9	

2.1	

1	 3	 5	 7	 9	 11	 13	 15	

Sl
ow

do
w
n	
(v
s	 F

as
te
st
)	

#	 of	 Columns	

Heuris0c	

Nested	 Parallelism	

Outer	 Loop	 Parallelism	

Loop	 Coalesced	

Slowest	 Exhaus0ve	

Maximum	 Parallelism	

Fastest	 Exhaus0ve	

(e) 10× [1 : 16]× 256

0.9	

1.1	

1.3	

1.5	

1.7	

1.9	

2.1	

2.3	

1	 3	 5	 7	 9	 11	 13	 15	

Sl
ow

do
w
n	
(v
s	 F

as
te
st
)	

#	 of	 Columns	

Heuris0c	

Nested	 Parallelism	

Outer	 Loop	 Parallelism	

Loop	 Coalesced	

Slowest	 Exhaus0ve	

Maximum	 Parallelism	

Fastest	 Exhaus0ve	

(f) 12× [1 : 16]× 256

0.9	

1.1	

1.3	

1.5	

1.7	

1.9	

2.1	

2.3	

2.5	

1	 3	 5	 7	 9	 11	 13	 15	

Sl
ow

do
w
n	
(v
s	 F

as
te
st
)	

#	 of	 Columns	

Heuris0c	

Nested	 Parallelism	

Outer	 Loop	 Parallelism	

Loop	 Coalesced	

Slowest	 Exhaus0ve	

Maximum	 Parallelism	

Fastest	 Exhaus0ve	

(g) 14× [1 : 16]× 256

0.9	

1.1	

1.3	

1.5	

1.7	

1.9	

2.1	

2.3	

2.5	

1	 3	 5	 7	 9	 11	 13	 15	

Sl
ow

do
w
n	
(v
s	 F

as
te
st
)	

#	 of	 Columns	

Heuris0c	

Nested	 Parallelism	

Outer	 Loop	 Parallelism	

Loop	 Coalesced	

Slowest	 Exhaus0ve	

Maximum	 Parallelism	

Fastest	 Exhaus0ve	

(h) 16× [1 : 16]× 256

Figure 4.12: 3–D Jacobi Iteration : [1 : 16]× [1 : 16]× 256

127

0.9	

1	

1.1	

1.2	

1.3	

1.4	

1.5	

1.6	

1.7	

1	 3	 5	 7	 9	 11	 13	 15	

Sl
ow

do
w
n	
(v
s	 F

as
te
st
)	

#	 of	 Columns	

Heuris2c	

Nested	 Parallelism	

Outer	 Loop	 Parallelism	

Loop	 Coalesced	

Slowest	 Exhaus2ve	

Maximum	 Parallelism	

Fastest	 Exhaus2ve	

(a) 2× [1 : 16]× 512

0.9	
1	

1.1	
1.2	
1.3	
1.4	
1.5	
1.6	
1.7	
1.8	
1.9	

1	 3	 5	 7	 9	 11	 13	 15	

Sl
ow

do
w
n	
(v
s	 F

as
te
st
)	

#	 of	 Columns	

Heuris3c	

Nested	 Parallelism	

Outer	 Loop	 Parallelism	

Loop	 Coalesced	

Slowest	 Exhaus3ve	

Maximum	 Parallelism	

Fastest	 Exhaus3ve	

(b) 4× [1 : 16]× 512

0.9	

1.1	

1.3	

1.5	

1.7	

1.9	

2.1	

1	 3	 5	 7	 9	 11	 13	 15	

Sl
ow

do
w
n	
(v
s	 F

as
te
st
)	

#	 of	 Columns	

Heuris0c	

Nested	 Parallelism	

Outer	 Loop	 Parallelism	

Loop	 Coalesced	

Slowest	 Exhaus0ve	

Maximum	 Parallelism	

Fastest	 Exhaus0ve	

(c) 6× [1 : 16]× 512

0.9	

1.1	

1.3	

1.5	

1.7	

1.9	

2.1	

2.3	

1	 3	 5	 7	 9	 11	 13	 15	

Sl
ow

do
w
n	
(v
s	 F

as
te
st
)	

#	 of	 Columns	

Heuris0c	

Nested	 Parallelism	

Outer	 Loop	 Parallelism	

Loop	 Coalesced	

Slowest	 Exhaus0ve	

Maximum	 Parallelism	

Fastest	 Exhaus0ve	

(d) 8× [1 : 16]× 512

0.9	

1.1	

1.3	

1.5	

1.7	

1.9	

2.1	

2.3	

2.5	

1	 3	 5	 7	 9	 11	 13	 15	

Sl
ow

do
w
n	
(v
s	 F

as
te
st
)	

#	 of	 Columns	

Heuris0c	

Nested	 Parallelism	

Outer	 Loop	 Parallelism	

Loop	 Coalesced	

Slowest	 Exhaus0ve	

Maximum	 Parallelism	

Fastest	 Exhaus0ve	

(e) 10× [1 : 16]× 512

0.9	
1.1	
1.3	
1.5	
1.7	
1.9	
2.1	
2.3	
2.5	
2.7	

1	 3	 5	 7	 9	 11	 13	 15	

Sl
ow

do
w
n	
(v
s	 F

as
te
st
)	

#	 of	 Columns	

Heuris0c	

Nested	 Parallelism	

Outer	 Loop	 Parallelism	

Loop	 Coalesced	

Slowest	 Exhaus0ve	

Maximum	 Parallelism	

Fastest	 Exhaus0ve	

(f) 12× [1 : 16]× 512

0.9	
1.1	
1.3	
1.5	
1.7	
1.9	
2.1	
2.3	
2.5	
2.7	
2.9	

1	 3	 5	 7	 9	 11	 13	 15	

Sl
ow

do
w
n	
(v
s	 F

as
te
st
)	

#	 of	 Columns	

Heuris0c	

Nested	 Parallelism	

Outer	 Loop	 Parallelism	

Loop	 Coalesced	

Slowest	 Exhaus0ve	

Maximum	 Parallelism	

Fastest	 Exhaus0ve	

(g) 14× [1 : 16]× 512

0.9	

1.4	

1.9	

2.4	

2.9	

3.4	

1	 3	 5	 7	 9	 11	 13	 15	

Sl
ow

do
w
n	
(v
s	 F

as
te
st
)	

#	 of	 Columns	

Heuris1c	

Nested	 Parallelism	

Outer	 Loop	 Parallelism	

Loop	 Coalesced	

Slowest	 Exhaus1ve	

Maximum	 Parallelism	

Fastest	 Exhaus1ve	

(h) 16× [1 : 16]× 512

Figure 4.13: 3–D Jacobi Iteration : [1 : 16]× [1 : 16]× 512

128

Columns
2 4 6 8 10 12 14 16

R
o
w
s

2 1× 1 1× 1 1× 1 1× 1 1× 1 1× 1 1× 1 1× 1
1× 1 1× 1 1× 1 1× 1 1× 1 1× 1 1× 1 1× 1

4 1× 1 1× 1 1× 1 1× 1 1× 1 1× 2 1× 2 1× 2
1× 1 1× 1 1× 1 1× 1 1× 1 1× 2 1× 3 1× 3

6 1× 1 1× 1 1× 1 1× 2 3× 1 1× 3 3× 1 3× 1
1× 1 1× 1 1× 1 1× 3 1× 2 5× 1 4× 1 4× 1

8 1× 1 1× 1 1× 2 1× 2 4× 1 1× 3 4× 1 1× 4
1× 1 1× 1 3× 1 2× 1 5× 1 3× 1 6× 1 5× 1

10 1× 1 1× 1 1× 3 1× 4 2× 2 1× 4 2× 2 1× 4
1× 1 1× 1 2× 1 1× 3 1× 4 2× 2 2× 2 9× 1

12 1× 1 1× 2 1× 3 3× 1 4× 1 1× 4 4× 1 1× 4
1× 1 1× 2 3× 1 2× 2 5× 1 5× 1 4× 1 7× 1

14 1× 1 1× 2 1× 3 1× 4 2× 2 1× 4 2× 2 1× 4
1× 1 3× 1 3× 1 4× 1 5× 1 6× 1 5× 1 3× 2

16 1× 1 1× 2 1× 3 1× 4 4× 1 1× 4 4× 1 1× 4
1× 1 1× 3 5× 1 1× 4 2× 2 3× 2 1× 5 1× 6

(a) [1 : 16]× [1 : 16]× 128

Columns
2 4 6 8 10 12 14 16

R
o
w
s

2 1× 1 1× 1 1× 1 1× 1 1× 1 1× 2 1× 2 1× 2
1× 1 1× 1 1× 1 1× 1 1× 1 1× 1 1× 3 1× 3

4 1× 1 1× 1 1× 2 1× 2 4× 1 1× 3 4× 1 1× 4
1× 1 1× 1 3× 1 1× 3 3× 2 1× 4 1× 3 4× 1

6 1× 1 1× 2 1× 3 3× 1 2× 2 1× 4 2× 2 1× 4
1× 1 2× 1 5× 1 1× 5 2× 2 1× 3 1× 6 6× 1

8 1× 1 1× 2 1× 3 1× 4 4× 1 1× 4 4× 1 1× 4
1× 1 3× 1 4× 1 1× 5 5× 1 4× 1 4× 1 3× 2

10 1× 1 1× 4 2× 2 1× 4 1× 5 5× 1 5× 1 5× 1
1× 1 2× 3 1× 5 9× 1 3× 2 3× 2 8× 1 1× 7

12 1× 2 3× 1 4× 1 1× 4 1× 5 1× 6 6× 1 6× 1
1× 2 3× 1 5× 1 5× 1 7× 1 8× 1 2× 3 10× 1

14 1× 2 1× 4 2× 2 1× 4 1× 5 1× 6 1× 7 7× 1
3× 1 3× 1 6× 1 6× 1 1× 6 1× 6 1× 11 1× 8

16 1× 2 1× 4 4× 1 1× 4 1× 5 1× 6 1× 7 1× 8
2× 1 2× 3 3× 2 7× 1 3× 2 13× 1 3× 3 9× 1

(b) [1 : 16]× [1 : 16]× 256

Columns
2 4 6 8 10 12 14 16

R
o
w
s

2 1× 1 1× 1 1× 3 1× 4 2× 2 1× 4 2× 2 1× 4
1× 1 1× 1 2× 1 1× 2 2× 2 1× 3 1× 5 1× 5

4 1× 1 1× 4 4× 1 1× 4 1× 5 1× 6 1× 7 1× 8
1× 1 3× 1 1× 3 3× 2 1× 7 1× 10 4× 1 3× 3

6 3× 1 1× 4 2× 2 6× 1 6× 1 1× 6 1× 7 1× 8
1× 1 4× 1 3× 1 1× 6 1× 7 6× 1 5× 2 1× 13

8 4× 1 1× 4 1× 6 1× 8 8× 1 8× 1 8× 1 1× 8
3× 1 1× 4 3× 2 3× 2 3× 2 3× 3 3× 3 1× 15

10 2× 2 5× 1 1× 6 1× 8 1× 10 2× 4 10× 1 10× 1
2× 2 2× 3 3× 2 3× 3 3× 2 3× 3 3× 3 7× 2

12 4× 1 6× 1 1× 6 1× 8 4× 2 3× 3 4× 2 12× 1
3× 1 3× 2 9× 1 6× 1 4× 2 3× 3 7× 2 2× 7

14 2× 2 7× 1 7× 1 1× 8 1× 10 2× 4 2× 5 14× 1
4× 1 6× 1 4× 2 4× 2 6× 2 4× 3 3× 3 6× 2

16 4× 1 8× 1 8× 1 1× 8 1× 10 1× 12 1× 14 1× 16
2× 2 3× 3 2× 4 14× 1 2× 7 3× 4 3× 5 3× 5

(c) [1 : 16]× [1 : 16]× 512

Table 4.4: Tile-Dimensions (ROWS x COLS) for Jacobi 3–D : Heuristic (top) vs Exhaustive
Search (bottom)

129

1	

1.5	

2	

2.5	

3	

3.5	

4	

1	 2	 4	 8	 16	 32	 64	 128	 256	

Sl
ow

do
w
n	
(v
s	 F

as
te
st
)	

#	 of	 Vectors	

Heuris0c	 Nested	 Parallelism	 Outer	 Loop	 Parallelism	

Loop	 Coalesced	 Maximum	 Parallelism	 Fastest	 Exhaus0ve	

(a) SpMV: Meszaros/ex3sta1

1	

1.5	

2	

2.5	

3	

3.5	

4	

1	 2	 4	 8	 16	 32	 64	 128	 256	

Sl
ow

do
w
n	
(v
s	 F

as
te
st
)	

#	 of	 Vectors	

Heuris0c	 Nested	 Parallelism	 Outer	 Loop	 Parallelism	

Loop	 Coalesced	 Maximum	 Parallelism	 Fastest	 Exhaus0ve	

(b) SpMV: stat96v5

0.9	

1.1	

1.3	

1.5	

1.7	

1	 2	 4	 8	 16	 32	 64	 128	 256	

Sl
ow

do
w
n	
(v
s	 F

as
te
st
)	

#	 of	 Vectors	

Heuris3c	 Nested	 Parallelism	 Outer	 Loop	 Parallelism	

Loop	 Coalesced	 Maximum	 Parallelism	 Fastest	 Exhaus3ve	

(c) SpMV: lp osa 14

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

1	 2	 4	 8	 16	 32	 64	 128	 256	

Sl
ow

do
w
n	
(v
s	 F

as
te
st
)	

#	 of	 Vectors	

Heuris1c	 Nested	 Parallelism	 Outer	 Loop	 Parallelism	

Loop	 Coalesced	 Maximum	 Parallelism	 Fastest	 Exhaus1ve	

(d) SpMV: Andrianov/ex3sta1

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

1	 2	 4	 8	 16	 32	 64	 128	 256	

Sl
ow

do
w
n	
(v
s	 F

as
te
st
)	

#	 of	 Vectors	

Heuris1c	 Nested	 Parallelism	 Outer	 Loop	 Parallelism	

Loop	 Coalesced	 Maximum	 Parallelism	 Fastest	 Exhaus1ve	

(e) SpMV: Rommes/bips07 2476

Figure 4.14: Sparse Matrix-Vector Multiplication With Multiple Vectors

130

Vectors
1 2 4 8 16 32 64 128 256

S
p
a
rs
e
M
a
tr
ic
es

Meszaros/ex3sta1 1× 5 1× 7 1× 9 1× 14 1× 16 1× 16 1× 16 1× 16 1× 16
1× 7 1× 7 1× 14 1× 16 3× 5 16× 1 16× 1 16× 1 16× 1

Meszaros/stat96v5 1× 6 1× 8 1× 12 1× 16 1× 16 1× 16 1× 16 1× 16 1× 16
1× 13 1× 9 1× 13 1× 16 1× 14 1× 16 1× 16 1× 16 1× 16

LPnetlib/lp osa 14 1× 7 1× 10 1× 15 1× 16 1× 16 1× 16 1× 16 1× 16 1× 16
1× 9 2× 4 4× 4 8× 2 16× 1 16× 1 16× 1 16× 1 16× 1

Andrianov/ex3sta1 1× 8 1× 11 1× 16 1× 16 1× 16 1× 16 1× 16 1× 16 1× 16
1× 16 1× 13 1× 16 4× 4 8× 2 16× 1 16× 1 16× 1 16× 1

Rommes/bips07 2476 1× 5 1× 7 1× 10 1× 14 1× 16 1× 16 1× 16 1× 16 1× 16
1× 7 2× 6 1× 9 4× 3 16× 1 16× 1 16× 1 16× 1 16× 1

Table 4.5: Tile-Dimensions (ROWS x COLS) for SpMV : Heuristic (top) vs Exhaustive
Search (bottom)

Coulombic Potential (CP)

The performance of Coulombic Potential is given in Figure 4.15. With the exception of one

grid dimension, the heuristic either matches, or is extremely close to the exhaustive search

technique. In the worst case at dimension 8 × 8, as Table 4.6 shows, the heuristic selects a

tile size of 8× 1, and the fastest exhaustive search finds a tile dimension of 3× 5. This leads

to a slowdown of 16%.

With the exception of using nested parallelism, all of the other loop techniques perform

similarly. Only when the grid dimension becomes big enough (64× 64) does the overhead of

using nested parallelism start to recede.

Tile Dimensions (ROWS X COLUMNS)
4× 4 8× 8 16× 16 32× 32 64× 64
4× 1 8× 1 16× 1 16× 1 16× 1
4× 1 3× 5 2× 8 8× 2 16× 1

Table 4.6: Tile-Dimensions (ROWS x COLS) for Coulombic Potential : Heuristic (top) vs
Exhaustive Search (bottom)

2–D Image Histogram Computation

Figure 4.16 presents the performance results for the 2–D Histogram benchmark.

In most cases, the heuristic finds tile dimensions that closely match or are the same as

131

0.9	

1.4	

1.9	

2.4	

2.9	

4x4	 8x8	 16x16	 32x32	 64x64	

Sl
ow

do
w
n	
(v
s	 F

as
te
st
)	

Grid	 Dimensions	

Heuris2c	 Nested	 Parallelism	 Outer	 Loop	 Parallelism	

Loop	 Coalesced	 Maximum	 Parallelism	 Fastest	 Exhaus2ve	

Figure 4.15: Coulombic Potential

0	

2	

4	

6	

8	

10	

12	

128	 256	 512	 1024	 2048	 4096	

Sl
ow

do
w
n	
(v
s	 F

as
te
st
)	

Grid	 Dimensions	 (N	 x	 N)	

Heuris0c	 Nested	 Parallelism	 Outer	 Loop	 Parallelism	

Loop	 Coalesced	 Maximum	 Parallelism	 Fastest	 Exhaus0ve	

Figure 4.16: 2–D Image Histogram

Tile Dimensions (ROWS X COLUMNS)
128× 128 256× 256 512× 512 1024× 1024 2048× 2048 4096× 4096

1× 1 4× 1 8× 1 16× 1 16× 1 16× 1
1× 1 1× 1 1× 4 1× 15 5× 3 8× 2

Table 4.7: Tile-Dimensions (ROWS x COLS) for 2–D Image Histogram Computation :
Heuristic (top) vs Exhaustive Search (bottom)

132

0.9	

1.4	

1.9	

2.4	

2.9	

3.4	

3.9	

4	 16	 64	 256	 1024	

Sl
ow

do
w
n	
(v
s	 F

as
te
st
)	

Work	 Size	 (#	 of	 Inner	 Itera8ons)	

Heuris1c	 Nested	 Parallelism	 Outer	 Loop	 Parallelism	

Loop	 Coalesced	 Maximum	 Parallelism	 Fastest	 Exhaus1ve	

Figure 4.17: Synth.Trig

the exhaustive technique. The only two exceptions to this occurs when the image size is

256 × 256 and 512 × 512. In this scenarios, as Table 4.7 shows, the heuristic finds a tile

dimension of 4 × 1, while the exhaustive technique finds a tile dimension of 1. This leads

to a performance slowdown of 10%. When the image size is 512× 512, the heuristic finds a

tile of 8 × 1, and the exhaustive techniques finds a tile dimension of 1 × 4. This leads to a

performance slowdown of 43%.

The nested parallel approach leads to a significant amount of slowdown (up to 1070%

at image size of 4096 × 4096). This happens primarily because of small amount of useful

computation relative to the overheads introduced.

Loop coalescing performs reasonably well when the image sizes are small (< 512× 512).

As the size of image increases, the impact on locality takes its toll, and coalescing has a

slowdown of 350% at an image of 4096× 4096.

Synthetic.Trig

Figure 4.17 present the performance results for the Synthetic.Trig benchmark.

Similar as before, the heuristic matches or is closely the same as the exhaustive search

technique. The worst performing tile found is when the number of inner iterations is 256.

133

Tile Dimensions (ROWS X COLUMNS)
4 16 64 256 1024

1× 1 1× 4 1× 8 1× 16 1× 16
1× 1 2× 2 3× 3 2× 8 1× 16

Table 4.8: Tile-Dimensions (ROWS x COLS) for Synth.Trig : Heuristic (top) vs Exhaustive
Search (bottom)

In this case, as Table 4.8 shows, the heuristic computes a tile dimension of 1× 16, and the

exhaustive search discovers a tile dimension of 2× 8. This leads to a performance slowdown

of 9.8%.

Another similar trend has been the performance slowdown of using nested parallelism

compared to the other loop techniques. For example, when the number of inner iterations

are at 64, nested parallelism has a slowdown of 234%.

4.5 Limitations

The heuristic introduced in this chapter is best suited in the situation where parallelism for

loops is worthwhile, but not to the point of using all available processors. In the scenario

where the workload is large enough, the user (or compiler) can dedicate all the parallel

resources to the parallel loop nest without the need of an algorithm to help guide them.

As the results show, in many cases, the heuristic works well for loops with regular data

access patterns, but in some cases struggles with codes that have irregular access patterns.

An approach that was not taken here, but could result in better performance for irregular

computations, is to do on-line sampling of the execution time for loops with a given processor

configuration. During execution, the runtime system can then dynamically adjust these

resources to potentially increase performance that would be difficult to predict statically in

the compiler.

While the heuristic determines block sizes suitable for coarse-grain parallelism, the tile

134

itself is left alone. Instead, the tile could be further decomposed into sub-tiles suitable for

memory locality. This would effectively be performing multi-level tiling.

4.6 Related Work

4.6.1 Loop Coalescing

Loop coalescing is a well-known and studied loop transformation technique that most of the

work from this chapter is based on. The main distinction is that the approach introduced

in the thesis is based on tiling the iteration spaces first, then coalescing them together, and

then finally statically scheduling the chunks onto the different processors. In the traditional

loop coalescing transformation, loop coalescing does not deal with locality at all; it simply

combines the loop nests’ iteration spaces together, and then schedules the blocked iteration

space onto the processors.

Sarkar [99, 100] and Wolf [101] present similar techniques to perform loop coalescing as

part of a framework to perform loop transformations. Sarkar presents a framework to perform

iteration-reordering transformations such as blocking, parallelization, and coalescing. In the

case of Wolf et al., they present a framework based on unimodular loop transformations,

where the last step in the compilation process is to perform loop coalescing. In both cases,

the maximum amount of parallelism is used, whereas in this thesis, part of the goal of the

heuristic is to determine an ideal number of processors to use for the given workload and

the associated runtime overheads. Additionally, in the case of Sarkar, the input program’s

loops always start sequential, and then through a set of unimodular loop transformations,

are made parallel. Only at the end of this process is loop coalescing then applied. In both

cases, dependence analysis also needs to be performed.

135

4.6.2 Tile Size and Shape Selection

There has been a substantial amount of research in analytically determine data locality [95,

97, 92]. For example, Coleman and McKinley [95] present a method of automatically selecting

tile sizes based on the cache organization of the machine. In their research, they focus on

techniques to get rid of capacity and self-interference misses, while reducing cross-interference

misses as well. An important distinction is that in this thesis, tile sizes were determined for

parallelism, and in their case, they are tiling for locality. One area of future work would

be to incorporate their work into this thesis so that parallel tiles could be further tiled for

locality.

4.7 Discussion

This chapter presented an optimization to parallel loop nests that combines tiling and loop

coalescing in order to decrease synchronization overhead for dependence-driven execution

runtime systems, and increase locality for coarse grain tasks. Part of this optimization is a

heuristic that leverages a cost model built from micro-benchmarks that determine runtime

overheads in order to determine the ideal processor configuration comprised of tile shapes

and sizes.

136

Chapter 5

Compilation for Heterogeneous

Architectures

5.1 Introduction

Programmability and the ability to optimize for performance and power are considered major

difficulties introduced by heterogeneous systems. These difficulties arise for two main reasons.

First, with todays tools, it is necessary to use a different programming model for each

system component: CUDA [36], OpenCL [50], or OpenACC [102] is often used to program

GPU architectures, C or C++ extended with OpenMP [33] or Intel TBB [19] are used for

conventional multi-cores, and MPI is used for distributed memory clusters. This results in

an increased complexity in programming and porting across different architectures, as one

must now fully develop and maintain separate copies of the code. The second difficulty is the

need to schedule across device classes: the user must decide how to partition and correctly

schedule the execution between the devices. This difficulty is typically compounded by

each device having separate address spaces, forcing the user to take care of the allocation,

deallocation, and communication of data across devices.

137

This chapter builds on the native data parallel support of Chapel to improve the pro-

grammability of heterogeneous systems containing GPU accelerator components, while re-

taining performance and portability across other architectures. Rather than rely completely

on the compiler for performance optimizations, this work leverages Chapel’s multiresolution

philosophy of allowing a programmer to start with a high-level specification, then drop to

a lower level if the compiler is not providing sufficient performance. This gives expert pro-

grammers the ability to tune their algorithm’s performance with capabilities similar to those

of lower level notations such as CUDA.

In Chapter 3, the focus was on using the Chapel compiler to target a software-based

dependence-driven runtime system. This chapter will instead focus on retargeting the Chapel

program so that it can be mapped and tuned for a GPU, while still providing backward

support to map the code back onto a multi-core platform. This retargeting of Chapel code

onto both GPU and multi-core platforms is provided through Chapel’s support for user-

defined distributions [22]. The eventual goal will be to combine both together so that tasks

can execute concurrently on both traditional multi-core and many-core GPU architectures.

Contributions

• The presentation of a high-level and portable approach for developing applications

with a single unified language, instead of libraries or annotations, that can target both

GPU and multi-core parallel architectures. This would enable a single code that can

be used to efficiently target GPUs, traditional multi-cores, or a combination of both.

• Compiler transformations that map a high-level language onto GPU accelerator archi-

tectures. This also includes an algorithm for moving data automatically between a host

and the device. These techniques would be applicable to other high-level languages,

such as Python or Java, with the goal of targeting GPUs.

138

• A compiler algorithm is presented to generate code for multi-cores from Chapel appli-

cations that have been hand-tuned for GPU architectures. In order to run efficiently,

this technique extracts coarse-grain parallelism from code that contains both fine and

coarse granularities.

• Experimental results to show that the performance of the hand-coded CUDA Par-

boil benchmarks [71] are comparable to the Chapel implementation for both GPUs

and multi-cores, with the Chapel code being simpler, shorter, and easier to read and

maintain.

To measure the validity of the proposed approach, the Parboil benchmark suite was ported

to Chapel. The Chapel compiler was then modified to generate the appropriate code based

on the target architecture. This chapter evaluates code generation techniques for both GPUs

and multi-cores. The performance results show that Chapel generates codes that are com-

petitive with the hand-tuned CUDA implementations for GPUs and their multi-core coun-

terparts.

This chapter is organized as follows: Section 5.2 gives motivation for this work by provid-

ing a simple example. Sections 5.3 and 5.4 provide the implementation details for running

on GPU and CPU architectures. Section 5.5 discusses optimizations applied to the GPU.

Section 5.6 presents short Parboil benchmark examples written in Chapel used to target

both CPUs and GPUs. Section 5.7 describes the initial results using the Parboil benchmark

suite. Sections 5.8 and 5.9 present what the limitations of this implementation are, and then

some related work. Finally, conclusions are provided in Section 5.10.

5.2 Motivation

As a motivating example, consider the STREAM Triad benchmark (part of the HPCC Bench-

mark Suite [103]), which computes a scaled vector addition. Figure 5.1 provides a comparison

139

1 #define N 2000000

2 int main() {

3 float *host_a , *host_b , *host_c;

4 float *gpu_a , *gpu_b , *gpu_c;

5 cudaMalloc ((void **)& gpu_a , sizeof(float)*N);

6 cudaMalloc ((void **)& gpu_b , sizeof(float)*N);

7 cudaMalloc ((void **)& gpu_c , sizeof(float)*N);

8 dim3 dimBlock (256);

9 dim3 dimGrid(N/dimBlock.x);

10 if(N % dimBlock.x != 0) dimGrid.x+=1;

11 set_array <<<dimGrid ,dimBlock >>>(gpu_b ,0.5f,N);

12 set_array <<<dimGrid ,dimBlock >>>(gpu_c ,0.5f,N);

13 float scalar = 3.0f;

14 STREAM_Triad <<<dimGrid ,dimBlock >>>(gpu_b ,

15 gpu_c , gpu_a , scalar , N);

16 cudaThreadSynchronize ();

17 cudaMemCpy(host_a , gpu_a , sizeof(float)*N,

18 cudaMemcpyDeviceToHost);

19 cudaFree(gpu_a);

20 cudaFree(gpu_b);

21 cudaFree(gpu_c);

22 }

23 __global__ void set_array(float *a, float value ,

24 int len) {

25 int idx = threadIdx.x+blockIdx.x*blockDim.x;

26 if(idx < len) a[idx] = value;

27 }

28 __global__ void STREAM_Triad(float *a, float *b,

29 float *c, float scalar , int len) {

30 int idx = threadIdx.x+blockIdx.x*blockDim.x;

31 if(idx < len) c[idx] = a[idx]+ scalar*b[idx];

32 }

(a) STREAM Triad written in CUDA

1 const alpha = 3.0;

2 config const N = 2000000;

3 const space = [1..N] dmapped GPUDist(rank =1);

4 var A, B, C : [space] real;

5 B = 0.5;

6 C = 0.5;

7 forall (a,b,c) in (A,B,C) do

8 a = b + alpha * c;

(b) STREAM Triad written in Chapel for a GPU

1 const alpha = 3.0;

2 config const N = 2000000;

3 const space = [1..N] dmapped Block(boundingBox =[1..N]);

4 var A, B, C : [space] real;

5 B = 0.5;

6 C = 0.5;

7 forall (a,b,c) in (A,B,C) do

8 a = b + alpha * c;

(c) STREAM Triad written in Chapel for a cluster

Figure 5.1: Comparison of STREAM Triad Implementations

140

of different implementations of STREAM Triad. A CUDA implementation is provided in

Figure 5.1(a), while Figure 5.1(b) is a Chapel implementation used to target a GPU. The

comparison between them shows that the Chapel implementation has noticeably fewer lines

of code and is more readable. This is achieved using Chapel distributions, domains, data

parallel computations through the forall loop, and variable type inference [51, 21]. Fur-

thermore, the Chapel implementation is easier to port. In fact, for the code in Figure 5.1(b),

if users wanted to target a multi-core platform, they could either declare a different target

distribution (shown in line 3) or simply set an environment variable specifying the target

platform. This declaration specifies how the index set as well as arrays and loops declared

over it, is to be mapped to the target architecture. To demonstrate portability, Figure 5.1(c)

shows an implementation of STREAM Triad written for a cluster using a standard Block

data distribution. The only difference between this implementation and the Chapel-GPU

code in Figure 5.1(b) is the target distribution in line 3.

Figure 5.2 shows performance results for the STREAM Triad benchmark written in

Chapel running on both a 32-node instance of the Cray XT4 supercomputer and a GPU

with a problem size of n = 85,983,914. As the last two bars show, performance for the

Chapel and CUDA implementations are equivalent. It is important to emphasize that for

the cluster and Chapel-GPU results, only the declared distribution was changed. In contrast,

the CUDA code does not support the same degree of portability. In addition to single-node

multi-cores and GPUs, this code has run on large-scale Cray configurations, achieving over

1.1TB/s of performance using 2048 nodes [104].

5.3 Generating Code for GPU Accelerators

This section describes the Chapel language and compiler extensions that were added to

target GPU platforms. Sections 5.3.1 and 5.3.2 discuss the Chapel GPU distribution and

141

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

200	

Cluster	 (32	 node)	 Chapel-‐GPU	 CUDA-‐GPU	

Ba
nd

w
id
th
	 (G

B/
s)
	

Stream	 Triad	 Performance	

Figure 5.2: Results for the STREAM Triad Benchmark Comparing a 32-node Cray XT4 2.1
GHz Quad-Core AMD Opteron and NVIDIA GTX280 GPU

its associated support for domains and arrays. Sections 5.3.3 and 5.3.4 describe support for

data movement between the device and host, and how code is executed on the GPU. Finally,

Sections 5.3.5–5.3.8 will present code generation and other low-level facilities.

5.3.1 GPU User-Defined Distribution

In this work, several distributions have been defined. GPUDist indicates that data must

reside in the memory of the GPU and that computations will also be performed on the

device. As shown later in this chapter, there are other user-defined distributions that have

been provided. In particular, they are used to support specialized GPU memory, as well as

providing a different method of handling data movement.

In order to target the GPU, the user instantiates a GPUDist distribution class whose

constructor takes the following arguments:

142

• rank: The dimensionality of the problem.

• blockSizeX, blockSizeY, blockSizeZ [optional]: The thread block size in the X,

Y, and Z dimensions. These correlate to the equivalent thread block size dimensions

used in CUDA (or the similar work-group concept in OpenCL). If the user does not

explicitly initialize one of these values, they can be set using a heuristic approach based

on the occupancy of the kernel and device. This is similar to the technique used in the

Thrust library [105]. In the case of compiling for a multi-core, this value is also useful,

as will be shown in Section 5.4.

5.3.2 GPU Domains and Distributed Arrays

A GPU domain and its arrays are declared identically to those with standard distributions.

When an array is declared with a GPU domain, cudaMalloc() [106] is invoked to allocate

its space, rather than the standard library malloc().

In the following array declaration:

1 var gpuD = [1..n,1..n] dmapped GPUDist(rank =2);

2 var A: [gpuD] real;

Line 1 defines a GPU distribution and domain with a rank of 2, while line 2 declares the 2D

array A that is allocated on the GPU. Section 5.3.6 describes how this technique applies to

the other types of GPU memory.

5.3.3 Data Movement

Since the GPU and the host have different address spaces, most GPU programming models

require users to manage the movement of data. This complicates programming and reduces

portability. To address this problem, this work provides two methods of data movement in

the Chapel code: implicit and explicit.

143

1 const space = [1..m] dmapped GPUDist(rank =1);

2 var input , output : [space] real;

3 input = ... // load input data

4 for 1..n {

5 forall j in space {

6 ...

7 output[j] = input[j];

8 }

9 ... = output;

10 }

Figure 5.3: Implicit Data Movement Example

Implicit Data Movement

In this approach, the programmer declares a single logical variable that can be accessed by

the host and the device. The system automatically creates temporary storage and transfers

the value(s) between the host and the GPU. The implicit data movement scheme is dependent

on compiler analysis to determine when to move data. Section 5.5.1 discusses the compiler

algorithm that generates the implicit data movement code.

An example of Chapel code which utilizes implicit data movement is shown in Figure 5.3.

Since the array input is declared when the task is running on the CPU, but read from inside

of the forall loop (when executing on the GPU), it is implicitly copied to the device before

the forall is executed. Similarly, after the loop completes execution (on the GPU), the

array output is copied out to the host implicitly because it is modified inside of the forall

loop. To the programmer, the arrays declared on line 2 are treated the same regardless of

whether they are inside or outside of a forall loop. In other words, the arrays and their

elements can be accessed or manipulated as a non-GPU array throughout the program.

Explicit Data Movement

For complete control of data movement between the host and device, the user can explicitly

transfer the data. This is done to deal with cases where the compiler must be conservative to

determine when to copy data between the host and device. In this current implementation,

144

1 const space = [1..m] dmapped GPUExplicitDist(rank =1);

2 var h_input , h_output : [1..m] real;

3 var g_input , g_output : [space] real;

4 for 1..n {

5 h_input = ... // load input data

6 g_input = h_input;

7 forall j in space {

8 ...

9 g_output[j] = g_input[j];

10 }

11 h_output = g_output;

12 ... = h_output;

13 }

Figure 5.4: Explicit Data Movement Example

only synchronous data transfers are supported.

Consider the example in Figure 5.4. Line 1 declares a domain and a new type of GPU

distribution named GPUExplicitDist(). This distribution takes the same parameters as

GPUDist(). On line 2, the user declares the corresponding host variables. On line 3, the

GPU-specific arrays are declared using the distribution and domain from line 1. The assign-

ment operation on line 6 performs the explicit data copy from host space into GPU space.

After the parallel computation is complete, the assignment operation on line 11 performs

the explicit copy of the results back to the host.

5.3.4 Parallel Execution on the GPU

Chapel’s forall loops that have been declared over a GPU domain enable parallel execution

on GPUs. Each iteration of the loop corresponds to a light-weight GPU thread. Using the

compiler-generated (or user-specified) block size, the compiler strip-mines the forall loop

into block-sized units that correspond to thread blocks. As will be shown in Section 5.4,

the compiler performs a similar transformation when targeting a multi-core. Figure 5.5 is

based on the previous STREAM Triad example of Figure 5.1(b). Here, space represents a

distributed domain from 1 through M. Because blockSizeX = 256 and M = 1024, there are⌈
1024
256

⌉
= 4 thread blocks for execution on the GPU. This block size provides the necessary

145

256 Threads 256 Threads 256 Threads 256 Threads

Block 1 Block 2 Block 3 Block 4

const M=1024;

const Space=[1..M] dmapped GPUDist (rank=1,BlockSizeX=256);

forall i in Space { ... }

Space:
1...256 257...512 513...768 769...1024

Figure 5.5: Mapping a Chapel 1D Domain Onto CUDA’s Thread Blocks

information to map each iteration i of the forall loop onto a particular block and its

associated thread.

5.3.5 Code Generation for the GPU

A high-level view of the compilation process is shown in Figure 5.6. The Chapel source-to-

source compiler takes as input a Chapel source file. When the compiler lowers a forall loop

that iterates over a GPU domain, it will generate both C and CUDA source for the host

and GPU. Otherwise, it will just generate C. The body of the forall is code generated as a

CUDA kernel. By having the compiler analyze the body of the loop, it is able to determine

whether any variables that are used in the loop are declared before the loop begins. In that

case, the compiler will automatically pass them in as arguments to the kernel function. The

host portion performs the thread block creation, along with passing the correct parameters

146

forall over
gpu domain?

Generate C for Host
and CUDA for GPU

Generate C

Yes

No

CUDA source
compiled by nvcc

C compiled by back
compiler (e.g. gcc)

Chapel source-to-source compiler

Chapel source
file

Figure 5.6: Overview of Chapel Compilation Process

into the CUDA kernel. As a final step, the generated GPU code (for both host and device) is

compiled by NVIDIA’s nvcc compiler, and the remaining code is compiled by the back-end

compiler (e.g. gcc).

In addition to forall loops, Chapel supports the data-parallel primitives reduce and

scan. When the compiler determines that a reduce or scan operator uses data elements

that have been declared on the GPU, the compiler makes a call to a highly-tuned library

implementation of that operation. This is a similar approach as others have taken [107]. An

example using the reduce primitive will be shown later in Section 5.6.1.

5.3.6 Targeting Specialized GPU Memory Spaces

A common strategy to maximize performance for GPUs is to exploit the different physical

memories in cases where locality exists [108]. On NVIDIA-based GPUs, a programmer has

access to on-chip shared memory, read-only constant cache memory, and read-only texture

memory. The trade-off that occurs in using any of these specialized memories in Chapel

is that the user compromises portability for performance. However, this GPU-specialized

code can be transformed into code that runs on traditional processors by applying simple

compiler transformations, as discussed in Section 5.4 and in other publications [9, 8, 109].

To use any of the specialized memories within the GPU, users need to declare their arrays

using the following distributions:

147

Shared Memory

NVIDIA’s GPUs offer an on-chip scratchpad memory that is user-programmed to op-

timize for locality. Shared memory is faster than global memory and, unlike texture

and constant cache memory, is writable from the kernel. The data stored into shared

memory is only visible by threads within the same thread block where the writing

takes place. A compiler error occurs if the user attempts to write or read into a shared

memory array when not executing a forall. In order to leverage this memory from

Chapel, the user declares the distribution GPUSharedDist().

Constant Cache Memory

Constant memory is used to hold constant values. This data is hardware-cached to

optimize for temporal locality. There is only one cycle of latency when a cache hit

occurs if all the threads in a warp access the same location. Otherwise, accesses to

constant memory are serialized if threads read from different locations. With GPUs

such as the NVIDIA GTX280, up to 64KB of data may be placed into constant mem-

ory. In Chapel, the data to be stored in constant memory must be declared with the

GPUCCDist() distribution.

Figure 5.7 provides an example where the user would leverage the GPU constant mem-

ory within Chapel. On lines 1–4, the program creates a constant memory distribution,

domain, and the respective constant memory array. Line 5 shows the array being loaded

with data from the host. Finally, in line 9, the constant memory array is accessed, as

with any typical array.

Texture Cache Memory

Similar to constant memory, texture memory is read-only and uses hardware caching

for locality. Performance increases are seen when applications have spatial locality,

as in stencil computations or even irregular computations [110]. The Chapel compiler

148

1 const myspace = [1..m] dmapped GPUDist(rank =1);

2 const ccspace = [1..m] dmapped GPUCCDist(rank =1);

3 var input: [ccspace] real;

4 var output: [myspace] real;

5 input = ... // load data into constant memory

6 for 1..n {

7 forall j in myspace {

8 ...

9 output[j] = input[j];

10 }

11 ... = output;

12 }

Figure 5.7: Constant Cache Example

does not yet support storage in this memory.

5.3.7 Synchronization

CUDA uses syncthreads() as a barrier between threads in a thread block. Chapel takes

the approach that the programmer needs to also provide a similar synchronization primitive

thread barrier() to ensure correctness in GPU code. While using a thread barrier() is

not needed to program traditional CPUs, Algorithm 7, as described in Section 5.4, provides

a compiler technique used to remove calls to thread barrier() when targeting CPUs.

5.3.8 GPU Low-Level Extensions

There are cases in which a user must leverage certain facilities offered only by the CUDA

programming model. For example, CUDA provides fast math intrinsics that are implemented

in hardware, such as fsinf(), instead of the more accurate (but slower) sin(). In order

to interoperate with these routines through Chapel, the compiler translates invocations to

these routines into their software equivalent when targeting CPUs.

149

5.4 Generating Code for Multi-core

To address the portability argument, this section presents transformations necessary to take

a single program text written with the GPU abstractions from the previous section and

compile and execute it efficiently on a traditional multi-core platform. This is achieved by

taking advantage of coarse- and fine-grain parallelism that is exposed when targeting GPUs

(i.e. CUDA thread blocks and threads within a thread block). Due to false-sharing issues

and programming for locality, multi-cores are ideally suited for coarse-grain parallelism. To

address this, adjacent thread blocks are assigned as work units to the processors. Therefore,

this transforms all forall loops that iterate over GPU domains to doubly-nested loops: the

outer loop is a standard Chapel forall that iterates over blocks of threads, and the inner

loop is a sequential for that iterates over threads within a block.

In order to preserve correctness, shared memory arrays are simply declared per-block as a

non-distributed array. In other words, a non-distributed array is declared between the outer

standard forall and the inner for loop.

This approach has two main advantages. First, Chapel handles the outer forall loop by

distributing workloads evenly in a block-wise manner such that adjacent blocks are assigned

to a core. Second, by serializing the inner loop, all calls to thread barrier() can be

removed.

The disadvantage of the above approach is that serializing the inner loop that iterates

over threads inside of a block is not always trivial. Algorithm 7 describes how to create an

outer parallel loop L1 and an inner sequential loop L2. Algorithm 8 describes the technique

used to serialize L2. In the scenario where there are no calls to thread barrier(), nothing

is modified. If there is a thread barrier() barr, which is not contained in any inner loop

within L2, it is important to distribute the loop over the code before and after barr in order

to remove the barrier. If there is a variable v declared in the original L2 and it is accessed

150

before and after barr, the declaration of v needs to move before the distributed loops. If

there is an assignment to v that is dependent on threadId, that is accessed before and

after barr, array expansion is applied to v by the thread-block size. This is because each

thread needs its own private copy of v. Array expansion is applied at most once for each

v. On the other hand, if barr is within an inner loop L′, L2 needs to be distributed around

three sections of code: the code before L′, L′ itself, and the code after L′. Next, L′ and the

distributed L2 can be interchanged since all the threads in a block must reach barr an equal

number of times. This interchange is valid since the outer loop can run in parallel. Finally,

Algorithm 8 is called recursively to handle a deeper loop nest.

As an example demonstrating Algorithm 7, consider the simplified kernel of RPES from

the Parboil Benchmark Suite shown in Figure 5.8. The code in Figure 5.8(a) shows the

GPU-centric Chapel code, while Figure 5.8(b) shows the transformed Chapel code after per-

forming the algorithm. First, the original forall loop is converted into another forall loop

that iterates over thread blocks and a sequential for loop that iterates over threads within

a block. Both the number of thread blocks and the number of threads within a thread block

are computed based on the blockSize value specified in Section 5.3.1. Second, the shared

memory array Data has to be declared just inside the new forall loop. Next, loop distri-

bution of the sequential for loop is performed since there are calls to thread barrier().

Finally, the two sequential loops are interchanged, and the inner call to thread barrier()

is removed.

5.5 Compiler Transformations and Optimizations

This section first presents a simple algorithm used to perform implicit data transfers be-

tween the host and device. Afterwards, this section will present algorithms to optimize the

generated GPU code.

151

1 var Data = [0.. BLOCK_SIZE -1] dmapped GPUSharedDist ();

2 forall gpuSpace_reduc {

3 const blid = get Block ID_x ();

4 const thid = getThreadID_x ();

5 Data[thid] = getData(blid , thid , ...);

6 thread_barrier ();

7 for s in 0..5 do {

8 const i = 1 << (s * -1 + LOG_BLOCK_SIZE - 1);

9 if thid < i then

10 Data[thid] += Data[thid + i];

11 thread_barrier ();

12 }

13 if thid == 0 then

14 ReductionSum[Offset + blid] = Data [0];

15 }

(a) Original code in Chapel with GPU forall

1 forall blid in 0.. num_blocks -1 {

2 var Data = [0.. BLOCK_SIZE -1];

3 for thid in 0.. BLOCK_SIZE -1 {

4 Data[thid] = getData(blid , thid , ...);

5 }

6 for s in 0..5 {

7 for thid in 0.. BLOCK_SIZE -1 {

8 const i = 1 << (s * -1 + LOG_BLOCK_SIZE - 1);

9 if thid < i then

10 Data[thid] += Data[thid + i];

11 }

12 }

13 for thid in 0.. BLOCK_SIZE -1 {

14 if thid == 0 then

15 ReductionSum[Offset + blid] = Data [0];

16 }

17 }

(b) Translated code into Chapel multi-core forall

Figure 5.8: Translation of a GPU forall into Multi-core forall

152

Algorithm 7: Loop Transformation for Multi-core

Input: List forallList containing every forall loop with a GPU Distribution
foreach L ∈ forallList do

L1 ← Create standard Chapel forall loop that iterates over thread-blocks with loop
index blockId;
L2 ← Create sequential for loop that iterates over threads of a block with loop index
threadId;
foreach shared array s ∈ L do

Declare s as a standard array in body of L1;

The body of L becomes the body of L2;
OutList ← Call LoopDist(L2);
Add OutList to the body of L1;

5.5.1 Implicit Data Transfers Between Host and Device

As mentioned in Section 5.3.3, implicit transfers between the host and GPU require compiler

support. Algorithm 9 gives a conservative approach for determining and generating the code

necessary to transfer the data. If an array that has been declared with a GPU distribution,

is accessed within a forall loop, the compiler will compute the read and write sets of the

array. If the read set is not empty, the compiler will generate code to copy the data into the

device. Similarly, if the write set is not empty, the data is copied to the host after the loop

completes.

In the previous example from Figure 5.3, the user never explicitly copies data between

the device and host before calling the forall loop. To the user, the variable appears normal

without the knowledge that it can only be used on the GPU. Based on the algorithm, the

compiler will always copy data from the host to the device since input is read inside the

forall loop. Also, the array output is written to, causing the compiler to copy that data out

to the host. As the example shows, since the forall loop is nested inside of a for loop, the

array input is copied into the kernel redundantly. An improvement over the conservative

approach taken here would be to analyze the complete program outside of the kernel to

detect redundant copying.

153

Algorithm 8: LoopDist() Function

Input: Sequential loop L
Output: List of Variable Declarations and Loops
if ∃ barr ∈ L where barr is a thread barrier() then

List V arDecl← ∅;
foreach variable declaration v ∈ L do

if ∃ an assignment to v that is dependent on threadId and v is accessed before and
after barr and v has not been expanded before then

vexp ←expansion of v by blockSize;
V arDecl← V arDecl ∪ {vexp};
Replace all occurrences of v with vexp[threadId];

else
V arDecl← V arDecl ∪ {v};

if ∃ a loop L′ in the body of L and barr ∈ L′ then
DL1 ← Loop with code before L′ surrounded by header of L;
DL2 ← Loop with same header as L with inner loop L′ as the body;
DL2 ← Loop interchange L with L′ in DL2;
DL3 ← Loop with code after L′ surrounded by header of L;
return < V arDecl, LoopDist(DL1),

LoopDist(DL2), LoopDist(DL3) >;

else
DL1 ← Distribute L over code before barr;
DL2 ← Distribute L over code after barr;
return < V arDecl, LoopDist(DL1),

LoopDist(DL2) >;

else
return < L >;

5.5.2 Scalar Replacement of Aggregates and Dead Argument Elim-

ination

Compiling from a higher-level language like Chapel down to CUDA opens doors to possible

optimizations. Chapel has support for multidimensional arrays with arbitrary index ranges.

For this purpose, the Chapel compiler creates structures containing meta-data about the

array, including start and end points, array strides, and a pointer to the raw data. The

program has additional levels of indirection that it uses to look up the member variables

154

Algorithm 9: Implicit Data Transfer

Input: Array G declared with the GPU Distribution
Input: List forallList containing every forall loop with a GPU Distribution
foreach L ∈ forallList do

if USE(G) 6= Ø then
Generate statement to copy G from host to device before L begins;

if DEF (G) 6= Ø then
Generate statement to copy G from device to host after L completes;

of the structure, and therefore requires more memory operations than the typical array

access in C. To avoid this increase, scalar replacement of aggregates [111] is performed. This

technique flattens fields from a structure with single scalar elements. In particular, this is

applied on all structures that are used within a forall loop that executes over an array or

domain declared with a GPU distribution. The scalarized fields are then placed onto the

formal argument list of the calling kernel routine. After this transformation is complete,

dead argument elimination is performed on the original structures that were passed in as

formals, as they are no longer necessary.

5.5.3 Kernel Argument Spilling to Constant Memory

As a result of the previous optimization performed in Section 5.5.2, the number of formal

parameters to the GPU kernel will likely have increased depending on the number of fields

in the original structures. Because shared memory resources are reserved for arguments up

to a maximum size of 256 bytes [106], there will be a greater performance impact as more

arguments are passed. Additionally, if this size limit is exceeded, a back-end compiler error

will be thrown. To get around this, Algorithm 10 describes a mechanism based on dataflow

analysis that will spill scalar arguments into constant memory after a certain argument

list size has been reached. In this algorithm, constant memory variables are generated

with the constant modifier and are assigned from the host using the CUDA routine

155

Algorithm 10: Spill Scalar Args Into Constant Mem

Input: List argList containing each formal argument of the kernel function
Input: Spill threshold threshold
totalSize← 0;
foreach argi ∈ argList do

if sizeof(argi)+totalSize > threshold and DEF (argi) = ∅ then
Declare constant memory variable newi outside of kernel;
newi ← argi;
Remove argi from argList;
foreach ui ∈ USE(i) do

ui ← newi;

else
totalSize+=sizeof(argi);

cudaMemcpyToSymbol(). In the unlikely event the algorithm is not able to spill enough of

argList into constant memory, the remainder of the arguments will be spilled into GPU

global memory. The default threshold value for when to spill is set through a compiler

flag (--max-gpu-args=#). It should be noted that, while this algorithm does not increase

performance, it is necessary for correctness because of the limit on the number of arguments

supported by the CUDA compiler.

5.6 Example Codes

The goal of this section is to discuss two examples and illustrate the portability of these

codes across different parallel architectures. The examples are a 2D Jacobi method and a

code to compute Coulombic Potential [112]. Afterwards, performance results for execution

on a multi-core, followed by results on a GPU are presented. In the GPU case, there

was an evaluation of the two techniques of transferring data between the host and device

discussed in Section 5.3. The hardware used for these experiments is the same as described

in Section 5.7.2.

156

1 const gdist = new GPUDist(rank=2,

2 blockSizeX =16,

3 blockSizeY =16);

4 const gPSpace = [1..n, 1..n] dmapped gdist;

5 const gDomain = [0..n+1, 0..n+1] dmapped gdist;

6 var X, XNew : [gDomain] real;

7 var tempDiff : [gPSpace] real;

9 /* initialize data */

10

11 do {

12 forall ij in gPSpace {

13 XNew[ij] = (X[ij+north] + X[ij+south] +

14 X[ij+east] + X[ij+west]) / 4.0;

15 tempDiff[ij] = fabs(XNew[ij] - X[ij]);

16 }

17 delta = max reduce tempDiff;

18 X[gPSpace] = XNew[gPSpace];

19 } while (delta > epsilon);

Figure 5.9: Chapel Implementation of Jacobi 2D

5.6.1 2D Jacobi

Figure 5.9 illustrates the 2D Jacobi method that targets a GPU. This algorithm computes

the solution of a Laplace equation over a 2D grid. The point of this code is to show an elegant

high-level implementation of the algorithm rather than present the reader with a low-level

and highly-tuned implementation. Line 1 of the algorithm declares a GPU distribution with

a rank of 2. Lines 4–5 declare two distributed domains, and lines 6–7 declare the associated

arrays. Lines 12–16 are a parallel stencil computation for the GPU. Line 17 represents

a maximum reduction. Finally, line 18 performs a sliced array copy of the inner domain

gPSpace.

Figure 5.10 shows the performance of this code. First, performance on a multi-core using

4 tasks is shown. Then, the performance on a GPU is shown using both the implicit and

explicit data transfer algorithm. It’s important to note that, in this example, no lines of code

were changed to port the code between the GPUs and multi-cores. Also, the Chapel multi-

core implementation is based on the implicit GPU version. However, either version (implicit

and explicit) can be run. The Chapel GPU version of the code that uses the implicit data

157

0	
5	

10	
15	
20	
25	
30	
35	
40	
45	
50	

Chapel	 Mul0core	
(4	 tasks)	

Chapel-‐GPU	
Implict	 Transfer	

Chapel-‐GPU	
Explicit	 Transfer	

Ex
ec
u&

on
	 T
im

e	
(s
ec
on

ds
)	

Jacobi	 2D	 Performance	 (n	 =	 200x200)	

Figure 5.10: Performance of Jacobi 2D

transfer algorithm shows degradation in performance due to the redundant data transfers

that occur. This is the result of the conservative approach taken in the compiler algorithm.

5.6.2 Coulombic Potential

The code for the Coulombic Potential (CP) application is shown in Figure 5.11. On lines

3–5, two different GPU distributions are declared. On lines 6–8, distributed domains are

declared with the previously declared distributions. Lines 9 and 11 declare the input and

output arrays. Lines 13–23 perform the parallel forall computation on the GPU. It should

be mentioned that, on line 13, each iteration of the forall returns a two-tuple containing x

and y coordinates.

Figures 5.12a and 5.13a present the results for CP running on both a GPU and a multi-

core. As in the previous example, no changes to the source code were made. These results

will be discussed in more detail in Section 5.7.3.

158

1 const volmemsz = VOLSIZEX * VOLSIZEY;

2 const volmemsz_dom = [1.. VOLSIZEY ,1.. VOLSIZEX];

3 const dst = new GPUDist(rank =1);

4 const totdst = new GPUDist(rank=2,

5 blockSizeX=BLOCKSIZEX , blockSizeY=BLOCKSIZEY);

6 const totspace = volmemsz_dom dmapped totdst;

7 const energyspace = [1.. volmemsz] dmapped dst;

8 const atomspace = [1.. MAXATOMS] dmapped dst;

9 var energygrid : [energyspace] real = 0.0;

10 /* initialize atominfo from input file */

11 var atominfo : [atomspace] float4 = ...;

13 forall (xindex ,yindex) in totspace {

14 var energyval = 0.0;

15 var (coorx ,coory) = (gspacing*xindex ,

16 gspacing*yindex);

17 for atom in atominfo {

18 var (dx,dy) = (coorx -atom.x, coory -atom.y);

19 var r_1 = 1.0 / sqrt(dx*dx + dy*dy + atom.z);

20 energyval += atom.w * r_1;

21 }

22 energygrid[yindex ,xindex] += energyval;

23 }

Figure 5.11: Coulombic Potential in Chapel

5.7 Evaluation

This section presents experimental results. Section 5.7.1 will describe the benchmarks used

for the experiments. Section 5.7.2 describes the experimental setup used. Section 5.7.3

evaluates the effectiveness of the compiler. For that, three types of evaluations are performed.

First, an evaluation of the GPU performance of the Chapel code is compared with codes from

the hand-coded Parboil benchmark suite. Second, an evaluation is made of the performance

from the same benchmarks on a traditional multi-core platform. To compile and execute the

Parboil CUDA code on a multi-core, both the PGI CUDA-X86 [109] and Ocelot compilers [8]

are used. The third evaluation estimates the productivity benefits of using Chapel. This is

based on the difference in code size between the Chapel and CUDA source as the metric

of productivity. This is a simple and not always compelling metric, but in this case, it is

believed that it gives a reasonable indication of the productivity advantage of using Chapel.

159

5.7.1 Parboil Benchmarks

The Parboil benchmark codes used are Coulombic Potential (CP), MRI-FHD and MRI-

Q [72], Rys Polynomial Equation Solver (RPES) [113], and the Two Point Angular Corre-

lation Function (TPACF) [114]. The benchmark Sum of Absolute Differences (SAD) is not

studied because it relies on texture memory, which the implementation does not currently

support.

In the case of the GPU evaluation, the Chapel codes that are compared use both implicit

and explicit data transfers to see what additional overhead results from the conservative

implicit data transfer algorithm introduced in Section 5.5.1.

5.7.2 Environmental Setup

For the GPU evaluations, each benchmark was run using an NVIDIA GTX280. The host

code was executed on an Intel Quad-core 2.83GHz Q9550. For timing measurements, the

evaluation uses CUDA’s kernel profiling mechanism (i.e. CUDA PROFILE=1) that mea-

sures the execution time spent in the kernel along with execution time spent on data transfers

between the host and the device.

The multi-core evaluation uses an Intel Quad-core 2.67GHz Nehalem i7 920, where each

core supports two hyperthreads. The generated C code from Chapel was then compiled

by the back-end PGI 11.8 C/C++ compiler. The CUDA codes were also compiled using

the PGI CUDA-X86 compiler that generates OpenMP with the flags -Mcudax86 -fast.

Similarly, the CUDA codes were compiled by the Ocelot compiler with optimization flag

optimizationLevel:full being set.

160

5.7.3 Experimental Results

Figures 5.12a–5.12e and 5.13a–5.13e demonstrate the performance, in execution time, of

the Parboil benchmarks running on a GPU and multi-core platform, respectively. Due to

the difference in magnitude of times (milliseconds vs seconds) between GPU and multi-core

executions, they were plotted separately and to different scales.

GPU Evaluations

In Figures 5.12a–5.12e, each bar is broken down into two portions: the total time spent

performing data transfers vs. time performing the computation. In Figures 5.12b–5.12e,

the difference in compute performance was minimal between the CUDA and the Chapel

implementations. When attention is solely on the compute performance in Figures 5.12a

and 5.12d, the CUDA reference implementations have slightly better performance when

compared with the Chapel implementations. In these cases, the performance difference was

due to additional overhead, such as for loops being generated inefficiently. As the Chapel

compiler matures, it is expected that these minor differences in compute performance will

decrease.

The additional overhead due to the conservative implicit data transfer algorithm is appar-

ent in Figures 5.12b, 5.12c, and 5.12e. These three benchmarks demonstrate the deficiencies

in the conservative approach taken by the compiler for selecting which data to transfer into

and out of the kernel. In the RPES algorithm, similar to the previous example in Figure 5.3,

there is a parallel forall loop nested inside of a for loop. In the CUDA and Chapel explicit

data transfer implementations, data is not transferred within the top-level for loop itera-

tions; but, in the case of the implicit data transfer algorithm, the data is copied redundantly.

The CP and TPACF algorithms in Figures 5.12a and 5.12d have an insignificant amount of

overhead associated with the implicit data transfer scheme.

161

0	
20	
40	
60	
80	

100	
120	
140	
160	
180	
200	

CUDA	 Chapel	 Expl.	
Transfer	

Chapel	 Impl.	
Transfer	

Ex
ec
u&

on
	 T
im

e	
(m

s)
	

Compute	 Data	 Transfer	

(a) Coulombic Potential

0	

10	

20	

30	

40	

50	

60	

70	

CUDA	 Chapel	 Expl.	
Transfer	

Chapel	 Impl.	
Transfer	

Ex
ec
u&

on
	 T
im

e	
(m

s)
	

Compute	 Data	 Transfer	

(b) MRI-FHD

0	

5	

10	

15	

20	

25	

CUDA	 Chapel	 Expl.	
Transfer	

Chapel	 Impl.	
Transfer	

Ex
ec
u&

on
	 T
im

e	
(m

s)
	

Compute	 Data	 Transfer	

(c) MRI-Q

0	

200	

400	

600	

800	

1000	

1200	

1400	

CUDA	 Chapel	 Expl.	
Transfer	

Chapel	 Impl.	
Transfer	

Ex
ec
u&

on
	 T
im

e	
(m

s)
	

Compute	 Data	 Transfer	

(d) TPACF

0	
200	
400	
600	
800	
1000	
1200	
1400	
1600	
1800	
2000	

CUDA	 Chapel	 Expl.	
Transfer	

Chapel	 Impl.	
Transfer	

Ex
ec
u&

on
	 T
im

e	
(m

s)
	

Compute	 Data	 Transfer	

(e) RPES

Figure 5.12: GPU Performance of the Parboil Benchmarks Comparing Chapel to CUDA

162

Benchmark # Lines (CUDA) # Lines (Chapel) % Shorter # of Kernels
CP 186 154 17.2% 1

MRI-FHD 285 145 49.1% 2
MRI-Q 250 125 50.0% 2
RPES 633 504 20.4% 2

TPACF 329 209 36.5% 1

Table 5.1: Parboil Source Code Comparison (Chapel vs CUDA)

Multi-core Evaluation

Figures 5.13a–5.13e present the original Parboil benchmarks running on a multi-core plat-

form. This work is comparing a serial C implementation of the benchmark with that of

the Chapel, PGI CUDA-X86, and Ocelot compilers. In the case of the Coulombic Potential

(CP) benchmark in Figure 5.13a, it can be observed that the performance is similar for all

three compilers. In the remaining Figures 5.13b–5.13e, there is a noticeable performance

difference between the three compilers. In particular, for Figure 5.13e, it was observed that

the PGI compiler was deadlocking on the RPES benchmark when run with 8 threads. RPES

and TPACF are the only benchmarks tested that use GPU shared memory and thus rely

on thread barrier synchronization. One likely possibility for the difference in performance

(and possibly correctness) between the compilers is that PGI and Ocelot might not be fully

removing all possible barriers when targeting this code on a multi-core. This would also

explain why deadlocks occur on RPES when running with 8 threads.

Productivity Evaluation

Table 5.1 shows a comparison between the Chapel and CUDA implementations with the

primary metric being the difference in lines of source code. In order to compute the total

number of lines of code, all comments, timing mechanisms, and blank lines were removed.

For all the benchmarks, the Chapel code was shorter by 17–50%. Not only is the code

shorter, but as the examples in this dissertation show, it is cleaner and more elegant.

163

0	

20	

40	

60	

80	

100	

120	

Serial	 1	 2	 4	 8	

Ex
ec
u&

on
	 T
im

e	
(s
)	

Number	 of	 CPU	 Threads	

Chapel	 PGI	 CUDA-‐X86	 Ocelot	 C	

(a) Coulombic Potential

0	

5	

10	

15	

20	

25	

Serial	 1	 2	 4	 8	

Ex
ec
u&

on
	 T
im

e	
(s
)	

Number	 of	 CPU	 Threads	

Chapel	 PGI	 CUDA-‐X86	 Ocelot	 C	

(b) MRI-FHD

0	

5	

10	

15	

20	

25	

30	

35	

40	

Serial	 1	 2	 4	 8	

Ex
ec
u&

on
	 T
im

e	
(s
)	

Number	 of	 CPU	 Threads	

Chapel	 PGI	 CUDA-‐X86	 Ocelot	 C	

(c) MRI-Q

0	
50	

100	
150	
200	
250	
300	
350	
400	
450	
500	

Serial	 1	 2	 4	 8	

Ex
ec
u&

on
	 T
im

e	
(s
)	

Number	 of	 CPU	 Threads	

Chapel	 PGI	 CUDA-‐X86	 Ocelot	 C	

(d) TPACF

0	
50	

100	
150	
200	
250	
300	
350	
400	
450	
500	

Serial	 1	 2	 4	 8	

Ex
ec
u&

on
	 T
im

e	
(s
)	

Number	 of	 CPU	 Threads	

Chapel	 PGI	 CUDA-‐X86	 Ocelot	 C	

(e) RPES

Figure 5.13: Multi-core Performance of the Parboil Benchmarks

164

In summary, these results demonstrate that when using a language such as Chapel, it

is possible to achieve performance that is comparable to that of the GPU-specific CUDA,

while making the code portable to execute efficiently on a traditional CPU platform. In

addition, there are productivity and elegance gains in using Chapel over CUDA due to the

lower amount of necessary code.

5.8 Limitations

There are certain limitations that are present in the current implementation. Currently, there

is no automatic (though the compiler) means of exploiting non-DRAM GPU memory. In the

implementation presented, it is up to the programmer to specify which form of memory they

want to leverage in their algorithm. Related to this, the programmer also needs to explicitly

place the barriers into their loops.

As shown in Section 5.7.3, the algorithm used for implicitly transferring data between the

devices is too conservative, leaving room for improvement. One method for exploration would

be to perform an interprocedural compiler analysis that looks across multiple forall loops

and, based on the usage of the data, generates the necessary transfer code when required.

The second alternative would be to incorporate the work done in the GMAC (Global Memory

for Accelerators) project [115]. GMAC is a library-based system that provides coherency

between data on the device and on the CPU.

5.9 Related Work

Improving the programmability of accelerator architectures is currently an active area of

research. The works of CUDA-X86 [116], MCUDA [9], and Ocelot [8] take the approach

of having the programmer implement their algorithms in CUDA before having the compiler

165

target a multi-core platform. The approach that Chapel takes is different since it starts with

a higher-level language that can be used to target GPUs, multi-cores, and clusters. There

has also been some work providing language bindings to target the GPU [117, 118], but in

these methods, the actual kernel is still expressed in CUDA or OpenCL.

Another approach that some have taken in translating their application code into the

GPU accelerator space uses annotations or compiler directives on existing languages [102,

119, 109, 120, 107, 121]. Chapel differs here in that it does not depend on annotations to

induce the parallelism over a GPU, resulting in code believed to be more readable to the

user. Additionally, the annotation-based approaches do not have as strong of support for

high-level loop abstractions. This means a user of an annotation-based language needs to

go in and decorate their loops when they want the code to be parallel. In contrast, Chapel’s

domains and iterators permit such things to be factored away in a more structured manner.

The work of OmpSs [122] addresses the issue of programming portability for heteroge-

neous multi-core architectures. The approach presented here differs in that Chapel is a single

unified and high-level language that is used to express computations that will execute on

both GPUs and multi-cores. In the OmpSs approach, they extend OpenMP and have the

user provide implementation-specific kernels that will be mapped onto the respective devices.

These approaches differ since the compute kernels are typically written as embedded CUDA

or OpenCL.

X10 [123] and Habanero [124] both have shown support for GPUs, but they use different

techniques to handle single-source portability across other architectures. They do not provide

any mechanism for reverting to a multi-core platform from a tuned GPU implementation.

Also, there does not seem to be support for implicit data copies; programmers themselves

have to explicitly perform the copies. Lastly, not enough data could be found to show how

these approaches apply to larger scaled GPU applications.

166

5.10 Conclusion

This chapter presented new methods to increase programmer productivity by leveraging

an emerging programming language built for parallelism and locality control. By utilizing

Chapel’s support for user-defined distributions, programmers are offered a concise and ele-

gant approach to targeting GPU-based architectures. Additionally, this work shows that it

is possible to be portable across multi-core architectures and yet retain performance without

resorting to different parallel libraries or language annotations such as pragmas or direc-

tives.

167

Chapter 6

Multi-core Micro-benchmark Suite

6.1 Introduction

With multi-core processors as the current dominant trend, and architectures becoming more

complex, finding hardware specifications is becoming increasingly difficult. Knowledge of

hardware features can be useful in driving program optimization, such as in library gen-

erators. ATLAS [125], SPIRAL [91], and FFTW [126] are examples of such library gen-

erators. ATLAS generates linear algebra routines (BLAS) with a focus on matrix-matrix

multiplication. SPIRAL and FFTW are similar to ATLAS, but generate signal processing

libraries. Analytical models have been [90], and are being [127] developed for library gener-

ators that use hardware characteristics to reduce the search time. For example, ATLAS will

use knowledge of the L2 cache size in order to determine optimal tile sizes for matrix-matrix

multiplication.

Programs such as X-Ray [128], hwloc [129], and other benchmark suites [130, 131] try to

address the problem of automatically finding machine characteristics, but focus on features

of uniprocessor super-scalars. In this chapter, a new benchmark suite named P-Ray is pre-

sented. The goal of P-Ray is to take the existing set of hardware characterizing benchmarks

168

from X-Ray, and extend them to multi-cores in order to find machine characteristics such as

the number of caches shared by the cores, the processors’ interconnection topologies, the ef-

fective bandwidth, and the block size used by the cache coherence mechanism. Experimental

results will show that for three different platforms, P-Ray generates accurate results.

The use of P-Ray in discovering machine characteristics can aid in the computation of

the machine cost model as used in Chapter 4.3. For example, machine characteristics such

as cache block size can be utilized to determine the memory footprint.

The remainder of this chapter is organized as follows: Section 6.2 provides motivating

examples for this work. Section 6.3 presents the different hardware characteristics studied.

Section 6.4 describes the implementation requirements and details. Section 6.5 summarizes

the experimental environment and discusses results. Section 6.6 describes related work.

Finally Section 6.7 summarizes the work and offers concluding remarks.

6.2 Motivation

Multi-threaded matrix-matrix multiplication

Library generators need detailed knowledge of the architectural features of the machine to

generate high-performance code. To show that this is the case, an implementation of matrix-

matrix multiplication (C = A ∗ B) is executed. This implementation uses POSIX threads

on an Intel Core 2 Quad desktop that has four cores and two L2 caches, each cache shared

by two cores. Figure 6.1 shows two different possible mappings for the matrices depending

on thread affinity. For this experiment, matrix C is split into four sub-matrices, and each

thread is assigned to one quadrant. Matrices are of size 800 × 800 each, so that they fit in

memory but not in the L2 cache. With the mapping in Figure 6.1b, both matrices A and

B need to be loaded in both L2 caches. Using the mapping of Figure 6.1c, matrix B can

be split so that one half goes to one L2 cache and the other half goes to the second. The

169

 I n L2 cache fo r co r e s 1 & 2 I n b o t h c a c h e s I n L2 cache fo r co r e s 3 & 4

Thread 3 Thread 4

 Thread 2Thread 1

A C

B

(b) Inefficient mapping

A

B

C

 Thread 2Thread 1

Thread 3 Thread 4

(c) Efficient mapping

Figure 6.1: Data Locality Depending on Thread to Core Affinity

experimental results show that an inefficient mapping can run up to 32% slower than an

efficient one. To correctly map the threads to cores as in Figure 6.1c, it was necessary to

use P-Ray to obtain the ID of the cores that share the L2 cache. Thread affinity has been

used in the past to pin a thread to a core in order to prevent the OS from migrating it to

a different core (and subsequent cache trashing) after a context switch [132]. However, in

current architectures where several cores could share a cache, thread affinity can be used to

place the data shared by two threads into L2. In most cases, this use of thread affinity can

only be done if the programmer has the information provided by a tool such as P-Ray, by

exhaustive search of all the possibilities, or if additional operating support is provided.

6.3 Targeted Characteristics

This section presents each part of the hardware that will characterized, and then afterwards,

the algorithms used to discover these characterizations will be provided. Implementation

specifics and detailed interpretation of the produced results will be discussed in Sections 6.4

170

and 6.5.

6.3.1 Cache Coherence Protocol Block Size

Knowing the block size used by the coherence protocol can aid the programmer in reducing

false sharing misses. Other solutions already exist to measure a cache line size, but are slower

than the one proposed in this thesis. By exploiting false sharing, the solution presented here

infers the block size in a fast and simple way.

Algorithm 11: Calculate Block Size

measure-size(core1,core2) {
char data[MAXLSIZES]
i← 1
while i ≤MAXLSIZE do

Start timing
Spawn thread-work(core1,0)
Spawn thread-work(core2,i)
Wait for threads to complete
Stop timing
Print i, timing
i← 2 ∗ i

end while
}

thread-work(core,index) {
Set-thread-affinity(core)
i← 0
while i ≤ SAMPLES do
data[index]← data[index] + 1
i← i+ 1

end while
}

... ...

T1 T2

... ...

I teration 0 Iteration i

T1 T2

0 1 i n 0 1 i n

. . .

Figure 6.2: Coherence Block Size Benchmark

Figure 6.2 illustrates Algorithm 11, that is used to compute the block size. Two threads

are spawned to work on a shared array consisting of C char variables. Both threads modify

the shared data in order to induce coherence traffic. The data is also read to ensure it resides

in L1: some architectures implement write-through write-no-allocate caches1.

1Sun Niagara T1: http://opensparc-t1.sunsource.net/specs/OpenSPARCT1_Micro_Arch.pdf

171

http://opensparc-t1.sunsource.net/specs/OpenSPARCT1_Micro_Arch.pdf

Thread one will always access the first element of the array. Thread two starts accessing

the second element of the array; however, with each iteration, it accesses an element which

is further from the first one.

At first, both threads will access the same cache line and have poor performance due to

false sharing; as the spacing between accesses increases, the performance stays poor until

both accessed values are on two separate cache lines. At this point, execution time decreases

drastically and the coherence block size can then be automatically inferred.

This algorithm can also provide information on the block size of different levels of cache.

When the threads are mapped to cores that share an L2, this algorithm measures the block

size of L1. However, when threads are mapped to cores that do not share a L2, this algorithm

measures the block size of L2. When there is not enough information about the mapping

of a core to the caches, the second thread can be mapped to different cores in the system.

By comparing the execution times of the different mappings, P-Ray can determine whether

the block size corresponds to the L1 or L2 cache. When there is no coherency between the

caches, this mechanism cannot determine the block size.

6.3.2 Cache Mapping

With this program, discovery of the number of caches at a given level of the system and the

cores that share them, is now possible.

For this to work, knowledge of the cache size for the given level is required. For complete-

ness, P-Ray includes a program to approximate it; however cache size can also be measured

with other programs [128, 131]. Algorithm 12 calculates the number of caches. Each thread

accesses a private array approximately sized to L2 in order to cause misses between cores

that share the same cache. This array is initialized as described in Algorithm 15 below. The

first step of the algorithm is to measure the time it took for one thread to read the elements

of this array when running in isolation. This time will be used as a reference to interpret

172

Algorithm 12: Calculate Cache Mapping

cache-mapping(core1, core2) {
i← 1
while i ≤ SAMPLES do

Spawn thread-work(core1,1)
Spawn thread-work(core2,2)
Wait on thread barrier
Wait for threads to complete
i← i+ 1

end while
}

thread-work(core, id) {
Set-thread-affinity (core)
Pointer p ← Initialize local data
Wait on thread barrier
Start timing
for i← 0 to SIZE do
p← ∗p

end for
Stop timing
if id = 1 then

Print core pair, timing
end if
}

the results.

Then, a similar test is executed with two threads. Each thread sets its affinity to a

different core, initializes its workset, and waits on a barrier for the other thread. Once

both threads leave the barrier, the time it takes for the threads to read their arrays while

running simultaneously is then measured. If the measured execution time is higher than the

reference time, the conclusion is that both threads ran on cores that share a cache, and that

performance degraded due to the worksets of the two threads competing for cache space. If

it is the same, it will be inferred that both threads ran on separate caches.

This test is run for all pairs of cores on the system. After gathering all the results, P-Ray

determines the number of caches on the system and the ID of the cores that map to them.

6.3.3 Processor Mapping

Here is a solution to determine the processors’ interconnection topology.

Algorithm 13 uses two threads sharing a workset the size of the L1 cache, but running

on separate cores. This algorithm functions by having one thread that reads and modifies

its workset (i.e. brings it into L1) and measuring the time it takes for the second thread

173

Algorithm 13: Calculate Processor Mapping

thread-work1(core id2) {
Set-thread-affinity (core id2)
p ← InitData(data,size,stride)
Wait on thread barrier
}

Require: Pointer p is global
thread-work2(core id1) {
Set-thread-affinity (core id1)
Wait on thread barrier
Start timing
for i← 0 to L1SIZE do
p← ∗p

end for
Stop timing
Print (core id1,core id2), timing
}

to read the data. By comparing the different access times of all possible pairs of cores, this

program will determine the different relative distances between all cores.

6.3.4 Effective Bandwidth

This is the solution used to measure the available bandwidth for one core to memory by

saturating it from one or several threads. In the following description, the term “memory”

will be used both for memory and caches unless otherwise specified.

Algorithm 14: Calculate Bandwidth

Iteration1() {
Start timing
for i← 0 to N ITER do
p← ∗p

end for
Stop timing
Print timing
}

Iteration2() {
Start timing
for i← 0 to N ITER/2 do
p1← ∗p1
p2← ∗p2

end for
Stop timing
Print timing
}

An array is used that does pointer chaining with multiple entry points (this data structure

and its initialization are described in Algorithm 15 and Figure 6.3 below). The offset between

two entry points is set to the size of a memory page. The stride between accesses is set to

174

the smallest multiple of the page size that avoids overlap between chains.

To target a specific level in the memory hierarchy, the number of elements in the pointer

chain is controlled before the loop back. This ensures that any reuse would happen after

the data was displaced from levels closer to the core. Moreover, when measuring memory

bandwidth, L2 is flushed after initialization.

Single-threaded bandwidth

The first step is to measure the bandwidth to memory for an isolated thread.

In the first iteration, the program traverses the array through a single entry pointer,

as shown by Iteration1() in Algorithm 14. The code in Iteration1() serializes array

accesses, as the access to the next element of the array cannot be issued until the pointer load

returns. The second iteration of this program traverses the array through two entry pointers,

as shown by Iteration2() in Algorithm 14. This loop has two independent accesses that

can be sent simultaneously to the memory. However, accesses in an iteration depend on

the accesses of the previous iteration for the same pointer chain due to the loop-carried

dependences for all pointers. The program proceeds by increasing the number of independent

requests. By measuring the execution time of these loops, P-Ray can determine the number

of requests that a core can have in-flight as well as its saturation point.

To calculate effective bandwidth, the following equation is used:

BWeffective =
ClockFreq ×ReadSize

CyclesPerRead
(6.1)

CyclesPerRead is obtained by dividing the execution cycles at any of the saturation points

by the number of iterations in the access loop. ClockFreq is the clock rate for the given

core. ReadSize is the size of the cache line being read.

175

Multi-threaded bandwidth

The next metric is to look at the memory bandwidth when multiple cores are sending requests

simultaneously. This is provided by Algorithm 14, where it is run in parallel over multiple

threads. When considering a cache, it is important to execute the program with threads on

the cores that share that cache. When considering memory, the program is executed with

any number of cores in the system.

To better understand the impact of concurrent access on the bandwidth for the targeted

memory, different numbers of threads are tested: anywhere between two and the number of

cores sharing the targeted memory.

6.4 Implementation

6.4.1 Requirements

The P-Ray software has two major requirements:

1. A high resolution wall timer. On Intel machines, the RDTSC instruction is used to

get timing in clock cycles [133].

2. Library and operating system support to set thread-to-core affinity.

6.4.2 Implementation Details

Pointer chaining

The main data structure used in most of the solutions is an array of pointers where each

element of the array contains the address to the next element to access when traversing the

structure. A similar data structure has been used by X-ray [128] and LMbench [131], but

here it is initialized using different techniques.

176

A picture of the data structure is shown in Figure 6.3, and the algorithm for its initial-

ization is shown in Algorithm 15. The initialization algorithm takes five arguments:

• data : a pointer to the allocated memory.

• size : the size in memory of the data structure.

• stride : the distance between two consecutive accesses.

• offset : the distance between two entry points.

• entries : the number of entry pointers.

The initialization routine uses a stride larger than page size to circumvent the hardware

prefetcher and offset larger than the cache line size to prevent consecutive entry pointers from

sharing a cache line. Since some experiments need to run for a large number of iterations, a

limit on the size of the array is placed by having the last element of the chain point back to

the first element (bottom line of Algorithm 15).

Algorithm 15: Pointer Chaining

Init-data(data,size,stride,offset,entries)

i← 0
while i < entries do
uoffset← i ∗ offset
Init-entry(data,size,stride,uoffset)
i← i+ 1

end while
Init-entry(data,size,stride,offset)
i← offset
while i ≤ size− stride do
data[i]←&data[i+ stride]
i← i+ stride

end while
data[i]← &data[offset]

177

Figure 6.3: Pointer Chaining: General Case

This structure has many advantages: i) it minimizes overhead, as no address has to be

computed, ii) it allows for easy ways to experiment with different access patterns by tuning

the initialization parameters, and iii) it prevents compiler optimizations that could interfere

with performance measurements.

Loop Overhead

The loop overhead should not be considered in the timing. Thus, in order to minimize the

control overhead, the main data access loops are unrolled by a factor of 512. This value

was chosen because it reduces loop overhead without adding substantial instruction cache

pressure. Additionally, an empty loop is timed in order to remove the control overhead from

the timing. This way, the final time reflects the actual access times.

Code Reordering

In order to prevent the compiler from performing any reordering of instructions within the

timed kernel, volatile data modifiers are used. It is important to be careful not to ex-

cessively mark every variable volatile when used outside of timed kernels, as this can hurt

performance substantially.

178

System Noise

To deal with the problem of system noise from the operating system and other user appli-

cations, numerous timing samples are taken, and the sample with the minimum value is the

result. This compensates for other programs and daemons running on the system.

6.5 Evaluation

6.5.1 Experimental Environment

Three different architectures that were evaluated are described in Table 6.1.

X86-64 Intel X86-64 Intel Core 2 Sun UltraSPARC
Xeon Harpertown Quad Kentsfield T1 Niagara

Num cores 8a 4 8 (32 threads)
Clock Rate (GHz) 2.0 2.4 1.2

L2 Cache size (MB) 6 4 3
OS (Kernel) Fedora 8 (2.6.24) Fedora 8 (2.6.24) Solaris 10

Compiler GCC 4.1.2 GCC 4.1.2 GCC 3.4.3

aComposed of two four-core chips

Table 6.1: Architectures Tested

6.5.2 Experimental Results

Coherence Block Size

Figure 6.4 illustrates the results for Algorithm 11. On the Intel machines (Figure 6.4a

and 6.4b), the threads were mapped to cores not sharing the L2 cache. The results show

that, on the Intel machines, there is a notable time decrease as soon as the two accesses are

64 bytes apart. From this, the conclusion is that the coherence protocol on these machines

uses 64-byte blocks.

179

 0

 100,000

 200,000

 300,000

 400,000

 500,000

 600,000

 700,000

 800,000

1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

E
x
ec

u
ti

o
n
 T

im
e

in
 C

lo
ck

 C
y
cl

es

Tested size in Bytes

(a) Harpertown

 0

 100,000

 200,000

 300,000

 400,000

 500,000

 600,000

5
1
2

2
5
6

1
2
8

6
4

3
2

1
68421

E
x
ec

u
ti

o
n
 t

im
e

in
 c

lo
ck

 C
y
cl

es

Tested size in Bytes

(b) Kentsfield

 0

 200,000

 400,000

 600,000

 800,000

 1,000,000

 1,200,000

 1,400,000

 1,600,000

1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

E
x
ec

u
ti

o
n
 t

im
e

in
 c

lo
ck

 c
y
cl

es

Tested size in Bytes

(c) Niagara

Figure 6.4: Coherence Block Size Results

180

On the Sun UltraSPARC T1 (Figure 6.4c), the observation is that the largest performance

difference occurs at the 16-byte block size, which corresponds to the size of the L1 data cache

block.

Through Cache
On Chip
Cross Chip

 0

 100,000

 200,000

 300,000

 400,000

 500,000

 600,000

 700,000

 800,000

1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

E
x
ec

u
ti

o
n
 T

im
e

in
 C

lo
ck

 C
y
cl

es

Tested size in Bytes

Figure 6.5: Coherence Block Size and Communication Latency

To show block sizes at the different cache levels and communication latencies, an eval-

uation of different mappings of threads to cores is performed. Figure 6.5 shows the results

for the Intel Harpertown architecture, which has eight cores. The first step is to map the

threads to the two cores on the same dual-core. The second step is to map the threads to

cores on the same chip but not the same cache. The final mapping is the threads to cores on

different chips. For this machine, it is observable that while the block size is always 64 bytes,

the different values of execution time show the different communication latencies among the

different cores. There is a higher communication latency when the communicating cores are

on different chips, and the communication cost is lower when the cores are closer together.

181

 0

 5,000

 10,000

 15,000

 20,000

 25,000

 30,000

 35,000

(r
ef

)
(1

−
2
)

(1
−

3
)

(1
−

4
)

(1
−

5
)

(1
−

6
)

(1
−

7
)

(1
−

8
)

(2
−

3
)

(2
−

4
)

(2
−

5
)

(2
−

6
)

(2
−

7
)

(2
−

8
)

(3
−

4
)

(3
−

5
)

(3
−

6
)

(3
−

7
)

(3
−

8
)

(4
−

5
)

(4
−

6
)

(4
−

7
)

(4
−

8
)

(5
−

6
)

(5
−

7
)

(5
−

8
)

(6
−

7
)

(6
−

8
)

(7
−

8
)

E
x
ec

u
ti

o
n
 T

im
e

in
 C

lo
ck

 C
y
cl

es

Pairs of Cores

(a) Harpertown

 0

 5,000

 10,000

 15,000

 20,000

 25,000

(r
ef

)

(1
−

2
)

(1
−

3
)

(2
−

3
)

(1
−

4
)

(2
−

4
)

(3
−

4
)

E
x
ec

u
ti

o
n
 t

im
e

in
 c

lo
ck

 C
y
cl

es

Pairs of cores

(b) Kentsfield

 0

 2,000

 4,000

 6,000

 8,000

 10,000

 12,000

 14,000

 16,000

(r
ef

)
(1

−
2
)

(1
−

3
)

(1
−

4
)

(1
−

5
)

(1
−

6
)

(1
−

7
)

(1
−

8
)

(2
−

3
)

(2
−

4
)

(2
−

5
)

(2
−

6
)

(2
−

7
)

(2
−

8
)

(3
−

4
)

(3
−

5
)

(3
−

6
)

(3
−

7
)

(3
−

8
)

(4
−

5
)

(4
−

6
)

(4
−

7
)

(4
−

8
)

(5
−

6
)

(5
−

7
)

(5
−

8
)

(6
−

7
)

(6
−

8
)

(7
−

8
)

E
x
ec

u
ti

o
n
 t

im
e

in
 c

lo
ck

 C
y
cl

es

Pairs of Cores

(c) Niagara

Figure 6.6: Cache Mapping

Cache Mapping

Figure 6.6 illustrates the results for Algorithm 12. The results clearly show which of the

cores share a cache.

182

By looking at the pairs of cores with the highest access times, it is observable that for

the Harpertown (Figure 6.6a), core pairs of ID (1 − 3),(2 − 4),(5 − 7), and (6 − 8) share a

cache, and for the Kentsfield (Figure 6.6b), the core pairs ID (1 − 2) and (3 − 4) share a

cache.

For the Sun UltraSPARC (Figure 6.6c), all core pairs show the same performance. When

comparing this performance with the single thread reference time, it is noticeable that all

core pairs perform poorly. From this, it can be inferred that all cores share the same cache.

Processor Mapping

Figure 6.7 illustrates the results for Algorithm 13. For the Harpertown (Figure 6.7a), three

different distances are observed. First, there are the pairs of cores that are the closest.

These pairs correspond to those that share a cache in Figure 6.6a: (1 − 3),(2 − 4),(5 − 7),

and (6−8). Then there are two groups of four cores, where communicating between pairs in

a group is faster than communicating between cores in different groups: ((1− 3)(5− 7)) and

((2− 4)(6− 8)). Those results confirm what is found on the design of the two architectures:

the machine is composed of two four-core chips, with each four-core chip composed of two

combined dual-cores. For the Kentsfield (Figure 6.7b), it is noticeable that pairs of cores

that share a cache communicate faster.

For the Niagara (figure 6.7c), results show that all cores are equidistant, which confirms

the results obtained for the cache mapping.

Effective L2 Bandwidth

Figure 6.8 illustrates the results for Algorithm 14. Data is shown for each platform when a

thread is run in isolation, and when two or more threads run concurrently. By looking at

results for one thread, the observation is that, for all the tested Intel machines, the execution

time decreases as the number of independent accesses that can be issued simultaneously in-

183

 0

 5,000

 10,000

 15,000

 20,000

 25,000

 30,000

 35,000

(1
−

2
)

(1
−

3
)

(1
−

4
)

(1
−

5
)

(1
−

6
)

(1
−

7
)

(1
−

8
)

(2
−

3
)

(2
−

4
)

(2
−

5
)

(2
−

6
)

(2
−

7
)

(2
−

8
)

(3
−

4
)

(3
−

5
)

(3
−

6
)

(3
−

7
)

(3
−

8
)

(4
−

5
)

(4
−

6
)

(4
−

7
)

(4
−

8
)

(5
−

6
)

(5
−

7
)

(5
−

8
)

(6
−

7
)

(6
−

8
)

(7
−

8
)

E
x

ec
u

ti
o

n
 T

im
e

in
 C

lo
ck

 C
y

cl
es

Pairs of Cores

(a) Harpertown

 0

 5,000

 10,000

 15,000

 20,000

 25,000
(1

−
2

)

(1
−

3
)

(1
−

4
)

(2
−

3
)

(2
−

4
)

(3
−

4
)

E
x

ec
u

ti
o

n
 T

im
e

in
 C

lo
ck

 C
y

cl
es

Pairs of Cores

(b) Kentsfield

 0

 5,000

 10,000

 15,000

 20,000

 25,000

(1
−

2
)

(1
−

3
)

(1
−

4
)

(1
−

5
)

(1
−

6
)

(1
−

7
)

(1
−

8
)

(2
−

3
)

(2
−

4
)

(2
−

5
)

(2
−

6
)

(2
−

7
)

(2
−

8
)

(3
−

4
)

(3
−

5
)

(3
−

6
)

(3
−

7
)

(3
−

8
)

(4
−

5
)

(4
−

6
)

(4
−

7
)

(4
−

8
)

(5
−

6
)

(5
−

7
)

(5
−

8
)

(6
−

7
)

(6
−

8
)

(7
−

8
)

E
x

ec
u

ti
o

n
 t

im
e

in
 c

lo
ck

 C
y

cl
es

Pairs of Cores

(c) Niagara

Figure 6.7: Processor Mapping

creases. There is a saturation point where the execution time remains constant. The smallest

number of independent accesses where the saturation point is reached tell us the number of

requests that can be served in parallel. When two or more threads run concurrently, the

184

One Thread
Two threads

 0

 100,000

 200,000

 300,000

 400,000

 500,000

 600,000

1 2 3 4 5 6 7 8 9

1
0

E
x
ec

u
ti

o
n
 T

im
e

in
 C

lo
ck

 C
y
cl

es

Number of Independent Accesses

(a) Harpertown

One Thread
Two threads

 0

 50,000

 100,000

 150,000

 200,000

 250,000

 300,000

 350,000

 400,000

1 2 3 4 5 6 7 8 9

1
0

E
x
ec

u
ti

o
n
 T

im
e

in
 C

lo
ck

 C
y
cl

es

Number of Independent Accesses

(b) Kentsfield

One Thread
Two threads
Four Threads
Eight Threads

 0

 100,000

 200,000

 300,000

 400,000

 500,000

1 2 3 4 5 6 7 8 9

1
0

E
x
ec

u
ti

o
n
 T

im
e

in
 C

lo
ck

 C
y
cl

es

Number of Independent Accesses

(c) Niagara

 0

 100,000

 200,000

 300,000

 400,000

 500,000

 600,000

 700,000

 800,000

1 2 3 4 5 6 7 8 9

1
0

E
x
ec

u
ti

o
n
 T

im
e

in
 C

lo
ck

 C
y
cl

es

Number of Independent Accesses

(d) Niagara with branch penalty

Figure 6.8: Effective Bandwidth to L2 Results

185

bars have a similar trend, but have a slightly higher execution time.

Figure 6.8d shows the execution time for the program running without removing the loop

overhead. The improvement in execution time looks like it comes from more parallelism be-

tween memory requests. In fact, the Niagara does not have branch prediction; the reduction

in execution time is only due to the decrease in number of iterations (i.e. number of branches

per access).

Finally Table 6.2 shows the bandwidth computed using the formula shown in Section 6.3.4

for the different number of threads.

Machine L1 Block Cycles per Access (concurrent accesses) Effective Bandwidth
GB/s

threads 1 2 4 8 1 2 4 8

Harpertown 64B 6.2 (9) 7.5 (9) - - 19.3 15.8 - -

Kentsfield 64B 6.1 (6) 6.5 (9) - - 23.7 22.0 - -

Niagara 16B 25.0 (6) 21.7 (1) 21.6 (1) 21.7 (1) 0.7 0.8 0.8 0.8

Table 6.2: Effective Bandwidth to L2

Effective Memory Bandwidth

Figure 6.9 illustrates the results for Algorithm 14. For the Intel processors (Figure 6.9a

and 6.9b), as the number of cores accessing memory increases, the observation is a substantial

decrease in bandwidth. On the Niagara (Figure 6.9c), the results are similar as for the L2

cache; the bandwidth available to the cores stays the same regardless of the number of

concurrent requests. Finally, Table 6.3 shows the values for the effective bandwidth.

Machine L2 Block Cycles per Access (concurrent accesses) Effective Bandwidth
GB/s

threads 1 2 4 8 1 2 4 8

Harpertown 64B 52.1 (8) 53.6 (8) 93.9 (9) 183.3 (9) 2.3 2.2 1.3 0.7

Kentsfield 64B 32.0 (8) 56.5 (10) 121.0 (10) - 4.5 2.5 1.2 -

Niagara 64B 111.6 (10) 107.6 (8) 108.5 (8) 110.1 (8) 0.6 0.7 0.7 0.7

Table 6.3: Effective Bandwidth to Memory

186

One Thread
Two threads
Four Threads
Eight Threads

 0

 1,000,000

 2,000,000

 3,000,000

 4,000,000

 5,000,000

 6,000,000

 7,000,000

1 2 3 4 5 6 7 8 9

1
0

E
x
ec

u
ti

o
n
 T

im
e

in
 C

lo
ck

 C
y
cl

es

Number of Independent Accesses

(a) Harpertown

One Thread
Two threads
Four Threads

 0

 1,000,000

 2,000,000

 3,000,000

 4,000,000

 5,000,000

 6,000,000

1 2 3 4 5 6 7 8 9

1
0

E
x
ec

u
ti

o
n
 T

im
e

in
 C

lo
ck

 C
y
cl

es

Number of Independent Accesses

(b) Kentsfield

One Thread
Two threads
Four Threads
Eight Threads

 0

 500,000

 1,000,000

 1,500,000

 2,000,000

 2,500,000

1
0987654321

E
x
ec

u
ti

o
n
 T

im
e

in
 C

lo
ck

 C
y
cl

es

Number of Independent Accesses

(c) Niagara

Figure 6.9: Effective Bandwidth to Memory Results

187

6.6 Related Work

As discussed in the introduction, there are other software suites such as LMBench[131],

Saavedra[130], and X-Ray[128] that measure architectural characteristics and, while they

focus on single core features, P-Ray focuses on multi-core specific features. Benchmark suites

like SPEC OMP2 are designed for shared memory multiprocessors. Such benchmarks only

give a relative performance scale, but do not give any information about the characteristics

of the targeted system.

Since P-Ray was originally developed [93], there has been newer benchmark suites used

to measure multi-core characteristics. The hwloc [129] project is a portable software package

that is similar to P-Ray in computing the topology of the machine cores and aches. An

important distinction is that hwloc computes topology information through the operating

system interface, whereas in P-Ray, the majority of information is computed with minimal

support from the operating system. Servet [134] is a similar approach to P-Ray in that it

computes the same machine characteristics, with the major difference being that Servet pro-

vides an additional benchmark used to determine communication latencies between cores.

6.7 Conclusion

The work that has been presented here is a suite of conceptually simple solutions that focus

on multi-core characteristics. This benchmark suite returns results that are in accordance

with vendor specifications when available and coherent when they are not.

The main difference between P-Ray and existing software is that P-Ray offers a unique

view of the system design, showing the position of the different cache levels and relative

distances between (virtual) cores in the system. With this information at hand, a program-

mer has the ability to use more efficient hardware-aware optimizations in their applications.

2Standard Performance Evaluation Corporation. http://www.spec.org/omp

188

http://www.spec.org/omp

In addition, P-Ray provides a faster means to calculate a cache block size by exploiting

false sharing. Finally, the execution and analysis framework is extensible, allowing for the

addition of further hardware characterization.

189

Chapter 7

Future Work

Compilation for Dependence-Driven Execution Models

In the approach taken of compiling data-parallel loops onto dependence-driven execution

models, the default scheduling strategy of static scheduling was used. In many dense work-

loads, static scheduling is sufficient, but as soon as there is an irregularity in the workload,

performance due to load-imbalance can suffer. An area of future work would be to also

support other scheduling strategies such as dynamic scheduling.

In Chapter 6, a micro-benchmark suite was proposed in order to determine multi-core

machine specific characteristics. One of these benchmarks were used to find the cache line

size, which was then used as an input in computing the memory footprint of multiply-nested

loop from Section 4.3.3. One area of future work would be for the other machine charac-

teristics to also aid in the optimization of the generated code. For example, determining

which processors share a cache could help the compiler and runtime in pinning specific tasks

to processors in order to decrease communication traffic for processors that do not directly

share a cache.

190

Language Support to Express Dependences

Chapter 3.6 provides an overall design of language extensions to support explicit ordering

constraints. One area of future work would be to interface these language extensions with

an existing compiler infrastructure in order to provide new optimization capabilities. This

would then be able to sidestep the compiler since, traditionally, the compiler needs to be

conservative to guarantee program correctness. For example, one ability would be for the

programmer to turn off dependence analysis for a set of loops, and to provide their own set

of constraints. An evaluation of the usefulness of this would then be to see what compiler

transformations can be enabled with and without these constraints.

This work could also be complimentary to an existing dependence analysis phase of

the compiler. Instead of turning off the dependence analysis phase for a set of loops, the

programmer could specify what portion of the loops are independent so that the compiler

has more freedom in enabling certain loop transformations.

Support for Hierarchical Parallel Architectures

While Chapel already supports execution on traditional clusters containing multi-cores, the

work presented in this thesis is primarily focused on single-node architectures containing a

GPU. An area of future work would be to combine the work of compiling multiply-nested

data-parallel loops onto dependence-driven runtime systems with the work of targeting het-

erogeneous architectures such as GPUs. In this case, any compiled loop (either for a GPU, or

multi-core) would be represented as a task to the runtime. Since it is the job of the runtime

to schedule tasks onto the given hardware, any of the tasks from the compiled loops could

be mapped onto any available hardware resource. A scenario for this would be to have a

distributed system consisting of multiple nodes, where each node contains multiple CPUs

and GPU accelerator cards. By expressing both synchronous and asynchronous data-parallel

loops, the scheduler can now map each of those onto any of the hardware resources. This

191

would be beneficial not only for exploiting all the available parallelism, but also increase pro-

grammer productivity since the programmer will express parallel loops, and not deal with

the communication and machine complexity.

In addition to the computation hierarchy just described, it will be important to also

deal with the memory hierarchy for these complex systems. This includes the user needing

to develop a technique of sharing data across the global address space of the hierarchy, in

addition to the separate address spaces of each node.

Improving GPU Compilation Support

There are many areas of future direction for improving GPU compilation support. For

instance, one could strive to avoid exposing too much of the GPU low-level centric code

to the programmer. While this is beneficial to compilation of the GPU-centric loops onto

a multi-core, it still forces the programmer to think in terms of CUDA in some aspects.

For example, this includes relying on CUDA’s synchronization primitives. One method to

address this is to use the method in which programmers express their algorithms purely in

terms of nested forall, coforall, and for loops, and leave it to the compiler to generate the

necessary kernel from that. The second method, and possibly complementary approach, is to

provide whole-array operation support. The Chapel language currently supports bulk-array

operations that convert to parallel forall loops. This work can then be expanded upon by

having the compiler optimize these operations through techniques such as loop fusion, where

the compiler could then safely combine multiple forall loops into a single kernel.

192

Chapter 8

Conclusions

This thesis has attempted to address compilation techniques and language extensions that

will be used to target dependence-driven execution models such as the StarPU runtime sys-

tem. This involved designing new algorithms based on interval analysis to perform loop

partitioning into a task-dependence graph. Additionally, a new language extension was in-

troduced to help the programmer explicitly express the ordering constraints between different

parts of their source code. This has the benefit of aiding (or replacing) the compiler’s tra-

ditional dependence analysis framework to help determine which loop transformations are

legal to the user.

A new optimization was introduced to help decrease barrier synchronization overhead

from multiply-nested parallel loops. This optimization is based on a heuristic that determines

the essential tile dimensions for a loop nest, and then coalesces the loop nest together. Part

of this work also helps to explore the area of choosing the correct number of processors for

execution, as it is not always ideal to use the maximum available resources due to runtime

overheads.

In addition to compiling data-parallel loops for different runtime systems, this work also

explored compilation techniques to map data-parallel loops onto different architecture back-

193

ends, primarily GPU-based accelerators. This work is then extended. By taking source code

that has been already hand-tuned for GPUs, the compiler can now map those codes back

onto a traditional multi-core platform.

To help aid in optimization of applications, it is important to understand the underlying

machine characteristics that the application will execute on. A set of benchmarks named P-

Ray were developed to help address this. In particular, these benchmarks help characterize

multi-core specific characteristics for a set of different platforms. These characteristics can

then be applied to the work presented earlier in the thesis. For example, by having P-Ray

compute the cache block size, a more precise approximation of the memory footprint for

different parallel loop kernels can then be found.

194

Bibliography

[1] F. E. Allen and J. Cocke. A program data flow analysis procedure. Commun. ACM,

19(3):137–, March 1976.

[2] Matthew S. Hecht. Flow Analysis of Computer Programs. Elsevier Science Inc., New

York, NY, USA, 1977.

[3] Herb Sutter. The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in

Software. Dr. Dobbs Journal, 30(3):202–210, 2005.

[4] Wm. A. Wulf and Sally A. McKee. Hitting the Memory Wall: Implications of the

Obvious. SIGARCH Comput. Archit. News, 23(1):20–24, March 1995.

[5] Volodymyr Kindratenko. Scientific Computing with GPUs. Computing in Science and

Engineering, 14(3):8–9, 2012.

[6] C. Baker, G. Davidson, T. M. Evans, S. Hamilton, J. Jarrell, and W. Joubert. High

Performance Radiation Transport Simulations: Preparing for Titan. In Proceedings of

the International Conference on High Performance Computing, Networking, Storage

and Analysis, SC ’12, pages 47:1–47:10, Los Alamitos, CA, USA, 2012. IEEE Computer

Society Press.

195

[7] Albert Sidelnik, Saeed Maleki, Bradford L. Chamberlain, Maŕıa Jesús Garzarán, and

David A. Padua. Performance Portability with the Chapel Language. In Parallel and

Distributed Processing Symposium (IPDPS), 2012 IEEE 26th International, 2012.

[8] Gregory Diamos, Andrew Kerr, Sudhakar Yalamanchili, and Nathan Clark. Ocelot:

A Dynamic Compiler for Bulk-synchronous Applications in Heterogeneous Systems.

In PACT ’10: The Nineteenth International Conference on Parallel Architectures and

Compilation Techniques, 2010.

[9] John A. Stratton, Vinod Grover, Jaydeep Marathe, Bastiaan Aarts, Mike Murphy,

Ziang Hu, and Wen-mei W. Hwu. Efficient Compilation of Fine-grained SPMD-

threaded Programs for Multicore CPUs. In CGO ’10: Proceedings of the 8th annual

IEEE/ACM international symposium on Code generation and optimization, pages 111–

119, New York, NY, USA, 2010. ACM.

[10] Daniel D. Gajski, David J. Kuck, and David A. Padua. Dependence Driven Compu-

tation. In COMPCON, pages 156–161. IEEE Computer Society, 1981.

[11] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacrenier.

StarPU: A Unified Platform for Task Scheduling on Heterogeneous Multicore Archi-

tectures. In Euro-Par, pages 863–874, 2009.

[12] George Bosilca, Aurelien Bouteiller, Anthony Danalis, Thomas Hérault, Pierre

Lemarinier, and Jack Dongarra. DAGuE: A Generic Distributed DAG Engine for

High Performance Computing. Parallel Computing, 38(1-2):37–51, 2012.

196

[13] Eduard Ayguadé, Rosa M. Badia, Francisco D. Igual, Jesús Labarta, Rafael Mayo,

and Enrique S. Quintana-Ort́ı. An Extension of the StarSs Programming Model for

Platforms with Multiple GPUs. In Proceedings of the 15th International Euro-Par

Conference on Parallel Processing, Euro-Par ’09, pages 851–862, Berlin, Heidelberg,

2009. Springer-Verlag.

[14] Inc. ET International. SWARM (SWift Adaptive Runtime Machine). White paper,

2011.

[15] Stéphane Zuckerman, Joshua Suetterlein, Rob Knauerhase, and Guang R. Gao. Using

a “Codelet” Program Execution Model for Exascale Machines: Position Paper. In

Proceedings of the 1st International Workshop on Adaptive Self-Tuning Computing

Systems for the Exaflop Era, EXADAPT ’11, pages 64–69, New York, NY, USA, 2011.

ACM.

[16] Kathleen Knobe. Ease of Use with Concurrent Collections (CnC). In Proceedings of

the First USENIX conference on Hot topics in parallelism, HotPar’09, pages 17–17,

Berkeley, CA, USA, 2009. USENIX Association.

[17] Alejandro Duran, Roger Ferrer, Eduard Ayguadé, Rosa M. Badia, and Jesús Labarta.

A Proposal to Extend the OpenMP Tasking Model with Dependent Tasks. Interna-

tional Journal of Parallel Programming, 37(3):292–305, 2009.

[18] Daniel A. Orozco. TIDeFlow: A Dataflow-Inspired Execution Model for High Perfor-

mance Computing Programs. PhD thesis, University of Delaware, 2012.

[19] James Reinders. Intel Threading Building Blocks. O’Reilly & Associates, Inc., Se-

bastopol, CA, USA, first edition, 2007.

[20] Jack Dongarra, Peter H. Beckman, and Terry Moore et al. The International Exascale

Software Project Roadmap. IJHPCA, 25(1):3–60, 2011.

197

[21] Bradford L. Chamberlain, David Callahan, and Hans P. Zima. Parallel Programmabil-

ity and the Chapel Language. International Journal of High Performance Computing

Applications, 21:291–312, 2007.

[22] Bradford L. Chamberlain, Steven J. Deitz, David Iten, and Sung-Eun Choi. User-

defined Data Distributions in Chapel: Philosophy and Framework. In HotPar ’10:

Proc. 2nd Workshop on Hot Topics in Parallelism, 2010.

[23] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques

and Tools. Addison-Wesley, 1988.

[24] Matthew S. Hecht and Jeffrey D. Ullman. Flow Graph Reducibility. In Proceedings of

the fourth annual ACM symposium on Theory of computing, STOC ’72, pages 238–250,

New York, NY, USA, 1972. ACM.

[25] Edward S. Lowry and C. W. Medlock. Object Code Optimization. Commun. ACM,

12(1):13–22, January 1969.

[26] Donald E. Knuth. An Empirical Study of FORTRAN Programs. Softw., Pract. Exper.,

1(2):105–133, 1971.

[27] James Stanier and Des Watson. A Study of Irreducibility in C Programs. Softw. Pract.

Exper., 42(1):117–130, January 2012.

[28] Barbara G. Ryder and Marvin C. Paull. Elimination Algorithms for Data Flow Anal-

ysis. ACM Comput. Surv., 18(3):277–316, September 1986.

[29] David A. Padua and Michael J. Wolfe. Advanced Compiler Optimizations for Super-

computers. Commun. ACM, 29(12):1184–1201, December 1986.

198

[30] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The Program Dependence

Graph and Its Use in Optimization. ACM Trans. Program. Lang. Syst., 9(3):319–349,

July 1987.

[31] Ron Cytron, Michael Hind, and Wilson C. Hsieh. Automatic Generation of DAG

Parallelism. In PLDI, pages 54–68, 1989.

[32] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth

Zadeck. Efficiently Computing Static Single Assignment Form and the Control De-

pendence Graph. ACM Trans. Program. Lang. Syst., 13(4):451–490, October 1991.

[33] Robit Chandra, Leonardo Dagum, Dave Kohr, Dror Maydan, Jeff McDonald, and

Ramesh Menon. Parallel Programming in OpenMP. Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA, 2001.

[34] Guy E. Blelloch. NESL: A Nested Data-Parallel Language (Version 2.6). Technical

report, Pittsburgh, PA, USA, 1993.

[35] Lawrence Snyder. A Programmer’s Guide to ZPL. MIT Press, 1999.

[36] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable Parallel Pro-

gramming with CUDA. Queue, 6(2):40–53, 2008.

[37] Richard E. Ladner, Michael, and J. Fischer. Parallel Prefix Computation. Journal of

the ACM, 27:831–838, 1980.

[38] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan Kiel-

stra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: An Object-

oriented Approach To Non-uniform Cluster Computing. In OOPSLA ’05: Proceedings

of the 20th annual ACM SIGPLAN conference on Object-oriented programming, sys-

tems, languages, and applications, pages 519–538, New York, NY, USA, 2005. ACM.

199

[39] Jun Shirako, David M. Peixotto, Vivek Sarkar, and William N. Scherer. Phasers: A

Unified Deadlock-free Construct for Collective and Point-To-Point Synchronization. In

Proceedings of the 22nd annual international conference on Supercomputing, ICS ’08,

pages 277–288, New York, NY, USA, 2008. ACM.

[40] David Alejandro Padua. Multiprocessors: Discussion of Some Theoretical and Practical

Problems. PhD thesis, Champaign, IL, USA, 1980. AAI8018194.

[41] Ronald Gary Cytron. Compile-time Scheduling and Optimization for Asynchronous

Machines (Multiprocessor, Compiler, Parallel Processing). PhD thesis, Champaign,

IL, USA, 1984. AAI8502121.

[42] University of Illinois at Urbana-Champaign. Center for Supercomputing Research, De-

velopment, and C.D. Polychronopoulos. Loop Coalescing: a Compiler Transformation

for Parallel Machines. CSRD. University of Illinois, Center for Supercomputing Re-

search and Development, 1987.

[43] Ken Kennedy and John R. Allen. Optimizing Compilers for Modern Architectures: A

Dependence-based Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 2002.

[44] Jack B. Dennis. Data Flow Computer Architecture. In Encyclopedia of Parallel Com-

puting, pages 508–512. 2011.

[45] K.P. Gostelow and W. Plouffe. The (preliminary) Id Report: An Asynchronous Pro-

gramming Language and Computing Machine. Technical report (University of Califor-

nia, Irvine. Dept. of Information and Computer Science). Department of Information

and Computer Science, University of California, Irvine, 1978.

[46] John Feo, David C. Cann, and R. R. Oldehoeft. A Report on the Sisal Language

Project. J. Parallel Distrib. Comput., 10(4):349–366, 1990.

200

[47] James R. McGraw. The VAL Language: Description and Analysis. ACM Trans.

Program. Lang. Syst., 4(1):44–82, January 1982.

[48] D. D. Gajski, D. A. Padua, D. J. Kuck, and R. H. Kuhn. A Second Opinion on Data

Flow Machines and Languages. Computer, 15(2):58–69, February 1982.

[49] Jack Dongarra and Piotr Luszczek. PLASMA. In Encyclopedia of Parallel Computing,

pages 1568–1570. 2011.

[50] Khronos OpenCL Working Group. The OpenCL Specification, version 1.0.29, 8 De-

cember 2008.

[51] Chapel Specification 0.82. http://chapel.cray.com.

[52] Eric Allen, David Chase, Joe Hallett, Victor Luchangco, Jan-Willem Maessen, Suky-

oung Ryu, Guy L. Steele Jr., and Sam Tobin-Hochstadt. The Fortress Language

Specification. Technical report, Sun Microsystems, Inc., 2007.

[53] Lawrence Snyder. The Design and Development of ZPL. In Proceedings of the third

ACM SIGPLAN conference on History of programming languages, HOPL III, pages

8–1–8–37, New York, NY, USA, 2007. ACM.

[54] Ken Kennedy, Charles Koelbel, and Hans Zima. The Rise and Fall of High Performance

Fortran: An Historical Object Lesson. In Proceedings of the third ACM SIGPLAN

conference on History of programming languages, HOPL III, pages 7–1–7–22, New

York, NY, USA, 2007. ACM.

[55] Mike Ringenburg and Sung-Eun Choi. Optimizing Loop-level Parallelism in

Cray XMT (TM) Applications. In Cray Users Group (CUG) 2009), Atlanta, GA,

2009.

201

http://chapel.cray.com

[56] Adrian Prantl, Thomas Epperly, Shams Imam, and Vivek Sarkar. Interfacing Chapel

with Traditional HPC Programming Languages. In Fifth Conference on Partitioned

Global Address Space Programming Model, Galveston Island, Texas, October 2011.

[57] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong Pro-

gram Analysis & Transformation. In Proceedings of the 2004 International Symposium

on Code Generation and Optimization (CGO’04), Palo Alto, California, Mar 2004.

[58] Bradford L. Chamberlain. The Design and Implementation of a Region-Based Parallel

Language. PhD thesis, University of Washington, November 2001.

[59] Steven J. Deitz, David Callahan, Bradford L. Chamberlain, and Lawrence Snyder.

Global-view Abstractions for User-defined Reductions and Scans. In PPoPP ’06: Pro-

ceedings of the eleventh ACM SIGPLAN symposium on Principles and practice of

parallel programming, pages 40–47, New York, NY, USA, 2006. ACM.

[60] Bradford L. Chamberlain, Sung-Eun Choi, Steven J. Deitz, David Iten, and Vassily

Litvinov. Authoring User-Defined Domain Maps in Chapel. Cray Users Group Con-

ference (CUG), 2011.

[61] Elkin Garcia and Guang Gao. Strategies For Improving Performance and Energy

Efficiency on a Many-core. In Proceedings of the ACM International Conference on

Computing Frontiers, CF ’13, pages 9:1–9:4, New York, NY, USA, 2013. ACM.

[62] Stanimire Tomov, Rajib Nath, Hatem Ltaief, and Jack Dongarra. Dense Linear Algebra

Solvers for Multicore with GPU Accelerators. In IPDPS Workshops, pages 1–8, 2010.

[63] Johan Enmyren and Christoph W. Kessler. SkePU: A Multi-backend Skeleton Pro-

gramming Library for Multi-GPU Systems. In Proceedings of the fourth international

workshop on High-level parallel programming and applications, HLPP ’10, pages 5–14,

New York, NY, USA, 2010. ACM.

202

[64] Azzam Haidar, Hatem Ltaief, Asim YarKhan, and Jack Dongarra. Analysis of Dynam-

ically Scheduled Tile Algorithms for Dense Linear Algebra on Multicore Architectures.

Concurr. Comput. : Pract. Exper., 24(3):305–321, March 2011.

[65] Yong-Fong Lee, Barbara G. Ryder, and Marc E. Fiuczynski. Region Analysis: A Paral-

lel Elimination Method for Data Flow Analysis. IEEE Trans. Softw. Eng., 21(11):913–

926, November 1995.

[66] Karlin et al. Exploring Traditional and Emerging Parallel Programming Models using

a Proxy Application. In Parallel and Distributed Processing Symposium (IPDPS), 2013

IEEE 27th International, 2013.

[67] Sebastian Nanz, Scott West, and Kaue Soares da Silveira. Benchmarking Usability

and Performance of Multicore Languages. CoRR, abs/1302.2837, 2013.

[68] Nan Dun and K. Taura. An Empirical Performance Study of Chapel Programming

Language. In Parallel and Distributed Processing Symposium Workshops PhD Forum

(IPDPSW), 2012 IEEE 26th International, pages 497–506, 2012.

[69] Timothy A. Davis and Yifan Hu. The University of Florida Sparse Matrix Collection.

ACM Trans. Math. Softw., 38(1):1:1–1:25, December 2011.

[70] William Humphrey, Andrew Dalke, and Klaus Schulten. VMD – Visual Molecular

Dynamics. Journal of Molecular Graphics, 14:33–38, 1996.

[71] Parboil Benchmark Suite. http://impact.crhc.illinois.edu/parboil.php.

[72] Samuel S. Stone, Justin P. Haldar, Stephanie C. Tsao, Wen-mei W. Hwu, Zhi-Pei

Liang, and Bradley P. Sutton. Accelerating Advanced MRI Reconstructions on GPUs.

In CF ’08: Proc. 5th conference on Computing frontiers, pages 261–272, 2008.

203

[73] Christian H. Bischof and Charles Van Loan. The WY Representation for Products of

Householder Matrices. Technical report, Ithaca, NY, USA, 1985.

[74] M. Girkar and C. D. Polychronopoulos. Automatic Extraction of Functional Paral-

lelism from Ordinary Programs. IEEE Trans. Parallel Distrib. Syst., 3:166–178, March

1992.

[75] Hironori Kasahara, Hiroki Honda, M. Iwata, and M. Hirota. A Compilation Scheme

for Macro-Dataflow Computation on Hierarchical Multiprocessor Systems. In ICPP

(2), pages 294–295, 1990.

[76] Micah Beck and Keshav Pingali. From Control Flow to Dataflow. In ICPP (2), pages

43–52, 1990.

[77] Hironori Kasahara, Hiroki Honda, A. Mogi, A. Ogura, K. Fujiwara, and Seinosuke

Narita. A Multi-Grain Parallelizing Compilation Scheme for OSCAR (Optimally

Scheduled Advanced Multiprocessor). In LCPC, pages 283–297, 1991.

[78] Milind Girkar and Constantine D. Polychronopoulos. The Hierarchical Task Graph

as a Universal Intermediate Representation. Int. J. Parallel Program., 22:519–551,

October 1994.

[79] Milind Girkar and Constantine D. Polychronopoulos. Extracting Task-Level Paral-

lelism. ACM Trans. Program. Lang. Syst., 17(4):600–634, 1995.

[80] J.T. Schwartz. A Design for Optimizations of the Bitvectoring Class: By J.T. Schwartz

and M. Sharir. Courant Institute of Mathematical Sciences, New York University, 1979.

[81] Vivek Sarkar and John L. Hennessy. Partitioning Parallel Programs for Macro-

Dataflow. In LISP and Functional Programming, pages 202–211, 1986.

204

[82] Ron Cytron, J. Ferrante, and V. Sarkar. Experiences Using Control Dependence in

PTRAN. In Selected papers of the second workshop on Languages and compilers for

parallel computing, pages 186–212, London, UK, UK, 1990. Pitman Publishing.

[83] Bradford L. Chamberlain, E. Christopher Lewis, and Lawrence Snyder. Language

Support for Pipelining Wavefront Computations. In LCPC, pages 318–332, 1999.

[84] Henry C. Baker, Jr. and Carl Hewitt. The Incremental Garbage Collection of Processes.

In Proceedings of the 1977 symposium on Artificial intelligence and programming lan-

guages, pages 55–59, New York, NY, USA, 1977. ACM.

[85] D.P. Friedman and D.S. Wise. The Impact of Applicative Programming on Multipro-

cessing. Technical report (Indiana University, Bloomington. Computer Science Dept.).

Indiana University, Computer Science Department, 1976.

[86] Chuanle Ke, Lei Liu, Chao Zhang, Tongxin Bai, Bryan Jacobs, and Chen Ding. Safe

Parallel Programming Using Dynamic Dependence Hints. In OOPSLA, pages 243–258,

2011.

[87] Eduard Ayguade, Marc Gonzalez, Xavier Martorell, and Gabriele Jost. Employing

Nested OpenMP for the Parallelization of Multi-zone Computational Fluid Dynamics

Applications. J. Parallel Distrib. Comput., 66(5):686–697, May 2006.

[88] Eduard Ayguade, Xavier Martorell, Jesus Labarta, Marc Gonzalez, and Nacho

Navarro. Exploiting Multiple Levels of Parallelism in OpenMP: A Case Study. In

Proceedings of the 1999 International Conference on Parallel Processing, ICPP ’99,

pages 172–, Washington, DC, USA, 1999. IEEE Computer Society.

[89] C.D. Polychronopoulos. Parallel Programming and Compilers. Kluwer international

series in engineering and computer science. Kluwer Academic, 1988.

205

[90] K. Yotov, X. Li, G. Ren, M.J.S. Garzaran, D. Padua, K. Pingali, and P. Stodghill.

Is Search Really Necessary to Generate High-Performance BLAS? Proceedings of the

IEEE, 93(2):358–386, Feb. 2005.

[91] Markus Püschel, José M. F. Moura, Jeremy Johnson, David Padua, Manuela Veloso,

Bryan Singer, Jianxin Xiong, Franz Franchetti, Aca Gacic, Yevgen Voronenko, Kang

Chen, Robert W. Johnson, and Nicholas Rizzolo. SPIRAL: Code Generation for DSP

Transforms. Proceedings of the IEEE, special issue on ”Program Generation, Opti-

mization, and Adaptation”, 93(2):232– 275, 2005.

[92] M. Wolfe. More Iteration Space Tiling. In Proceedings of the 1989 ACM/IEEE con-

ference on Supercomputing, Supercomputing ’89, pages 655–664, New York, NY, USA,

1989. ACM.

[93] Alexandre X. Duchateau, Albert Sidelnik, Maŕıa Jesús Garzarán, and David Padua.

Languages and compilers for parallel computing. chapter P-Ray: A Software Suite

for Multi-core Architecture Characterization, pages 187–201. Springer-Verlag, Berlin,

Heidelberg, 2008.

[94] Monica D. Lam, Edward E. Rothberg, and Michael E. Wolf. The Cache Performance

and Optimizations of Blocked Algorithms. SIGPLAN Not., 26(4):63–74, April 1991.

[95] Stephanie Coleman and Kathryn S. McKinley. Tile Size Selection Using Cache Or-

ganization and Data Layout. In Proceedings of the ACM SIGPLAN 1995 conference

on Programming language design and implementation, PLDI ’95, pages 279–290, New

York, NY, USA, 1995. ACM.

[96] Chen Ding and Yutao Zhong. Predicting Whole-Program Locality Through Reuse

Distance Analysis. SIGPLAN Not., 38(5):245–257, May 2003.

206

[97] Calin Cascaval and David A. Padua. Estimating Cache Misses and Locality Using

Stack Distances. In Proceedings of the 17th annual international conference on Super-

computing, ICS ’03, pages 150–159, New York, NY, USA, 2003. ACM.

[98] Peter L. Montgomery. A Survey of Modern Integer Factorization Algorithms. CWI

Quarterly, 7:337–366, 1994.

[99] Vivek Sarkar. Loop Transformations for Hierarchical Parallelism and Locality. In

Selected Papers from the 4th International Workshop on Languages, Compilers, and

Run-Time Systems for Scalable Computers, LCR ’98, pages 57–74, London, UK, UK,

1998. Springer-Verlag.

[100] Vivek Sarkar and Radhika Thekkath. A General Framework for Iteration-Reordering

Loop Transformations. In Proceedings of the ACM SIGPLAN 1992 conference on

Programming language design and implementation, PLDI ’92, pages 175–187, New

York, NY, USA, 1992. ACM.

[101] Michael E. Wolf. Improving Locality and Parallelism in Nested Loops. Stanford Uni-

versity, 1992.

[102] OpenACC Working Group. The OpenACC Application Programming Interface, Ver-

sion 1.0. November 2011.

[103] Piotr R Luszczek, David H Bailey, Jack J Dongarra, Jeremy Kepner, Robert F Lucas,

Rolf Rabenseifner, and Daisuke Takahashi. The HPC Challenge (HPCC) Benchmark

Suite. In SC ’06: Proceedings of the 2006 ACM/IEEE conference on Supercomputing,

page 213, 2006.

[104] Bradford L. Chamberlain, Steven J. Deitz, David Iten, and Sung-Eun Choi. HPC

Challenge Benchmarks in Chapel. Technical report, Cray, Inc., 2009.

207

[105] CUDA Thrust Library. http://code.google.com/p/thrust.

[106] NVIDIA CUDA Compute Unified Device Architecture - Programming Guide, 2011.

[107] Seyong Lee, Seung-Jai Min, and Rudolf Eigenmann. OpenMP to GPGPU: A Compiler

Framework for Automatic Translation and Optimization. In PPoPP ’09: Proceedings

of the 14th ACM SIGPLAN symposium on Principles and practice of parallel program-

ming, pages 101–110, 2009.

[108] Shane Ryoo, Christopher I. Rodrigues, Sara S. Baghsorkhi, Sam S. Stone, David B.

Kirk, and Wen-mei W. Hwu. Optimization Principles and Application Performance

Evaluation of a Multithreaded GPU using CUDA. In PPoPP ’08: Proceedings of the

13th ACM SIGPLAN Symposium on Principles and practice of parallel programming,

pages 73–82, 2008.

[109] Michael Wolfe. Implementing the PGI Accelerator Model. In GPGPU ’10: Proc.

3rd Workshop on General-Purpose Computation on Graphics Processing Units, pages

43–50, 2010.

[110] Albert Sidelnik, I-Jui Sung, Wanmin Wu, Maŕıa Jesús Garzarán, Wen-mei Hwu, Klara

Nahrstedt, David Padua, and Sanjay J. Patel. Optimization of Tele-Immersion Codes.

In Proceedings of 2nd Workshop on General Purpose Processing on Graphics Processing

Units, GPGPU-2, pages 85–93, New York, NY, USA, 2009. ACM.

[111] Steven S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kauf-

mann, 1997.

[112] John E. Stone, James C. Phillips, Peter L. Freddolino, David J. Hardy, Leonardo G.

Trabuco, and Klaus Schulten. Accelerating Molecular Modeling Applications with

Graphics Processors. Journal of Computational Chemistry, 28(16):2618–2640, 2007.

208

[113] J. Rys, M. Dupuis, and H. F. King. Computation of Electron Repulsion Integrals

Using the Rys Quadrature Method. Journal of Computational Chemistry, 4(2):154–

157, 1983.

[114] Stephen D Landy and Alexander S. Szalay. Bias and Variance of Angular Correlation

Functions. Astrophysical Journal, 412(1):64–71, 1993.

[115] Isaac Gelado, John E. Stone, Javier Cabezas, Sanjay Patel, Nacho Navarro, and Wen-

mei W. Hwu. An Asymmetric Distributed Shared Memory Model for Heterogeneous

Parallel Systems. In Proceedings of the fifteenth edition of ASPLOS on Architectural

support for programming languages and operating systems, ASPLOS ’10, pages 347–

358, New York, NY, USA, 2010. ACM.

[116] Portland Group CUDA-X86. http://www.pgroup.com/resources/cuda-x86.htm.

[117] Yonghong Yan, Max Grossman, and Vivek Sarkar. JCUDA: A Programmer-Friendly

Interface for Accelerating Java Programs with CUDA. In Euro-Par ’09: Proc. 15th

International Euro-Par Conference on Parallel Processing, pages 887–899, 2009.

[118] Andreas Klöckner, Nicolas Pinto, Yunsup Lee, Bryan C. Catanzaro, Paul Ivanov, and

Ahmed Fasih. Pycuda: GPU Run-Time Code Generation for High-Performance Com-

puting. CoRR, abs/0911.3456, 2009.

[119] Tianyi David Han and Tarek S. Abdelrahman. hiCUDA: A High-level Directive-based

Language for GPU Programming. In GPGPU-2: Proceedings of 2nd Workshop on

General Purpose Processing on Graphics Processing Units, pages 52–61, New York,

NY, USA, 2009. ACM.

[120] Francois Bodin and Stephane Bihan. Heterogeneous Multicore Parallel Programming

For Graphics Processing Units. Sci. Program., 17(4):325–336, 2009.

209

http://www.pgroup.com/resources/cuda-x86.htm

[121] Michael D. McCool, Kevin Wadleigh, Brent Henderson, and Hsin-Ying Lin. Perfor-

mance Evaluation of GPUs Using the RapidMind Development Platform. In SC ’06:

Proc. 2006 ACM/IEEE conference on Supercomputing, page 181, 2006.

[122] Alejandro Duran, Eduard Ayguad, Rosa M. Badia, Jess Labarta, Luis Martinell, Xavier

Martorell, and Judit Planas. OmpSs: A Proposal for Programming Heterogeneous

Multi-Core Architectures. Parallel Processing Letters, 21(2):173–193, 2011.

[123] Dave Cunningham, Rajesh Bordawekar, and Vijay Saraswat. GPU Programming in a

High Level Language Compiling X10 to CUDA. In X10’11 Workshop, 2011.

[124] Yonghong Yan, Jisheng Zhao, Yi Guo, and Vivek Sarkar. Hierarchical Place Trees:

A Portable Abstraction for Task Parallelism and Data Movement. In LCPC, volume

5898 of Lecture Notes in Computer Science, pages 172–187. Springer, 2009.

[125] R.C. Whaley, A. Petitet, and J. Dongarra. Automated Empirical Optimizations of

Sofware and the ATLAS Project. Parallel Computing, 27(1-2):3–35, 2001.

[126] M. Frigo. A Fast Fourier Transform Compiler. In PLDI’99 — Conference on Program-

ming Language Design and Implementation, 1999.

[127] In personal communication with Basilio B. Fraguela, Universidade da Coruña.

[128] Kamen Yotov, Keshav Pingali, and Paul Stodghill. X-Ray: A Tool for Automatic

Measurement of Hardware Parameters. In QEST ’05: Proceedings of the Second Inter-

national Conference on the Quantitative Evaluation of Systems on The Quantitative

Evaluation of Systems, page 168. IEEE Computer Society, 2005.

210

[129] Francois Broquedis, Jérôme Clet-Ortega, Stéphanie Moreaud, Nathalie Furmento,

Brice Goglin, Guillaume Mercier, Samuel Thibault, and Raymond Namyst. hwloc: A

Generic Framework for Managing Hardware Affinities in HPC Applications. In Proceed-

ings of the 2010 18th Euromicro Conference on Parallel, Distributed and Network-based

Processing, PDP ’10, pages 180–186, Washington, DC, USA, 2010. IEEE Computer

Society.

[130] Rafael H. Saavedra and Alan J. Smith. Analysis of Benchmark Characteristics and

Benchmark Performance Prediction. ACM Trans. Comput. Syst., 14(4):344–384, 1996.

[131] Larry McVoy and Carl Staelin. lmbench: Portable Tools for Performance Analysis.

In ATEC ’96: Proceedings of the annual conference on USENIX Annual Technical

Conference, pages 23–23. USENIX Association, 1996.

[132] Josep Torrellas, Andrew Tucker, and Anoop Gupta. Evaluating the Performance

of Cache-Affinity Scheduling in Shared-Memory Multiprocessors. J. Parallel Distrib.

Comput., 24(2):139–151, 1995.

[133] Intel Corporation. Intel R© 64 and IA-32 Architectures Software Developer’s Manual.

Number 253669-033US. December 2009.

[134] J. González-Domı́nguez, G.L. Taboada, B.B. Fraguela, M.J. Mart́ın, and J. Touri

no. Servet: A Benchmark Suite for Autotuning on Multicore Clusters. In 24th IEEE

International Parallel and Distributed Processing Symposium, IPDPS’10, page 9 pages,

Atlanta, GA, USA, 2010.

211

Appendix A

Sparse Matrices Representation

The sparse matrices presented here provide a visual representation of the inputs used for the

different performance evaluations from Chapters 3 and 4. These matrices and their graphical

representations were taken from the University of Florida Sparse Matrix Collection [69].

Figure A.1: Matrix: Meszaros/ex3sta1

212

Figure A.2: Matrix: Meszaros/stat96v5

Figure A.3: Matrix: LPnetlib/lp osa 14

213

Figure A.4: Matrix: Andrianov/ex3sta1

Figure A.5: Matrix: Rommes/bips07 2476

214

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Overview
	Contributions
	Thesis Organization

	Background
	General Compiler Preliminaries
	Control Flow Analysis
	Dependences: Data and Control
	Data-Parallelism

	Dependence-Driven Execution Models
	StarPU Runtime System

	Chapel Language Overview
	Domains and Distributed Arrays
	Data Parallelism in Chapel
	Task Parallelism in Chapel
	Distributions (Built-in and User-defined)

	Compilation for Dependence-Driven Models
	Introduction
	Motivation
	Generating Task-Dependence Graphs From Data-Parallel Loops
	Prerequisites
	Loop Partitioning
	Agglomerated Flow Graph
	Interval Analysis
	Interval Containment Tree
	Data Placement and Communication
	Code Generation

	Evaluation
	Environmental Setup
	Experimental Methodology
	Experiments
	Results

	Supporting Non-Loop Based Parallel Constructs
	Language Support for Arbitrary Execution Order
	Language Extensions
	Examples

	Current Limitations
	Related Work
	Macro-Dataflow Compilation
	Language Extensions to Express Dependences

	Discussions

	Loop Optimizations for Dependence-Driven Models
	Introduction
	Multi-Dimensional Blocked-Coalesced Form
	Heuristics for Tile Sizes
	Off-Line Timing Benchmarks
	Cost Model
	Memory Footprint
	Heuristic

	Evaluation
	Environmental Setup
	Experiments
	Experimental Methodology
	Results

	Limitations
	Related Work
	Loop Coalescing
	Tile Size and Shape Selection

	Discussion

	Compilation for Heterogeneous Architectures
	Introduction
	Motivation
	Generating Code for GPU Accelerators
	GPU User-Defined Distribution
	GPU Domains and Distributed Arrays
	Data Movement
	Parallel Execution on the GPU
	Code Generation for the GPU
	Targeting Specialized GPU Memory Spaces
	Synchronization
	GPU Low-Level Extensions

	Generating Code for Multi-core
	Compiler Transformations and Optimizations
	Implicit Data Transfers Between Host and Device
	Scalar Replacement of Aggregates and Dead Argument Elimination
	Kernel Argument Spilling to Constant Memory

	Example Codes
	2D Jacobi
	Coulombic Potential

	Evaluation
	Parboil Benchmarks
	Environmental Setup
	Experimental Results

	Limitations
	Related Work
	Conclusion

	Multi-core Micro-benchmark Suite
	Introduction
	Motivation
	Targeted Characteristics
	Cache Coherence Protocol Block Size
	Cache Mapping
	Processor Mapping
	Effective Bandwidth

	Implementation
	Requirements
	Implementation Details

	Evaluation
	Experimental Environment
	Experimental Results

	Related Work
	Conclusion

	Future Work
	Conclusions
	Bibliography
	Sparse Matrices Representation

